1. Field of the Invention
The invention relates to a nonslip article for a stirrup and to a stirrup equipped with the nonslip article.
2. Description of the Prior Art
Stirrups come in different forms. The above-referenced applications disclose a type of stirrup having a metallic footrest and a metallic hanger for suspending the stirrup from a saddle. The footrest is provided with an opening which is used to mount one or more shock absorbers on the footrest. An uppermost surface of the shock absorber or shock absorbers is nonslip to prevent the foot of a rider from sliding out of the stirrup.
One aspect of the invention resides in a nonslip article for the footrest of a stirrup. The article comprises a base, which can be flexible, and a plurality of protrusions on the base. Each of the protrusions has a first end connected to the base and a second end facing away from the base, and each of the second ends is provided with a depression. The protrusions can, for example, be frustoconical.
The nonslip article can further comprise a body having means for anchoring the body to the footrest of a stirrup and the base can then be designed to be mounted on the body. Such body, or at least the major part thereof, is advantageously inflated with gas. A preferred gas for inflating the body is air.
The means for anchoring the body to the footrest of a stirrup may include at least one space which can be slot-like. The body may be elongated and have opposite longitudinal ends and, in such an event, the anchoring means can comprise a space at each of these ends.
The body may be provided with one or more ribs which function to position the body on the footrest of a stirrup. Alternatively or in addition, the body can be formed with one or more recesses which serve the same purpose.
It is also possible for the body to have a rim or a flange for positioning the body on the footrest of a stirrup.
Another aspect of the invention resides in a stirrup which is provided with the nonslip article outlined above. The stirrup comprises a support for a foot as well as a suspending element for suspending the support on an animal, and the nonslip article is mounted on the support.
Additional features and advantages of the invention will be forthcoming from the following detailed description of specific embodiments when read in conjunction with the accompanying drawings.
Referring to
Considering
The footrest 14 is formed with an elongated opening 26 having a shape similar to that of the footrest 14. The opening 26 has opposed longitudinal ends 26a and 26b, and the longitudinal end 26a of the opening 26 is located in the vicinity of the longitudinal end 20a of the footrest 14 while the longitudinal end 26b of the opening 26 is located in the vicinity of the longitudinal end 20b of the footrest 14. The elongated opening 26 extends from the upper surface 24a of the footrest 14 to the lower surface 24b and is bounded by a wall which slopes from the upper surface 24a to a location near the lower surface 24b. This wall has a concave segment 28a at the longitudinal end 26a of the opening 26 and a concave segment 28b at the longitudinal end 26b of the opening 26. The wall bounding the opening 26 further has two opposed segments 30a and 30b which face each other and run in the same direction as the straight sides 22a,22b of the footrest 14. Each of the segments 30a,30b extends from one of the concave segments 28a,28b to the other.
The wall 28a,28b,30a,30b bounding the elongated opening 26 in the footrest 14 slopes in such a manner that the cross-sectional area of the opening 26 at the upper surface 24a of the footrest 14 exceeds the cross-sectional area at the lower surface 24b. The elongated opening 26 has a maximum width W1 at the upper surface 24a and a smaller maximum width W2 at the lower surface 24b. Both the cross-sectional area and the maximum width of the elongated opening 26 decrease progressively from the upper surface 24a to the location where the wall 28a,28b,30a,30b stops sloping.
The upper surface 24a of the footrest 14 is made up of two curved sections 34a and 34b and two straight, strip-like sections 36a and 36b. The curved sections 34a,34b are respectively located at the longitudinal ends 26a,26b of the opening 26 in the footrest 14 while the strip-like sections 36a,36b run along opposite sides of the opening 26. Each of the strip-like sections 36a,36b bridges the curved sections 34a,34b.
In a similar fashion, the lower surface 24b of the footrest 14 is made up of two curved sections 38a and 38b and two straight, strip-like sections 40a and 40b. The curved sections 38a,38b are respectively located at the longitudinal ends 26a,26b of the opening 26 in the footrest 14 while the strip-like sections 40a,40b run along opposite sides of the opening 26. Each of the strip-like sections 40a,40b bridges the curved sections 38a,38b.
Referring to
The shock-absorbing body 46 is provided with a depression 52 which is bounded by a rectangle including two longer straight surface sections 54a and 54b and two shorter straight surface sections 56a and 56b. The longer surface sections 54a,54b are generally parallel to one another and to the straight sides 50a,50b of the shock-absorbing body 46. The depression 52 further has a bottom defined by two longer sloping surface sections 58a and 58b and two shorter sloping surface sections 60a and 60b. The longer sloping surface sections 58a,58b run along the respective longer straight surface sections 54a,54b while the shorter sloping surface sections 60a,60b run along the respective shorter straight surface sections 56a,56b.
A sloping surface section 62a lies between the straight side 50a of the shock-absorbing body 46 and the longer straight surface section 54a of the depression 52. Similarly, a sloping surface section 62b lies between the straight side 50b of the shock-absorbing body 46 and the longer straight surface section 54b of the depression 52. The sloping surface sections 62a,62b bridge the longitudinal ends 48a,48b of the shock-absorbing body 46, and each of the sloping surface sections 62a,62b merges into a transverse surface section 64a on the longitudinal end 48a and a transverse surface section 64b on the longitudinal end 48b. The transverse surface sections 64a,64b, which may or may not be sloped, extend transversely of the shock-absorbing body 46 between the sloping surface sections 62a,62b. The sloping surface sections 62a,62b, as well as the transverse surface sections 64a,64b, face upward during use and can thus be considered to constitute upper surface sections of the shock-absorbing body 46.
The shock-absorbing body 46 has two additional surface sections 66a and 66b which face away from the sloping upper surface sections 62a,62b. The additional surface sections 66a,66b bridge the longitudinal ends 48a,48b of the shock-absorbing body 46, and each of the additional surface sections 66a,66b merges into a transverse surface section 68a on the longitudinal end 48a and a transverse surface section 68b on the longitudinal end 48b. The transverse surface sections 68a,68b extend transversely of the shock-absorbing body 46 between the additional surface sections 66a,66b. The additional surface sections 66a,66b, as well as the transverse surface sections 68a,68b,face downward during use and can thus be considered to constitute lower surface sections of the shock-absorbing body 46.
An elongated opening is formed centrally of the shock-absorbing body 46 between the sloping surface sections 58a,58b,60a,60b of the depression 52 and the lower surface sections 66a,66b,68a,68b of the shock-absorbing body 46. The opening, which registers with the depression 52, is bounded by a rectangle including two longer straight surface sections 70a and 70b and two shorter straight surface sections 72a and 72b. The longer surface sections 70a,70b are generally parallel to one another and to the straight sides 50a,50b of the shock-absorbing body 46.
A crosspiece 74 centered longitudinally of the opening in the shock-absorbing body 46 bridges the longer surface sections 70a,70b of the opening. The crosspiece 74 divides the opening into two apertures or spaces 76a and 76b.
The lower surface section 66a of the shock-absorbing body 46 is formed with an elongated rib or protuberance 78a which extends longitudinally of the shock-absorbing body 46. Likewise, the lower surface section 66b of the shock-absorbing body 46 is provided with an elongated rib or protuberance 78b which runs longitudinally of the shock-absorbing body 46. The ribs 78a,78b are arranged so that, when the shock-absorbing body 46 is properly placed on the footrest 14, the rib 78a lies proximate to or against the wall segment 30a of the opening 26 in the footrest 14 while the rib 78b lies proximate to or against the opposing wall segment 30b. The length of the rib 78a is equal to or less than the length of the wall segment 30a of the opening 26 and the length of the rib 78b is equal to or less than the length of the wall segment 30b. The ribs 78a,78b serve to position or align the shock-absorbing body 46 on the footrest 14 transversely of the latter.
Turning to
The hanger 16 has an end portion 16a at the longitudinal end 20a of the footrest 14 and another end portion 16b at the opposite longitudinal end 20b of the footrest 14, and the end portions 16a, 16b face the footrest 14. The end portion 16a of the hanger 16 and the longitudinal end 20a of the footrest 14 are joined to each other flexibly or elastically as are the end portion 16b of the hanger 16 and the longitudinal end 20b of the footrest 14.
An anchoring element 82a is mounted on the upper surface 24a of the footrest 14 at the longitudinal end 20a of the footrest 14 while an anchoring element 82b is mounted on the upper surface 24a at the longitudinal end 20b. As illustrated in
The hanger 16 of the stirrup 10 is provided with a passage 90 which runs from the end portion 16a of the hanger 16 to the end portion 16b thereof. A wire or cable 92 extends through the passage 90 and has opposite end portions 92a (only one visible in the drawings) which respectively project from the end portions 16a, 16b of the hanger 16. Part of each wire end portion 92a is embedded in and gripped by the respective anchoring element 82a,82b so that the wire 92 is anchored to the footrest 14 and establishes a connection between the footrest 14 and the hanger 16.
The end portions 16a, 16b of the hanger 16 are spaced from the respective anchoring elements 82a,82b by gaps, and the part of each wire end portion 92a which is not embedded in the respective anchoring element 82a,82b bridges the corresponding gap. The wire 92 is flexible or elastic thereby allowing the parts of the wire 92 between the hanger 16 and the anchoring elements 82a,82b to bend. When the parts of the wire 92 between the hanger 16 and the anchoring elements 82a,82b are bent about an axis running parallel to the longitudinal axis of the footrest 14, the footrest 14 and the hanger 16 rotate relative to one another on this axis. The wire 92 can, for example, be made of steel.
The passage 90 of the hanger 16 has a circular cross section and a plug or insert 94 of circular cross section extends into the passage 90 through each of the end portions 16a, 16b of the hanger 16 (only the plug 94 for the end portion 16a is shown in the drawings). Each of the plugs 94 is provided with a channel of circular cross section for the wire 92, and each of the plugs 94 is arranged so that part of the respective plug 94 is located internally of the hanger 16 and part is located externally of the hanger 16. The plugs 94 are fast with the hanger 16 and can be a friction fit in the passage 90 and/or can be attached to the hanger 16 in a suitable manner.
Each of the two parts of the wire 92 spanning the hanger 16 and the anchoring elements 82a,82b is surrounded by a sleeve or housing 96 of circular cross section, and each of the sleeves 96 is formed with a passage of circular cross section. One end of each sleeve 96 receives the smaller cylindrical portion 86 of the respective anchoring element 82a,82b while the other end of each sleeve 96 receives the part of the respective plug 94 located externally of the hanger 16. The plugs 94 and the smaller cylindrical portions 86 of the anchoring elements 82a,82b are fast with the sleeves 96, and the plugs 94 and smaller cylindrical portions 86 can be a friction fit in the sleeves 96 and/or can be attached to the sleeves 96 in a suitable manner.
The sleeves 96 are flexible or elastic thereby allowing the sleeves 96 to bend together with the parts of the wire 92 between the hanger 16 and the anchoring elements 82a,82b. By virtue of the construction in the illustrated embodiment of the stirrup 10, the sleeves 96 and the parts of the wire 92 spanning the hanger 16 and the anchoring elements 82a,82b are constrained to bend about an axis running parallel to the longitudinal axis of the footrest 14.
The sleeve 96 at the longitudinal end 20a of the footrest 14 may be arranged so that the end of the sleeve 96 which receives the plug 94 butts the end portion 16a of the hanger 16 and the end of the sleeve 96 which receives the smaller cylindrical portion 86 of the anchoring element 82a butts the larger cylindrical portion 84 of the anchoring element 82a. Similarly, the sleeve 96 at the longitudinal end 20b of the footrest 14 may be arranged so that the end of the sleeve 96 which receives the plug 94 butts the end portion 16b of the hanger 16 and the end of the sleeve 96 which receives the smaller cylindrical portion 86 of the anchoring element 82b butts the larger cylindrical portion 84 of the anchoring element 82b. The sleeves 96 then bridge the hanger 16 and the anchoring elements 82a,82b on the footrest 14. The sleeves 96, the larger cylindrical portions 84 of the anchoring elements 82a,82b and the end portions 16a, 16b of the hanger 16 can all have the same outer diameter so that a smooth transition from the footrest 14 to the hanger 16 exists at each of the longitudinal ends 20a,20b of the footrest 14.
The sleeves 96, which constitute cylindrical elements of circular cross section, may be made of material different from that of the footrest 14 and from that of the hanger 16. By way of example, the footrest 14 and the hanger 16 can be made of steel while the sleeves 96 are made of rubber.
Returning to
The longitudinal end 48a of the shock-absorbing body 46 is convex, as seen in a plan view, between the recess 80a and the respective sloping surface sections 62a,62b of the shock-absorbing body 46. Similarly, the longitudinal end 48b of the shock-absorbing body 46 is convex, as seen in a plan view, between the recess 80b and each of the sloping surface sections 62a,62b. Hence, the contours of the longitudinal ends 48a,48b of the shock-absorbing body 46 conform to the contours of the respective longitudinal ends 20a,20b of the footrest 14.
The shock-absorbing body 46, or at least the major part thereof, preferably comprises a body inflated with gas. This allows the shock-absorbing body 46 to function as a gas pad or cushion. The shock-absorbing body 46 can be made of plastic and the gas used to inflate the shock-absorbing body 46 may be air. In the illustrated embodiment, all of the shock-absorbing body 46 except for the crosspiece 74 is inflated with gas.
Referring to
The tread 98 is designed to rest on the shock-absorbing body 46 with the longitudinal end 100a of the sheet-like element 100 proximate to the longitudinal end 48a of the shock-absorbing body 46 and the longitudinal end 100b of the sheet-like element 100 proximate to the longitudinal end 48b of the shock-absorbing body 46. When the tread 98 is properly positioned on the shock-absorbing body 46, the inner surface 108a of the sheet-like element 100 is directed towards the shock-absorbing body 46. The length of the sheet-like element 100 is such that the inner surface 108a of the sheet-like element 100 can bear against the transverse surface section 64a at the longitudinal end 48a of the shock-absorbing body 46 and against the transverse surface section 64b at the longitudinal end 48b of the shock-absorbing body 46.
The leg 102 of the sheet-like element 100 has a straight flat section 102a which is spaced from the crosspiece 106 and lies in a plane normal to the plane of the crosspiece 106. The leg 102 further has a straight flat section 102b which bridges the crosspiece 106 and the flat section 102a and is sloped relative to the crosspiece 106 and the flat section 102a. The leg section 102a is designed to lie against the straight side 50a of the shock-absorbing body 46 whereas the leg section 102b is designed to lie against the sloping surface section 62a of the shock-absorbing body 46.
Similarly, the leg 104 of the sheet-like element 100 has a straight flat section 104a which is spaced from the crosspiece 106 and is located in a plane normal to the plane of the crosspiece 106. The leg 104 further has a straight flat section 104b which spans the crosspiece 106 and the flat section 104a and is sloped relative to the crosspiece 106 and the flat section 104a. The leg section 104a is designed to bear against the straight side 50b of the shock-absorbing body 46 whereas the leg section 104b is designed to bear against the sloping surface section 62b of the shock-absorbing body 46.
The sheet-like element 100 is formed with protrusions 110 which project to the outside of the sheet-like element 100 and cause the tread 98 to be nonslip. Each of the protrusions 110 has a fixed end which is connected to the sheet-like element 100, and each of the protrusions 110 further has a free end which faces away from the sheet-like element 100. The free end of each protrusion 110 is formed with a concavity or depression 110a.
The outer surface 108b of the sheet-like element 100 is arranged to support the foot of a rider employing the stirrup 10, and the protrusions 110 on the surface 108b inhibit the foot of the rider from slipping out of the stirrup 10. This effect is due, at least in part, to the concavities 110a in the protrusions 110.
The protrusions 110 can be made of a material having a relatively high coefficient of friction and a nonslip character.
The protrusions 110 may have any of a variety of configurations. By way of example, the protrusions 110 may be frustoconical. The concavities 110a in the protrusions 110 are here circular as seen in plan view, and each of the concavities 110a is advantageously centered with respect to the respective protrusion 110.
The inner surface 108a of the sheet-like element 100 is provided with two threaded studs or projections 112a and 112b. The studs 112a,112b are spaced from each other longitudinally of the tread 98 and are centered laterally of the tread 98.
Considering
When the tread 98 is properly positioned on the footrest 14, the stud 112a extends through the aperture 76a of the shock-absorbing body 46 and through the opening 114a of the web 114. In a similar vein, the stud 112b passes through the aperture 76b of the shock-absorbing body 46 and through the opening 116a of the web 116. The studs 112a,112b project to the side of the webs 114,116 remote from the shock-absorbing body 46, and the projecting portions of the studs 112a,112b are of such length that a washer 118 and a nut 120 may be placed on each of these projecting portions. A clamp 122 can be applied to each of the studs 112a,112b on the side of the respective nut 120 remote from the associated washer 118 to prevent loosening of the nut 120.
Upon tightening the nuts 120, the shock-absorbing body 46 is clamped between the tread 98 and the footrest 14. The tread 98 accordingly serves as an anchoring element for anchoring the shock-absorbing body 46 to the footrest 14.
The webs 114,116 of the footrest 14 can be referred to as anchoring members for the shock-absorbing body 46.
The shock-absorbing body 46, together with the tread 98, may be considered to constitute a nonslip article which inhibits the foot of a rider from slipping out of the stirrup 10.
One manner of assembling the stirrup 10 is as follows:
The hanger 16 with the wire 92 running therethrough is fabricated in a manner known per se as is the footrest 14 with the anchoring elements 82a,82b. Each of the anchoring elements 82a,82b is formed with a passage for a respective end portion 92a of the wire 92.
Before the end portions 92a of the wire 92 are inserted in the anchoring elements 82a,82b, one of the plugs 94 is placed on each end portion 92a. The plugs 94 are advanced to the respective end portions 16a, 16b of the hanger 16 and pushed into the passage 90 of the hanger 16 so that part of each plug 94 is inside the passage 90 and part of each plug 94 is outside of the passage 90. The plugs 94 are made fast with the hanger 16 by a friction fit in the passage 90 and/or by bonding the plugs 90 to the hanger 16.
Once the plugs 94 are fast with the hanger 16, one of the sleeves 96 is placed on each of the end portions 92a of the wire 92. The sleeves 96 are pushed over the respective plugs 94 and into abutment with the respective end portions 16a,16b of the hanger 16. The sleeves 96 are made fast with the plugs 94 by a friction fit on the plugs 94 and/or by bonding the sleeves 96 to the plugs 94.
After the sleeves 96 have been made fast with the plugs 94, the smaller cylindrical portions 86 of the anchoring elements 82a,82b are pushed into the respective sleeves 96. As the anchoring elements 82a,82b advance into the sleeves 96, the end portions 92a of the wire 92 enter the passages in the respective anchoring elements 82a,82b. The anchoring elements 82a,82b continue to be pushed into the sleeves 96 until the larger cylindrical portions 84 of the anchoring elements 82a,82b abut the sleeves 96. The sleeves 96 are made fast with the anchoring elements 82a,82b by a friction fit on the smaller cylindrical portions 86 and/or by bonding the sleeves 96 to the anchoring elements 82a,82b. The end portions 92a of the wire 92 are likewise made fast with the anchoring elements 82a,82b. This can be accomplished by placing a bonding agent in the passages of the anchoring elements 82a,82b prior to insertion of the end portions 92a of the wire 92 in the passages. Alternatively, the end portions 92a of the wire 92 can be bonded to the anchoring elements 82a,82b by welding or brazing, for example. In such an event, the sleeves 96 are put in place after the end portions 92a have been connected to the anchoring elements 82a,82b. Thus, each of the sleeves 96 is then supplied as two semicylindrical sections which are butted and bonded to one another once the end portions 92a of the wire 92 have been secured to the anchoring elements 82a,82b.
The shock-absorbing body 46 is now placed on the footrest 14. The shock-absorbing body 46 is positioned on the upper surface 24a of the footrest 14 with the depression 52 in the shock-absorbing body 46 facing the hanger 16 of the footrest 14. The lower surface section 66a of the shock-absorbing body 46 rests on the strip-like section 36a of the upper footrest surface 24a and the lower surface section 66b of the shock-absorbing body 46 rests on the strip-like section 36b. In addition, the lower surface section 68a of the shock-absorbing body 46 rests on the curved section 34a of the upper footrest surface 24a whereas the lower surface section 68b of the shock-absorbing body 46 rests on the curved section 34b.
The ribs 78a,78b of the shock-absorbing body 46 are inserted in the opening 26 of the footrest 14 with the rib 78a running alongside the wall segment 30a of the opening 26 and the rib 78b running alongside the wall segment 30b. Moreover, the anchoring element 82a is introduced into the recess 80a of the shock-absorbing body 46 while the anchoring element 82b is introduced into the recess 80b. The ribs 78a,78b and the recesses 80a,80b serve to locate the shock-absorbing body 46 on the footrest 14. When the shock-absorbing body 46 is properly situated on the footrest 14, the aperture 76a of the shock-absorbing body 46 is aligned with the opening 114a in the web 114 of the footrest 14. Likewise, the aperture 76b of the shock-absorbing body 46 is aligned with the opening 116a in the web 116 of the footrest 14.
After the shock-absorbing body 46 has been placed on the footrest 14, the tread 98 is positioned with the stud 112a facing and in register with the aperture 76a of the shock-absorbing body 46 and with the stud 112b facing and in register with the aperture 76b of the shock-absorbing body 46. The studs 112a,112b are then passed through the respective apertures 76a,76b and into the openings 114a,116a of the respective webs 114,116 formed on the footrest 14. The studs 112a,112b are advanced until the sheet-like element 100 of the tread 98 rests against the shock-absorbing body 46. When the sheet-like element 100 bears against the shock-absorbing body 46, a portion of each stud 112a,112b projects to the side of the webs 114,116 remote from the shock-absorbing body 46.
The washers 118 are placed on the projecting portions of the studs 112a, 112b and brought into abutment with the webs 114,116 of the footrest 14. Subsequently, the nuts 120 are screwed onto the studs 112a, 112b and urged against the washers 118 thereby causing the shock-absorbing body 46 to be clamped between the footrest 14 and the tread 98. After the nuts 120 have been tightened, the clamps 122 are placed on the studs 112a,112b adjacent to the nuts 120 so as to inhibit loosening of the nuts 120.
To use the stirrup 10, a saddle is secured to an animal, such as a horse, which is suited for riding. A strap is passed through the slot 18 of the hanger 16 and attached to the saddle after which a rider places his or her foot on the tread 98 and swings into the saddle. Once the rider is in the saddle and urges the animal to move, the rider's foot tends to pivot back-and-forth. This tendency causes the footrest 14 to rotate or pivot elastically relative to the hanger 16 on an axis which is parallel to the longitudinal axis of the footrest 14.
In
The footrest 214 is elongated and has opposed longitudinal ends 220a and 220b which are convex as seen in a plan view of the footrest 214. The footrest 214 is formed with an opening 222 which is elongated in the same direction, and has the same shape, as the footrest 214. The opening 222, which is centered laterally and longitudinally of the footrest 214, has opposed longitudinal ends 224a and 224b.
The longitudinal ends 220a,220b of the footrest 214 are U-shaped as seen in a plan view of the footrest 214, and the longitudinal ends 220a,220b of the footrest 214 respectively accommodate the longitudinal ends 224a,224b of the opening 222.
The footrest 214 has a side 226 which faces up during use and an opposite side 228 which faces down during use. The side 226 may thus be referred to as the upper side of the footrest 214 whereas the side 228 may be referred to as the lower side of the footrest 214.
The U-shaped longitudinal end 220a of the footrest 214 has two legs 230a and 230b as well as a crosspiece 232 which bridges the legs 230a,230b. Similarly, the U-shaped longitudinal end 220b of the footrest 214 has two legs 234a and 234b plus a crosspiece 236 which bridges the legs 234a,234b. The leg 230a of the longitudinal end 220a and the leg 234a of the longitudinal end 220b are aligned with one another longitudinally of the footrest 214 and are spaced from each other. The same is true for the leg 230b of the longitudinal end 220a and the leg 234b of the longitudinal end 220b.
Each of the legs 230a,230b,234a,234b has an end face 238 which extends from the upper side 226 of the footrest 214 partway to the lower side 228. The end face 238 of the leg 230a and the end face 238 of the longitudinally aligned leg 234a are bridged by a bar 240a forming part of the footrest 214 while the end face 238 of the leg 230b and the end face 238 of the longitudinally aligned leg 234b are bridged by a bar 240b also forming part of the footrest 214. The bars 240a,240b, which have a smaller thickness than the longitudinal ends 220a,220b of the footrest 214, are parallel to one another.
The longitudinal ends 220a,220b of the footrest 214 have respective upper surfaces 242a and 242b which are flat and lie in a common plane. The lower side 228 of the footrest 214 is likewise flat and defines a plane which is parallel to the plane of the upper surfaces 242a,242b. The bars 240a,240b of the footrest 214 have respective upper surfaces 244a and 244b which are also flat and are again located in a common plane. The plane of the upper surfaces 244a,244b of the bars 240a,240b is parallel to, and located between, the plane of the lower side 228 of the footrest 214 and the plane of the upper surfaces 242a,242b of the longitudinal ends 220a,220b of the footrest 214.
The footrest 214 and the hanger 216 constitute two separate components which are connected to each other such that the footrest 214 and the hanger 216 can move relative to one another. More particularly, the footrest 214 and the hanger 216 are rotatable or pivotable with respect to each other on an axis which runs in the direction of elongation, and is parallel to the longitudinal axis, of the footrest 214.
The hanger 216 has two end portions and a U-shaped main portion 246 which bridges the end portions. Only one end portion of the hanger 216 is visible in the drawings. The non-visible end portion of the hanger 216 confronts the longitudinal end 220a of the footrest 214 while the visible end portion of the hanger 216, seen in
Considering
An anchoring element 248 is mounted on the upper surface 242b of the longitudinal end 220b of the footrest 214. The anchoring element 248 is situated on the crosspiece 236 of the longitudinal end 220b and is centered with respect to the legs 234a,234b of the longitudinal end 220b. The anchoring element 248 comprises a pedestal or base 248a which sits on the longitudinal end 220b of the footrest 214, and the anchoring element 248 further comprises a bearing member 248b which is supported by the pedestal 248a at an end of the pedestal 248a remote from the longitudinal end 220b. The bearing member 248b has a cross section which is smaller than that of the pedestal 248a.
The bearing member 248b of the anchoring element 248 is located adjacent to and faces the end portion 246a of the hanger 216. The bearing member 248b is provided with a passage 250 which registers with a non-illustrated passage in the end portion 246a of the hanger 216. A pivot pin or bearing element 252 is mounted in the passage 250 of the bearing member 248b and the registering passage of the end portion 246a, and the pivot pin 252 pivotally connects the end portion 246a and the bearing member 248b to one another.
The axis of the pivot pin 252 extends in the direction of elongation, and is parallel to the longitudinal axis, of the footrest 214. Furthermore, the pivot pin 252 is coaxial with a non-illustrated pivot pin connecting the non-visible end portion of the hanger 216 to an anchoring element 254 on the longitudinal end 220a of the footrest 214. Consequently, the footrest 214 and the hanger 216 are pivotable or rotatable relative to one another on an axis extending in the direction of elongation, and paralleling the longitudinal axis, of the footrest 214.
Referring to
A sleeve or housing 256b similar to the sleeve 256a surrounds the joint formed between the footrest 214 and the hanger 216 at the longitudinal end 220a of the footrest 214.
The sleeves 256a,256b are flexible or elastic thereby allowing the sleeves 256a,256b to bend as the footrest 214 and the hanger 216 pivot relative to one another. By way of example, the sleeves 256a,256b can be made of rubber.
Considering
The nonslip article 258 includes an elongated body 260 which serves as a shock-absorbing or cushioning element for the foot of a rider and also functions to anchor the nonslip article 258 to the footrest 214. The shock-absorbing body 260 defines one or more substantially leakproof chambers containing gas, and the shock-absorbing body 260 is designed in such a manner that at least the major part of the nonslip article 258 is inflated with gas. The gas used to inflate the shock-absorbing body 260 is preferably air.
The shock-absorbing body 260 includes a section 262 which is used to anchor the nonslip article 258 to, and to position the nonslip article 258 on, the footrest 214. As best seen in the side view of
The contours of the layers 264a,264b of the shock-absorbing body 260 are at least approximately the same as the contour of the opening 222 in the footrest 214. When the nonslip article 258 is properly positioned on the footrest 214, the layers 264a,264b of the shock-absorbing body 260 are located in the opening 222 of the footrest 214 with the layer 264a above the layer 264b. As illustrated in
Referring once again to
The shock-absorbing body 260 additionally includes a section 272 which projects to the side of the rim 270 remote from the layers 264a,264b of the shock-absorbing body 260. The projecting section 272, which again has a contour similar to that of the opening 222 in the footrest 214, has the same, or approximately the same, dimensions as the upper layer 264a of the shock-absorbing body 260. When the stirrup 210 is in use and the nonslip article 258 is in proper position on the footrest 214, the projecting section 272 of the shock-absorbing body 260 sits above the upper surfaces 242a,242b of the footrest 214.
The projecting section 272 of the shock-absorbing body 260 has a side which faces away from the rim 270 and is directed upward during use, and a generally rectangular sheet-like support 274 is secured to this side of the projecting section 272. The sheet-like support 274, which has smaller dimensions than the projecting section 272, serves as a carrier for a nonslip tread or member 276.
The tread 276 comprises a generally rectangular sheet-like support or base 278 which is preferably flexible or resilient and has approximately the same dimensions as the sheet-like carrier 274. The sheet-like element 278 has a major surface which faces away from the sheet-like carrier 274 and is directed upward when the stirrup 210 is in use and the nonslip article 258 is properly situated on the footrest 214. Such surface is provided with a multiplicity of protrusions 280 which are intended to bear against the boot sole of a rider employing the stirrup 210, and each of the protrusions 280 has a fixed end which is connected to this surface of the sheet-like element 278. Each of the protrusions 280 further has a free end which faces away from the sheet-like element 278, and the free end of each protrusion 280 is formed with a concavity or depression 280a. The protrusions 280 inhibit the foot of the rider from slipping out of the stirrup 210 and this effect is due, at least in part, to the concavities 280a in the protrusions 280. In particular, the resilience of the material making up the protrusions 280 in combination with the concavities 280a produce a suction effect upon any surface bearing upon them, thereby further increasing the gripping performance of the nonslip article 258 of the invention. Because of the relatively small size of the protrusions 280 (preferably about 2.5 mm at the top edge), they can adhere to and therefore act as a suction cup even on relatively non-uniform surfaces, such as the typical soles of riding boots.
The protrusions 280 are preferably composed of a flexible or resilient material having a relatively high coefficient of friction and a nonslip character. For instance, the protrusions 280 can be made of rubber. The protrusions 280 may be integral with the sheet-like element 278.
The protrusions 280 may have any of a variety of configurations. For instance, the protrusions 280 may be frustoconical as illustrated in
The tread 276 may be releasably attached to the sheet-like carrier 274, e.g., by way of hook-and-loop fastening means. Releasable attachment of the tread 276 to the sheet-like carrier 274 enables the tread 276 to be replaced when the tread 276 becomes worn or damaged.
The tread 276 is provided with a generally rectangular cutout 282 which exposes a portion of the underlying sheet-like carrier 274. Such portion of the sheet-like carrier 274 can be provided with one or more indicia forming a logo or a legend, for example.
Returning to
The platforms 284a,284b serve as anchoring members for fixing the nonslip article 258 on the footrest 14.
Another platform or crosspiece 286 is disposed in the opening 222 of the footrest 214 and is centered longitudinally of the opening 222. The platform 286 is again flat and sheet-like, and the platform 286 is parallel to the plane of the platforms 284a,284b and is located on the side of such plane remote from the upper surfaces 242a,242b of the footrest 214. The platform 286 is preferably positioned so that the surface thereof which faces away from the upper surfaces 242a,242b of the footrest 214 is coplanar with the lower side 228 of the footrest 214. The platform 286, which functions as a rest or supporting member for the nonslip article 258, is fixed to the bars 240a,240b bridging the longitudinal ends 220a,220b of the footrest 214.
The nonslip article 258 is flexible so that the nonslip article 258 can be bent in order to mount the nonslip article 258 on the footrest 214. One manner of mounting the nonslip article 258 on the footrest 214 is to place the longitudinal end 258a of the nonslip article 258 between the bars 240a,240b of the footrest 214. The longitudinal end 258a is positioned with an adjoining portion of the lower layer 264b of the nonslip article 258 bearing against the rest 286 of the footrest 214 and with the slot 268a of the nonslip article 258 facing the anchoring member 284a of the footrest 214. The nonslip article 258 can then be slid towards the anchoring member 284a thereby allowing the latter to enter the slot 268a. Once the anchoring member 284a is received in the slot 268a, the nonslip article 258 can be bent in a manner which permits the other anchoring member 284b of the footrest 214 to enter the slot 268b of the nonslip article 258.
As indicated earlier, the lower layer 264b of the nonslip article 258 is somewhat shorter than the upper layer 264a. This makes it easier to insert one of the anchoring members 284a,284b of the footrest 214 in the respective slot 268a,268b of the nonslip article 258 after the other anchoring member 284a,284b has been received in the corresponding slot 268a,268b.
The nonslip article 258 can be readily removed from the footrest 214 by pulling the central portion of the nonslip article 258 away from the footrest 214. This action will cause the slots 268a,268b of the nonslip article 258 to retract from the respective anchoring members 284a,284b of the footrest 214. Release of the nonslip article 258 from the footrest 214 is facilitated by the fact that the lower layer 264b of the nonslip article 258 is shorter than the upper layer 264a.
When the nonslip article 258 is properly anchored to the footrest 214, the anchoring members 284a,284b are in the respective slots 268a,268b. The upper layer 264a and the lower layer 264b of the nonslip article 258 are located in the opening 222 of the footrest 214 with the lower layer 264b bearing against the rest 286 of the footrest 214. The rim 270 of the nonslip article 258 rests on the upper surfaces 242a,242b of the respective longitudinal ends 220,220b of the footrest 214.
As seen in
Various modifications are possible within the meaning and range of equivalence of the appended claims.
This is a continuation-in-part of application Ser. No. 10/899,473 filed Jul. 26, 2004 filed by Chia Wei Chang for “Stirrup With Footrest Having A Gas Filled Shock Absorber” which, in turn, is a continuation-in-part of application Ser. No. 10/367,107 filed 14 Feb. 2003 by Chia Wei Chang for “Stirrup With Relatively Movable Footrest and Hanger”, now U.S. Pat. No. 6,766,632, which, in turn, is a continuation-in-part of application Ser. No. 10/056,561 filed 25 Jan. 2002 by Chang Hsi-Chang for “Stirrup With Clamped Shock-Absorbing Pads”, now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
33354 | Livingston | Sep 1861 | A |
103031 | Dunnagan | May 1870 | A |
202974 | Wiley | Apr 1878 | A |
222556 | Whitman | Dec 1879 | A |
376526 | Jennings et al. | Jan 1888 | A |
1160082 | Jarvis | Nov 1915 | A |
1622510 | Hendriks | Mar 1927 | A |
1639073 | Berbaum | Aug 1927 | A |
2098141 | Galbreath | Nov 1937 | A |
2187983 | Moore | Jan 1940 | A |
3804216 | Katsumori et al. | Apr 1974 | A |
3905179 | Bischeltsrieder | Sep 1975 | A |
4199639 | Rone | Apr 1980 | A |
4936081 | Jones | Jun 1990 | A |
5172538 | Luger | Dec 1992 | A |
5429854 | Currie et al. | Jul 1995 | A |
5930986 | Meaghan et al. | Aug 1999 | A |
5979149 | Martin | Nov 1999 | A |
6062007 | Cargill | May 2000 | A |
6220004 | Hsi-Chang | Apr 2001 | B1 |
6425230 | Vollmecke et al. | Jul 2002 | B1 |
RE38422 | Rockwell et al. | Feb 2004 | E |
6766632 | Chang | Jul 2004 | B1 |
6933036 | Whitaker | Aug 2005 | B1 |
20010045084 | Vollmecke et al. | Nov 2001 | A1 |
20050039424 | Zucchini | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
3317859 | Nov 1984 | DE |
WO 9525692 | Sep 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20050081493 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10899473 | Jul 2004 | US |
Child | 10975218 | US | |
Parent | 10367107 | Feb 2003 | US |
Child | 10899473 | US | |
Parent | 10056561 | Jan 2002 | US |
Child | 10367107 | US |