Analysis of biological material, such as cells, is performed for a variety of applications. Analysis is often performed by isolating a cell, or type of cells, from a tissue sample or a solution sample. Various analysis tasks may then be performed on the isolated cell. The analysis tasks may include a variety of tasks such as, for example, imaging of the cell.
For a more complete understanding of various examples, reference is now made to the following description taken in connection with the accompanying drawings in which:
As noted above, analysis of cells is often performed by isolating a cell, or type of cells, from a tissue sample or a solution sample. Isolation of the cell may be a labor-intensive task with significant inefficiencies. For example, isolation of cells using fluorescence-activated cell sorting (FACS) is generally performed manually by a knowledgeable technician, expensive equipment, and addition of chemical taggants.
Various examples described herein relate to isolation of objects, such as cells in an efficient manner. In one example, a non-uniform electrical field is used to position a single object, such as a cell at a target location within a well, such as at a point on the bottom surface of the well. Electrodes are positioned on a bottom surface of the well to generate the electrical field. The electrodes may be positioned in a concentric formation about the target location. The non-uniform electrical field results in application of forces on the object which direct the object to the target location. In one example, the electrodes are positioned to produce a traveling wave dielectrophoresis (DEP) force from at least two directions. The electrical field may be temporally constant, allowing the non-uniform nature to direct the object to the target location. In some examples, the electrical field may vary temporally, reducing in strength as the object gets closer to the target location, for example. In one example, the electrodes are transparent to allow an imaging device positioned below the well to image an object positioned at the target location.
Referring now to the Figures,
The well plate 110 of the example apparatus 100 includes at least one well 120. The example apparatus 100 is illustrated with a single well 120. Of course, those skilled in the art will recognize that, in other examples, any number of wells 120 may be provided. The size and shape of the well 120 may be selected from any of a variety of sizes and shapes. In one example, as illustrated in
In the example system 100, the well 120 is defined by at least one side wall 122 and a bottom floor 124. The example apparatus 100 of
Referring now to
The example apparatus 200 is provided with an array of electrodes 230 on the bottom surface 222 of the well 220. As described above, a controller 240 is provided to direct an electrical voltage to the electrodes 230 from an AC power source. The array of electrodes 230 may be positioned in a variety of manners. In certain examples, the electrodes 230 are arranged in a concentric formation. For example, in the example apparatus 200 of
Referring now to
Referring now to
In one example, as illustrated in
In one example, the voltage applied to the electrodes 430 may be temporally constant. Thus, the electrical field in the well is generated by a temporally constant AC profile applied to the various electrodes 430. Of course, those skilled in the art will appreciate that an alternating current varies within a cycle. In this regard, a “constant” AC voltage refers to a voltage with a constant peak-to-peak voltage. Thus, voltage applied to a specific electrode 430 remains constant over time as the cell 490 moves through the electrical field.
In other examples, the voltage applied to the electrodes 430 may vary in strength over time. In one example, the strength of the electrical field varies over time based on the position of the cell 490. For example, when the cell 490 is first dropped in the well 420 and the cell 490 is furthest from the electrodes, the voltage applied to the electrodes 430 may be high. Thus, even at the greatest distance from the electrodes, the strength of the electrical field is sufficient to affect the cell 490. As the cell 490 gets closer to the electrodes 430, the magnitude of the voltage may be reduced, either incrementally or gradually. In one example, the variation of the magnitude of the voltage may be predetermined and synchronized with a dispenser (not shown in
In another example, the temporal variation of the voltage applied to the electrodes 430 may include variations in the phase profile 480. In this regard, when the cell 490 is first dropped into the well 420, the phase profile 480 may be adjusted such that neighboring electrodes have a 180-degree offset in phase. The 180-degree phase offset facilitates pulling down of the cell 490 from the top of the well towards the electrodes 430 on the bottom surface of the well 420. When the cell 490 has been pulled down to a desirable height, the phase profile 480 may be changed to provide a 90-degree phase offset between neighboring electrodes, as illustrated in
Referring now to
Each well 512 is provided with an array of electrodes 514 formed on the bottom surface of the well. As described above, in various examples, the array of electrodes 514 may be arranged in a concentric manner. The electrodes 514 may be provided with a voltage from an AC power source 530.
The AC power source 530 is coupled to a controller 540. The controller 540 selectively provides voltage from the AC power source 530 to the electrodes 514 in each well 512 of the well plate 510. As described above, the voltage from the AC power source 530 provided to the electrodes generates a non-uniform electrical field. The non-uniform electrical field may direct an object, such as a cell, to a target position on the bottom surface of the well. In various examples, the non-uniform electrical field may be arranged to generate a traveling wave DEP force to direct the object.
The controller 540 of the example system 500 is also coupled to the movable stage 520. The controller 540 may selectively move the movable stage 520 relative to various other components of the example system 500. In this regard, the example system 500 of
In some examples, the dispenser 550 may inject or drop additional material into the wells 512. For example, the dispenser 550 may be used to add stimuli onto cells already in the wells 512 to facilitate a reaction or other response that may be observed or imaged. In other examples, the dispenser 550 may add fluorescent dyes or other stains to facilitate the imaging.
The imaging portion 560 is positioned under the bottom surface of the well 512. The imaging portion 560 is coupled to the controller 540. Thus, the controller 540 may coordinate the movement of the movable stage 520 and the operation of the imaging portion 560 to image an object in a selected well 512. To facilitate the imaging, the electrodes 514 on the bottom surface of each well 512 are formed as transparent electrodes which allow the imaging portion 560 to image an object in the well through the electrodes 514. In some examples, the electrodes 514 may be formed of a thin metal that is sufficiently thin to allow imaging of the object by the imaging portion 560. In various examples, the thin metal has a thickness of less than 100 nm. In other examples, the electrodes 514 are formed of a transparent material, such as indium tin oxide. In one example, the electrodes 514 are formed of a layer of indium tin oxide with a thickness of between 5 and 500 nm.
The robotic pick mechanism 570 is provided to selectively remove an object, such as a cell, from the well 512. In some examples, the controller 540 may align a selected well 512 of the well plate 510 with the robotic pick mechanism 570. Thus, the robotic pick mechanism 570 may then pick up an object from within the well 512. The operation of the robotic pick mechanism 570 is facilitated by the positioning of the cell at a target location by the electrical field, as described above. For example, the robotic pick mechanism 570 can be positioned with more precise knowledge of the location of the cell to be picked. In this regard, operation of the robotic pick mechanism 570 may be automated and may be achieved with little or no manual intervention.
The various examples described above illustrate electrodes provided on an inside surface of the bottom floor of a well. For example,
In the example system 600, the well 620 is defined by at least one side wall 622 and a bottom floor 624. In the example of
Referring now to
The example apparatus 700 is provided with an array of electrodes 730 formed on a board 732, such as a printed circuit board, for example. The printed circuit board may be removably attached to an outer surface 726 of the bottom floor 724 of the well 720. In this regard, a low-cost well plate with wells may be provided with electrodes to generate a non-uniform electrical field, as described above.
Thus, the example systems described above provide an efficient, cost-effective and user-friendly systems and apparatus for isolation of objects such as cells. The isolated cells may then be accurately imaged and/or removed from the system (e.g., the well of a well plate) in an automated manner.
The foregoing description of various examples has been presented for purposes of illustration and description. The foregoing description is not intended to be exhaustive or limiting to the examples disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of various examples. The examples discussed herein were chosen and described in order to explain the principles and the nature of various examples of the present disclosure and its practical application to enable one skilled in the art to utilize the present disclosure in various examples and with various modifications as are suited to the particular use contemplated. The features of the examples described herein may be combined in all possible combinations of methods, apparatus, modules, systems, and computer program products.
It is also noted herein that while the above describes examples, these descriptions should not be viewed in a limiting sense. Rather, there are several variations and modifications which may be made without departing from the scope as defined in the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/043795 | 7/26/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/023038 | 1/30/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6969449 | Maher et al. | Nov 2005 | B2 |
7276206 | Augustine et al. | Oct 2007 | B2 |
8003372 | Klauke et al. | Aug 2011 | B2 |
8372629 | Southern et al. | Feb 2013 | B2 |
9329168 | Rajaraman et al. | May 2016 | B2 |
9588105 | Hussain et al. | Mar 2017 | B1 |
20020045159 | Maher et al. | Apr 2002 | A1 |
20050266478 | Huang | Dec 2005 | A1 |
20070212111 | Kagawa | Sep 2007 | A1 |
20090053813 | Evans | Feb 2009 | A1 |
20110203924 | Wohlstadter et al. | Aug 2011 | A1 |
20160029619 | Sun | Feb 2016 | A1 |
20170136452 | Niles et al. | May 2017 | A1 |
20170370827 | Wohlstadter et al. | Dec 2017 | A1 |
20180229246 | Brcka | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
2763114 | Jan 2002 | CA |
Entry |
---|
Y. Inoue, R. Obara, M. Nakano and J. Suehiro, “Concentration of bacteria in high conductive medium using negative dielectrophoresis,” 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 2015, pp. 3336-3340 (Year: 2015). |
Number | Date | Country | |
---|---|---|---|
20210138453 A1 | May 2021 | US |