This invention relates generally to the field of surface pumping systems, and more particularly to a cost-effective suction chamber for use in multistage surface pumping systems.
Horizontal pumping systems are used in various industries for a number of different purposes. Horizontal pumping systems are often used in the oil and gas industry to move fluids between wells and surface facilities. Typically these horizontal pumping systems include a pump, a motor, and a suction chamber positioned between the pump and the motor. Often a thrust bearing chamber is also included between the motor and the suction chamber.
The suction chamber typically includes a cylindrical housing, a pair of end plates and an inlet branch. One of the end plates is configured to be attached to the thrust bearing and the opposite end plate is secured to the pump. The inlet branch connects the suction chamber to the source of fluid to be pumped by the horizontal pumping system. In many cases, the pumped fluid must be provided to the horizontal pumping system under significant pressure to supply the net positive suction head (NPSH) needed for proper operation of the pump. Accordingly, the suction chamber must be manufactured to operate under elevated fluid pressures.
In the past, the suction chamber has been manufactured by welding the end plates and inlet branch to the housing. To satisfy industry standards, the welding process must be meticulously performed and strenuously examined. The complexity of the welding process significantly increases the cost of the suction chamber. There is, therefore, a need for a more cost-effective suction chamber and an improved method of manufacturing a suction chamber. It is to these and other deficiencies in the prior art that the present invention is directed.
In an embodiment, the present invention includes a suction chamber for use in a surface pumping system. The suction chamber includes a central housing that is substantially cylindrical and has a motor end and a pump end opposite the motor end. The suction chamber includes a motor-end plate bolted to motor end of the central housing and a pump-end plate bolted to the pump end of the central housing. The suction chamber also includes an inlet branch connected to the central housing.
In another aspect, the embodiments include a surface pumping system that includes a suction chamber for use in a surface pumping system. The suction chamber includes a central housing that is substantially cylindrical and has a motor end and a pump end opposite the motor end. The suction chamber includes a motor-end plate bolted to motor end of the central housing and a pump-end plate bolted to the pump end of the central housing. The suction chamber also includes an inlet branch connected to the central housing.
In yet another aspect, the embodiments include a method for assembling a suction chamber. The method begins with the step of inserting an inlet branch through an inlet branch recess in a central housing. Next, the method continues with the step of locating the inlet branch against an inlet branch land in the central housing. Next, the method includes a step of installing a locking collar on the inlet branch from the inside of the central housing. The method concludes with the steps of securing a motor-end plate to the central housing; and securing a pump-end plate to the central housing.
In accordance with an embodiment of the present invention,
For the purposes of this disclosure, positional references may be made with respect to the motor 102 or pump 106 to refer to components within the pumping system 100 that are closer to the motor 102 or pump 106, respectively. Similarly, positional references may be made to upstream and downstream components based on their relative positions within the flow of fluid through the surface pumping system 100. For example, upstream components may refer to components closer to the suction chamber 104, while downstream components may refer to components more proximate to the pump 106. Although the form and function of the surface pumping system 100 is disclosed and shown in a horizontal configuration, it will be appreciated that the surface pumping system 100 might also be oriented in vertical and other non-vertical configurations.
The suction chamber assembly 104 includes a suction chamber 116, a bearing chamber adapter 122 mounted to the suction chamber 116, and a vertical bracket 118. The thrust bearing assembly 108 of the surface pumping system 100 includes a thrust bearing chamber 120 supported by the bearing chamber adapter 122. The suction chamber 116 is mounted to the vertical bracket 118 and has an inlet pipe 124. The surface pumping system 100 may also include a vibration sensor 126.
The drive shaft 110 may include a plurality of drive shaft segments connected together via one or more couplings 130 or by other means known in the art. It will be understood that the plurality of drive shaft segments and the one or more couplings 130 may be of different sizes and of any type known in the art. The drive shaft 110 extends from the motor 102, through the thrust bearing chamber 120, through the suction chamber 116 and into the pump 106. The pump 106 has an inlet end 132 and a discharge end 134. The inlet end 132 is connected to the suction chamber 116. A discharge head 136 may be connected to the discharge end 134 of the pump 106. A drop off element 138 may be connected to the discharge head 136. The drop off element 138 may be a rigid conduit, a flexible hose, a flexible coupling or any other type of suitable piping component known in the art. During operation, the inlet pipe 124 delivers fluid to the surface pumping system 100. The fluid may be water, liquid petroleum products, fluids separated from petroleum products, or any other fluid capable of being pumped. The fluid passes through the suction chamber 116 into the inlet end 132 of the pump 106, through the pump 106, out of the discharge end 134 of the pump 106 and into the drop off element 138.
Turning to
The pump-end plate 142 is secured to the central housing 140 with pump-end bolts 148. The motor-end plate 144 is secured to the central housing 140 with motor-end bolts 150. The pump-end plate 142 includes a central bore 152 and a series of inlet end holes 154 for connecting the pump-end plate 142 to the inlet end 132 of the pump 106. The drive shaft 110 and pumped fluid pass through the central bore 152 into the pump 106. The motor-end plate 144 includes a bearing package aperture 156 and a series of bearing chamber adapter holes 158 for connecting the motor-end plate 144 to the bearing chamber adapter 122. The larger bearing package aperture 156 is sized to admit a portion of the bearing package (not shown) from the bearing chamber adapter 122. When connected to the suction chamber 116, the bearings within the bearing chamber adapter 122 prevent fluid from passing from the suction chamber 116 into the thrust bearing chamber 120.
Turning to
The inlet branch 146 includes an exterior face 168, an upper shoulder 170 and a connection flange 172 that is sized to press against the upper shoulder 170 of the inlet branch 146. The connection flange 172 is configured to be attached to a mating flange on the inlet pipe 124 to secure the exterior face 168 against the inlet pipe 124 (shown in
The inlet branch 146 further includes a lower shoulder 174, a threaded end 176 and a locking collar 178. The inlet branch 146 is sized to fit in close tolerance with the outer inlet branch recess 160 and inner inlet branch recess 162. The lower shoulder 174 of the inlet branch 146 is configured to abut the inlet branch land 164 within the central housing 140. The locking collar 178 is configured to be threaded onto the threaded end 176 of the inlet branch 146 inside the central housing 140. In this way, the inlet branch 146 can be inserted into the central housing 140 through the outer inlet branch recess 160 to allow the threaded end 176 to pass through the inner inlet branch recess 162. The insertion of the inlet branch 146 within the central housing 140 is stopped when the lower shoulder 174 contacts the inlet branch land 164. The locking collar 178 and threaded end 176 draw the inlet branch 146 into a press fit against the inlet branch land 164.
To prevent the inlet branch 146 from movement relative the central housing 140, the suction chamber 116 includes outer set screws 180 that lock the inlet branch 146 and central housing 140 together. In some embodiments, the outer set screws 180 are inserted through the exterior bolt holes 166b and 166c, through interior bolt holes and into position against the inlet branch 146. It will be appreciated that one or more set screws 180 may be used to lock the inlet branch 146 into position within the central housing 140. To prevent the locking collar 178 from rotating with respect to the threaded end 176, the inlet branch 146 is provided with inner set screws 182 that extend through the locking 176 collar to engage the threaded end 176.
To prevent leakage of fluid out of the suction chamber 116, the suction chamber 116 may be fitted with one or more seals 184. In some embodiments, o-ring seals 184 are positioned between the pump-end plate 142 and the central housing 140, between the motor-end plate 144 and the central housing 140 and between the inlet branch 146 and the central housing 140.
Turning to
The method 200 continues at steps 212 and 214 by securing the pump-end plate 142 and motor-end plate 144 onto the central housing 140. As indicated in
It is to be understood that even though numerous characteristics and advantages of various embodiments of the present invention have been set forth in the foregoing description, together with details of the structure and functions of various embodiments of the invention, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. It will be appreciated by those skilled in the art that the teachings of the present invention can be applied to other systems without departing from the scope and spirit of the present invention.