The present application claims priority from Japanese patent application JP 2020-156332 filed on Sep. 17, 2020, the entire content of which is hereby incorporated by reference into this application.
The present disclosure relates to a non-water coolant composition and a cooling system using the non-water coolant composition.
A vehicle with travel motor, such as a hybrid vehicle and an electric vehicle, includes a power control unit (PCU) for appropriately controlling an electric power. The PCU includes an inverter that drives the motor, a boost converter that controls a voltage, a DC/DC converter that steps down a high voltage, and the like. The inverter or the converter includes a power card as a card-type power module that includes semiconductor devices, and the power card generates heat caused by its switching action. Therefore, the inverter and the converter are apparatuses that possibly generate heat to have a high temperature. A heat generation apparatus in the vehicle with travel motor includes, for example, a battery in addition to the inverter and the converter. Accordingly, the vehicle with travel motor includes a cooling system for cooling the inverter, the converter, the battery, and the like.
For example, JP 2017-017228 A discloses a configuration of a semiconductor apparatus used for an inverter of a drive system in a vehicle with travel motor (for example, an electric vehicle or a hybrid vehicle) (
As a coolant, a non-aqueous coolant, such as a mineral oil, an aqueous coolant comprising water (for example, a mixture of ethylene glycol and water), and the like are generally used. For example, JP 2020-026471 A discloses a coolant composition that comprises: (A) polyhydric alcohol; (B) water; (C) cyclohexanol; and (D) nonionic surfactant expressed in a predetermined formula and having an HLB value of 11.0 or more as an aqueous coolant. An aqueous coolant generally has excellent cooling capability.
As the configuration of the semiconductor apparatus disclosed in JP 2017-017228 A, generally, the coolant circulates near the heat generation apparatuses, such as the power cards and the batteries, and therefore an excellent insulation property is required for the coolant. Additionally, in a cooling system in which the heat generation apparatus, such as the power card, directly contacts the coolant, both of excellent cooling capability and flame resistance are required for the coolant. Therefore, the coolant is required to have all of the excellent insulation property, cooling capability, and flame resistance. In this respect, although the mixture of ethylene glycol and water, which is generally used, and the aqueous coolant with, for example, the composition described in JP 2020-026471 A generally have advantages of excellent cooling capability (namely, a heat transfer property) and an excellent flame resistance, they have a high conductivity and a poor insulation property. On the other hand, although a non-aqueous coolant, such as a mineral oil, is excellent in insulation property, there is room for improvement in terms of a flame resistance.
Therefore, the present disclosure provides a non-aqueous coolant composition that is excellent in insulation property, cooling capability, and flame resistance.
Exemplary aspects of the embodiment will be described as follows.
(1) A non-water coolant composition comprises at least one halogen-based flame retardant selected from a fluorine-based oil and a chlorinated paraffin.
(2) The non-water coolant composition according to (1) in which the halogen-based flame retardant comprises the fluorine-based oil.
(3) The non-water coolant composition according to (1) or (2) in which the fluorine-based oil comprises a chlorotrifluoroethylene low polymer.
(4) The non-water coolant composition according to (1) in which the halogen-based flame retardant comprises the chlorinated paraffin.
(5) The non-water coolant composition according to (4) in which the chlorinated paraffin has 10 to 30 carbon atoms.
(6) The non-water coolant composition according to any one of (1) to (5) further comprises at least one base oil selected from a mineral oil and a synthetic oil.
(7) The non-water coolant composition according to (6) in which the halogen-based flame retardant has a content of 1 to 80 mass %, and the base oil has a content of 20 to 99 mass %.
(8) The non-water coolant composition according to (1) further comprises at least one base oil selected from a mineral oil and a synthetic oil. The halogen-based flame retardant comprises the fluorine-based oil. The halogen-based flame retardant has a content of 1 to 55 mass %. The base oil has a content of 45 to 99 mass %.
(9) The non-water coolant composition according to (1) further comprises at least one base oil selected from a mineral oil and a synthetic oil. The halogen-based flame retardant comprises the chlorinated paraffin. The halogen-based flame retardant has a content of 1 to 80 mass %. The base oil has a content of 20 to 99 mass %.
(10) The non-water coolant composition according to any one of (7) to (9) in which a total content of the halogen-based flame retardant and the base oil is from 80 to 100 mass %.
(11) The non-water coolant composition according to any one of (1) to (10) in which a conductivity at 20° C. is 0.1 μS/cm or less.
(12) A cooling system that uses the non-water coolant composition according to any one of (1) to (11) as a refrigerant.
(13) The cooling system according to (12) in which the cooling system is for cooling a heat generation apparatus mounted on a vehicle including a travel motor.
(14) The cooling system according to (13) in which the heat generation apparatus is an inverter, a converter, a generator, a motor, or a battery.
(15) The cooling system according to (13) or (14) in which the heat generation apparatus includes a power card. The non-water coolant composition is in physical contact with the power card.
The present disclosure can provide the non-aqueous coolant composition that is excellent in insulation property, cooling capability, and flame resistance.
The embodiment is a non-water coolant composition that contains at least one halogen-based flame retardant selected from a fluorine-based oil(s) and a chlorinated paraffin(s).
The non-water coolant composition according to the embodiment has excellent insulation property, cooling capability, and flame resistance. Especially, since the non-water coolant composition according to the embodiment has the excellent insulation property and flame resistance, a short circuit or the like can be suppressed. Additionally, the non-water coolant composition according to the embodiment further has excellent cooling capability. Therefore, the non-water coolant composition according to the embodiment can be used in a vehicle with travel motor, such as a hybrid vehicle and an electric vehicle, in some embodiments.
The non-water coolant composition according to the embodiment provides another effect as follows. The halogen-based flame retardant in the embodiment has a low ion elution. Therefore, in the non-water coolant composition according to the embodiment, ions are less likely to elute from, for example, a refrigerant pipe (for example, made of rubber) used in a cooling system, and an increase in conductivity in accordance with a long use is small. Therefore, the non-water coolant composition according to the embodiment can hold the excellent insulation property over a long period of time.
The non-water coolant composition according to the embodiment provides another effect as follows. Conventionally, a generally used ethylene glycol-based aqueous coolant has excellent cooling capability but has a poor insulation property. Therefore, as illustrated in
The non-water coolant composition according to the embodiment provides another effect as follows. As an exemplary means for cooling the electronic apparatus, there has been a method to at least partially (partially or completely) immerse the electronic apparatus in the non-water coolant composition. For example, for the cooling, a power card can be disposed to be in physical contact with the non-water coolant composition. While the cooling structure has an extremely excellent heat transfer efficiency, the non-water coolant composition is required to have the excellent insulation property because the electronic apparatus and the non-water coolant composition are in direct contact. The non-water coolant composition according to the embodiment is excellent in insulation property, non-toxic, and less likely to cause corrosion. Thus, the non-water coolant composition according to the embodiment is usable in the cooling system that has the cooling structure in some embodiments.
The following describes the embodiment in detail.
The non-water coolant composition according to the embodiment is non-aqueous. In the specification, non-aqueous means substantially free of water, “substantially free of water” means that the non-water coolant composition does not contain water in a content range in which expression of the effect of the embodiment is interfered, means that the water content in the non-water coolant composition is 1.0 mass % or less in some embodiments, means that the water content in the non-water coolant composition is 0.5 mass % or less in some embodiments, means that the water content in the non-water coolant composition is 0.1 mass % or less in some embodiments, means that the water content in the non-water coolant composition is 0.01 mass % or less in some embodiments, or means that the water content in the non-water coolant composition is 0 mass % (undetectable) in some embodiments.
The non-water coolant composition according to the embodiment contains at least one halogen-based flame retardant selected from a fluorine-based oil(s) and a chlorinated paraffin(s) as a non-aqueous base. One halogen-based flame retardant may be used alone, or two or more halogen-based flame retardants may be used in combination.
The halogen-based flame retardant (the fluorine-based oil or the chlorinated paraffin) in the embodiment especially has a low conductivity (an excellent insulation property) and a high flash point (an excellent flame resistance). Additionally, since ion elution of the halogen-based flame retardant in the embodiment is low, elution of ions from a refrigerant pipe (for example, made of rubber) or the like can be suppressed. Consequently, the halogen-based flame retardant in the embodiment allows providing an excellent insulation property to the non-water coolant composition over a long period of time.
In some embodiments, a molecular weight of the halogen-based flame retardant is in a range from 100 to 1200, in a range from 150 to 1000, and in a range from 200 to 800. The molecular weight of the halogen-based flame retardant within these ranges allows suppressing an increase in viscosity and obtaining high cooling capability.
As long as the oil comprises fluorine atoms, the fluorine-based oil is not especially limited. The fluorine-based oil is an oil having an electrical insulation property comprising fluorine atoms in some embodiments. Examples of the fluorine-based oil include a chlorotrifluoroethylene low polymer, a perfluoropolyether oil, a perfluoroalkyl ether, a fluorine-modified silicone oil, or the like. Among these, the chlorotrifluoroethylene low polymer is used in some embodiments. One fluorine atom may be used alone or two or more fluorine atoms may be used in combination.
Examples of a commercial product of the fluorine-based oil include “Krytox (registered trademark) GPL102” (manufactured by Chemours Company), “Daifloil (registered trademark) #1,” “Daifloil #3,” “Daifloil #10,” “Daifloil #20,” “Daifloil #50,” “Daifloil #100,” “DEMNUM (registered trademark) S-65” (manufactured by DAIKIN INDUSTRIES, LTD.), and the like.
A ratio of the number of atoms A of fluorine to the number of atoms B of carbon contained in the fluorine-based oil (AB) is from 1.0 to 2.0 in some embodiments and from 1.5 to 2.0 in some embodiments.
A kinematic viscosity of the fluorine-based oil at 25° C. is from 1 mm2/s to 50 mm2/s in some embodiments and from 1 mm2/s to 20 mm2/s in some embodiments.
An average molecular weight of the fluorine-based oil is, for example, from 100 to 1200, from 200 to 1000 in some embodiments, from 300 to 800 in some embodiments, and from 400 to 600 in some embodiments. The average molecular weight of the fluorine-based oil within these ranges allows suppressing an increase in viscosity and holding high cooling capability.
The chlorotrifluoroethylene low polymer is a polymer of chlorotrifluoroethylene. The chlorotrifluoroethylene low polymer is a compound having a repeating structural unit expressed by the following Formula (1).
[In Formula (1), “n” is an integer of 2 or more.]
The average molecular weight of the chlorotrifluoroethylene low polymer is from 100 to 1200 in some embodiments, from 200 to 1000 in some embodiments, from 300 to 800 in some embodiments, and from 400 to 600 in some embodiments.
A kinematic viscosity of the chlorotrifluoroethylene low polymer at 25° C. is 50 mm2/s or less in some embodiments, 40 mm2/s or less in some embodiments, 30 mm2/s or less in some embodiments, and 25 mm2/s or less in some embodiments. The kinematic viscosity of the chlorotrifluoroethylene low polymer at 25° C. of 50 mm2/s or less allows effectively improving the cooling capability of the non-water coolant composition. Note that the kinematic viscosity can be measured in accordance with JIS K2283.
The chlorinated paraffin is a generic term for an organic chlorine compound in which chlorine is bonded to an alkane. The raw materials of the chlorinated paraffin are chlorine and normal paraffin or paraffin wax, and products at various chlorination degrees are provided. The chlorinated paraffin especially has excellent insulation property and flame resistance. Additionally, since ion elution of the chlorinated paraffin is low, elution of ions from a refrigerant pipe (for example, made of rubber) or the like can be suppressed. Consequently, the chlorinated paraffin allows providing an excellent insulation property to the non-water coolant composition over a long period of time.
The chlorinated paraffin has, for example, 10 to 30 carbon atoms. Examples of the chlorinated paraffin include short-chain chlorinated paraffin having 10 to 13 carbon atoms, medium-chain chlorinated paraffin having 14 to 17 carbon atoms, or long-chain chlorinated paraffin having 18 to 30 carbon atoms. Among these, from an aspect of cooling capability, the short-chain chlorinated paraffin having 10 to 13 carbon atoms and the medium-chain chlorinated paraffin having 14 to 17 carbon atoms are used in some embodiments.
An average molecular weight of the chlorinated paraffin is from 100 to 1200 in some embodiments, from 200 to 1000 in some embodiments, from 300 to 800 in some embodiments, and from 400 to 600 in some embodiments. The average molecular weight of the chlorinated paraffin within these ranges allows suppressing an increase in viscosity and obtaining high cooling capability.
Examples of a commercial product of the chlorinated paraffin include “EMPARA (registered trademark) 40,” “EMPARA 70,” “EMPARA K-45,” “EMPARA K-47,” “EMPARA K-50,” or “EMPARA AR-500” (manufactured by Ajinomoto Fine-Techno Co., Inc.), and “Toyoparax (registered trademark) 250,” “Toyoparax 265,” “Toyoparax 270,” “Toyoparax 150,” or “Toyoparax A-50” (manufactured by Tosoh Corporation), and the like.
The content of the halogen-based flame retardant in the non-water coolant composition is, for example, 1 mass % or more, 5 mass % or more in some embodiments, 10 mass % or more in some embodiments, 20 mass % or more in some embodiments, and 30 mass % or more in some embodiments. The larger the content of the halogen-based flame retardant is, the more the flame resistance of the non-water coolant composition can be improved. The content of the halogen-based flame retardant in the non-water coolant composition is, for example, 100 mass % or less, 90 mass % or less in some embodiments, 80 mass % or less in some embodiments, and 70 mass % or less in some embodiments.
In addition to the halogen-based flame retardant, the non-water coolant composition according to the embodiment comprises at least one base oil selected from a mineral oil(s) and a synthetic oil(s) in some embodiments. That is, in one embodiment, the non-water coolant composition comprises at least one base oil selected from a mineral oil and a synthetic oil in addition to the halogen-based flame retardant as a non-aqueous base. By comprising these base oils as another non-aqueous base, the excellent insulation property, cooling capability, and flame resistance of the non-water coolant composition can be efficiently achieved. Since the base oil has high compatibility with the halogen-based flame retardant, even when they are mixed, a problem, such as phase separation, is less likely to occur. Therefore, in addition to the above-described advantages, the non-water coolant composition comprising the halogen-based flame retardant and the base oil is a coolant having satisfactory stabilization as a liquid composition. Examples of the mineral oil include a paraffin-based mineral oil, a naphthenic mineral oil, or a mixture of these oils. Examples of the synthetic oil include an ester-based synthetic oil, a synthetic hydrocarbon oil, a silicone oil, a fluorinated oil, or a mixture of these oils. One base oil may be used alone or two or more base oils may be mixed for use.
A kinematic viscosity (40° C.) of the base oil is not specifically limited. It is, for example, from 0.5 to 100 mm2/s, from 0.5 to 20 mm2/s in some embodiments, and from 0.5 to 10 mm2/s in some embodiments.
The content of the base oil in the non-water coolant composition is 10 mass % or more in some embodiments, 20 mass % or more in some embodiments, and 30 mass % or more in some embodiments.
In the case where the non-water coolant composition contains the halogen-based flame retardant and the base oil, the content of the halogen-based flame retardant in the non-water coolant composition is from 1 to 80 mass % and the content of the base oil in the non-water coolant composition is from 20 to 99 mass % in some embodiments, the content of the halogen-based flame retardant in the non-water coolant composition is from 10 to 80 mass % and the content of the base oil in the non-water coolant composition is from 20 to 90 mass % in some embodiments, and the content of the halogen-based flame retardant in the non-water coolant composition is from 20 to 70 mass % and the content of the base oil in the non-water coolant composition is from 30 to 80 mass % in some embodiments.
In the case where the non-water coolant composition contains the fluorine-based oil and the base oil, the content of the fluorine-based oil in the non-water coolant composition is from 1 to 55 mass % and the content of the base oil in the non-water coolant composition is from 45 to 99 mass % in some embodiments, the content of the fluorine-based oil in the non-water coolant composition is from 10 to 50 mass % and the content of base oil in the non-water coolant composition is from 50 to 90 mass % in some embodiments, and the content of the fluorine-based oil in the non-water coolant composition is from 15 to 45 mass % and the content of the base oil in the non-water coolant composition is from 55 to 85 mass % in some embodiments.
In the case where the non-water coolant composition contains the chlorinated paraffin and the base oil, the content of the chlorinated paraffin in the non-water coolant composition is from 1 to 80 mass % and the content of the base oil in the non-water coolant composition is from 20 to 99 mass % in some embodiments, the content of the chlorinated paraffin in the non-water coolant composition is from 10 to 80 mass % and the content of the base oil in the non-water coolant composition is from 20 to 90 mass % in some embodiments, and the content of the chlorinated paraffin in the non-water coolant composition is from 20 to 70 mass % and the content of the base oil in the non-water coolant composition is from 30 to 80 mass % in some embodiments.
The total content of the halogen-based flame retardant and the base oil in the non-water coolant composition is 80 to 100 mass % or more in some embodiments, 85 mass % or more in some embodiments, 90 mass % or more in some embodiments, 95 mass % or more in some embodiments, 98 mass % or more in some embodiments, or 100 mass % in some embodiments.
In addition to the halogen-based flame retardant and the base oil, the non-water coolant composition may contain or need not to contain at least one other non-aqueous base. The content of the at least one other non-aqueous base in the non-water coolant composition is, for example, from 0.1 to 10 mass %, 5 mass % or less in some embodiments, and 1 mass % or less in some embodiments.
The non-water coolant composition according to the embodiment may contain or need not to contain at least one additive, such as an antioxidant agent, a rust inhibitor, a friction modifier, an anticorrosive, a viscosity index improver, a pour point depressant, a dispersing agent/surfactant, an antiwear agent, or a solid lubricant, in addition to the above-described components. The content of the at least one additive in the non-water coolant composition is, for example, from 0.1 to 20 mass %, and is 10 mass % or less in some embodiments, 5 mass % or less in some embodiments, and 1 mass % or less in some embodiments.
A kinematic viscosity (20° C.) of the non-water coolant composition according to the embodiment is, for example, from 0.1 to 100 mm2/s, and is from 0.1 to 10 mm2/s in some embodiments.
Since the non-water coolant composition is forcibly circulated in the cooling system, the viscosity is lowered in some embodiments. The viscosity of the non-water coolant composition can be adjusted by, for example, a viscosity and an amount of the base oil to be added.
A conductivity (20° C.) of the non-water coolant composition according to the embodiment is 0.1 μS/cm or less in some embodiments, 0.01 μS/cm or less in some embodiments, and 0.001 μS/cm or less in some embodiments.
The non-water coolant composition according to the embodiment is used for the cooling system, and is used for the cooling system included in a vehicle with travel motor in some embodiments. That is, an aspect of the embodiment is a cooling system where the non-water coolant composition according to the embodiment is used as a refrigerant. An aspect of the embodiment is a cooling system for cooling a heat generation apparatus mounted on a vehicle with travel motor. An aspect of the embodiment is a vehicle with travel motor that includes the cooling system according to the embodiment and the heat generation apparatus cooled by the cooling system.
The “vehicle with travel motor” in the specification includes both an electric vehicle and a hybrid vehicle. The electric vehicle includes only a travel motor as a power source without an engine. The hybrid vehicle includes both the travel motor and the engine as the power source. A fuel cell vehicle is also included in the “vehicle with travel motor.”
As one of measures against environmental problems, the vehicle with travel motor, such as the hybrid vehicle, the fuel cell vehicle, and the electric vehicle, that travels by a driving force of the motor has attracted attention. In this type of vehicle, since the heat generation apparatus, such as a motor, a generator, an inverter, a converter, and a battery, generates a heat to have a high temperature, the heat generation apparatus needs to be cooled. As described above, the non-water coolant composition according to the embodiment has excellent insulation property, cooling capability, and flame resistance. Therefore, a short circuit or the like is less likely to occur and the non-water coolant composition according to the embodiment is excellent in cooling capability. Therefore, the non-water coolant composition according to the embodiment is usable for the cooling system of the vehicle with travel motor in some embodiments.
The cooling system includes, for example, a refrigerant pipe through which the non-water coolant composition as a refrigerant flows, a reservoir tank that houses the non-water coolant composition, a circulation device for circulating the non-water coolant composition in a circulation passage, or a cooling device for decreasing the temperature of the non-water coolant composition. The circulation device includes, for example, an electric pump. The cooling device includes, for example, a radiator, a chiller, or an oil cooler. A cooling object for the cooling system is the heat generation apparatus, such as the inverter, the converter, the generator, the motor, or the battery.
The configuration of the cooling system is not specifically limited. The cooling system includes, for example, the refrigerant pipe, the reservoir tank, the electric pump, the radiator, and a cooling unit included in the heat generation apparatus. The cooling unit is a part to receive a heat from the heat generation apparatus, and, for example, the cooler 3 of
The cooling system according to the embodiment is used for the vehicle with travel motor in some embodiments. That is, an aspect of the embodiment is a vehicle with travel motor that includes the cooling system according to the embodiment. An aspect of the embodiment is an electric vehicle, a hybrid vehicle, or a fuel cell vehicle that includes the cooling system according to the embodiment.
As described above, the non-water coolant composition according to the embodiment is extremely excellent in insulation property, non-toxic, and less likely to cause corrosion. Thus, the non-water coolant composition according to the embodiment is usable for the cooling system that has a cooling structure where the electronic apparatus is at least partially (partially or completely) immersed in the non-water coolant composition in some embodiments. The electronic apparatus includes, for example, a power card and a CPU, which include semiconductor devices. Specific configurations of this cooling system can be found in, for example, U.S. Pat. No. 7,403,392 or US Patent Application Publication No. 2011-0132579 A. Specifically, an aspect of the embodiment is the vehicle with travel motor where the heat generation apparatus includes the power card, and the non-water coolant composition is in physical contact with the power card.
While the following describes the embodiment with examples, the present disclosure is not limited to the examples.
The respective materials were mixed with the compositions described in the following Table 1 and Table 2 to prepare non-water coolant compositions.
The conductivities of the respective non-water coolant compositions at 20° C. were measured using a conductivity measuring machine (manufactured by Yokogawa Electric Corporation, SC72 Personal Handheld Conductivity Meter, sensor: SC72SN-11). Table 1 and Table 2 show the results.
Regarding the cooling capabilities of the respective non-water coolant compositions, cooling performance in a radiator using each non-water coolant composition as a refrigerant was calculated with the formula below. Table 1 and Table 2 show the results.
The refrigerants were adjusted to have inlet temperatures at 65° C. Other conditions were as follows. Ventilation volume to radiator: 4.5 msec, refrigerant flow rate: 10 L/min, temperature difference between refrigerant and external air: 40° C. (refrigerant: 65° C., external air: 25° C.).
QW: cooling performance, VW: refrigerant flow rate, γW: refrigerant density, CPW: refrigerant specific heat, tW1: refrigerant inlet temperature, tW2: refrigerant outlet temperature
A flash point of each non-water coolant composition was measured compliant with ASTM D93, and the flame resistance was evaluated based on the following criteria.
A: 150° C. or more
B: 140° C. or more and less than 150° C.
C: less than 140° C.
Table 1 and Table 2 show the results. Since the flash points are absent in Comparative Examples 1 to 3, Table 1 and 2 indicate them as “−.”
The non-water coolant compositions in all the Examples had conductivities of less than 0.0009 μS/cm, and therefore were excellent in insulation property. The cooling performances of the radiators using the non-water coolant compositions of all the Examples were 190 W/K or more, and the non-water coolant compositions of all the Examples had sufficient cooling capabilities for practical use. The non-water coolant compositions of all the Examples had the flash points higher than that of the mineral oil (Comparative Example 4) and had the improved flash points. Especially, as the content of the halogen-based flame retardant increased, the flame resistance was improved. On the other hand, Comparative Examples 1 to 3 having the structures of the conventional non-water coolant compositions (the mixture of ethylene glycol and water or water alone) had the high conductivities and the insufficient insulation properties.
The above-described results have proved that the non-water coolant composition according to the embodiment has the excellent insulation property, cooling capability, and flame resistance.
Terms used in the specification should be understood as used with meanings usually used in the technical field unless otherwise stated. Accordingly, unless otherwise defined differently, all the technical terms and the science and technology terms used in the specification have the same meanings as terms generally understood by a person skilled in the art pertaining to the present disclosure. In the case of inconsistency, the specification (including definition) has priority.
It should be understood that throughout the entire description, the expression as a singular form also includes a concept of its plural form unless otherwise stated. Accordingly, articles of a singular form (for example, in the case of English, “a,” “an,” and “the”) should be understood as including the concept of its plural form unless otherwise stated.
Upper limit values and/or lower limit values of respective numerical ranges described in the Specification can be appropriately combined to specify an intended range. For example, upper limit values and lower limit values of the numerical ranges can be appropriately combined to specify an intended range, upper limit values of the numerical ranges can be appropriately combined to specify an intended range, and lower limit values of the numerical ranges can be appropriately combined to specify an intended range.
While the embodiments have been described in detail, the specific configuration of the present disclosure is not limited to the embodiments. Design changes within a scope not departing from the gist of the present disclosure are included in the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2020-156332 | Sep 2020 | JP | national |