The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
Referring to
In the first conductive type silicon body layer 106, there is disposed an isolation structure 108 for defining a device active area 110. The isolation structure 108 for example is a shallow trench isolation (STI) structure. The STI structure for example is made of silicon oxide. As an alternative option, the isolation structure 108 can also be a field oxidation layer.
The memory cell 111 for example is disposed on the SOI substrate 100. The memory cell 111 for example includes a gate 112, a bottom dielectric layer 114, a charge storage structure 116, a top dielectric layer 118, a second conductive type drain region 120, and a second conductive type source region 122, and a first conductive type doped region 124.
The gate 112 for example is disposed on the SOI substrate 100. The gate 112 for example is made of doped polysilicon.
The charge storage structure 116 for example is disposed between the gate 112 and the SOI substrate 100. The charge storage structure 116 for example can be made of silicon nitride or nanocrystal. However, the charge storage structure 116 is not limited to be made of silicon nitride or nanocrystal. It can also be made of other materials, such as silicon oxynitride, tantalum oxide, strontium titanate, hafnium oxide, etc.
The bottom dielectric layer 114 for example is disposed between the charge storage structure 116 and the SOI substrate 100. The bottom dielectric layer 114 for example is made of silicon oxide.
The top dielectric layer 118 for example is disposed between the charge storage structure 116 and the gate 112. The top dielectric layer 118 for example is made of silicon oxide or other dielectric material having a high dielectric constant.
The second conductive type drain region 120 and the second conductive type source region 122 for example are distributed in the first conductive type silicon body layer 106 and at two sides of the gate 112.
The first conductive type doped region 124 for example is disposed in the first conductive type silicon body layer 106, and is electrically connected to the first conductive type silicon body layer beneath the gate 112. According to an aspect of the embodiment, the first conductive type dope region 124 for example is disposed at one side of the gate 112, and neighbours on the second conductive type source region 122.
Further, there are a plug 126 and a conductive line 128 disposed on the second conductive type drain region 120. The conductive line 128 is electrically connected to the second conductive type drain region 120 via the plug 126. The plug 126 and the conductive line 128 are made of metallic materials, or doped polysilicon.
In the foregoing embodiments, if the first conductive type is P type, and the second conductive type is N type, then the memory cell 111 is an N type channel memory cell; and if the first conductive type is N type, and the second conductive type is P type, then the memory cell 111 is a P type channel memory cell. According to an aspect of the invention, the memory cell is a full depletion memory cell or a partial depletion memory cell.
In the memory cell 111 of the present invention, because of the disposition of the first conductive type doped region 124, i.e., the well pickup region, electrically coupled to the first conductive type silicon body layer 106 beneath the gate 112, when operating the memory cell 111, a voltage can be applied (individually applied for example) to the first conductive type silicon body layer 106 beneath the gate 112. Or otherwise, the second conductive type source region 122 and the first conductive type doped region 124 are conformed into a salicide for electrical connection there between. When hot carriers are generated, the hot carriers pass the silicide conformed by the first conductive type doped region 124 and the second conductive type source region 122, and evacuated from the second conductive type source region 122. In such a way, a voltage of the first conductive type silicon body layer 106 is prevented from deviating from an originally determined value thereof due to the accumulation of the hot carriers in the silicon body layer 106. In such a way, the threshold voltage of the memory cell can be maintained and thus improving the operation efficiency thereof.
Referring to
The second conductive type drain region 120 and the second conductive type source region 122 are disposed in for example the first conductive type silicon body layer 106 and at two sides of the first portion 112b.
The first conductive type doped region 124a for example is disposed in the first conductive type silicon body layer 106 and at one side of the second portion 112c, and interspaced by the second portion 112c to be opposite to the second conductive type drain region 120 and the second conductive type source region 122.
Further, there are disposed a plug 130 and a conductive line 132 on the first conductive type doped region 124a. The conductive line 132 electrically connects the first conductive type doped region 124a via the plug 130. The plug 130 and the conductive line 132 are made of for example metallic materials or doped polysilicon.
Similarly, in the memory cell, because of the disposition of the first conductive type doped region 124, i.e., the well pickup region, electrically coupled to the first conductive type silicon body layer 106 beneath the gate 112a, when operating the memory cell 111, a voltage can be applied to the first conductive type silicon body layer 106 beneath the gate 112. In such a way, a voltage of the first conductive type silicon body layer 106 is prevented from deviating from an originally determined value thereof due to the accumulation of the hot carriers in the silicon body layer 106. In such a way, an threshold voltage of the memory cell can be maintained and thus improving the operation efficiency thereof. Moreover, the first conductive type doped region 124a can be individually applied with a voltage, so as to allow more complicated operation, such as erasing operation.
Further, in the memory cell as shown in
Referring to
In the first conductive type silicon body layer 206, there is disposed an isolation structure 208 defining a device active area 210. The isolation structure 208 for example is a shallow trench isolation (STI) structure. The STI structure for example is made of silicon oxide. As an alternative option, the isolation structure 208 can also be a field oxidation layer.
The non-volatile memory for example is composed of a memory cell 212 and a selecting transistor 214 serially connected thereto.
The memory cell 212 for example is disposed on the SOI substrate 200. The memory cell 212 for example includes a gate 222, a bottom dielectric layer 216, a charge storage structure 218, a top dielectric layer 220, a second conductive type source/drain region 228, and a second conductive type source/drain region 230.
The gate 222 for example is disposed on the SOI substrate 200. The gate 222 for example is made of doped polysilicon.
The charge storage structure 218 for example is disposed between the gate 222 and the SOI substrate 200. The charge storage structure 218 for example can be made of silicon nitride or nanocrystal. However, the charge storage structure 218 is not limited to be made of silicon nitride or nanocrystal. It can also be made of other materials, such as silicon oxynitride, tantalum oxide, strontium titanate, hafnium oxide, etc.
The bottom dielectric layer 216 for example is disposed between the charge storage structure 218 and the SOI substrate 200. The bottom dielectric layer 216 for example is made of silicon oxide.
The top dielectric layer 220 for example is disposed between the charge storage structure 218 and the gate 222. The top dielectric layer 220 for example is made of silicon oxide or other dielectric material having a high dielectric constant.
The second conductive type source/drain region 228 and the second conductive type source/drain region 230 for example are distributed in the first conductive type silicon body layer 206 and at two sides of the gate 222.
The selecting transistor 214 for example is disposed on the SOI substrate 200. The selecting transistor 214 for example includes a gate 226, a gate dielectric layer 224, a second conductive type source/drain region 230, and a second conductive type source/drain region 232.
The gate 226 is disposed on SOI substrate 200. The gate 226 for example is made of doped polysilicon.
The gate dielectric layer 224 for example is disposed between the gate 226 and the SOI substrate 200. The gate dielectric layer for example is made of silicon oxide.
The second conductive type source/drain region 230, the second conductive type source/drain region 232 for example are disposed in the first conductive type silicon body layer 206 at two sides of the gate 226. The selecting transistor 214 and the memory cell 212 share the second conductive type source/drain region 230 in common.
Further, there are a plug 234 and a conductive line 236 (bit line) disposed on the second conductive type source/drain region 228. The conductive line 236 is electrically connected to the second conductive type source/drain region 228 via the plug 234. The plug 234 and the conductive line 236 are made of metallic materials, or doped polysilicon. There are also a plug 238 and a conductive line 240 (source line) disposed on the second conductive type source/drain region 232. The conductive line 240 is electrically connected to the second conductive type source/drain region 232 via the plug 238. The plug 238 and the conductive line 240 are made of metallic materials, or doped polysilicon.
In the foregoing embodiments, if the first conductive type is P type, and the second conductive type is N type, then the memory cell 212 is an N type channel memory cell, and the selecting transistor 214 is an N type channel transistor; and if the first conductive type is N type, and the second conductive type is P type, then the memory cell 212 is a P type channel memory cell, and the selecting transistor 214 is a P type channel transistor. According to the present embodiment, the memory cell 212 is exemplified as a partial depletion transistor. However, the non-volatile memory according to the present invention can also be a full depletion memory cell and the selecting transistor 214 can also be a full depletion transistor as shown in
As shown in
As shown in
The second conductive type source/drain region 228, the second conductive type source/drain region 230 for example are disposed in the first conductive type silicon body layer 206 at two sides of the first portion 222b.
The first conductive type doped region 242a for example is disposed in the first conductive type silicon layer 206 at one side of the second portion 222c, and is interspaced by the second portion 222c to be opposite to the second conductive type source/drain region 228 and the second conductive type source/drain region 230.
Further, there are disposed a plug 246 and a conductive line 248 on the first conductive type doped region 242a. The conductive line 248 electrically connected to the first conductive type doped region 242a via the plug 246. The plug 246 and the conductive line 248 can be made of for example metallic materials, or doped polysilicon.
In a memory cell according to the present invention, because of the disposition of the first conductive type doped region 242 (242a) and 244 that are electrically coupled to the first conductive type silicon body layer 206 beneath the gate 222 (222a) and the gate 226, when operating the memory cell 212, a voltage can be applied to the first conductive type silicon body layer 206 beneath the gate 222 (222a) and the gate 226, when operating the memory cell 212. In such a way, a voltage of the first conductive type silicon body layer 206 beneath the gate 222 (222a) and the gate 226 is prevented from deviating from an originally determined value thereof due to the accumulation of the hot carriers in the silicon body layer 206. In such a way, a threshold voltage of the memory cell 212 can be maintained and thus improving the operation efficiency thereof.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
Referring to
As shown in
Referring to
As shown in
As shown in
As shown in
In summary, according to the operating method for the non-volatile memory of the present invention, one selected from the group consisting of channel hot carrier injection, band-to-band tunnelling hot carrier injection, and F-N tunnelling is employed for inject electrons or holes into the charge storage structure, or evacuating electrons or holes from the charge storage structure, so as to program or erase the memory cell.
Furthermore, there is disposed a doped region, i.e., well pickup region, in the memory cell. A conductive type of the doped region is identical with that of the silicon body layer beneath the gate of the memory cell and/or the gate of the selecting transistor. As such, in operating the non-volatile memory, voltages are applied to the silicon body layer beneath the gate of the memory cell and/or the gate of the electing transistor, so as to avoid the voltage of the first conductive type silicon body layer from deviating from a predetermined value due to accumulation of hot carriers in the silicon body layer. In such a way, the threshold voltage of the memory cell can be maintained and thus improving the operation efficiency thereof.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
This application claims the priority benefit of U.S. provisional application Ser. No. 60/821,576, filed on Aug. 7, 2006, all disclosures are incorporated therewith.
Number | Date | Country | |
---|---|---|---|
60821576 | Aug 2006 | US |