Noninvasively adjustable suture anchors

Information

  • Patent Grant
  • 11766252
  • Patent Number
    11,766,252
  • Date Filed
    Tuesday, July 13, 2021
    3 years ago
  • Date Issued
    Tuesday, September 26, 2023
    a year ago
Abstract
In one embodiment, an adjustable implant system includes a bone anchor having first and second ends, a bone engagement surface adjacent the first end, and a housing extending between the first and second ends. The adjustable implant system can further include a non-invasively actuatable driving element within the housing and coupled to an adjustment component configured to couple to a flexible elongate tension member which is capable of engaging a patient's soft tissue (e.g., rotator cuff or ACL). Non-invasive actuation of the driving element can cause the adjustment component to change the amount of tension on the flexible elongate tension member and consequently on the patient's soft tissue. The adjustable implant system can include an external adjustment device configured to be placed on or adjacent the patient's skin and comprising at least one energy transferring component configured to energize/actuate the driving element inside the housing of the adjustable implant.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The field of the invention generally relates to medical devices for attaching soft tissue to bone.


Description of the Related Art

In many common surgical techniques, soft tissue (muscle, tendon, ligament) is secured to the bone using a variety of types of tissue anchors. In most of these surgeries, it is important that that the connection between the soft tissue and the bone remain consistent, without significant degradation after surgery and recovery, both short term and long term. One common method of securing soft tissue to bone is with a suture anchor, which is sutured or otherwise attached to the particular portion of soft tissue and then anchored to the bone. The anchoring to the bone may be achieved by a threaded screw, or several other types of securement.


One of the common complications of many of these surgical techniques is for the connection between the soft tissue and the bone to degrade. For example, the healing of the tissue may cause the tensile force at which the soft tissue is secured to the bone to increase or decrease. Also, the length of the connection may increase or decrease, creating such effects as too much joint motion, too little joint motion, hyperextension, and of course fatigue and pain. Laxity of a suture is a common occurrence, and can increase the variance in the final tension in the connection of the soft tissue to the bone.


Rotator cuff injury is one of the most common ailments of the shoulder. The rotator cuff is a group of muscles and tendons that stabilize the shoulder joint. Many of the injuries to the rotator cuff are able to be treated without surgery, for example, certain cases of tendonitis and other traumatic injuries. Often, the injury to the rotator cuff involves the tearing of the tendons that attach one or more of the rotator cuff muscles to the humerus (upper arm) bone. Active patients who have substantial or complete tears of one of more portions of the rotator cuff are often treated by rotator cuff surgery. Rotator cuff tears are sometimes classified as small (<1 cm), medium (1 cm to 3 cm), large (3 cm to 5 cm), and massive (>5 cm). They are also characterized by shape, such as transverse, L-shaped, linear, crescent, and triangular. Rotator cuff surgery may be performed as an open surgery, a mini-open surgery (wherein the deltoid muscle need not be detached during surgery), or an arthroscopic surgery. Many different suture techniques are used, each attempting to improve upon strength, stability, safety and procedural speed and invasiveness. In certain groups of patients, postoperative stiffness develops. This may happen in more than 8% of patient under the age of 50, and in more than 15% of patients who also have either calcific tendonitis or adhesive capsulitis. Many patients with postoperative stiffness choose to undergo subsequent arthroscopic procedures to remove or remodel scar tissue. Re-tears are also somewhat common after the recovery following the initial rotator cuff surgery, with reported rates between 4% to 26%.


Anterior cruciate ligament (ACL) injury is common in athletes in a variety of sports, especially in contact sports, with the ACL. ACL reconstruction surgery is often performed after tear or rupture of the ACL, and usually includes the removal of the damaged ligament and replacement with a graft. The graft may be an autograft (a portion of the patient's own patellar tendon or hamstring) or an allograft (cadaveric patellar tendon, anterior tibialis tendon, or Achilles tendon). This surgery is commonly performed arthroscopically, with the graft inserted into tunnels created in the tibia and femur, and then secured to these bones with tissue anchors. Post-recovery, some ACL reconstruction patients have persistent loss in range of motion, in either flexion or extension, which may be due to imprecise placement of the graft during the initial surgery or the healing process itself. A classification system has been proposed that includes four different grades: Type 1: less than a 10° loss of extension with normal flexion, Type 2: more than a 10° loss of extension with normal flexion, Type 3: more than a 10° loss of extension with a flexion deficit of greater than 25°, and Type 4: more than a 20° loss of extension with a flexion deficit greater than 30°. Some of these patients are able to improve through rehabilitation, but others require an additional surgical procedure.


Despite the wide variety of available devices for anchoring soft tissue (e.g. tendon) to bone, there remains a need for an implant which can be adjusted post-operatively to increase or decrease tension without the need for additional surgical intervention.


SUMMARY OF THE INVENTION

In a first embodiment of the invention, an adjustable implant system includes a bone anchor having a first end and a second end, and including a bone engagement surface adjacent the first end, the bone anchor further comprising a housing extending between the first end and the second end. The adjustable implant system further includes a driving element carried within the housing and configured for non-invasive actuation, wherein the driving element is coupled to an adjustment component, the adjustment component configured for coupling to a flexible elongate tension member capable of engaging soft tissue of a patient, wherein non-invasive actuation of the driving element causes the adjustment component to change the amount of tension on the flexible elongate tension member. The adjustable implant system further includes an external adjustment device comprising at least one energy transferring component and configured to be placed on or adjacent the skin of the patient, and wherein the at least one energy transferring component of the external adjustment device is configured to energize the driving element inside the housing of the adjustable implant.


In another embodiment of the invention, a method of treating a patient includes the steps of providing a tensioning device having a connector for connection to soft tissue, and a drive for drawing the connector in the direction of the tensioning device, inserting the tensioning device into a bone, and connecting the connector to soft tissue, wherein the tensioning device is configured to draw the connector in the direction of the tensioning device in response to a wireless signal.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates the human shoulder.



FIG. 2 illustrates a cross-section of an embodiment of an adjustable suture anchor secured in the humerus of a rotator cuff surgery patient.



FIG. 3 illustrates a detailed cross-sectional view of the adjustable suture anchor of FIG. 2.



FIG. 4 illustrates a first end of the adjustable suture anchor supplied with a threading tool.



FIG. 5 illustrates a cross-section of an embodiment of an adjustable suture anchor secured in the humerus of a rotator cuff surgery patient.



FIG. 6 illustrates a detailed cross-section view of the adjustable suture anchor of FIG. 5.



FIG. 7 illustrates a cross-section of an embodiment of an adjustable anchor secured in the humerus of a rotator cuff surgery patient.



FIG. 8 illustrates a detailed cross-section view of the adjustable suture anchor of FIG. 7.



FIG. 9 illustrates internal components of an external adjustment device for non-invasively adjusting an adjustable suture anchor according to one embodiment.



FIG. 10 illustrates an external adjustment device in a configuration for adjusting an adjustable suture anchor implanted within the humerus.



FIG. 11 illustrates a humerus with a hole drilled for placement of an adjustable suture anchor in a rotator cuff patient.



FIG. 12 illustrates a tibia with a hole drilled for placement of an adjustable suture anchor in an anterior cruciate ligament patient.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS


FIG. 1 illustrates an anatomical view of a human shoulder 10, which includes the following bones: scapula 28, clavicle 26 and humerus 18 The glenohumeral joint 42 (or shoulder joint) is an articulation between the scapula 28 and the head 20 of the humerus 18, the head 20 visible in a cross-sectional view in FIG. 2. The acromion 32 is a bony process on the scapula 28 which articulates with the clavicle 26 at the acromioclavicular joint 30. There is very little interface between the humerus 18 and the scapula 28 in the glenohumeral joint 42 making it the most mobile joint in the human body. The rotator cuff 46 is a group of muscles and their respective tendons which serve to stabilize the shoulder 10, including the supraspinatus 36, infraspinatus (not visible in FIG. 1), subscapularis 38, and teres minor 40. All four of these muscles arise from different portions of the scapula 28 and attach via their respective tendons to either the greater tubercle 12 of the humerus 18, which is lateral to the humeral head 20 or the lesser tubercle (not shown). Also shown in FIG. 1 is the bursa 34, a fluid-filled sac which cushions the bones, muscles and tendons of the glenohumeral joint 42. Additionally, the biceps muscle 44 is show for perspective purposes.


A simplified cross-sectional view of the shoulder 10 is shown in FIG. 2, with an embodiment of an adjustable suture anchor 100 implanted within the shoulder 10. The adjustable suture anchor 100 has a first end 102 and a second end 104, the second end 104 configured for insertion through cancellous bone 24 and the first end 102 configured for securing in the cortical bone 22 of the humerus 18. In FIG. 3 detail of the second end 104 shows a tapered thread 106 and a tapered tip 108, which can aid in driving the adjustable suture anchor 100 through the humerus 18. Alternatively, an initial hole may be reamed in the cortical bone 22 and cancellous bone 24 to aid in the insertion of the adjustable suture anchor 100. A housing 110 extends between the first end 102 and second end 104 of the adjustable suture anchor 100. At the first end 102, a threaded portion 112 is provided which allows a secure interface with the cortical bone 22. The threaded portion 112 may be of a single major diameter (for example with a minor diameter that increases towards the first end), or the major diameter may vary from smaller to larger as it approaches the first end 102. The threaded portion 112 may be provided with cutting threads, in order to better create the interface with the cortical bone 22. A keyed cavity 114 is provided in the first end 102 for interfacing with a driving tool. The shapes of both the driving tool and the keyed cavity 114 may be hexagonal, cross-shaped, star-shaped or a number of other keyed shapes that allow a maximal torque in securing the adjustable suture anchor 100 into the humerus 18.


A simplified rotator cuff 46 is represented in FIG. 2 by a muscle 14 and its tendon 16, in cross-section. In this embodiment of the adjustable suture anchor 100, a suture 116 is secured to the tendon 16 through at least one puncture 118. The suture 116 is held in place with one or more knots 120, which may comprise a number of different knot types. Any of the possible suturing techniques are envisioned, including: single-row technique, double-row techniques, diamond, mattress double anchor, or modified mattress double anchor.


The adjustable suture anchor 100 contains within its housing 110 an adjustable component 122 having an eyelet 124. The eyelet 124 is configured for securing an end of the suture 116. As shown in FIG. 4, the adjustable suture anchor 100 is supplied with a threading tool 126, which can be used to aid the placement of the suture 116 through the eyelet 124 of the adjustable component 122. The suture 116 is looped through or tied to a hook 128 in the threading tool 126, and then the threading tool 126 is pulled from gripping structure 130 at the opposite end of the threading tool 126 from the hook 128. The suture 116 is pulled through the eyelet 124 of the adjustable component 122 and tied or otherwise secured in place. The suture 116 is tied with the desired amount of tension.


The adjustable component 122 of the adjustable suture anchor 100 further includes a shaft 132 and a base 134 at the opposite end of the shaft 132 from the eyelet 124. The adjustable component 122 is configured to be axially movable within a longitudinal cavity 136 of the housing 110. Fins 138 are slidable within longitudinal grooves 140 in the longitudinal cavity 136 of the housing 110, thus inhibiting the rotation of the adjustable component 122 in relation to the housing 110. The hollow magnet 142 is radially poled, and is bonded within a threaded magnet housing 144. The threaded magnet housing 144 threadingly engages an internal thread 146 of the housing 110. A thrust bearing 148 is disposed between the base 134 of the adjustable component 122 and a first end 150 of the threaded magnet housing 144. If it is desired during or particularly after surgery to tighten the tension on the suture 116, a moving magnetic field is applied externally to the patient in a first rotational direction A, causing the hollow magnet 142 and threaded magnet housing 144 to spin in a second rotational direction B. Because it is secured to the hollow magnet 142, the threaded magnet housing 144 therefore turns within the internal thread 146 of the housing 110, actuating it in a first axial direction C. As the first end 150 of the threaded magnet housing 144 pushes against the thrust bearing 148 and the base 134 of the adjustable component 122, the adjustable component 122 is moved in the first axial direction C. This shortens the effective length of the suture 116, and thus increases its tensile force, which is the force it applies to the tendon 16. This ability to adjust the tension on the suture 16 non-invasively on an awake, mobile patient, make it possible to assure the ideal state of the shoulder 10 during the healing process. To isolate the longitudinal cavity 136 of the housing (and its contents) from body fluids, a seal 152 is carried near the first end 102 of the adjustable suture anchor 100. The suture 116 is able to move within this seal 152 (o-ring or slit diaphragm) without causing any significant material to enter the longitudinal cavity 136. If the tension on the suture 116 is higher than desired, a moving magnetic field is applied externally to the patient in a rotational direction D (opposite A), causing the hollow magnet 142 and threaded magnet housing 144 to spin in a rotational direction E (opposite B). This moves the adjustable component in an axial direction F (opposite C). The tension on the suture 116 is thus lowered.


Turning now to FIG. 5, a different embodiment of an adjustable suture anchor 200 is depicted in its implanted configuration within the humerus 18. The adjustable suture anchor 200 has a first end 202 and a second end 204. As seen in more detail in FIG. 6, the second end 204 includes a tapered tip 208, to aid in insertion through the cancellous bone 24. A pilot hole may be drilled through the cortical bone 24 and the cancellous bone 24, and an additional pocket 23 may be drilled, into which the tapered tip 208 may reside, for increased stability. A threaded portion 212 is provided adjacent the first end 202 of the adjustable suture anchor 200 for engaging with the cortical bone 24. A keyed outer surface 215, having for example a hexagonal shape, is provided for tightening the adjustable suture anchor into humerus 18. In this embodiment, suture 216 extends from a longitudinal cavity 236 within a housing 210 of the adjustable suture anchor. The suture 216 is partially wound on a spool 222, which is rotatable within the longitudinal cavity 236. The suture 216 can slide through a seal 252, which protects the longitudinal cavity 236 from body fluids. The first end 202 of the adjustable suture anchor 200 includes a radiused surface 213, which allows the suture 216 to be slid over it without fraying. A rotatable cylindrical radially-poled magnet 241 bonded within a magnet housing 243 having a pin 245. The magnet housing 243 is constrained axially within the longitudinal cavity 236. The pin 245 turns within a radial bearing 247. The magnet housing 243 connects to a first planetary gear stage 249, which connects to a second planetary gear stage 251. The second planetary gear stage 251 is coupled to the spool 222 by a pin 253. After implanting the adjustable suture anchor 200 into the humerus 18, the suture 216 is pulled partially out of the longitudinal cavity 236 and secured to a tendon 16 via a puncture 118. The suture is tied in a knot 120 so that it is at the desired amount of tension.


If at a later time, for example after surgery, the tension on the suture 216 is higher than desired, a moving magnetic field is applied externally to the patient in a first rotational direction, causing the magnet 241 to be turned, and thus the first and second planetary gear stages 249, 251 and spool 222. Because of the gear reduction from the first and second planetary gear stages 249, 251, the spool 222 is turned at a slower rotational speed than the magnet 241, allowing precision adjustment of the tension in the suture 216. The gearing also allows the desired tension to be achievable without an undesirably large applied moving magnetic field, for example a field that is above International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines for current density in body tissues and fluids, for example 0.04 Amperes/m2 or less. As the spool 222 is turned the suture 216 is pulled into the longitudinal cavity 236 through the seal 252, tightening the tension in the suture 216, and thus on the tendon 16. A stepped post 255 is secured to the first end 202 of the adjustable suture anchor 200. A thrust bearing 248 and the spool 222 are both carried on a small diameter portion 257 of the stepped post 255. When the suture 216 is in tension, the spool 222 is forced against the thrust bearing 248, which in turn is forced against the edge of a large diameter portion 259 of the stepped post 255, thus minimizing the rotational resistance of the spool 222. The suture 216 passes through a guide loop 261 to aid its takeup onto the spool 222. In both the adjustable suture anchor 100 and adjustable suture anchor 200, a pulley may be carried by the first end 102, 202 to serve the function of the radiused surface 213, both in keeping the suture 116, 216 from fraying, and in changing the direction of the of the suture 116, 216 which is in tension.


A different embodiment of an adjustable suture anchor 300 is depicted in FIGS. 7 and 8. In this embodiment, a loop of suture 316 extends from the tendon 16 in an external portion 370 and an internal portion 372. A tunnel 374 through which the suture 316 can slide is made in the tendon 16, so that the length of the loop of suture 316 which extends from point A to point B to point C, can be adjusted, thus adjusting the tension with which the suture 316 holds the tendon 16. A pad 376 of biocompatible material is placed underneath the suture 316 to minimize damage to the tendon as the suture 316 slides over it. A first end 302 of the adjustable suture anchor 300 includes a threaded portion 312 and an external circumferential groove 378, around which external portion 370 of suture 316 can be wrapped and/or tied. A second end 304 of the adjustable suture anchor 300 has a tapered tip 308, which may be used as described in the prior embodiments. Within the longitudinal cavity 336 of the housing 310 of the adjustable suture anchor 300, a cylindrical, radially poled magnet 341 is bonded within a magnet housing 343, which is secured to a rotating shaft 380. The magnet housing 343 and shaft 380 are rotatably held between a radial bearing 347 and a thrust bearing 348. A spool 322 is secured to the shaft 380 so that rotation of magnet 341 causes rotation of the shaft. A spacer 384 is disposed between the spool 322 and the magnet 341 and secured to the housing 310. A seal or diaphragm 352 is carried within an aperture 382 in the lateral wall of the housing 310, allowing the internal portion 372 of the loop of suture 316 to move in and out of the housing 310 of the adjustable suture anchor 300, with the contents of the longitudinal cavity 336 remaining protected from body fluids.


During implantation, two pilot holes are drilled through which through the cortical bone 22 and cancellous bone 24, a first hole 50 extending from point C towards point A. The first hole may even be extended to create an additional pocket 23. A second hole 48 extends from point B towards (and just past) point A. A grasper tool is placed through hole 48, and a suture insertion tool inserts the end of the external portion 370 of the suture 316 through hole 50. The grasper tool grasps the suture 316 and pulls it out through hole 48. The adjustable suture anchor is then inserted and secured inside hole 50, tightening it with a driving tool inserted into a keyed cavity 314. The housing may be oriented so that the aperture 382 extends in a direction towards hole 48. The external portion 370 of the suture 316 is now placed through the tunnel 374 in the tendon 16, and then wrapped and/or tied around the external circumferential groove 378, thus closing the loop in the suture 316. To adjust the tension of the suture 316, a moving magnetic field is applied externally to the patient in a first rotational direction, causing the magnet 341 to turn and the spool 322 to tighten the tension in the suture 316. The moving magnetic field may be applied in an opposite rotational direction in order to loosen the tension in the suture 316.



FIGS. 9 and 10 illustrate an external adjustment device 478 configured for applying a moving magnetic field to allow for non-invasive adjustment of the adjustable suture anchor 100, 200, 300 by turning the magnet 142, 241, 341 within the adjustable suture anchor 100, 200, 300. FIG. 9 illustrates the internal components of the external adjustment device 478, and for clear reference, shows a simplified version 338 of the magnet 142, 241, 341 of the adjustable suture anchor 100, 200, 300, without the rest of the assembly. The internal working components of the external adjustment device 478 may, in certain embodiments, be similar to that described in U.S. Patent Application Publication No. 2012/0004494. A motor 480 with a gear box 482 outputs to a motor gear 484. The motor gear 484 engages and turns a central (idler) gear 486, which has the appropriate number of teeth to turn first and second magnet gears 488, 490 at identical rotational speeds. First and second magnets 492, 494 turn in unison with the first and second magnet gears 488, 490, respectively. Each magnet 492, 494 is held within a respective magnet cup 496 (shown partially). An exemplary rotational speed is 60 RPM or less. This speed range may be desired in order to limit the amount of current density induced in the body tissue and fluids, to meet international guidelines or standards. As seen in FIG. 9, the south pole 498 of the first magnet 492 is oriented the same as the north pole 404 of the second magnet 494, and likewise, the first magnet 492 has its north pole 400 oriented the same as the south pole 402 of the second magnet 494. As these two magnets 492, 494 turn synchronously together, they apply a complementary and additive moving magnetic field to the radially-poled, magnet 338, having a north pole 406 and a south pole 408. Magnets having multiple north poles (for example, two) and multiple south poles (for example, two) are also contemplated in each of the devices. As the two magnets 492, 494 turn in a first rotational direction 410 (e.g., counter-clockwise), the magnetic coupling causes the magnet 338 to turn in a second, opposite rotational direction 412 (e.g., clockwise). The rotational direction of the motor 480 is controlled by buttons 414, 416. One or more circuit boards 418 contain control circuitry for both sensing rotation of the magnets 492, 494 and controlling the rotation of the magnets 492, 494.



FIG. 10 shows the external adjustment device 478 for use with an adjustable suture anchor 100, 200, 300 placed in the humerus. The external adjustment device 478 has a first handle 424 attached to a housing 444 for carrying or for steadying the external adjustment device 478, for example, steadying it against a shoulder 10, as in FIG. 10, or against a knee, in the case of an adjustable anchor for anterior cruciate ligament attachment. The external adjustment device 478 includes a control panel including a display (not shown). Control circuitry contained on circuit boards 418 may be used by the surgeon to store important information related to the specific aspects of each particular patient. The external adjustment device 478 may be able to receive and transfer information via an SD card or USB device, or by wireless input. An additional feature is a camera at the portion of the external adjustment device 478 that is placed over the skin. For example, the camera may be located between the first magnet 492 and the second magnet 494. The skin directly over the implanted magnet 338 may be marked with indelible ink. A live image from the camera is then displayed on the display 448 of the control panel 446, allowing the user to place the first and second magnets 492, 494 directly over the area marked on the skin. Crosshairs can be overlayed on the display over the live image, allowing the user to align the mark on the skin between the crosshairs, and thus optimally place the external adjustment device 478.



FIG. 11 illustrates an alternative geometry for creating a hole 62 at the greater tubercle 12 of the humerus 18. An adjustable suture anchor 500 having an adjustable component 522 is implanted in the hole 62 and is capable of adjusting the tension in a suture 516, which is attached to a tendon 16 of a rotator cuff 46. The hole 62 is parallel the axis of the humerus 18, and thus allows for a longer length adjustable suture anchor 500. This makes possible an adjustable suture anchor 500 with more planetary gear sets and allow allows for a greater range of adjustability (length, tension).


Though the adjustable suture anchors 100, 200, 300, 500 as described are adapted for attaching the tendon of the rotator cuff to the humerus, it is conceived that similar suture anchors would be useful for adjusting other soft tissue attachments to bone. Some examples include the anterior cruciate ligament (ACL) in one or both of its attachment point to the bone (femur and/or tibia). FIG. 12 shows a configuration for an adjustable suture anchor 600 for adjusting the tension in a graft 690 for replacing the ACL (for example a portion of the patellar tendon). The graft 690 is secured in a femoral tunnel 686 in a femur 678 with a traditional tissue anchor 684. The tissue anchor 684 may be metallic, or may be of a resorbable material. The adjustable suture anchor 600 is anchored to bone inside a tibial tunnel 688 created in a tibia 680. An adjustable component 682 within the adjustable suture anchor 600 adjusts the tension in a suture 616 which is attached to the graft 690. The diameter of the tissue anchor 684 may be less than about 14 mm, or preferably less than about 12 mm. The length of the femoral tunnel 686 may be on the order of about 25 mm to about 35 mm.


An alternative ligament for which the adjustable suture anchors 100, 200, 300, 500, 600 may be used is the medial collateral ligament (MCL) whose attachment points are the femur 678 and tibia 680. The lateral collateral ligament (LCL), whose attachment points are the femur 678 and fibula 676, may also be adjustably attached by a modified embodiment of the adjustable suture anchor 100, 200, 300, 500, 600. Other tendons and ligaments which may benefit from the adjustability of the adjustable suture anchors 100, 200, 300, 500, 600 include the talo-fibular ligament, the tibial tendon, and the Achilles tendon. Typical ranges of the length of adjustment for the tendon and ligament applications discussed may be typically on the order of less than about 2 cm, or in some embodiments less than about 1 cm.


Other indications for an adjustable connection between soft tissue and bone which may benefit from embodiments of the adjustable suture anchors 100, 200, 300, 500, 600 include adjustable slings attached to the pubic bone, for urinary stress incontinence.


Magnet materials may include rare earth magnets, including Neodymium-Iron-Boron. Rigid components of the adjustable suture anchor may be made from titanium, titanium allows, or other biocompatible materials. In some cases, polyether ether ketone (PEEK) may be an appropriate material. In some cases, at least some components may comprise bioabsorbable materials.


On any of the embodiments presented, it is envisioned that a unidirectional version may be constructed. For example, a ratcheting wheel that allows stepped increases in in the rotational direction which increases the tension on the suture, but does not allow the opposite rotational direction to occur. In addition, any of the embodiments may or may not use gearing, for example to increase the deliverable for or increase the precision.


In addition to a threaded screw attachment to the bone, the bone anchor may comprise an interference fit, for example a tack, a bone adhesive interface, or a staple. Additionally pronged, flanged, snagging, barbed, spiked, tabbed or curved anchors may be secured to the bone. Often, multiple anchors are attached in the same patient.


Though magnetic actuating adjustable implants are presented, other non-invasive systems are considered to be within the scope of the adjustable suture anchors described. For example, the adjustable component may be driven by any of a variety of alternative drives such as an implanted motor which may be powered via inductive coupling, internal battery, or hard wired connection via leads that extend percutaneously but may be detached from the implant and removed following a post-surgical adjustment. The adjustable component may instead be driven by an ultrasonically actuated motor, such as a piezoelectric motor manufactured by Actuated Medical of Bellefonte, Pa. The adjustable component may also be driven by a subcutaneous hydraulic or pneumatic pump which pressurizes fluid through a valve when pressure is placed on the skin of the patient, over the pump interface. The adjustable component may also be driven by an implantable shape-memory driven actuator.


The adjustable suture anchors 100, 200, 300, 500, 600 may be configured so that the magnets and magnet housings may be removed from the adjustable suture anchor assembly, using a small minimally invasive incision, leaving the remained of the adjustable suture anchor 100, 200, 300, 500, 600 in place. For example, if magnetic resonance imaging is prescribed for the patient, the magnet may be temporarily or permanently removed, to allow imaging of the implant area.

Claims
  • 1. A method of treating a patient, comprising the steps of: providing a tensioning device having: a connector configured to couple to a soft tissue, andan adjustable anchor configured to couple to the connector and to couple to a bone,wherein the adjustable anchor comprises: a first end and a second end;a housing extending between the first end and the second end; andan adjustable component disposed within a longitudinal cavity in the housing, wherein the adjustable component comprises: a shaft; a hollow, radially poled magnet disposed about the shaft; anda magnet housing disposed about and radially affixed to the hollow, radially poled magnet, the magnet housing having an external thread along a portion of an axial extent thereof;inserting the second end of the adjustable anchor into the bone;connecting the connector to the soft tissue;coupling the connector to the adjustable anchor;adjusting a tension on the connector by rotating the adjustable component within the housing in response to a wireless signal, thereby axially translating the adjustable component within the longitudinal cavity in the housing.
  • 2. The method of claim 1, wherein the bone is a humerus.
  • 3. The method of claim 1, wherein the bone is a femur.
  • 4. The method of claim 1, wherein the bone is a tibia.
  • 5. The method of claim 1, wherein the soft tissue is a rotator cuff tendon.
  • 6. The method of claim 1 wherein the soft tissue is an anterior cruciate ligament.
  • 7. The method of claim 1, wherein the soft tissue is a replacement for a ligament.
  • 8. The method of claim 1, wherein the adjustable component further comprises an eyelet disposed at a first end thereof, and the connector comprises a suture; and wherein the method further comprises coupling the suture to the eyelet by threading the suture through the eyelet and securing the suture to the eyelet.
  • 9. The method of claim 1, wherein the adjustable component is rotationally fixed relative to the housing.
  • 10. The method of claim 1, further comprising: threadingly engaging an internal thread of the longitudinal cavity of the housing with the external thread of the magnet housing.
  • 11. The method of claim 10, further comprising: applying to the patient a magnetic field configured to move in a first rotational direction or a second rotational direction opposite the first rotational direction, thereby causing the hollow, radially poled magnet and the magnet housing to rotate in the second rotational direction or the first rotational direction, respectively, and further causing the adjustable component to axially translate relative to the housing,wherein the magnetic field is applied non-invasively and externally relative to the patient.
  • 12. The method of claim 11, wherein applying the magnetic field in the first rotational direction shortens an effective length of the connector and increases tension thereon, and applying the magnetic field in the second rotational direction lengthens the effective length of the connector and decreases tension thereon.
  • 13. The method of claim 1, further comprising non-invasively adjusting the tension on the connector relative to the adjustable anchor while the patient is awake and mobile.
  • 14. The method of claim 1, further comprising: prior to the inserting, preparing a first hole into the bone, the first hole being configured to receive the adjustable anchor.
  • 15. The method of claim 14, further comprising: prior to the inserting, preparing a second hole into the bone, wherein the second hole extends at an angle relative to the first hole and is in communication with the first hole, such that the second hole is configured to receive a portion of the connector therethrough.
  • 16. The method of claim 15, further comprising: prior to inserting the adjustable anchor into the first hole, inserting the connector such that the connector passes through the second hole; andcoupling the connector to the first end of the adjustable anchor.
  • 17. A method of treating a patient, comprising the steps of: providing a tensioning device having: a connector configured to couple to a soft tissue, andan adjustable anchor configured to couple to the connector and to couple to a bone,wherein the adjustable anchor comprises: a first end and a second end;a housing extending between the first end and the second end; andan adjustable component disposed within the housing,wherein the adjustable component comprises: a cylindrical magnet configured to rotate within the housing; anda spool coupled to the cylindrical magnet, wherein the spool is configured to rotate within a longitudinal cavity of the housing upon actuation by the cylindrical magnet, and wherein the connector is partially wound on the spool;inserting the second end of the adjustable anchor into the bone;connecting the connector to the soft tissue;coupling the connector to the adjustable anchor; andadjusting a tension on the connector by rotating the adjustable component within the housing in response to a wireless signal.
  • 18. The method of claim 17, further comprising: applying to the patient a magnetic field configured to move in either a first rotational direction or a second rotational direction opposite the first rotational direction,wherein applying the magnetic field in the first rotational direction causes the cylindrical magnet and the spool to rotate in the first rotational direction, thereby increasing the tension on the connector relative to the adjustable anchor, and applying the magnetic field in the second rotational direction causes the cylindrical magnet and the spool to rotate in the second rotational direction, thereby decreasing the tension on the connector, andwherein the magnetic field is applied non-invasively and externally relative to the patient.
  • 19. The method of claim 18, further comprising: causing the cylindrical magnet to rotate at a first rotational speed, and the spool to rotate at a second rotational speed in a same direction, wherein the second rotational speed is slower than the first rotational speed.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

The present application is a divisional of U.S. application Ser. No. 16/257,526, filed Jan. 25, 2019, which is a continuation of U.S. application Ser. No. 14/447,391, filed Jul. 30, 2014, which in turn claims the benefit of U.S. Provisional Application No. 61/860,668, filed Jul. 31, 2013, each of which is hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (539)
Number Name Date Kind
2702031 Wenger Feb 1955 A
3111945 Von Solbrig Nov 1963 A
3372476 Peiffer Mar 1968 A
3377576 Langberg Apr 1968 A
3512901 Law May 1970 A
3597781 Eibes Aug 1971 A
3900025 Barnes, Jr. Aug 1975 A
3915151 Kraus Oct 1975 A
RE28907 Eibes et al. Jul 1976 E
3976060 Hildebrandt et al. Aug 1976 A
4010758 Rockland et al. Mar 1977 A
4056743 Clifford et al. Nov 1977 A
4068821 Morrison Jan 1978 A
4078559 Nissinen Mar 1978 A
4204541 Kapitanov May 1980 A
4357946 Dutcher et al. Nov 1982 A
4386603 Mayfield Jun 1983 A
4448191 Rodnyansky et al. May 1984 A
4486176 Tardieu et al. Dec 1984 A
4501266 McDaniel Feb 1985 A
4522501 Shannon Jun 1985 A
4537520 Ochiai et al. Aug 1985 A
4550279 Klein Oct 1985 A
4561798 Elcrin et al. Dec 1985 A
4573454 Hoffman Mar 1986 A
4592355 Antebi Jun 1986 A
4595007 Mericle Jun 1986 A
4642257 Chase Feb 1987 A
4658809 Ulrich et al. Apr 1987 A
4700091 Wuthrich Oct 1987 A
4747832 Buffet May 1988 A
4854304 Zielke Aug 1989 A
4904861 Epstein et al. Feb 1990 A
4931055 Bumpus et al. Jun 1990 A
4940467 Tronzo Jul 1990 A
4957495 Kluger Sep 1990 A
4973331 Pursley et al. Nov 1990 A
5010879 Moriya et al. Apr 1991 A
5030235 Campbell, Jr. Jul 1991 A
5041112 Mingozzi et al. Aug 1991 A
5064004 Lundell Nov 1991 A
5074882 Grammont et al. Dec 1991 A
5092889 Campbell, Jr. Mar 1992 A
5133716 Plaza Jul 1992 A
5142407 Varaprasad et al. Aug 1992 A
5156605 Pursley et al. Oct 1992 A
5263955 Baumgart et al. Nov 1993 A
5290289 Sanders et al. Mar 1994 A
5306275 Bryan Apr 1994 A
5330503 Yoon Jul 1994 A
5334202 Carter Aug 1994 A
5336223 Rogers Aug 1994 A
5356411 Spievack Oct 1994 A
5356424 Buzerak et al. Oct 1994 A
5364396 Robinson et al. Nov 1994 A
5403322 Herzenberg et al. Apr 1995 A
5429638 Muschler et al. Jul 1995 A
5437266 McPherson et al. Aug 1995 A
5466261 Richelsoph Nov 1995 A
5468030 Walling Nov 1995 A
5480437 Draenert Jan 1996 A
5509888 Miller Apr 1996 A
5516335 Kummer et al. May 1996 A
5527309 Shelton Jun 1996 A
5536269 Spievack Jul 1996 A
5549610 Russell et al. Aug 1996 A
5573012 McEwan Nov 1996 A
5575790 Chen et al. Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5620445 Brosnahan et al. Apr 1997 A
5620449 Faccioli et al. Apr 1997 A
5626579 Muschler et al. May 1997 A
5626613 Schmieding May 1997 A
5632744 Campbell, Jr. May 1997 A
5659217 Petersen Aug 1997 A
5662683 Kay Sep 1997 A
5672175 Martin Sep 1997 A
5672177 Seldin Sep 1997 A
5700263 Schendel Dec 1997 A
5704938 Staehlin et al. Jan 1998 A
5704939 Justin Jan 1998 A
5720746 Soubeiran Feb 1998 A
5743910 Bays et al. Apr 1998 A
5762599 Sohn Jun 1998 A
5771903 Jakobsson Jun 1998 A
5810815 Morales Sep 1998 A
5827286 Incavo et al. Oct 1998 A
5830221 Stein et al. Nov 1998 A
5879375 Larson, Jr. et al. Mar 1999 A
5902304 Walker et al. May 1999 A
5935127 Border Aug 1999 A
5945762 Chen et al. Aug 1999 A
5961553 Coty et al. Oct 1999 A
5976138 Baumgart et al. Nov 1999 A
5979456 Magovern Nov 1999 A
6022349 McLeod et al. Feb 2000 A
6033412 Losken et al. Mar 2000 A
6034296 Elvin et al. Mar 2000 A
6102922 Jakobsson et al. Aug 2000 A
6106525 Sachse Aug 2000 A
6126660 Dietz Oct 2000 A
6126661 Faccioli et al. Oct 2000 A
6138681 Chen et al. Oct 2000 A
6139316 Sachdeva et al. Oct 2000 A
6162223 Orsak et al. Dec 2000 A
6183476 Gerhardt et al. Feb 2001 B1
6200317 Aalsma et al. Mar 2001 B1
6234956 He et al. May 2001 B1
6241730 Alby Jun 2001 B1
6245075 Betz et al. Jun 2001 B1
6315784 Djurovic Nov 2001 B1
6319255 Grundei et al. Nov 2001 B1
6331744 Chen et al. Dec 2001 B1
6336929 Justin Jan 2002 B1
6343568 McClasky Feb 2002 B1
6358283 Hogfors et al. Mar 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6389187 Greenaway et al. May 2002 B1
6400980 Lemelson Jun 2002 B1
6402753 Cole et al. Jun 2002 B1
6409175 Evans et al. Jun 2002 B1
6416516 Stanch et al. Jul 2002 B1
6499907 Baur Dec 2002 B1
6500110 Davey et al. Dec 2002 B1
6508820 Bales Jan 2003 B2
6510345 Van Bentem Jan 2003 B1
6537196 Creighton, IV et al. Mar 2003 B1
6554831 Rivard et al. Apr 2003 B1
6565573 Ferrante et al. May 2003 B1
6565576 Stauch et al. May 2003 B1
6582313 Perrow Jun 2003 B2
6583630 Mendes et al. Jun 2003 B2
6616669 Ogilvie et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6656135 Zogbi et al. Dec 2003 B2
6656194 Gannoe et al. Dec 2003 B1
6667725 Simons et al. Dec 2003 B1
6673079 Kane Jan 2004 B1
6702816 Buhler Mar 2004 B2
6706042 Taylor Mar 2004 B2
6709293 Mori et al. Mar 2004 B2
6730087 Butsch May 2004 B1
6761503 Breese Jul 2004 B2
6769499 Cargill et al. Aug 2004 B2
6789442 Forch Sep 2004 B2
6796984 Soubeiran Sep 2004 B2
6802844 Ferree Oct 2004 B2
6809434 Duncan et al. Oct 2004 B1
6835207 Zacouto et al. Dec 2004 B2
6852113 Nathanson et al. Feb 2005 B2
6918838 Schwarzler et al. Jul 2005 B2
6918910 Smith et al. Jul 2005 B2
6921400 Sohngen Jul 2005 B2
6923951 Contag et al. Aug 2005 B2
6971143 Domroese Dec 2005 B2
7001346 White Feb 2006 B2
7008425 Phillips Mar 2006 B2
7011658 Young Mar 2006 B2
7029472 Fortin Apr 2006 B1
7029475 Panjabi Apr 2006 B2
7041105 Michelson May 2006 B2
7060080 Bachmann Jun 2006 B2
7063706 Wittenstein Jun 2006 B2
7105029 Doubler et al. Sep 2006 B2
7105968 Nissen Sep 2006 B2
7114501 Johnson et al. Oct 2006 B2
7115129 Heggeness Oct 2006 B2
7135022 Kosashvili et al. Nov 2006 B2
7160312 Saadat Jan 2007 B2
7163538 Altarac et al. Jan 2007 B2
7189005 Ward Mar 2007 B2
7191007 Desai et al. Mar 2007 B2
7218232 DiSilvestro et al. May 2007 B2
7238191 Bachmann Jul 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7243719 Baron et al. Jul 2007 B2
7255682 Bartol, Jr. et al. Aug 2007 B1
7282023 Frering Oct 2007 B2
7285087 Moaddeb et al. Oct 2007 B2
7302015 Kim et al. Nov 2007 B2
7302858 Walsh et al. Dec 2007 B2
7314443 Jordan et al. Jan 2008 B2
7333013 Berger Feb 2008 B2
7357037 Hnat et al. Apr 2008 B2
7357635 Belfor et al. Apr 2008 B2
7360542 Nelson et al. Apr 2008 B2
7390007 Helms et al. Jun 2008 B2
7390294 Hassler, Jr. Jun 2008 B2
7402134 Moaddeb et al. Jul 2008 B2
7402176 Malek Jul 2008 B2
7429259 Cadeddu et al. Sep 2008 B2
7445010 Kugler et al. Nov 2008 B2
7458981 Fielding et al. Dec 2008 B2
7485149 White Feb 2009 B1
7489495 Stevenson Feb 2009 B2
7530981 Kutsenko May 2009 B2
7531002 Sutton et al. May 2009 B2
7553298 Hunt et al. Jun 2009 B2
7561916 Hunt et al. Jul 2009 B2
7611526 Carl et al. Nov 2009 B2
7618435 Opolski Nov 2009 B2
7658754 Zhang et al. Feb 2010 B2
7666184 Stanch Feb 2010 B2
7666210 Franck et al. Feb 2010 B2
7674276 Stone Mar 2010 B2
7678136 Doubler et al. Mar 2010 B2
7678139 Garamszegi et al. Mar 2010 B2
7708737 Kraft et al. May 2010 B2
7708762 McCarthy et al. May 2010 B2
7727143 Birk et al. Jun 2010 B2
7753913 Szakelyhidi, Jr. et al. Jul 2010 B2
7753915 Eksler et al. Jul 2010 B1
7762998 Birk et al. Jul 2010 B2
7763080 Southworth Jul 2010 B2
7766855 Miethke Aug 2010 B2
7775215 Hassler, Jr. et al. Aug 2010 B2
7776068 Ainsworth et al. Aug 2010 B2
7776075 Bruneau et al. Aug 2010 B2
7787958 Stevenson Aug 2010 B2
7794476 Wisnewski Sep 2010 B2
7811328 Molz, IV et al. Oct 2010 B2
7835779 Anderson et al. Nov 2010 B2
7837691 Cordes et al. Nov 2010 B2
7862586 Malek Jan 2011 B2
7867235 Fell et al. Jan 2011 B2
7875033 Richter et al. Jan 2011 B2
7901381 Birk et al. Mar 2011 B2
7909852 Boomer et al. Mar 2011 B2
7918844 Byrum et al. Apr 2011 B2
7938841 Sharkawy et al. May 2011 B2
7985256 Grotz et al. Jul 2011 B2
7988709 Clark et al. Aug 2011 B2
8002809 Baynham Aug 2011 B2
8011308 Picchio Sep 2011 B2
8034080 Malandain et al. Oct 2011 B2
8043299 Conway Oct 2011 B2
8043338 Dant Oct 2011 B2
8057473 Orsak et al. Nov 2011 B2
8057513 Kohm et al. Nov 2011 B2
8083741 Morgan et al. Dec 2011 B2
8092499 Roth Jan 2012 B1
8095317 Ekseth et al. Jan 2012 B2
8105360 Connor Jan 2012 B1
8114158 Carl et al. Feb 2012 B2
8123805 Makower et al. Feb 2012 B2
8133280 Voellmicke et al. Mar 2012 B2
8147549 Metcalf, Jr. et al. Apr 2012 B2
8162897 Byrum Apr 2012 B2
8162979 Sachs et al. Apr 2012 B2
8177789 Magill et al. May 2012 B2
8197490 Pool et al. Jun 2012 B2
8211149 Justis Jul 2012 B2
8211151 Schwab et al. Jul 2012 B2
8221420 Keller Jul 2012 B2
8226690 Altarac et al. Jul 2012 B2
8236002 Fortin et al. Aug 2012 B2
8241331 Arnin Aug 2012 B2
8246630 Manzi et al. Aug 2012 B2
8252063 Stanch Aug 2012 B2
8267969 Altarac et al. Sep 2012 B2
8278941 Kroh et al. Oct 2012 B2
8282671 Connor Oct 2012 B2
8323290 Metzger et al. Dec 2012 B2
8357182 Seme Jan 2013 B2
8366628 Denker et al. Feb 2013 B2
8372078 Collazo Feb 2013 B2
8386018 Stanch et al. Feb 2013 B2
8394124 Biyani Mar 2013 B2
8403958 Schwab Mar 2013 B2
8414584 Brigido Apr 2013 B2
8425608 Dewey et al. Apr 2013 B2
8435268 Thompson et al. May 2013 B2
8439926 Bojarski et al. May 2013 B2
8444693 Reiley May 2013 B2
8469908 Asfora Jun 2013 B2
8470004 Reiley Jun 2013 B2
8486070 Morgan et al. Jul 2013 B2
8486076 Chavarria et al. Jul 2013 B2
8486147 De Villiers et al. Jul 2013 B2
8494805 Roche et al. Jul 2013 B2
8496662 Novak et al. Jul 2013 B2
8518062 Cole et al. Aug 2013 B2
8523866 Sidebotham et al. Sep 2013 B2
8529474 Gupta et al. Sep 2013 B2
8529606 Alamin et al. Sep 2013 B2
8529607 Alamin et al. Sep 2013 B2
8556901 Anthony et al. Oct 2013 B2
8556911 Mehta et al. Oct 2013 B2
8556975 Ciupik et al. Oct 2013 B2
8562653 Alamin et al. Oct 2013 B2
8568457 Hunziker Oct 2013 B2
8617220 Skaggs Oct 2013 B2
8579979 Edie et al. Nov 2013 B2
8585595 Heilman Nov 2013 B2
8585740 Ross et al. Nov 2013 B1
8591549 Lange Nov 2013 B2
8591553 Eisermann et al. Nov 2013 B2
8613758 Linares Dec 2013 B2
8623036 Harrison et al. Jan 2014 B2
8632544 Haaja et al. Jan 2014 B2
8632548 Soubeiran Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8636771 Butler et al. Jan 2014 B2
8636802 Serhan et al. Jan 2014 B2
8641719 Gephart et al. Feb 2014 B2
8641723 Connor Feb 2014 B2
8657856 Gephart et al. Feb 2014 B2
8663285 Dall et al. Mar 2014 B2
8663287 Butler et al. Mar 2014 B2
8668719 Alamin et al. Mar 2014 B2
8709090 Makower et al. Apr 2014 B2
8758347 Weiner et al. Jun 2014 B2
8758355 Fisher et al. Jun 2014 B2
8771272 LeCronier et al. Jul 2014 B2
8777947 Zahrly et al. Jul 2014 B2
8777995 McClintock et al. Jul 2014 B2
8790343 McClellan et al. Jul 2014 B2
8790409 Van den Heuvel et al. Jul 2014 B2
8828058 Elsebaie et al. Sep 2014 B2
8828087 Stone et al. Sep 2014 B2
8840651 Reiley Sep 2014 B2
8870881 Rezach et al. Oct 2014 B2
8870959 Amin Oct 2014 B2
8915915 Harrison et al. Dec 2014 B2
8915917 Doherty et al. Dec 2014 B2
8920422 Homeier et al. Dec 2014 B2
8945188 Rezach et al. Feb 2015 B2
8961521 Keefer et al. Feb 2015 B2
8961567 Hunziker Feb 2015 B2
8968402 Myers et al. Mar 2015 B2
8974494 Paulk Mar 2015 B2
8992527 Guichet Mar 2015 B2
9022917 Kasic et al. May 2015 B2
9044218 Young Jun 2015 B2
9060810 Kercher et al. Jun 2015 B2
9078703 Amin Jul 2015 B2
9345467 Lunn May 2016 B2
10226242 Roschak et al. Mar 2019 B2
20020050112 Koch et al. May 2002 A1
20020072758 Reo et al. Jun 2002 A1
20020164905 Bryant Nov 2002 A1
20030040671 Somogyi et al. Feb 2003 A1
20030144669 Robinson Jul 2003 A1
20030220643 Ferree Nov 2003 A1
20030220644 Thelen et al. Nov 2003 A1
20040011137 Hnat et al. Jan 2004 A1
20040011365 Govari et al. Jan 2004 A1
20040019353 Freid et al. Jan 2004 A1
20040023623 Stanch et al. Feb 2004 A1
20040055610 Forsell Mar 2004 A1
20040133219 Forsell Jul 2004 A1
20040138725 Forsell Jul 2004 A1
20040193266 Meyer Sep 2004 A1
20050034705 McClendon Feb 2005 A1
20050049617 Chatlynne et al. Mar 2005 A1
20050065529 Liu et al. Mar 2005 A1
20050090823 Bartimus Apr 2005 A1
20050159754 Odrich Jul 2005 A1
20050234448 McCarthy Oct 2005 A1
20050234462 Hershberger Oct 2005 A1
20050246034 Soubeiran Nov 2005 A1
20050261779 Meyer Nov 2005 A1
20050272976 Tanaka et al. Dec 2005 A1
20060004459 Hazebrouck et al. Jan 2006 A1
20060009767 Kiester Jan 2006 A1
20060036259 Carl et al. Feb 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060047282 Gordon Mar 2006 A1
20060058792 Hynes Mar 2006 A1
20060069447 DiSilvestro et al. Mar 2006 A1
20060074448 Harrison et al. Apr 2006 A1
20060079897 Harrison et al. Apr 2006 A1
20060136062 DiNello et al. Jun 2006 A1
20060142767 Green et al. Jun 2006 A1
20060155279 Ogilvie Jul 2006 A1
20060195087 Sacher et al. Aug 2006 A1
20060195088 Sacher et al. Aug 2006 A1
20060200134 Freid et al. Sep 2006 A1
20060204156 Takehara et al. Sep 2006 A1
20060235299 Martinelli Oct 2006 A1
20060235424 Vitale et al. Oct 2006 A1
20060241746 Shaoulian et al. Oct 2006 A1
20060241767 Doty Oct 2006 A1
20060249914 Dulin Nov 2006 A1
20060271107 Harrison et al. Nov 2006 A1
20060282073 Simanovsky Dec 2006 A1
20060293683 Stanch Dec 2006 A1
20070010814 Stanch Jan 2007 A1
20070010887 Williams et al. Jan 2007 A1
20070021644 Woolson et al. Jan 2007 A1
20070031131 Griffitts Feb 2007 A1
20070043376 Leatherbury et al. Feb 2007 A1
20070050030 Kim Mar 2007 A1
20070118215 Moaddeb May 2007 A1
20070161984 Cresina et al. Jul 2007 A1
20070173837 Chan et al. Jul 2007 A1
20070179493 Kim Aug 2007 A1
20070185374 Kick et al. Aug 2007 A1
20070233098 Mastrorio et al. Oct 2007 A1
20070239159 Altarac et al. Oct 2007 A1
20070239161 Giger et al. Oct 2007 A1
20070255088 Jacobson et al. Nov 2007 A1
20070270803 Giger et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276373 Malandain Nov 2007 A1
20070276378 Harrison et al. Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070288024 Gollogly Dec 2007 A1
20070288183 Bulkes et al. Dec 2007 A1
20080009792 Henniges et al. Jan 2008 A1
20080015577 Loeb Jan 2008 A1
20080021454 Chao et al. Jan 2008 A1
20080021455 Chao et al. Jan 2008 A1
20080021456 Gupta et al. Jan 2008 A1
20080027436 Cournoyer et al. Jan 2008 A1
20080033431 Jung et al. Feb 2008 A1
20080033436 Song et al. Feb 2008 A1
20080051784 Gollogly Feb 2008 A1
20080082118 Edidin et al. Apr 2008 A1
20080086128 Lewis Apr 2008 A1
20080097487 Pool et al. Apr 2008 A1
20080097496 Chang et al. Apr 2008 A1
20080108995 Conway et al. May 2008 A1
20080161933 Grotz et al. Jul 2008 A1
20080167685 Allard et al. Jul 2008 A1
20080172063 Taylor Jul 2008 A1
20080177319 Schwab Jul 2008 A1
20080177326 Thompson Jul 2008 A1
20080190237 Radinger et al. Aug 2008 A1
20080228186 Gall et al. Sep 2008 A1
20080255615 Vittur et al. Oct 2008 A1
20080272928 Shuster Nov 2008 A1
20080275557 Makower et al. Nov 2008 A1
20090030462 Buttermann Jan 2009 A1
20090043337 Martin Feb 2009 A1
20090076597 Dahlgren et al. Mar 2009 A1
20090082815 Zylber et al. Mar 2009 A1
20090088803 Justis et al. Apr 2009 A1
20090093820 Trieu et al. Apr 2009 A1
20090093890 Gelbart Apr 2009 A1
20090112207 Walker et al. Apr 2009 A1
20090112263 Pool et al. Apr 2009 A1
20090125062 Amin May 2009 A1
20090163780 Tieu Jun 2009 A1
20090171356 Klett Jul 2009 A1
20090192514 Feinberg et al. Jul 2009 A1
20090198144 Phillips et al. Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090245088 Takeuchi et al. Oct 2009 A1
20090275984 Kim et al. Nov 2009 A1
20100004654 Schmitz et al. Jan 2010 A1
20100057127 McGuire et al. Mar 2010 A1
20100063542 van der Burg Mar 2010 A1
20100094306 Chang et al. Apr 2010 A1
20100094355 Trenhaile Apr 2010 A1
20100100185 Trieu et al. Apr 2010 A1
20100106192 Barry Apr 2010 A1
20100114322 Clifford et al. May 2010 A1
20100130941 Conlon et al. May 2010 A1
20100137872 Kam et al. Jun 2010 A1
20100145449 Makower et al. Jun 2010 A1
20100145462 Ainsworth et al. Jun 2010 A1
20100168751 Anderson et al. Jul 2010 A1
20100249782 Durham Sep 2010 A1
20100249837 Seme et al. Sep 2010 A1
20100256626 Muller et al. Oct 2010 A1
20100262239 Boyden et al. Oct 2010 A1
20100318129 Seme et al. Dec 2010 A1
20100331883 Schmitz et al. Dec 2010 A1
20110004076 Janna et al. Jan 2011 A1
20110057756 Marinescu et al. Mar 2011 A1
20110060336 Pool et al. Mar 2011 A1
20110066188 Seme et al. Mar 2011 A1
20110098748 Jangra Apr 2011 A1
20110152725 Demir et al. Jun 2011 A1
20110196435 Forsell Aug 2011 A1
20110202138 Shenoy et al. Aug 2011 A1
20110230883 Zahrly et al. Sep 2011 A1
20110238126 Soubeiran Sep 2011 A1
20110257655 Copf, Jr. Oct 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20120019341 Gabay et al. Jan 2012 A1
20120019342 Gabay et al. Jan 2012 A1
20120053633 Stauch Mar 2012 A1
20120088953 King Apr 2012 A1
20120109207 Trieu May 2012 A1
20120116535 Ratron et al. May 2012 A1
20120158061 Koch et al. Jun 2012 A1
20120172883 Sayago Jul 2012 A1
20120179215 Soubeiran Jul 2012 A1
20120221106 Makower et al. Aug 2012 A1
20120271353 Barry Oct 2012 A1
20120296234 Wilhelm et al. Nov 2012 A1
20120329882 Messersmith et al. Dec 2012 A1
20130013066 Landry et al. Jan 2013 A1
20130072932 Stauch Mar 2013 A1
20130123847 Anderson et al. May 2013 A1
20130138017 Jundt et al. May 2013 A1
20130138154 Reiley May 2013 A1
20130150863 Baumgartner Jun 2013 A1
20130150889 Fening et al. Jun 2013 A1
20130178903 Abdou Jul 2013 A1
20130190871 Markarian Jul 2013 A1
20130211521 Shenoy et al. Aug 2013 A1
20130245692 Hayes et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253587 Carls et al. Sep 2013 A1
20130261672 Horvath Oct 2013 A1
20130296863 Globerman et al. Nov 2013 A1
20130296864 Burley et al. Nov 2013 A1
20130296940 Northcutt et al. Nov 2013 A1
20130325006 Michelinie et al. Dec 2013 A1
20130325071 Niemiec et al. Dec 2013 A1
20140005788 Haaja et al. Jan 2014 A1
20140025172 Lucas et al. Jan 2014 A1
20140052134 Orisek Feb 2014 A1
20140058392 Mueckter et al. Feb 2014 A1
20140058450 Arlet Feb 2014 A1
20140066987 Hestad et al. Mar 2014 A1
20140088715 Ciupik Mar 2014 A1
20140128868 Harrison et al. May 2014 A1
20140128920 Kantelhardt May 2014 A1
20140163664 Goldsmith Jun 2014 A1
20140181234 Hsiao et al. Jun 2014 A1
20140214034 Rayes et al. Jul 2014 A1
20140228880 Bisson Aug 2014 A1
20140236234 Kroll Aug 2014 A1
20140236311 Vicatos et al. Aug 2014 A1
20140257412 Patty et al. Sep 2014 A1
20140277446 Clifford et al. Sep 2014 A1
20140296918 Fening et al. Oct 2014 A1
20140303538 Baym et al. Oct 2014 A1
20140303539 Baym et al. Oct 2014 A1
20140358150 Kaufman et al. Dec 2014 A1
20150105782 D'Lima et al. Apr 2015 A1
20150105824 Moskowitz et al. Apr 2015 A1
20150313745 Cheng Nov 2015 A1
Foreign Referenced Citations (28)
Number Date Country
1697630 Nov 2005 CN
101040807 Sep 2007 CN
1541262 Jun 1969 DE
8515687 Dec 1985 DE
19626230 Jan 1998 DE
19745654 Apr 1999 DE
102005045070 Apr 2007 DE
0663184 Jul 1995 EP
1905388 Apr 2008 EP
2901991 Dec 2007 FR
2900563 Aug 2008 FR
2892617 Sep 2008 FR
2916622 Sep 2009 FR
2961386 Dec 2011 FR
H0956736 Mar 1997 JP
2002500063 Jan 2002 JP
WO1998044858 Oct 1998 WO
WO1999051160 Oct 1999 WO
WO2001024697 Apr 2001 WO
WO2001045485 Jun 2001 WO
WO2001045487 Jun 2001 WO
WO2001067973 Sep 2001 WO
WO2001078614 Oct 2001 WO
WO2007013059 Feb 2007 WO
WO2007015239 Feb 2007 WO
WO2011116158 Sep 2011 WO
WO2013119528 Aug 2013 WO
WO2014040013 Mar 2014 WO
Non-Patent Literature Citations (102)
Entry
Abe et al., “Experimental external fixation combined with percutaneous discectomy in the management of scoliosis.”, Spine, 1999, pp. 646-653, 24, No. 7.
Ahlbom et al., “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection,”, Health Physics, 1998, pp. 494-522, 74, No. 4.
Amer et al., “Evaluation of treatment of late-onset tibia vara using gradual angulation translation high tibial osteotomy”, ACTA Orthopaedica Belgica, 2010, pp. 360-366, 76, No. 3.
Angrisani et al., “Lap-Band® Rapid Port™ System: Preliminary results in 21 patients”, Obesity Surgery, 2005, p. 936, 15, No. 7.
Baumgart et al., “A fully implantable, programmable distraction nail (Fitbone)—new perspectives for corrective and reconstructive limb surgery.”, Practice of Intramedullary Locked Nails, 2006, pp. 189-198.
Baumgart et al., “The bioexpandable prosthesis: A new perspective after resection of malignant bone tumors in children,”, J Pediatr Hematol Oncol, 2005, pp. 452-455, 27, No. 8.
Bodó et al., “Development of a tension-adjustable implant for anterior cruciate ligament reconstruction.”, Eklem Hastaliklari ve Cerrahisi—Joint Diseases and Related Surgery, 2008, pp. 27-32, 19, No. 1.
Boudjemline et al., “Off-label use of an adjustable gastric banding system for pulmonary artery banding,”, The Journal of Thoracic and Cardiovascular Surgery, 2006, pp. 1130-1135, 131, No. 5.
Brown et al., “Single port surgery and the Dundee Endocone.”, SAGES Annual Scientific Sessions: Emerging Technology Poster Abstracts, 2007, ETP007, pp. 323-324.
Buchowski et al., “Temporary internal distraction as an aid to correction of severe scoliosis”, J Bone Joint Surg Am, 2006, pp. 2035-2041, 88-A, No. 9.
Burghardt et al., “Mechanical failure of the Intramedullary Skeletal Kinetic Distractor in limb lengthening,”, J Bone Joint Surg Br, 2011, pp. 639-643, 93-B, No. 5.
Burke, “Design of a minimally invasive non fusion device for the surgical management of scoliosis in the skeletally immature”, Studies in Health Technology and Informatics, 2006, pp. 378-384, 123.
Carter et al., “A cumulative damage model for bone fracture.”, Journal of Orthopaedic Research, 1985, pp. 84-90, 3, No. 1.
Chapman et al., “Laparoscopic adjustable gastric banding in the treatment of obesity: A systematic literature review.”, Surgery, 2004, pp. 326-351, 135, No. 3.
Cole et al., “Operative technique intramedullary skeletal kinetic distractor: Tibial surgical technique.”, Orthofix, 2005.
Cole et al., “The intramedullary skeletal kinetic distractor (ISKD): first clinical results of a new intramedullary nail for lengthening of the femur and tibia.”, Injury, 2001, pp. S-D-129-S-D-139, 32.
Dailey et al., “A novel intramedullary nail for micromotion stimulation of tibial fractures.”, Clinical Biomechanics, 2012, pp. 182-188, 27, No. 2.
Daniels et al., “A new method for continuous intraoperative measurement of Harrington rod loading patterns.”, Annals of Biomedical Engineering, 1984, pp. 233-246, 12, No. 3.
De Giorgi et al., “Cotrel-Dubousset instrumentation for the treatment of severe scoliosis.”, European Spine Journal, 1999, pp. 8-15, No. 1.
Dorsey et al., “The stability of three commercially available implants used in medial opening wedge high tibial osteotomy,”, Journal of Knee Surgery, 2006, pp. 95-98, 19, No. 2.
Edeland et al., “Instrumentation for distraction by limited surgery in scoliosis treatment.”, Journal of Biomedical Engineering, 1981, pp. 143-146, 3, No. 2.
Elsebaie, “Single growing rods (Review of 21 cases). Changing the foundations: Does it affect the results?”, Journal of Child Orthop, 2007, 1:258.
Ember et al., “Distraction forces required during growth rod lengthening.”, J of Bone Joint Surg BR, 2006, p. 229, 88-B, No. Suppl. II.
European Patent Office, “Observations by a third party under Article 115 EPC in EP08805612 by Soubeiran.”, 2010.
Fabry et al., “A technique for prevention of port complications after laparoscopic adjustable silicone gastric banding,”, Obesity Surgery, 2002, pp. 285-288, 12, No. 2.
Fried et al., “In vivo measurements of different gastric band pressures towards the gastric wall at the stoma region,”, Obesity Surgery, 2004, p. 914, 14, No. 7.
Gao et al., CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis, American Journal of Human Genetics, 2007, pp. 957-965, 80.
Gebhart et al., “Early clinical experience with a custom made growing endoprosthesis in children with malignant bone tumors of the lower extremity actioned by an external permanent magnet; The Phenix M. system”, International Society of Limb Salvage 14th International Symposium on Limb Salvage. Sep. 3, 2007, Hamburg, Germany, (2 pages).
Gillespie et al. “Harrington instrumentation without fusion.”, J Bone Joint Surg Br, 1981, p. 461, 63-B, No. 3.
Goodship et al., “Strain rate and timing of stimulation in mechanical modulation of fracture healing,”, Clinical Orthopaedics and Related Research, 1998, pp. S105-S115, No. 355S.
Grass et al., “Intermittent distracting rod for correction of high neurologic risk congenital scoliosis.”, Spine, 1997, pp. 1922-1927, 22, No. 16.
Gray, “Gray's anatomy of the human body.”, http://education.yahoo.com/reference/gray/subjects/subject/128, published Jul. 1, 2007.
Grimer et al. “Non-invasive extendable endoprostheses for children—Expensive but worth it!”, International Society of Limb Salvage 14th International Symposium on Limb Salvage, 2007.
Grünert, “The development of a totally implantable electronic sphincter.” (translated from the German “Die Entwicklung eines total implantierbaren elektronischen Sphincters”), Langenbecks Archiv fur Chirurgie, 1969, pp. 1170-1174, 325.
Guichet et al. “Gradual femoral lengthening with the Albizzia intramedullary nail”, J Bone Joint Surg Am, 2003, pp. 838-848, 85-A, No. 5.
Gupta et al., “Non-invasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours.”, J Bone Joint Surg Br, 2006, pp. 649-654, 88-B, No. 5.
Hankemeier et al., “Limb lengthening with the Intramedullary Skeletal Kinetic Distractor (ISKD),”, Oper Orthop Traumatol, 2005, pp. 79-101, 17, No. 1.
Harrington, “Treatment of scoliosis. Correction and internal fixation by spine instrumentation,”, J Bone Joint Surg Am, 1962, pp. 591-610, 44-A, No. 4.
Hennig et al., “The safety and efficacy of a new adjustable plate used for proximal tibial opening wedge osteotomy in the treatment of unicompartmental knee osteoarthrosis.”, Journal of Knee Surgery, 2007, pp. 6-14, 20, No. 1.
Hofmeister et al., “Callus distraction with the Albizzia nail.”, Practice of Intramedullary Locked Nails, 2006, pp. 211-215.
Horbach et al., “First experiences with the routine use of the Rapid Port™ system with the Lap-Band®.”, Obesity Surgery, 2006, p. 418, 16, No. 4.
Hyodo et al., “Bone transport using intramedullary fixation and a single flexible traction cable.”, Clinical Orthopaedics and Related Research, 1996, pp. 256-268, 325.
International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to static magnetic fields.” Health Physics, 2009, pp. 504-514, 96, No. 4.
INVIS®/Lamello Catalog, 2006, Article No. 68906A001 GB.
Kasliwal et al., “Management of high-grade spondylolisthesis.”, Neurosurgery Clinics of North America, 2013, pp. 275-291, 24, No. 2.
Kenawey et al., “Leg lengthening using intramedullay skeletal kinetic distractor: Results of 57 consecutive applications.”, Injury, 2011, pp. 150-155, 42, No. 2.
Kent et al., “Assessment and correction of femoral malrotation following intramedullary nailing of the femur,”, Acta Orthop Belg, 2010, pp. 580-584, 76, No. 5.
Klemme et al., “Spinal instnimentation without fusion for progressive scoliosis in young children”, Journal of Pediatric Orthopaedics. 1997, pp. 734-742, 17, No. 6.
Korenkov et al., “Port function after laparoscopic adjustable gastric banding for morbid obesity,”, Surgical Endoscopy, 2003, pp. 1068-1071, 17, No. 7.
Krieg et al., “Leg lengthening with a motorized nail in adolescents.”, Clinical Orthopaedics and Related Research, 2008, pp. 189-197, 466, No. 1.
Kucukkaya et al., “The new intramedullary cable bone transport technique.”, Journal of Orthopaedic Trauma, 2009, pp. 531-536, 23, No. 7.
Lechner et al., “In vivo band manometry: A new method in band adjustment”, Obesity Surgery, 2005, p. 935, 15, No. 7.
Lechner et al., “Intra-band manometry for band adjustments: The basics”, Obesity Surgery, 2006, pp. 417-418, 16, No. 4.
Li et al., “Bone transport over an intramedullary nail: A case report with histologic examination of the regenerated segment.”, Injury, 1999, pp. 525-534, 30, No. 8.
Lonner, “Emerging minimally invasive technologies for the management of scoliosis.”, Orthopedic Clinics of North America, 2007, pp. 431-440, 38, No. 3.
Matthews et al., “Magnetically adjustable intraocular lens.”, Journal of Cataract and Refractive Surgery, 2003, pp. 2211-2216, 29, No. 11.
Micromotion, “Micro Drive Engineering-General catalogue.”, 2009, pp. 14-24.
Mineiro et al., “Subcutaneous rodding for progressive spinal curvatures: Early results.”, Journal of Pediatric Orthopaedics, 2002, pp. 290-295, 22, No. 3.
Moe et al., “Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children.”, Clinical Orthopaedics and Related Research, 1984, pp. 35-45, 185.
Montague et al., “Magnetic gear dynamics for servo control.”, Melecon 2010—2010 15th IEEE Mediterranean Electrotechnical Conference, Valletta, 2010, pp. 1192-1197.
Montague et al., “Servo control of magnetic gears.”, IEEE/ASME Transactions on Mechatronics, 2012, pp. 269-278, 17, No. 2.
Nachemson et al., “Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis.”, The Journal of Bone and Joint Surgery, 1971, pp. 445-465, 53, No. 3.
Nachlas et al., “The cure of experimental scoliosis by directed growth control.”, The Journal of Bone and Joint Surgery, 1951, pp. 24-34, 33-A, No. 1.
Newton et al., “Fusionless scoliosis correction by anterolateral tethering . . . can it work?.”, 39th Annual Scoliosis Research Society Meeting, 2004.
Oh et al., “Bone transport over an intramedullary nail for reconstruction of long bone defects in tibia.”, Archives of Orthopaedic and Trauma Surgery, 2008, pp. 801-808, 128, No. 8.
Ozcivici et al., “Mechanical signals as anabolic agents in bone.”, Nature Reviews Rheumatology, 2010, pp. 50-59, 6, No. 1.
Piorkowski et al., Preventing Port Site Inversion in Laparoscopic Adjustable Gastric Banding, Surgery for Obesity and Related Diseases, 2007, 3(2), pp. 159-162, Elsevier; New York, U.S.A.
Prontes, “Longest bone in body.”, eHow.com, 2012.
Rathjen et al., “Clinical and radiographic results after implant removal in idiopathic scoliosis.”, Spine, 2007, pp. 2184-2188, 32, No. 20.
Ren et al., “Laparoscopic adjustable gastric banding: Surgical technique”, Journal of Laparoendoscopic & Advanced Surgical Techniques, 2003, pp. 257-263, 13, No. 4.
Reyes-Sanchez et al., “External fixation for dynamic correction of severe scoliosis”, The Spine Journal, 2005, pp. 418-426, 5, No. 4.
Rinsky et al., “Segmental instmmentation without fusion in children with progressive scoliosis.”, Journal of Pediatric Orthopedics, 1985, pp. 687-690, 5, No. 6.
Rode et al., “A simple way to adjust bands under radiologic control”, Obesity Surgery, 2006, p. 418, 16, No. 4.
Schmerling et al., “Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis.”, Journal of Biomedical Materials Research, 1976, pp. 879-892, 10, No. 6.
Scott et al., “Transgastric, transcolonic and transvaginal cholecystectomy using magnetically anchored instruments.”, SAGES Annual Scientific Sessions, Poster Abstracts, Apr. 18-22, 2007, P511, p. 306.
Sharke, “The machinery of life”, Mechanical Engineering Magazine, Feb. 2004, Printed from Internet site Oct. 24, 2007 http://www.memagazine.org/contents/current/features/moflife/moflife.html.
Shiha et al., “Ilizarov gradual correction of genu varum deformity in adults.”, Acta Orthop Belg, 2009, pp. 784-791, 75, No. 6.
Simpson et al., “Femoral lengthening with the intramedullary skeletal kinetic distractor.”, Journal of Bone and Joint Surgery, 2009, pp. 955-961, 91-B, No. 7.
Smith, “The use of growth-sparing instrumentation in pediatric spinal deformity.”, Orthopedic Clinics of North America, 2007, pp. 547-552, 38, No. 4.
Soubeiran et al. “The Phenix M System, a fully implanted non-invasive lengthening device externally controllable through the skin with a palm size permanent magnet. Applications in limb salvage.” International Society of Limb Salvage 14th International Symposium on Limb Salvage, Sep. 13, 2007, Hamburg, Germany, (2 pages).
Soubeiran et al., “The Phenix M System. A fully implanted lengthening device externally controllable through the skin with a palm size permanent magnet; Applications to pediatric orthopaedics”, 6th European Research Conference in Pediatric Orthopaedics, Oct. 6, 2006, Toulouse, France (7 pages).
Stokes et al., “Reducing radiation exposure in early-onset scoliosis surgery patients: Novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Prospective validation study and assessment of clinical algorithm”, 20th International Meeting on Advanced Spine Techniques, Jul. 11, 2013, Vancouver, Canada. Scoliosis Research Society.
Sun et al., “Masticatory mechanics of a mandibular distraction osteogenesis site: Interfragmentary micro movement”, Bone, 2007, pp. 188-196, 41, No. 2.
Synthes Spine, “VEPTR II. Vertical Expandable Prosthetic Titanium Rib II: Technique Guide.”, 2008, 40 pgs.
Synthes Spine, “VEPTR Vertical Expandable Prosthetic Titanium Rib, Patient Guide.”, 2005, 26 pgs.
Takaso et al., “New remote-controlled growing-rod spinal instmmentation possibly applicable for scoliosis in young children,”, Journal of Orthopaedic Science, 1998, pp. 336-340, 3, No. 6.
Teli et al., “Measurement of forces generated during distraction of growing rods.”, Journal of Children's Orthopaedics, 2007, pp. 257-258, 1, No. 4.
Tello, “Hamngton instmmentation without arthrodesis and consecutive distraction program for young children with severe spinal deformities: Experience and technical details.”, The Orthopedic Clinics of North America, 1994, pp. 333-351, 25, No. 2.
Thaller et al., “Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX®)—Preliminary results.”, Injury, 2014 (E-published Oct. 28, 2013), pp. S60-S65, 45.
Thompson et al., “Early onset scoliosis: Future directions”, 2007, J Bone Joint Surg Am, pp. 163-166, 89-A, Suppl 1.
Thompson et al., “Growing rod techniques in early-onset scoliosis”, Journal of Pediatric Orthopedics, 2007, pp. 354-361, 27, No. 3.
Thonse et al., “Limb lengthening with a fully implantable, telescopic, intramedullary nail.”, Operative Techniques in Orthopedics, 2005, pp. 355-362, 15, No. 4.
Trias et al., “Dynamic loads experienced in correction of idiopathic scoliosis using two types of Harrington rods.”, Spine, 1979, pp. 228-235, 4, No. 3.
Verkerke et al., “An extendable modular endoprosthetic system for bone tumor management in the leg”, Journal of Biomedical Engineering, 1990, pp. 91-96, 12, No. 2.
Verkerke et al., “Design of a lengthening element for a modular femur endoprosthetic system”, Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 1989, pp. 97-102, 203, No. 2.
Verkerke et al., “Development and test of an extendable endoprosthesis for bone reconstruction in the leg.”, The International Journal of Artificial Organs, 1994, pp. 155-162, 17, No. 3.
Weiner et al., “Initial clinical experience with telemetrically adjustable gastric banding”, Surgical Technology International, 2005, pp. 63-69, 15.
Wenger, “Spine jack operation in the correction of scoliotic deformity: A direct intrathoracic attack to straighten the laterally bent spine: Preliminary report”, Arch Surg, 1961, pp. 123-132 (901-910), 83, No. 6.
White, III et al., “The clinical biomechanics of scoliosis.”, Clinical Orthopaedics and Related Research, 1976, pp. 100-112, 118.
Yonnet, “A new type of permanent magnet coupling.”, IEEE Transactions on Magnetics, 1981, pp. 2991-2993, 17, No. 6.
Yonnet, “Passive magnetic bearings with permanent magnets.”, IEEE Transactions on Magnetics, 1978, pp. 803-805, 14, No. 5.
Zheng et al., “Force and torque characteristics for magnetically driven blood pump.”, Journal of Magnetism and Magnetic Materials, 2002, pp. 292-302, 241, No. 2.
Related Publications (1)
Number Date Country
20210338229 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
61860668 Jul 2013 US
Divisions (1)
Number Date Country
Parent 16257526 Jan 2019 US
Child 17374350 US
Continuations (1)
Number Date Country
Parent 14447391 Jul 2014 US
Child 16257526 US