The invention is explained in more detail below with reference to the figures which show exemplary embodiments only and are not intended to limit the scope of the claims, where:
In the following detailed description, reference is made to accompanying drawings which form a part hereof and in which is illustrated by way of illustration, specific embodiments in which the invention may be practiced. In this regard, directional terminology such as “above”, “below”, “between”, “upper”, “top”, “bottom”, “front”, “back”, “leading”, “trailing”, etc. is used with reference to the orientation of the Figures being described. Because components of the embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes will be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
In the drawings,
Due to the localized storage and the symmetrical setup of the transistor, it is possible to store two bits of charge per transistor. As this is known by the person skilled in the art, the programming using the channel hot electron (CHE) method, a first voltage is applied between the source and drain regions and a second Voltage or gate voltage VCCR is applied between the source region and the gate. The effect is the acceleration of electrons along the channel and the trapping of hot electrons having enough energy to pass the bottom oxide layer within the nitride layer of the ONO 4.
The reason for choosing increasing cycle number differences, after which an adaptation of the cycle margins (shifting of the reference point) was carried out, is that the applicants were aware of the fact that the degradation of erasing performance is stronger at the begin of life and nearly saturates versus the end of life of an NROM. In practice, when using a cycle counter for determining the wear-level of the erase performance, the appropriate cycle counts for each special device should be characterized and stored in advance.
An endurance experiment was carried out on the mentioned NROM structure including 30000 program/erase cycles. In the diagrams of
One E-sector, erasable sector which means the smallest unit to be erased in one step, was cycled for each of the above given cycle margins. The behavior of the programming steplevel VPPDmax can be derived from the graphs of
It can be seen from
For investigation of the bitline disturb of a NROM array, a so called “Killer-Pattern” and a Victim erase were used. The disturb was done with 50,000 Killers using either fixed cycle margin at 600 mV or adaptive cycle margin which changed from 600 mV to 1000 mV as mentioned above. To reduce the disturb on the programmed side, the erase Vinhibit was adapted in parallel to the cycle margin scheme.
In the figure, version 1 constitutes a switch from 3.1V to 3.5V after 500 cycles and version 2 constitutes a switch from 3.1V to 3.5V after 500 cycles and to 4.3V after 10,000 cycles. The results show a clear difference between both approaches, CM 600 mV versus adaptive cycle margin of inhibit ver.1. This is due to the fact that for the 600 mV cycle margin the erasure steplevel went up during cycling. With a shunt-transistor of the array being operated at constant VCCR, a floating bitline of the structure sees a higher voltage difference to a bitline driven by the increased erase VPPD. This increased voltage difference leads to a stronger soft-programming of the erased cells. The adaptive cycle margin does not face this soft-programming since the erase VPPD remains constant and hence no significant voltage drop between the bitlines is forced. As seen in the figure, the inhibit version 2 is overcompensated. The voltage drop on the programmed side is a superposition of disturb and retention after cycling.
From
As can be seen from
The comparison between the retention behaviors of the adaptive cycle margin NROM and the NROM with cycle margin fixed at 1000 mV is shown in
As a result of the previous investigation, it is proposed according to the present invention to increase the cycle margin which means the shifting of a reference point of a NROM memory device at certain stages within the erase/program cycle. Accordingly, the cycle margins are adapted to the intrinsic NROM properties during use.
The adaptation can be best realized by use of a look-up table in which there are stored shift values for the reference point for different cycling numbers or for different last erasure step levels.
Change of the cycle margin is a good measure to elude the upcoming leakage threshold on the one side and to keep the erasure and program performances stable over lifetime on the other side.
During cycling, the erasure steplevel increases, a phenomenon known as erasure degradation. When increasing the cycle margin, the cells are getting easier to erase. In combination with the erase degradation a stable erase performance over lifetime can be achieved.
Also the program performance can be stabilized, as already mentioned above. During the course of cycling, the cells are getting easier programmed but an increased cycle margin slows down the program performance. This again in combination with the adaptive cycle margin leads to a constant program performance over lifetime.
Therefore, the step levels will not increase drastically, which means that the array stress and the probability of failure are low.
According to one aspect of the present invention, this is achieved by storing a cycle counter, for example on each E-sector of the NROM structure. Based on the counter value, a stored algorithm can be carried out which derives the appropriate adaptation of the cycle margin using a stored look-up table. The latter has to be defined during characterization for after process technology change, i.e., POR change.
According to a second aspect, the cycle margin is changed as soon as the erase steplevel has reached a certain threshold. The last cycle margin is stored in a fuse-concept, e.g., write once read only memory, on the one time programmable read only memory (OTP) for each erasure.
With the present invention, danger of self-conduction can be avoided. Furthermore, a reduced bitline disturb can be achieved as has been shown above. Finally, NROM memory devices with adapted cycle margin also show a better endurance behavior than corresponding NROM devices having a fixed cycle margin.
While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of ordinary skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. Accordingly, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.