1. Field of the Invention
This invention relates to engines, including motors, of the internal combustion type, and in a specific case to reciprocating engines free of momentum change in the movement of their piston and cylinder parts.
More particularly, the invention is concerned with improving the basic internal combustion engine by eliminating many of the commonly associated albeit peripheral parts such as coolant systems, lubrication apparatus, and crankshafts that add weight, drain horsepower and cost efficiency. Further, by eliminating reciprocation of pistons, energy usually lost to reversing piston momentum within the engine is regained. By redesign and optimization of all facets of the internal combustion process we are able to present an engine that has a remarkably high horsepower to weight ratio, operates efficiently at low and high rpms, and runs on virtually any combustible fluid, including synfuels and biofuels as well as conventional hydrocarbon fuels and in different modes including diesel mode.
The invention uses an optimized cylinder and piston assembly and avoids e.g. Wankel rotor and stator assemblies that have proved expensive to build and hard to maintain.
The invention carries cooperating piston and cylinder pairs on separate, but intersecting, angularly counter-rotating carrier wheels to achieve interfittment in their relative movement but without the reversal of momentum that characterizes prior art devices. Momentum in the invention engine is angular and is never reversed, giving an inherent flywheel effect.
By carrying the cooperating cylinder/piston pairs at a chordal disposition relative to the circles defined by their respective carrier wheel, and mutually coordinating their junction in timed relation, pistons enter their cylinders in coaxial disposition, eliminating hitherto required complex mechanisms to tilt the pistons or cylinders into mating orientations. The thus carried pistons being fixed on the wheel are readily used without intricate fittings to deliver by injection combustible fluid fuel to the cylinder once interfittment is achieved for mixing with air or other combustible gases within the cylinder volume also simply in view of the fixed nature of the cylinders on their carrier wheel. Progressive penetration of the cylinder by the piston body, necessarily effected by the intersecting angular paths of the respective carriers, compresses the air fuel mixture as the cylinder exhaust port is closed or partially closed suitably by a spring biased valve and valve controller against escape of the mixture, as will be described.
Fuel detonation is typically by a spark plug or similar device, or by compression as in a diesel. Injection of fuel is controlled for efficiency and can be varied in volume, timing and shape for the application presented. Similarly, fully or partially maintaining cylinder exhaust port valve closure provides a means of varying engine output while maintaining the angular rotation of the carrier wheels constant by varying the amount of combustible mixture under piston compression in proportion to cracking or not of the valve before detonation. A further variation in output is provided by varying the piston stroke suitably while maintaining carrier wheel angular rotation and piston and cylinder positioning constant by moving the carrier wheels more or less apart to vary the active cylinder volume and thus fuel mixture compression without changing the basic operation of the wheels, pistons and cylinders. These designed-in variabilities in mode of operation enable tailoring the engine to a wide variety of applications and to the use of many different fuels.
Once the fuel is detonated, the exhaust port being closed, the piston and cylinder are driven apart thereby and their movement impels their respective carrier wheels to further rotation effecting rotation of a power take off shaft coupled to either or both carrier wheel hubs for e.g. powering vehicle movement. Auxiliary devices such as a blower can be driven off the power take off as well. Upon fuel detonation and concomitant piston withdrawal, the cylinder exhaust port valve, generally disposed at the bottom of the cylinder opposite the face of the piston, and adjacent the spark plug if present, is opened. The exhaust gases are vented out of the cylinder via the valved exhaust port in the cylinder bottom wall, e.g. to a catalytic converter.
Heat from combustion is cooled from the piston and cylinder by exposing these parts to coolant typically comprising only ambient air as they are carried circularly toward their next conjunction. The pistons and cylinders are completely separated by withdrawal of the piston from its cooperating cylinder facilitating their respective cooling. The cylinder exhaust port is open and ambient air coolant can enter and pass through the cylinder volume from bottom and top.
2. Description of the Related Art
Engines using rotary components rather than reciprocating are known. Reciprocation of pistons and or cylinders is achieved in this invention without change in momentum using chordally (not radially) disposed and angularly carried cylinders intersecting with chordally (not radially) disposed oppositely carried pistons for interfittment in coaxial relation; thus are the complications of radial disposition systems, such as cooperating parts being relatively rounded to mate properly, with an accompanying loss of efficiency, and/or parts pivotally brought into alignment for interfittment requiring beefy aligning gearing to withstand the forceful shocks of repeated detonations between the interfitted parts.
As noted, the invention engine features an absence of direction-reversing action of the pistons and piston rods, this eliminates the inertial losses associated with reverse-type reciprocation. Further, pistons and cylinders are in constant orbital motion. Pistons and cylinders are in direct alignment throughout the compression and power cycle eliminating connecting rod angular oscillation; this minimizes frictional losses between pistons and cylinders. The greater lever arm advantage inherent in the invention engine results in higher torsional forces, allowing for low RPM operation and less engine wear. The invention engine has no crankshaft, no block, no connecting rods and no wrist pins to complicate the engine. The invention engine has no piston rings, sealing and oiling is achieved at the bottom of the cylinder by nonmetallic materials and this results in less wear on pistons and cylinders. There is no flywheel. Flywheel inertia is inherent in this engine design. There is only one valve, and thus less supporting hardware. The engine is air cooled from inside and outside of cylinders and pistons eliminating a radiator, water pumps, hoses, and like parts that are peripheral to an engine's main function. All cylinders complete a power stroke with each carrier wheel revolution. Variable compression pressures can automatically adjust for different fuels and greatly increase the efficiency of combustion, reducing pollution, eliminating engine knock and allowing for the use of available fuel including synfuels and biofuels. There is automatic variable exhaust valve control, allowing changes in displacement of the engine to effectively control engine horsepower to the level needed. This reduces the number of transmission gears required on vehicles and improves engine efficiency. Direct injection of the fuel through the piston provides optimum air/fuel mixing and increased combustion efficiency. The engine is suited for diesel operation by merely increasing compression and injector pressure as the engine design readily permits.
It is an object of the invention to meet the continuing need for engines offering the benefits of freedom from reciprocation-generated momentum changes, simplified construction, flexibility in fuels, variable output, high horsepower to weight ratios, and other benefits, including those noted above and hereinafter, that better match the power and efficiency needs of a modern economy.
These and other objects of the invention to become apparent hereinafter are realized in the invention combustible fluid operated engine, comprising a series of angularly carried cylinders adapted to receive the combustible fluid, and a cooperating series of oppositely angularly carried pistons arranged to coaxially oppose and sequentially enter and completely withdraw from respective ones of the cylinders in combustible fluid introducing, compressing, detonating and exhausting relation repetitively as a function of the relative angular carriage of the cylinders and pistons.
In this and like embodiments, typically the cylinders are carried on a cylinder wheel, the pistons are carried on a piston wheel, and the cylinder and piston wheels counter-rotate and are opposed edgewise and disposed in the same plane, the cylinder and piston wheels rotate on respective hubs, the hubs having plates defining the wheels, and including also a hub coupled power take off, there is also included a combustible fluid supply in fluid communication with each piston for delivery thereby into the respective ones of the cylinders in timed relation with piston cylinder entry for compression, detonation and exhaust, each cylinder has an exhaust port closable during piston entry in combustible fluid compression aiding relation, the cylinder exhaust port is at least partially openable during entry of the piston in combustible fluid compression varying relation, the cylinder exhaust port is open between successive piston entries into the cylinder in coolant passing relation into the cylinder, the engine further includes an exhaust port control valve controlling between the open and closed states of the exhaust port in timed relation with the angular carriage of the cylinder, each cylinder has an exhaust port closable during piston entry in combustible fluid compression aiding relation, the cylinder exhaust port is at least partially openable during entry of the piston in combustible fluid compression varying relation, the engine further includes an exhaust port control valve controlling between the open and closed states of the exhaust port in timed relation with piston entry into and withdrawal from the cylinder, the cylinders are carried on a cylinder wheel, the pistons are carried on a piston wheel in counter-rotating relation relative to the cylinder wheel, the cylinder and piston wheels being opposed edgewise and disposed in the same plane and supported by a frame, there is further included a frame, the cylinder and piston wheels rotating on respective hubs journaled on the frame, and there is also a hub coupled power take off, the respective hubs are relatively movable in piston-stroke-within-the-cylinder varying relation, the cylinder wheel carries multiple circularly distributed, chordally disposed cylinders at all angles of rotation of the cylinder wheel, the cylinders being open to cooperating pistons carried by the piston wheel, the piston wheel carries multiple circularly distributed, chordally disposed pistons at all angles of rotation of the piston wheel, the pistons being registerable with cooperating cylinders carried by the cylinder wheel, there is further included a combustible fluid supply in fluid communication with each piston for delivery thereby into the respective ones of the cylinders in timed relation with piston cylinder entry for compression, detonation and exhaust, there is further a combustible fluid detonator operatively associated with each cylinder such as a spark plug having a tip within the cylinder.
In a further embodiment, the invention provides a combustible fluid operated engine comprising a cylinder or piston angularly translatable in chordal disposition on a first driven wheel extending in a plane, a piston or cylinder respectively counter angularly translatable in chordal disposition on a second driving wheel extending in the plane, the first and second wheels being relatively arranged to interfit periodically the piston increasingly with the cylinder angular translation, and an energy supply to the cylinder for decreasing cylinder and piston interfittment.
In this and like embodiments, typically, the cylinders are carried on a cylinder wheel, the pistons are carried on a piston wheel, and the cylinder and piston wheels counter-rotate and are opposed edgewise and disposed in the same plane, the cylinder and piston wheels rotate on respective hubs, the hubs having plates defining the wheels, there is further included a combustible fluid supply in fluid communication with each piston for delivery thereby into the respective ones of the cylinders in timed relation with piston cylinder entry for compression, detonation and exhaust, each cylinder has an exhaust port closable during piston entry in combustible fluid compression aiding relation, the cylinder exhaust port is at least partially openable during entry of the piston in combustible fluid compression varying relation, the cylinder exhaust port is open between successive piston entries into the cylinder in coolant passing relation into the cylinder, the engine further includes an exhaust port control valve controlling between the open and closed states of the exhaust port in timed relation with the angular carriage of the cylinder, the engine also includes a frame, and the cylinder and piston wheels rotate on respective hubs journaled on the frame, and also including a hub coupled power take off, and the respective hubs are relatively movable in piston stroke within the cylinder varying relation.
In a further embodiment, the invention provides a combustible fluid operated engine having a power output, the engine comprising a cooperating cylinder and piston structure, the cylinder having a first axis, the piston having a first axis, a cylinder carrier wheel rotating on a cylinder carrier wheel hub and carrying the cylinder on a cylinder circular path in a first angular direction with the cylinder first axis chordally disposed to the cylinder circular path, a piston carrier wheel rotating on a piston carrier wheel hub parallel to and spaced from the cylinder wheel carrier and carrying the piston on a piston circular path in a second angular direction counter to the first angular direction with the piston first axis chordally disposed to the piston circular path and to the cylinder circular path, the cylinder and piston circular paths locally intersecting in cylinder and piston increasing and then decreasing interfitting relation, a detonatable fuel supply for detonating fuel within the cylinder in piston and cylinder decreasing interfitting relation to drive a carrier wheel, the driven carrier wheel being coupled to the power output in driving relation.
In its method aspects the invention contemplates a method of operating a combustible fluid operated engine, including angularly translating a cylinder in chordal disposition on a first circular path extending in a plane, oppositely angularly translating a cooperating piston in chordal disposition on a second circular path extending in the plane and that periodically intersects the first circular path in piston-in-cylinder increasing interfitting relation, and supplying energy between the cylinder and the piston in piston and cylinder decreasing interfitting relation.
The invention methods further include a method of operating a combustible fluid operated engine, including coaxially opposing and sequentially interfitting a series of angularly carried cylinders adapted to receive the combustible fluid and a cooperating series of oppositely angularly carried pistons, and thereafter completely withdrawing the pistons from respective ones of the cylinders in combustible fluid introducing, compressing, detonating and exhausting relation repetitively as a function of the relative angular carriage of the cylinders and pistons.
In this and like embodiments, typically, the method includes carrying the cylinders on a cylinder wheel, carrying the pistons on a piston wheel, counter-rotating the cylinder and piston wheels in edgewise opposed relation and disposed in the same plane, supplying a combustible fluid via each piston into the respective ones of the cylinders in timed relation with piston cylinder entry for compression, detonation and exhaust, maintaining closed within the cylinder an exhaust port during piston entry in combustible fluid compression aiding relation, maintaining the cylinder exhaust port at least partially open during entry of the piston in combustible fluid compression varying relation, and/or varying the spacing between the cylinder and piston wheels in piston stroke limiting relation.
The invention will be further described in conjunction with the attached drawings in which:
With reference to
Cylinders 103 are carried on a cylinder wheel 118; the pistons 104 are carried on a piston wheel 112. Cylinder and piston wheels 118, 112 counter-rotate and are opposed edgewise and disposed in the same plane, as shown. Cylinder and piston wheels 118, 112 rotate on respective hubs 82, 81, the cylinder hub having plates 83, 84, the piston hub having plates 85, 86 that defining the respective wheels, and at least in the case of the cylinder hub provide a hub coupled power take off.
A combustible fluid supply S is in fluid communication with each piston 104 for delivery thereby into the respective ones of the cylinders 103 in computer control module M-controlled timed relation (and sensor responsive relation as well) with piston cylinder entry for compression, detonation and exhaust. Each cylinder 103 has an exhaust port 111 closable during piston 104 entry in combustible fluid compression aiding relation. The cylinder exhaust port 111 is at least partially openable during entry of the piston 104 in combustible fluid compression varying relation. The cylinder exhaust port 111 is open between successive piston 104 entries into the cylinder 103 in coolant passing relation into the cylinder.
The engine 110 further includes an exhaust port control valve 46 controlling between the open and closed states of the exhaust port 111 in timed relation with the angular carriage of the cylinder 103.
The cylinders 103 are carried on the cylinder wheel 118, while the pistons 104 are carried on piston wheel 112 in counter-rotating relation relative to the cylinder wheel. The cylinder and piston wheels 118, 112 are opposed edgewise and disposed in the same plane and supported e.g. by a frame 115. The cylinder and piston wheels 118, 112 rotate on respective hubs 82, 81 journaled on the frame 115, the hubs providing a hub coupled power take off such as shaft continuation 82a of hub 82 where blower pulley 82b is mounted.
The respective hubs 81, 82 are relatively movable in piston 104 stroke-within-the-cylinder-varying relation. Cylinder wheel 118 carries multiple circularly distributed, chordally disposed cylinders 103 at all angles of rotation of the cylinder wheel, the cylinders being open to cooperating pistons 104 carried by the piston wheel 112. In turn, the piston wheel 112 carries multiple circularly distributed, chordally disposed pistons 104 at all angles of rotation of the piston wheel, the pistons being registerable with cooperating cylinders 103 carried by the cylinder wheel 118. A combustible fluid supply S is in fluid communication with each piston 104 for delivery thereby into the respective ones of the cylinders 103 in timed relation with piston cylinder entry for compression, detonation and exhaust. A combustible fluid detonator is operatively associated with each cylinder such as a spark plug 126 having a tip within the cylinder 103.
More specifically, the invention combustible fluid operated engine 110 comprises a cylinder 103 or piston 104 angularly translatable in chordal disposition on a first driven wheel 118, 112 extending in a plane, a piston 104 or cylinder 103 respectively counter angularly translatable in chordal disposition on a second driving wheel 112, 118 extending in the plane, the first and second wheels being relatively arranged to interfit periodically the piston increasingly with the cylinder angular translation, and an energy supply S to the cylinder for decreasing cylinder and piston interfittment.
The invention further provides a combustible fluid operated engine 110 comprising a cylinder 103 or piston 104 angularly translatable in chordal disposition on a first driven wheel 112/118 extending in a plane, a piston 104 or cylinder 103 respectively counter angularly translatable in chordal disposition on a second driving wheel 118/112 extending in the plane, the first and second wheels being relatively arranged to interfit periodically the piston increasingly with the cylinder angular translation, and an energy supply S to the cylinder for decreasing cylinder and piston interfittment.
The cylinders 103 are carried on a cylinder wheel 118, the pistons 104 are carried on a piston wheel 112, supported for rotation by their respective axles and the cylinder and piston wheels counter-rotate and are opposed edgewise and disposed in the same plane. Further, the cylinder and piston wheels 118, 112 rotate on respective hubs 82, 81, the hubs having plates 83, 84, 85 and 86 defining the wheels, and there is further included a combustible fluid supply S in fluid communication with each piston for delivery thereby into the respective ones of the cylinders in timed relation with piston cylinder entry for compression, detonation and exhaust. Each cylinder 103 has an exhaust port 111 closable during piston entry in combustible fluid compression aiding relation. The cylinder exhaust port 111 can be at least partially openable during entry of the piston 104 in combustible fluid compression varying relation. The cylinder exhaust port 111 is open between successive piston 104 entries into the cylinder 103 in coolant passing relation into the cylinder. The engine further includes an exhaust port control valve 46 controlling between the open and closed states of the exhaust port 111 in timed relation with the angular carriage of the cylinder 103. The engine also includes a frame 115, and the cylinder and piston wheels 118, 112 rotate on respective hubs 81, 82 journaled on the frame. There is a hub 81, 82 coupled power take off, and the respective hubs are relatively movable in piston-stroke-within-the-cylinder varying relation.
Further, the invention provides a combustible fluid operated engine 110 having a power output, the engine comprising a cooperating cylinder 103 and piston 104 structure. Cylinder 103 has a longitudinal axis C-C, piston 104 has the same longitudinal axis P-P, these longitudinal axes being at all times parallel with the longitudinal axes of each other cooperating cylinder and piston. There is a cylinder carrier wheel 118 rotating on a cylinder carrier wheel hub 82 carrying the cylinder on a cylinder circular path 118a in a first angular direction with the cylinder first axis chordally disposed to the cylinder circular path. There is a piston carrier wheel 112 rotating on a piston carrier wheel hub 82 parallel to and spaced from the cylinder wheel carrier hub 82 and carrying the piston on a piston circular path 112a in a second angular direction counter to the first angular direction with the piston first axis chordally disposed to the piston circular path and to the cylinder circular path. The cylinder and piston circular paths 118a, 112a locally intersect in cylinder and piston increasing and then decreasing interfitting relation. A detonatable fuel is supplied for detonating within the cylinder in piston 104 and cylinder 103 decreasing interfitting relation to drive a carrier wheel 118, 112, the driven carrier wheel being coupled to the power output P in driving relation.
The invention method of operating a combustible fluid operated engine 110 includes angularly translating a cylinder 103 in chordal disposition on a first circular path 118a extending in a plane, oppositely angularly translating a cooperating piston 104 in chordal disposition on a second circular path 112a extending in the plane and that periodically intersects the first circular path in piston-in-cylinder increasing interfitting relation, and supplying energy between the cylinder and the piston in piston and cylinder decreasing interfitting relation.
A further invention method of operating a combustible fluid operated engine includes coaxially opposing and sequentially interfitting a series of angularly carried cylinders 103 adapted to receive the combustible fluid and a cooperating series of oppositely angularly carried pistons 104, and thereafter completely withdrawing the pistons from respective ones of the cylinders in combustible fluid introducing, compressing, detonating and exhausting relation repetitively as a function of the relative angular carriage of the cylinders and pistons.
The method further can include carrying the cylinders 103 on a cylinder wheel 118, carrying the pistons 104 on a piston wheel 112, counter-rotating the cylinder and piston wheels in edgewise opposed relation and disposed in the same plane, supplying a combustible fluid via each the piston into the respective ones of the cylinders in timed relation with piston cylinder entry for compression, detonation and exhaust, maintaining closed within the cylinder an exhaust port 111 during piston entry in combustible fluid compression aiding relation, maintaining the cylinder exhaust port 111 at least partially open during entry of the piston in combustible fluid compression varying relation, and/or varying the spacing between the cylinder and piston wheels in piston stroke limiting relation.
The basic movement of the pistons and cylinders of invention engine 110 is schematically illustrated in
Control of the sole exhaust valve 46 in each cylinder 103 includes closing the valve when the piston 104 enters the cylinder 103 for full horsepower output, fuel is injected during the compression cycle, spark plug 126 ignites the fuel, the exhaust valve 46 opens to vent the exhaust gases before the piston 104 leaves the cylinder 103. The exhaust valve 46 then remains open through the rest of the rotation cycle allowing fresh air or other coolant to cool the cylinder 103 and replenish air in the cylinder. With lower horsepower requirements the exhaust valve 46 remains open (by an adjustable cam AC,
In the ensuing description, left, right and center, and upper and lower are used with reference to the
With reference to
The first zone Z1 corresponding to the left side of the engine 110 is shown to comprise a portion of the cylinder carrier wheel 118 and a cylinder 103-1 and related parts to be described. Second zone Z2 corresponding to the center portion of the engine 110 is shown to comprise a second cylinder 103-2 and piston 104-2 carried by piston carrier wheel 112 and fully within the cylinder 103-2 carried by cylinder carrier wheel 118 and related parts to be described. Third zone Z3 corresponding to the right side of the engine 110 is shown to comprise a portion of the piston carrier wheel 112 and a piston 104-3 and related parts to be described.
Cylinder 103-1 has a topmost piston-receiving opening 113 letting in to cylinder volume 119 and a bottom-most exhaust port 111. Exhaust valve 46 extends through valve guide 47 and is spring loaded via compression valve spring 45 and valve spring retainer 44. Rocker arm 107 and rocker arm adjuster 108 carried on the cylinder head 102 control movement of the valve 46 under actuation by push rod 106. A spark plug 126 extends into cylinder volume 119 to provide ignition of air-fuel mixture in Zone Z2. Exhaust housing bushing 80 is shown on cylinder 103-1 for later registration with the exhaust housing 136 (Zone Z2). Gearing 117 linking cylinder wheel hub 82 and piston wheel hub 81 is supported on the frame 115 on the side thereof opposite cylinder wheel 103-1.
Cylinder 103-2 is as cylinder 103-1 was described in reference to zone Z1. Exhaust housing bushing 80 is shown on cylinder 103-1 for later registration with the exhaust housing (Zone Z2). Gearing 117 is supported on the frame 115 beyond the cylinder wheel 103-1. Piston 104-2 (and 104-3 in zone Z3) comprises a plug 104 forming the piston per se, and therewithin a piston cartridge 105 and an injector 34 communicating fuel supply S via a rotary union 57 and piston opening 134 with the cylinder volume 119 in the interfitted condition of the cylinder and piston 103-2, 104-2.
Spark plug 126 detonates the air fuel mixture, the exhaust valve 46 being closed. Exhaust housing bushing 80 on cylinder 103-2 is registered with exhaust housing 136 (Zone Z2). In some embodiments exhaust valve 46 is left partly open during piston entry into the cylinder volume 119 reducing the amount of air-fuel mixture to be compressed. The gearing 117 linking cylinder wheel hub 82 and piston wheel hub 81 is supported on the frame 115 on the side thereof opposite cylinder wheel 118.
A typical engine has a height of about 20 inches, a width of about 10 inches and a length of about 40 inches, and weighs about 300 pounds; cylinder bores can be 2.5-inch by 3-inch.
The invention engine thus meets the present need for engines offering the benefits of freedom from reciprocation-generated momentum changes, simplified construction, flexibility in fuels, variable output, high horsepower to weight ratios, and other benefits noted above, to better match the power and efficiency needs of a modern economy.
The foregoing objects are thus met.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/792,603, filed Apr. 17, 2006, the specification and drawings of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
868100 | Krehbiel | Oct 1907 | A |
1109270 | Wallis | Sep 1914 | A |
1215922 | Fasnacht | Feb 1917 | A |
1705130 | McKlusky | Mar 1929 | A |
1742706 | Hermann | Jan 1930 | A |
1817370 | Hammerstrom | Aug 1931 | A |
2894496 | Townsend | Jul 1959 | A |
3043234 | Poulin | Jul 1962 | A |
3084562 | Fitzpatrick | Apr 1963 | A |
3105473 | Johns | Oct 1963 | A |
3353519 | Reichart | Nov 1967 | A |
3550565 | Sanchez | Dec 1970 | A |
3942913 | Bokelman | Mar 1976 | A |
4236496 | Brownfield | Dec 1980 | A |
4432314 | Pelekis | Feb 1984 | A |
4530316 | Morrison | Jul 1985 | A |
4531481 | Haynes | Jul 1985 | A |
4836149 | Newbold | Jun 1989 | A |
5343832 | Murray | Sep 1994 | A |
6457443 | Lillbacka | Oct 2002 | B1 |
6526925 | Green, Jr. | Mar 2003 | B1 |
6591791 | De Bei | Jul 2003 | B2 |
6615793 | Usack | Sep 2003 | B1 |
6705202 | Harcourt et al. | Mar 2004 | B2 |
6779433 | Brosch et al. | Aug 2004 | B2 |
7341042 | Chung et al. | Mar 2008 | B1 |
Number | Date | Country | |
---|---|---|---|
60792603 | Apr 2006 | US |