This invention relates generally to submersible well pumps, and in particular to a progressive cavity pump for installation in existing well conduits.
Common artificial lift systems utilize a system element that is deployed on tubing. For example, electrical submersible systems are deployed or at least partially deployed on tubing. Stators for top-driven progressing cavity pump systems are deployed on tubing. Insertable progressing cavity pumps or reciprocating pumps have tubing deployed seating nipples. Gas lift uses tubing deployed mandrels, etc.
For deep wells, electrical submersible well pumps are typically installed within casing on a string of tubing. The tubing string may be made up of sections of pipe that are screwed together. A motor suspended by the tubing may be supplied with power through a power cable that is strapped alongside the tubing. A pump is normally located above the motor and is connected to the lower end of the tubing. The pump forces fluid through the tubing to the surface.
A centrifugal pump is normally utilized for large pumping volume requirements. The centrifugal pump typically has a large number of stages for moving fluid. In a conventional arrangement, once a centrifugal pump has failed, a costly workover is required wherein the centrifugal pump is retrieved by raising the tubing on which it is suspended.
Another kind of submersible pump is referred to as a progressing cavity pump or PCP. A PCP is suitable for lesser pumping volume requirements or where significant quantities of solids, such as sand and scale, are likely to be encountered. PCPs typically utilize an elastomeric stator defining double helical cavities. The elastomeric stator receives a helical rotor that is rotated therein. The helical rotor may be rotated by a motor located on the surface via a rod that extends down to the pump in the well. Alternatively, the helical rotor may be rotated by a motor lowered into the well with the PCP in an arrangement similar to that of a submersible centrifugal pump.
Another kind of surface-driven PCP installation is known as an insertable PCP. In this type of installation, the pump, stator and rotor are deployed together on rods through the tubing to engage a seating nipple in the tubing string. The rod string is manipulated after seating to free the rotor for normal operation.
When used in harsh environments, it is not uncommon for a PCP to lock-up if the PCP is unable to remove solids that enter the pump. Lock-up can also occur if the pump assembly is shut down since solids in the tubing string tend to settle back down on top of the pump. When pump lock-up occurs in a standard surface-driven PC application, the rod string is pulled from the well with the attached pump rotor. The tubing and pump stator are then flushed and circulated. Once the tubing and pump stator are clean, the pump rotor is lowered on the rod string and reinstalled into the pump stator. The same conditions that lock-up surface driven applications also apply to the bottom drive systems.
One drawback associated with a PCP installed in a conventional PCP arrangement is that a PCP stator may not be removed without performing a costly workover. Further, since the PCP stator is typically deployed on the tubing string, the stator may not be relocated without manipulating the tubing string.
To facilitate deployment of various lift systems within existing well configurations it is desirable to be able to deploy any element without deploying the element on tubing. For example, it is desirable to be able to install PCP equipment using commercially available wireline tooling.
Additionally, it is desirable to be able to relocate a pump within a well in an efficient and low cost manner.
One embodiment of this invention is a top-driven progressing cavity pump (PCP) that may be deployed in an existing well without requiring the well operator to use a workover rig to install an alternative lift system. To deploy the PCP of the invention, a stator is set in a conduit, such as production tubing, at a desired depth. Installation is then continued in the normal way.
The PCP of the preferred embodiment utilizes a stator provided with a tag bar nipple and a no-turn tool attached to the bottom of the stator. To set the stator in the existing tubing, a tubing stop is attached to the no-turn tool and a centralizer/receptacle is attached to the top of the stator. The stator and attached equipment are then lowered into the well on commercially available wireline tooling. At the desired setting depth the wireline is sharply braked to activate a lower tubing anchor or tubing stop. The lower tubing stop is designed so that the lower stop will not allow downward movement, but may be drawn upward.
In subsequent wireline runs, a pack-off and upper tubing stop are inserted into the top of a centralizer/receptacle attached to the top of the stator. As a result, the stator assembly is set by tubing stops on top and bottom, wherein the tubing above the PCP is isolated from the wellbore below. Installation of the system is completed by installing the rotor, e.g. on rods, and by installing top-side drive equipment in the usual way.
Before explaining the present invention in detail, it is important to understand that the invention is not limited in its application to the details of the embodiments and steps described herein. The invention is capable of other embodiments and of being practiced or carried out in a variety of ways. It is to be understood that the phraseology and terminology employed herein is for the purpose of description and not of limitation.
Progressing cavity pump (PCP) system 10 is shown located in a well. The PCP system 10 of the invention is suitable for placement in an existing conduit 12, e.g. existing tubing string 14 as shown in
Referring now to
Referring now to
Lower tubing stop 20 and upper tubing stop 30 preferably carry a plurality of slips each having a gripping surface. The slips may be manipulated to selectively engage the gripping surface with an inner surface of conduit 12.
In practice, stator 18 is lowered into conduit 12, such as production tubing 14, to a desired depth. Stator 18 is set in conduit 12 with lower tubing stop 20, which is attached below pump stator 18. Centralizer/receptacle 26 is preferably attached to the top of stator 18 for receiving equipment in subsequent wireline runs. Stator 18 and attached equipment are then run in conduit 12, preferably by wireline although system components may also be deployed by sucker rod. At a desired setting depth, the wireline or sucker rod is sharply braked to force gripping surfaces of lower tubing stop 20 outwardly into contact with the inner wall of conduit 12. Lower tubing stop 20 is designed such that the lower tubing stop 20 will not allow downward movement but will allow the lower tubing stop 20 to be drawn upward, thereby allowing retrieval of the stator assembly at some future time or upward adjustment of the position of stator 18.
In subsequent wireline or sucker rod runs, pack-off 28 and upper tubing stop 30 are inserted into a centralizer/receptacle 26 on top of stator 18. The result is that stator 18 is set at top and bottom by tubing stops 20, 30 and that conduit above PCP system 10 is isolated from the wellbore below. Installation of PCP system 10 may then be completed by installing PC pump rotor 32 on rods 36 and top-side drive equipment in a manner known in the art.
Advantages of the PCP system of the invention include the ability to deploy various lift systems within existing well configurations. Additionally, the PCP system of the invention may be deployed without requiring the deployment of any element on tubing. Further, the PCP system may be relocated within a well without requiring a well workover. The above-referenced advantages result in significant time and cost savings when deploying pumping systems in existing wells.
Thus, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned above as well as those inherent therein. While presently preferred embodiments have been described for purposes of this disclosure, numerous changes and modifications will be apparent to those skilled in the art. Such changes and modifications are encompassed within the spirit of this invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2456227 | Wade | Dec 1948 | A |
3369715 | Carter | Feb 1968 | A |
3411454 | Arutnoff | Nov 1968 | A |
3672795 | Arutunoff et al. | Jun 1972 | A |
3853430 | O'Rourke | Dec 1974 | A |
4171934 | Zehren | Oct 1979 | A |
4363359 | Taylor et al. | Dec 1982 | A |
4621689 | Brookbank, III | Nov 1986 | A |
4723890 | Corteville et al. | Feb 1988 | A |
4749341 | Bayh, III | Jun 1988 | A |
4928771 | Vandevier | May 1990 | A |
5209294 | Weber | May 1993 | A |
5725053 | Weber | Mar 1998 | A |
5988992 | Tetzlaff et al. | Nov 1999 | A |
6089832 | Patterson | Jul 2000 | A |
6193474 | Tetzlaff | Feb 2001 | B1 |
6338388 | Winkler | Jan 2002 | B1 |
6398583 | Zehran | Jun 2002 | B1 |
6695060 | Guidry et al. | Feb 2004 | B1 |
6729391 | Hill et al. | May 2004 | B2 |
7201222 | Kanady et al. | Apr 2007 | B2 |
20030111221 | Hill et al. | Jun 2003 | A1 |
20070079970 | Belcher et al. | Apr 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070074871 A1 | Apr 2007 | US |