The present invention relates generally to engine throttle controls, and more particularly, to a nonadjustable throttle linkage connecting a throttle assembly to a throttle input.
During operation of most internal combustion engines, an operator increases the operating speed of the engine by increasing a throttle actuator. In highway vehicles, the throttle actuator is commonly referred to as a gas pedal or, in motorcycle-type devices, a twist hand grip accelerator. In non-highway use engine equipped devices, the accelerator is often generically referred to as the throttle or a throttle actuator. In watercraft, the throttle actuator is often located near a control station, or bridge, and is often a hand lever having linear motion that an operator adjusts in order to manipulate the operating speed of an engine in communication therewith.
The throttle actuator is often connected to a throttle linkage assembly that is connected to a throttle assembly mounted directly about an engine. The throttle assembly generally includes a throttle body having an opening therethrough, a throttle plate positioned in the opening of the throttle body, and an actuator connected to the throttle plate. Commonly, the throttle linkage connects the throttle assembly to the operator controlled throttle actuator such that movement of the throttle actuator results in a change of position of the throttle plate of the throttle assembly. As an operator desires to increase the operating speed of the engine, and the engine demands more combustion gas in response to the desired increase in engine speed, the operator advances the throttle actuator which in turn rotates the throttle plate relative to the throttle body opening.
Generally, as an engine is accelerated, the combustion process requires more fuel and more combustion air. As an operator advances the throttle actuator, the throttle plate opens, thereby allowing more combustion air to pass to the combustion chambers of the engine. The movement of the throttle plate relative to the movement of the throttle actuator is partly dependent on the throttle linkage disposed therebetween. In an effort to better control the responsiveness of the engine and allowance for tolerance, the throttle linkage disposed between the throttle assembly and the throttle actuator often includes some form of adjustment, such as independently adjustable links. In older engines, the adjustability of the links was also used to set idle speed.
The throttle linkage assembly can also be adjustable relative to a plurality of throttle stops. Such adjustment means often includes a plurality of screws that restricts the movement of individual links. Movement of the throttle links is often minimally fixed between fixed throttle stops. The throttle linkage is often adjusted relative to a first throttle stop to set an idle throttle linkage position that corresponds to an idle engine speed. Adjusting the throttle linkage relative to the first throttle stop often determines the relation of the throttle linkage to the throttle plate to ensure smooth and repeatable idle engine operation. As these older engines are operated, an operator could acoustically determine when the preferred idle orientation occurs. In much the same way, a second throttle stop is often implemented to set a wide open throttle position. Improper adjustment of the throttle linkage from the first or second throttle stops results in rough running engine idle speed, engine stall, or a fast running idle engine speed. Additionally, operating an engine at any of these conditions for extended periods of time results in inefficient use of engine fuel and detrimentally affects engine emissions.
Drawbacks to the adjustability of the throttle linkage assembly includes the adjustment means inadvertently coming loose and operator tampering. If the throttle linkage adjustment inadvertently comes loose, the engine may be operated outside a preferred range without operator knowledge. While any change in the operation of the engine with the adjusted linkage orientation may be imperceptible to the operator, fuel efficiency and engine emissions are affected. Similarly, an operator may adjust the throttle linkage outside of it's preferred operating range in a effort to improve the perceived operation of the engine. Such manipulation can result in damage to engine components not limited to the throttle assembly. Particularly in two-cycle engines where the fuel and air supplied to the engine perform cooling functions during operation, manipulation of the throttle assembly resulting in changes to the flow of combustion fluids through the engine can lead to overheating of engine components.
While many believe that two-stroke engines are generally not environmentally friendly engines, such preconceptions are misguided in light of contemporary two-stroke engines. Modern direct injected two-stroke engines and, in particular, Evinrude® outboard motors, are compliant with, not only today's emission standards, but emission standards well into the future. However, since these engines are so advanced, they require trained technicians perform certain repairs and adjustments. As such, a significant portion of the ability to adjust these motors has been eliminated or restricted to qualified personnel in an effort to ensure the future emission efficiency of the en- gines.
It would therefore be desirable to have a throttle linkage and method of manufacturing an engine with a throttle linkage where the throttle linkage has no means of adjustment.
The present invention provides a throttle linkage and method of manufacturing an engine that solves the aforementioned problems. The present invention provides a throttle linkage having a plurality of throttle links. The throttle linkage is connectable between a throttle actuator and a throttle assembly and has a permanently set range of operation. Such a throttle linkage is permanently calibrated and tamper resistant.
In accordance with one aspect of the present invention, a throttle linkage for an outboard motor is disclosed which includes an input end and an output end. The input end of the throttle linkage is constructed to receive an operator throttle command initiated in a watercraft and the output end is constructed to be directly connected to a throttle assembly of an engine disposed in an outboard motor. A lever assembly having a plurality of lever arms is disposed between the input end and the output end wherein each lever arm and the lever assembly have no means for adjusting the lever assembly. Such a construction forms a throttle linkage that is nonadjustable.
According to another aspect of the present invention, a throttle linkage for an engine is disclosed that includes a first link, a second link, and a third link. The first link is rotatably attached to an engine and has a permanently fixed range of rotation. An input arm is integrally formed with the first link and connectable to a throttle cable. The second link also has a permanently fixed range of rotation and is engagable by an output arm of the first link. The third link is connected to an output arm of the second link and connected to a throttle assembly. Such a construction forms a throttle linkage without a variable, or adjustable, range of rotation.
In accordance with yet another aspect of the present invention, an internal combustion engine is disclosed which includes an engine block having at least one cylinder formed therein. A throttle assembly having an opening therethrough is in fluid communication with the at least one cylinder. A throttle linkage free of any form of adjustment is connected to the throttle assembly and is constructed to receive a throttle command. The throttle linkage has at least one link having an index integrally formed therewith. The index of the at least one link is constructed to directly engage an at least one throttle stop extending from the engine block. Such a construction forms a throttle linkage without an adjustment means disposed between the throttle link and the throttle stop.
According to a further aspect of the present invention, a method of manufacturing an engine is disclosed which includes the steps of: forming a throttle link having a tab; forming an engine block with at least one throttle boss; and attaching the throttle link to the engine with a permanently fixed range of movement and with the tab rotatably related permanently to the throttle boss.
Various other features, objects and advantages of the present invention will be made apparent from the following detailed description and the drawings.
The drawings illustrate one preferred embodiment presently contemplated for carrying out the invention.
In the drawings:
The present invention relates generally to internal combustion engines. In the present embodiment, the engine is a direct fuel injected, spark-ignited two-cycle gasoline-type engine.
A throttle body 50 (shown in phantom), is connected to engine 12 and has at least one opening 52 passing therethrough. The number of openings generally corresponds to a number of cylinders in engine 12. Only one is shown for a two-cylinder engine for exemplary reasons. Opening 52 is often referred to as an air intake opening and allows combustion gas, generally air, to pass through throttle body 50 and into engine 12. Another opening 53, an idle air bypass, passes through throttle body 50 and provides an alternate path for combustion gas into and through throttle body 50. As will be described further below, opening 53 is constructed to provide combustion gas to engine 12 during idle and low speed operations.
A second arm 72 of first throttle link 66 engages a pin 74 extending from a second throttle link 76 of throttle linkage assembly 56. Second throttle link 76 rotates about a pin 78 and has a third throttle link 80 attached thereto. A first end 82 of third throttle link 80 is connected to an end 84 of second throttle link 76. A second end 86 of third throttle link 80 is attached to an actuator 88 of a throttle assembly 92. During operation, as an operator advances throttle actuator 55, throttle cable 62 moves and rotates first throttle link 66 of throttle link assembly 56 about pin 70. Rotation of first throttle link 66 causes second arm 72 to engage pin 74 and thereby rotate second throttle link 76. Displacement of second throttle link 76 is translated to throttle assembly 92 via third throttle link 80 so that actuator 88 is coupled to throttle actuator 55. Such a linkage forms a throttle assembly that is highly responsive and sensitive to operator manipulation of a throttle actuator.
Referring to throttle assembly 92, a mount 89, preferably having a throttle position sensor (TPS) 90 inside, is connected proximate a first end 91 of actuator 88. The TPS 90 communicates the position of actuator 88 to the ECU of engine 12. In addition to the responsiveness of the throttle assembly, mounting TPS 90 about the actuator of the throttle assembly ensures that an ECU attached thereto is nearly instantaneously aware of operator manipulation of throttle actuator 55. Such a construction connects a throttle linkage assembly and throttle assembly with reduced play therebetween and allows an engine 12 so equipped to be highly responsive to actual throttle position.
Throttle plate 94 is secured to a throttle shaft 96 by a plurality of fasters 98 such that rotation of throttle shaft 96 results in rotation of throttle plate 94. A spring 100 is positioned about a first end 102 of throttle shaft 96 and biases throttle plate 94 to a closed position in opening 52, as shown in
Third throttle link 80 engages an arm 114 of actuator 88. Arm 114 is integrally formed with actuator 88 and extends from a body 115 thereof. By extending from body 115 of actuator 88, arm 114 allows for a generally linear translation of third throttle link 80 to rotate actuator 88. Body 115 has a generally cylindrical shape and extends from first end 91 of actuator 88 to second end 110. First end 91 of actuator 88 has a bearing surface 118 thereabout and an extension, or tab 120, extending therefrom. Tab 120 is constructed to engage throttle position sensor 90 located within mount 89 such that movement of actuator 88 results in a change of signal from throttle position sensor 90. Throttle position sensor 90 is within a mount 89 positioned about first end 91 of actuator 88. It is understood that in those applications where a throttle position sensor is mounted remotely relative to a throttle shaft that throttle position sensor 90 can be merely a molded mount attachable to the throttle body and constructed to support an end of the actuator therebetween.
A flange 122 of TPS mount 89 engages bearing surface 118 of actuator 88 and maximizes a frictionless rotational engagement therebetween. A plurality of fasteners 124 and corresponding washers 126 secure TPS mount 89 to throttle body 50 at a boss, or mounting flange 128, extending from throttle body 50. Mounting flange 128 includes a pair of holes 130 constructed to receive fasteners 124 therein to secure TPS mount 89 to throttle body 50 with actuator 88 disposed therebetween. Actuator 88 is free to rotate relative to throttle body 50 and TPS mount 89. As such, operator manipulation of throttle actuator 55, show in
A temperature probe 132 extends through throttle body 50 into air intake opening 52 on an engine side 133 of throttle plate 94 and is in electrical communication with ECU 14 shown in
Actuator 88, TPS mount 89, bushing 112, and throttle shaft 96 all share a common axis 134. Common axis 134 is the axis of rotation of throttle shaft 96 to which throttle plate 94 is mounted. Although mounted about throttle shaft 96 and directly responsive to operator movement of throttle actuator 55, actuator 88 is partially rotatable about common axis 134 without affecting the position of throttle plate 94. That is, throttle plate 94 remains closed, as shown in
As shown in
The relation of actuator 88 to pin 108, as shown in
The displacement of third throttle link 80 distance X′ results in rotation of actuator 88 but does not move pin 108 or throttle shaft 96. When third throttle link 80 is displaced distance X′, actuator 88 rotates a distance Y′. In one embodiment, distance Y′ is not more than 35 degrees and is preferably approximately 19 degrees. During operation, although an operator has advanced throttle actuator 55 and displaced third throttle link 80 a distance of X′, as shown in comparing
Throttle plate 94 remains closed, as shown in
Comparing
During idle operation of outboard motor 10, as shown in
As shown in
Referring back to
As shown in
Throttle position sensor 90 signals to the ECU the movement 162 of actuator 88. The ECU, in response to the signal from throttle position sensor 90, adjusts predetermined engine operating parameters. One of the engine parameters that is adjusted is the amount of fuel provided to the engine. The amount of fuel provided to the engine is increased in response to the throttle actuator adjustment. By adjust the amount of fuel provided to the engine at transition throttle position 154, the operating speed of the engine is increased. Even though the operating speed and the amount of fuel provided to the engine is increased, from idle throttle position 142, shown in
Therefore, in accordance with one embodiment of the present invention, a throttle linkage for an outboard motor includes an input end and an output end. The input end of the throttle linkage is constructed to receive an operator throttle command initiated in a watercraft and the output end is constructed to be directly connected to a throttle assembly of an engine disposed in an outboard motor. A lever assembly having a plurality of lever arms is disposed between the input end and the output end wherein each lever arm and the lever assembly have no means for adjusting the lever assembly.
According to another embodiment of the present invention, a throttle linkage for an engine includes a first link, a second link, and a third link. The first link is rotatably attached to an engine and has a permanently fixed range of rotation. An input arm is integrally formed with the first link and connectable to a throttle cable. The second link also has a permanently fixed range of rotation and is engagable by an output arm of the first link. The third link is connected to an output arm of the second link and connected to a throttle assembly.
In accordance with yet another embodiment of the present invention, an internal combustion engine includes an engine block having at least one cylinder formed therein. A throttle assembly having an opening therethrough is in fluid communication with the at least one cylinder. A throttle linkage free of any form of adjustment is connected to the throttle assembly and is constructed to receive a throttle command. The throttle linkage has at least one link having an index integrally formed therewith. The index of the at least one link is constructed to directly engage an at least one throttle stop extending from the engine block.
According to a further embodiment of the present invention, a method of manufacturing an engine includes the steps of: forming a throttle link having a tab; forming an engine block with at least one throttle boss; and attaching the throttle link to the engine with a permanently fixed range of movement and with the tab rotatably related permanently to the throttle boss.
While the present invention is shown as being incorporated into an outboard motor, the present invention is equally applicable with many other applications and recreational products, some of which include inboard motors, snowmobiles, personal watercrafts, all-terrain vehicles (ATVs), motorcycles, mopeds, lawn and garden equipment, generators, etc.
The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims. While the present invention is shown as being incorporated into an outboard motor, the present invention is equally applicable with other recreational products, some of which include inboard motors, snowmobiles, personal watercrafts, all-terrain vehicles (ATVs), motorcycles, mopeds, power scooters, and the like. Therefore, it is understood that within the context of this application, the term “recreational product” is intended to define products incorporating an internal combustion engine that are not considered a part of the automotive industry. Within the context of this invention, the automotive industry is not believed to be particularly relevant in that the needs and wants of the consumer are radically different between the recreational products industry and the automotive industry. As is readily apparent, the recreational products industry is one in which size, packaging, and weight are all at the forefront of the design process, and while these factors may be somewhat important in the automotive industry, it is quite clear that these criteria take a back seat to many other factors, as evidenced by the proliferation of larger vehicles such as sports utility vehicles (SUV).
Number | Name | Date | Kind |
---|---|---|---|
3183879 | Heidner | May 1965 | A |
4062334 | Toda et al. | Dec 1977 | A |
4195534 | Prince | Apr 1980 | A |
4239710 | Sato | Dec 1980 | A |
4317784 | Kato et al. | Mar 1982 | A |
4577608 | DuBois et al. | Mar 1986 | A |
4823748 | Ampferer et al. | Apr 1989 | A |
4943141 | Mori | Jul 1990 | A |
4971006 | Imaeda | Nov 1990 | A |
4976636 | Torigai et al. | Dec 1990 | A |
4995370 | Imaeda et al. | Feb 1991 | A |
5022736 | Mori | Jun 1991 | A |
RE34138 | Flaig et al. | Dec 1992 | E |
5273016 | Gillespie et al. | Dec 1993 | A |
5517963 | Yoshida et al. | May 1996 | A |
5517977 | Nakai et al. | May 1996 | A |
5729387 | Takahashi et al. | Mar 1998 | A |
5803044 | Kato | Sep 1998 | A |
5921225 | Nakamura | Jul 1999 | A |
6484706 | Mate | Nov 2002 | B1 |