1. Field of the Invention
This invention relates generally to a corona discharge igniter for emitting a non-thermal plasma to ignite a mixture of fuel and air of a combustion chamber, and methods of manufacturing the same.
2. Description of the Prior Art
An example of a corona discharge ignition system is disclosed in U.S. Pat. No. 6,883,507 to Freen. In the corona discharge ignition system, an electrode of an igniter is charged to a high radio frequency (“RF”) voltage potential, creating a strong RF electric field in the combustion chamber. The electric field causes a portion of the fuel-air mixture in the combustion chamber to ionize and begin dielectric breakdown, facilitating combustion of the fuel-air mixture. However, the electric field is controlled so that the fuel-air mixture maintains dielectric properties and corona discharge occurs, also referred to as a non-thermal plasma. The electric field is controlled so that the fuel-air mixture does not lose of all dielectric properties, which would create a thermal plasma and an electric arc between the electrode and grounded cylinder walls or piston. The current of the corona discharge is small and the voltage potential at the electrode remains high in comparison to an arc discharge. The ionized portion of the fuel-air mixture forms a flame front which then becomes self-sustaining and combusts the remaining portion of the fuel-air mixture.
The electrode of the corona discharge ignition system is typically formed of an electrically conductive material extending from an electrode terminal end to an electrode firing end, and an insulator including a matrix of electrically insulating material extends along the electrode. The igniter of the corona discharge ignition system does not include any grounded electrode element in close proximity to the electrode. Rather, as alluded to above, the ground is provided by the cylinder walls or piston of the internal combustion engine. An example igniter is disclosed in U.S. Patent Application Publication No. US 2010/0083942 to Lykowski and Hampton.
For internal combustion engine applications, it is typically preferred that the non-thermal plasma formed includes multiple streams of ions in the form of a corona discharge. The streams ignite the air-fuel mixture along the entire length of the streams, throughout the combustion chamber, and thus provide a robust ignition. As discussed in the Freen patent, the electric field is preferably controlled so that the corona discharge does not proceed to an electron avalanche which would result in an arc discharge from the electrode to the pounded cylinder wall or piston. Under certain conditions, such as when voltages above a certain threshold are applied to the igniter, the density of the ions increases and the arc discharge may be formed. The arc discharge comprises a single stream of ions, rather than the desired plurality of streams. The arc discharge occupies a much smaller space in the combustion chamber than the corona discharge and thus can reduce the quality of ignition.
One aspect of the invention provides an igniter of a corona ignition system including an electrode and an insulator extending along the electrode. The electrode is formed of an electrically conductive material and extends from an electrode terminal end to an electrode firing end. The insulator includes a matrix of an electrically insulating material around the electrode firing end, and a plurality of electrically conducting elements disposed in the matrix of electrically insulating material.
Another aspect of the invention provides a method of forming the igniter. The method comprises the steps of providing the insulator formed of a matrix of electrically insulating material with a plurality of electrically conducting elements disposed therein, and providing the electrode formed of the electrically conductive material extending from an electrode terminal end to an electrode firing end. The method further includes disposing the insulator around the electrode firing end.
The igniter of the present invention, including the insulator with electrically conducting elements, reduces or eliminates arcing during operation of the corona ignition system, compared to other igniters without the electrically conducting elements. The igniter creates a controlled and repeatable non-thermal plasma including multiple streams of ions in the form of a corona. The corona discharge emitted from the igniter provides rapid ignition and burning of the fuel mixture, which leads to numerous benefits when used in an internal combustion engine applications, such as improved fuel economy and reduced CO2 emissions.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
One aspect of the invention provides an igniter 20 for a corona ignition system, as shown in
The electrode 32 of the igniter 20 includes an electrode body portion 34 extending longitudinally from an electrode terminal end 36 to an electrode firing end 38. The electrode 32 has an electrode diameter De extending across the electrode 32 and perpendicular to the longitudinal electrode body portion 34, as shown in
The insulator 22 of the igniter 20 is disposed annularly around and longitudinally along the electrode body portion 34. The insulator 22 extends from an insulator upper end 40 to an insulator firing end 42 adjacent the electrode firing end 38. As best shown in
As shown in
The insulator 22 of the igniter 20 further includes an insulator nose region 54 extending from the insulator second region 50 to the insulator firing end 42. The insulator nose region 54 is typically disposed in the combustion chamber 28. During operation of the corona ignition system, the insulator nose region 54 is exposed to the mixture of fuel and air in the combustion chamber 28, while the insulator first region 44, the insulator middle region 46, and the insulator second region 50 remain in the engine block unexposed to the combustion chamber 28, as shown in
The insulator nose region 54 presents a firing surface 56 extending across and surrounding the insulator firing end 42. During use of the igniter 20 in the corona ignition system, the firing surface 56 is exposed to the combustion chamber 28 and emits the non-thermal plasma forming the corona 30. In one embodiment, the firing surface 56 presents a round and convex profile, free of sharp edges. The round nature of the firing surface 56 can be described as a spherical radius facing downwardly into the combustion chamber 28.
The insulating material of the insulator 22, including at the insulating material of the insulator nose region 54 and the other regions 44, 46, and 50, spaces the electrode 32 from the combustion chamber 28. As best shown in
As stated above, the plurality of electrically conducting elements 24 are disposed in a portion of the matrix 26 of electrically insulating material and are spaced from one another by the matrix 26 of insulating material. The electrically conducting elements 24 are preferably disposed adjacent the firing surface 56 and along the firing surface 56 of the insulator nose region 54 so that at least a portion of the electrically conducting elements 24 are directly exposed to the combustion chamber 28. As shown in
During use of the igniter 20 in the corona ignition system, the electrode 32 receives the energy from the power source and emits an electrical field around the electrode firing end 38. The electrically conducting elements 24 receive the electrical field being emitted from the electrode 32 and then emit an electrical field in the surrounding area. The electrical field in the area surrounding the electrically conducting elements 24 induces the non-thermal plasma emissions from the firing surface 56 of the insulator nose region 54 forming the corona 30 shown in
The insulator first region 44, insulator middle region 46, and insulator second region 50 are typically free of the electrically conducting elements 24. Further, a portion of the insulator nose region 54 is also typically free of the electrically conducting elements 24. In one embodiment, as shown in
In one embodiment, the portion of the insulator 22 including the electrically conducting elements 24, such as a portion of the insulator nose region 54, is homogenous with the portions of the insulator 22 free of the electrically conducting elements 24. For example, the insulator nose region 54 including the electrically conducting elements 24 is homogenous with the remainder of the insulator nose region 54, such as the portion extending along the predetermined length l discussed above. In this embodiment, the insulator nose region 54 is also homogeneous with the insulator second region 50, insulator middle region 46, and insulator first region 44. In another embodiment, such as the embodiment of
The insulator 22 can include various types of electrically conducting elements 24. In one preferred embodiment, the electrically conducting elements 24 include the particles embedded in the matrix 26 of insulating material, as shown in
In the embodiment of
In another embodiment, the electrically conducting elements 24 comprise the holes in the matrix 26 of insulating material connecting the electrode 32 to the combustion chamber 28, as shown in
In one embodiment, the inner surface 58 of each hole presents a cylindrical shape having a hole diameter Dh less than the electrode diameter De. In one embodiment, each of the holes have a hole diameter Dh of 0.016 cm. The insulator nose region 54 can include six of the holes equally spaced from one another by a predetermined distance d, as shown in
The corona igniter 20 also typically includes other elements known in the art. For example, as shown in
Another aspect of the invention provides a method of forming the igniter 20 for emitting a non-thermal plasma in a corona ignition system. The method includes providing the electrode 32 and the insulator 22 formed of the electrically insulating material with the electrically conducting elements 24 disposed therein, as described above.
The step of providing the insulator 22 can include various process steps. In one embodiment, the method includes forming the insulator 22 with the electrically conducting elements 24 in a single process step, such as molding the matrix 26 to include the electrically conducting elements 24. Alternatively, the method can include preparing the insulator 22 in several process steps. For example, the insulator first region 44, insulator middle region 46, insulator second region 50, and portion of the insulator nose region 54 can be formed first, each free of the electrically conducting elements 24, followed by attachment of the portion of the insulator nose region 54 with the electrically conducting elements 24 to the other regions.
In one embodiment, when the electrically conducting elements 24 comprise the metal particles, the step of providing the insulator 22 first includes providing a sintered preform of the electrically insulating material. Next, the method includes mixing the particles with a paste of the electrically insulating material, followed by applying the mixture to the sintered preform. The mixture and sintered preform are then heated, preferably sintered, to fuse the mixture and the preform together. Alternatively, the paste mixture can be sintered separate from the preform and then the two sintered parts can be mechanically or otherwise attached together. In another embodiment, the step of providing the insulator 22 first includes providing the sintered preform, and then mechanically embedding the particles of electrically conductive material in the sintered preform. In yet another embodiment, non-sintered electrically insulating material is mixed with the particles, and the mixture is subsequently sintered to provide the insulator 22.
In another embodiment, when the electrically conducting elements 24 comprise holes in the matrix 26 of insulating material, the step of providing the insulator 22 can first include providing a sintered preform of the electrically insulating material, followed by drilling the holes in the sintered preform. Alternatively, the holes can be formed in the sintered preform by a laser or other methods. In another embodiment, the holes are molded into the electrically insulating material of the insulator 22 in a molding apparatus, followed by sintering the molded material. In yet another embodiment, the portion of the insulator 22 with the holes is formed separate from the other portions and regions of the insulator 22, and then mechanically or otherwise attached together.
As stated above, during operation of the corona ignition system, the electrode 32 of the igniter 20 receives the energy from the power source and emits an electrical field. This electrical field from the electrode 32 induces an electrical field around each of the electrically conducting elements 24, which induces the non-thermal plasma in the combustion chamber 28. The non-thermal plasma forms a corona 30 and ignites the mixture of fuel and air in the combustion chamber 28. By using the igniter 20 of the present invention, with the electrically conducting elements 24, the non-thermal plasma is less likely to arc, even when a high density plasma is created, compared to igniters 20 of corona ignition systems without the electrically conducting elements 24.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. These antecedent recitations should be interpreted to cover any combination in which the inventive novelty exercises its utility. In addition, the reference numerals in the claims are merely for convenience and are not to be read in any way as limiting.
This application claims the benefit of U.S. provisional application Ser. No. 61/407,633, filed Oct. 28, 2010, and U.S. provisional application Ser. No. 61/407,643, filed Oct. 28, 2010, which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2205196 | Harper, Jr. | Jun 1940 | A |
2265532 | Levine | Dec 1941 | A |
2603022 | Craig | Jul 1952 | A |
2733369 | Smits | Jan 1956 | A |
2840742 | Walters | Jun 1958 | A |
3037140 | Schurecht | May 1962 | A |
3046434 | Schurecht | Jul 1962 | A |
3133223 | Mallory | May 1964 | A |
3442693 | Rea | May 1969 | A |
3911307 | Goto et al. | Oct 1975 | A |
4261085 | Nishio et al. | Apr 1981 | A |
4284054 | Kumagai et al. | Aug 1981 | A |
4337408 | Sone et al. | Jun 1982 | A |
4354136 | Hamai et al. | Oct 1982 | A |
4388549 | Bensman | Jun 1983 | A |
4396855 | Imai et al. | Aug 1983 | A |
4539503 | Esper et al. | Sep 1985 | A |
4659960 | Toya et al. | Apr 1987 | A |
4692657 | Grunwald et al. | Sep 1987 | A |
4914344 | Watanabe et al. | Apr 1990 | A |
5469013 | Kang | Nov 1995 | A |
7305954 | Hagiwara et al. | Dec 2007 | B2 |
7328677 | Hagiwara et al. | Feb 2008 | B2 |
7477008 | Artmann et al. | Jan 2009 | B2 |
7843117 | Jaffrezic et al. | Nov 2010 | B2 |
20070114898 | Nagasawa et al. | May 2007 | A1 |
20070114901 | Nagasawa et al. | May 2007 | A1 |
20080141967 | Tani et al. | Jun 2008 | A1 |
20080238281 | Nakamura et al. | Oct 2008 | A1 |
20090021133 | Kato et al. | Jan 2009 | A1 |
20090031988 | Shiraishi et al. | Feb 2009 | A1 |
20100212620 | Shimizu | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
19747700 | Oct 1997 | DE |
102004058925 | Dec 2004 | DE |
102006037037 | Aug 2006 | DE |
475288 | Sep 1991 | EP |
913897 | Sep 1998 | EP |
2859831 | Sep 2003 | FR |
2859831 | Sep 2012 | FR |
WO 2008017601 | Feb 2008 | WO |
Entry |
---|
International Search Report PCT/US2011/057438 mailed on Jun. 28, 2012. |
Number | Date | Country | |
---|---|---|---|
20120112620 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61407633 | Oct 2010 | US | |
61407643 | Oct 2010 | US |