Nonwoven barrier and method of making the same

Abstract
A steam sterilizable nonwoven material which is subjected to charging, and more particularly electrostatic charging is provided. The nonwoven materials may include laminate nonwovens wherein one or more layers are subjected to charging. The nonwoven material(s) are treated with an antistatic material before charging.
Description

FIELD OF THE INVENTION
The present invention is directed to bacterial barrier fabrics. More particularly, the present invention is directed to nonwoven bacterial barrier fabrics for use as sterilization wrap, surgical draping, surgical gowns, cover garments, such as over-suits, and the like.
BACKGROUND OF THE INVENTION
As is generally known, surgical gowns, surgical drapes, surgical face masks and sterile wrap (hereinafter collectively "surgical articles") have been designed to greatly reduce, if not prevent, the transmission through the surgical article of liquids and/or airborne contaminants. In surgical procedure environments, such liquids sources include the gown wearer's perspiration, patient liquids, such as blood and life support liquids such as plasma and saline. Examples of airborne contaminants include, but are not limited to, biological contaminants, such as bacteria, viruses and fungal spores. Such contaminants may also include particulate material such as, but not limited to, lint, mineral fines, dust, skin squamae and respiratory droplets. A measure of a fabrics ability to prevent the passage of such airborne materials is sometimes expressed in terms of "filtration efficiency".
Many of these surgical articles were originally made of cotton or linen and were sterilized prior to their use in the operating room. Such surgical articles fashioned from these materials, however, permitted transmission or "strike-through" of various liquids encountered in surgical procedures. In these instances, a path was established for transmission of biological contaminants, either present in the liquid or subsequently contacting the liquid, through the surgical article. Additionally, in many instances surgical articles fashioned from cotton or linen provide insufficient barrier protection from the transmission therethrough of airborne contaminants. Furthermore, these articles were costly, and of course laundering and sterilization procedures were required before reuse.
Disposable surgical articles have largely replaced linen surgical articles. Advances in such disposable surgical articles include the formation of such articles from totally liquid repellent fabrics which prevent strike-through. In this way, biological contaminates carried by liquids are prevented from passing through such fabrics. However, in some instances, surgical articles formed from nonporous films, while being liquid and airborne contaminant impervious, are, or become over a period of time, uncomfortable to wear.
In some instances, surgical articles fashioned from liquid repellent fabrics, such as fabrics formed from nonwoven polymers, sufficiently repel liquids and are more breathable and thus more comfortable to the wearer than nonporous materials. However, these improvements in comfort and breathable provide by such nonwoven fabrics have generally occurred at the expense of barrier properties or filtration efficiency.
While the focus thus far has been directed to surgical articles, there are many other garment or over-garment applications, such as personal protective equipment applications, whose designers require both fabric comfort and filtration efficiency. Other personal protective equipment applications include, but are not limited to, laboratory applications, clean room applications, such as semi-conductor manufacture, agriculture applications, mining applications, and environmental applications.
Therefore, there is a need for garment materials and methods for making the same which provide improved breathability and comfort as well as improved filtration efficiency. Such improved materials and methods are provided by the present invention and will become more apparent upon further review of the following specification and claims.
SUMMARY OF THE INVENTION
In response to the above problems encountered by those of skill in the art, the present invention provides a steam sterilizable nonwoven material, such as nonwoven fabrics, formed from polymer fibers. The nonwoven materials of the present invention are formed by subjecting a portion of the nonwoven material to charging, and more particularly to electrostatic charging, and then steam sterilizing the nonwoven material. The nonwoven material may be subjected to charging followed by steam sterilization or steam sterilization followed by charging. The nonwoven material may also be treated with an antistatic material before or after subjecting the nonwoven material to charging.
These methods further include positioning another nonwoven material in a juxtaposed relationship with the first nonwoven material. Portions of the other, or second, nonwoven material may be subjected to charging before or after steam sterilization. The second nonwoven material may also be treated with an antistatic material before or after being subjected to charging.
The nonwoven materials includes a steam sterilized web formed from fibers of a polymer wherein a portion of these fibers have been subjected to charging, and particularly electrostatic charging. The steam sterilized nonwoven composition may also include an antistatic material present about portions thereof. The above nonwoven composition may further include a second web in a juxtaposed relationship to the first web. The second web may be formed from polymer fibers wherein a portion of these fibers may be subjected to charging. An antistatic treatment may also be present about portions of the second web.
The composition of the present invention further includes a nonwoven material including a first web formed from fibers of a polymer, wherein a portion of these fibers have been subject to charging and wherein an antistatic material is present about portions of the first web. This composition may further include a second web formed from fibers of a polymer, wherein the polymer is positioned in a juxtaposed relationship with the first web. The second web may also be subjected to charging.
DETAILED DESCRIPTION OF THE INVENTION
Disclosed herein are compositions, and methods of making the same, which improved both the airborne contaminant barrier and filtration efficiency of a web formed from polymer fibers. Among the applications for such compositions and methods are included, but not limited to, applications requiring sterilizable, breathable materials having high airborne contaminant barrier properties. Such materials have application in surgical articles, such as gowns, drapes, sterile wrap and face mask, as well as other non-surgical applications such as agriculture, mining, clean room and environmental.
Polymers are well suited for the formation of nonwoven materials which are useful in the practice of the present invention. Nonwoven materials can be made from a variety of processes including, but not limited to, air laying processes, wet laid processes, hydroentangling processes, spunbonding, meltblowing, staple fiber carding and bonding, and solution spinning. The fibers themselves can be made from a variety of dielectric materials including, but not limited to, polyesters, polyolefins, nylon and copolymer of these materials. The fibers may be relatively short, staple length fibers, typically less than 3 inches, or longer more continuous fibers such as are produced by a spunbonding process.
It has been found that nonwovens formed from polyolefin-based fibers are particularly well-suited for the above applications. Examples of such nonwovens are the polypropylene nonwovens produced by the Assignee of record, Kimberly-Clark Corporation. And more particularly, the spunbond, meltblown, spunbond material produced by Kimberly-Clark Corporation.
This spunbond, meltblown, spunbond material may be made from three separate layers which are laminated to one another. Such a method of making this laminated material is described in commonly assigned U.S. Pat. No. 4,041,203 to Brock et al which is incorporated herein in its entirety by reference. Alteratively, the spunbond, meltblown, spunbond material may be made by first forming a spunbond, meltblown laminate. The spunbond, meltblown laminate is formed by applying a layer of meltblown on to a layer of spunbond. The second layer of spunbond is then applied to the meltblown side of the previously formed spunbond, meltblown laminate. Generally, the two outer layers provide the nonwoven fabric with strength while the inner layer provides barrier properties.
The nonwoven web of the present invention may be formed from a single layer or multiple layers. In the case of multiple layers, the layers are generally positions in a juxtaposed or surface-to-surface relationship and all or a portion of the layers may be bound to adjacent layers. The nonwoven web may also be formed from a plurality of separate nonwoven webs wherein the separate nonwoven webs may be formed from single or multiple layers. In those instances where the nonwoven web includes multiple layers, the entire thickness of the nonwoven web may be subjected to charging or individual layers may be separately subjected to charging and then combined with other layers in a juxtaposed relationship to form the finished nonwoven web.
Methods of subjecting a material to charging, and particularly electrostatic charging, are well known by those skilled in the art. These methods include, for example, thermal, liquid-contact, electron beam and corona discharge methods. One particular technique of subjecting a material to electrostatic charging is the technique disclosed in U.S. Pat. No. 5,401,446 Feb. 29, 1996 herein incorporated in its entirety by reference. This technique involves subjecting a material to a pair of electrical fields wherein the electrical fields have opposite polarities.
Sterilization of the nonwoven web may be accomplished by several techniques which include chemical and steam techniques. In those instances when the nonwoven web is used to wrap surgical instruments, steam sterilization techniques are commonly used. In such instances, the unsterile instruments are first wrapped in the nonwoven web. The wrapped instruments are then steam sterilized. The instruments, still wrapped, are then removed from the steam sterilizing equipment or autoclave and are stored in the wrapping material until needed. When needed, the wrapping web is removed making the instruments available for handling.
The steam sterilization cycle may vary dependent upon type of sterilizer and the size/quantity of the items being sterilized. For example, the time and temperature parameters for gravity-displacement cycles may range from 10 to 15 minute exposure time at 270.degree. F. to 275.degree. F. to 15 to 30 minute exposure time at 250.degree. F. to 254.degree. F. For pre-vacuum cycles, the time and temperature parameters may be 3 to 4 minutes at 270.degree. F. to 275.degree. F. And for steam-flush pressure-pulse cycles, the time and temperature parameters may range from 3 to 4 minutes at 270.degree. F. to 275.degree. F. to 20 minutes at 250.degree. F. to 254.degree. F.
In those instances where the nonwoven web is used in or around flammable materials and static discharge is a concern, the nonwoven web may be treated with any number of antistatic materials. In these instances, the antistatic material may be applied to the nonwoven by any number of techniques including, but not limited to dipping the nonwoven into a solution containing the antistatic material or by spraying the nonwoven with a solution containing the antistatic material. In some instances the antistatic material may be applied to both the external surfaces of the nonwoven and the bulk of the nonwoven. In other instances, the antistatic material may be applied to portions of the nonwoven, such as a selected surface or surfaces thereof.
Of particular usefulness is the antistatic material known as ZELEC.RTM., an alcohol phosphate salt product of the Du Pont Corporation. The nonwoven web may be treated with the antistatic material either before or after subjecting the web to charging. Furthermore, some or all of the material layers may be treated with the antistatic material. In those instances where only some of the material layers are treated with antistatic material, the non-treated layer or layers may be subjected to charging prior to or after combining with the antistatic treated layer or layers.





To demonstrate the attributes of the present invention, the following Examples are provided.
EXAMPLE 1
Kimberly-Clark manufactures a series of single sheet laminate nonwoven web materials made from spunbond-meltblown-spunbond (SMS) layers. These materials are available in a variety of basis weights. The nonwoven web materials used in Examples 1 and 2 were such single sheet laminate materials sold by Kimberly-Clark under the mark KIMGUARD.RTM. Heavy Duty Sterile Wrap. The basis weight of this material is 2.2 oz/sq yd. Both spunbond layers have a basis weight of 0.85 oz/sq yd and the meltblown layer has a basis weight of 0.50 oz/sq yd.
The method used to subject the samples reported in Tables 1-4 to electrostatic charging is described in the above referenced U.S. Pat. No. 5,401,446.
Referring now to Table 1, a summary of bacterial filtration efficiency (BFE) test results and standard deviation (SD) are reported for three categories investigated for Heavy Duty KIMGUARD.RTM. Sterile Wrap. The first category, "Uncharged" reports the average BFE for eleven samples of ZELEC.RTM. treated and eleven samples of non-ZELEC.RTM. treated KIMGUARD.RTM. material. These samples were not subjected to electrostatic charging or steam sterilization.
The second category, "Charged", reports the average BFE for eleven samples of ZELEC.RTM. treated and eleven samples of non-ZELEC.RTM. treated KIMGUARD.RTM. material which were subject to electrostatic charging but not steam sterilization.
The third category, "Charged/Sterilized" reports the average BFE for eleven samples of ZELEC.RTM. treated and eleven samples of non-ZELEC.RTM. treated KIMGUARD.RTM. material which were first charged then steam sterilized. Sterilization of these samples was accomplished in an Amsco 2021 Gravity Sterilizer, a product of American Sterilizer Co. of Erie, Pa. Samples were sealed in a Baxter DUAL PEELTM Self Seal Pouch. The sealed pouches were exposed to 250.degree. F. at 15 psi steam for 20 minutes with a dry time of 5 minutes. After sterilizing, the above samples were analyzed by Nelson Laboratories for Bacterial Filtration Efficiency testing.
TABLE 1______________________________________Bacterial Filtration Efficiency (KIMGUARD .RTM. Heavy Duty Sterile Wrap) Description Uncharged Charged Charged/Sterilized______________________________________ZELEC .RTM. 85.55+/-2.38 93.85+/-3.67 95.87+/-0.99 Non-ZELEC .RTM. 82.18+/-1.66 96.36+/-1.72 93.64+/-2.72______________________________________
As previously stated, Nelson Laboratories of Salt Lake City, Utah preformed the above BFE analysis. The procedure used to determine these BFEs is described in Nelson Laboratories' Protocol No. ARO/007B in accordance with MIL Spec 36954C, 4.4.1.1.1 and 4.4.1.2.
Example 2
Further analysis of the Heavy Duty KIMGUARD.RTM. Sterile Wrap (2.2 oz) were conducted to determine BFE and the charge on the samples for both pre- and post-steam sterilizing. Steam sterilization of the samples reported in Example 2 was accomplished using the steam sterilization procedure reported in Example 1. The BFE results reported in Table 2 were the product of Nelson Laboratories using the protocol described in Example 1. These BFE results represent the average of eleven non-antistatic treated samples.
TABLE 2______________________________________Bacterial Filtration Efficiency (KIMGUARD .RTM. Heavy Duty Sterile Wrap) Description BFE SD % Charge Pre Charge Post______________________________________Uncharged 90.6 2.3 -- -- Charged 98.8 0.31 800-1000 v/cm2 -- Charged/ 94.4 2.0 -- 100-180 v/cm2 Sterilized______________________________________
After charging but before steam sterilizing, a voltage of between 800 to 1,000 volts/cm.sup.2, positive on one side of the material and negative on the other side of the material, was recorded. After steam sterilizing, a voltage of between 100 to 180 volts/sq cm, positive on one side and negative on the other side, was recorded. In both instances, voltage was measured using an Electrostatic Voltmeter (Trek Model 344, Trek, Inc, Median, N.Y.) by taking ten readings on each side of the samples.
Example 3
Further barrier properties for SMS fabric samples were investigated. Table 3 reports the barrier property results for KIMGUARD.RTM. Heavy-Duty Sterile Wrap (KIM) and SPUNGUARD.RTM. Regular Sterilization Wrap (SPU). SPUNGUARD.RTM. Regular Sterilization Wrap is also a spunbond, meltblown, spunbond material having a basis weight of 1.05 oz/sq yd (0.35/0.35/0.35). These categories included ZELEC.RTM. treated and non-ZELEC.RTM. treated materials, charged and non-charged, sterilized and non-sterilized material.
The charged and sterilized samples were prepared according to the charging and sterilizing procedures described in Example 1 except that all sterilized sample pouches were conditioned at laboratory ambient environment for at least 4 hours prior to testing. For samples 1 and 2, the barrier properties were measured using the Nelson procedures described in Example 1. For samples 3-13, the barrier properties were measured using a microbial challenge procedure described below.
In runs 3-13, a six port exposure chamber was used. Five of the ports accommodated five separate samples. The challenge control filter material was positioned in the sixth port. Three conditions were maintained in the microbial challenge test. These were: first, a 2.8 LPM (Liters Per Minute) flowrate through each of the ports; second, an exposure time of fifteen minutes followed by a chamber exhaust of fifteen minutes, and; third, a microbial challenge that results in 1.times.10 E6 CFU's (Colony Forming Units) per port. Bacillus subtilis ss globigii spores, purchased from Amsco (Part No. NA-026, P-764271-022) was used to make the working spore suspension of 1.times.10 E6 CFUs per port recovery.
TABLE 3______________________________________Sam- Pro- ple duct ZELEC .RTM. Charged Sterilized Avg % Red SD n______________________________________1 SPU No No Yes 71.5 9.1 25 2 SPU No Yes Yes 87.2 3.1 25 3 KIM Yes No Yes 69.4 5.7 15 4 KIM Yes Yes Yes 80.8 9.1 15 5 KIM Yes Yes No 97.2 1.1 15 6 KIM Yes No Yes 80.1 9.2 15 7 KIM Yes Yes Yes 88.9 5.7 15 8 KIM Yes Yes No 94.6 2.7 15 9 KIM Yes No Yes 73.9 7.6 15 10 KIM Yes Yes Yes 86.2 4.1 15 11 KIM No No Yes 66.8 11.9 15 12 KIM No Yes Yes 94.5 2.8 15 13 KIM NO Yes No 98.2 0.7 15______________________________________ n Number of fabric samples.
The average percent reduction (Avg % Red) is a measurement of filtration efficiency. The Avg % Red is an expression of the reduction of number of colony forming units (CFUs) or bacteria passing through a sample compared to the number CFUs in the challenge control filter material. The Avg % Red was calculated by subtracting the number of CFUs passing through a sample from the number of CFUs passing through the challenge control filter material and dividing this number by the number of CFUs for the challenge filter material. The result was then multiplied by 100 to convert to percent.
Table 3 demonstrates that filtration properties of the steam sterilized nonwoven samples are improved by the charging of the fabric samples (Samples 2, 4, 7, 10, and 12) as compared to samples which have not been subjected to charging (Samples 1, 3, 6, 9, and 11).
Example 4
Table 4 reports charge data for the top and bottom surfaces of 2.2 oz. KIMGUARD.RTM. fabric samples subjected to various conditions. As noted in Table 4, one of the KIMGUARD.RTM. samples was treated with ZELEC.RTM. and the other was not. Except as otherwise indicated, the measurements were made on separate samples. Each sample was had a general dimension of about 10".times.10". The area of each sample measured had a general dimension of about 6".times.6". Measurements were taken each 1/2" in a 12.times.12 matrix. The charge number reported is an averaged number. The equipment used to measure charge was the same as described in Example 2.
TABLE 4__________________________________________________________________________AVERAGE SURFACE VOLTAGE OF SAMPLES OF 2.2 OZ KIMGUARD .RTM. STERILE WRAP 5 6 3 4 Sample #3 Sample #4 1 Sterilizer Sterilizer No Pouch No Pouch Sample # As 2 20 min. in 60 min. in Sterilizer Sterilizer Material Side Received Charge Dual Peel Pouch Dual Peel Pouch 20 min. 60 min.__________________________________________________________________________Kimguard A -2.8 -125 -51 -100 30 -43 (ZELEC .RTM. ) B 1.6 -15 -48 -169 72 66 Kimguard A -61 272 239 -353 -146 -354 (Non-ZELEC .RTM. ) B -87 -432 -265 -243 -232 -223__________________________________________________________________________ Notes: Sample #5 rerun of #3 without pouch Sample #6 rerun of #4 without pouch
As demonstrated by the above Examples, the barrier properties of steam sterilized non-woven material are improved when these materials are subjected to charging, and particularly electrostatic charging. It will be further observed that the barrier properties of an antistatic treated non-woven material are improved when these materials are subjected to charging, and particularly electrostatic charging.
While the invention has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily conceive of alterations to, variations of and equivalents to these embodiments. Accordingly, the scope of the present invention should be assessed as that of the appended claims and any equivalents thereto.
Claims
  • 1. A method of manufacturing nonwoven material comprising:
  • charging a nonwoven web;
  • treating the nonwoven web with an antistatic material; and
  • wherein the nonwoven web is treated with the antistatic material prior to being charged.
  • 2. The method of claim 1 wherein the charging is electrostatic charging.
  • 3. A nonwoven material made by the method of claim 2.
  • 4. The method of claim 1 wherein the nonwoven material comprises first and second nonwoven webs joined together in juxtaposed relationship.
  • 5. A nonwoven material made by the method of claim 4.
  • 6. The method of claim 4 wherein the webs are joined after the charging step.
  • 7. The method of claim 6 wherein the first web is charged and the second web is not charged.
  • 8. A nonwoven material made by the method of claim 6.
  • 9. A nonwoven material made by the method of claim 7.
  • 10. A nonwoven material made by the method of claim 1.
  • 11. The method of claim 1 wherein the nonwoven web is dipped into a solution containing the antistatic material.
  • 12. The method of claim 1 wherein a solution containing the antistatic material is sprayed onto the nonwoven web.
  • 13. The method of claim 1 wherein the antistatic material is further defined as an alcohol phosphate salt.
  • 14. A method of manufacturing nonwoven material wherein the nonwoven material includes a plurality of nonwoven webs comprising:
  • charging at least one of the webs;
  • treating at least one of the webs with an antistatic material; and
  • wherein the treating step precedes the charging step.
  • 15. A nonwoven material made by the method of claim 14.
  • 16. The method of claim 14 wherein a portion of at least one of the webs is charged.
  • 17. The method of claim 14 wherein a portion of at least one of the webs is treated with an antistatic material.
  • 18. A method of manufacturing nonwoven material comprising:
  • electrostaticly charging a nonwoven web;
  • treating the nonwoven web with an alcohol phosphate salt antistatic material;
  • wherein the nonwoven material is treated with the antistatic material prior to being electrostaticly charged.
  • 19. The method of claim 18 wherein the nonwoven material comprises first and second nonwoven webs joined together in juxtaposed relationship.
  • 20. The method of claim 19 wherein the webs are joined after the charging step.
  • 21. A nonwoven material made by the method of claim 18.
Parent Case Info

This application is a continuation of application Ser. No. 08/198,928 entitled "IMPROVED NONWOVEN BARRIER AND METHOD OF MAKING THE SAME" and filed in the U.S. Patent and Trademark Office on Feb. 22, 1994, now abandoned. The entirety of this Application is hereby incorporated by reference.

US Referenced Citations (222)
Number Name Date Kind
RE30782 van Turnhout Oct 1981
RE31285 van Turnhout et al. Jun 1983
RE32171 van Turnhout Jun 1986
668791 Blake et al. Feb 1901
813063 Sutton et al. Feb 1906
859998 Wentworth Jul 1907
924032 Blake et al. Jun 1909
1222305 Kraus Apr 1917
1297159 Hedberg Mar 1919
1355477 Howell Oct 1920
2106865 Bantz et al. Feb 1938
2217444 Hill Oct 1940
2328577 Oglesby Sep 1943
2378067 Cook, Jr. Mar 1945
2398792 Johnson Apr 1946
2748018 Miller May 1956
2998051 Sittel Aug 1961
3012668 Fraas Dec 1961
3125547 Blatz Mar 1964
3281347 Winder Oct 1966
3323933 Barford et al. Jun 1967
3338992 Kinney Aug 1967
3341007 Mayer et al. Sep 1967
3341394 Kinney Sep 1967
3380584 Fulwyler Apr 1968
3402814 Morel et al. Sep 1968
3502763 Hartmann Mar 1970
3542615 Dobo et al. Nov 1970
3581886 Singewald et al. Jun 1971
3692618 Dorschner et al. Sep 1972
3802817 Matsuki et al. Apr 1974
3821021 McMillin Jun 1974
3849241 Butin et al. Nov 1974
3855046 Hansen et al. Dec 1974
3859330 Proskow Jan 1975
3896802 Williams Jul 1975
3907604 Prentice Sep 1975
3909009 Cvetko et al. Sep 1975
3962386 Driscoll Jun 1976
3979529 Rebentisch et al. Sep 1976
3998916 van Turnhout Dec 1976
4011067 Carey, Jr. Mar 1977
4013816 Sabee et al. Mar 1977
4035164 Taylor Jul 1977
4041203 Brock et al. Aug 1977
4058724 McKinney et al. Nov 1977
4070218 Weber Jan 1978
4091140 Harrnon May 1978
4096289 Nischwitz et al. Jun 1978
4103062 Aberson et al. Jul 1978
4140607 Kreiseimeier et al. Feb 1979
4170304 Huke Oct 1979
4178157 van Turnhout et al. Dec 1979
4185972 Nitta et al. Jan 1980
4196245 Kitson et al. Apr 1980
4208366 Kinney Jun 1980
4209563 Sisson Jun 1980
4215682 Kubik et al. Aug 1980
4223677 Anderson Sep 1980
4273635 Beraud et al. Jun 1981
4298440 Hood Nov 1981
4305797 Knoll et al. Dec 1981
4307143 Meitner Dec 1981
4308223 Stern Dec 1981
4310478 Balslev et al. Jan 1982
4323374 Shinagawa et al. Apr 1982
4324198 Muz Apr 1982
4340563 Appel et al. Jul 1982
4342812 Selwood Aug 1982
4353799 Leonard Oct 1982
4357234 Inculet et al. Nov 1982
4363682 Thiebault Dec 1982
4363723 Knoll et al. Dec 1982
4373224 Bandai et al. Feb 1983
4374727 Takahashi et al. Feb 1983
4374888 Bornslaeger Feb 1983
4375718 Wadsworth et al. Mar 1983
4392876 Schmidt Jul 1983
4394235 Brandt et al. Jul 1983
4411795 Olson Oct 1983
4430277 Lin Feb 1984
4443513 Meitner et al. Apr 1984
4443515 Atlas Apr 1984
4451589 Morman et al. May 1984
4455195 Kinsley Jun 1984
4455237 Kinsley Jun 1984
4456648 Adamse et al. Jun 1984
4492633 Sandulyak et al. Jan 1985
4507539 Sando et al. Mar 1985
4513049 Yamasaki et al. Apr 1985
4514289 Inculet Apr 1985
4517143 Kisler May 1985
4534918 Forrest, Jr. Aug 1985
4547420 Krueger et al. Oct 1985
4551378 Carey, Jr. Nov 1985
4554207 Lee Nov 1985
4555811 Shimalla Dec 1985
4588537 Klaase et al. May 1986
4592815 Nakao Jun 1986
4594626 Frangesh Jun 1986
4618524 Groitzsch et al. Oct 1986
4620785 Watt et al. Nov 1986
4622259 McAmish et al. Nov 1986
4623438 Felton et al. Nov 1986
4626263 Inoue et al. Dec 1986
4652282 Ohmori et al. Mar 1987
4652322 Lim Mar 1987
4657639 Mahadevan et al. Apr 1987
4657804 Mays et al. Apr 1987
4663220 Wisneski May 1987
4670913 Morell et al. Jun 1987
4671943 Wahlquist Jun 1987
4677017 DeAntonis et al. Jun 1987
4689241 Richart et al. Aug 1987
4699823 Kellenberger et al. Oct 1987
4705151 Eldridge Nov 1987
4707398 Boggs Nov 1987
4714647 Shipp, Jr. et al. Dec 1987
4720415 Vander Wielen et al. Jan 1988
4729371 Krueger et al. Mar 1988
4738772 Giesfeldt Apr 1988
4739882 Parikh et al. Apr 1988
4749348 Klaase et al. Jun 1988
4761326 Barnes et al. Aug 1988
4789504 Ohmori et al. Dec 1988
4795668 Krueger et al. Jan 1989
4797201 Kuppers et al. Jan 1989
4797318 Brooker et al. Jan 1989
4818464 Lau Apr 1989
4831664 Suda May 1989
4847914 Suda Jul 1989
4859266 Akasakiu Aug 1989
4863785 Berman et al. Sep 1989
4863983 Johnson et al. Sep 1989
4874399 Reed et al. Oct 1989
4874659 Ando et al. Oct 1989
4883052 Weiss et al. Nov 1989
4886527 Fottinger et al. Dec 1989
4894131 Jacobs et al. Jan 1990
4901370 Suda Feb 1990
4904174 Moosmayer et al. Feb 1990
4917942 Winters Apr 1990
4920168 Nohr et al. Apr 1990
4944854 Felton et al. Jul 1990
4948515 Okumura et al. Aug 1990
4948639 Brooker et al. Aug 1990
4960820 Hwo Oct 1990
4965122 Morman Oct 1990
4983677 Johnson et al. Jan 1991
5012094 Hamade Apr 1991
5021501 Ohmori et al. Jun 1991
5035941 Blackburn Jul 1991
5051159 Togashi et al. Sep 1991
5055151 Duffy Oct 1991
5057710 Nishiura et al. Oct 1991
5062158 Oka et al. Nov 1991
5077468 Hamade Dec 1991
5090975 Requejo et al. Feb 1992
5110620 Tani et al. May 1992
5112048 Deeds May 1992
5112677 Tani et al. May 1992
5118942 Hamade Jun 1992
5135724 Dinter et al. Aug 1992
5138971 Nakajima et al. Aug 1992
5143767 Matsuura et al. Sep 1992
5149335 Kellenberger et al. Sep 1992
5165979 Watkins et al. Nov 1992
5169706 Collier, IV et al. Dec 1992
5173356 Eaton et al. Dec 1992
5178932 Perkins et al. Jan 1993
5183701 Jacobs et al. Feb 1993
5188885 Timmons et al. Feb 1993
5204174 Daponte et al. Apr 1993
5206061 Ando et al. Apr 1993
5213881 Timmons et al. May 1993
5213882 Sassa et al. May 1993
5226992 Morman Jul 1993
5230727 Pound et al. Jul 1993
5232770 Joseph Aug 1993
5238733 Joseph et al. Aug 1993
5244482 Hassenboehler, Jr. Sep 1993
5246637 Matsuura et al. Sep 1993
5247072 Ning et al. Sep 1993
5254297 Deeds Oct 1993
5256176 Matsuura et al. Oct 1993
5257982 Cohen et al. Nov 1993
5264276 McGregor et al. Nov 1993
5284703 Everhart et al. Feb 1994
5286326 Greve Feb 1994
5294482 Gessner Mar 1994
5306534 Bosses Apr 1994
5308674 Zafiroglu May 1994
5308691 Lim et al. May 1994
5336545 Morman Aug 1994
5350620 Sundet et al. Sep 1994
5389202 Everhart et al. Feb 1995
5397413 Trimble et al. Mar 1995
5401446 Tsai et al. Mar 1995
5407581 Onodera et al. Apr 1995
5409766 Yuasa et al. Apr 1995
5411576 Jones et al. May 1995
5436033 Mino et al. Jul 1995
5436066 Chen Jul 1995
5441550 Hassenboehler, Jr. Aug 1995
5443606 Hassenboehler, Jr. Aug 1995
5455108 Quincy et al. Oct 1995
5456972 Roth et al. Oct 1995
5464688 Timmons et al. Nov 1995
5468428 Hanschen et al. Nov 1995
5472481 Jones et al. Dec 1995
5482765 Bradley et al. Jan 1996
5486411 Hassenboehler, Jr. et al. Jan 1996
5491022 Smith Feb 1996
5493117 Tamaki et al. Feb 1996
5496507 Angadjivand et al. Mar 1996
5503745 Ogata et al. Apr 1996
5540979 Yahiaoui et al. Jul 1996
5552012 Morris et al. Sep 1996
5637165 Chen Jun 1997
5814570 Cohen Sep 1998
5834384 Cohen et al. Nov 1998
5834386 Cohen Nov 1998
Foreign Referenced Citations (1)
Number Date Country
1188452 Jun 1985 CAX
Continuations (1)
Number Date Country
Parent 198928 Feb 1994