The present invention relates to balloon catheters and, more particularly, to a non-shortening wrapped balloon configured to expand to a predetermined diameter upon application of a predetermined pressure thereto.
Balloon catheters are well known in the art. Such catheters are employed in a variety of medical procedures, including dilation of narrowed blood vessels, placement of stents and other implants, temporary occlusion of blood vessels, and other vascular uses.
In a typical application, the balloon is advanced to the desired location in the vascular system. The balloon is then pressure-expanded in accordance with a medical procedure. Thereafter, the pressure is removed from the balloon, allowing the balloon to contract and permit removal of the catheter.
Procedures such as these are generally considered minimally invasive, and are often performed in a manner which minimizes disruption to the patient's body. As a result, catheters are often inserted from a location remote from the region to be treated. For example, during angioplasty procedures involving coronary vessels, the balloon catheter is typically inserted into the femoral artery in the groin region of the patient, and then advanced through such vessel into the coronary region of the patient. These catheters typically include some type of radiopaque marker to allow the physician performing the procedure to monitor the progress of the catheter through the body. As a characteristic of wrapped balloons, it is also common to have the length of the wrapped balloon change during inflation causing placement problems during procedures. Additionally, catheters have been unable to deliver balloons with large diameters expansion capability due to the need for a low profile and sustained high pressures.
There are two main forms of balloon catheter devices. Non-compliant catheters employ a balloon made of relatively strong but generally inelastic material (e.g., polyester) folded into a compact, small diameter cross section. These relatively stiff catheters are used to compact hard deposits in vessels. Due to the need for strength and stiffness, these devices are rated to employ high inflation pressures, usually up to about 8 to 18 atmospheres. They tend to be self-limiting as to diameter in that they will normally distend up to the rated diameter and not distend appreciably beyond this diameter until rupture due to over-pressurization. While the inelastic material of the balloon is generally effective in compacting deposits, it tends to collapse unevenly upon deflation, leaving a flattened, wrinkled bag, substantially larger in cross section than the balloon was when it was originally installed. This enlarged, wrinkled, relatively stiff bag may be difficult to remove, especially from small vessels.
By contrast, compliant catheters employ a soft, very elastic material (e.g., natural rubber latex) as the balloon. These catheters are employed to displace soft deposits, such as thrombus, where a soft and tacky material such as latex provides an effective extraction means, and also can be used as an occlusion balloon, though operate at low pressures. Latex and other highly elastic materials generally will expand continuously upon increased internal pressure until the material bursts. As a result, these catheters are generally rated by volume (e.g., 0.3 cc) in order to properly distend to a desired size. Although relatively weak, these catheters do have the advantage that they tend to readily return to their initial size and dimensions following inflation and subsequent deflation.
Some catheter balloons constructed of both elastomeric and non-elastomeric materials have been described previously. U.S. Pat. No. 4,706,670 describes a balloon dilatation catheter constructed of a shaft made of an elastomeric tube and reinforced with longitudinally inelastic filaments. This device incorporates a movable portion of the shaft to enable the offset of the reduction in length of the balloon portion as the balloon is inflated. One improved balloon is disclosed in U.S. Pat. No. 4,706,670 teaching reinforcing filaments in a balloon portion at an angle which is less than 54.73 degrees relative to the axis of the balloon. As the length of the balloon portion decreases, the length of the movable portion of the outer tubing increases and by proper selection of internal diameters and lengths of the two portions, the shortening of the balloon is offset.
U.S. Pat. No. 5,647,848 teaches a structure formed of helically extending fibers, including bundles of continuous monofilaments, aramide, polyethylene, steel, polyester, glass, carbon, and ceramics. The fibers are positioned in an elastomer such that the fibers lie at an angle which is less than a neutral angle of 54.73 degrees relative to the axis of the balloon when the balloon is unpressurized. With the utilization of rigid fibers the balloon will be non-compliant in its fully inflated state. The difference in rigidity although desirable with respect to independent movement of the components of the balloon can introduce unwanted torsional moments into the elastomeric balloon depending upon the construction of the balloon and fibers.
Accordingly, there is a need in the art for a soft, high pressure, large diameter, high expansion ratio (greater than 400 percent) balloon which does not lengthen or shorten upon inflation and has a predefined maximum expanded diameter. This maximum expanded diameter should remain constant even as the pressure of the balloon is increased. Moreover, this maximum expanded diameter should remain essentially constant upon repeated inflation and deflation of the balloon. The present invention fulfills this need.
The present invention provides a non-shortening, wrapped catheter balloon. The balloon comprises a wrapped membrane. The wrapped membrane provides an outer limit constraint for expansion of the balloon body to a predetermined maximum diameter at a minimum working pressure. If desired, the wrapped membrane may also provide a seal for the balloon.
The balloon of the present invention is able to realize a ratio of final-to-initial overall catheter diameter (inflated balloon to leg outer diameter) of greater than 400 percent without foreshortening or lengthening.
The present invention provides a soft, high pressure, large diameter (considered to be balloons of greater than 10 mm and for the purposes of this invention to balloons over 18 mm inflated), high expansion ratio balloon which does not lengthen, for securement to a catheter. The balloon comprises a plurality of wrapped layers formed into a generally hollow pressure expandable body which exhibits essentially radial symmetry when expanded under an internally applied minimum working pressure from an uninflated state. The wrapping provides an outer limit constraint for expansion of the balloon body to a predetermined maximum diameter at a minimum working pressure.
A balanced force balloon of the present invention is a balloon possessing a combination of passes to create the strength to balance the radial force exerted by inflation pressures on the balloon vessel with respect to the longitudinal forces exerted by inflation so that the balloon inflates to its desired diameter without any longitudinal movement.
For a helically wrapped cylindrical pressure vessel, the balanced force would lie along the force resultant angle of 54.7 degrees between the radial force vector and the longitudinal force vector. In this invention the balance force is also created by wrapping in longitudinal and axial components of the balance force angle.
As shown in
A longitudinal pass is comprised of one or more layers of material which are laid at similar angles in relation to the longitudinal axis of the balloon. A longitudinal pass comprises a distinctive layer or series of layers of material which are wound or wrapped to form a region or area distinct from surrounding or adjoining parts. It is important to note that a pass may span the entire length of the balloon or in certain instances, such as non-distending or non-inflating regions, the pass may span only a partial length of the balloon.
A layer is considered to be one strand, strip or thickness of balloon material which may be wrapped, folded, laid or weaved over, around, beside or under another strand, strip or thickness of balloon material.
While it is clear that a longitudinal pass may span the entire length of the balloon at a single wrap angle, a longitudinal pass may also comprise a wrapping event in which the wrapping angles may be changed during the continuous longitudinal wrapping so that in this type of wrapping pattern a single pass may include two or more wrap angles.
In one embodiment, at least one base layer is provided around the longitudinal axis in an essentially longitudinal direction. At least one radial layer is wrapped around the longitudinal axis in an essentially circumferential direction with respect to the longitudinal axis. At least one helical layer is oriented helically in the direction of the maximum hoop stress to create a high pressure balloon. The three types of layers operate in conjunction to provide a balloon with balanced forces upon inflation. A sufficient number of layers will provide a targeted high-pressure balloon (see
As shown in
In one aspect, a soft, high pressure, large diameter, high expansion ratio balloon comprises a balloon having a longitudinal axis and at least two passes of wrapped film at a balanced force angle of essentially 54 degrees such that a catheter balloon is formed which achieves an expansion ratio of equal or greater than 400 percent upon inflation of the catheter balloon. The expansion ratio is measured by dividing the inflated diameter of the balloon, measured between the shoulders by the leg diameter. This result is then multiplied by 100 to obtain a percent expansion ratio.
In another aspect, a non-shortening catheter balloon of the present invention is able to withstand increased burst pressures due to the wrapping of the film or other suitable material in an essentially longitudinal direction and then the wrapping of a second film or other suitable material in an essentially helical direction around a mandrel. The mandrel has an outer dimension which is equal to the desired final inflated internal diameter of the catheter balloon. The wrapping of the mandrel ceases when the required thickness for the desired strength is achieved. This is determined by the following equations:
The required wrap thickness to hold diameter in place is calculated as:
tf=PR/2Sf SIN2 A (for 54.7 degree wrap)
The longitudinal force required to hold balloon in place is calculated as:
tf=PR/Sf cos2 A
The balloon structure diameter is then minimized by removing the mandrel or decreasing the outer diameter of the mandrel to create a soft, high pressure, large diameter, high expansion ratio (greater than 400 percent) balloon.
The non-compliant balloon is constructed by wrapping a composite film around the mandrel. In one preferred embodiment an ePTFE membrane is used to make the composite film. The ePTFE membrane is made in accordance with the teaching in U.S. Pat. No. 5,476,589, incorporated herein by reference. The ePTFE membrane is longitudinally expanded to a ratio of 55 to 1 and transversely expanded approximately 2.25 to 1, to produce a thin strong membrane with a mass of between 2 to 8 g/m2 and a thickness of 2.5 to 7.5 micrometers. A 0.5 percent to 8 percent by weight solution of polyurethane to tetrahydrofuran (THF) is coated onto the ePTFE membrane to produce a composite film with polyurethane on at least one side and throughout the ePTFE membrane. The total polymer weight in an application may vary depending on the desired application, and is typically between approximately 40 percent to 60 percent of the total final composite film weight. The composite film for the radial passes may vary in width and may be equal to or less than the balloon working length. The composite film width of the longitudinal and helical wrap passes are preferably about 0.10 of the final inflated diameter of the balloon. However, while this width is preferable, other widths of film may be used to obtain the desired final thickness of the helically and longitudinally oriented wrap passes. The composite film may vary in width. While the longitudinal and transverse expansion ratios stated above are preferred, other suitable expansion ratios may be used as would be known to one of skill in the art.
The present invention eliminates the problem of transverse strain associated with other wrapped balloons. Some balloons wrapped at less than their final diameter encountered transverse strain on the material upon expansion. The present invention is wrapped at its final diameter to alleviate associated transverse strain. Additionally, the composite film of the present invention may be anisotropic or isotropic. In a preferred embodiment, the film is anisotropic.
As shown in
As shown in
As shown in
As shown in
To mitigate excess film buildup, subsequent helical passes may be wrapped at different angles to vary the pole opening, over the length of the balloon shoulder, as shown in
The number of passes, types of passes, and wrap patterns which are employed to wrap the mandrel and form a non-distensible catheter balloon 2 can vary depending upon the desired profile and/or application. A tubular catheter shaft having a longitudinal axis with a proximal end and a distal end may be used to mount the balloon for delivery. The catheter shaft comprises at least one inflation lumen extending from an inflation port and extends distally to a location proximally spaced from the distal end. The inflatable balloon can be affixed near the distal end of the catheter shaft. The balloon has an interior chamber in fluid communication with the inflation lumen. The interior chamber is formed by minimization of the mandrel upon completion of wrapping the composite film wrap 11 to form a balloon structure. The mandrel in the formed balloon structure may be minimized by deflating the mandrel; by dissolving or melting the mandrel; by deflating and removing the mandrel; or by another means known to one in the art. The mandrel may further comprise an inflatable bladder. The bladder may be comprised of a single piece; multiple pieces or a material or film wrapped in a continuous manner to form a bladder. When present as an inflatable bladder, the mandrel may remain as part of finished device.
In an additional embodiment, a catheter balloon is provided. The catheter balloon may be comprised of any suitable materials, but in a preferred construct the soft, high pressure, large diameter, high expansion ratio (greater than 400 percent) balloon comprises a porous membrane, such as ePTFE or other suitable porous materials. The polymer coating 5 may be comprised of any suitable materials known to one in the art including but not limited to polyurethanes and fluorinated polymers. The balloon has a pre-inflated shape with a substantially circular cross-section when opposing ends of the balloon are affixed to the catheter shaft. The balloon has a balloon length measured between its opposing ends, wherein the length varies less than ten percent between when the balloon is in a deflated state as compared to the length of the balloon inflated to a predetermined burst pressure. In preferred applications, the balloon does not change length by more than 5 percent upon inflation to a rated burst pressure. In further preferred applications, the balloon does not change length by more than 2 percent upon inflation to a rated burst pressure. An expandable stent or other medical device may be disposed about the balloon or mounted onto the balloon for delivery into a patient's body. Inflation of the balloon occurs in an essentially radially symmetric manner. Accordingly expansion of a stent mounted thereon is also essentially radially symmetric. Upon deflation of the balloon it is substantially returned to its preinflated shape. The present invention solves the clinical issues of accurate placement of a balloon or stent due to foreshortening of traditional wrapped balloons. The present invention also prevents undue trauma on vessel endothelial layers and possibility of plaque fragmentation caused by inflation movement of asymmetric inflating balloons.
The mold for a balloon mandrel may be constructed with a desired internal balloon shape. The size of the mandrel may vary to achieve diameters greater than 10 mm in diameter. The shoulders of the balloon shaped mold may be blunt or tapered. The taper is measured with respect to the mandrel axis to a leg of a given diameter. The leg may be of any desired length and diameter. In a preferred balloon mold, the leg is stepped down to create a shutoff with respect to a contacting hypotube. It is desired that a fill hole large enough to accept a syringe barrel tip is incorporated at a point on the balloon working length, for instance on the mold separation line. Appropriate vents may also be added at the terminus of each leg. The resulting balloon mandrel may be wrapped by a wrapping machine (mandrel rotation, x-axis, and y-axis). The balloon mandrel can be mounted by gripping the ends of the hypotube that extends through the balloon shaped mandrel. The wrapping film can be positioned so that the material film can change wrapping directions as desired on the base layer and other employed layers as described above
Further, the catheter balloon made in accordance with the present invention is able to achieve an inflation ratio of equal to or greater than 400 percent upon inflation of the catheter balloon without experiencing any foreshortening or lengthening of the balloon from its preinflated length. The catheter balloon may comprise sections wrapped at differing angles to allow for semi-compliant and non-compliant sections. The catheter balloon may be wrapped into various desired shapes including a conventional balloon shape, a non-tubular shape, a sphere, a barbell formation, or other desired shapes.
The non-shortening catheter balloon of the present invention exhibits increased burst pressures over traditional balloons and may be formed by wrapping a film or other suitable material around a mandrel having an outer dimension of the desired final inflated internal diameter of the catheter balloon. The wrap forms a plurality of oriented passes with respect to the longitudinal axis. The film passes are oriented to achieve a balanced force for the balloon modeled as a pressure vessel upon inflation. The mandrel is continuously wrapped until a final desired strength of the catheter balloon is achieved with the plurality of film layers to form a balloon structure. When the wrap configuration pattern or recipe is completed and all wrap layers have been applied, the wrapped mandrel may be heated at above ambient temperatures to set the wrap layers in place. The temperature chosen to set the layers is dependent upon the materials used in construction of the formed balloon structure, but should be high enough and long enough to adhere the layers together. The mandrel should be allowed to cool prior to removal or minimization of the mandrel. The balloon structure diameter is then minimized by removing the mandrel or decreasing the outer diameter of the mandrel to create a non-shortening catheter balloon with increased burst pressures. The minimization of the balloon structure is achieved by deflating the mandrel; dissolving or melting the mandrel; deflating and removing the mandrel or in any other suitable manner. The mandrel may comprise an inflatable bladder. The mandrel may remain as part of finished device. The bladder may be formed of a single piece unit, multiple pieces, or may be wrapped in a continuous manner.
The composite film of the present invention comprises a porous reinforcing layer and a continuous polymer layer. The porous reinforcing polymer layer is a thin, strong porous membrane that may be made in sheet form. The porous reinforcing polymer can be selected from a group of polymers including, but not limited to, olefin, PEEK, polyamide, polyurethane, polyester, polyethylene, and polytetrafluoroethylene. In preferred embodiments, the porous reinforcing polymer is expanded polytetrafluoroethylene (ePTFE) made in accordance with the general teachings of U.S. Pat. No. 5,476,589 or U.S. patent application Ser. No. 11/334,243 incorporated herein by reference. In this embodiment, the ePTFE membrane is anisotropic such that it is highly oriented in the one direction. An ePTFE membrane with a matrix tensile value in one direction of greater than 690 megapascals is preferred, and greater than 960 megapascals is even more preferred, and greater than 1,200 megapascals is most preferred. The exceptionally high matrix tensile value of ePTFE membrane allows the composite material to withstand very high hoop stress in the inflated balloon configuration. In addition, the high matrix tensile value of the ePTFE membrane makes it possible for very thin layers to be used which reduces the deflated balloon profile. A small profile is necessary for the balloon to be able to be positioned in small arteries or veins or orifices. In order for balloons to be positioned in some areas of the body, the balloon catheter must be able to move through a small bend radius, and a thinner walled tube is typically much more supple and capable of bending in this manner without creasing or causing damage to the wall of the vessel.
In another embodiment, the ePTFE membrane is relatively mechanically homogeneous. The mechanically balanced ePTFE membrane can increase the maximum hoop stress that the composite film made therefrom can withstand.
The continuous polymer layer of the present invention is coated onto at least one side of the porous reinforcing polymer. The continuous polymer layer is preferably an elastomer, such as, but not limited to, aromatic and aliphatic polyurethanes including copolymers, styrene block copolymers, silicones, preferably thermoplastic silicones, fluoro-silicones, fluoroelastomers, THV and latex. In one embodiment of the present invention, the continuous polymer layer is coated onto only one side of the porous reinforcing polymer. However, continuous polymer layer may be coated onto both sides of the porous reinforcing polymer. In a preferred embodiment, the continuous polymer layer is imbibed into the porous reinforcing polymer and the imbibed polymer fills the pores of the porous reinforcing polymer.
The continuous polymer layer can be applied to the porous reinforcing polymer through any number of conventional methods including, but not limited to, lamination, transfer roll coating, wire-wound bar coating, reverse roll coating, and solution coating or solution imbibing. In a preferred embodiment, the continuous polymer layer is solution imbibed into the porous reinforcing polymer. In this embodiment, the continuous polymer layer is dissolved in a suitable solvent and coated onto and throughout the porous reinforcing polymer using a wire-wound rod process. The coated porous reinforcing polymer is then passed through a solvent oven and the solvent is removed leaving a continuous polymer layer coated onto and throughout the porous reinforcing polymer. In some cases, such as when silicone is used as the continuous polymer layer, the coated porous reinforcing polymer may not require the removal of solvent. In another embodiment, the continuous polymer layer is coated onto at least one side of the porous reinforcing polymer and maintained in a “green” state where it can be subsequently cured. For example, an ultraviolet light (UV) curable urethane may be used as the continuous polymer layer and coated onto the porous reinforcing polymer. The composite film comprising the porous reinforcing polymer and the UV curable urethane continuous polymer layer can then be wrapped to form at least one layer of the balloon and subsequently exposed to UV light and cured. A pass is considered to be a number of layers applied in a wrapping event. A layer, by contrast, is considered to be a single thickness of composite film wrapped around the balloon.
While particular embodiments of the present invention have been illustrated and described herein, the present invention should not be limited to such illustrations and descriptions. It should be apparent that changes and modifications may be incorporated and embodied as part of the present invention within the scope of the following claims. The following examples are further offered to illustrate the present invention.
Aluminum clamshell molds were machined with an internal balloon shape of 25 mm in diameter and 40 mm working length. The shoulders of the balloon shaped mold were tapered at an angle of 30 degrees, with respect to the mandrel axis, to a leg diameter of 2.3 mm. The axial length of the shoulder was 22.7 mm. The leg was 10 mm long. The leg stepped down to create a shutoff with a 0.914 mm diameter hypotube. A fill hole large enough to accept a syringe barrel tip was machined in the middle of the balloon working length, at the mold separation line. Appropriate vents were machined at the terminus of each leg. Before use, the mold was cleaned and lightly coated with a Lecithin based lubricant. A 0.914 mm diameter×152 mm length hypotube, PN B-HTX-20HW (Small Parts, Miami, Fla.), was lightly sandblasted to roughen the surface, and placed in the mold.
A slurry of water and Aquapour™ (Advanced Ceramics Research, Tucson, Ariz.) ceramic powder was mixed, at a ratio of 55 percent by weight Aquapour™ powder to 45 percent by weight water, and injected into the mold with a syringe. The mold was allowed to sit for one hour before the mandrel was removed from the mold and cured in an oven at 135° C. for 1 hour.
The balloon mandrel was loaded onto a 3-axis wrapping machine (mandrel rotation, x-axis, and y-axis). The balloon mandrel was mounted by gripping the ends of the hypotube that extended through the ceramic balloon shape. A small piece of double stick tape was wound onto the hypotube adjacent to the ceramic balloon mandrel leg. The tape provided friction for positioning the film and for changing material directions on the Base Layer.
The non-distensible balloon was constructed by wrapping a composite film around the mandrel. The composite film was made by using a wire-wound rod coating process whereby a solution of Tecothane TT-1085A polyurethane and tetrahydrofuran (THF) was coated onto an ePTFE membrane. The ePTFE membrane used to make the composite film was made in accordance with the teaching in U.S. Pat. No. 5,476,589 to Bacino, incorporated herein by reference. Specifically, the ePTFE membrane was longitudinally expanded to a ratio of 55 to 1 and transversely expanded approximately 2.25 to 1, to produce a thin strong membrane with a mass of approximately 3.5 g/m2 and a thickness of approximately 6.5 micrometers. A 3 percent to 8 percent by weight solution of Tecothane TT-1085A polyurethane in THF was coated onto the ePTFE membrane to produce a composite film with approximately equal amounts of Tecothane TT-1085A polyurethane on either side and throughout the ePTFE membrane and a total polymer weight application of approximately 40 percent to 60 percent of the total final composite film weight.
The composite film was slit to 2.5 mm wide, and stack wound onto a 76 mm diameter core that was placed onto a payoff cart. The payoff cart angle could be adjusted to allow for different wrap configurations. Adequate tension was employed to keep the composite film taut. CADWIND NG 2005 (High End) software (Material Co., Brussels, Belgium) was utilized to develop the film wrap patterns. A variety of wrapping patterns could be used to make the non-distensible balloons of the present invention. The following wrapping layer arrangement recipe is for a 15 atmosphere burst pressure design strength non-distensible balloon:
For the radial layer, the film was positioned by manually wrapping it around the balloon mandrel and onto itself. The film adhered to itself but not the mandrel. The working length of the balloon was wrapped with two layers of the composite film, as depicted in
For the base layer, the film was positioned by wrapping it around the double stick tape that was earlier applied to the mandrel. In the base layer wrap, both legs were wrapped at an angle (measured from the mandrel axis) of 36 degrees. The shoulders and working length received approximately 2 layers during this wrap, while the legs received approximately 20 layers, as depicted in
For the first helical wrap layer, the film was simply placed onto the previous layers at the approximate angle of wrap. The adherence of the film to the previous layers was enough to secure the film. In the helical 1 wrap configuration, a helical layer was placed on a geodesic (non-slip) path, depositing 2 layers of material at an angle of 6 degrees from the mandrel axis. The wrap extended the axial length of the shoulder, to the start of the legs, as depicted in
For the second Helical wrap layer, the film was simply placed onto the previous layers at the approximate angle of wrap. The adherence of the film to the previous layers was enough to secure the film. In the helical 2 wrap configuration, a helical layer was wrapped on a geodesic (non-slip) path, depositing two layers of material at an angle of 24 degrees from the mandrel axis. This pattern did not extend the entire length of the shoulder so as not to excessively build up the area adjacent to the legs. The wrap opening was 10 mm in diameter and extended 15 mm along the axial length of the shoulder, as depicted in
For the third helical wrap layer, the film was simply placed onto the previous layers at the approximate angle of wrap. The adherence of the film to the previous layers was enough to secure the film. In the helical 3 wrap configuration, a helical layer was wrapped on a geodesic (non-slip) path, depositing two layers of material at an angle of 36 degrees from the mandrel axis. This pattern terminated farther away from the balloon legs than did Helical 2. The wrap opening was 15 mm and extended 10 mm along the axial length of the shoulder, as depicted in
When the recipe was complete and all wrap layers had been applied, the wrapped mandrel was placed in an oven at 150° C. for 30 minutes. The mandrel was removed from the oven and allowed to cool. The wrapped mandrel was then dissolved by soaking it in water. Water was injected into the wrapped mandrel to aid in the removal of the mandrel. To add robustness to the liquid seal, the ID of the balloon was spray coated with a 5 percent wt PEBAX 2533 (Arkema, Philadelphia, Pa.)/95 percent 1-butynol solution. The coated balloon was allowed to dry under a fume hood, overnight.
The examples produced a 25 mm diameter by 40 mm long non-distensible balloon with a burst pressure of greater than 15 atmospheres.
The balloon was pre-filled with water before testing commenced. Testing was performed in water at 37° C.
The graph below shows a 15 atmosphere burst pressure design strength and a 30 degree shoulder angle balloon burst tested with a PT3070 Hydraulic Pressure Tester (Interface Associates, Laguna Niguel, Calif.). The mean length change in working length for a 60 degree included angle, 15 atm design was 2 percent, measured with calipers. The balloon wall thickness was 0.35 mm, measured with a drop gauge.
This application is a continuation of application Ser. No. 11/501,190, filed Aug. 7, 2006 now U.S. Pat. No. 7,785,290.
Number | Name | Date | Kind |
---|---|---|---|
1690995 | Pratt | Nov 1928 | A |
3640282 | Kamen | Feb 1972 | A |
3746003 | Blake et al. | Jul 1973 | A |
3953566 | Gore | Apr 1976 | A |
4003382 | Dyke | Jan 1977 | A |
4106509 | McWhorter | Aug 1978 | A |
4187390 | Gore | Feb 1980 | A |
4194041 | Gore et al. | Mar 1980 | A |
4279245 | Takagi et al. | Jul 1981 | A |
4280500 | Ono | Jul 1981 | A |
4304010 | Mano | Dec 1981 | A |
4327736 | Inoue | May 1982 | A |
4338942 | Fogarty | Jul 1982 | A |
4403612 | Fogarty | Sep 1983 | A |
4443511 | Worden et al. | Apr 1984 | A |
4490421 | Levy | Dec 1984 | A |
4573966 | Weikl et al. | Mar 1986 | A |
4596839 | Peters | Jun 1986 | A |
4608984 | Fogarty | Sep 1986 | A |
4613544 | Burleigh | Sep 1986 | A |
4619641 | Schanzer | Oct 1986 | A |
4637396 | Cook | Jan 1987 | A |
4650466 | Luther | Mar 1987 | A |
4702252 | Brooks et al. | Oct 1987 | A |
4706670 | Andersen et al. | Nov 1987 | A |
4713070 | Mano | Dec 1987 | A |
4737219 | Taller et al. | Apr 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4743480 | Campbell et al. | May 1988 | A |
4764560 | Mitchell | Aug 1988 | A |
4816339 | Tu et al. | Mar 1989 | A |
4819751 | Shimada et al. | Apr 1989 | A |
4832688 | Sagae et al. | May 1989 | A |
4896669 | Bhate et al. | Jan 1990 | A |
4946464 | Pevsner | Aug 1990 | A |
4955899 | Dell Coma et al. | Sep 1990 | A |
5041047 | Casale | Aug 1991 | A |
5061276 | Tu et al. | Oct 1991 | A |
5066298 | Hess | Nov 1991 | A |
5071609 | Tu et al. | Dec 1991 | A |
5087244 | Wolinsky et al. | Feb 1992 | A |
5100429 | Sinofsky et al. | Mar 1992 | A |
5108370 | Walinsky | Apr 1992 | A |
5112304 | Barlow et al. | May 1992 | A |
5116318 | Hillstead | May 1992 | A |
5137512 | Burns et al. | Aug 1992 | A |
5147302 | Euteneuer et al. | Sep 1992 | A |
5152782 | Kowligi et al. | Oct 1992 | A |
5171297 | Barlow et al. | Dec 1992 | A |
5192296 | Bhate et al. | Mar 1993 | A |
5195970 | Gahara | Mar 1993 | A |
5197978 | Hess | Mar 1993 | A |
5201706 | Noguchi et al. | Apr 1993 | A |
5211654 | Kaltenbach | May 1993 | A |
5213576 | Abiuso et al. | May 1993 | A |
5226880 | Martin | Jul 1993 | A |
5236659 | Pinchuk et al. | Aug 1993 | A |
5254090 | Lombardi et al. | Oct 1993 | A |
5256143 | Miller et al. | Oct 1993 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5290306 | Trotta et al. | Mar 1994 | A |
5304120 | Crandell et al. | Apr 1994 | A |
5304214 | DeFord et al. | Apr 1994 | A |
5304340 | Downey | Apr 1994 | A |
5308356 | Blackshear | May 1994 | A |
5330429 | Noguchi et al. | Jul 1994 | A |
5338299 | Barlow | Aug 1994 | A |
5342305 | Shonk | Aug 1994 | A |
5342348 | Kaplan | Aug 1994 | A |
5348538 | Wang et al. | Sep 1994 | A |
5358486 | Saab | Oct 1994 | A |
5358516 | Myers et al. | Oct 1994 | A |
5366442 | Wang et al. | Nov 1994 | A |
5366472 | Hillstead | Nov 1994 | A |
5370618 | Leonhardt | Dec 1994 | A |
5403340 | Wang et al. | Apr 1995 | A |
5409495 | Osborn | Apr 1995 | A |
5415636 | Forman | May 1995 | A |
5425710 | Khair et al. | Jun 1995 | A |
5429605 | Richling | Jul 1995 | A |
5456661 | Narciso | Oct 1995 | A |
5458568 | Racchini et al. | Oct 1995 | A |
5458605 | Klemm | Oct 1995 | A |
5466252 | Soukup et al. | Nov 1995 | A |
5470313 | Crocker et al. | Nov 1995 | A |
5470314 | Walinsky | Nov 1995 | A |
5476589 | Bacino | Dec 1995 | A |
5478320 | Trotta | Dec 1995 | A |
5478349 | Nicholas | Dec 1995 | A |
5484411 | Inderbitzen et al. | Jan 1996 | A |
5490839 | Wang et al. | Feb 1996 | A |
5496276 | Wang et al. | Mar 1996 | A |
5498238 | Shapland et al. | Mar 1996 | A |
5499973 | Saab | Mar 1996 | A |
5499980 | Euteneuer | Mar 1996 | A |
5499995 | Teirstein | Mar 1996 | A |
5500180 | Anderson et al. | Mar 1996 | A |
5500181 | Wang et al. | Mar 1996 | A |
5512051 | Wang et al. | Apr 1996 | A |
5519172 | Spencer et al. | May 1996 | A |
5527282 | Segal | Jun 1996 | A |
5529820 | Nomi et al. | Jun 1996 | A |
5571089 | Crocker | Nov 1996 | A |
5609605 | Marshall et al. | Mar 1997 | A |
5613979 | Trotta et al. | Mar 1997 | A |
5620649 | Trotta | Apr 1997 | A |
5641373 | Shannon et al. | Jun 1997 | A |
5645560 | Crocker et al. | Jul 1997 | A |
5647848 | Jorgensen | Jul 1997 | A |
5716340 | Schweich et al. | Feb 1998 | A |
5716396 | Williams, Jr. | Feb 1998 | A |
5752934 | Campbell et al. | May 1998 | A |
5766201 | Ravenscroft et al. | Jun 1998 | A |
5797877 | Hamilton et al. | Aug 1998 | A |
5807327 | Green et al. | Sep 1998 | A |
5843116 | Crocker et al. | Dec 1998 | A |
5868704 | Campbell et al. | Feb 1999 | A |
5868708 | Hart et al. | Feb 1999 | A |
5893840 | Hull et al. | Apr 1999 | A |
5908406 | Ostapchenko et al. | Jun 1999 | A |
5944734 | Hermann et al. | Aug 1999 | A |
5951941 | Wang et al. | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5972441 | Campbell et al. | Oct 1999 | A |
6010480 | Abele et al. | Jan 2000 | A |
6013092 | Dehdashtian | Jan 2000 | A |
6027779 | Campbell et al. | Feb 2000 | A |
6048356 | Ravenscroft et al. | Apr 2000 | A |
6120477 | Campbell et al. | Sep 2000 | A |
6132824 | Hamlin | Oct 2000 | A |
6234995 | Peacock, III | May 2001 | B1 |
6287290 | Perkins et al. | Sep 2001 | B1 |
6287314 | Lee et al. | Sep 2001 | B1 |
6319249 | Tollner | Nov 2001 | B1 |
6319259 | Lee et al. | Nov 2001 | B1 |
6319529 | Thompson | Nov 2001 | B1 |
6336937 | Vonesh et al. | Jan 2002 | B1 |
6375637 | Campbell et al. | Apr 2002 | B1 |
6428506 | Simhambhatla et al. | Aug 2002 | B1 |
6482348 | Wang et al. | Nov 2002 | B1 |
6488688 | Lim et al. | Dec 2002 | B2 |
6572813 | Zhang et al. | Jun 2003 | B1 |
6602224 | Simhambhatla | Aug 2003 | B1 |
6663646 | Shah | Dec 2003 | B1 |
6746425 | Beckham | Jun 2004 | B1 |
6756094 | Wang et al. | Jun 2004 | B1 |
6887227 | Barbut | May 2005 | B1 |
6890395 | Simhambhatla | May 2005 | B2 |
6905743 | Chen et al. | Jun 2005 | B1 |
6923827 | Campbell et al. | Aug 2005 | B2 |
6939593 | Wang | Sep 2005 | B2 |
6977103 | Chen et al. | Dec 2005 | B2 |
7052507 | Wakuda et al. | May 2006 | B2 |
7195638 | Sridharan | Mar 2007 | B1 |
7279208 | Goffena et al. | Oct 2007 | B1 |
7306729 | Bacino et al. | Dec 2007 | B2 |
7625337 | Campbell et al. | Dec 2009 | B2 |
7785290 | Alpini et al. | Aug 2010 | B2 |
20010008970 | Ravenscroft et al. | Jul 2001 | A1 |
20020087165 | Lee et al. | Jul 2002 | A1 |
20020163104 | Motsenbocker | Nov 2002 | A1 |
20030074016 | Campbell et al. | Apr 2003 | A1 |
20030083687 | Paliazza | May 2003 | A1 |
20030088209 | Chiu et al. | May 2003 | A1 |
20030130716 | Weber | Jul 2003 | A1 |
20030211258 | Sridharan et al. | Nov 2003 | A1 |
20040015183 | Lim et al. | Jan 2004 | A1 |
20040082965 | Beckham | Apr 2004 | A1 |
20040191442 | Lim | Sep 2004 | A1 |
20040199202 | Dubrul et al. | Oct 2004 | A1 |
20040254625 | Stephens et al. | Dec 2004 | A1 |
20050015048 | Chiu et al. | Jan 2005 | A1 |
20050038503 | Greenhalgh et al. | Feb 2005 | A1 |
20050267409 | Shkolnik | Dec 2005 | A1 |
20050273152 | Campbell et al. | Dec 2005 | A1 |
20060085024 | Pepper et al. | Apr 2006 | A1 |
20060136032 | Legarda et al. | Jun 2006 | A1 |
20060161102 | Newcomb et al. | Jul 2006 | A1 |
20060271091 | Campbell et al. | Nov 2006 | A1 |
20070055301 | Campbell et al. | Mar 2007 | A1 |
20070061000 | Campbell et al. | Mar 2007 | A1 |
20070219489 | Johnson et al. | Sep 2007 | A1 |
20080125711 | Alpini et al. | May 2008 | A1 |
20080140173 | Eskaros et al. | Jun 2008 | A1 |
20080255507 | Mushtaha | Oct 2008 | A1 |
20080257155 | Bacino et al. | Oct 2008 | A1 |
20080312730 | Campbell et al. | Dec 2008 | A1 |
20090032470 | Bacino et al. | Feb 2009 | A1 |
20090053103 | Mortimer et al. | Feb 2009 | A1 |
20090283206 | Eskaros et al. | Nov 2009 | A1 |
20100049123 | Alpini et al. | Feb 2010 | A1 |
20100262178 | Alpini et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
0 372 088 | Jun 1990 | EP |
372088 | Jun 1990 | EP |
0 540 858 | May 1993 | EP |
0 628586 | Dec 1994 | EP |
737488 | Oct 1996 | EP |
769307 | Apr 1997 | EP |
0 829 269 | Mar 1998 | EP |
1566674 | May 1980 | GB |
1008178 | Aug 1999 | NL |
9014054 | Nov 1990 | WO |
9402185 | Feb 1994 | WO |
9505555 | Feb 1995 | WO |
9509667 | Apr 1995 | WO |
9517920 | Jul 1995 | WO |
9614895 | May 1996 | WO |
9640350 | Dec 1996 | WO |
9702791 | Jan 1997 | WO |
9740877 | Nov 1997 | WO |
0268011 | Sep 2002 | WO |
03000307 | Jan 2003 | WO |
2008021002 | Feb 2008 | WO |
2008021003 | Feb 2008 | WO |
2008021006 | Feb 2008 | WO |
2008021013 | Feb 2008 | WO |
Entry |
---|
Dillon M E, Silicone and Poly (tetrafluoroethylene) Interpenetrating Polymer Networks, 1994 American Chemical Society. |
Number | Date | Country | |
---|---|---|---|
20100262178 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11501190 | Aug 2006 | US |
Child | 12824343 | US |