1. Related Application and Priority Information
This application claims priority to and the benefit of Korean Patent Application No. 10-2005-0116598 filed in the Korean Intellectual Property Office on Dec. 1, 2005, the entire contents of which are incorporated herein by reference.
2. Field of the Invention
The present invention relates to nonvolatile memory technologies, and more specifically, to SONOS structured nonvolatile memory devices having insulating spacers formed at the interfaces between isolation layers and active regions.
3. Description of the Related Art
Most of the nonvolatile memories are floating gate devices like flash memory devices. As the single type flash memory device cannot satisfy requirements for high-integration, a multi bit cell, which has at least two gate structures in a single cell, has been developed. For embodying the multi bit cell, silicon-oxide-nitride-oxide-semiconductor (SONOS) structure nonvolatile memory has been used.
SONOS memory was introduced in Chan et al, IEEE Electron Device Letters, Vol. 8, No. 3, p. 93, 1987, and the SONOS memory cells are constructed having a charge trapping non-conducting dielectric layer, typically a silicon nitride layer, sandwiched between two insulating layers, typically silicon dioxide layers. A conducting gate layer is placed over the upper silicon dioxide layer. Since the electrical charge is trapped locally near the drain, this structure can be described as a two-transistor cell, or two-bits cell. If multi-bit is used, then four or more bits per cell can be accomplished. Multi-bit cells enable SONOS memory devices to have advantage over others in facilitating the continuing trend increasing the amount of information held/processed on an integrated circuit chip. The SONOS memory has been considered as a replacement for the floating gate nonvolatile memory and has various advantages of good scalability, simplicity of cell structure and process, high-density, and low-voltage operation. Further, SONOS nonvolatile memory transistor has a fast programming time, good retention, and high endurance, and the programming voltage of SONOS memory can be scaled.
One of drawbacks of SONOS memory is a hump phenomenon that occurs because a tunnel oxide fails to have uniform thickness in an active region where SONOS memory cells are to be constructed.
As denoted by dotted rectangular 1B and 1C of
When the tunnel oxide 12 grows thicker locally, a parasitic transistor is generated in the location as shown in
When the SONOS transistor 25 is in erase operation mode, the SONOS transistor 25 in which the trapped charges are easily removed or erased, experiences the lowering of threshold voltage, while the parasitic transistors 20 in which the trapped charges are not removed have the threshold voltage unchanged. Therefore, during the data read operation from the SONOS transistor 25, the main current source is the SONOS transistor 25 and thus leakage current from the parasitic transistors 20 is ignorable. Thus, as shown in
In contrast, when the SONOS transistor 25 is in a program operation mode, the SONOS transistor 25 in which electrical charges are easily trapped experiences the rise of threshold voltage, while the parasitic transistors 20 in which electrical charges are not trapped have the threshold voltage unchanged. In other words, the threshold voltage of parasitic transistor 20 is lower than that of the SONOS transistor 25. Therefore, the parasitic transistors 20 turn-on earlier than the SONOS transistor 25 and act as a main current source in data read operation from the SONOS transistor 25. Thus the leakage current from the parasitic transistors 20 is no longer ignorable and the hump phenomenon becomes worsen as denoted by circle āDā in
The hump phenomenon induces failure of data read operation in the SONOS transistor 25 and makes widen the threshold voltage distribution in the program operation. Further, the leakage current and soft fail are increased due to the parasitic transistors 20 of the programmed SONOS cells. Measures are thus need to prevent the hump phenomenon.
Principles of the present invention, as embodied and broadly described herein, are directed to providing nonvolatile memory devices that effectively prevent the occurrence of the hump phenomenon and a manufacturing method for fabricating the same. In one embodiment, the present invention may be directed to a nonvolatile memory device which is formed in an active region separated by isolation layers, and comprises: (a) an insulating spacer formed at interface between the active region and isolation layer; (b) a charge trapping dielectric layer formed in the active region between the neighboring two insulating spacers; (c) a gate electrode layer formed on the charge trapping dielectric layer; and (d) source and drain formed in the active region at both sides of the gate electrode layer.
In another embodiment, the present invention may be directed to a method of fabricating a nonvolatile memory device, comprising: (a) forming isolation layers and an active region electrically separated by the isolation layers on a semiconductor substrate; (b) depositing insulating material on the overall surface of the substrate; (c) blanket-etching the deposited insulating material to form an insulating spacer at an interface between the isolation layer and active region; (d) forming a charge trapping dielectric layer in active region between neighboring two insulating spacers; and (e) forming a gate electrode on the charge trapping dielectric layer.
The accompanying drawings, which are incorporated in and constitute a part of this Specification, depict corresponding embodiments of the invention, by way of example only, and it should be appreciated that corresponding reference symbols indicate corresponding parts. In the drawings:
FIGS. 6 to 12 are cross-sectional views for illustrating the structure and fabrication method of nonvolatile memory device according to the present invention.
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
With references to FIGS. 6 to 12, a volatile memory device according to the present invention will be explained in terms of its structure and fabrication method. Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
As understandable from the cross-sectional view of
Because the nonvolatile memory device according to the present invention has the insulating spacers 160 formed at the interfaces between the STI isolation layer 110 and active regions 120, the parasitic transistors that may be formed at the corner rounding regions of the STI isolation structure 110 can be completely prevented. That is to say, in the present invention, the tunnel oxide does not grow further at the corner rounding regions of the isolation layer to become thicker, and therefore the hump phenomenon in nonvolatile memory devices can be avoided.
Further, the present invention does not require multiple processing steps to be added and entail an increase of manufacturing cost, since the hump phenomenon can be prevented by adding simple processing steps such as a deposition of insulating material and blanket etch of the deposited insulating material.
While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. For instance, although the embodiments disclosed above are explained with reference to the SONOS structure, the present invention can be applied to various nonvolatile memory structures such as NOR-type and NAND-type memories, and ROM (Read Only Memory), PROM (Programmable Read Only Memory), EPROM (Erasable Programmable Read Only Memory), and EEPROM (Electrically Erasable Programmable Read Only Memory).
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0116598 | Dec 2005 | KR | national |