The following technology relates generally to supporting a face of a passage in a geological structure and, more particularly, to a cable bolt apparatus and related methods.
In recent decades, numerous proposals have been made for providing in situ support for the face of a passage in a geological structure, such as the roof in an underground mine. A typical arrangement employs an anchor, such as an elongated roof “bolt,” that extends into a borehole formed in the face and is grouted in place. Federal regulations pertaining to underground mine safety require the placement of these bolts at frequent intervals throughout the mine passage. Consequently, ease of manufacture and use, as well as reliability, are important considerations in terms of reducing the overall installation cost to the mine owner (which, of course, directly correlates to the profitability of the mining operation).
Currently, a popular approach for roof support is the so-called “cable bolt.” This type of bolt comprises a length of flexible metal cable inserted into the borehole and grouted in place, and may be either “passive” or tensionable. In one tensionable version, the bolt includes an externally threaded tension head including opposed, longitudinally extending anti-rotation keys for engaging the sidewalls so as to prevent rotation (see, e.g., U.S. Pat. No. 3,077,809 to Harding et al.). To tension the bolt, an associated nut is advanced against a support surface, such as a plate, which serves to engage the corresponding face in the desired fashion.
Despite the popularity of the basic tensionable approach over the years, several basic limitations remain. For one, the strata adjacent the mine passage settle or shift over time, which may cause a change in the tension originally applied during the initial installation. Likewise, the bolt over time may experience a loss in tension due to factors such as relaxation or creep. Nevertheless, most existing approaches cannot undergo re-tensioning in any reliable fashion after the initial installation.
Additionally, the current approach for installing tensionable cable bolts can lead to undesirable “false” tensioning and deleterious “kick back.” Specifically, the cable may continue to twist within the borehole upon the application of torque. This can lead the installer to believe that the applied torque tensions the cable bolt, when in fact it is simply causing it to twist (and thus the moniker, “false” tensioning). In some circumstances, this twisting can even cause the bolt to counter-rotate, or “kick back,” upon release of the accumulated energy, which is undesirable for obvious reasons.
Accordingly, a need exists for an improved bolting apparatus. Specifically, the bolt should be easy and inexpensive to manufacture and install, without the need for bulky castings that would extend below the roof line. The bolt would be also provide secure, reliable support for the adjacent strata once installed.
One aspect of the disclosure pertains to an apparatus for passively supporting a face of a mine passage in association with a cable for positioning in a borehole formed in the face of the mine passage. The apparatus comprises an elongated sleeve including an internal bore having an open end for receiving the cable and a plurality of facets along a peripheral portion forming at least two corners spaced apart a distance greater than a diameter of the borehole. Resin within the bore is provided for connecting the cable to the sleeve.
In one embodiment, the sleeve is adapted to engage an oversized portion of the cable. Preferably, the sleeve includes a plurality of facets arranged to provide the peripheral portion with a cross section forming a regular polygon. The sleeve may include a portion adapted to be positioned external to the borehole once installed, with this external portion lacking any external threads. Preferably, the sleeve further includes a flange having a face adapted for engaging a support surface adjacent the borehole when a portion of the sleeve including the corners is positioned in the borehole. The sleeve may also include a head adjacent the flange, said head adapted for engaging a structure for use in installing the sleeve in the borehole. In any case, the sleeve most preferably lacks threading for use in tensioning the cable in the borehole. The sleeve may also include a closed end opposite the open end, with the closed end forming an endwall of the bore.
A related aspect of the disclosure relates to a method of forming a bolting apparatus for insertion in a borehole formed in a mine passage. The method comprises providing a sleeve including a bore for receiving an oversized portion of a cable, the sleeve lacking threading for use in tensioning the bolting apparatus, and inserting the sleeve at least partially into the borehole.
The method may further include the step of providing the sleeve with resin for securing the oversized portion of the cable within the sleeve. The securing step may include the step of injecting a two-component resin into the bore adjacent the oversized portion of the cable. The method may further include the step of mechanically connecting the cable to the sleeve.
The method may comprise the step of providing the sleeve having a dimension in at least one direction that is greater than a diameter of the borehole. Preferably, the inserting step comprises engaging the sleeve engages one or more sides of the borehole
Another aspect of this disclosure is concerned with a method of providing passive support for a face of a mine passage. The method comprises providing a bolting apparatus including a sleeve having a bore with an open end adapted for receiving an oversized portion of a cable, said bore including, resin; and after the delivering step, installing the sleeve at least partially within the borehole without applying tensioning to the bolting apparatus.
The inserting step may comprise engaging the sleeve with one or more sides of the borehole. Preferably, the sleeve includes a flange, and the installing step comprises engaging the flange with a support surface adjacent adjacent the borehole. The method may further include the step of providing the sleeve having a closed end forming an endwall of the bore.
These and other aspects of the present invention will become readily apparent to those skilled in this art from the following description wherein there is shown a preferred embodiment simply by way of illustration of one of the modes best suited to carry out the invention. As it will be realized, the invention is capable of other different embodiments and it several details are capable of modification in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present invention, and together with the description serve to explain certain principles of the invention. In the drawings:
a, 2b, and 2c are side cross-sectional, bottom, and top views of a sleeve forming part of the cable bolt apparatus of
a is a cross-sectional view taken along line 3a-3a of
b is a cross-sectional view taken along line 3b-3b of
a is a partially cross-sectional bottom view taken along line 5a-5a of
Reference is now be made in detail to the preferred embodiments of the invention, an example of which is illustrated in the accompanying drawings.
Reference is now made to
As illustrated, the bolt 10 is preferably an elongated structure comprising a length of multi-strand, flexible, metal cable 12. The cable 12 is adapted to fit within the borehole H while leaving an annulus A for receiving the resin or grout G used to secure it in place (see
The cable 12 also includes at least one, and preferably a plurality of enlarged or oversized portions. In the embodiment of
The distal end of the cable 12 may also include a receiver 12b. As is known in the art, this receiver 12b may be swaged to the cable 12, thus defining wings 12c. The receiver 12b thus not only serves to receive and hold the ends of the strands forming the cable 12 together, but by virtue of the wings 12c, also helps to mix the uncured resin or grout G within the borehole H during installation of the bolt 10.
At a first, lower end, the cable 12 is secured to a sleeve 14. Turning now to
At the opposite end, the sleeve 14 includes a flange 15. Connected adjacent to this flange 15 is a head 16 for driving the bolt 10, which may be square in cross section or otherwise adapted to engage a wrench or tool for purposes of imparting rotation during installation so as to mix the resin in the borehole.
The sleeve 14 also includes a peripheral portion having a plurality of flats or facets 14d that together create corners 14e. Specifically, each pair of adjacent facets 14d meet and form a corner 14e along the first or lower end of the sleeve 14. Preferably, at least five facets 14d are provided, which thus creates five corners 14e. In the most preferred embodiment, six facets 14d are provided, thus giving this portion of the sleeve 14 a generally hexagonal cross section (
b and 2c illustrate that, when the sleeve 14 is provided with a cross section forming a regular polygon, the distance D1 from any two opposed facets 14d is preferably smaller than the diameter M of the borehole H into which the sleeve 14 is to be inserted. However, the distance D2 from opposed corners 14e is preferably at least equal to or slightly greater than the diameter of the borehole H. As will be better understood upon reviewing the description that follows, these corners 14e when so spaced apart provide the sleeve 14 with an oversized lower portion that helps the bolt 10 to resist rotation once placed in the borehole H.
Turning now to
With the cable 12 in this position, resin 22 is injected from a source into the portion of the bore 14b including the oversized portion of the cable 12, or bulb 12a in the illustrated embodiment. Preferably, the resin 22 is injected through a transverse passage or channel 14f in the sleeve 14 and communicating with the bore 14b (see
The resin 22 used to connect the cable 12 to the sleeve 14 may be of the two component variety, including a polyester component and a catalyst paste that, upon mixing, cure and harden in a matter of seconds (and sometimes called “grout” in the vernacular). The resin 22 used for this purpose may thus be similar or identical to that used to anchor the cable 12, but preferably has a higher viscosity to ensure that it remains within the bore 14b once injected. A suitable resin for this purpose is available from Minova International Ltd.
Regardless of the precise type of resin used or manner of injection, and as perhaps best understood by viewing
Reference is now made to the progressive views of
Using a lift boom associated with a bolting machine (not shown) or like structure, the bolt 10 with the cable 12 is advanced into the borehole H such that at least the lower end of the sleeve 14 remains spaced from the adjacent face F and the portion including the facets 14d does not yet enter the opening O. Although
Once the bolt 10 is partially inserted in this fashion, uncured resin or grout G is provided adjacent to at least a portion of the cable 12 in the associated annulus A (see
Although this uncured resin may be provided from a remote source, such as by way of injection, it is most preferably supplied in the form of a frangible cartridge (not shown), or resin “sausage” in the vernacular. If this type of cartridge is used, it is normally pre-installed in the borehole H and ruptured during insertion of the cable 12, thus causing a quick-curing resin to occupy the surrounding borehole H. This grout G or resin also usually comprises two materials (e.g., polyester resin and a catalyst) that make contact and react only upon the rupturing of the cartridge. Upon being thoroughly mixed, such as by the rotation of the cable 12 within the borehole H (with any associated structures providing a mixing-assist function), the resin or grout G then quickly hardens. The hardened product thus serves to hold the cable 12 securely within the borehole H, and enables the resulting bolt 10 to resist movement in the longitudinal direction.
After mixing, but before the resin or grout G completely hardens (which, again, may take only a matter of seconds depending on the particular composition used), the bolt 10 is further advanced into the borehole H (
Numerous advantages may thus arise from the use of the above-described bolt 10 and the associated installation technique. First of all, the ability of the cable bolt 10 when installed in this fashion to resist the undesirable twisting within the hole H during installation eliminates the deleterious kick back prevalent with prior art arrangements. A more reliable installation thus results, with the installer knowing that the bolt is securely anchored in place.
Secondly, the combined use of a sleeve 14 entirely inserted into the borehole H eliminates the need for bulky castings or assemblies projecting from the mine face F, such as the roof line (see, e.g., U.S. Pat. No. 6,637,980 to Robertson, Jr. and U.S. Pat. No. 6,626,610 to Seegmiller). This can be especially important in situations where the overhead is small due to a relatively low seam height.
Further, it should be appreciated that the bolt 10 need not be tensioned. Hence, as illustrated, the sleeve 14 does not include an external or internal threads for receiving a threaded shank or the like. Furthermore, there is no need for a tension nut or like structure to impart externally applied tensioning to the cable once installation is completed. This not only reduces cost, but also makes the installation much less complex.
Besides the enlarged or oversized portion within the sleeve 14, it should be appreciated from
Preferably, the sleeve 14 comprises a relatively malleable metal, such as ductile steel. This allows for the sleeve 14 to be more easily swaged to the cable 12 adjacent the open end.
The foregoing description of embodiments of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. For instance, as shown in phantom view in
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/230,841, filed date Aug. 3, 2009 the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2667037 | Thomas et al. | Jan 1954 | A |
3077809 | Harding et al. | Feb 1963 | A |
3896627 | Brown | Jul 1975 | A |
3901039 | Lundkvist | Aug 1975 | A |
4472088 | Martin | Sep 1984 | A |
5259703 | Gillespie | Nov 1993 | A |
5297900 | Witzand | Mar 1994 | A |
5344256 | Hedrick | Sep 1994 | A |
5441372 | Wilkinson | Aug 1995 | A |
5458442 | Ashmore | Oct 1995 | A |
5531545 | Seegmiller et al. | Jul 1996 | A |
5586839 | Gillespie | Dec 1996 | A |
5624212 | Gillespie | Apr 1997 | A |
5721047 | Thicthener et al. | Feb 1998 | A |
5785463 | Eaton et al. | Jul 1998 | A |
5829922 | Calandra, Jr. et al. | Nov 1998 | A |
5919006 | Calandra, Jr. et al. | Jul 1999 | A |
5954455 | Eaton et al. | Sep 1999 | A |
6074134 | Stankus et al. | Jun 2000 | A |
6296429 | Wright | Oct 2001 | B1 |
6402433 | Gillespie | Jun 2002 | B1 |
6428243 | Hutchins | Aug 2002 | B1 |
6561721 | Lausch et al. | May 2003 | B2 |
6612783 | Stankus et al. | Sep 2003 | B2 |
6626610 | Seegmiller | Sep 2003 | B1 |
6637980 | Robertson, Jr. | Oct 2003 | B2 |
6709213 | Bailey | Mar 2004 | B2 |
6820657 | Hedrick | Nov 2004 | B1 |
7536754 | Campbell et al. | May 2009 | B2 |
7896581 | Fox | Mar 2011 | B2 |
20030185632 | Seegmiller | Oct 2003 | A1 |
20030219316 | Rataj | Nov 2003 | A1 |
20050158127 | Fergusson | Jul 2005 | A1 |
20050208829 | Campbell | Sep 2005 | A1 |
20090067932 | Fox | Mar 2009 | A1 |
20110142549 | Fox | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 2005012691 | Feb 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20110027019 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
61230841 | Aug 2009 | US |