1. Field of the Invention
The present invention relates to a semiconductor memory device and a method for fabricating the same. More particularly, the present invention relates to a non-volatile memory cell, a non-volatile memory array based on the memory cell, a method for fabricating the non-volatile memory cell and, a method for fabricating the non-volatile memory array.
2. Description of the Related Art
Conventionally, an erasable programmable non-volatile memory cell includes a stacked structure constituted of a tunneling layer, a poly-Si floating gate, an inter-gate dielectric layer and a control gate, wherein the floating gate serves as a storage site into which electrons are injected. Since the floating gate is made from a conductor, each memory cell can save only one bit.
To increase the storage capacity of non-volatile memory, some trapping-type non-volatile memory devices, such as, nitride read-only memory (NROM), are recently developed. In each memory cell of such a memory device, an insulative trapping layer is disposed between the substrate and the control gate in replacement of the floating gate. Since the trapping layer is insulative, two bits can be saved in two regions of the trapping layer near the source and drain regions by, for example, controlling the direction of the channel current.
Accordingly, as compared with the conventional non-volatile memory, the trapping-type non-volatile memory of the prior art has doubled storage capacity. However, there is always a desire to increase the storage capacity of non-volatile memory, i.e., to increase the number of bits that one memory cell can stores.
Accordingly, one object of this invention is to provide a non-volatile memory cell capable of storing at least four bits of data.
Another object of this invention is to provide a non-volatile memory array based on the non-volatile memory cell of this invention.
Still another object of this invention is to provide a method for fabricating the non-volatile memory cell of this invention.
Yet another object of this invention is to provide a method for fabricating the non-volatile memory array of this invention.
The non-volatile memory cell of this invention includes a semiconductor body of a first conductivity type, a trapping layer, a gate, and a first, a second and a third doped regions of a second conductivity type. The semiconductor body has a trench thereon, and the trapping layer is disposed on the surface of the trench. The gate is disposed in the trench, separated from the semiconductor body by the trapping layer. The first doped region is located in the semiconductor body under the trench, and the second and third doped regions are located in the semiconductor body at two sides of the trench.
In the non-volatile memory cell of this invention, the semiconductor body may be a semiconductor substrate having the trench and all doped regions therein, or a composite of a semiconductor substrate having the first doped region therein and a semiconductor layer having the trench and the second and third doped regions therein.
The non-volatile memory array of this invention is based on the above non-volatile memory cell. Specifically, in the memory array, the semiconductor body has multiple trenches thereon orientated in a column direction, and the trapping layer is disposed on the surface of each trench. The semiconductor body under each trench has a first buried bit line therein, and the semiconductor body between two trenches has a second buried bit line therein. The trenches is disposed with multiple gates therein that are arranged in rows and columns, while the gates in the same row are electrically connected to a word line.
Similarly, in the non-volatile memory array of this invention, the semiconductor body may be a semiconductor substrate having the trenches and all buried bit lines therein, or a composite of a semiconductor substrate having the first buried bit lines therein and a semiconductor layer having the trenches and the second and third buried bit lines therein.
The method for fabricating a non-volatile memory cell of this invention is described as follows. A semiconductor substrate of a first conductivity type is provided, and a first doped region of a second conductivity type is formed in the substrate. A semiconductor layer is formed on the substrate, including a lower portion of the first conductivity type and an upper portion of the second conductivity type on the lower portion. The resulting semiconductor body may alternatively be made from a semiconductor substrate of the first conductivity type with two implantation steps of the second conductivity type only, wherein one implantation step forms a first doped region away from the surface layer of the substrate and the other forms a doped layer in the surface layer of the substrate. Thereafter, a trench is formed in the semiconductor layer (or in the semiconductor substrate in the alternative method) over the first doped region, so that the upper portion of the semiconductor layer (or the doped layer in the alternative method) is divided into a second and a third doped regions. A trapping layer is then formed on the surface of the trench, and a gate is formed in the trench.
The method for fabricating a non-volatile memory array of this invention is based on the above memory cell process. Specifically, before the semiconductor layer is formed, multiple first buried bit lines are formed in the substrate in a column direction. After the semiconductor layer is formed, multiple trenches are formed in the column direction, wherein each trench is located over one first buried bit line so that the upper portion of the semiconductor layer is divided into multiple second buried bit lines. The trapping layer is then formed on the substrate. Then, multiple gates and word lines are formed in the trenches and over the semiconductor layer, respectively, wherein the gates are arranged in rows and columns, and each word line is orientated in the row direction electrically connecting with the gates in one row.
Since the gate of the non-volatile memory cell of this invention is formed in a trench, two channels are defined in the semiconductor layer at two sidewalls of the gate. By altering the current direction in each channel, two bits can be stored in the trapping layer at each sidewall of the gate, as mentioned above. Consequently, totally four bits of data can be stored in one memory cell, and the storage capacity of the non-volatile memory device is significantly increased.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
FIGS. 1A/1B, 2, 3 and 4A/4B illustrate a process flow of fabricating a non-volatile memory array/cell according to a preferred embodiment of this invention, wherein
Referring to
Referring to
In another example, a P-type semiconductor film 120 and an N-type semiconductor film 130 are sequentially formed on the substrate 100, thereby constituting the semiconductor layer 115. Similarly, each semiconductor film 120 or 130 can be formed using an epitaxial method with in-situ doping of corresponding conductivity type. That is, the semiconductor layer 115 may be constituted of a P-type epitaxial layer 120 and an N-type epitaxial layer 130 on the P-type epitaxial layer 120.
Alternatively, the resulting semiconductor body as formed above, which includes a semiconductor substrate 100 with the buried bit lines 110 therein and the semiconductor layer 115 with the doped upper portion 130, may alternatively be made from a semiconductor substrate (equivalent to 100+115) with two implantation steps only. In the alternative method, one implantation step uses high-energy ions to form the buried bit lines 110 far away from the surface layer of the substrate (100+115), and the other implantation step forms a doped layer (equivalent to 130) in the surface layer of the substrate (100+115). Since the subsequent steps for such a semiconductor substrate in the alternative method are similar to those for the composite 110+115 in the illustrated method, they will not be described repeatedly.
Referring to
Referring to
Referring to
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention covers modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | |
---|---|---|---|
Parent | 11218090 | Aug 2005 | US |
Child | 11865519 | Oct 2007 | US |