None
None
The invention relates to the area of high energy secondary and primary lithium batteries, more specifically to non-aqueous liquid and polymer electrolytes, in which additives are introduced to enhance specific characteristics of lithium batteries including the stability of the parameters during cycling and security of the battery operations.
The purpose of this invention is to increase specific characteristics and stability of the battery during cycling, prevent gas formation in the process of battery charge, and increase reliability and safety of lithium-ion secondary batteries.
The purpose of the invention is also to increase specific characteristics and reliability of primary power sources based on lithium metal or lithium alloy as anode and oxides, and sulfur-containing or fluorine-containing compounds as cathode.
This objective is achieved thanks to introducing modifying and stabilizing additives in non-aqueous electrolyte. These additives act in several directions. Additives increase electrochemical and chemical stability of the electrolyte in a wide range of potentials, i.e. decrease the rate of oxidation and reduction components of non-aqueous electrolyte. One mechanism for this effect is to increase the over voltage of electrochemical decomposition reactions of the electrolyte as a result of the adsorption of the additives on the surface of the electrode.
The following mechanism of the effect of additives is connected with the fact that the additives modify the passivating film on the surface of the cathode and anode. As a result, the rate of electrochemical reaction of intercalation and deintercalation of lithium ions to the solid phase of the electrodes is increased. Effect of the additives can also be seen in the fact that they form complexes with the cations of alkali metals, in this case with the lithium cations. Such complexes have higher mobility in nonaqueous electrolyte. As a result, the possible diffusion limitations at the interface of the electrode-electrolyte are decreased.
At the same time, the additives must meet special requirements in the terms of the electrochemical and chemical stability over a wide range of potentials and temperatures.
In the presented invention the problem that is posed is solved by using complex of the additives which are introduced into the non-aqueous liquid or non-aqueous polymer electrolyte of lithium battery.
In the present invention the composition of additives on the basis of the following composition is used:
1. The compounds of the class of esters,
2. Low molecular weight silicon quaternary ammonium salt, and
3. Macromolecular high weight polymer organosilicon quaternary ammonium salts
a represents comparison of the I-U background characteristics in EC, DMC, LiPF6 electrolytes with additive (303, 304) and without additive (301, 302). The following mixture was used as additive: 90% of the crown ethers (12-CROWN ether-4)+5% low molecular weight silicon quaternary ammonium salts +5% macromolecular (high weight) polymer organosilicon quaternary ammonium salts (organosilicone polyviologen). V=10 mB/s. First cycle: 301, 303; second cycle: 302, 304
b represents comparison of the I-U background characteristics in EC, DMC, LiPF6 electrolytes with additives. The following mixture was used as additive: 90% of the crown ethers (12-CROWN ether-4)+5% low molecular weight silicon quaternary ammonium salts +5% macromolecular (high weight) polymer organosilicon quaternary ammonium salts (organosilicone polyviologen). V=10 mB/s Operating range of the voltage: (305) 3.0 V-5.5 V; (306) 3.0 V-4.5 V.
a and 4b represent the I-U background characteristics in EC, DMC, LiPF6 electrolytes with additive. The following mixture was used as additive: 90% of the crown ethers (12-CROWN ether-4)+5% low molecular weight silicon quaternary ammonium salts +5% macromolecular (high weight) polymer organosilicon quaternary ammonium salts (organosilicone polyviologen). V=10 mB/s. Operating range of voltage: a) 3.0 V-4.7 V; b) 3.0 V-5.0 V
a and
With the goal to increase stability of the Li-ion battery during cycling and to provide the high level of cyclability the special compositions of modifying additives to electrolyte were developed in accordance with the present invention.
1. One example of compounds from the class of esters, which are used in the claimed invention is the crown ethers with the formula 12-crown-4.
This compound corresponds to the formula C8H16O4. Molecular weight is 176.212.
This compound is also known as: 1, 4, 7, 10-Tetraoxacyclododecane
2. The low molecular weight organosilicon quaternary ammonium salt is second component of the composition of the additives. These types of the compounds have in its structure the following group:
Such compounds can be obtained as a result of interaction of the bis (chloromethyl) dimethylsilyl ether pentaethylene glycol with 4,4′-dipyridyl in accordance with the following reaction:
3. Macromolecular polymer organosilicon quaternary ammonium salts belong to the class of the high-molecular weight polymer quaternary ammonium salts and have the structure that is presented below:
where “m” characterizes the degree of the polymerization.
Example 1 presents the example of the synthesis of the low molecular weight organosilicon quaternary ammonium salt.
Example 2 presents the example of the synthesis of the macromolecular polymer organosilicon quaternary ammonium salts. These type of the salts is also known as organosilicone polyviologen.
Electrochemical properties of the non aqueous electrolytes in which the composition of the additives was added, and the electrochemical properties of the non aqueous electrolytes without the composition of the additives have been investigated under different regimes. These electrochemical characteristics are presented below.
Results of the investigations and testing which are presented below confirm the positive effect of the composition of modifying additive that allows to increase the stability of the Li-ion cell parameters during cycling.
Information presented below includes:
The following methods of testing were used:
The noneaqueous electrolyte with composition DMC, EC (1:1)+1M LiPF6 was used for testing. For the nonaqueous electrolyte the following materials have been used: EC, DMC—from Merck, Germany; LiPF6—from Advance Research Chemical, USA.
The concentration of the additives composition in electrolyte was, for example, equal to 5×10−2 mass. %. In this case during the research of the initial solution of the additives composition in electrolyte EC, DMC (1:1), 1M LiPF6 in concentration 5×101 mass. % has been prepared. The liquid electrolyte with the additives composition was extra dried over molecular sieve NaA within 7 days to remove traces of water from the electrolyte. The molecular sieves before the introduction in the electrolyte were annealed at 500° C. during 5 hours.
After this stage the quantity of such “concentrated electrolyte” that was calculated was introduced into the bulk of the electrolyte. The final concentration of the additive in electrolyte in accordance with shown above was 5×10−2 mass. %.
In details, the preparation of the electrolytes with additives is as follows:
One drop of additives from a syringe of 5 ml has a weight of 10 mg.
The potentiodynamic background characteristics of the electrolyte are shown on
Electrochemical potentiodynamic investigations of the cathode have been conducted in a three electrodes cell made by Teflon. As a working electrode, the cathode based on spinel LiMn2O4 was used. Comparison and auxiliary electrodes were made of lithium. The cathode surface was 0.2 cm2. Cyclic curves were taken in the operating range of potential from 3 to 4.3 V. Cycling was carried with interruption after discharge. (after 5 or after 19 cycles). The scanning speed of the potential was 0.5 mV/sec. In terms of <<C>> the rate of the discharge-charge processes was 1.38 C.
Charging and discharging capacity was calculated by integrating the I-U curves. All electrochemical investigations with three electrode cells have been conducted in a dry argon box.
Galvanostatic cycling of the system Li—LiMn2O4 has been conducted in a coin cell 2325 with two electrodes: cathode based on the spinel LiMn2O4 and Li anode. The surface of the cathode was 2.5 cm2. Description of the composition of the cathode mass based on the spinel LiMn2O4 is presented below.
Electrochemical galvanostatic cycling tests were carried out in an automatic booth with a computer recording and processing of experimental data. Cycling was carried out in the range of potentials 3.0 V÷4.3 V. The rate of the charge-discharge varied in the range from 0.5 C to 1 C
The composition of the cathode mass was as follows:
The stainless steel mesh was used as a current collector for cathode. After coating on the electrode mass on the stainless steel mesh the electrode was dried under 250° C. during 5 hours.
The lithium serves as an auxiliary electrode, was pressed to the stainless mesh that is welded to the cover of the coin cell. The fiberglass with thickness 100 microns was used as a separator.
Results of the investigation of the effect of the additives on the electrochemical stability of the electrolyte EC, DMC (1:1), 1M LiPF6 are presented below.
To assess the impact of the additive in accordance with the presented invention on the electrochemical stability of the nonaqueous electrolyte, the comparison of the potentiodynamic background characteristics on the platinum electrode for the electrolyte with additive in accordance with the presented invention and without additives has been conducted.
The potentiodynamic background characteristics of the electrolyte without additive are described below.
The potentiodynamic background characteristics of the electrolyte with additives are presented on the
On
Investigation the effect of the additives on the electrochemical process on the cathode in electrolyte EC, DMC (1:1), 1M LiPF6 was conducted using potentiodynamic cycling. Description of the potentiodynamic characteristics of the cathode based on LiMn2O4 in electrolyte without additives is presented below.
On the
The potentiodynamic characteristics of the cathode based on LiMn2O4 in electrolyte with additives are described below. In
Potentiodynamic cycling characteristics which are presented in the coordinates of Current-Time are shown in the
The value of the discharge capacity of LiMn2O4 electrode during cycling in electrolyte EC, DMC, LiPF6 with the additives is presented on
In
Investigations of the effect of the additive on the electrochemical process of the cathode in electrolyte EC, DMC (1:1), 1M LiPF6 were conducted in galvanostatic cycling mode of two electrodes coin cells: Li—LiMn2O4. On
Additional test results of the coin cell Li—LiMn2O4 that are presented on the
Invention presents results of the development and testing of the additives for increasing stability during the storage and cycling, for example, Li-ion battery with the cathode based on LiMn2O4—spinel. Stability of the cathode during cycling depends on the electrolyte stability during the charge process. Thus the results of the Li-ion battery cycling confirm that the special additives which ensure the increasing of stability of the electrolyte during storage and cycling have been developed. Additives that are used in accordance with the presented invention enhance the electrochemical stability of non-aqueous electrolytes during battery charge. As a result, the cyclability of Li-ion batteries increases.
In
Results of the presented investigation and tests confirm positive effect of the modifying additives which allow to increase stability of the electrolyte and the parameters of the Li-ion battery during the cycling.
The Examples described below are provided for illustration purposes only and are not intended to limit the scope of the invention.
This example describes the synthesis of low molecular weight organosilicon quaternary ammonium salts which are used in the composition of additives in accordance with the present invention.
On the first step of the synthesis the bis (chloromethyl) dimethylsilyl ether pentaethylene glycol is obtained:
On the second step the low molecular weight organosilicon quaternary ammonium salts is obtained as a result of interaction bis (chloromethyl) dimethylsilyl ether pentaethylene glycol with 4,4′-dipyridyl in accordance with the following reaction:
The molecular weight of the reaction product is M=763.91.
These compounds (XVI) have in structure the following group
The presence of this group allows to classify this synthesized compound to the class of the salts.
Low molecular weight compounds with such group are called quaternary ammonium salts. The macromolecular (high molecular weight) compounds with such group are called polymeric quaternary ammonium salts.
In this example the description of the synthesis of the macromolecular (high molecular weight) polymer organosilicon quaternary ammonium salt is presented. These types of the salts also are known as organosilicone polyviologen.
The first step of the synthesis is similar to the first step in the example 1.
During the second step the synthesis was carried out by the following procedure. In the flask with a round bottom the 0.0023 M of the bis(chloromethyl)dimethylsilyl ether pentaethylene glycol a was placed and then 0.0023 M of 4,4′-dipyridyl was added. The mixture of the monomer was heated at 60° C. The formation of a clear solution was observed. Complete dissolution of 4,4′-dipyridyl in the bis(chloromethyl)dimethylsilyl ether pentaethylene glycol IX was considered as the beginning of the reaction. Falling of the light brown precipitate from the reaction mixture during the carry out of the reaction was observed. Duration of the reaction was 6 hours. Precipitated high molecular weight polymer organosilicon quaternary ammonium salt (organosilicone poly viologen) XIX was filtered, washed several times with acetone, and dried under vacuum in the desiccator to constant weight
Product of the reaction: the high molecular weight (macromolecular) polymer organosilicon quaternary ammonium salt, XIX
where “m” characterizes the degree of the polymerization
While various embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its broader aspects. The appended claims are therefore intended to cover all such changes and modifications as fall within the true spirit and scope of the invention.
This application incorporated by reference in its entirety and claims priority to Provisional Application No. 61/271,048, Filed Jul. 16, 2009.
Number | Date | Country | |
---|---|---|---|
61271048 | Jul 2009 | US |