1. Field
This disclosure relates generally to non-volatile memory (NVM) cells and other transistor types, and more particularly, integrating NVM cells with logic transistors that have high k gate dielectrics and metal gates and transistors that are high voltage.
2. Related Art
The integration of non-volatile memories (NVMs) with logic transistors has always been a challenge due to the different requirements for the NVM transistors, which store charge, and the logic transistors which are commonly intended for high speed operation. The need for storing charge has been addressed mostly with the use of floating gates but also with nanocrystals or nitride. In any of these cases, the need for this unique layer makes integration of the NVM transistors and the logic transistors difficult. The particular type of charge storage layer can also have a large effect on the options that are available in achieving the integration. A further complication is when the logic transistors are high k, metal gate transistors and high voltage transistors. The high k gate dielectrics typically cannot withstand the high temperatures that are generally best for NVM cells and for high voltage transistors. Further the high voltage transistors typically have relatively thick layers of oxide for the gate dielectrics that, when etched, can cause a corresponding recess of the isolation oxide exposing the sidewall surface of logic transistor channel regions. The exposure of the transistor region sidewall surface makes it difficult to control the threshold voltage of the transistors and accordingly makes for a leakage problem for those transistors.
Accordingly there is a need to provide an integration that improves upon one or more of the issues raised above.
The present invention is illustrated by way of example and is not limited by the accompanying figures, in which like references indicate similar elements. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale.
In one aspect, an integration of a non-volatile memory (NVM) cell in a NVM portion of an integrated circuit and a logic transistor in a logic portion of the integrated circuit includes forming the gate structure of the NVM cell in the NVM portion, including the charge storage layer, while masking the logic portion. The logic gate is formed while masking the NVM portion with a hard mask that is subsequently used to form sidewall spacers in the NVM portion. Source/drain implants are performed simultaneously in the NVM and logic portions. This is better understood by reference to the drawings and the following written description.
The semiconductor substrate described herein can be any semiconductor material or combinations of materials, such as gallium arsenide, silicon germanium, silicon-on-insulator (SOD, silicon, monocrystalline silicon, the like, and combinations of the above. Oxide layer refers to a silicon oxide layer unless otherwise noted. Similarly, nitride layer refers to a silicon nitride layer unless otherwise noted.
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
Shown in
The structure shown in
By now it should be appreciated that there has been provided a method of making a semiconductor device. The method includes using a substrate having a non-volatile memory (NVM) portion, a high voltage portion, a medium voltage portion, and a logic portion. The method further includes growing a first oxide on a major surface of the substrate in the NVM portion, the high voltage portion, the medium voltage portion, and logic portion. The method further includes depositing a first conductive layer over the first oxide in the NVM portion, the high voltage portion, the medium voltage portion, and the logic portion. The method further includes patterning and etching the first conductive layer to expose the high voltage portion and the medium voltage portion. The method further includes growing a second oxide in the NVM portion, the high voltage portion, the medium voltage portion, and the logic portion. The method further includes masking the high voltage portion. The method further includes etching the second oxide from the NVM portion, medium voltage portion, and the logic portion while the high voltage portion is masked. The method further includes growing a third oxide in the NVM portion, the high voltage portion, the medium voltage portion, and the logic portion. The method further includes masking the high voltage portion and the medium voltage portion. The method further includes etching the third oxide and the first conductive layer in the NVM portion and the logic portion while the high voltage portion and the medium voltage portion remain masked. The method further includes growing a fourth oxide in the NVM portion, the high voltage portion, the medium voltage portion, and the logic portion. The method further includes fabricating a memory cell requiring high voltage during operation in the NVM portion, the fabricating including using a protective layer over the high voltage portion, the medium voltage portion, and the logic portion when performing an implant in a second conductive layer in the NVM portion. The method further includes removing the protective layer over the high voltage portion, the medium voltage portion, and the logic portion. The method further includes patterning transistor gates in the high voltage portion and the medium voltage portion. The method further includes depositing a protective mask in the NVM portion, the high voltage portion, and the medium voltage portion. The method further includes forming a logic device in the logic portion while the protective mask remains in the NVM portion, the high voltage portion, and the medium voltage portion. The method may have a further characterization by which the fabricating the memory cell further includes forming a select gate by implanting the second conductive layer and patterning the second conductive layer and the fourth oxide, forming a charge storage layer over the select gate and the substrate in the NVM portion, and in the high voltage portion, the medium voltage portion, and the logic portion, depositing a third conductive layer over the charge storage layer in the NVM portion, the high voltage portion, the medium voltage portion, and the logic portion, and patterning the third conductive layer and the charge storage layer to form a control gate over a remaining portion of the charge storage layer and a portion of the select gate in the NVM portion, and to remove the charge storage layer and the third conductive layer in the high voltage portion, the medium voltage portion, and the logic portion. The method may have a further characterization by which. The method may have a further characterization by which the charge storage layer includes one of a group consisting of discrete storage elements between top and bottom layers of dielectric and a continuous storage element between top and bottom layers of dielectric. The method may have a further characterization by which the protective layer includes photoresist. The method may have a further characterization by which the protective mask includes a nitride layer and an oxide layer. The method may have a further characterization by which the forming the logic device includes forming a high k dielectric over the logic portion, forming a barrier layer over the high k dielectric, and patterning the barrier layer. The method may have a further characterization by which the forming the logic device further includes forming a polysilicon layer over the barrier layer and patterning the polysilicon layer and the high k dielectric, wherein the patterning the polysilicon layer and the high k dielectric is aligned with the patterning the barrier layer to leave a gate stack. The method may have a further characterization by which the fabricating the memory cell further includes depositing a layer of polysilicon for the third conductive layer. The method may have a further characterization by which the second oxide is grown on the first conductive layer in the NVM portion and the logic portion.
Also disclosed is a method of making a semiconductor structure using a substrate having a non-volatile memory (NVM) portion, a first high voltage portion, a second high voltage portion and a logic portion. The method includes forming a first conductive layer over an oxide layer on a major surface of the substrate in the NVM portion, the first and second high voltage portions, and logic portion. The method further includes fabricating a memory cell in the NVM portion while the first conductive layer remains in the first and second high voltage portions and the logic portion. The method further includes patterning the first conductive layer to form transistor gates in the first and second high voltage portions. The method further includes forming a protective mask over the NVM portion and the first and second high voltage portions. The method further includes forming a transistor gate in the logic portion while the protective mask remains in the NVM portion and the first and second high voltage portions. The method may have a further characterization by which the fabricating the memory cell further includes forming a select gate by implanting a portion of the first conductive layer and patterning the first conductive layer, and forming a charge storage layer over the select gate and the substrate in the NVM portion, and in the first and second voltage portions, and the logic portion, depositing a second conductive layer over the charge storage layer in the NVM portion, the first and second high voltage portions, and the logic portion, patterning the second conductive layer and the charge storage layer to form a control gate over a remaining portion of the charge storage layer and a portion of the select gate in the NVM portion, and to remove the charge storage layer and the second conductive layer in the first and second high voltage portions and the logic portion. The method may have a further characterization by which the charge storage layer includes one of a group consisting of discrete storage elements between top and bottom layers of dielectric and a continuous storage element between top and bottom layers of dielectric. The method may have a further characterization by which the patterning the first conductive layer for the fabricating the memory cell and the patterning the first conductive layer to form the transistor gates in the first and second high voltage portions is performed concurrently. The method may have a further characterization by which the fabricating the memory cell includes patterning the first conductive layer to form a gate for the memory cell, and the patterning the first conductive layer to form the transistor gates in the first and second high voltage portions is performed concurrently with the patterning the first conductive layer to form the gate for the memory cell. The method may have a further characterization by which the protective mask includes a nitride layer and an oxide layer. The method may have a further characterization by which the forming the transistor gate includes forming a high k dielectric, forming a barrier layer over the high k dielectric, forming a polysilicon layer over the barrier layer, and patterning the high k dielectric, the barrier layer, and the polysilicon layer. The method may have a further characterization by which the first conductive layer is a layer of polysilicon. The method may have a further characterization by which the fabricating includes using a protective layer over the first and second high voltage portions and the logic portion when performing an implant in a second conductive layer in the NVM portion. The method may further include, before fabricating the memory cell, patterning and etching the first conductive layer to expose the first and second high voltage portions, growing a second oxide in the NVM portion, the first and second high voltage portions, and the logic portion, masking a first of the high voltage portions, etching the second oxide from the NVM portion, a second of the high voltage portions, and the logic portion while the first of the high voltage portions is masked, growing a third oxide in the NVM portion, the first and second high voltage portions, and the logic portion, masking the first and second high voltage portions, etching the third oxide and the first conductive layer in the NVM portion and the logic portion while the first and second high voltage portions remain masked, and growing a fourth oxide in the NVM portion, the first and second high voltage portions, and the logic portion.
Moreover, the terms “front,” “back,” “top,” “bottom,” “over,” “under” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
Although the invention is described herein with reference to specific embodiments, various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. For example, different or additional types of active regions may be used such as further levels of high voltage and different well types and corresponding transistor types. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present invention. Any benefits, advantages, or solutions to problems that are described herein with regard to specific embodiments are not intended to be construed as a critical, required, or essential feature or element of any or all the claims.
Furthermore, the terms “a” or “an,” as used herein, are defined as one or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles.
Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements.
Number | Name | Date | Kind |
---|---|---|---|
5614746 | Hong et al. | Mar 1997 | A |
6087225 | Bronner et al. | Jul 2000 | A |
6194301 | Radens et al. | Feb 2001 | B1 |
6235574 | Tobben et al. | May 2001 | B1 |
6333223 | Moriwaki et al. | Dec 2001 | B1 |
6388294 | Radens et al. | May 2002 | B1 |
6509225 | Moriwaki et al. | Jan 2003 | B2 |
6531734 | Wu | Mar 2003 | B1 |
6635526 | Malik et al. | Oct 2003 | B1 |
6707079 | Satoh et al. | Mar 2004 | B2 |
6777761 | Clevenger et al. | Aug 2004 | B2 |
6785165 | Kawahara et al. | Aug 2004 | B2 |
6939767 | Hoefler et al. | Sep 2005 | B2 |
7154779 | Mokhlesi et al. | Dec 2006 | B2 |
7183159 | Rao et al. | Feb 2007 | B2 |
7190022 | Shum et al. | Mar 2007 | B2 |
7202524 | Kim et al. | Apr 2007 | B2 |
7208793 | Bhattacharyya | Apr 2007 | B2 |
7256125 | Yamada et al. | Aug 2007 | B2 |
7271050 | Hill | Sep 2007 | B2 |
7365389 | Jeon et al. | Apr 2008 | B1 |
7391075 | Jeon et al. | Jun 2008 | B2 |
7402493 | Oh et al. | Jul 2008 | B2 |
7405968 | Mokhlesi et al. | Jul 2008 | B2 |
7439134 | Prinz et al. | Oct 2008 | B1 |
7476582 | Nakagawa et al. | Jan 2009 | B2 |
7521314 | Jawarani et al. | Apr 2009 | B2 |
7524719 | Steimle et al. | Apr 2009 | B2 |
7544490 | Ferrari et al. | Jun 2009 | B2 |
7544980 | Chindalore et al. | Jun 2009 | B2 |
7544990 | Bhattacharyya | Jun 2009 | B2 |
7560767 | Yasuda et al. | Jul 2009 | B2 |
7795091 | Winstead et al. | Sep 2010 | B2 |
7799650 | Bo et al. | Sep 2010 | B2 |
7816727 | Lai et al. | Oct 2010 | B2 |
7821055 | Loiko et al. | Oct 2010 | B2 |
7906396 | Chiang et al. | Mar 2011 | B1 |
7932146 | Chen et al. | Apr 2011 | B2 |
7989871 | Yasuda | Aug 2011 | B2 |
7999304 | Ozawa et al. | Aug 2011 | B2 |
8017991 | Kim et al. | Sep 2011 | B2 |
8043951 | Beugin et al. | Oct 2011 | B2 |
8063434 | Polishchuk et al. | Nov 2011 | B1 |
8093128 | Koutny et al. | Jan 2012 | B2 |
8138037 | Chudzik et al. | Mar 2012 | B2 |
8168493 | Kim | May 2012 | B2 |
8298885 | Wei et al. | Oct 2012 | B2 |
8334198 | Chen et al. | Dec 2012 | B2 |
8372699 | Kang et al. | Feb 2013 | B2 |
8389365 | Shroff et al. | Mar 2013 | B2 |
8399310 | Shroff et al. | Mar 2013 | B2 |
8524557 | Hall et al. | Sep 2013 | B1 |
8536006 | Shroff et al. | Sep 2013 | B2 |
8536007 | Shroff et al. | Sep 2013 | B2 |
8679927 | Ramkumar et al. | Mar 2014 | B2 |
20010049166 | Peschiaroli et al. | Dec 2001 | A1 |
20020061616 | Kim et al. | May 2002 | A1 |
20030022434 | Taniguchi et al. | Jan 2003 | A1 |
20040075133 | Nakagawa et al. | Apr 2004 | A1 |
20040262670 | Takebuchi et al. | Dec 2004 | A1 |
20050145949 | Sadra et al. | Jul 2005 | A1 |
20060038240 | Tsutsumi et al. | Feb 2006 | A1 |
20060046449 | Liaw | Mar 2006 | A1 |
20060099798 | Nakagawa | May 2006 | A1 |
20060134864 | Higashitani et al. | Jun 2006 | A1 |
20060211206 | Rao et al. | Sep 2006 | A1 |
20060221688 | Shukuri et al. | Oct 2006 | A1 |
20070037343 | Colombo et al. | Feb 2007 | A1 |
20070077705 | Prinz et al. | Apr 2007 | A1 |
20070115725 | Pham et al. | May 2007 | A1 |
20070215917 | Taniguchi | Sep 2007 | A1 |
20070224772 | Hall et al. | Sep 2007 | A1 |
20070249129 | Hall et al. | Oct 2007 | A1 |
20070264776 | Dong et al. | Nov 2007 | A1 |
20080029805 | Shimamoto et al. | Feb 2008 | A1 |
20080050875 | Moon et al. | Feb 2008 | A1 |
20080067599 | Tsutsumi et al. | Mar 2008 | A1 |
20080105945 | Steimle et al. | May 2008 | A1 |
20080121983 | Seong et al. | May 2008 | A1 |
20080128785 | Park et al. | Jun 2008 | A1 |
20080145985 | Chi | Jun 2008 | A1 |
20080185635 | Yanagi et al. | Aug 2008 | A1 |
20080237690 | Anezaki et al. | Oct 2008 | A1 |
20080237700 | Kim et al. | Oct 2008 | A1 |
20080283900 | Nakagawa et al. | Nov 2008 | A1 |
20080290385 | Urushido | Nov 2008 | A1 |
20080308876 | Lee et al. | Dec 2008 | A1 |
20090050955 | Akita et al. | Feb 2009 | A1 |
20090065845 | Kim et al. | Mar 2009 | A1 |
20090072274 | Knoefler et al. | Mar 2009 | A1 |
20090078986 | Bach | Mar 2009 | A1 |
20090101961 | He et al. | Apr 2009 | A1 |
20090111229 | Steimle et al. | Apr 2009 | A1 |
20090179283 | Adams et al. | Jul 2009 | A1 |
20090225602 | Sandhu et al. | Sep 2009 | A1 |
20090256211 | Booth, Jr. et al. | Oct 2009 | A1 |
20090269893 | Hashimoto et al. | Oct 2009 | A1 |
20090273013 | Winstead et al. | Nov 2009 | A1 |
20090278187 | Toba | Nov 2009 | A1 |
20110031548 | White et al. | Feb 2011 | A1 |
20110095348 | Chakihara et al. | Apr 2011 | A1 |
20110204450 | Moriya | Aug 2011 | A1 |
20110260258 | Zhu et al. | Oct 2011 | A1 |
20120034751 | Ariyoshi et al. | Feb 2012 | A1 |
20120104483 | Shroff et al. | May 2012 | A1 |
20120132978 | Toba et al. | May 2012 | A1 |
20120142153 | Jeong | Jun 2012 | A1 |
20120248523 | Shroff et al. | Oct 2012 | A1 |
20120252171 | Shroff et al. | Oct 2012 | A1 |
20130026553 | Horch | Jan 2013 | A1 |
20130037886 | Tsai et al. | Feb 2013 | A1 |
20130065366 | Thomas et al. | Mar 2013 | A1 |
20130084684 | Ishii et al. | Apr 2013 | A1 |
20130137227 | Shroff et al. | May 2013 | A1 |
20130171785 | Shroff et al. | Jul 2013 | A1 |
20130171786 | Shroff et al. | Jul 2013 | A1 |
20130178027 | HALL et al. | Jul 2013 | A1 |
20130178054 | Shroff et al. | Jul 2013 | A1 |
20130264633 | HALL et al. | Oct 2013 | A1 |
20130264634 | HALL et al. | Oct 2013 | A1 |
20130267074 | HALL et al. | Oct 2013 | A1 |
20130323922 | Shen et al. | Dec 2013 | A1 |
20140035027 | Chakihara et al. | Feb 2014 | A1 |
20140050029 | Kang et al. | Feb 2014 | A1 |
20140120713 | Shroff et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2009058486 | May 2009 | WO |
Entry |
---|
U.S. Appl. No. 13/781,727, Office Action—Allowance, May 12, 2014. |
U.S. Appl. No. 13/441,426, Shroff, M. D., et al., Office Action—Allowance, mailed Jun. 9, 2014. |
U.S. Appl. No. 13/907,491, Office Action—Rejection, Sep. 3, 2013. |
U.S. Appl. No. 13/343,331, Office Action—Allowance, Nov. 8, 2013. |
U.S. Appl. No. 13/781,727, Office Action—Restriction, Jun. 21, 2013. |
Chen, J.H., et al., “Nonvolatile Flash Memory Device Using Ge Nanocrystals Embedded in HfA10 High-k Tunneling and Control Oxides: Device Fabrication and Electrical Performance”, IEEE Transactions on Electron Devices, vol. 51, No. 11, Nov. 2004, pp. 1840-1848. |
Kang, T.K., et al., “Improved characteristics for Pd nanocrystal memory with stacked HfAIO-SiO2 tunnel layer”, Sciencedirect.com, Solid-State Electronics, vol. 61, Issue 1, Jul. 2011, pp. 100-105, http://wwww.sciencedirect.com/science/article/pii/50038110111000803. |
Krishnan, S., et al.., “A Manufacturable Dual Channel (Si and SiGe) High-K Metal Gate CMOS Technology with Muliple Oxides for High Performance and Low Power Application”, IEEE, Feb. 2001 IEEE International Electron Devices Meeting (IEDM), 28.1.1-28.1.4, pp. 634-637. |
Lee, J.J., et al., “Theoretical and Experimental Investigation of Si Nanocrystal Memory Device with HfO2 High-K Tunneling Dielectric”, IEEE Transactions on Electron Devices, vol. 50, No. 10, Oct. 2003, pp. 2067-2072. |
Liu, Z., et al., “Metal Nanocrystal Memories—Part I: Device Design and Fabrication”, IEEE Transactions on Electron Devices, vol. 49, No. 9, Sep. 2002, pp. 1606-1613. |
Mao, P., et al., “Nonvolatile memory devices with high density ruthenium nanocrystals”, Applied Physics Letters, vol. 93, Issue 24, Electronic Transport and Semiconductors, 2006. |
Mao. P., et al., “Nonvolatile Memory Characteristics with Embedded high Density Ruthenium Nanocrystals”, http://iopscience.iop.org/0256-307X/26/5/056104, Chinese Physics Letters, vol. 26, No. 5, 2009. |
Pei, Y., et al., “MOSFET nonvolatile Memory with High-Density Cobalt-Nanodots Floating Gate and HfO2 High-k Blocking Dielectric”, IEEE Transactions of Nanotechnology, vol. 10, No. 3, May 2011, pp. 528-531. |
Wang, X.P., et al., Dual Metal Gates with Band-Edge Work Functions on Novel HfLaO High-K Gate Dielectric, IEEE, Symposium on VLSI Technology Digest of Technical Papers, 2006. |
U.S. Appl. No. 13/402,426, Hall, M.D., et al., “Non-Volatile Memory Cell and Logic Transistor Integration”, Office Action—Allowance—May 3, 2013. |
U.S. Appl. No. 13/789,971, Hall, M.D., et al, “Integration Technique Using Thermal Oxide Select Gate Dielectric for Select Gate and Replacement Gate for Logic”, Office Action—Allowance—May 15, 2013. |
U. S. Appl. No. 13/491,771, Hall et al , “Integrating Formation of a Replacement Ggate Transistor and a Non-Volatile Memory Cell Using a High-K Dielectric”, Office Action—Rejection, Sep. 9, 2013. |
U.S. Appl. No. 13/442,142, Hall, M.D., et al., “Logic Transistor and Non-Volatile Memory Cell Integration”, Office Action—Ex Parte Quayle, Apr. 4, 2013. |
U.S. Appl. No. 13/442,142, Hall, M.D., et al., “Logic Transistor and Non-Volatile Memory Cell Integration”, Office Action—Allowance, Aug. 2, 2013. |
U.S. Appl. No. 13/907,491, Hall, M.D., et al., “Logic Transistor and Non-Volatile Memory Cell Integration”, Office Action—Rejection, Sep. 13, 2013. |
U.S. Appl. No. 12/915,726, Shroff, M., et al., “Non-Volatile Memory and Logic Circuit Process Integration”, Office Action—Restriction, Jul. 31, 2012. |
U.S. Appl. No. 12/915,726, Shroff, M., et al., “Non-Volatile Memory and Logic Circuit Process Integration”, Office Action—Allowance, Dec. 10, 2012. |
U.S. Appl. No. 13/781,727, Shroff, M., et al., “Methods of Making Logic Transistors and non-Volatile Memory Cells”, Office Action—Rejection, Aug. 22, 2013. |
U.S. Appl. No. 13/077,491, Shroff, M.., et al., “Non-Volatile Memory and Logic Circuit Process Integration”, Office Action—Rejection, Aug. 15, 2012. |
U.S. Appl. No. 13/077,491, Shroff, M.., et al., “Non-Volatile Memory and Logic Circuit Process Integration”, Office Action—Rejection, Feb. 6, 2013. |
U.S. Appl. No. 13/077,491, Shroff, M.., et al., “Non-Volatile Memory and Logic Circuit Process Integration”, Office Action—Allowance, Jun. 18, 2013. |
U.S. Appl. No. 13/077,501, Shroff, M.., et al., “Non-Volatile Memory and Logic Circuit Process Integration”, Office Action—Allowance, Nov. 26, 2012. |
U.S. Appl. No. 13/313,179, Shroff, M., et al., “Method of Protecting Against Via Failure and Structure Therefor”, Office Action—Rejection, Aug. 15, 2013. |
U.S. Appl. No. 13/307,719, Shroff, M., et al., “Logic and Non-Volatile Memory (NVM) Integration”, Office Action—Allowance, May 29, 2013. |
U.S. Appl. No. 13/343,331, Shroff, M., et al., “Non-Volatile Memory (NVM) and Logic Integration”, Office Action—Rejection, Mar. 13, 2013. |
U.S. Appl. No. 13/343,331, Shroff, M., et al., “Non-Volatile Memory (NVM) and Logic Integration”, Office Action—Allowance, Jun. 24, 2013. |
U.S. Appl. No. 13/441,426, Shroff, M., et al., “Non-Volatile Memory (NVM) and Logic Integration”, Office Action—Allowance, Sep. 9, 2013. |
U.S. Appl. No. 13/780,574, Hall, M.D., et al., Non-Volatile Memory (NVM) and Logic Integration, Office Action—Allowance, Sep. 6, 2013. |
U.S. Appl. No. 13/491,760, Shroff, M.., et al., “Integrating Formation of a Replacement Gate Transistor and a Non-Volatile Memory Cell Using an Interlayer Dielectric”, Office Action—Allowance, Jul. 1, 2013. |
U.S. Appl. No. 13/491,771, Hall, M., et al., “Integrating Formation of a Replacement Gate Transistor and a Non-Volatile Memory Cell Using a High-K Dielectric”, filed Jun. 8, 2012. |
U.S. Appl. No. 13/790,225, Hall, M., et al., “Integrating Formation of a Replacement Gate Transistor and a non-Volatile Memory Cell Having Thin Film Storage”, filed Mar. 8, 2013. |
U.S. Appl. No. 13/790,014, Hall, M., et al., “Integrating Formation of a Logic Transistor and a None-Volatile Memory Cell Using a Partial Replacement Gate Technique”, filed Mar. 8, 2013. |
U.S. Appl. No. 13/955,665, Perera, A.H., “Non-Volatile Memory (NVM) and High K and Metal Gate Integration Using Gate First Methodology”, filed Jul. 31, 2013. |
U.S. Appl. No. 13/962,338, Perera, A.H., “Nonvolatile Memory Bitcell With Inlaid High K Metal Select Gate”, filed Aug. 8, 2013. |
U.S. Appl. No. 13/928,666, Hong, C. M., et al., “Non-Volatile Memory (NVM) and High Voltage Transistor Integration”, filed Jun. 27, 2013. |
U.S. Appl. No. 13/780,591, Hall, M.D., et al., “Non-Volatile Memory (NVM) and Logic Integration”, filed Feb. 28, 2013. |
U.S. Appl. No. 13/491,760, Shroff, M.D., et al., “Integrating Formation of a Replacement Gate Transistor and a Non-Volatile Memory Cell Using an Interlayer Dielectric”, filed Jun. 8, 2012. |
U.S. Appl. No. 13/661,157, Shroff, M.D., et al., “Method of Making a Logic Transistor and a Non-Volatile Memory (NVM) Cell”, file Oct. 26, 2012. |
Office Action mailed Nov. 22, 2013 in U.S. Appl. No. 13/780,591. |
Office Action—Allowance mailed Feb. 21, 2014 in U.S. Appl. No. 13/441,426. |
Office Action—Allowance mailed Feb. 28, 2014 in U.S. Appl. No. 13/442,142. |
Office Action—Allowance mailed Mar. 3, 2014 in U.S. Appl. No. 13/790,014. |
Office Action—Allowance mailed Mar. 6, 2014 in U.S. Appl. No. 13/491,771. |
Office Action—Allowance mailed Mar. 11, 2014 in U.S. Appl. No. 13/907,491. |
Office Action—Allowance mailed Mar. 12, 2014 for U.S. Appl. No. 13/790,225. |
Office Action mailed Jan. 31, 2014 in U.S. Appl. No. 13/781,727. |
Office Action mailed Dec. 24, 2013 in U.S. Appl. No. 13/790,225. |
Office Action mailed Dec. 24, 2013 in U.S. Appl. No. 13/790,014. |
Office Action mailed Dec. 31, 2013 in U.S. Appl. No. 13/442,142. |
Office Action mailed Jan. 16, 2014 in U.S. Appl. No. 13/491,771. |
U.S. Appl. No. 13/928,666, Hong, Office Action—Rejection, mailed Jul. 23, 2014. |
U.S. Appl. No. 14/041,662, Perera, Office Action—Restriction, mailed Aug. 1, 2014. |
U.S. Appl. No. 13/781,727, Shroff, Office Action—Allowance, mailed Aug. 15, 2014. |
U.S. Appl. No. 13/973,549, Hong, Office Action—Restriction, mailed Aug. 26, 2014. |
U.S. Appl. No. 13/955,665, Office Action—Allowance, mailed Aug. 20, 2014. |