1. Field of the Invention
The present invention relates to methods and instrumentation that utilize nonlinear elasticity for measurements and imaging with elastic waves in materials, as for example, but not limited to medical ultrasound imaging, ultrasound nondestructive testing, sub sea SONAR applications, and geological applications.
2. Background of the invention
Nonlinear elasticity means that the material elastic stiffness changes with elastic deformation of the material. For example, the material volume compression stiffness increases with volume compression of the material with a subsequent increase in the volume compression wave propagation velocity. Similarly, volume expansion reduce the material volume compression stiffness with a subsequent reduction in volume compression wave propagation velocity.
Solids also have a shear deformation elasticity which makes shear deformation waves possible in the solids. Gases and fluids are fully shape deformable, and hence do not have shear elasticity and shear waves. Soft biological tissues behave for pressure waves mainly as a fluid (water), but the solid constituents (cells) introduce a shear deformation elasticity with low shear modulus. The propagation velocity of pressure compression waves are for example ˜1500 m/sec in soft tissues, while shear waves have propagation velocities ˜1-10 m/sec only. Compared to volume compression, shear deformation of solid materials has a more complex nonlinear elasticity, where in general for isotropic materials any shear deformation increases the shear modulus with a subsequent increase in shear wave velocity. The shear modulus is also in general influenced by volume compression, where as for the bulk modulus a volume compression increases the shear modulus with a subsequent increase in shear wave velocity while volume expansion decreases the shear modulus with a subsequent decrease in shear wave velocity. For anisotropic materials the dependency of the shear modulus with shear deformation can be more complex, where shear deformation in certain directions can give a decrease in shear elastic modulus with a decrease in shear wave velocity.
As different materials have different nonlinear elasticity, compression/expansion/deformation of a spatially heterogeneous material will change the spatial variation of the elasticity and hence produce a scattering that depends on the material strain. The scattered signal can hence be separated into a linear scattering component produced by the heterogeneous elasticity at low strain, and a nonlinear scattering component of elastic waves from the modification of the heterogeneous elasticity produced by large strain in the material. Nonlinear elasticity hence influences both propagation and scattering of pressure waves in gases, fluids and solids, and also of shear waves in solids. The nonlinear volume elasticity effect is generally strongest with gases, intermediate with fluids, and weakest with solid materials.
Acoustic noise produced by multiple scattering and wave front aberrations reduces the image quality and produces problems for extraction of the nonlinearly scattered signal and propagation and scattering parameters. Current ultrasound image reconstruction techniques take as an assumption that the wave propagation velocity do not have spatial variations, and that the ultrasound pulse is scattered only once from each scatterer within the beam (1st order scattering). In most situations, especially in difficult to image patients, the 1st order scattered pulse will be rescattered by a 2nd scatterer (2nd order scattered wave), which is rescattered by a 3rd scatterer (3rd order scattered wave) etc. Odd orders of scattered waves will have an added propagation delay and show as acoustic noise in the image.
In U.S. patent application Ser. No. 11/189,350 and 11/204,492 methods are described where one transmits at least two elastic wave pulse complexes composed of a pulse in a high frequency (HF) band and a pulse in a low frequency (LF) band, both for suppression of acoustic pulse reverberation noise (multiple scattering noise) and for estimation of elastic wave nonlinear propagation properties and elastic wave nonlinear scattering in heterogeneous materials. The LF pulse is used to nonlinearly manipulate the material elasticity that is observed by the HF pulse along its propagation path, and hence nonlinearly manipulate both the propagation velocity and the scattering for the HF pulse. The applications exemplify the method for ultrasound imaging of soft tissues, but it is clear that the method is applicable to all types of elastic wave imaging, as for example but not limited to, nondestructive testing of materials, sub sea SONAR applications, geological applications, etc. The methods are applicable with compression waves in gases, fluids, and solids, and also with shear waves in solids. Shear waves can for example be transmitted with special transducers, be generated by the radiation force from compression, or by skewed inclination of pressure waves at material interfaces. Similarly can pressure waves be generated both directly with transducers and with skewed inclination of shear waves at material interfaces.
When the LF pulse pressure varies along the HF pulse, the different parts of the HF pulse gets different propagation velocities that introduces a change of the pulse length and possibly also a distortion of the pulse form of the HF pulse that accumulates along the propagation path. Such a variation of the LF pulse pressure can be found when the HF pulse is located on a spatial gradient of the LF pulse, but also when a comparatively long HF pulse is found around the pressure maxima and minima of the LF pulse. We will in the following refer to these modifications of the HF pulse length and form by the LF pulse as HF pulse distortion.
With an LF aperture that is so wide that the whole HF imaging range is within the near field of the LF beam, one can obtain a defined phase relation between the HF and LF pulse, where the HF pulse can be at the crest or through of the LF pulse for the whole imaging range. With diffraction limited, focused LF beams, the pressure in the focal zone is the time derivative of the pressure at the transducer surface. The phase relation between HF pulse and the LF pulse will hence in this case slide with depth. For the HF pulse to be at the crest (or trough) of the LF pulse in the LF focal region, the pulse must be transmitted at the negative (positive) spatial gradient of the LF pulse at the transducer. This produces an accumulative length compression of the HF pulse when it is located along a negative spatial gradient of the LF pulse, and an accumulative length stretching of the HF pulse when it is found along a positive spatial gradient of the LF pulse. In order to obtain adequately collimated LF beams, it is often advantageous to use a LF transmit aperture that is wider than the HF transmit aperture, and/or the LF transmit focus is different from the HF transmit focus. This gives an additional phase sliding with the propagation distance of the HF pulse relative to the LF pulse. To suppress multiple scattering noise, one often use a LF transmit aperture with an inactive region around its center. This gives a LF beam with increased phase sliding between the HF and LF pulses.
When the phase between the HF and LF pulses slides with propagation distance, the LF pulse can provide different modifications to the HF pulse at different depths. For example can the HF pulse be at the negative spatial gradient of the LF pulse at low depths and slide via an extremum with negligible spatial gradient of the LF pulse towards a positive spatial gradient of the LF pulse along the HF pulse at deep ranges. The HF pulse in this example observes accumulative pulse compression at shallow depths, via an intermediate region with limited pulse distortion, towards an accumulative pulse length expansion at deep ranges, where the deep range pulse length expansion counteracts the shallow range pulse length compression. Switching the polarity of the LF pulse changes the pulse compression to pulse expansion and vice versa. As the pulse distortion changes the frequency content of the HF pulse, the frequency varying diffraction and power absorption will also change the HF pulse amplitude with the distortion, and we include these phenomena in the concept of HF pulse distortion.
The HF pulse distortion will hence be different for different amplitudes, phases and polarities of the LF pulse, a phenomenon that limits the suppression of the linearly scattered signal to obtain the nonlinearly scattered signal with pure delay correction, for example as described in U.S. patent application Ser. No. 11/189,350 and 11/204,492. The current invention presents methods that improve the suppression of the linear scattering for improved estimation of the nonlinear scattering, and also introduces improved methods of suppression of pulse reverberation noise.
This summary gives a brief overview of components of the invention and does not present any limitations as to the extent of the invention, where the invention is solely defined by the claims appended hereto. The methods are applicable both for backscatter and transmission tomographic image reconstruction methods.
At least two elastic wave pulse complexes composed of a pulse in a low frequency (LF) band and a pulse in a high frequency (HF) band, are transmitted into the object, where at least the transmitted LF pulses varies in phase (relative to the transmitted HF pulse), and/or amplitude, and/or frequency for each transmitted pulse complex. The LF pulses are used to nonlinearly manipulate the material elasticity observed by the HF pulses along at least parts of the propagation path of the HF pulses. By the received HF signal we do in this description mean received signal from the transmitted HF pulses that are one or both of scattered from the object and transmitted through the object, and where signal components from the transmitted LF pulse with potential harmonic components thereof, are removed from the signal, for example through filtering of the received HF signal. Such filtering can be found in the ultrasound transducers themselves or in the receiver channel of an instrument. For adequately stationary objects, one can also suppress received components of the transmitted LF pulse by transmitting a LF pulse with zero HF pulse and subtracting the received signal from this LF pulse with zero transmitted HF pulse from the received HF signal with a transmitted LF/HF pulse complex. The received HF signal can contain harmonic components of the HF band produced by propagation and scattering deformation of the HF pulse, and in the processing one can filter the received HF signal so that the fundamental band, or any harmonic band, or any combination thereof, of the HF pulse is used for image reconstruction. The harmonic components of the HF pulse can also be extracted with the well known pulse inversion (PI) method where the received HF signals from transmitted HF pulses with opposite polarity are added. By the received HF signal we hence mean at least one of the received HF radio frequency (RF) signal at the receiver transducer with any order of harmonic components thereof, and any demodulated form of the HF RF signal that contain the same information as the received HF RF signal, such as an I-Q demodulated version of the HF RF signal, or any shifting of the HF RF signal to another frequency band than that found at the receiver transducer. Such frequency shifting is known to anyone skilled in the art, and it is also known that processing on the RF signal can equivalently be done on any frequency shifted version of the RF signal.
For back-scatter imaging, the received HF signal will be picked up by a focused receive beam, usually dynamically focused, so that we will by large observe only the nonlinear manipulation of the object by the LF pulse for the HF pulse close to the axis of the receive beam. With tomographic image reconstruction methods the image reconstruction introduces a spatial resolution so that we in each pixel observe the nonlinear manipulation by the LF pulse for the HF pulse along the propagation path through said image pixel. The HF pulses from said at least two transmitted pulse complexes hence observe different propagation velocities and different nonlinear scattering from the object, the differences being produced by the differences in the transmitted LF pulses. The LF pulses often have opposite polarity for the said at least two different pulse complexes, but one also can vary the amplitude and/or phase and/or frequency and/or transmit aperture and/or transmit focus of the LF pulse for each transmitted pulse complex.
The maximal transmit amplitude is often limited by the Mechanical Index (MI) of the pulse complex, which is determined by the negative swing of the pressure. One can hence use higher amplitudes when the HF pulse is placed at the positive pressure swing of the LF pulse, compared to when the HF pulse is placed at the negative pressure swing of the LF pulse. Variations in the amplitude of the LF pulse between complexes are then accounted for in the processing of the received signal. The HF pulse can also be varied for transmitted pulse complexes, for example by switching the polarity and/or the amplitude of the HF pulses, where the variation is accounted for in the processing of the received HF signals.
The LF pulse can be a simple narrowband pulse, or it can be a more complex pulse with frequencies in the LF band. For example, in one method according to the invention the LF pulse is composed of a fundamental band and a 2nd harmonic band, or a fundamental band and a band around 1.5 the fundamental center frequency, in order to obtain similar pulse distortion for positive and negative polarities of the LF pulse. The HF pulse can also be a simple narrowband pulse, or it can be a more complex pulse with frequencies in the HF band, for example Barker, Golay, or chirp code pulses which allows transmission of higher power with limited pulse amplitude, for example limited by the MI, where improved resolution is obtained with pulse compression in the receive processing, according to known methods.
The received HF signal from the said at least two transmitted pulse complexes are processed to form image signals, where said processing occurs both in the fast time (depth-time) and as a combination between received HF signals from at least two transmitted pulse complexes, which is referred to as combination or filtering in the slow time also referred to as combination or filtering along the pulse number coordinate, where slow time is represented by the pulse number coordinate. According to the invention the processing at least includes one or both of the steps:
a) relative delay correction in the fast time (depth-time) of the received HF signals from different transmitted pulse complexes to compensate for the differences in propagation delay of the HF pulse produced by the nonlinear manipulation of the propagation velocity by the LF pulse, averaged along the HF pulse, and
b) pulse distortion correction of the received HF signal in the fast time to compensate for the HF pulse distortion produced by variations of the propagation velocity along the HF pulse produced by variations in the LF pressure along the HF pulse in non-negligible regions of the depth along the HF beam axis. Said pulse distortion correction can be done through one or more of i) fast time filtering of the received HF signal in pulse distortion correction filters, and ii) pre-distortion of the transmitted HF pulses that counteracts the propagation distortion of the HF pulses, and iii) frequency mixing of the received HF signal, and iv) a piece-wise fast time expansion/compression and amplitude correction of the received HF signal, v) other methods, and vi) a combination of the above. The pulse distortion correction includes both a modification in fast time frequency content and amplitude to compensate for the distortion effect of nonlinear propagation and frequency varying diffraction, absorption, and also conversion of HF power to higher harmonic bands. The corrections for pulse distortion and propagation delay variations can be interchanged, and the filters can also perform a combined pulse distortion and delay correction. However, for efficient processing one would correct for the nonlinear propagation delays with an interpolated delay operation and use a filter for correction of the pulse distortion, as this requires the shortest filter impulse response.
After the delay and/or pulse distortion corrections in the fast time the received HF signals from said at least two transmitted pulse complexes are combined in slow time (i.e. pulse number coordinate) for one or both of
i) suppression of pulse reverberation noise (multiple scattering noise) to enhance the first order scattered HF signal from the object, and
ii) suppression of the linearly scattered HF signal from the object to relatively enhance the nonlinearly scattered HF signal from the object.
A typical form of slow time combination of the signals is a subtraction of the fast time processed received HF signals, or other type of filter in the slow time (along the pulse number coordinate), typically a high pass filter. One can also for example change the polarity of the HF pulse for each transmitted pulse complex, where subtraction of the signals for suppression of linear scattering or multiple scattering noise is substituted with a sum of the signals by which the slow time high pass filter is substituted by a low pass filter, according to known methods.
The processed HF signals are further processed to form image signals such as scattering amplitude images, color images representing Doppler frequencies and displacement strain, computer tomographic image reconstruction for transmitted signals at different directions, etc., where many such methods are known in prior art.
The correction delays and pulse distortion corrections can for example be calculated from simulated LF and HF pulse propagation using local nonlinear elastic wave propagation parameters of the medium that for example can be assumed, or manually adjusted, or estimated from the received HF signal, or the correction delays and pulse distortion corrections can be directly estimated from the received HF signals from said at least two transmitted pulse complexes, or a combination thereof. The wave propagation parameters are composed of the local mass density and linear and nonlinear components of the local elasticity matrix of the material.
One can further by example estimate the corrections delays from the received HF signals from transmitted pulse complexes with different LF pulses, for example as described in U.S. patent application Ser. No. 11/189,350 and 11/204,492. The fast time gradient of the estimated nonlinear propagation delays provides quantitative estimates of local, nonlinear elasticity parameters that can be used to estimate pulse distortion corrections from simulations of the composite LF and HF pulse beams. Such differentiation can be obtained with band limited filters or model based estimation where one compares the estimated delays with the simulated amplitude and phase between the HF and LF pulses as a function of depth along the beam axis. One can also do a manual adjustment of the nonlinear propagation delays or local nonlinear elasticity parameters as inputs to a simulation of the pulse distortion corrections and potentially also delay corrections, where the local nonlinear elasticity parameters are adjusted for maximal suppression of pulse reverberation noise (multiple scattering noise) or the linear scattering components in the received HF signal, for example as observed on the image display screen. The pulse distortion corrections can also be estimated from correlation functions or Fourier spectra of the received HF signals at similar depth ranges from transmitted pulse complexes with different LF pulses.
The invention also includes design criteria for LF and HF transmit apertures that minimize the sliding between the HF and the LF pulse to obtain best possible results of suppression of pulse reverberation noise and extract nonlinear scattering and propagation parameters. We further present methods for combined suppression of pulse reverberation noise, estimation of nonlinear scattering, and estimation of nonlinear propagation and scattering parameters. The signals after the suppression of pulse reverberation noise are very useful for improved estimation of corrections for wave front aberrations in spatially heterogeneous objects, for example according to the methods described in U.S. Pat. No. 6,485,423, U.S. Pat. No. 6,905,465, U.S. Pat. No. 7,273,455, and U.S. patent application Ser. No. 11/189,350 and 11/204,492.
The invention further includes instruments that incorporate the methods in practical elastic wave imaging of objects.
Example embodiments according to the invention will now be described with reference to the drawings.
a shows a 1st example transmitted pulse complex 101 composed of a low frequency (LF) pulse 102 and a high frequency (HF) pulse 103, together with a 2nd example pulse complex 104 composed of a LF pulse 105 and a HF pulse 106. The LF pulse 102 will compress the material at the location of the HF pulse 103, and nonlinear elasticity will then increase the material stiffness and also the propagation velocity observed by the HF pulse 103 along its propagation path. In the 2nd pulse complex 104 the LF pulse 105 expands the material at the location of the HF pulse 106, with a subsequent reduction in material stiffness and reduction in propagation velocity of the HF pulse 106 due to the nonlinear elasticity of the material. For fluids and solids, the elasticity can generally be approximated to the 2nd order in the pressure, i.e. the volume compression δV of a small volume ΔV is related to the pressure p as
where r is the spatial position vector, κ(r) is the linear bulk compressibility of the material, and βn(r)=1+B(r)/2A(r) is a nonlinearity parameter of the bulk compressibility. The material parameters have a spatial variation due to heterogeneity in the material. Gases generally show stronger nonlinear elasticity, where higher order terms in the pressure often must be included. Micro gas-bubbles in fluids with diameter much less than the ultrasound wavelength, also shows a resonant compression response to an oscillating pressure, which is discussed below.
The propagation velocity for the HF pulse will then for a 2nd order elastic material be affected by the LF pulse pressure pLF at the locations of the propagating HF pulse, and for approximation of the pressure dependency to the 1st order in the pressure, we get
c(r,pLF)=c0(r){1+βn(r)κ(r)pLF} (2)
where c0(r) is the unmodified propagation velocity as a function of HF pulse location r. For a dynamically focused HF receive beam one do with back-scatter imaging observe the object at a narrow region around the beam axis. The propagation lag of the HF pulse along the beam axis can then be approximated as
where Γ(r) is the propagation path of the HF pulse to depth r and the coordinate s denotes the ray location along the HF pulse at any time. The propagation lag without manipulation of the propagation velocity by the LF pulse is t0(r). For a homogeneous material t0(r)=(propagation length)/c0, where for backscatter imaging at a range r, we have propagation length=2r and t0(r)=2r/c0. τ(r) is the added nonlinear propagation delay produced by the nonlinear manipulation of the propagation velocity for the HF pulse by the LF pulse. We note that when a scattering/reflection occurs the LF pulse pressure pLF drops considerably at the location of the scattered HF pulse so that the LF modification of the propagation velocity is negligible for the scattered wave. This means that we only get contribution in the integral for τ(r) up to the 1st scattering, an effect that we will use to suppress multiple scattered waves in the received signal.
We have here given a single coordinate r along the propagation path of the pulse. This is a good approximation with adequately focused beams for the received HF signal, so that one observes a limited cross section along the path of the HF pulse, and can also be obtained for angular scattering and transmission tomographic image reconstruction. The basic idea of the invention do however go beyond such a limited description, but the limited description is used for simplicity to illustrate basic aspects of the invention that also applies to situations where a full 3D description of the pulse propagation is required.
The variation of the propagation velocity with the pressure, will also produce a self distortion of both the LF and HF pulses, that introduces harmonic components of the fundamental bands of the pulses. The different harmonic components have different diffraction, which also influences the net self-distortion from the nonlinear propagation velocity. The LF beam is generally composed of a near-field region where the beam is mainly defined by geometric extension of the LF radiation aperture, and a diffraction limited region, which is the focal region for a focused aperture, and the far-field for an unfocused aperture. In the diffraction limited region, the self distortion of the positive (102) and negative (105) LF pulses will be different so that the elasticity manipulation of the two pulses will be different in this region.
By the received HF signal we do in this description mean the received signal from the transmitted HF pulses that are either scattered from the object or transmitted through the object, and where signal components from the transmitted LF pulse with potential harmonic components thereof, are removed from the signal, for example through filtering of the received HF signal. Such filtering can be found in the ultrasound transducers themselves or in the receiver channel of an instrument. For adequately stationary objects, one can also suppress received components of the transmitted LF pulse by transmitting a LF pulse with zero HF pulse and subtracting the received signal from this LF pulse with zero transmitted HF pulse from the received HF signal with a transmitted LF/HF pulse complex. The received HF signal can contain harmonic components of the HF band produced by propagation and scattering deformation of the HF pulse, and in the processing one can filter the received HF signal so that the fundamental band, or any harmonic band, or any combination thereof, of the HF pulse is used for image reconstruction. The harmonic components of the HF pulse can also be extracted with the well known pulse inversion (PI) method where the received HF signals from transmitted HF pulses with opposite polarity are added. By the received HF signal we hence mean at least one of the received HF radio frequency (RF) signal at the receiver transducer and any order of harmonic components thereof, and any demodulated form of the HF RF signal that contain the same information as the received HF RF signal, such as an I-Q demodulated version of the HF RF signal, or any shifting of the HF RF signal to another frequency band than that found at the receiver transducer. Such frequency shifting is known to anyone skilled in the art, and it is also known that processing on the RF signal can equivalently be done on any frequency shifted version of the RF signal.
Different materials, as for example gas bubbles, micro calcifications, connective tissue, fat, polymers, wax, scales, concrete, metals, etc. have different nonlinear elastic parameters. The incident LF pulse will therefore in a nonlinearly heterogeneous material change the spatial variation of the local elasticity observed by the HF pulse, and hence produce a local scattering of the HF pulse that depends on the LF pressure at the HF pulse. The scattered HF pulse can therefore be separated into a linear component of the scattered signal that is found for zero LF pulse, and a nonlinear modification to the linear scattering obtained with the presence of a LF pulse. This nonlinear modification of the scattered signal is referred to as the nonlinear scattering component of elastic waves in the heterogeneous material, or the nonlinearly scattered wave or signal.
For materials where the elasticity can be approximated to the 2nd order in the pressure, the elastic parameters and hence the nonlinearly scattered signal will be approximately linear in the amplitude of the LF pressure at the location of the HF pulse. For micro gas-bubbles in fluids with diameter much less than the ultrasound wavelength, the elastic compression is more complex than the 2nd order approximation to elasticity. For the first, do gases show a stronger nonlinear elasticity where higher order than the 2nd order term in the pressure in Eq. (1) must be included. For the second, when the bubble diameter is much smaller than the ultrasound wave length in the fluid, one obtains large shear deformation of the fluid around the bubble when the bubble diameter changes. This shear deforming fluid behaves as a co-oscillating mass that interacts with the bubble elasticity to form a resonant oscillation dynamics of the bubble diameter. The volume of this co-oscillating mass is approximately 3 times the bubble volume.
The scattering from such micro-bubbles will then depend on both the frequencies and the amplitudes of the LF and HF pulses. For frequencies well below the resonance frequency, the bubble compression is dominated by the nonlinear bubble elasticity, which for high pressures requires higher than 2nd order approximation in the pressure. For frequencies around the resonance, one gets a phase shift of around 90 deg between the pressure and the volume compression. For frequencies well above the resonance frequency the bubble compression is dominated by the co-oscillating mass with a phase shift of 180 deg to the incident pressure, which gives a negative compliance to the pressure. Micro bubbles are used for ultrasound contrast agent in medicine, but their density in tissue is usually so low that their effect on the wave propagation can usually be neglected, where they are mainly observed as local, nonlinear point scatterers. The forward pulse propagation therefore usually observes a 2nd order elasticity of the surrounding tissue that produces a nonlinear propagation lag according to Eq. (3). With high densities of bubbles in blood filled regions like the heart ventricles and blood vessels, the micro-bubbles can have marked nonlinear effect on the pressure variation of the wave propagation velocity, and also introduce a frequency dependent propagation velocity (dispersion) due to bubble resonances. With the method according to this invention, one can estimate the nonlinear propagation lag and pulse form distortion produced by the gas bubbles in the blood, and hence separate the accumulative, forward propagation effect of the bubbles and the local nonlinear scattering from the bubbles. Further details on the scattering from micro bubbles are discussed in relation to Eqs. (35, 36, 40).
For this most general situation we can then model the received HF signal for the transmitted pulse complexes 101 and 104 as
s
1(t)=ph1xl(t−τ1(t))+xn1(t−τ1(t);ph1,pl1) a)
s
2(t)=ph2xl(t−τ2(t))+xn2(t−τ2(t);ph2,pl2) b) (4)
where Ph1,h2(t) are the HF pulses (103/106) with amplitudes Ph1,h2, and pl1,l2(t) are the LF pressure pulses (102/106) with amplitudes pl1,l2. A change of polarity of the HF and LF pulses is then represented by a change in sign of ph1,h2 or pl1,l2. τ1,2(t) are the nonlinear propagation delays of the HF pulses 103/106 as a function of the fast time t, produced by the nonlinear manipulation of the wave propagation velocity for the HF pulses by the LF pulses 102/105 in
x
n1(t;ph1, pl1)≈ph1pl1xn(t)
x
n2(t;ph2, pl2)≈ph2pl2xn(t) (5)
By estimation of the nonlinear propagation delay {circumflex over (τ)}(t) as an estimate τ1(t), for example as described in U.S. patent application Ser. No. 11/189,350 and 11/204,492, we can eliminate the linearly scattered term from Eq. (4) to produce an estimate of the nonlinear scattering
where the last equality is found with the 2nd order elasticity approximation for the nonlinear scattering in Eq. (5).
The Mechanical Index (MI) is given by the negative pressure swing of the pulse complex and is often limited by safety regulations to avoid cavitation and destruction of the object. In such situations the amplitude of both the LF pulse 105 and the HF pulse 106 of the pulse complex 104 can have stronger limitations than the amplitudes for the pulse complex 101. One then can have advantage of operating with lower amplitudes of the pulse complex 104 compared to pulse complex 101. This difference in amplitudes is then taken care of by ph2 and pl2. For practical reasons in the signal processing it can sometimes be interesting to invert the polarity of the second HF pulse 106 compared to the 1st HF pulse 103, a modification that is taken care of by a negative value of ph2. The subtraction of the signals ph2s1 and ph1s2 in Eq. (4) is then changed to a sum. The coefficients ph1/h2 and pl1/l2 also take care of inaccuracies in the transmit amplifiers and modifications of the pulse amplitudes due to nonlinear propagation and diffraction, this modification being different from the positive and negative pulses. In case of inaccuracies in the transmitters, and unknown nonlinear propagation modification of the amplitudes, one can for example estimate ph1/ph2 and pl1/pl2 from a minimization of the power in xne as described in the U.S. patent application Ser. Nos. 11/189,350 and 11/204,492 and also in the combination with a minimization of the power in xle of Eq. (13) described below.
The nonlinearly scattered signal has shown to enhance the image contrast for
We see from Eq. (3) that the gradient in fast time (depth-time) of the estimated nonlinear propagation delay is
where r(t) is the integrated depth variable that for back scatter imaging is
where the approximation is done with approximately constant propagation velocity c0 for back scattered (divide by 2) signals. The gradient in Eq. (7) hence represents the local nonlinear propagation parameters of the object. The low frequency is so low that one can most often neglect individual variations in power absorption and wave front aberrations, and measure or calculate in computer simulations the LF pressure at the location of the HF pulse at any position along the beam. Dividing said local nonlinear propagation parameter with this estimated local amplitude of the manipulating LF pressure, one obtains a quantitative local nonlinear propagation parameter that represents local quantitative elasticity parameters of the object, as
This parameter can be used to characterize the material, where for example in soft biological tissues fat or high fat content gives a high value of βnκ.
The LF field simulation must however be done with defined parameters of the mass density ρ and compressibility κ, and in the actual material one can have deviations from the parameters used for simulation, particularly in heterogeneous materials where the parameters have a spatial variation. When the load material has low characteristic impedance compared to the output mechanical impedance of the transducer elements, the vibration velocity of the element surface uLF(0) is close to independent of the load material characteristic impedance, and hence given by the electric drive voltage. Assume that we carry through the simulations with a characteristic impedance ZS=√{square root over (ρs/κs)}=ρScS=1/κScS where the subscript S denotes values used for simulation. When the surface characteristic impedance deviates from the simulation value we get the pressure at the transducer element surface as pLF(0)=(Z(0)/ZS)pS(0) where Z(0) is the characteristic impedance of the actual load material at the element surface. The intensity is related to the pressure as I=p2/2Z, and when the characteristic impedance changes throughout the load material, the intensity is kept constant as scattering at the low frequencies is low and can be neglected, and one can then relate the actual pressure to the simulated pressure pS(r) as
As one do not know the actual material parameters, and one normalizes with pS(r) in Eq. (9) the quantitative nonlinear propagation parameter is related to the material parameters as
One hence see that quantitative estimates of elasticity parameters can be obtained from the fast time gradient of estimates of the nonlinear propagation time lag. As such estimates are noisy, the gradient must be obtained through band limited differentiation, but one can also use a model based estimation where an estimate of the nonlinear propagation delay is estimated from simulations of the composite LF/HF pulse fields with given local elasticity parameters, and the parameters are adjusted in an estimation algorithm that produces the same simulated nonlinear propagation lag as the estimated one, according to known methods.
One can also obtain a local nonlinear scattering parameter as follows: The envelope of the nonlinearly scattered signal as a function of range r=c0t/2 is proportional to
where kHF=ωHF/c0 is the wave vector for the center high frequency ωHF=2πfHF, vn(r) is a nonlinear scattering parameter for the HF band laterally averaged across the receive beam, G(r) is a depth variable gain factor given by beam shape and receiver depth variable gain settings, and the exponential function represents ultrasound power absorption in the HF band. Under the assumption of a material with 2nd order elasticity where Eq. (5) is valid, the linearly scattered component can be extracted from the received HF signals in Eq. (4) as
When xn1 and xn2 are of the more general form in Eq. (4) as found for micro-bubbles, the nonlinear component is usually small compared to the linear scattering from the tissue and is found only at the discrete locations of the micro-bubbles and so that the expression in Eq. (13) is a good approximation also in these cases. In fact, any of Eq. (4a,b) with delay correction can often be used as an estimate of the linearly scattered signal because the nonlinearly scattered signal is found at local points and often has much less amplitude than the linearly scattered signal. The envelope of the linearly scattered signal as a function of range r is similarly proportional to
where vl(r) is a linear scattering parameter for the HF band and the other variables are as in Eq. (12).
We note that the linearly and nonlinearly scattered signal components have the same amplitude variation due to beam divergence/convergence and power absorption, and one can obtain a local nonlinear scattering parameter by forming the ratio of the envelopes ane(r) and ale(r) as
further dividing by an estimate of the local LF pressure as in Eq. (9), one obtains a quantitative local nonlinear scattering parameter as
and using a simulated LF pressure we get
Variations in both the quantitative local nonlinear propagation parameter and the local nonlinear scattering parameter of the object with heating or cooling of the object can then be used to assess local temperature changes of the object, for example with thermal treatment of the object. The temperature dependency of the propagation velocity (dc/dT) of soft tissue in medical ultrasound, depends on the tissue composition where for fat or large fat content one has dc/dT<0 while for other tissues, like liver parenchyma, one has dc/dT>0 and predictable. One or both of np˜βnκ from Eqs. (9,11) and ns˜vn/vl from Eqs. (16,17) can then be used to estimate the fat content and hence dc/dT in the tissue, so that variations in the propagation lag with heating or cooling can be used to assess temperature.
The phase relation between the HF and LF pulses as shown in
The field from a flat (unfocused) LF aperture is given by the modification of
The HF pulse undergoes a similar differentiation from the transducer array surface to its own focal region, but as the HF pulse is much shorter than the LF pulse, it is the differentiation of the LF pulse that affects the phase relationship between the HF and LF pulses. The receive HF beam do generally have dynamic focusing and aperture, where we mainly will observe the interaction between the HF and LF pulses close to the HF beam axis. For the HF pulse to be found at the crest of the LF pulse in the focal region, shown as 209, the HF pulse must due to the differentiation of the LF pulse in the focus be transmitted at the array surface at the zero crossing with the negative spatial gradient of the LF pulse, shown as 210. In the same way, for the HF pulse to be found at the trough of the LF pulse in the focal region, shown as 211, the HF pulse must at the array surface be transmitted at the zero crossing with the positive spatial gradient of the LF pulse, shown as 212. The position of the HF pulse within the LF pulse complex will hence slide λLF/4 from the array surface to the focal region. During the diffraction limited focal region the HF pulse will then be close to the crest or trough of the LF pulse. Beyond the focal region the HF pulse will again slide to the gradient of the LF pulse.
Hence, in the near field region where the HF pulse is found at a gradient of the LF pulse as illustrated in
We assume a dynamically focused receive beam that is so narrow that the variation of the transmitted, distorted HF pulse at a depth r=ct0/2 is negligible across the receive beam (see comments after Eq. (3)). The effect of pulse form distortion on the received signal can then be modeled by a filter as
s
k(t)=∫dt0vk(t−t0,t0)xk(t0−τk(t0))=Slk(t)+snk(t)
x
k(t0)=xlk(t0)+xnk(t0) (18)
where vk(t, t0) represents the change in frequency content of the received HF signal due to pulse form distortion. xk(t0) represents the scattered signal that would have been obtained without pulse form distortion and nonlinear propagation delay at the fast time t0 with a nonlinear propagation delay τk(t0). xlk(t0) is the linearly scattered signal that varies with k because the transmitted HF amplitude and polarity can vary, but also because diffraction and the power in harmonic components of the HF pulse can depend on the LF pulse. xnk(t0) is the nonlinearly scattered signal for a transmitted LF pulse plk(t0), and it depends on the pulse number k because the LF pulse and potentially the HF pulse varies with k. For materials with 2nd order elasticity xnk(t0) is proportional to the LF and HF amplitudes as in Eq. (5), while for micro-bubbles the nonlinear dependency is more complex where even the scattered HF pulse form from the micro-bubble can depend on the LF pressure as discussed in relation to Eqs. (35,36) below. The linear effect of variations in the amplitude and polarity of the HF pulse can be included in vk(t,t0), while the nonlinear effect is included in the k variation of xnk(t0).
Even if there is some variation of the transmitted, distorted HF pulse across the HF receive beam, Eq. (18) gives an adequate signal model where vk(t, t0) now represents an average pulse distortion across the beam with the weight of the scattering density. This weighting of the scattering density introduces a rapidly varying component of vk(t,t0) with the depth time t0, that depends on the randomly varying scattering density. This component can introduce added noise in estimates of vk(t, t0) from the received signal.
In
The resulting nonlinear propagation delay of the HF pulse for the positive LF pulse is shown as 222 in
The dash-dot curves 227 and 228 shows the mean frequency and the bandwidth of the HF pulse for opposite polarity of the LF pulse. The dash-dot curve 229 shows the negative nonlinear propagation delay, −τk(t), with opposite polarity of the LF pulse. In this example, the HF pulse is short compared to the LF wave length, so that the LF pulse gradient mainly produces a HF pulse length compression/expansion. The HF pulse bandwidth then follows the HF pulse center frequency as is clear in
The nonlinear propagation delay, Eq. (3), changes accumulatively with depth, which implies that the fast time variation of τk(t) is fairly slow. This allows us to do the following approximation
s
k(t)≈zlk(t−τk(t))+znk(t−τk(t))
z
lk(t)=∫dt0vk(t−t0,t0)xlk(t0)znk(t)=∫dt0vk(t−t0,t0)xnk(t0) (19)
With the same approximation we can select an interval Tl=T(tl) around tl, and approximate vk(t,t0)=vk(t,tl) in this interval. This allows us to do a Fourier transform of Eq. (19) as
S
k(ω,t1)=Vk(ω,t1)Xk(ω)e−iωτ
where we have also approximated τk(t0)≈τk(tl) over the interval T(tl). We then can device a pulse distortion correction filter, for example as a Wiener filter approximation to the inverse filter given by the formula
where N is a noise power parameter to avoid noisy blow-up in Hk(ω, tl) where the amplitude of Vk(ω,tl) is low compared to noise in the measurement, while we get an inverse filter when the amplitude is sufficiently high above the noise, i.e.
We hence can correct the received signal for the nonlinear propagation delay and pulse form distortion with the following filter
{circumflex over (X)}
k(ω,tl)=Hk(ω,tl)Sk(ω,tl)eiωτ
Inverse Fourier transform of Hk(ω,tl) in Eq. (21) gives a filter impulse response as hk(t, tl). Fourier inversion of Eq. (23) and interpolation between tl gives an impulse response that is continuous in tl, and we can write the nonlinear delay and pulse distortion corrected signal in the time domain as
{circumflex over (x)}
k(t)=∫dt0hk(t−t0,t0)sk(t0+τk(t0)) (24)
The nonlinear delay correction can be included in the inverse filter impulse response hk(t−t0, t0), but for calculation efficiency it is advantageous to separate the correction for nonlinear propagation delay as a pure delay correction where the filter then corrects only for pulse form distortion, as the filter impulse response then becomes shorter. The signal is normally digitally sampled, and Eqs. (18-24) are then modified by the sampled formulas known to anyone skilled in the art. The length of T(tl) would typically be a couple of HF pulse lengths, and one would typically use intervals that overlap down to the density that tl represents each sample point of the received signal. When the pulse distortion can be approximated by a time compression-expansion, the received signal from a point scatterer can be written as wk(t, tl; bk)=u(bkt, tl)=∫dt1vk(t−t1, tl)u(t1, tl) where bk=1+ak is the time compression factor and u (t1, tl) is the undistorted received pulse from the point scatterer. We can then write
where U (ω, tk) is the Fourier transform of the undistorted received pulse form from depth interval Tl obtained with zero LF. The LF pulse is often at such a low frequency that individual variations of the acoustic LF pulse absorption between different measurement situations can be neglected as discussed above. One can then use simulated or measured values of the LF pulse field at the location of the HF pulse, as a basis for estimation of the HF pulse form distortion vk(t, tl). An uncertainty in this simulation is the actual nonlinear elasticity of the object. The invention devices several methods to assess the nonlinear elasticity, and also direct estimation of Hk(ω,tl) from the signals as discussed following Eq. (52) below.
When the LF pressure gradient has larger variation along the HF pulse length so that the pure time compression/expansion is no longer an adequate approximation of the HF pulse distortion, we can do a polynomial modification of the time scale as
where ak=(ak1, ak2, ak3, . . . ). After the correction for nonlinear propagation delay and pulse form distortion, the received signals from at least two pulse complexes can be combined as in Eqs. (6,13) to extract the nonlinearly and linearly scattered signal from the object.
In another method according to the invention, one can do a depth variable frequency mixing (Single Side band mixing, as known to anyone skilled in the art) of the received HF signal with nonzero transmitted LF pulse so that the center frequency of the HF signal for example is moved to the vicinity of the received HF signal with zero LF pulse. This frequency shift do not change the bandwidth of the received HF signal, where the bandwidth can be modified with a filtering of the frequency mixed HF signal. With large influence on the received HF signal bandwidth by the LF pulse, it can be convenient to frequency mix the received HF signals so that the center frequency of all mixed signals is close to the center frequency of the received HF signal with lowest bandwidth. The filtering correction of the bandwidth for the other signals is then composed of a reduction in bandwidth, which is a robust operation.
In yet another method according to the invention, one modify (e.g. stretch or compress or more complex modification) the transmitted HF pulse, so that the pulse distortion in front of the interesting imaging range (for example the LF focal range) modifies the pulses to similar pulses for positive and negative polarity of the LF pulse within the interesting imaging range. In
For imaging of nonlinear scattering, it is important that the LF pressure at the HF pulse has limited variation throughout the image range. The range where the variation of the LF pressure at the HF pulse has limited variation can be extended by using multiple transmit pulses with different focal depths for different regions of the image range. For close to constant observed LF pressure with depth it can be an advantage to use an unfocused LF beam with adequately wide transmit aperture so that the actual HF image range is within the LF beam near field.
In yet another method according to the invention, pulse distortion correction for pulse compression can for a limited fast time (depth-time) interval approximately be obtained by fast time expansion (stretching) of the received HF signal over that interval, and correction for pulse expansion can for a limited fast time (depth-time) interval approximately be obtained by fast time compression of the received HF signal over the limited interval. The reason why this pulse distortion correction is approximate is that it also changes the depth-time distance between scatterers over the given interval, so that the form of the signal determined by interference between scatterers at different depths becomes incorrect. We therefore can apply the time expansion/compression correction only to a limited fast time interval. For approximate pulse distortion correction over a longer fast time interval, this longer interval can be divided into shorter fast time intervals where different fast time expansion/compression is done on each interval. The corrected signals from different intervals can then be spliced to each other for example by a fade-in/fade-out windowing technique of the signals from neighboring intervals across the interval borders. There exist in the literature several methods for fast time expansion/compression of a signal, for example reading the signal in and out of a FIFO (First In First Out) memory structure at different read in and read out rates, interpolation of the signal and selecting different samples for the corrected output signal compared to the input signal, etc. We note that by the filter pulse distortion correction in Eqs. (23,24), the interference between the scatterers is modified by the correction because we modify the scattered pulse and not the distance between the scatterers. This modifies the envelope of the distorted signal to that obtained with no pulse distortion. The frequency mixing also changes the center frequency of the received HF signal without changing the distance between the scatterers, but the signal bandwidth is unmodified so that it is not correct after the frequency mixing.
The fast time expansion/compression method is particularly interesting for low pulse distortion where it is a good approximation and a simple and fast method. For larger pulse distortions, it can be advantageous to combine the above methods of transmit pulse correction, filter correction of the received signal, frequency mixing, and fast time expansion/compression of the received signal. This specially relates to regions of very high pulse distortion, where the frequency spectrum of the distorted pulse deviates much from the frequency spectrum of the undistorted pulse, which can make the filtering correction less robust. A limited fast time expansion/compressions of the received signal and/or frequency mixing and/or approximate correction of the transmitted HF pulse can then be used to bring the frequency spectrum of the limited corrected pulse closer to the frequency spectrum of the undistorted pulse, so that the filtering correction becomes more robust.
The LF wavelength is typically ˜5-15 times longer than the HF wavelength, and to keep the LF beam adequately collimated to maintain the LF pulse pressure at deep ranges, the LF aperture is preferably larger than the outer dimension of the HF aperture. For the HF pulse one wants adequately long transmit focus, which limits the width of the HF transmit aperture. For further detailed analysis of this phase sliding it is convenient to study circular apertures where one have analytic expressions for the continuous wave fields (CW) along the beam axis. However, the basic ideas are also applicable to other shapes of the apertures, such as rectangular or elliptical shapes. We analyze the situation in
The continuous wave axial LF pressure field Pl(r, ω) with angular frequency ω=c0k, is from a circular aperture at the point 306 (depth r) on the beam axis
where Plt is the LF transmit pressure on the array surface, Rlo(r) is the distance 307 from the outer edge of the LF array to 306 on the z-axis and Rli(r) is the distance 308 from the inner edge of the LF array to 306. Similarly do we get the axial HF pressure field Ph(r, ω) at 306 as
where Pht is the HF transmit pressure on the array surface, Rho(r) is the distance 309 from the outer edge of the HF array to 306 on the beam axis-axis and Rhi(r) is the distance 310 from the inner edge of the low frequency array to 306.
We note from the 1st lines of the expressions in Eqs. (27,28) that the pressure do in the near field break up into two pulses from the inner and outer edge of the apertures with delays Rli(r)/c0 and Rlo(r)/c0 for the LF pulse, and Rhi(r)/c0 and Rho(r)/c0 for the HF pulse. This is illustrated in the upper panel of
As r increases, the delay difference between these pulses reduces, so that the two pulses start to overlap and form a single pulse as illustrated in the two lower panels of
The pulse centers observe propagation lags from the transmit apertures to 306 for the LF and HF pulses as
where τl(r) is the propagation lag from the low frequency array to 306 and τh(r) is the propagation lag from the high frequency array to 306. We hence see that for equal LF and HF transmit apertures with the same focus we have Rlo(r)=Rho(r) and Rli(r)=Rhi(r) so that relative propagation lag between the HF and LF pulse centers becomes zero and do not vary with depth, i.e.
Δτ(r)=τl(r)−τh(r)=0 (30)
The differentiation of the transmitted LF pressure pulse Plt(ω) towards the focus produces an added time advancement of the LF oscillation of TLF/4, where TLF is the temporal period of the LF pulse center frequency. With absorption and/or apodization, the pressure close to the array surface is a replica of the transmitted pulse complex with a propagation delay given by the phase propagation of the LF wave front. We hence see that if we want a specific phase relationship between the LF and the HF pulse in the focal region of the LF beam, we must transmit the HF pulse a time TLF/4 earlier in relation to the LF pulse than the relation we want in the LF focal zone, as discussed in relation to
One can also design the LF transmit aperture so much larger than the HF transmit aperture that in the near field τh(r) is sufficiently less than τl(r) so that by adequate timing between the transmit of the HF and LF pulses, the HF pulse is spatially in front of (i.e. deeper than) the LF pulse with no overlap in the near field. An example of such a situation illustrated in
As r increases, and the time lag Δτ(r)=τl(r)−τh(r) between the pulses is reduced, the HF pulse eventually slides into the LF pulse and starts to observe a nonlinear elasticity manipulation pressure of the LF pulse. For example, at the time point t2>t1 the pulses have reached the relative position illustrated by 313 for the HF pulse and 314 for the LF pulse. This observed LF manipulation pressure for the HF pulse, produces a nonlinear propagation delay of the HF pulse. Further propagation to a time point t3>t2 the HF pulse 315 has undergone further sliding relative to the LF pulse 316, where the HF pulse is now on the gradient of the LF pulse that produces a time compression of the HF pulse. An example of two developments with depth of the nonlinear propagation delays are shown in
The curve 317 has a strong suppression of pulse reverberation noise with the 1st scatterer down to 10 mm, where the max gain after subtraction is found at ˜30 mm. We hence see that by adequate selection of the HF and LF radiation surfaces and timing of the LF and HF transmit pulses, we can modify the near field range of the 1st scatterer where strong suppression of the pulse reverberation noise is found, and also the region of large gain of the 1st scatterer after the subtraction.
The sliding of the HF and LF pulses with this method do however produce pulse distortion in depth regions where the gradient of the LF pulse along the HF pulse is sufficiently large, for example as illustrated in
Hence, we can arrange the transmit time relation between the HF and LF pulses so that the HF pulse is found at a wanted phase relation to the LF pulse in the focal zone. When the HF pulse is found at pressure extremes of the LF pulse in the focal zone, the nonlinear elasticity manipulation by the LF pulse observed by the HF pulse then mainly produces a nonlinear propagation delay with limited pulse form distortion. This phase relation also maximizes the scattered signal from non-linear scatterers and resonant scatterers where the LF is adequately far from the resonance frequency.
When the HF pulse is found near zero crossings of the LF pulse with large observed pressure gradient, one obtains pulse distortion with limited increase in nonlinear propagation delay. However, in the near field the HF pulse will be longer so that parts of the pulse can observe a LF pressure gradient with limited LF pressure, while other parts can observe a limited LF pressure gradient with larger observed LF pressure. This produces a complex pulse distortion of the HF pulse as discussed in relation to Eq. (26).
For a common focal depth F, we get the distances from outer and inner edges of the LF and HF apertures as
when the last terms under the root sign are relatively small, we can approximate
The r variation of the propagation lag difference between the LF and HF pulses is then found by inserting Eqs. (31,32) into Eq. (30) which gives
Hence, by choosing
a
ho
2
+a
hi
2
=a
lo
2
+a
li
2 (34)
we obtain within the approximation zero sliding between the HF and LF pulses in the focal range of the LF pulse, even in the situation where the outer dimension of the LF transmit aperture is larger than the outer dimension of the HF aperture.
A disadvantage with the removed central part of the HF transmit aperture is that the side lobes in the HF transmit beam increase. However, these side lobes are further suppressed by a dynamically focused HF receive aperture. The approximation in Eq. (32) is best around the beam focus, and Eq. (34) do not fully remove phase sliding between the LF and HF pulses at low depths. For other than circular apertures (for example rectangular apertures) one does not have as simple formulas for the axial field as in Eq. (27,28) but the analysis above provides a guide for a selection of a HF transmit aperture with a removed center, for minimal phase sliding between the LF and the HF pulses with depth. With some two-dimensional arrays one can approximate the radiation apertures with circular apertures where Eq. (34) can be used as a guide to define radiation apertures with minimal phase sliding between the LF and HF pulses.
One can hence also design the LF and HF transmit apertures so that one gets very little sliding between the HF and LF pulses in an image range, and one can position the HF pulse at the extremes (crest or trough) of the LF pressure pulse so that one gets little pulse form distortion in this image range. Apodization of the LF drive pressure across the array is also useful for best shape of the LF pulse throughout the image range. One hence has a situation where optimal signal processing also involves the design of the LF and HF beams in detail together with pulse distortion correction, delay correction, and potential modification of the HF transmit pulse-form to counteract partially or in full the pulse form distortion that is produced by the propagation.
The variation in pulse distortion between positive and negative polarity of the LF pulse can according to the invention be reduced by using LF pulses with dual peaked spectra, for example by adding a 2nd harmonic band to the fundamental LF pulse band, as illustrated in
A variation of this type of LF pulse is shown in
In the same way as the invention devices the use of LF pulses with different degree of complex shape, it is also interesting to use HF pulses of more complex shape as that shown in
Suppression of the linear scattering to subtract nonlinear scattering is particularly useful to image micro-gas bubbles, for example in medical imaging the ultrasound contrast agent micro-bubbles as described in U.S. patent application Ser. No. 11/189,350 and 11/204,492. The micro-bubbles have a resonant scattering introduced by interaction between the co-oscillating fluid mass around the bubble (3 times the bubble volume) and the gas/shell elasticity. This resonant scattering is different from scattering from ordinary soft tissue. For an incident continuous LF wave with angular frequency ωLF and low-level amplitude PLF, the transfer function from the incident LF pressure to the radius oscillation amplitude δa is in the linear approximation
where ω0 is the bubble resonance frequency for the equilibrium bubble radius a0, ξ is the oscillation losses, K0 is a low frequency, low amplitude radius compliance parameter. Resonance frequencies of commercial micro-bubble contrast agents are 2-4 MHz, but recent analysis [4] indicates that the resonance frequency may be reduced in narrow vessels below 70 μm diameter, and can in capillaries with 10 μm diameter reduce down to 25% of the infinite fluid region resonance frequency (i.e. down to ˜0.5-1 MHz).
Two nonlinear effects modifies the oscillation as: 1) The low frequency compliance increases with compression where the bubble compliance is a function of the compression, f.ex. modeled as the function as K(ac), where ac is the compressed radius of the bubble so that K(a0)=K0 in Eq. (35). 2) The small amplitude resonance frequency increases with bubble compression, because the co-oscillating mass is reduced and the bubble stiffness increases. For the same physical reason (opposite effect) the small amplitude resonance frequency reduces with bubble expansion. These two effects introduce nonlinear distortions in the bubble oscillations, and for short pulses with a wide frequency spectrum, the bubble radius oscillation waveform can deviate much from the incident pressure pulse. The nonlinear compression of the bubbles therefore often deviates strongly from the 2nd order approximation of Eq. (1). The ratio of the LF to HF pulse frequencies is typically ˜1:5-1:15, and typical HF imaging frequencies are from 2.5 MHz and upwards. One can therefore have situations where the center frequencies of either the HF or the LF pulses are close to the bubble resonance frequency. When the low frequency is close to the resonance frequency of ultrasound contrast agent micro-bubbles, one gets a phase lag between the incident LF pressure and the radius oscillation of micro-bubble that gives an interesting effect for the nonlinear scattering.
The linear approximation of the scattered HF pulse amplitude Ps(r) at distance r from the bubble, is for an incident CW HF wave with angular frequency ωHF and low level amplitude PHF
where ωc(ac) is the bubble resonance frequency where the bubble radius is changed to ac by the LF pulse. The nonlinear detection signal from the bubble, e.g. Eq. (6), is proportional to the difference between the scattered HF pulses for different LF pulses of the at least two pulse complexes. As for the LF bubble oscillation we get a nonlinear effect both from compression variation of the resonance frequency and from nonlinear elasticity of the bubble. However, when the HF frequency is well above the resonance, the HF oscillation amplitude is reduced and the linear approximation in Eq. (36) is good. The scattered HF signal is in the linear approximation ˜−ac(PLF)PHF, so that the nonlinear detection signal from the bubble is in this linear approximation ˜−Δac(PLF)PHF=−[ac(PLF)−ac(−PLF)]PHF. To get maximal detection signal the HF pulse must be close to the crest or trough of the LF bubble radius, when it hits the bubble. We also note that nonlinearity in the LF bubble oscillation will show directly in the detection signal, where the LF nonlinearity often is much stronger than the 2nd order approximation of Eq. (1).
With larger HF amplitudes the detection signal can also have a nonlinear relation to the HF pressure amplitude. When the HF frequency approaches the bubble resonance frequency, the variation of ωc(ac) with the LF pressure introduces a phase shift of the HF pulses from the different pulse complexes with differences in the LF pulse. This further increases the nonlinear detection signal from the bubble and makes a further deviation from the 2nd order elasticity approximation in Eq. (6). The HF detection signal hence has increased sensitivity for HF around the bubble resonance frequency.
For LF well below the bubble resonance frequency, the linear approximation of Eq. (35) gives δa≈−K(PLF)PLF. This situation is illustrated in
When the LF is at the bubble resonance frequency, we see from Eq. (35) that the bubble radius oscillation is 90 deg phase shifted in relation to the incident LF pulse, as illustrated in
For LF frequencies well above the bubble resonance frequency we have δa≈KPLF(ω0/ωLF)2, which produces low Δac(PLF) and detection signal. To get a good detection signal from the bubble, one hence wants the LF frequency to be from slightly above the bubble resonance frequency and downwards. HF imaging frequencies are generally from ˜2.5 MHz up to ˜100 MHz and as the LF to HF pulse frequencies have ratios ˜1:5-1:100, the LF frequency can get close to the bubble resonance frequency for HF frequencies of ˜2.5 MHz and upwards, if we include the ˜0.5 MHz resonance frequencies of bubbles confined in capillaries. For HF imaging frequencies in the range of 10 MHz and upwards, it is possible to place the LF frequency around typical resonance frequencies of commercially available contrast agent micro bubbles, and one can then do tuned resonant detection by tuning the LF to any value within the actual resonance of the bubbles.
Selecting a phase relation between the transmitted HF and LF pulses so that the HF pulse is found at the maximal positive or negative gradient of the LF pulse in the actual image range, provides a resonant sensitive detection of the micro-bubbles, with an increased imaging sensitivity for the micro-bubbles with resonance frequency close to the LF. As the LF pulse in the LF focal range is the time derivative of the transmitted LF pulse per the discussion in relation to
Another method to obtain a resonance sensitive detection of the micro-bubbles is to select the frequency of the LF pulse close to the bubble resonance frequency and transmit the HF pulse with a delay after the LF pulse. When the LF is close to the bubble resonance frequency, the bubble radius oscillation will ring for an interval after the end of the incident LF pulse. The HF pulse delay is selected so that in the actual imaging range the transmitted HF pulse is sufficiently close to the tail of the transmitted LF pulse so that the HF pulse hits the resonating bubble while the radius is still ringing after the LF pulse has passed, preferably at a crest or trough of the radius oscillation, as shown in
The resonance sensitive detection has interesting applications for molecular imaging with targeted micro-bubbles where micro-bubbles with different, mono disperse diameters are coated with different antibody ligands. With resonance frequency selective imaging, one can then determine which antibodies has produced attachment to specific tissues, and hence characterize potential disease in the tissue.
In the near field, the outer edge wave from the LF aperture will arrive at the beam axis with a delay compared to the LF pulse from the more central part of the LF aperture, depending on the apodization and width of the LF aperture. The outer edge wave hence extends the tail of the LF pulse in the near field, and for the HF pulse to be sufficiently close to the LF pulse to observe the bubble radius ringing in the actual imaging range, one can, depending on the arrangement of the HF and LF apertures, have an overlap between the HF and LF pulses in the near field. This overlap introduces a nonlinear propagation delay and potential pulse distortion of the HF pulse. However, for deeper ranges when the outer edge pulse from the LF aperture merges with the central LF pulse (see discussion above) the HF pulse is found behind the LF pulse without any nonlinear modification on the propagation of the HF pulse. Hence, with this method one can get considerable suppression of the linearly scattered signal from the tissue without correcting for nonlinear pulse distortion and/or nonlinear propagation delay of the HF pulse. However, when the HF pulse experiences an overlap with the LF pulse in the near field, one can obtain improved suppression of the linearly scattered signal from tissue by correcting the HF signal for nonlinear pulse distortion and/or propagation delay from the overlap region, or modify the transmitted HF pulses so that combined with the near field pulse distortion one gets the same form of the HF pulses in the imaging region for different variations of the LF pulse.
Multiple scattering of the HF pulse produces acoustic noise, which reduces image quality and produces a problem for the suppression of the linear scattering. Current ultrasound image reconstruction techniques take as an assumption that the ultrasound pulse is scattered only once from each scatterer within the beam (1st order scattering). In reality will the 1st order scattered pulse be rescattered by a 2nd scatterer producing a 2nd order scattered wave that is rescattered by a 3rd scatterer (3rd order scattered wave) etc. The 1st scatterer will always be inside the transmit beam. Forward scattering will follow the incident wave and will not produce disturbing noise, but when the subsequent scattering (2nd scatterer) is at an angle from the forwards direction (most often back scattering) the multiply scattered waves where the last scatterer is inside the receive beam will produce signals with an added delay which appears as acoustic noise. To observe the last scatterer within the receive beam, one will only observe odd order scattering, which we generally refer to as pulse reverberation noise. Since the pulse amplitude drops in each scattering, it is mainly the 3rd order scattering that is seen as the multiple scattering or pulse reverberation noise.
To suppress pulse reverberation noise, one can for example according to U.S. patent application Ser. Nos. 11/189,350 and 11/204,492 transmit two pulses with different phase and/or amplitude and/or frequency of the LF pulses, and subtract the received HF signal from the two pulses. An example of a situation that generates strong pulse reverberation noise of this type is shown in
At the 1st reflection from the layer 602 the amplitude of the LF pulse (and also the HF pulse) drops so much that the nonlinear manipulation of the propagation velocity for the HF pulse by the LF pulse can be neglected after the 1st reflection. The nonlinear propagation lag and also pulse form distortion for the 3rd order scattered pulse 609 is therefore about the same as for the 1st order scattered pulse 604 from the layer 602. Changing the polarity of the LF pulse will then produce pulses 610 and 611 from the 1st and 3rd reflection from the layer 602 with a limited nonlinear propagation delay and pulse form distortion relative to the pulses 604 and 609. With a change in the polarity of the LF pulse, the 1st reflection from 603 will then produce a pulse 612 with comparatively larger nonlinear propagation delay and potential pulse form distortion to the pulse 606, because the HF pulse follows the high amplitude LF pulse for a longer distance to the scatterer 603. Subtracting the received signals from the two transmitted pulses will then suppress the multiple reflection noise (pulse reverberation noise) 609/611 relative to the 1st order reflections 606/612 from 603.
In the given example there is already obtained some nonlinear propagation delay and potentially also pulse form distortion between the multiply reflected pulses 609/611, which limits the suppression of the multiple scattering noise. The subtraction of the two signals with a delay 2τ(r) from each other produces for band-limited signals a suppression factor≈2 sin(ω0τ(r)) where ω0 is the HF pulse center frequency and τ(r) is the nonlinear propagation delay for the positive LF pulse with a nonlinear propagation delay of −τ(r) for the negative LF pulse. The approximation in the gain factor is because we have neglected any pulse form distortion and we are representing the gain for all frequencies to ω0 (narrow band approximation).
To maximize the signal after the subtraction of the pulses 612 and 606 from depth r2, we want ω0τ(r2)=π/2, which corresponds to τ(r2)=T0/4 where T0 is the period of the HF center frequency.
For strong suppression of the 3rd order scattered pulses 609 and 611 we want ω0τ(r1) to be small. When this is not achieved, strong reflectors 602 in the near field can then produce disturbing multiple scattering noise. One method to reduce the nonlinear propagation delay and pulse form distortion at the 1st scatterer 602 in the near field, is to remove part of the LF radiation aperture around the center of the HF aperture, for example as illustrated in
where ω is the angular frequency and k=ω/c is the wave number with c as the propagation velocity. r1 is the location of the 1st volume scatterer v(r1)d3r1 (d3r1 is the volume element at r1) that is hit by the transmit beam profile focused at r1 with spatial frequency response H1(r1; ω; r1) The 1st order scattered wave is further scattered at 2nd scatterers in V2 and the 2nd scattered wave propagates to the location of the 3rd volume scatterer v(r3)d3r3 at r3 (d3r3 is the volume element at r1) by the reverberation function Hrev(r3, r1; ω). The variable σ(r2; ω) in Hrev(r3, r1; ω) represents the 2nd volume scatterer at r2 and G(ri, ri; ω) is the Green's function for propagation in the linear medium from location r1 to r3. The nonlinear effect of the LF pulse is negligible after the 1st reflection, so that HF pulse propagation from r1 via r2 to r3 is linear and can be described by the Green's function. The 3rd order scattered wave is then picked up by the receive transducer array with a spatial sensitivity given by the receive beam Hr (r3; ω; rr) focused at rr, and Ur (ω; r1)is the Fourier transform of the received pulse when the 1st scatterer is at r1. The total signal is found by summing over all the 1st and 3rd scatterers, i.e. integration over d3r1 and d3r3.
The transducer array itself is in medicine often the strongest 2nd scatterer, and can be modeled as
σ(r2;ω)=ik2R(r2;ω)δ(SR(r2)) (38)
where R(r2;ω) is the reflection coefficient of the reflecting transducer surface SR defined by SR(r2)=0, and δ( ) is the delta function. Body wall fat layers can also have so strong reflection that 3rd order scattering becomes visible. σ(r2;ω) can then be modeled by a volume scattering distribution as
σ(r2;ω)=−k2v(r2) (39)
In technical applications one often have strongly reflecting layers at a distance from the transducer, for example a metal layer, which can be modeled as Eq. (38) where SR(r2)=0 now defines the layer surface. Strong volume scatterers are then modeled as in Eq. (39).
The LF pulse changes the propagation velocity of the transmitted HF pulse up to r1, given by the average LF pressure along the HF pulse, and changes the frequency content of the HF pulse due to the pulse distortion produced by gradients of the LF pressure along the HF pulse. The effect of the LF pulse will vary somewhat across the HF transmit beam, but as the receive beam is narrow, the effect can be included in received pulse Fourier transform Ur(ω; r1), both as a change in the linear phase produced by the nonlinear propagation delay (propagation velocity) and a change of the frequency content produced by the pulse distortion. By this we can leave the spatial frequency response of the HF transmit beam Ht(r1; ω; rt) unchanged by the co-propagating LF pulse. After the 1st scattering at r1 the LF pulse amplitude drops so much that one can neglect nonlinear changes of the HF pulse after this point, and Ur(ω; r1) therefore only depends on the location r1 of the 1st scatterer. The Green's function is reciprocal, i.e. G(rj, ri;ω)=G(ri, rj;ω), which implies that Hrev(r3, r1;ω)=Hrev(r1, r3;ω). When the transmit and the receive beams are the same, i.e. Hr(r3; ω; rr)=Ht(r1; ω; rt) the 3rd order scattered signal will be the same when the 1st and 3rd scatterer changes place for Ur(ω; r1)=Ur(ω; r3). This is found for zero LF pulse where Ur(ω; r1)=Ur(ω)=Ur(ω; r3), while this equality do not hold for r3≠r1 when the LF pulse produces nonlinear propagation delay and/or pulse distortion.
Higher order pulse reverberation noise can be described by adding further orders of scattering, where odd orders of scattering will contribute to the pulse reverberation noise and will have the same basic properties as described for the 3rd order scattering. Integration over the volume of scatterers and inverse Fourier transform then give us the following model for the received HF signal with a linearly and nonlinearly scattered component plus pulse reverberation noise as
where k denotes the pulse number coordinate with variations in the transmitted HF/LF pulse complexes, the 1st and 2nd terms represents the linear and nonlinear 1st order scattering, where vk1 (t−t0; t0) represents both the nonlinear propagation delay and pulse form distortion for the linearly scattered signal xl(t)=xl(t). Similarly vk2 (t−t0; t0) represents also both the nonlinear propagation delay and pulse form distortion for the nonlinearly scattered signal, but can in addition represent nonlinear frequency changes in the nonlinearly scattered signal from f.ex. micro-bubbles with different LF and HF pressures so that the nonlinear scattering can be represented by a single signal x2(t). The last term represents the pulse reverberation noise at fast time t.
xr(t; t1)dt1 represents the pulse reverberation noise at t for zero LF pulse where the 1st scatterers are in the interval (t1, t1+dt1), and vkr(t−t0;t1) represents the nonlinear propagation delay and pulse form distortion of the received pulse for non-zero LF pulse where the 1st scatterer is at fast time location t1. For simplicity of notation we have let the filter impulse responses represent both the nonlinear propagation delay and the pulse form distortion, where in practical corrections one would separate the correction for the nonlinear propagation delay and pulse form distortions to reduce the required length of the impulse responses for efficient calculation as discussed in relation to Eq. (24). The filter responses also include variations in the received HF signals from variations in the transmitted HF pulses.
For zero transmitted LF pulse for the first measurement signal we have
The last term hence represents the pulse reverberation noise at fast time t when there is no transmitted LF pulse. Generally vkr(t−t0; t1) has a slow variation with t1, and we can divide the fast time interval into a set of sub-intervals Tl and approximate the integral over t1 with a sum as
which gives the following set of linear operator equations with a finite set of unknowns
The operators Vkl are linear operators and Eq. (43) can then be viewed as a set of algebraic linear operator equations, which can be solved by similar methods as for a set of ordinary linear algebraic equations. We introduce the vector and operator matrix notations
s=V{x}
where
where we have introduced arbitrary dimension K, L of the equation set. When K=L, the set of equations can for example be solved with the determinant method for matrix inversion
x=V−1{s}
where V−1 can be calculated as
Kkl is the cofactor matrix where for calculation of Mkl the k-th row and l-th column is removed from the operator matrix V. DetV is the operator determinant of the operator matrix V that is calculated in the same way as for a linear algebraic matrix. In these calculations the multiplication of the elements means successive application of the element operators. DetV is hence an operator where [DetV]31 1 means the inverse of this operator, for example calculated through the Wiener type formula of the Fourier transform as in Eqs. (21-26).
We want to eliminate the noise terms (1=3, . . . , L) to obtain the linearly and nonlinearly scattered signals, x1(t) and x2(t). This is obtained through the following estimates
x
l(t)=x1(t)=[DetV]−1[Kk1{sk(t)}]
x
n(t)=x2(t)=[DetV]−1[Kk2{sk(t)}] (46)
where summation is done over the equal indexes k. Again we note that the algebraic multiplication of the operators in the equations above means successive application of the operators to the signals. We note that if we remove [DetV]−1 we will get a filtered version of x1(t) and x2(t).
It is also interesting to have more measurements than unknowns, i.e. K>L, where one can find the set of unknowns xl(t) so that the model s=V{x} gives the best approximation to the measured signals s(t) for example in the least square sense. The solution to this problem is given by the pseudo inverse of V
x
(t)=(VTV)−1VT{s} (47)
For more detailed analysis of the reverberation noise we refer to
To obtain visible, disturbing reverberation noise in the image, the 1st-3rd scatterers in Eq. (37) must be of a certain strength. In medical applications this is often found by fat layers in the body wall, while in technical applications one can encounter many different structures, depending on the application. In medical applications, the strongest 2nd scatterer is often the ultrasound transducer array surface itself, as this can have a reflection coefficient that is ˜10 dB or more higher than the reflection coefficient from other soft tissue structures. The pulse reverberation noise that involves the transducer surface as the 2nd scatterer, is therefore particularly strong indicated by 709.
Further description of the Classes is:
Class I (b) is the situation where the 1st scatterer (703) is closest to the transducer. The distance between the 3rd scatterer and the noise point is the same as the distance between the 1st and the 2nd scatterer. With the 2nd scatterer is a distance d behind the 1st scatterer, the noise point is found a distance d from the 3rd scatterer 705 which in the Figure coincides with the object surface 706. With varying positions of the 2nd scatterer 704, we get a tail 706 of pulse reverberation noise. When the transducer surface 701 is the strongest 2nd scatterer, we get particularly strong noise at 709. As the 1st scatterer is closest to the transducer for Class I, the nonlinear propagation lag and pulse distortion at the 1st scatterer is here low, and especially with a LF aperture that lacks the central part as described in relation to
Class II (c) The 1st scatterer 703 has moved so deep that the 3rd (705) scatterer is closer to the transducer than the 1st scatterer. When strong scatterers are found at 703 and 705 for Class I, we also have Class II noise with 1st and 3rd scatterers interchanged. Class II hence shows the inverse propagation 702 of Class I, and the two classes of noise therefore always coexist. The reasoning for the tail of pulse reverberation noise 706 is the same as that for Class I/II, where a strongly reflecting transducer surface gives the noise 709. With the same transmit and receive beams (focus and aperture), Eq. (37) shows that the pulse reverberation noise with zero LF pulse is the same for Class I and Class II. However, with nonzero LF pulse, the received HF signals from these two classes are different, because one gets higher nonlinear propagation lag and pulse distortion for Class II than for Class I because the 1st scatterer is deeper for Class II. However, the two noise classes can be summed to one class which reduces the number of unknowns in the equation as in Eqs. (69-73).
Class III (d) This Class is found as a merger of Class I and Class II where the 1st scatterer (703) has moved so deep that the 1st and 3rd (705) scatterers have similar depths or are the same, so that the nonlinear propagation lag and pulse distortions are approximately the same when the 1st and 3rd scatterers are interchanged. This noise hence includes a factor 2 in the amplitude, as a sum of the 1st and 3rd scatterer being 703 and 705 and the reverse path where the 1st and 3rd scatterers are 705 and 703. This situation is often found with strongly scattering layers, as a metal layer in industrial applications and a fat layer or bone structure in medical applications. The reasoning for the tail of pulse reverberation noise 706 is the same as that for Class I/II, where a strongly reflecting transducer surface gives the noise 709.
With defined regions of the 1st and 3rd scatterers for Class I-II noise, Eq. (43) can be approximated to
s
1(t)=V11{x1(t)}+V12{x2(t)}+V13{x3(t)}+V14{x4(t)}+V15{x5(t)}
s
2(t)=V21{x1(t)}+V22{x2(t)}+V23{x3(t)}+V24{x4(t)}+V25{x5(t)}
s
3(t)=V31{x1(t)}+V32{x2(t)}+V33{x3(t)}+V34{x4(t)}+V35{x5(t)}
s
4(t)=V41{x1(t)}+V42{x2(t)}+V43{x3(t)}+V44{x4(t)}+V45{x5(t)}
s
5(t)=V51{x1(t)}+V52{x2(t)}+V53{x3(t)}+V54{x4(t)}+V55{x5(t)} (48)
where xT(t)={x1(t), x2(t), x3(t), x4(t), x5(t)} is the initial signals where x1(t) is the 1st order linearly scattered signal for zero LF pulse, x2(t) is the 1st order nonlinearly scattered signal for a normalized HF and LF pulse and x3(t), x4(t), x5(t) are the pulse reverberation noise of Class I, III, and II for zero LF pulse. One example is a fixed HF pulse with a relative variation of the LF transmit amplitudes between the 5 pulse complexes relative to the normalized LF pulse by p1-p5. Typically we can use p1=0, p5=−p2, and p4=−p3=−p2/2. For the 2nd order elasticity where the approximation of the nonlinear scattering of Eq. (5) is adequate we can set Vk2=pkVk1, as the operators represent the nonlinear propagation delay and pulse distortion of the forward propagating pulse. However, with heavily resonant HF scattering as from micro gas-bubbles, the LF pressure can also affect the scattered waveform so that Vk2≠pkVk1. However, making the assumption of Vk2=pkVk1 can help us to solve the above equations as the nonlinearly scattered signal is generally much weaker than the linearly scattered signal. In the same way as in Eq. (40-44), one can let Vk1 include variations in the transmitted HF pulse, both in amplitude, polarity, frequency, and form (for example variations of a coded pulse).
For the practical calculation we can also solve the set of equations in Eqs. (43-48) through a successive elimination similar to the Gauss elimination for linear algebraic equations. We can typically start by eliminating the noise signals in a sequence, for example starting with elimination of Class II noise, x5(t), as
where Vkl−1 is the inverse operator for Vkl, for example obtained along the lines of the Wiener type filter in Eqs. (21-26). In the above notation both the nonlinear propagation delay and the pulse form distortion is included in the filter operators. However, for practical calculations of the inverse operators, one would do a direct delay correction for the nonlinear propagation delay, with a filter for the pulse form correction. This separation reduces the required length of the filter impulse responses.
Note that if the 1st measured signal (s1) is obtained with zero LF pulse, we have V1l=V1l−1=I, i.e. the identity operator. Applying Vk5−1 on sk(t), k=2, . . . , 5 and subtracting provides heavy suppression of x5(t). We can then proceed in the same way to suppress x4(t) from the above expressions by forming the signals
and proceeding in the same manner to suppress x3(t), we obtain signals where Class I-III multiple scattering noise is heavily suppressed
We can then proceed in the same manner and eliminate x2(t), or we can solve Eq. (51) with the algebraic formulas for two linear equations with two unknowns as
x
l(t)=x1(t)=[C11C22−C12C21]−1{C22{q1(t)}−C12{q2(t)}} a)
x
n(t)=x2(t)=[C11C22−C12C21]−1{C11{q2(t)}−C21{q1(t)}} b) (48)
The linearly scattered HF signal x1(t) is often much stronger than the nonlinear signal x2(t), and one can then approximate xl(t)=x1(t)=C11−1{q1(t)}. We note as for Eq. (45) that if we remove the inverse determinant we get filtered versions of the linearly and nonlinearly scattered signals, x1(t) and x2(t).
The operators in Eqs. (43,44,48) are generally filters with impulse/frequency responses that can be approximated to stationary within intervals T(tl) as in Eq. (20). The inverse filters of Eqs. (45-52) can be solved via a Fourier transform as in Eqs. (20-26). One can also do a Fourier transform of Eqs. (43,44,48) for each interval, which gives a set of ordinary algebraic equations for each frequency of the Fourier transforms Xl(ω) of xl(t). These equations are then solved by well known analytic or numerical methods for such equations, and the time functions for x1(t) and x2(t) are then obtained by Fourier inversion.
For estimation of the actual delay and pulse distortion corrections, the Vkl operators in Eqs. (43,44,48) can be estimated based on the following considerations: The LF pulse has so low frequency compared to the image depth (typical image depth ˜30λLF) that one can often neglect individual variations of absorption and wave front aberration for the LF beam. The nonlinear propagation delays and pulse distortion can therefore often be obtained with useful accuracy from simulations of the composite LF/HF elastic waves with known, assumed, adjusted, or estimated local propagation parameters. The propagation parameters are composed of the local mass density and linear and nonlinear elasticity parameters of the material. For adequately adjusted local nonlinear elasticity parameters as a function of propagation path of the HF pulse, one can use the formula in Eq. (3) to obtain an estimate of the nonlinear propagation delay τ(t).
The correction delays can for example therefore be obtained from
The pulse distortion correction can similarly be obtained from
The manual adjustment of local propagation (elasticity) parameters or nonlinear correction delays can for example be done through multiple user controls in a set of selected depth intervals, for maximal suppression of the linearly scattered signal, or for maximal suppression of pulse reverberation noise as discussed. For feedback one can for example use the image signal as displayed on the screen. One can also conveniently combine the methods, for example that the simulation estimates with assumed local elasticity parameters are applied first with further automatic estimation or manual adjustments to one or both of i) minimize the pulse reverberation noise in the observed image, and ii) minimize the linear scattering component in the image.
When the object scatterers move between pulse reflections, the Vkl{ } operators also contain a Doppler delay in addition to the nonlinear propagation delay. With a relative variation in pulse amplitude of pk between the LF pulses, the nonlinear propagation delay can be approximated as pkτ(t), and estimating the total propagation delay as τTk(t)=kTd(t)+pkτ(t), the sum of the Doppler and nonlinear propagation delay for several received signals, will then allow estimation of the Doppler and nonlinear propagation delays separately, for example as described in U.S. patent application Ser. No. 11/189,350 and 11/204,492.
To further elaborate on methods of suppression of pulse reverberation noise and linear scattering, we first give an example according to the invention using a sequence of 3 transmitted pulse complexes, where the transmitted LF pulse amplitudes of the successive pulse complexes are P0, 0, −P0. A strong scatterer close to fast time t1 produces pulse reverberation noise, and according to Eqs. (43,48) we can express the received HF signals from the 3 pulse complexes as
s
+(t)=Vt+{x+(t+τ(t))}+Vt
s
0(t)=xl(t)+w(t)
s
−(t)=Vt−{x−(t−τ))}+Vt
V
t
±
{x
±(t)}=∫dt0v±(t−t0,t0)x±(t0)
V
t
±
{w(t)}=∫dt0v±(t−t0,t1)w(t0) (53)
where now Vt± represents only the pulse form distortion while the nonlinear propagation delay is explicitly included in the time argument of the functions as in Eqs. (19-26) (See comments after Eqs. (24,40)). The pulse reverberation noise is w(t) with the 1st and 3rd scatterer 602 at the fast time (depth-time) location around t1=2r1/c. We then do a correction for the + and − signals for the pulse form distortion and nonlinear propagation delay at the 1st strong scatterer 602 located at fast time t1. With the Wiener type inverse filters as given in Eq. (21) we get
y
+(t)=Ht
y
−(t)=Ht
H
t
+
{s
+(t)}=∫dt0h+(t−t0,t1)s+(t0)
H
t
−
{s
−(t)}=∫dt0h−(t−t0,t1)s−(t0) (54)
where {circumflex over (τ)}(t1) is the estimated nonlinear propagation delay at fast time t1, and Ht
y
+(t)−y−(t)=Ht
For noise suppression with stationary objects, one might hence transmit only two pulse complexes with amplitudes P0 and −P0 of the LF pulse, or potentially with zero LF pulse in one of the pulse complexes.
For additional suppression of the HF linear scattering components to provide a nonlinear HF signal representing nonlinear scattering from the object, we can form the following combinations of the 3-pulse sequence for suppression of the pulse reverberation noise
z
1(t)=y+(t)−s0(t)=Ht
z
2(t)=s0(t)−y−(t)=xl(t)−Ht
The signal component from the scatterer 603 obtains further pulse form distortion and nonlinear propagation delay due to the further propagation along the transmit LF pulse from 602 to 603. The HF pulses for positive and negative LF transmit pulses then obtains opposite pulse form distortion, i.e. a HF pulse length compression for the positive LF pulse gives a similar HF pulse length expansion for the negative LF pulse (and vice versa), and the nonlinear propagation delays have opposite signs. With zero transmitted LF pulse there is no HF pulse form distortion or nonlinear propagation delay. We then delay z1 with ({circumflex over (τ)}(t)−{circumflex over (τ)}(t1))/2 and advance z2 with ({circumflex over (τ)}(t)−{circumflex over (τ)}(t1))/2, where {circumflex over (τ)}(t) is the estimated nonlinear propagation delay of the signals at fast time t, and pulse distortion correct z1 and z2 for half the pulse length compression/expansion from 602 to 603.
We note from Eq. (53) that the nonlinear component of the scattered signal is zero for zero LF pressure. With pulse distortion correction for half the LF pressure, we note that for the linear components of HF scattered signal we have
H
t;t
+1/2
H
t
+
V
t
+
{x
1(t+(τ(t)−{circumflex over (τ)}(t1))/2)}=Ht;t
H
t;t
−1/2
H
t
−
V
t
−
{x
l(t−(τ(t)−{circumflex over (τ)}(t1))/2)}=Ht;t
where the Ht;t
Hence does the following combination produce improved suppression of the linear scattering components to give a signal that represents the nonlinear HF scattering with highly suppressed reverberation noise
An estimate of the linear scattering can be obtained as
where Ht;t
The combination of signals with opposite polarity of the LF pulse as in Eqs. (55,58,59), reduces required accuracy in the estimated delay and pulse distortion corrections, as seen from the following analysis. This opens for an approximate but robust method to suppress both the pulse reverberation noise and the linear scattering to obtain estimates of the nonlinear scattering from the received HF signals in Eq. (53). We model the pulse form distortion as a pure time compression/expansion as
V
t
±{
x
h(t±τ(t))}=∫dt0u[(1±a(t))(t−t0),t0]σh(t0±τ(t))
V
t
±
{w(t±τ1)}=∫dt0u[(1±a1)(t−t0),t1]σw(t0±τ1) (60)
where u(t, t0) is the received pulse from a point scatterer at t0 with zero LF pulse, σh(t0) is the scatterer density for the linear scattering (h=l), the nonlinear scattering with positive LF pulse (h=n+), the nonlinear scattering for negative LF pulse (h=n−), and σw(t0) is an equivalent scatterer density for multiple scattering noise where the 1st scatterer is at t1. τ(t) is the nonlinear propagation delay down to fast time t and the factor (1±a(t)) represents pulse time compression/expansion produced by gradients of the LF pulses along the HF pulses, where the sign of ±a(t) is given by the sign of the LF pulses. τ1 and a1 are the nonlinear propagation delay and pulse time compression factor where the 1st scatterer is found at t1, which is the situation for the pulse reverberation noise. We note that for materials that can be approximated with 2nd order nonlinear elasticity as in Eqs. (1,5) we have σn−(t0)=σn+(t0).
When the HF pulse is long compared to the LF pulse period, the approximation in Eq. (60) of pure time compression/expansion of the pulse becomes less accurate, and one can improve the approximation by introducing higher order terms (1±a1(t))(t−t0)ma2(t)(t−t0)2± . . . in the pulse argument in Eq. (60), as discussed in relation to Eq. (26). However the analysis of the corrections will be similar, and for simplified notation we therefore use only the linear compression in Eq. (60), where the expansion to higher order terms are obvious to anyone skilled in the art. We correct the signals in Eq. (60) for pulse compression/expansion for example with a filter in analogy with Eqs. (19-26), through modifications of the transmitted HF pulses as described in relation to
where
x
h(t)=∫dt0u(t−t0,t0)σh(t0)
w(t)=∫dt0u(t−t0,t1)σw(t0)
and H±a
Choosing ac≈a1 and τc≈τ1 we can in analogy with Eq. (55) form a noise suppressed estimate of the linear scattering as
which gives
y
+(t)−y−(t)≈2(a(t)−a1)∫dt0(t−t0)(t−t0,t0)σl(t0)+2(τ(t)−τ1)∫dt0u(t−t0,t0)(t0) (64)
where we have neglected the nonlinear scattering compared to the linear scattering.
A noise suppressed estimate of the nonlinearly scattered signal can be found through an approximation of Eqs. (56,58) as
Inserting the approximated expressions for the corrected signals from Eqs. (61,62) gives
which reduces to
{circumflex over (x)}
n(t)≈Ha
Using the 1st order Taylor expansion in a(t) in Eq. (61) we can approximate Eq. (67) to
For materials where the 2nd order approximation of the nonlinear elasticity in Eq. (1) is adequate, we have xn−(t)=xn+(t) and σn−(t)=σn+(t). However, when τc≠τ(t) and/or a(t)≠ac, the detection signal in Eq. (68) is nonzero also in this case. With scattering from micro gas bubbles we can have xn−(t)≠xn+(t) and σn−(t)≠σn+(t) which increases the detection signal. This is specially found for HF close to the bubble resonance frequency where a change in the polarity of the LF pulse changes the phase of the nonlinear scattering signal, or with so high LF pulse amplitude that the LF bubble compression shows strong deviation from the 2nd order nonlinearity.
We hence see that the sum of y+ and y− in Eq. (65,66) gives robust and strong canceling of the pulse form distortion and the nonlinear propagation delays. Accurate assessment of ac and τc is hence not so critical which makes the procedures very robust. When a(t)−ac and τ(t)−τc become so large that 2nd and higher order even terms in the Taylor series of u[(1±(a−ac))(t−t0), t0]σh(t0±(τ−τc)) become important, the suppression of the linear scattering and the pulse reverberation noise is reduced. However, by choosing τc close to τ1 and ac close to a1, Eq. (63,66) gives good approximations for the pulse reverberation noise, and choosing τc close to τ(t) and ac close to a(t) Eq. (66) gives good suppression for the linear scattering at fast time t. In many situations suppression of pulse reverberation noise is most important up to medium depths, while suppression of linear scattering is the most important for larger depths. One can then use a delay and compression correction τc≈τ1 and ac≈a1 for the lower depths and a delay and compression correction delay τc≈τ(t) and ac≈a(t) for the larger depths.
We have in Eqs. (53-68) analyzed the situation of a single 1st scatterer, but as discussed in relation to Eq. (37), Class I and Class II noise always coexists, and are equal for zero LF pulse when the transmit and received beams are equal. Suppose we transmit two pulse complexes with opposite polarity of the LF pulse, and correct and subtract the received HF signals for the nonlinear propagation lags and possible pulse form distortions at the location of the 1st scatterer of Class I noise. This will produce a strong suppression of the Class I noise, but a limited suppression of the Class II noise. For the Class III noise the depths of the 1st and 3rd scatterers are so close that adequate suppression of this noise is found for both directions of the propagation path 702.
To derive a method of suppression of all classes of pulse reverberation noise according to the invention, we note that when the transmit and receive beams are close to the same and the major 2nd scatterer is the transducer array itself, we can approximate xr(t;t1)=xr(t;t−t1) in Eq. (40). This allows us to modify Eq. (40) to
As the operators are linear, we can merge the sum in the last integral to one operator, which gives
The Class III pulse reverberation noise is here included for t1=t/2. In
Δtl∫dt0vks(t−t0;t1)xr(t0;tl)=Δtl∫dt0(vkr(t−t0;tl)+vkr(t−t0;t−tl)xr(t0;tl)
Fourier transform of this expression gives
where we in the last line have separated out the nonlinear propagation time lag. The expression can be further modified as
If the pulseform distortion at tl and t−tl is close to the same, which in practice means that the pulse form distortion is negligible, the last term vanishes, and we get
≈e−iω(τ
We can hence suppress the combined Class I and Class II pulse reverberation noise in an interval T(t) (804) around t, produced by strong scatterers 801/802 by correcting for the average nonlinear propagation delay [τk(tl)+τk(t−tl)]/2 and pulse form distortion [{tilde over (V)}kr(ω;tl)+(ω;t−tl)] cos [ω(τk(tl)−τk(t−tl))/2]. For ω[τk(tl)−τk(t−t1)]/2 sufficiently small, we can for narrowband signals approximate cos ω[τk(tl)−τk(t−tl)]/2≈const≦1. This procedure is specially interesting with combinations of the received HF signal from opposite polarity LF pulses similar to what is done in Eqs. (60-68) above, where sensitivity to the accuracy of the corrections are greatly reduced.
The variation of τ(t) with the fast time depends on the details of the LF beam and local position of the HF pulse relative to the LF pulse. When the LF transmit aperture has a large inactive region around the center, one can get a variation of τ(t) indicated as 811A/B in the diagram 810 of
With a large, full LF aperture so that the HF imaging region is in the near field, it is possible to obtain a close to linear increase of the nonlinear propagation delay, shown as 812. In this situation we note that [τk(tl)+τk(t−tl)]/2≈τk(t/2) and {tilde over (V)}rr(ω;tl)+(ω;t−tl)≈2(ω; t/2). One hence corrects for combined Class I and II plus Class III pulse reverberation noise in an interval around t by correcting the received HF signals for the nonlinear propagation delay and pulse form distortion at t/2, before combination of the corrected HF signals. This stimulates the introduction of a multi-step suppression of multiple scattering noise as illustrated in the processing block diagram of
We first describe with reference to
The processing block diagram in
The noise suppressed signals for each 2nd intervals T2n=(t2sn,t2en) are then in unit 1005 used for estimation of corrections for the nonlinear delays {circumflex over (τ)}(t) and pulse distortion correction in said each 2nd intervals. One of the received HF signals, and the noise suppressed signals, are then used as intermediate HF signals, and said intermediate HF signals are corrected for nonlinear propagation delay and potentially also pulse form distortion in said each 2nd intervals in unit 1006 to form corrected intermediate HF signals that are combined in unit 1007 for strong suppression of the linear scattering in the HF signals to form estimates 1008 of nonlinear scattering HF signals that represent nonlinear scattering from the object in T2n=(t2sn, t2en), {circumflex over (x)}n(t), as exemplified in Eq. (58). Similarly can one estimate the linear scattering HF signal for the 2nd interval T2n, {circumflex over (x)}l(t), as exemplified in Eq. (59).
From the estimated nonlinear propagation delay one estimates the nonlinear propagation parameter, Eqs. (9-11), and from the envelopes of the nonlinear and linear scattering HF signals one estimates the nonlinear scattering parameter, Eqs. (15-17), in unit 1009. Signal based estimation of the nonlinear propagation delay {circumflex over (τ)}(t1) and pulse distortion correction for a particular 1st interval can typically be estimated from the noise suppressed signals 1004 in a unit 1005. The estimates from this unit is used directly for correction for nonlinear propagation delay and pulse form distortion for suppression of linear scattering HF signal components in the 2nd intervals in unit 1006. The estimates are also communicated on the bus 1010 so that in the correction unit 1002 the corrections for the nonlinear propagation delays and pulse form distortions at the time points t1n for the 1st intervals can be taken from the estimates of a previous block.
In some situations one has a dense distribution of strong scatterers that produces pulse reverberation noise, where it is difficult to select an adequate discrete set of strong scatterers as marked by the x on the fast timeline 901 in
One can also work the opposite way, where one starts by selecting the fast time t2n as the center of a 2nd interval where one wants to correct for pulse reverberation noise, and then apply the corrections for the nonlinear propagation delays and pulse form distortion at t/2 before the signals are combined to produce noise suppressed HF signals 904, z1n(t), . . . , Zmn(t), . . . , ZMn(t), for the 2nd interval T2n=(t2sn, t2en). This procedure will automatically select the intervals. The advantage with the 1st procedure where one starts by selecting the strong scatterers that produces pulse reverberation noise, is that we directly address the regions where the pulse reverberation noise is strong. There will always be some errors in the procedure, particularly in the estimation of the corrections for the nonlinear propagation delay and pulse form distortion, and these errors might introduce visible noise where the pulse reverberation noise is low.
The nonlinear propagation delay and pulse form distortion changes accumulatively, Eq. (3), and hence vary slowly with depth. The length of the 1st intervals T1n is therefore often selected so that one have limited variation of the HF nonlinear propagation delay and HF pulse distortion within each interval (f.ex. given by Δt in 902), where the limit is given by the required suppression of the pulse reverberation noise. The tolerable variation of the nonlinear propagation delay and pulse form distortion also depends on how many strong scatterers/reflectors are found within said 1st interval. One can similarly set the boundaries between said 1st intervals fixed, or fixedly related to the selected measurement or image depth, with a possibility to adjust the boundaries from the instrument control or automatically by a signal processor, for improved noise suppression.
When the nonlinear delay and pulse distortion has a zero interval in the near-field, as shown by 811A in
To suppress Class I and II pulse reverberation noise combined at a fast time t, we can for example select a set of strong scatterers in the near field, for example as on line 901 discussed under point 1 in relation to
When 811A covers the body wall (i.e. the body wall is inside t0) and the image point t<2 t0, the pulse reverberation noise is often dominated by noise where both the 1st and 3rd scatterer is inside 811A. We then get good suppression of pulse reverberation noise without correction for nonlinear propagation delay and pulse form distortion. Another situation for approximation is when to is adequately short in relation to the image depth. We can then often for deeper image ranges approximate the nonlinear propagation delay and pulse form distortion for pulse reverberation noise of Class I-III to originate at a fixed point tc(t)≈t/2+ offset, and the methods described in relation to the fully linear delay curve 812 can then be applied with the corrections for the nonlinear pulse delay and pulse form correction at tc(t) to suppress the Class I-III pulse reverberation noise.
Said nonlinear and linear scattering HF signals are then used for further processing to form final measurement or image signals, for example according to known methods such as envelope detected signals, Doppler signals, fast time spectral content signals, etc.
The noise suppressed HF signals and the nonlinear scattering signals are useful both for backscatter imaging and for computer tomographic (CT) image reconstructions from forward transmitted and angularly scattered signals. The nonlinear propagation lag, Eq. (3), and the integrated pulse distortion is observable directly for the transmitted wave through the object, and are also candidates for CT image reconstruction of local object elasticity parameters.
The suppression of pulse reverberation noise in the signals greatly improves the estimation of corrections for wave front aberrations in the element signals from 1.75D and 2D arrays, for example according to the methods described in U.S. Pat. No. 6,485,423, U.S. Pat. No. 6,905,465, U.S. Pat. No. 7,273,455, and U.S. patent application Ser. No. 11/189,350 and 11/204,492. When estimation of the corrections for the wave front aberrations are based on signal correlations with the summed beam-former output signal with highly suppressed reverberation noise, the reverberation noise in the element signals is uncorrelated to the beam-former output signal. When slow updates of the aberration correction estimates are acceptable, one can use so long correlation time that the effect of the reverberation noise in the element signals on the correction estimates can be negligible. However, when the correlation time is low, it is preferable to also suppress the reverberation noise in the element signals before the estimation of the aberration corrections, to reduce errors in the aberration correction estimates produced by the reverberation noise.
Similar expressions as discussed for the bulk pressure waves above, can be developed for shear waves in solids, and while we do many of the derivations with reference to bulk pressure waves, it is clear to anyone skilled in the art that the invention is also applicable to shear waves.
A block diagram of an imaging instrument that uses the described methods for back scatter imaging in its broadest sense according to the invention, is shown in
The high frequency part of the array can in full 3D imaging applications have a large number of elements, for example 3000-10,000, and the number of receive and transmit channels are then typically reduced in a sub-aperture unit 1102, where in receive mode the signals from several neighboring array elements are delayed and summed to sub-aperture signals 1103 for further processing. For aberration corrections, the widths on the array surface of the sub-aperture groups are less than the correlation length of the wave front aberrations, where a typical number of sub-aperture groups and signals could be 100-1000.
For transmission of the pulse complexes, the HF transmit beam former 1104 feeds pulses to the sub-aperture unit 1102, that delays and distributes the signals to all or sub-groups of HF-array elements, while the LF transmit beam former 1105 simultaneously feeds pulses to the LF array elements. The pulse complex transmission is triggered by the instrument controller 1106, which communicates with the sub-units over the instrument bus 1107.
The receive sub-aperture signals 1103 are fed to the unit 1108, where the sub-aperture signals are delayed for steering of receive beam direction and focusing under the assumption of a homogeneous medium with the constant, average propagation velocity, referred to as homogeneous delays. 3D beam steering and focusing can also be done with sparse arrays, where the sub-aperture unit 1102 could typically be missing. With 1.75 D arrays, the number of HF array elements can also be reduced so much that the sub-aperture units could be left out. In the following we therefore use element and sub-aperture signals synonymously.
The element signals that are corrected with the homogenous delays, 1109, are fed to a unit 1110 where corrections for the wave front aberrations are applied, for example estimated according to the methods described in U.S. Pat. Nos. 6,485,423, 6,905,465, 7,273,455, and U.S. patent application Ser. No. 11/189,350 and 11/204,492, before the element signals are summed to the final receive beam signal. For 3D imaging one would use multiple receive beams with small angular offsets that covers a wide transmit beam in parallel (simultaneously). The aberration corrections for the angularly offset beams could be a side shifted version of the corrections for the central beam, that are added together with the homogeneous delays for the angular offset in the unit 1110. The output 1111 of the unit 1110 is hence one or more RF-signals for one or more receive beam directions in parallel, that is fed to the processing unit 1112 according to this invention, that performs one or more of the operations according to the methods described above and Eqs. (21-26, 43-74, 6-17).
The aberration corrections are estimated in the unit 1113, for example according to the methods described in relation to the cited patents and patent applications. The unit 1113 takes as its input the homogeneously delay corrected signals 1109 and possibly also final beam signals 1114 with suppression of the pulse reverberation noise according to this invention. The delay corrected element signals 1109 are typically first processed with methods according to this invention, typically the method described in relation to
When estimation of the corrections for the wave front aberrations are based on signal correlations with the beam-former output signal 1114 with highly suppressed reverberation noise, the reverberation noise in the element signals is uncorrelated to the beam-former output signal. When slow updates of the aberration correction estimates are acceptable, one can use so long correlation time that the effect of the reverberation noise in the element signals on the correction estimates can be negligible. However, when the correlation time is low, it is preferable to also suppress the reverberation noise in the element signals before the estimation of the aberration corrections, to reduce errors in the aberration correction estimates produced by the reverberation noise.
The outputs of the unit 1112 are the linearly and nonlinearly scattered signals with suppression of pulse reverberation noise, the two quantitative nonlinear parameters, and Doppler phase and frequency data. These data can be fed directly to the image construction and scan converter unit 1116 that presents images of compressed and colorized versions of the amplitudes of the linearly and nonlinearly scattered signals, the quantitative nonlinear parameters/signals, and object radial displacements, velocities, displacement strains and strain rates. However, to measure the radial velocities of blood or gas bubbles or other objects or fluids, one must further process the linearly or nonlinearly scattered signals in the slow time domain to suppress clutter echo from the object to retrieve the fluid signals for Doppler processing according to known methods, which is done in unit 1115. The outputs of this unit are fed to the image construction unit 1116 to be selected and overlaid the images of the other information. The unite 1116 feeds its output to a display 1117.
Many of the units of the instrument can be implemented as software programs in a general programmable computer, particularly the units 1110, 1112, 1113, 1115, 1116, and 1117, where with added support processors, like a graphics processor, unit 1108 can also be implemented as software in the same computer.
It should be clear to any-one skilled in the art, that many simplifications of the instrument as presented in
One could also remove the estimations and the corrections for the wave front aberrations, i.e. units 1110 and 1113, and still be able to do the processing in unit 1112 to produce both linearly and nonlinearly scattered signals etc. as described above. The array could then be further simplified where elements symmetrically around the beam scan axis (the azimuth axis) are galvanically connected to further reduce the number of independent channels, often referred to as 1.5D arrays. One could similarly use one dimensional (1D) arrays and also annular arrays with mechanical scanning of the beam direction, where the main modification to the block diagram in
For tomographic image reconstruction, the processing according to this invention would typically be done on the individual receive element signals, before the signals are processed according to the reconstruction algorithms of various kinds found in prior art. A block schematic of a typical instrument for tomographic image reconstruction according to the invention is shown in
An example instrumentation for use of the methods for acoustic imaging of geologic structures around an oil well, is shown in
Thus, while there have shown and described and pointed out fundamental novel features of the invention as applied to preferred embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention.
It is also expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
The present application claims the benefit of U.S. Provisional Application Nos. 61/127,898 filed May 16, 2008 and 61/010,486 filed Jan. 9, 2008, the entire contents of both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61127898 | May 2008 | US | |
61010486 | Jan 2008 | US |