This disclosure relates to devices for treating edema.
Congestive heart failure occurs when the heart is too weak to pump blood properly. As a result, blood pressure increases in the veins. The increased blood pressure prevents the lymphatic system from draining fluid from surrounding tissue leading to an abnormal buildup of fluid. The abnormal buildup of fluid manifests as swollen or puffy skin and is known as edema. If untreated, edema may lead to difficulty breathing (dyspnea) and in some cases acute decompensated heart failure (ADHF).
Some attempts to treat edema have involved the use of catheters that are placed in a blood vessel and used to drain lymphatic fluid from the tissues. Unfortunately, like many devices placed in the bloodstream, intravascular catheters are susceptible to problems. Blood forms clots on the surfaces of devices placed into the bloodstream. As a clot builds up, it blocks, or occludes, the catheter and even the entire vessel itself. Such occlusions may stop the flow of blood and cause catheter malfunctions. Due to that blood clotting, also known as thrombosis, the use of intravascular catheters faces significant complications.
This disclosure provides intravascular devices, e.g., indwelling catheters, that may reside in the vasculature or other bodily lumens of patients without causing blood clots. To prevent blood clots, the disclosure provides surface treatments, materials, modifications, and chemistries that inhibit the formation of blood clots and are thus non-thrombogenic. In particular, intravascular devices of the disclosure have non-thrombogenic surfaces that inhibit activation of blood defense mechanisms and adherence of blood clotting factors. The non-thrombogenic surfaces may include specific surface topographies (e.g., surface roughness) or modified surface chemistries (e.g. coatings or treatments) that improve biocompatibility of the intravascular device. Moreover, intravascular devices of the disclosure may include certain shapes that promote fluid flow patterns through the device with minimal disturbances thereby reducing shear forces otherwise associated with thrombosis.
In one aspect, the disclosure provides an intravascular device. The device includes a catheter dimensioned for inserting into a vein such as a jugular vein. The catheter includes a proximal portion and a distal portion with a cage attached to the distal portion. The cage houses an impeller. A portion of a surface of the cage or the impeller comprises a non-thrombogenic metallic interface. The non-thrombogenic metallic interface involves a portion of the catheter that is intended to be contact with blood while the catheter is operating inside the vein. The non-thrombogenic metallic interface can be a metal oxide film. The non-thrombogenic metallic interface can be a non-thrombogenic metal. In some embodiments, the cage has the non-thrombogenic metal. In preferred embodiments, both the cage and the impeller comprises the non-thrombogenic metal. For example, substantially all of the surface of the cage and/or the impeller that is in contact with blood when the catheter is inside the vein may have the non-thrombogenic metal.
In preferred embodiments, the non-thrombogenic metallic interface includes a transition metal or a post-transition metal. For example, the non-thrombogenic metal of the interface may include one or more of titanium, cobalt, nickel, zirconium, gold, silver, or iridium, aluminum, tin, gallium, stainless steel, tantalum, or nickel titanium. Preferably, the non-thrombogenic metallic interface exhibits hydrophilic properties that inhibit formation of blood clots while the catheter is inside the vein. The hydrophilic properties may inhibit the formation of blood clots by preferentially associating with molecules of water present in blood to the exclusion of circulating blood clotting factors. The metal may preferentially interact with water molecules at partially due to the electronegativity status of selected elements comprising the metal.
In some preferred embodiments, the non-thrombogenic interface involves a non-thrombogenic metal is treated to enhance hydrophilic properties of a surface of the metal. The treatment may make the metal super-hydrophilic. For example, the non-thrombogenic metal may include titanium, and the treatment may include a surface oxide treatment that alters or modifies an oxide layer on the surface of the metal. Modifications to the oxide layer may include changes in thickness, topography, and chemical composition. Such modifications may improve surface wettability and reduce adherence of blood clotting factors. In some instances, the oxide layer is formed or modified by one of electropolishing, heat treatment, or acid passivation. In some embodiments, the surface oxide treatment may remove and generate a new oxide layer that is substantially uniform across the surface of the metal. A substantially uniform oxide layer may provide improved hydrophilic properties.
For example, in some embodiments, the non-thrombogenic metallic interface involves a metal oxide film. The metal oxide film involving properties of an oxygen active material, which is a material that spontaneously forms an oxide when exposed to oxygen without the need for a catalyst to facilitate the reaction. The oxygen active material can be a material that spontaneously forms an oxide when exposed to air or an atmosphere with a similar oxygen content to air.
In some embodiments, the catheter further includes a cuff attached to a proximal portion of the cage. The cuff provides a smooth transition between the cage and the catheter. Preferably, the cuff includes the non-thrombogenic metal. For example, substantially all of the cuff that is in contact with blood when the catheter is inside the vein may comprise the non-thrombogenic metal.
In some embodiments, the catheter further includes an expandable member attached to an exterior surface of the cage. Preferably, the expandable member comprises a balloon. When the distal portion of the catheter is inside the vein, the expandable member may be inflated and the impeller may be activated so as to draw blood through the cage. Increasing the flow of blood through the cage may reduce pressure near a lymph duct. Reducing pressure near the lymphatic duct may cause lymph to drain into the circulatory system, thereby treating symptoms associated with edema.
Embodiments of the disclosure provide an impeller assembly shaped to minimize shear forces acting on blood particles traveling through the impeller assembly. Minimizing shear forces may help reduce incidences of thrombosis. In some embodiments, the cage is shaped to increase a flow of fluid traveling through the cage. For example, the cage may include stepped portions that define changes in inner diameters within the cage to increase the flow of fluid therein. In some embodiments, for example, a lumen of the cage may be narrower at a proximal portion than at a distal portion. In other embodiments, the lumen of the cage may taper towards, for example, the distal end. In some embodiments, the cage comprises a cross-sectional diameter of an outer wall of the cage that is greater at a proximal portion than at a distal portion.
In some embodiments, the catheter further comprises an atraumatic tip extending from a distal portion of the cage. The atraumatic tip may prevent damage to epithelial cells while navigating the catheter inside a patient's vasculature. Preventing damage to the epithelial cells may prevent thrombosis. The atraumatic tip comprises polyether ether ketone. The atraumatic tip may include a bull nose tip. The atraumatic tip may include a metallic, which may be, for example, a distal portion of the metal cage. The atraumatic tip may include a polymer tip. The polymer tip may be an elongate flexible member. The polymer tip may be a pig tail, e.g., ending in a tightly curled tip that resembles the tail of a pig. The atraumatic tip may include an elongate member of increasing flexibility, which is useful to guide a distal end of the catheter through a vasculature system without poking or tearing a blood vessel.
Aspects of the invention provide a method for treating edema. The method includes the steps of inserting an indwelling catheter inside a patient's vein in the vicinity of an outlet of a lymphatic duct. The catheter includes an impeller assembly attached to a distal portion. The impeller assembly comprises a cage housing an impeller. At least one of the cage or the impeller has a non-thrombogenic metal. The method further includes operating the impeller inside the patient's vein to increase a flow of blood through the vein. Increasing blood flow through the vein creates a decrease in pressure near the outlet of the lymphatic duct causing fluid to drain from the lymph and into blood circulation. As such, methods of the disclosure include modulating a flow of blood through the vein while inhibiting blood clot formation on surfaces of the catheter on account of the non-thrombogenic metal. In some embodiments, the non-thrombogenic meal includes titanium with a surface oxide treatment. The oxide surface treatment may enhance hydrophilic properties of the metal. In some embodiments, the catheter further comprises a pressure sensor, the pressure sensor may be designed to detect changes in blood pressure within the vein and adjust a rotational velocity of the impeller or a size of an expandable member attached to a surface of the cage accordingly. The device may include a computer system in communication with the pressure sensor.
In other aspects, the disclosure provides an intravascular device comprising a catheter dimensioned for insertion into a vein or an artery. The catheter includes a proximal portion and a distal portion with a cage attached to the distal portion. The cage houses an impeller, and a portion of a surface of the cage or the impeller comprises a non-thrombogenic metallic interface. The non-thrombogenic metallic interface can be a non-thrombogenic metal. In some embodiments, the non-thrombogenic metal comprises a primary metallic element, wherein said primary metallic element is selected from the period 4 transition metals of the periodic table. Period 4 transition metals starts at scandium and continues to zinc and includes titanium, chromium, iron, cobalt and nickel, all of which would be a preferred metal for alloys of the invention. The non-thrombogenic metal may comprise a secondary metallic element, wherein said secondary metallic element includes one of: (i) the group of period 4 transition metals of the periodic table; or (ii) molybdenum from period 5 of the periodic table; or (iii) tungsten, gold, tantalum or platinum from period 6 of the periodic table. The non-thrombogenic metal may comprise an alloy. The non-thrombogenic metal alloy may comprise an alloy of chromium or an alloy of titanium. The non-thrombogenic metal may comprise a chromium alloy such as a stainless-steel alloy or the non-thrombogenic metal may comprise a cobalt chromium alloy. The non-thrombogenic metal may comprise a titanium alloy such as nitinol, Ti6Al4V or 4TITUDE. The nitinol may comprise undesirable inclusions (small particulate impurities). Preferably the nitinol grade comprises a low level of inclusions. The non-thrombogenic metal may comprise a cobalt chromium alloy. The chromium alloy may comprise nickel, for example, such as the alloy sold under the trade name MP35N by NeoNickle; or sold under the trade name L-605; or sold under the trade name Elgiloy by Elgiloy. The alloy may be non-magnetic. In some embodiments, the metal comprises a metal grade associated with a low level of undesirable impurities, wherein said undesirable impurities comprise nitride, sulfide, silicate, phosphide, carbide, or hydride impurities. The non-thrombogenic metal may comprise a surface comprising an oxygen active material. The non-thrombogenic metal surface may comprise an oxide of said oxygen active material. The oxygen active material may comprise titanium or chromium or aluminum. The non-thrombogenic interface can be a metal oxide film. The metal oxide film may be useful to prevent scratching or corrosion of a surface of the catheter. Advantageously, by preventing scratching or corrosion, the metal oxide can reduce development of thrombosis. The metal oxide may be an amorphous oxide film. The film may comprise a thickness beneficial for preventing thrombosis. The thickness of the film may be, for example, between 5 and 50 nanometers. For example, the thickness may be about 25 nanometers.
The oxygen active material may be a material that spontaneously forms an oxide when exposed to oxygen without the need for a catalyst to facilitate the reaction. For example, the oxygen active material may be a material that spontaneously forms an oxide when exposed to air or an atmosphere with a similar oxygen content to air.
In some embodiments, the non-thrombogenic metal comprises a surface with a continuous oxide film across the surface, for example, on one of the cage or the impeller. Preferably, the cage or the impeller comprises a metallic substructure said metallic substructure enveloped with a continuous oxide film said oxide film defining an exterior surface of the cage or the impeller. The oxide film may comprise an oxide film of a metallic element of said metallic substructure. The oxide film may be configured so as to substantially preclude oxides of thrombogenic metallic elements and/or promote oxides of non-thrombogenic elements. For example, the oxide film may be configured to promote titanium dioxide or chromium oxide or the oxide film may be configured to preclude oxides of nickel, iron, cobalt, copper and zinc. In certain embodiments, the oxide film comprises TiO2 or Cr2O3 or Al2O3 or a mixture of two or more of these oxides. For example, at least 90%, 95%, or 98%, of the metal content of the oxide film may comprise TiO2 or Cr2O3 or Al2O3 or a mixture thereof. In some embodiments, the non-thrombogenic metal comprises a plurality of hydrophilic groups attached to the oxide film. In some embodiments, the attachment of a plurality of hydrophilic groups comprises a chemical attachment of said reactive groups to the oxide film. The attachment of the hydrophilic groups may comprise a chemical modification of the oxide film. The attachment of the hydrophilic groups may involve a chemical attraction, for example, an ionic attraction or covalent bond.
The non-thrombogenic metallic interface may include a hydrophilic coating. The hydrophilic coating may comprise a plurality of polymer chains. The plurality of polymer chains comprises a hydrophilic region and a substrate attachment region. The substrate attachment region may include at least one chemical functional group having functional properties for bonding with a metal surface or a metal oxide surface. The substrate attachment region may include a plurality of functional groups that in unison bond to the metal surface or metal oxide surface. The plurality of functional groups may include a polymer chain. The plurality of functional groups may include a hydrophobic polymer chain. In some embodiments, the plurality of functional groups includes a triol. The triol may include a chain end of a hydrophilic polymer chain. The triol may include a R-1,1,1 triol. In some embodiments, the plurality of functional groups of the coating comprises a silane. The plurality of functional groups may be an acrylic. In certain embodiments, the substrate attachment region of the polymer chains includes a reactive chain end where said reactive chain end is reactive to a metal or metal oxide substrate. The thickness is preferably small in comparison to the gap region between the impeller and the cage. The coating thickness can be, for example, less than 20%, 10%, 5% or 2% of the gap region between the impeller and the cage.
This disclosure relates to devices and methods for treating medical conditions such as edema or congestive heart failure. The disclosure provides intravascular devices, e.g., indwelling catheters, capable of residing in a patient's bloodstream for prolonged periods of time without causing thrombosis. The intravascular devices of the disclosure include non-thrombogenic surfaces that improve blood compatibility by reducing device-related thrombus formation and inflammatory reactions. The non-thrombogenic surfaces provided by this disclosure include surface topographies (e.g., surface roughness) and modified chemistries (e.g., coatings and/or treatments), which prevent thrombosis by reducing local shear forces and inhibiting adhesion of blood clotting factors. Moreover, intravascular devices provided by the disclosure include certain geometric features to efficiently manipulate fluid flow patterns through the device with minimal disturbances to further reduce shear forces acting on blood.
Intravascular devices of the invention are designed to inhibit and/or prevent thrombosis on account of optimized fluid flow patterns and surfaces that inhibit activation of blood defense mechanisms and adherence of certain blood clotting factors. In some aspects, the disclosure relates to non-thrombogenic materials and surface modifications for use in indwelling catheters such as those described in co-owned world application PCT/US2020/019901, which is incorporated herein by reference.
When a distal portion 109 of the intravascular device 101 is inserted into a vein, such as a jugular vein, the device may be operated so that the impeller disposed within the cage 113 rotates. The rotation of the impeller can create a force which urges fluid (e.g., blood) through the cage 113. In preferred embodiments, the intravascular device 101 may be used to treat edema. The intravascular device may, for example, be inserted into a jugular vein and directed into the vicinity of an outlet of a lymphatic duct. The impeller may be operated by, for example, turning on a motor that is operably connected to the impeller via a drive cable disposed within the catheter 103, thereby causing the impeller to rotate and urging fluid through the cage 113. According to Bernoulli's principle, the increase in flow of fluid through the jugular vein may cause a decrease in pressure near the outlet of the lymphatic duct, thereby causing fluid (e.g., lymph) to drain from lymph duct and into the blood stream.
In some aspects, the invention provides a thrombosis-resistant intravascular device, such as an indwelling catheter 203. The catheter 203 may include an impeller assembly 211 with a cage 213 housing an impeller 217 connected to a distal portion 209 of the catheter 203. At least a portion of a surface 225 of the cage 213 and/or the impeller 217 comprises a non-thrombogenic surface texture, i.e., surface roughness.
Thrombogenicity refers to the tendency of a material in contact with the blood to produce a thrombus, or clot. It not only refers to fixed thrombi but also to emboli, thrombi which have become detached and travel through the bloodstream. Thrombogenicity may include events such as the activation of immune pathways and the complement system. In general, all materials are considered to be thrombogenic to a degree with the exception of endothelial cells which line blood vessels. As used herein, non-thrombogenic materials or surfaces refer to materials or surfaces with properties which reduce thrombogenicity. As such, the non-thrombogenic materials or surfaces described herein refer to materials and surfaces comprising features that reduce incidences of thrombosis.
Thrombus formation may be the result of at least two interdependent mechanisms, platelets and circulating protein clotting factors. Platelets, small anuclear cells that circulate in blood in ranges from 150×106/mL to 400×106/mL are one component of hemostasis. Activation of platelets by a variety of stimuli initiate complex pathways that result in platelet aggregation and the release of potent pro-thrombotic molecules. Blood contact with artificial surfaces may elicit platelet activation by a variety of mechanisms, including device related alteration in blood flow that trigger shear-related platelet activation, and due to direct platelet adherence to the deposited protein layer on synthetic surfaces of the device. Activated platelets undergo dramatic shape changes which promote aggregation with other platelets, and release platelet and pro-coagulant agonists (such as thromboxane A2, ADP, and FVa). The phospholipids of the platelet membrane also serve as the substrate for activated clotting factors, resulting in local amplification of the coagulation cascade. Aggregation of platelets, together with explosive activation of protein clotting factors, may result in significant thrombus accumulation on the device surface, embolization of thrombus particles into the bloodstream, and may cause detectable reductions in circulating platelet count (consumption of platelets).
Roughness plays an important role in determining how an object will interact with its environment, and in the context of the present disclosure, plays an important role in determining how blood will interact with the intravascular device by influencing whether blood clots are likely to form. A smooth surface is less likely to initiate a blood defense mechanism such as causing the formation of a blood clot than a rough surface.
The non-thrombogenic surface texture may be characterized by its arithmetic average roughness (Ra), which is the arithmetic average of absolute values of roughness profile ordinates. In particular, Ra is the arithmetic average of the absolute values of the measured profile height deviations taken within the sampling length and measured from the graphical center line. Surface roughness, as measured by Ra, is a component of surface texture and may be quantified by the deviations in the direction of the normal vector of a real surface from its ideal form. If the deviations are large, the surface is rough; if they are small, the surface is smooth. Preferably, the deviations are small. Ra is generally expressed in micrometers. Although, as used herein, Ra values shall are expressed in nanometers. In some aspects, the disclosure provides an indwelling device, e.g., a catheter, comprising a surface texture with a Ra of less than 75 nanometers.
Surface roughness measurements, such as Ra, may be measured using atomic force microscopy (AFM), for example, as described in Webb, 2012, Roughness Parameters for Standard Description of Surface, Nanoarchitecture, Scanning: Vol. 34, 257-263, incorporated by reference. Alternatively, surface roughness may be measured using a surface roughness tester such as the surface roughness tester sold under the trade name Phase II, SGR-4600, Surface Roughness Tester/Profilometer by Phase II (Upper Saddle River, N.J.).
In preferred embodiments, at least a portion of a surface of the cage 213 or the impeller 217 comprises a non-thrombogenic surface texture with a Ra value of less than 50 nanometers. Preferably, the Ra value is less than 25 nanometers. In some embodiments, at least a portion of the cage 213 comprises the non-thrombogenic surface texture. The portion of the cage 213 comprising the non-thrombogenic surface texture may be substantially all of exposed portions of the cage 213 that contacts blood when the device is operating inside a vein. In other embodiments, only portions of the cage 213 that comprise the inlets 219 and/or outlets 221 may have the non-thrombogenic surface texture as these areas may be more prone to blood protein adhesion or blood particle shearing due to certain patterns of fluid flow. In some embodiments, at least a portion of the impeller 217 comprises the non-thrombogenic surface texture with a Ra value of less than 50 nanometers. For example, the portion of the impeller 217 that contacts blood while the impeller 217 is operating inside the vein may comprise the non-thrombogenic surface texture to prevent blood proteins from sticking to the impeller and creating blood clots. In preferred embodiments, portions of both the cage 213 and the impeller 217 comprise a non-thrombogenic surface texture with, for example, a Ra value of less than 50 nanometers.
Catheters 203 of the invention are particularly well suited for intravascular treatments on account of their non-thrombogenic properties. In certain aspects, catheters 203 of the invention include non-thrombogenic surface textures having a Ra value of less than 50 nanometers. The non-thrombogenic surface texture inhibits and/or prevents thrombosis by inhibiting the adherence of platelets and blood proteins onto surfaces of the catheter 203 when the catheter 203 is inserted into a patient's vein. In other aspects, the non-thrombogenic surface texture inhibits and/or prevents thrombosis by reducing shear forces acting on blood particles flowing through the catheter 203 since a smooth surface is less likely to shear a particle, such as a blood cell, than a rough surface.
The non-thrombogenic surface texture of devices of this disclosure may be formed by processing a metal. Processing a metal may include one or more of sanding, tumbling, polishing, electropolishing, grinding, lapping, or abrasive blasting, for example, see, Chapter 82—Metal Processing and Metal Working Industry, Encyclopedia of Occupational Health and Safety 4th Edition, which is incorporated by reference. Preferably, the metal is processed by electropolishing, for example, as described in Cutchin, 2015, Electropolishing applications and techniques, The Tube & Pipe Journal, incorporated by reference. For example, a surface texture with a Ra of less than 50 nanometers may be generated by obtaining a piece of metal and rubbing abrasive particles against the surface of the metal to create a random, non-linear surface texture with a Ra of less than 50 nanometers. Different abrasive media may be used. A size of the cutting grains is generally referred to as “grit”, and the higher the grit number, the smaller and finer the particles are and hence the finer the surface finish they are able to achieve. Preferably, a higher grit number is used to achieve a smooth surface.
Because devices of the invention are more efficient than other devices and pump blood without initiating thrombosis, devices of the invention are beneficial for treating patients with edema. As such, in some aspects, the invention provides a method for treating edema. The method may include inserting into an innominate vein of a patient a distal portion 209 of a catheter 203 comprising an impeller assembly 211 with a cage 213 and an impeller 217 therein. A portion of at least one of the cage 213 or the impeller 217 comprises a non-thrombogenic surface texture with a Ra value of less than 50 nanometers. Preferably, both the cage 213 and the impeller 217 comprise the non-thrombogenic surface texture. For example, in preferred embodiments, substantially all portions of the cage 213 and the impeller 217 that are exposed to blood when the distal portion 209 of the catheter 203 is inserted into the vein will comprise the non-thrombogenic surface texture. For the treatment of edema, the method includes activating the impeller 217 with, for example, a motor connected to a proximal portion of the catheter 203. Activation of the impeller 217 increases fluid flow through the innominate vein, thereby decreasing pressure at a lymphatic duct. A proximal portion of the cage 213 may be shaped to facilitate flow into an inlet 219 without recirculation or adherence of blood proteins to surfaces of the cage 213. Additionally, as discussed herein, the catheter 203 may include other features (e.g., coatings, materials, designs) that prevent or inhibit thrombosis by inhibiting adherence of blood clotting factors to surfaces of the catheter 203 or reducing shear forces. In some embodiments, methods of the invention further include the step of preparing a catheter 203 for treating edema by, for example, processing a metal. The metal may comprise one of the cage 213 or the impeller 217. Processing may involve one of sanding, tumbling, polishing, electropolishing, grinding, lapping, or abrasive blasting, the metal such that a portion of a surface of one or both of the cage 213 and the impeller 217 have a surface Ra of less than 50 nanometers, for example, 25 nanometers.
The non-thrombogenic surface texture may comprise an average depth of roughness (Rz) of less than 175 nanometers. Rz is the average distance between the highest peak and the deepest valley in five sampling lengths, or cutoffs across a surface. Rz may be calculated by measuring vertical distance from the highest peak to the lowest valley within five sampling lengths, then averaging these distances.
In some embodiments, the invention provides a catheter 203 with an impeller assembly 217 disposed at a distal portion 209. The impeller assembly 217 comprising a cage 213 housing an impeller 217 wherein at least a portion of a surface of the cage 213 or the impeller 217 comprises a non-thrombogenic surface texture having a Rz value of less than 175 nm. Preferably, the Rz value of the non-thrombogenic surface is less than 175 nanometers. For example, the Rz value may be less than 100 nanometers.
In preferred embodiments, the impeller assembly 211 includes an expandable member 215 attached to an exterior surface of the cage 213. The expandable member 215 may be expanded to apply a radial outward force to a blood vessel wall. The device may be shaped such that application of the outward radial force substantially fixes at least a portion of the impeller assembly 217 to a central axis of the vessel wall. Upon expansion of the expandable member 215, the expandable member 215 may occludes the vein and directs blood flow into an inlet 219 of the cage. Preferably, the expandable member is a balloon. When the expandable member 215 is inflated, a proximal portion of the expandable member 215 may help to facilitate flow into an inlet 219 of the cage 213 by funneling blood therein. Additionally, when the expandable member 215 is inflated, a distal portion of the expandable member 215 may be aligned over outlets of the cage to mitigate blood recirculation. As discussed herein, the impeller assembly 217 may include features that facilitate blood flow through the cage 213.
In other aspects, the invention provides intravascular devices on which a surface of the device has been chemically modified to prevent the activation of blood defense mechanisms. The device comprises a catheter 203 dimensioned for insertion into a vein such as a jugular vein. The catheter 203 includes a proximal portion and a distal portion 209. An impeller assembly 217 may be attached to the distal portion 209 of the catheter 203, the impeller assembly 217 comprising a cage 213 with an impeller 217 rotatably disposed therein. The impeller assembly 211 may be designed to inhibit thrombosis on account of at least a portion of the cage 213 and/or the impeller 217 comprising a modified surface chemistry provided by at least one of a coating or a surface treatment. A modified surface chemistry may include a surface having a physical, chemical, or biological characteristic that different from what is found on the surface of a conventional intravascular device.
Modified surface chemistries of this disclosure may comprise a coating or a treatment. The modified surface chemistry may be a coating comprising a blood anticoagulant. For example, the coating may comprise a heparin coating such as those described in Biran, 2017, Heparin coatings for improving blood compatibility of medical devices, Adv Drug Delivery Rev 112:12-23, incorporated by reference. Heparin binds to antithrombin. Antithrombin is a serine protease inhibitor and inhibitor of blood clotting factors. Thus, in some embodiments, catheters of the disclosure display anti-thrombogenic properties on account of coatings with surfaces having an affinity for antithrombin. In some embodiments, heparin may be immobilized on a surface of the cage 213 or the impeller 217 by attaching heparin to a compatible functional group deposited on the surface of the cage 213 or the impeller 217 or by priming the surface of the cage 213 or the impeller 217 with a matrix onto which heparin may covalently bind. As an example, the coating may include pre-assembled aggregates of heparin molecules such as found in the coating sold under the trade name CHC, by Corline Biomedical AB, Sweden. In some embodiments, the coating may comprise heparin that is covalently bonded to a hydrophilic priming layer such as found in the heparin coating sold under the trade name ASTUTE by Biointeractions Ltd. Alternatively, heparin devices of the disclosure may include a release-based approach, wherein small amounts of heparin are released overtime. Alternatively, the coating may comprise warfarin, which is an anticoagulant used to reduce the formation of blood clots.
In some embodiments, the modified surface chemistry may comprise a hydrophilic coating that establishes or enhances hydrophilic properties of a surface of the catheter 203. Hydrophilic surfaces attract water and allow wetting of the surface. Hydrophilic surfaces generally have a droplet contact angle measurement of less than 90 degrees. Providing hydrophilic surfaces on portions of the catheter 203 such as at least one of the cage 213 and/or the impeller 217 is advantageous for preventing thrombosis because hydrophilic surfaces may adhere to water molecules present in blood to the exclusion of blood clotting factors. In some instances, upon inserting the catheter inside the vein, the hydrophilic surface of the cage 213 and/or the impeller 217 may create a layer of water molecules on the hydrophilic surface that functions as a barrier preventing plasma protein adherence by eliminating possible binding sites.
The hydrophilic coating may be made by treating a surface of the catheter 203 with an acid, such as hyaluronic acid, for example, as provided by the hydrophilic coating sold under the trade name Hydak, by Biocoat, Inc., Horsham, Pa. In other embodiments, the coating may be made by, for example, submerging a portion of the catheter 203 in a wetting fluid. The wetting fluid may comprise a salt of an organic acid, for example, a benzoate or a sorbate, and a pH buffer. In other embodiments, the coating may comprise a hydrophilic coating such as the coating sold under the trade name Acuwet by Aculon, San Diego, Calif.
In some embodiments, the modified surface chemistry comprises a modified oxide layer. Oxide layers are layers formed by the reaction of a material's surface with oxygen. Modifications to the oxide layer include changes in thickness, topography, and chemical composition. Such modifications are useful for improving surface wettability which reduces adherence of blood clotting factors. In some instances, the oxide layer is formed or modified by one of electropolishing, heat treatment, or acid passivation. Preferably, the oxide layer is modified by electropolishing, also known as electrochemical polishing, anodic polishing, or electrolytic polishing (especially in the metallography field). Electropolishing is an electrochemical process that removes material from a metallic workpiece and may also be used to reduce surface roughness by levelling micro-peaks and valleys, thereby improving the surface finish. Methods of modifying the oxide layer may remove or reduce organic contaminants present on the surface of the catheter, which may further improve hydrophilicity. In preferred embodiments, the modified surface chemistry may be provided by a surface oxidation.
The modified surface chemistry may be generated by a surface oxide treatment that includes plasma electrolytic oxidation, also known as electrolytic plasma oxidation or microarc oxidation. Plasma electrolytic oxidation comprises an electrochemical surface treatment process for generating oxide coatings on metals. Plasma electrolytic oxidation includes high potentials that create discharges resulting in plasma that modifies the structure of the oxide layer. This process can be used to produce oxide coatings on metals.
In some embodiments, the modified surface may further comprises one of a metal oxide of titanium oxide (TiO), titanium dioxide (TiO2), dititanium trioxide (Ti2O3), chromium (II) oxide (CrO), chromium (III) oxide (Cr2O3), chromium dioxide (CrO2), chromium trioxide (CrO3), chromium (IV) or any combination thereof. In some embodiments, at least one of the cage 213 or the impeller 217 comprises a modification to the oxide layer and the thickness of the oxide layer provides improved biocompatibility of the device. The thickness of the oxide layer may be, for example, less than 5000 picometers, less than 3000 picometers, less than 2000 picometers, or is greater than 200 picometers, greater than 400 picometers, or greater than 600 picometers. In some embodiments, a modification to the oxide layer comprises replacing a portion of the surface's native oxide layer with a more uniform oxide layer.
Aspects of the invention provide an indwelling catheter in which at least a portion of the cage 213 or the impeller 217 comprises a modified surface chemistry (e.g., a treatment or coating). In some embodiments, substantially all of a surface of the cage 213 that is exposed to blood when the cage 213 is positioned inside of a vein will comprise the modified surface chemistry. Substantially all generally means greater than at least 50 percent, for example, at least 75 percent of a portion of the cage 113 that is exposed to blood inside the vein. In some embodiments, portions of the cage 113 comprising inlets 219 and outlets 221 will comprise the modified surface chemistry as these portions may be particularly prone to thrombosis due to fluid flow patterns that may exist such as recirculation. In some embodiments, inner surfaces of the cage 113 that contact blood will comprise the modified surface chemistry.
In some embodiments, portions of the impeller 217 may comprise the modified surface chemistry. For example, greater than at least 50 percent of the impeller 217 that is exposed to blood when the catheter 203 is inside the vein may comprise the modified surface chemistry. Preferably, both of the cage 213 and the impeller 217 comprise the modified surface chemistry in order provide the greatest protection against thrombosis.
In some embodiments, one or more portions of at least one of the cage 213 and/or the impeller 217 comprises a surface texture having a Ra value of less than 50 nanometers in addition to a modified surface chemistry. Preferably, portions comprising the surface texture and the modified surface chemistry overlap such that some areas of the cage 213 and/or the impeller 217 include both a surface texture having an Rz value of less than 150 nanometers and a modified surface chemistry such as a coating or treatment that may increase hydrophilicity. The modified surface chemistry may follow the contours and roughness of the cage 213 or the impeller 217. In some embodiments, the modified surface chemistry comprises a coating thickness and the coating thickness is greater than the Rz of the surface of the cage 213 or the impeller 217.
In preferred embodiments, the modified surface chemistry is provided on portions of the cage 213 and/or the impeller 217 and provides a hydrophilic surface comprising a water contact angle of 20 degrees or less, for example, the surface may comprise a water contact angle of 10 degrees or less. The water contact angle is the angle that a droplet of water creates with a solid (e.g., the cage 213 or impeller 21) when the water droplet is deposited on the solid. In some embodiments, the modified surface chemistry comprises a super-hydrophilic surface. A super-hydrophilic comprises a static contact angle of less than 10 degrees and may have a rolling-off angle of greater than 10 degrees. The roll-off angle is the angle of inclination of a surface at which a drop rolls off. The super-hydrophilic surface may be generated by modifying an oxide layer of the surface of the cage 213 or the impeller 217.
In some embodiments, the modified surface chemistry comprises a hydrophilic functional group. Functional groups are groups of chemicals that are attached to carbon atoms in the place of hydrogen atoms and hydrophilic functional groups are functional groups that are “water loving”, i.e., hydrophilic in nature. For example, the hydrophilic functional group may comprise one or more of a hydroxy group, a carboxyl group, an amine group, a carbonyl group, a chloro group, an ether group, or a phosphate group.
The modified surface chemistry may comprise a coating. Preferably, the coating comprises at least one of a polysaccharide, a polymer, or a hydrogel. The coating may further comprise one or more of a polyurethane, polyethylene glycol, poly-2-oxazolines, polyvinyl alcohol, polyvinylpyrrolidone, maleic anhydride copolymer, poly(lactide-co-glycolide), aminoalkyl(meth)acrylamide, aminopropylmethacrylamide, copolymers and blends of the aforementioned. In some instances, the coating further comprises one of polyethyleneimine, polyurethane, a sulfonate group, albumin, a polyamine, polyvinyl siloxane, hyaluronic acid, or any combination thereof.
In some embodiments, the modified surface chemistry may comprise a coating comprising a polysaccharide. Preferably, the polysaccharide comprises heparin. Heparin, also known as unfractionated heparin, is a medication and naturally occurring glycosaminoglycan. Heparin decreases the clotting ability of the blood. Coating a surface of the catheter, such as a portion of at least one of the cage 213 or the impeller 217, may reduce risks of blood clots as well as catheter-related blood stream infections and bacterial colonization of the catheter 203.
Devices of the invention may minimize risks of thrombosis formation by incorporating non-thrombogenic materials. As used herein, a non-thrombogenic material is a material having minimal thrombogenic affects when inserted into a blood stream. According to some aspects of the disclosure, intravascular devices are provided comprising a catheter 203 dimensioned for inserting into a vein, such as a jugular vein. The catheter 203 comprising a proximal portion and a distal portion 209; and a cage 213 attached to the distal portion 209 of the catheter 203, the cage 213 housing an impeller 217, wherein a portion of a surface of the cage or the impeller comprises a non-thrombogenic metal. In some embodiments, the non-thrombogenic metal is, for example, titanium. Preferably, the non-thrombogenic metal includes an oxide layer modification that renders the surface highly hydrophilic. Preferably, the modification improves uniformity of the oxide layer. The oxide layer may be modified by a treatment. For example, the treatment may comprise one of electropolishing, heat treatment, or acid passivation. The treatment may comprise a surface oxidation treatment that removes and generates new oxide layers.
Preferably, at least one of the cage 213 or the impeller 217 comprises the non-thrombogenic metal. In some embodiments, the cage 213 comprises the non-thrombogenic metal. For example, in some embodiments, substantially the entire surface of the cage 213 or the impeller 217 that is in contact with blood when the catheter is inside the vein has the non-thrombogenic metal.
The non-thrombogenic metal may comprise a transition metal or a post-transition metal. Transitional metals are any of the set of metallic elements occupying a central block (i.e, groups IVB-VIII, IB, and BB, or 4-12) in the periodic table, e.g., iron, manganese, chromium, and copper. Post transition metals, also known as the poor metals, are a group of metals on the periodic table, positioned the right of the transition metals. The group 12 elements may be included. Germanium, antimony, and polonium also may be included. Preferably, the non-thrombogenic metal comprises one of titanium, cobalt, nickel, zirconium, gold, silver, or iridium, aluminum, tin, gallium, stainless steel, or nickel titanium. The non-thrombogenic metal may be selected on account of its hydrophilic properties that inhibit blood clots while the catheter is inside the vein.
In preferred embodiments, devices of the invention include non-thrombogenic metals comprising one or more of a non-thrombogenic surface texture and/or non-thrombogenic modified surface chemistry as described herein. In some embodiments, the cage 213 and/or impeller 217 comprise a surface layer and the surface layer comprises an enriched concentration of titanium or chromium.
In some aspects, the invention provides an intravascular device useful for treating medical conditions such as edema. The device comprises a catheter 2003 dimensioned for insertion into a vein. The catheter 203 comprises a proximal portion and a distal portion 209; a cage 213 attached to the distal portion of the catheter 203; and an expandable member 215 attached to an exterior surface of the cage 213, wherein a portion of a surface of the expandable member 215 is non-thrombogenic, i.e., comprises properties that reduce thrombosis.
In some embodiments the non-thrombogenic surface of the expandable member 215 comprises a block copolymer comprising a first polymeric block and a second polymeric block. A block copolymer is a copolymer formed when, for example, two monomers cluster together and form ‘blocks’ of repeating units. For example, a polymer made up of X and Y monomers joined together like: —Y—Y—Y—Y—Y—X—X—X—X—X—Y—Y—Y—Y—Y—X—X—X—X—X— is a block copolymer where —Y—Y—Y—Y—Y— and —X—X—X—X—X— groups are the blocks. In some preferred embodiments, a polymeric block comprises a hydrophilic functional group. Hydrophilic functional groups may include ether groups, amine groups, urethane groups, urea groups, ester groups, hydroxyl groups, carbonyl groups, carboxyl groups, amino groups, sulfhydryl groups, or phosphate groups. In another preferred embodiment the polymeric block comprises functional groups that confer rigidity to the block. Functional groups conferring rigidity may be aromatic or aliphatic. Functional groups conferring rigidity may include groups that comprise a ring structure. These ring structured groups may be aromatic or aliphatic. The hard block may comprise a mix of ring structure groups and linear groups. Linear groups may include amine groups, urethane groups, urea groups, carbonate groups and methylene groups. A second polymeric block may comprise a polymer repeat unit selected to enhance flexibility in the second polymeric block. The second block may comprise a polyether, a polyester, a polycarbonate, a polybutadiene, a polydimethylsiloxane or a mixture of these. The first and second polymeric blocks may be substantially immiscible and when copolymerized form phase separated blocks within a polymer matrix. The phase separation may be manifested on a surface of said expandable member 215. In some instances, the polymer may comprise non-bound chemical species, the non-bound chemical species comprising oligomers and additives. The polymer may be treated so as to remove non-bound chemicals and further manifest the phase separation on the surface of the expandable member 215. Moreover, by removing the non-bound chemicals, hydrophilicity of the surface may be improved.
The non-thrombogenic surface of the expandable member 215 may comprises a hydrophilic coating and/or a hydrophilic material. When inside a vein, the hydrophilic coating or hydrophilic material of the expandable member 215 may bind to water molecules to the exclusion of blood plasma proteins, thereby preventing blood clots. In some embodiments, the surface of the expandable member 215 includes one or more portions with the hydrophilic coating and portions without the hydrophilic coating. The one or more portions with and without the hydrophilic coating may form a pattern, the pattern may be more apparent when the expandable member 215 is in an expanded state. The pattern may increase the non-thrombogenic properties of the surface of the expandable member 215 and further help to reduce blood clotting. The pattern may, for example, improve non-thrombogenic properties of the device by disrupting blood clotting factors from adhering to portions of the catheter including the expandable member 215. For example, the pattern may comprise stripes, spirals, waves, or may be a zebra pattern.
The hydrophilic coating may comprise one of a polysaccharide, a polymer, or a hydrogel. Polysaccharides are long chains of carbohydrate molecules, specifically polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. In preferred embodiments, the polysaccharide comprises heparin. In some embodiments, the expandable member 215 comprises a polymer, the polymer comprising silicon.
Aspects of the invention provide a catheter 203 comprising an expandable member 215. The expandable member 215 includes features such as materials and coatings that inhibit thrombosis. Preferably, the expandable member 215 comprises hydrophilic materials. For example, the material may comprise one of polyethylene terephthalate, polyamide, polyurethane, or nylon. Preferably, the expandable member 215 comprises polyurethane. In some embodiments, the expandable member 215 further includes a hydrophilic coating. The hydrophilic coating may comprises more than half of the surface of the expandable member 215 that is exposed to blood when the expandable member is in an expanded state inside the vein. In some embodiments, the expandable member 215 comprises a hydrophilic coating on a proximal portion and/or a distal portion, which may align with inlets 219 and outlets 221 of the catheter 203 when the expandable member 215 is in a deployed state.
Preferably, the expandable member is a balloon, and upon expansion of the balloon inside a vein, the balloon opposes a wall of the vein and helps direct blood flow into an inlet 219 of the cage 213. Moreover, upon expansion of the balloon, a distal-most portion of the balloon may be aligned over the inlets 219 or the outlets 221 to mitigate blood recirculation. Mitigation of blood recirculation may further reduce thrombogenicity of the device by minimizing shear forces acting on blood particles.
In some embodiments, catheters of the invention further include one or more sensors that are in operable communication with an expandable member attached to an outer surface of a cage of an impeller assembly. The one or more sensors may be disposed on the catheter, for example, on the impeller assembly near an inlet and/or an outlet. The sensors, for example, pressure sensors, may be used sense a pressure change in a vein in which the catheter is inserted. The pressures sensors may be configured to detect changes in pressure and based on detected changes in pressure, may provide data that is used to regulate a flow of fluid through the impeller assembly by adjusting a rotational velocity of an impeller disposed therein, the sensors may provide data that is used to adjust a size or shape of the expandable member by, for example, sending data to a computer that processes the data and sends instructions to an automated syringe pump to inflate the expandable member with a fluid such as saline.
With reference to
In some embodiments, a bearing assembly 251 is disposed at a distal portion of the impeller assembly 211. The bearing assembly 251 comprising a housing 253 with one or more bearings 257 disposed therein. Preferably, the housing 253 comprises titanium. The bearings 257 may be, for example, ceramic bearings. The bearings 257 provide important benefits to the catheter 203 by reducing friction generated by the rotational movement of the impeller 217 during operation. The bearings 257 may allow the impeller 217 to rotate more freely. The bearing housing 253 may comprise PEEK, or a metal such as titanium, and may further comprise a non-thrombogenic surface texture or modified surface chemistry such as a coating and/or treatment, as described herein, to prevent thrombosis while inside a blood vein. In some embodiments, a distal gap 263 is defined by a portion of the bearing assembly 251, or catheter tip, and the impeller 217. The distal gap 263 may be, for example, greater than 20 micrometers and less than 60 micrometers. The distal gap 263 may be configured so as to allow the impeller 217 to rotate efficiently without trapping blood proteins therein. To that end, the distal gap 263 may comprise a non-thrombogenic surface texture or modified surface chemistry such as a coating and/or treatment, as described herein. For example, surfaces of the impeller 217 and/or bearing assembly 251 which define the distal gap 263 may comprise a surface texture having a RA value of less than 50 nanometers or may comprise a treatment that modifies an oxide layer of the surface as discussed herein.
A proximal gap 265 may be located at the proximal portion of the impeller assembly 211. The proximal gap 265 may be defined by a portion of the cage 213 and a proximal portion of the impeller 217. The proximal gap 265 may be designed so as to allow the impeller 217 to rotate efficiently without trapping blood proteins therein. To that end, the proximal gap 265 may comprise a non-thrombogenic surface texture or modified surface chemistry such as a coating and/or treatment, as described herein. For example, surfaces of the impeller 217 and/or cage 213 which define the proximal gap 265 may comprise a surface texture having a RA value of less than 50 nanometers or may comprise a surface oxidation treatment.
Preferably, the cage 213 is substantially cylindrical in shape. The cage 213 may be configured to facilitate a flow of fluid through an interior lumen 261 such that the flow experiences minimal disturbances in flow patterns such as vortices and recirculation. In particular, the cage 213 may be designed so as to include stepped portions that define changes in inner diameters within the cage 213 and manipulate the flow of fluid therein. In some embodiments, for example, as shown in
This disclosure provides a catheter comprising a cage. Preferably the cage houses an impeller and at least part of the cage or the impeller has a thrombogenic resistant surface texture. The surface texture of the cage or impeller may be resistant to thrombosis formation on account of its smooth surface. In particular, any surface interstices (e.g., crevices, gaps, spaces) present on the cage or the impeller are made smaller than potentially adherent plasma proteins thus establishing a surface environment on which the plasma proteins struggle to grip the surface.
One insight of the invention is that surface roughness may be manipulated so as to influence the types of particles, such as plasma proteins, that may or may not be adsorbed onto the surface. Such manipulations may be useful for inhibiting thrombosis formation. For example, if the surface roughness, as measured by Ra, is small relative to a particular plasma protein, e.g., fibrinogen, then that plasma protein is less likely to be adsorbed onto the surface. However, smaller (and in some instances more abundant) plasma proteins, e.g., albumin, may be adsorbed if the smaller plasma protein is smaller than any interstices provided by the roughness profile. Albumin adsorption is not associated with a harmful thrombosis response. By modulating the Ra of the surface, a surface may be designed to preferentially associate with proteins less likely to illicit harmful blood clots such as albumin.
Table 1, below, presents information relating to blood proteins and thrombosis.
These data show albumin is abundant and relatively small in size, whereas fibrinogen is less abundant and much larger in size. Since, fibrinogen adsorption can cause formation of blood clots, cages and impellers having surface textures within the scope of this disclosure may comprise a roughness profile with interstices too small for a protein as large as fibrinogen to adhere, but may, in some instances, allow smaller proteins such as albumin to adhere. Since albumin is not associated with blood clots, it may be advantageous to permit the binding of albumin, as the presence of harmless blood proteins such as albumin may further prevent (for example, by steric hindrance) associations with blood proteins that may illicit harmful blood clots. Thus, the invention may provide a surface texture in which interstices of the surface are too small for fibrinogen to adhere, but in some instances, may allow smaller abundant proteins such as albumin to adhere.
In addition, there are a number of globulins in blood plasma including γ-globulin which is relevant in thrombosis. The globulin γ-globulin is relatively large with a 32 nanometer max linear dimension. Preferably, interstices present on cages and impellers of the disclosure are too small for γ-globulin to be adsorbed onto the surface. Von Willebrands factor is much less abundant protein but an important protein in thrombus formation. This protein is large and is broken up into smaller functional proteins by shear stress. It is thus difficult to call out a dimension for this protein as its size is environment dependent. Although, within preferred embodiments, surfaces of cages and/or impellers may comprise a roughness profile with interstices that are too small for a von Willebrands factor to adhere.
Specifically, catheters of the invention can include a metal interface 1500 disposed between a metal substrate 1501 and blood 1516. The metal interface 1500 (sometimes referred to as the metallic interface) relates to surfaces of catheters that, when positioned inside a blood vessel, are in contact with blood. The metal interface 1500 can include a surface layer or layers, e.g., layers of modified surface chemistry 1507, that interface between the metal substrate 1501 and blood. Illustrated are two important components of blood, plasma proteins 1515 and platelets 1513.
The adsorption of plasma proteins 1515 generally onto the surface of medical devices happens immediately on contact with blood. This plays an important role in how the body responds to the surface 1500 of the medical device over time. Plasma protein adsorption is a phenomenon whereby a thin film of plasma proteins is laid onto the surface of a substrate. Since over 100 plasma proteins have been identified to date it will be appreciated that any given surface or any given segment of a surface can precipitate its own unique plasma protein response. Non-thrombogenic surfaces of the invention adsorb proteins or combinations of proteins that mark these surfaces as more benign whereas thrombogenic surfaces adsorb proteins or combinations of proteins that mark these surfaces as more foreign. Platelets 1513 are multifunctional blood cells and they play a central role in the development of thrombus.
According to one preferred embodiment, the modified surface chemistry 1507 is designed such that the surface can generate a benign response from plasma proteins. In another embodiment, the modified surface chemistry 1507 is designed to attract benign plasma proteins like albumin. In yet another embodiment the modified surface chemistry 1507 is established such that the surface can bind to water so as to prevent plasma protein adsorption onto the metal interface 1500.
The modified surface chemistry 1507 can involve an enhanced oxide layer. The enhanced oxide layer may include a passivation of the surface 1500. The enhanced oxide layer may involve the exclusion or removal of undesirable oxides from the surface. Undesirable oxides can be removed through electropolishing, for example. The enhanced oxide layer may involve a modification of a spontaneously formed oxide layer to increase the hydrophilicity of the layer.
The modified surface chemistry 1507 may include a first layer 1520 and a second layer 1521, the second layer 1521 being disposed or laid down on top of the first layer 1520. In this embodiment the first layer 1520 can include an oxide film extending over the metal surface 1500, e.g., the metallic interface of the cage 1013 and/or impeller 939. The second layer 1521 may include a polymer layer 1522. The polymer layer 1522 may include a hydrophilic polymer. The polymer layer 1522 can have a hydrophilic polymer with a thickness of less than 5,000 nanometers, for example, 4,000, or 3,000, or 2,000 nanometers. A reduced polymer thickness can be useful to minimize or prevent instances of mechanical interference, especially when polymer 1522 is disposed in the gap region between the cage and the rotating impeller. In one embodiment the polymer layer 1522 is formulated for binding to water molecules. The ability of the polymer layer 1522 to bind to water can be measured using a contact angle measurement, as known in the art. Preferably the polymer layer 1522 generates a water contact angle of less than 20 degrees. In another embodiment the polymer layer 1522 is configured to generate a water contact angle of less than 10 degrees.
In one embodiment the polymer layer 1522 can include a plurality of polymer chains 1523. The plurality of polymer chains 1523 each having a hydrophilic end 1524 and a binding end 1525. The binding end 1525 is formulated to bond to the first layer 1520 of modified surface chemistry 1506 and the hydrophilic end 1524 is designed to interact strongly with water molecules. In one embodiment the binding end 1525 of the plurality of polymer chains 1523 is hydrophobic. In one embodiment the binding end 1525 of the plurality of polymer chains 1523 is designed to establish strong van der Waals attractive forces with said first layer 1520.
In one embodiment the binding end 1525 of the plurality of polymer chains 1523 is designed to establish strong polar attractive forces with said first layer 1520. In one embodiment the binding end 1525 of the plurality of polymer chains 1523 is designed to establish strong van der Waals and polar attractive forces with the first layer 1520. The strong intermolecular attractive forces of the binding region 1525 of the polymer chains 1523 binds the unbound hydrophilic end 1524 to the first layer 1520. The unbound hydrophilic chain ends 1524 are designed to be independent of each other. In one variation the unbound hydrophilic chain ends 1524 includes a linear polymer. In another variation, the unbound hydrophilic chain ends 1524 includes a branched polymer. In one embodiment, the binding end 1525 of the plurality of chains 1523 includes a plurality of linear polymer chains. In another embodiment, the binding end 1525 of the plurality of chains 1523 is designed to interpenetrate with adjacent binding chain ends.
The plurality of polymer chains 1523 can include a block copolymer in another embodiment with one block having a hydrophilic bock and the second block having a binding block.
In one embodiment the polymer layer 1522 includes a phosphorylcholine polymer. In another embodiment, the polymer layer 1522 includes a polyethylene oxide polymer. In another embodiment, the polymer layer 1522 includes a polyethylene succinate polymer. In another embodiment, the polymer layer 1522 includes a polyethylene adipate polymer. In another embodiment, the polymer layer 1522 includes a poly(vinyl alcohol-co-ethylene) polymer. In another embodiment, the polymer layer 1522 includes a polyacrylic acid polymer. It will be appreciated that based on the above disclosure that the polymer layer 1522 may include mixtures or copolymers of the aforementioned polymers or block copolymers or other polymers, such as hydrophobic polymers commonly used in the art.
In some instances, the atraumatic tip involves a bull nosed tip. For example, the tip may be approximately 3.0±1.0 mm in length having a full-spherical radius of curvature, similar to a bull-nose shape. The bull-nosed tip can be made of, for example, approximately 30-40 durometer polyether block amide loaded with a radiopaque material for improved visualization on a radiograph during insertion. The atraumatic tip may include a metallic tip, for example, the tip may include the metal of the cage. The atraumatic tip comprises a polymer tip. The polymer tip may include an elongate flexible member. The polymer tip may include a pig tail, i.e., a pig-tail shaped end. The atraumatic tip may include an elongate member of increasing flexibility.
In one aspect, the invention provides an intravascular device including a catheter dimensioned for insertion into a vein. The catheter having a proximal portion and a distal portion and a cage attached to the distal portion of the catheter, the cage housing an impeller. At least a portion of the surface of the cage or the impeller having a non-thrombogenic metallic interface. The non-thrombogenic metallic surface includes non-thrombogenic metals, as discussed herein, which are intended to be in contact with blood when the catheter is in use inside the vein.
The non-thrombogenic metallic interface may be a metal oxide film. The metal oxide film being formulated to confer or enhance non-thrombogenic properties of a metal of the catheter. The metal oxide film may include an oxygen active material, which is a material that spontaneously forms an oxide when exposed to oxygen without the need for a catalyst to facilitate the reaction. The oxygen active material can be a material that spontaneously forms an oxide when exposed to air or an atmosphere with a similar oxygen content to air.
The non-thrombogenic metallic interface may include a coating. The coating may be a metal oxide film. The metal oxide film can include hydrophilic groups that attract water molecules from blood, thereby displacing blood proteins associated with thrombosis formation. In some instances, the attachment of hydrophilic groups comprises a chemical modification of the oxide film. The attachment of hydrophilic groups can include a chemical attraction, an ionic attraction or a covalent bond.
The non-thrombogenic metallic interface may include a coating. The coating may include a hydrophilic coating. The hydrophilic coating can involve a plurality of polymer chains. The plurality of polymer chains may include a hydrophilic region and a substrate attachment region. The substrate attachment region may include at least one chemical functional group designed to bond with a metal surface or a metal oxide surface. The substrate attachment region may include a plurality of functional groups that in unison bond to the metal surface or metal oxide surface. The plurality of functional groups may include a polymer chain. The plurality of functional groups may include a hydrophobic polymer chain. The plurality of functional groups may include a triol. The triol may include a chain end of a hydrophilic polymer chain. The triol comprises a R-1,1,1 triol. The plurality of functional groups may include a silane. The plurality of functional groups may include an acrylic. The substrate attachment region may include a reactive chain end where said reactive chain end is reactive to a metal or metal oxide substrate.
The coating thickness is preferably small in comparison to the gap between the impeller and the cage. For example, the coating thickness can be less than 20% of the gap between the impeller and the cage. The coating thickness can be less than 10% of the gap between the impeller and the gage. The coating thickness can be less than 5% of the gap between the impeller and the gage. The coating thickness can be less than 2% of the gap between the impeller and the gage.
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.
Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification, and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.
This application claims the benefit of and priority to U.S. Provisional Application No. 63/036,263, which was filed on Jun. 8, 2020, the contents of which are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63036263 | Jun 2020 | US |