The invention relates to communication systems and, more particularly, transmitters and receivers for use in wireless communication systems.
In general, a receiver in a wireless communication system does not have a priori knowledge of the physical channel over which the transmitted signal propagates or the time at which a transmitter transmits the signal. Timing synchronization, also known as clock recovery, is the process by which the receiver processes a received signal to determine the precise transition points within the received waveform. In other words, the receiver attempts to “synchronize” or align its clock with the clock of the arriving waveform. This process requires the receiver to estimate or otherwise determine the appropriate “timing offset” of the received signal, i.e., the amount of skew between the transmitter's clock and that of the arriving waveform.
Incorrect determination of the timing offset can have detrimental effects on other receiver operations, such as channel estimation, symbol detection, and the like. For example, an incorrect timing offset may cause the received waveform to be sampled at times during which the waveform is in transition between two symbols resulting in an increased number of symbol detection errors.
Ultra-wideband (UWB) systems transmit information via baseband transmissions with high penetration capability and rich multipath diversity. However, the information-bearing waveforms are impulse-like and have low power, which increases the difficulty in achieving accurate and efficient timing synchronization. Timing synchronization algorithms have been developed to mitigate timing offset even in the presence of an unknown multipath channel. However, physical systems often incur residual timing errors, particularly under low complexity constraints.
On the other hand, some modulation schemes bypass channel estimation, such as transmitted reference (TR) and differential schemes. TR schemes correlate each received information-bearing waveform with a pilot waveform whereas differential schemes correlate adjacent information-bearing waveforms. Thus, differential schemes are more bandwidth efficient than TR schemes.
In general, techniques are described that provide noncoherent demodulation via correlating “dirty” templates in wireless communication systems. For example, the described techniques cross-correlate dirty templates that are adjacent symbol-long segments of the received noisy waveform. Unlike transmitted reference (TR) and differential templates that are noisy, i.e., propagate through the wireless communication channel, these dirty templates are both noisy and offset in time and, thus, are dirty. The described techniques enable noncoherent demodulation without timing synchronization and channel estimation. Symbol demodulation may be performed utilizing a maximum likelihood (ML) sequence detector or, alternatively, conditional ML demodulation may be performed to reduce receiver complexity. The described techniques may also be applied to a TR scheme to improve performance in the presence of mistiming. In any case, the techniques may be applied to narrowband, wideband, or ultra-wideband (UWB) communication systems and remain operational without timing synchronization or channel estimation.
In one embodiment, the invention is directed to a method comprising receiving a waveform through a wireless communication channel, wherein the received waveform comprises a stream of information-bearing symbols, correlating a first template/segment with a second template/segment so as to form a symbol rate sample, wherein the first template and the second template are adjacent symbol-long segments of the received waveform, forming estimates of partial energies of the wireless communication channel; and outputting a stream of symbol estimates in accordance with the symbol rate sample and the channel energy estimates.
In another embodiment, the invention is directed to a wireless receiver comprising an antenna to receive a waveform through a wireless communication channel, wherein the received UWB waveform comprises bursts of information-bearing symbols, a template extraction unit that correlates a first template with a second template so as to form a symbol rate sample, wherein the first template and the second template are adjacent symbol-long segments of the received waveform, a channel energy unit to form estimates of partial energies of the communication channel, and a symbol detector to output a stream of estimate symbols based on the estimate of the channel energy and the symbol-rate sample.
In another embodiment, the invention is directed to a computer-readable medium containing instructions that when executed in a receiver receive a waveform through a wireless communication channel, wherein the received waveform comprises bursts of information-bearing symbols, correlate a first template with a second template so as to form a symbol-rate sample, wherein the first temple and the second template are adjacent symbol-long segments of the received waveform, form estimates of partial energies of the communication channel, and output a stream of symbol estimates in accordance with the estimated channel energy and the symbol rate sample.
The techniques described herein may offer one or more advantages. For example, cross-correlating adjacent symbol-long segments of the received waveform, i.e., adjacent dirty templates enables demodulation without timing synchronization and channel estimation provided instersymbol interference (ISI) is avoided. In particular, the received waveform may be a narrowband, wideband, or UWB waveform and the described techniques operate in the presence of noise, multipath, and time-hopping. Additionally, the dirty templates can be selected to be data aided, i.e., selected to include training symbols, or non-data aided, also referred to as “blind.” For example, the described techniques can be applied to data aided schemes, such as TR, and non-data aided schemes, such as differential schemes. When applied to non-data aided schemes, the described techniques generally result in a more efficient use of bandwidth, while the techniques result in higher performance when applied to a data aided scheme.
Other advantages that may be provided by the described techniques include a selectable trade-off between performance and complexity. Selecting optimal maximum likelihood (ML) demodulation increases the performance of the described techniques. For example, performing symbol demodulation with a sequence detector, such as Viterbi's algorithm, increases the performance by demodulating two symbols per integrate-and-dump operation, i.e., per cross-correlation of adjacent dirty templates. However, performing symbol demodulation with a conditional ML symbol detector reduces complexity by demodulating only one symbol per integrate-and-dump operation conditioned on the previous symbol.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Throughout the Detailed Description └●┘ and ┌●┐ represent integer floor and ceiling operations and x (mod y):=x−y└x/y┘ represents both integer and real-valued modulo operations on x with base y.
Transmitter 4 transmits data as a UWB waveform using a modulation scheme, such as or pulse amplitude modulation (PAM). Accordingly, each information-bearing symbol is conveyed by Nf data modulated pulses p(t) with duration Tp per frame of duration Tf>Tp. Thus, the symbol duration is Ts=NfTf seconds. To smooth transmit-spectra, provide low probability of detection (LPD), and accommodate multiple users, pseudo-random TH codes may be employed. TH codes shift the pulse positions from frame to frame at multiples of the chip duration, which is defined as Tc:=Tf/Nc, with Nc representing the number of chips per frame. Letting ck∈[0, Nc−1] represent the TH code during the kth frame, the transmitted symbol-long waveform pT(t) containing Nf pulses is given by equation (1) where Tc>Tp.
pT(t):=Σk=0N
Receiver 8 receives the transmitted UWB waveform through channel 6 which may be modeled as a tapped-delay line with L+1 taps {αl}l=0L and delays {τl}l=0L. Channel 6 may also be quasi-static, i.e., the coefficients and delays remain invariant over one transmission burst but are allowed to change across bursts. For notational simplicity, the examples that follow will be described using PAM. Consequently, for a single user link, the waveform arriving at receiver 8 is given according to equation (2) where 6 is the transmit energy per pulse, η(t) is the additive white Gaussian noise (AWGN) as well as multi-user interference introduced by channel 6 that, and {tilde over (s)}(n):=s(n)·{tilde over (s)}(n−1) are differentially encoded symbols with s(n) representing the original binary PAM symbol.
To isolate dispersive multipath effects from the propagation delay and clock offset, also referred to as the timing offset τ0, all path delays are expressed as τl,0:=τl−τ0. Thus, the aggregate channel, i.e., channel 6 in combination with the pulse shaper of transmitter 4, is given by equation (3). The aggregate channel is also referred to as the received symbol-level waveform. Using equation (3), the received noisy waveform simplifies to equation (4).
ISI is avoided by selecting Tf≧τL,0+Tp and c0=cN
Generally, receiver 8 does not know the time at which transmitter 4 transmits the UWB waveform or the propagation delay, i.e., timing offset, when the waveform r(t) is received. For example, receiver 8 may initiate demodulation techniques when a change in the energy of received waveforms is detected and, thus, has no timing or channel information.
With respect to UWB transmissions, timing synchronization and channel estimation constitute two significant factors preventing the maximum capacity from being achieved. Timing synchronization algorithms have been constructed to provide reasonable performance even in the presence of an unknown multipath channel. However, timing errors are inevitable in real world applications, especially under low complexity constraints and the performance of such algorithms degrades considerably. The performance decrease of such algorithms in the presence of timing offset is shown in the graphs provided in
As described herein, receiver 8 receives a waveform in accordance with equation (4) and employs noncoherent demodulation techniques to output a stream of symbol estimates. In particular, receiver 8 extracts dirty templates from the received waveform, performs an integrate-and-dump operation with the extracted dirty templates to form a symbol-rate sample, and demodulates the symbol-rate sample to generate an estimate of the received symbol. In other words, receiver 8 cross-correlates adjacent symbol-long segments of the received waveform via integrate-and-dump operations which enable low complexity implementation. In one example, receiver 8 may perform demodulation via an optimal maximum likelihood (ML) demodulator, such as a sequence detector. In another example, receiver 8 may perform demodulation via a lower complexity conditional ML demodulator. In a further example in which wireless communication system employs a robust-to-timing TR (RTTR) scheme, receiver 8 demodulates a received waveform via an adapted ML sequence detector or a conditional ML demodulator. Thus, system 2 provides a selectable trade-off between performance and complexity and remains operational without timing and channel information.
The techniques described herein may be applied to uplink and/or downlink transmissions, i.e., transmissions from a base station to a mobile device and vice versa. Consequently, transmitter 4 and receiver 8 may be any device configured to communicate using a wireless transmission including a distribution station, a hub for a wireless local area network, mobile phone, a laptop or handheld computing device, a personal digital assistant (PDA), a device within a wireless personal area network, a device within a sensor network, or other device. Transmitter 4 and receiver 8 may include executable instructions and one or more processors, such as a general purpose processor or a digital signal processor (DSP), to implement the techniques described herein. The techniques may be implemented in hardware, firmware, software, or combinations thereof.
The received UWB waveform is given according to equation (4). Receiver 8 does not know when transmitter 4 began transmitting or the propagation delay of channel 6. In operation, template unit 20 turns on when a change in energy is detected in the received waveforms and initiates noncoherent demodulation over an observation interval. An observation interval includes M segments of a received waveform. Each segment has a duration Ts starting at instants t=mTs, m=0, 1, . . . , M−1. Denoted as rm(t), these symbol-long segments of the received waveform are given according to equation (5). Substituting equation (4) into equation (5) results in equation (6) for ‡m where ηm(t):=η(t+mTs), ‡t∈[0, Ts). In the absence of channel induced ISI or partial response signaling, timing offset induces ISI form at most one adjacent symbol. Consequently, equation (6) can be simplified to equation (7).
The symbol-long segments rm(t) of the received waveform given in equation (7) are not “clean” because these segments are not only noisy, but also delayed by the unknown propagation delay τ0 and distorted by unknown multipath channel 6. Thus, these symbol-long segments or “dirty” templates are fundamentally different from templates used in TR and differential schemes where templates are noisy and distorted but must be taken at the correct time instances.
Template unit 20 includes delay unit 16 and correlator 18 for performing integrate-and-dump operations on adjacent dirty templates. Delay unit 16 multiplies the received waveform by delay Ts. Correlator 18 receives the output of delay unit 16 and the received waveform as input. Consequently, correlator 18 correlates the product of rm(t) and rm−1(t) to produce symbol-rate samples in accordance with equation (8). Using equation (8) and the differential encoding s(m)={tilde over (s)}(m){tilde over (s)}(m−1), the symbol-rate samples of equation (8) can be expressed in accordance with equation (9) where
εA(τ0):=ε∫0T
εB(τ0):=ε∫0T
captures the energy of the aggregate channel given in equation (3) and does not depend on the timing offset τ0.
If a timing synchronization unit or timing offset estimator was inserted to compensate for the timing offset τ0 and estimated the timing offset almost perfectly, then τ0≈0. In this case, εA(0)≈0, εB(0)≈εR and equation (9) simplifies to χ(m)=s(m)εR+ξ(m) which can be demodulated with a slicer. Thus, setting τ0=0 shows that differential UWB systems that requiring timing synchronization but bypass channel estimation, i.e., “semi-coherent” differential UWB systems, can be viewed as special cases of the noncoherent demodulation techniques described herein. However, even when synchronization is performed, timing errors are inevitable in physical systems. Thus, εA(τ0) and εB(τ0) are both nonzero in physical systems and direct application of semi-coherent different demodulation results in considerable performance degradation. The performance degradation is quantified in simulation results provided in
Before deriving the noncoherent demodulation technique employed by receiver 8, we examine the noise term ξ(m) in equation (9). This noise term is the superposition of three terms ξ1(m), ξ2(m), and ξ3(m) given in equations (10-12), respectively.
Letting {tilde over (s)}(m)∈{±1} while being independent and identically distributed (i.i.d.) and η(t) in equation (4) being bandpass filtered AWGN with zero mean and double-sided power spectral density σ2/2, reveals that ξ1(m), ξ2(m), and ξ3(m) can be approximated as uncorrelated Gaussian variables with zero mean and variances εRσ2/2, εRσ2/2, and σ4BTs/4, respectively, where B is the double-sided bandwidth of front end of receiver 8. As a result, the overall noise ξ(m) in the symbol rate sample x(m) is also well modeled as zero-mean Gaussian with variance σξ2:=εRσ2+σ4BTs/4.
Before deriving demodulation operations employed by receiver 8, two remarks are made. The first remark points out that the noncoherent demodulation technique employed by receiver 8 is fundamentally different from TR, pulse waveform amplitude modulation (PWAM), and differential schemes. In particular, the similarity of ξ(m) in equation (9) with TR, PWAM and differential systems is expected because each of these systems employ the same integrate-and-dump operation between segments of a noisy received waveform. However, the noncoherent demodulation techniques derived herein require no timing synchronization whereas TR, PWAM, and differential schemes require timing synchronization. Additionally, correlation in TR and PWAM is performed between pilot and information-bearing waveforms, with the former generating an estimate of the aggregate channel. In contrast, noncoherent demodulation is performed with only information-bearing waveforms and without knowledge of the channel. The absence of pilots in noncoherent demodulation results in no sacrifice in the transmission rate while TR can experience up to a 50% loss in transmission rate.
The second remark points out that timing offsets are unavoidable in physical systems. This will be made clear in the following description and supported with simulations provided in
We now describe symbol demodulation based on symbol-rate samples x(m) output by correlator 18. In particular, each symbol-rate sample includes two consecutive symbols, i.e., s(m) and s(m−1). Accordingly, x(m) can be viewed as the symbol-rate sampled output of an unknown first-order ISI channel with impulse response taps given as the partial energies εA(τ0) and εB(τ0). Consequently, this viewpoint suggests noncoherent algorithms for joint symbol detection and estimation of the unknown equivalent channel based on the output samples give in equation (9). Specifically, only two equivalent channel taps may be estimated by receiver 8 in comparison to the hundreds of taps present in channel 6.
Based on the noise-free part of x(m) in equation (9), ML estimates of s(m−1) and s(m) can be formed according to equation (13).
Viterbi's algorithm (VA) can be employed to implement equation (13). However, the VA requires knowledge of εA(τ0) and εB(τ0) which are unknown because timing and channel information is unknown. Therefore, estimates of εA(τ0) and εB(τ0) are needed prior to applying equation (13). With binary inputs, the equivalent two-tap channel can only generate four distinct outputs, i.e., all possible combinations of the doublet {s(m), s(m+1)}. Accordingly, |{overscore (χ)}(m)| can only take two values: εR and |εA(τ0)−εB(τ0)|. It is shown in Appendix I of U.S. Provisional Application Ser. No. 60/615,489, filed Oct. 1, 2004, incorporated herein by reference, that {|{overscore (χ)}(m)|} can be treated as i.i.d. random variables with mean and standard deviation according to equations (14) and (15), respectively. Thus, sample estimators for {circumflex over (ε)}max(τ0) and {circumflex over (ε)}min(τ0) can be implemented according to equations (16) and (17).
In order to obtain {circumflex over (ε)}A(τ0) and {circumflex over (ε)}B(τ0) from {circumflex over (ε)}max(τ0) and {circumflex over (ε)}min(τ0), an initial value is needed to determine the relative magnitudes. Accordingly, 1 and −1 are selected the first two symbols transmitted by transmitter 4. From equation (9), the initial symbols yield the noise-free sample {overscore (x)}(0)=εA(τ0)−εB(τ0). The sign of {overscore (x)}(0) reveals which of εA(τ0) and εB(τ0) is larger and, therefore, enables {circumflex over (ε)}max(τ0) and {circumflex over (ε)}min (τ0) to be assigned to εA(τ0) and εB(τ0) according to equations (18) and (19), respectively, where δ(•) represents Kronecker's delta function.
{circumflex over (ε)}A(τ0)={circumflex over (ε)}max(τ0)δ(sign{χ(0)}−1)+{circumflex over (ε)}min(τ0)δ(sign{χ(0)}+1) (18)
{circumflex over (ε)}A(τ0)={circumflex over (ε)}max(τ0)δ(sign{χ(0)}+1)+{circumflex over (ε)}min(τ0)δ(sign{χ(0)}−1) (19)
Noise may render the sign of x(0) different from that of {overscore (x)}(0). The probability of this occurring can be shown to be
where Q (•) is the Gaussian tail function. This probability is large when |εA(τ0)−δB(τ0)| is relatively small, in which case the effects of mistakenly alternating to εA(τ0) and εB(τ0) is also small. As an extreme example, it does not make a difference to alternate to εA(τ0) and εB(τ0) when εA(τ0)=εB(τ0). In cases where |εA(τ0)−εB(τ0)| is much greater compared with the noise variance, an alternation between to εA(τ0) and εB(τ0) can have considerable effect on the demodulation performance. However, the probability of an alternation is small in this case.
Thus, over a burst of duration MTs, template extraction unit 20 performs an integrate-and-dump operation of every pair of adjacent symbol-long segments of the received waveform to obtain x(m), ‡m∈[0, M−1] in accordance with equation (8). Channel energy unit 22 generates {circumflex over (ε)}max(τ0) and {circumflex over (ε)}min (τ0) according to equations (16) and (17), and εA(τ0) and εB(τ0) according to equations (18) and (19), respectively. Symbol detector 26 forms ML estimates of s(m−1) and s(m) according to equation (13) to produce M symbol estimates 28. Thus, symbol detector 26 may be implemented as a ML sequence estimator. In alternative embodiments, symbol detector 26 may implement per-survivor variants of VA to tradeoff performance for complexity.
Symbol detector 26 may also be implemented as a conditional ML demodulator to reduce complexity. In particular, each symbol s(m) appears in two consecutive symbol rate samples, i.e., x(m) and x(m+1). Thus, each symbol s(m) has two “chances” to be demodulated. Specifically, s(m) can be demodulated based on either x(m) or x(m+1). Consequently, symbol detector 26 can be developed with lower complexity in comparison to the ML sequence detector using a conditional approach.
For example, demodulating s(m) from sample x(m+1) and ignoring s(m+1), which has yet to be demodulated, enables equation (8) to be simplified to a sign detector in accordance with equation (20).
ŝ(m)=sign{χ(m+1)} (20)
On the other hand, conditioned on the previous estimate ŝ(m−1), symbol s(m) can be demodulated from x(m) according to equation (21). Consequently, implementing symbol detector 26 according to equation (21) results in symbol detector 26 being ML optimal conditioned on s(m−1) being correctly demodulated. It can be verified that equation (21) can be simplified to the decision directed form given in equation (22).
To optimize the demodulation performance of symbol detector 26 at reduced complexity, symbol detector 26 applies the one of equations (20) and (22) which incurs the smaller average probability of error. To determine how to select which of equations (20) and (22) incurs the smaller average probability of error, we consider the constellation of {overscore (x)}(m) generated by symbol pairs {s(m−1), s(m)}, i.e., {−1, −1}, {−1, 1}, {1, −1}, and {1, −1}. Thus, the probability of erroneously demodulating s(m) using equation (20) or the sign detector (SD) is given according to equation (23). The probability of erroneously demodulating s(m) using equation (22) or the decision-directed (DD) rule is given according to equation (24).
Equation (23) shows that estimation of s(m) using the SD or the DD rule results in different error rates. For example, it is not favorable to demodulate s(m) from x(m) if εB(τ0) is small because the distance between the left and right pairs of the of the constellation points, i.e., {−1, −1}, and {1, −1}, is also small. However, it is also not desirable to demodulate s(m) from x(m+1) if the difference |εA(τ0)−εB(τ0)| is small because the distance between the two center pairs, i.e., {−1, 1} and {1, −1}, is also small.
Thus, to obtain reliable error performance, symbol detector 26 apply one of equations (20) and (22) according to min{PSD(error), PDD(error|ŝ(m−1)correct)). From equation (24), it is clear that the selection depends on εA(τ0), εB(τ0), and the effective signal-to-noise ratio
Because the estimates of εA(τ0) and εB(τ0) can be formed in accordance with equations (18) and (19), respectively, the following description shows that symbol detector 26 can choose between equations (20) and (22) according to the ratio pba:=εB(τ0)/εA(τ0). In other words, symbol detector can choose to apply the SD or the DD rule by determining which of εA(τ0) and εB(τ0) is larger.
When pba<0, the two-tap channel is minimum-phase and vice versa. Consequently, it first appears that symbol detector should apply the SD if the channel is minimum-phase and should apply the DD rule if the channel is maximum-phase. However, the optimal pba turns out to depend on the
as shown. Thus, symbol detector performs conditional ML demodulation according to equations (25) and (26). The proof for equations (25) and (26) is given in appendix II of U.S. Provisional Application Ser. No. 60/615,489, filed Oct. 1, 2004, incorporated herein by reference.
PSD(error)<PDD(error|ŝ(m−1)correct), ‡pba∈[0,0.5] (25)
PSD(error)>PDD(error|ŝ(m−1)correct), ‡pba∈[1,∞] (26)
Thus, all symbols should be estimated using the SD given in equation (20) if a channel and timing offset τ0 lead to pba≦0.5. On the other hand, if pba>1, then the DD rule give in equation (22) should be used to estimate all the symbols. Equations (25) and (26) do not specify which of the SD and the DD rule to use when pba∈((0.5, 1). However, in the description that follows, high SNR is beneficial for the DD rule because the previous estimate can be used while estimates εA(τ0) and εB(τ0) are typically not reliable at low SNR. Thus, symbol detector should apply the SD in equation (20) if pba≦0.5 and apply the DD rule in equation (22) otherwise, i.e., if pba>0.5. In particular, each of the SD and the DD rule can be implemented with a single slicer and have lower complexity than the ML sequence detector given in equation (13).
As a result, with perfect timing, i.e., τ0=0, εA(τ0)=0., and the conditional ML decision rules given in equations (13), (20), and (22) simplify to a differential UWB demodulator given in equation (27). Thus, the differential UWB demodulator may be implemented as a sign detector.
ŝ(m)=sign{χ(m)} (27)
Consequently, when symbol detector demodulates s(m), ‡m∈[2, M−1] by applying the SD of equation (20) when {circumflex over (p)}ba={circumflex over (ε)}B(τ0)/εA(τ0)≦0.5 and by applying the DD rule of equation (22) when {circumflex over (p)}ba={circumflex over (ε)}B(τ0)/{circumflex over (ε)}A(τ0)>0.5. Otherwise, symbol detector demodulates s(M) by applying the DD rule of equation (22).
Again, although the noncoherent demodulation techniques were developed without timing synchronization, the invention is not limited as such. Rather, the noncoherent demodulation techniques may be applied to data aided or non-data aided systems with timing synchronization. In such cases, the timing offset τ0 corresponds to residual timing errors that cannot be avoided in physical systems. In the following description, noncoherent demodulation techniques are adapted to a TR system and will be shown to substantially improve the bit-error-rate performance of TR in the presence of unknown timing offset or timing error.
In a conventional TR UWB system, each information-bearing waveform is accompanied by a pilot waveform. At the receiver, the received pilot waveforms are delayed by one frame duration Tf and correlated with the adjacent information-bearing waveform. The total of Nf/2 correlation outputs corresponding to a single symbol are then accumulated to form symbol-rate samples. The symbol-rate samples serve as decision statistics used to estimates of the received symbols.
When perfect timing is achieved, the delayed pilot waveforms are perfectly aligned with the information-bearing waveforms. The symbol rate corresponding to the mth symbol is given according to equation (27) where the energy of each received frame-level waveform is
in the absence of TH. Because integration is performed over Nf/2 frames, the variance of the noise term ξ(m) is σξ2/2. Based on the symbol-rate samples in equation (28), the original TR demodulator is a sign detector give by equation (29).
In any case, the symbol-rate samples x(m) will hve a form different from that of equation (28) when timing offset of residual errors≠0. In the following description, the performance of a TR UWB system with respect to unknown timing offset or timing error is examined.
If └τ0/Tf┘ is an even number, the integration window boundaries fall into information-bearing waveforms and x(m) is given according to equation (30) where εB(TS−τf)=ε∫0τ
If └τ0/Tf┘ is an odd number, the integration window boundaries fall into pilot waveforms and symbol-rate samples are given according to equation (31). Combining equations (30) and (31), the general form of symbol-rate samples in a TR-UWB system with timing offset τ0 is given according to equation (32) where
Thus, when └τ0/Tf┘ is odd, symbol-rate samples are insensitive to the frame-level offset τf. In particular, when τ0∈└Ts−Tf, Ts), Nτ=Nf/2 and τf∈└0, Tf). In addition, equation (31) yields χ(m)=(εR/2)·s(m−1)+ξ(m) which is essentially the same as equation (28). Therefore, TR-UWB relaxes timing requirements to some extent. However, the TR demodulator given in equation (29) will experience performance degradation in the presence of timing offset. This is supported in the simulations provided in
As a result, employing the noncoherent demodulation techniques to a TR system results in a RTTR system with improved performance over a TR system in the presence of unknown timing offset or timing error τ0. Moreover, in the presence of unknown timing offset, equation (32) which models input/output (I/O) relationship of a TR-UWB system has the same form as equation (9) which models the I/O relationship of a UWB system with noncoherent demodulation.
Accordingly, the transmitter in a RTTR-UWB system is identical to a transmitter in a TR-UWB system, i.e., each symbol is transmitted over Nf waveforms, out of which Nf/2 pilot waveforms and Nf/2 information-bearing waveforms are interleaved. However, at the receiver, timing synchronization is performed before performing the following steps.
First Nf/2 pairs of frame-long segments of the received waveform are correlated to obtain x(m) according to equation (32), ‡m∈[0, M−1] over each symbol duration [mTs, (m+1)Ts). Next, estimates of partial energies of the channel, {tilde over ({circumflex over (ε)})}A(τ0) and {tilde over ({circumflex over (ε)})}B(τ0), are formed according to equations (16) and (17). The symbol-rate samples are then demodulated using a ML sequence detector or per-survivor processing. Alternatively, the symbol-rate samples may be demodulated with lower complexity but with reduced performance using conditional ML demodulation. In this case, s(m) is demodulated in accordance with equation (20) if {circumflex over (p)}ba≦0.5, ‡m∈[2, M1] or in accordance with equation (22) when {circumflex over (p)}ba>0.5, ‡m∈[2, M]. s(M) is demodulated according to equation (22). Consequently, a RTTR-UWB system and a TR-WUB system correlate the received waveform in the same manner. However, a TR-UWB system utilizes a SD as given in equation (29) instead of estimating partial energies of the channel and performing ML demodulation or conditional ML demodulation.
In operation, receiver 8 receives waveform 32 and initiates noncoherent UWB demodulation at a timing offset τ0−τ. Accordingly, receiver 8 correlates dirty templates 34 and 36 to form symbol-rate samples according to equation (8). Receiver 8 then estimates the partial energies {circumflex over (ε)}A(τ0) and {circumflex over (ε)}B(τ0) according to equations (16-19). Specifically, the expected value and standard deviation of the symbol-rate samples are found over an observation interval according to equations (16) and (17) and substituted into equations (18) and (19) to obtain {circumflex over (ε)}A(τ0) and {circumflex over (ε)}B(τ0), respectively. ML demodulation is then performed on the symbol-rate sample according to equation (13) to form estimates of the received symbols in a given symbol-long segment of waveform 32.
In general, noncoherent conditional ML demodulation and noncoherent ML demodulation correlate dirty templates in the same manner but apply different demodulation techniques. Accordingly, receiver 8 turns on or receives a waveform through channel 6 (step 50) when a change in the energy of the received waveforms is detected. Receiver 8 correlates adjacent symbol-long segments of the received waveform to form symbol rate samples (step 52) in accordance with equation (8). Next, receiver 8 forms an estimate of the partial energies of channel 6 (step 54) for each of the symbols from a symbol rate sample in accordance with equations (16-19) and determines the ratio between the partial energies (step 56). When this ratio {circumflex over (p)}ba≦0.5, ‡m∈[2, M−1], receiver 8 demodulates the symbol-rate sample according to equation (22) (step 60). When this ratio {circumflex over (p)}ba>0.5, ‡m∈[2, M] and for s(M), receiver 8 demodulates the symbol-rate sample according to equation (20) (step 58).
Coherent symbol demodulation is also possible with a Rake receiver which has often been tested under assumptions of perfect timing, perfect channel delay, and perfect tap estimation. However, when timing and/or channel estimates are imperfect, the performance of coherent demodulators can be affected considerably. For example, even under the assumptions of perfect synchronization and perfect estimation of channel tap delays, TR can outperform Rake receivers in some circumstances. Moreover, performance of the Rake receiver is expected to further degrade when timing and channel tap delay estimation errors are not negligible. Thus, the described noncoherent demodulation techniques are compared only with TR and DIFF UWB receivers.
In all simulations, a Gaussian monocycle with duration Tp=0.1 nanoseconds (ns) is used for the pulse shaper p(t) and the number of frames per symbol is selected as Nf=32. In particular, a first frame duration is selected with Tf=35 ns to avoid ISI and a second frame duration is selected with Tf=5 ns to allow ISI involving two consecutive symbols The multipath channels are generated using the channel model described in J. R. Foerster, Channel Modeling Sub-committee Report Final, IEEE P802.15-02/368r5-SG3a, IEEE P802.15 Working Group for WPAN, November 2002, which is incorporated herein by reference, with channel taps and parameters (1/Λ, 1/λ, Γ, γ)=(43, 0.4, 7.1, 4.3) ns. The TH codes are generated independently from a uniform distribution over [0, Nc−1] with Nc=35 and Tc=1 ns. Timing offsets τ0 are uniformly distributed over [0, Ts]. When timing synchronization is also performed, the “dirty” template based acquisition algorithm described in L. Yang and G. B. Giannakis, “Low-complexity training for rapid timing acquisition in Ultra-Wideband communications,” in Proc. Of Global Telecommunications Conf., San Francisco, Calif., Dec. 1-5, 2003, pp. 769-773, hereby incorporated by reference, is used with four training symbols. Two of the training symbols can also be used for estimating εA(τ0) and εB(τ0).
In particular, if it is known at the receiver that perfect timing has been achieved, the CML demodulator simplifies to equation (27). As shown by plots 103 and 101, the simulated BER for DIFF UWB is approximately 1 dB better than that of TR UWB because the latter suffers from energy loss caused by the insertion of training symbols. Moreover, DIFF UWB also outperforms both VA and CML based noncoherent demodulations. When timing is perfect, i.e., τ0=0, decisions should be made using εB(0) alone since εA(0)=0. DIFF UWB makes decisions in the manner, whereas VA and CML demodulators always assume imperfect timing and attempt to form partial energy estimates {circumflex over (ε)}A(τ0) and {circumflex over (ε)}B(τ0) which introduce BER performance degradation. In addition, CML demodulations outperform VA demodulations in this case because CML demodulations discards small {circumflex over (ε)}A(0).
However, in the presence of timing offset, i.e., when timing synchronization is imperfect, both DIFF UWB and TR UWB exhibit considerable performance degradation as shown in plots 102 and 100, respectively. In contrast, the performance degradation for the low complexity CML noncoherent demodulator is approximately 2.5 dB between plots 104 and 105. Moreover, the VA noncoherent demodulator experiences approximately a 1 dB BER performance improvement in the absence of timing offset.
Various embodiments of the invention have been described. These and other embodiments are within the scope of the following claims.
This application claims priority from U.S. Provisional Application Ser. No. 60/615,489, filed Oct. 1, 2004, incorporated herein by reference.
This invention was made with Government support awarded by ARL/CTA under Agency Grant No. DAAD19-01-2-0011. The invention was also supported by the NSF under Agency Grant No. EIA-0324864. The Government may have certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
60615489 | Oct 2004 | US |