The present invention generally relates to nonwoven materials with a voluminous z direction component which have a surface skin added on either one or both sides of the nonwoven.
There are a number of products in various industries, including automotive, office and home furnishings, construction, and others; that require materials having a z-direction thickness to provide thermal, sound insulation, aesthetic, and other performance features. In many of these applications it is also required that the material be thermoformable to a specified shape and rigidity. In the automotive industry these products often are used for shielding applications such as noise and thermal barriers in automotive hood liners and firewall barriers. These automotive materials may or may not have an aesthetic cover material incorporated into the part, which can also protect the core from abrasion, etc. In home and office furnishing, and construction applications these materials are often used as structural elements to which exterior decorative materials are added.
Additionally, these and other industries require that the materials deliver these properties in a cost effective manner. Often the barrier properties are best accomplished by using specialty fibers and or materials that generate a high level of performance, but also introduce significant cost to the substrate. Especially in a voluminous thickness substrate, the introduction of even a small percent of these materials into the shield material can introduce a significant level of cost to the overall substrate. For this reason composites having specialty surface layers are often used to provide these barrier properties. An example would be a thin layer of high cost but highly effective specialty material laminated to a voluminous lower cost core material. While the resulting composite costs less than more homogenous composites, there are disadvantages such as the need for additional processing steps and the potential delamination of the skin layer.
The present invention is an alternative to the prior art. It is a non-woven material with different functional zones to provide various desired properties of the material localized to the vertically oriented zones where required. Low melt fibers that can be used to construct a “skin” on one side of the non-woven material can be localized to the sides of the material specifically. The formation of this skin can provide a barrier between the atmosphere and the interior of the non-woven material, can provide a smoother more aesthetically pleasing surface, and can improve other performance features such as abrasion and sound absorption. In the case of a heat shield, the material can become oxygen-starved, due to the lower air permeability of the material skin and facilitate its flame resistance. The invention has superior molding performance because the low melt fibers can be not only optimized in quantity for superior performance, but can also be localized to optimize performance for specific mold design. Superior sound absorption is achieved by creating a distinct skin on the non-woven with lower air permeability than the core. By using low melt fibers of the same chemical nature as the voluminous core, an essentially single recyclable material can be achieved. All of these benefits are achieved at competitive costs and weight compared to the existing products.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
Referring now to the figures, and in particular to
As used herein, binder fibers are fibers that form an adhesion or bond with the other fibers. Binder fibers can include fibers that are heat activated. Examples of heat activated binder fibers are fibers that can melt at lower temperatures, such as low melt fibers, core and sheath fibers with a lower sheath melting temperature, and the like. In one embodiment, the binder fibers are a polyester core and sheath fiber with a lower melt temperature sheath. A benefit of using a heat activated binder fiber as the second binder fiber 131 in the non-woven material 100, is that the material can be subsequently molded to part shapes for use in automotive hood liners, engine compartment covers, ceiling tiles, office panels, etc.
As used herein, effect fibers are any additional fibers which may be beneficial to have concentrated near the surface. These effect fibers may be used to impart color or functionality to the surface.
Bulking fibers are fibers that provide volume in the z direction of the nonwoven material, which extends perpendicularly from the planar dimension of the non-woven material 100. Types of bulking fibers would include fibers with high denier per filament (5 denier per filament or larger), high crimp fibers, hollow-fill fibers, and the like. These fibers provide mass and volume to the material. Examples of fibers used as bulking fibers 133 include polyester, polypropylene, and cotton, as well as other low cost fibers.
The non-woven material 100 includes a first planar zone 120 and a bulking planar zone 130. The first planar zone 120 has a first boundary plane 101 located at the outer surface of the non-woven material 100, and an inner boundary plane 111a located nearer to the bulking planar zone 130 than the first boundary plane 101. The bulking planar zone 130 has a second boundary plane 104 located at the outer surface of the non-woven material 100 and an inner boundary plane 111b located nearer to the fire retardant planar zone 120 than the second boundary plane 104. The non-woven material 100 is a unitary material, and the boundaries of the two zones do not represent the delineation of layers, but rather areas within the unitary material. Because the non-woven material 100 is a unitary material, and the first planar zone 120 and the bulking planar zone 130 are not discrete separate layers joined together, various individual fibers will occur in both the first planar zone 120 and the bulking planar zone 130. Although
The first planar zone 120 contains first binder fibers 121, first effect fibers 122, second binder fibers 131, and bulking fibers 133. However, the first planar zone 120 primarily contains the first binder fibers 121 and the first effect fibers 122. As such, the first planar zone 120 can have a greater concentration of the first binder fibers 121 than the bulking planar zone 130, and the first planar zone 120 can have a greater concentration of the first effect fibers 122 than the bulking planar zone 130. Additionally, the distribution of the fibers in the first planar zone 120 is such that the concentration of the first binder fibers 121 and the first effect fibers 122 is greater at the first boundary plane 101 of the first planar zone 120 than the inner boundary plane 111a of that zone. Moreover, it is preferred that the concentration of the first effect fibers 122 and the first binder fibers 121 decreases in a gradient along the z-axis from the first boundary plane 101 to the inner boundary plane 111a of that zone.
The bulking planar zone 130 also contains second binder fibers 121, first effect fibers 122, second binder fibers 131, and bulking fibers 133. However, the bulking planar zone 130 primarily contains the second binder fibers 131 and the bulking fibers 133. As such, the bulking planar zone 130 can have a greater concentration of the second binder fibers 131 than the first planar zone 120, and the bulking planar zone 120 can have a greater concentration of the bulking fibers 132 than the first planar zone 120. Furthermore, the distribution of the fibers in the bulking planar zone 130 is such that the concentration of the bulking fibers 133 is greater at the second boundary plan 104 than the inner boundary plane 111b of that zone. Additionally, it is preferred that the concentration of the bulking fibers 133 decreases in a gradient along the z-axis from the second boundary plane 104 to the inner boundary plane 111b of that zone.
Still referring to
Referring now to
Still referring to
It has been found that a good distribution of fibers in the non-woven material can be accomplished by the first binder fibers 121 having a denier ranging from about 1 to about 4 deniers, the first effect fibers 122 having a denier ranging from about 1 to about 4 denier, the second binder fibers 131 having a denier greater than about 4 denier, and the bulking fibers 133 having a denier greater than about 4 denier. Selection of the denier of the various fibers must be such that the difference in the denier between the fibers primarily in the first zone 120 (the first binder fiber 121 and the first effect fiber 122) with the fibers primarily in the bulking zone 130 (the second binder fiber 131 and the bulking fiber 133), is sufficient to create the desired distribution and gradient of the fibers in the non-woven material 100. In one embodiment, the difference between the denier of fibers primarily in bulking zone 130 is at least about two times (2×) the denier or greater than the denier of the fibers primarily in the first zone 120.
Referring now to
Still referring to
Referring still to
In the embodiment of the non-woven material 100 illustrated in
Referring now to
As used herein, fire retardant fibers shall mean fibers having a Limiting Oxygen Index (LOI) value of 20.95 or greater, as determined by ISO 4589-1. Types of fire retardant fibers include, but are not limited to, fire suppressant fibers and combustion resistant fibers. Fire suppressant fibers are fibers that meet the LOI by consuming in a manner that tends to suppress the heat source. In one method of suppressing a fire, the fire suppressant fiber emits a gaseous product during consumption, such as a halogenated gas. Examples of fiber suppressant fibers include modacrylic, PVC, fibers with a halogenated topical treatment, and the like. Combustion resistant fibers are fibers that meet the LOI by resisting consumption when exposed to heat. Examples of combustion resistant fibers include silica impregnated rayon such as rayon sold under the mark VISIL®, partially oxidized polyacrylonitrile, polyaramid, para-aramid, carbon, meta-aramid, melamine and the like.
In one example of the present invention, the non-woven material was formed from a blend of four fibers, including:
In a second example of the present invention, the non-woven material was formed from a blend of four fibers, including:
The second example of the present invention was tested for air permeability, sound absorption, and abrasion resistance, and compared to a non-woven with the same materials but no skin layer. Sound Absorption was tested according to ASTM E 1050 (ISO 10534-2), Air Permeability was tested according to ASTM D-737, and Martindale Abrasion was tested according to ASTM D-4966. The results of the testing are shown in the table below, where Article A is the non-woven material without a skin and Article B is the non-woven material with the skin:
As can be seen from the results in Table 1, the skin improves sound absorption, reduces air permeability, and improves abrasion resistance.
Although the previous examples describe a non-woven material having a weight of about 7 to 10 ounces per square yard, this weight can vary depending on the end use of the non-woven material. For example, the weight of the non-woven material can be from about 7 to about 15 ounces per square yard if the non-woven material is being used in the ceiling tile industry. Further, the weight of the non-woven material can be from about 15 to about 35 ounces per square yard if the material is being used in the automotive industry. The use of a weight from about 7 to about 10 ounces per square yard for the non-woven material is better suited for the mattress industry.
Although the present invention has been described in considerable detail with reference to certain preferred versions thereof, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.
Number | Name | Date | Kind |
---|---|---|---|
3073735 | Till et al. | Jan 1963 | A |
3740797 | Farrington | Jun 1973 | A |
3772739 | Lovgren | Nov 1973 | A |
3837995 | Floden | Sep 1974 | A |
4018646 | Ruffo et al. | Apr 1977 | A |
4082886 | Butterworth et al. | Apr 1978 | A |
4127698 | Shimizu et al. | Nov 1978 | A |
4194037 | Stoller | Mar 1980 | A |
4435468 | TenEyck | Mar 1984 | A |
4863797 | Ichibori et al. | Sep 1989 | A |
4931357 | Marshall et al. | Jun 1990 | A |
4970111 | Smith, Jr. | Nov 1990 | A |
5173355 | Vock et al. | Dec 1992 | A |
5208105 | Ichibori et al. | May 1993 | A |
5348796 | Ichibori et al. | Sep 1994 | A |
5350624 | Georger et al. | Sep 1994 | A |
5399423 | McCullough et al. | Mar 1995 | A |
5407739 | McCullough et al. | Apr 1995 | A |
5458960 | Nieminen et al. | Oct 1995 | A |
5508102 | Georger et al. | Apr 1996 | A |
5698298 | Jackson et al. | Dec 1997 | A |
5723209 | Borger et al. | Mar 1998 | A |
5766745 | Smith et al. | Jun 1998 | A |
5856243 | Geirhos et al. | Jan 1999 | A |
5942288 | Kajander | Aug 1999 | A |
6346491 | DeAngelis et al. | Feb 2002 | B1 |
6572723 | Tilton et al. | Jun 2003 | B1 |
6586353 | Kiik et al. | Jul 2003 | B1 |
6609261 | Mortensen et al. | Aug 2003 | B1 |
6718583 | Diaz | Apr 2004 | B1 |
6764971 | Kelly et al. | Jul 2004 | B2 |
6797653 | Fay | Sep 2004 | B2 |
6823458 | Lee et al. | Nov 2004 | B1 |
20030100239 | Gaffney et al. | May 2003 | A1 |
20030106560 | Griesbach et al. | Jun 2003 | A1 |
20030200991 | Keck et al. | Oct 2003 | A1 |
20030224679 | Ahluwalia | Dec 2003 | A1 |
20030228460 | Ahluwalia | Dec 2003 | A1 |
20040060118 | Diaz | Apr 2004 | A1 |
20040060119 | Murphy et al. | Apr 2004 | A1 |
20040062912 | Mason et al. | Apr 2004 | A1 |
20040091705 | Hanyon et al. | May 2004 | A1 |
20040102112 | McGuire et al. | May 2004 | A1 |
20040106347 | McGuire et al. | Jun 2004 | A1 |
20040158928 | Gladney | Aug 2004 | A1 |
20040185731 | McGuire | Sep 2004 | A1 |
20040198125 | Mater et al. | Oct 2004 | A1 |
20040242107 | Collins | Dec 2004 | A1 |
20040242109 | Tilton et al. | Dec 2004 | A9 |
20040259451 | Paradis et al. | Dec 2004 | A1 |
20050023509 | Bascom et al. | Feb 2005 | A1 |
20050026528 | Forsten et al. | Feb 2005 | A1 |
20050176327 | Wenstrup et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
0622332 | Nov 1994 | EP |
1195459 | Apr 2002 | EP |
1300511 | Apr 2003 | EP |
59186750 | Oct 1984 | JP |
7040487 | Feb 1995 | JP |
2002287767 | Oct 2002 | JP |
WO9700989 | Jan 1997 | WO |
WO 0131131 | May 2001 | WO |
WO 03023108 | Feb 2003 | WO |
WO 2005001187 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060264142 A1 | Nov 2006 | US |