Nonwoven barrier and method of making the same

Abstract
A ethylene oxide sterilizable nonwoven material which is subjected to charging, and more particularly electrostatic charging is provided. The nonwoven materials may include laminate nonwovens wherein one or more layers are subjected to charging. The nonwoven material(s) may also be treated with an antistatic material before or after subjecting the same to charging.
Description

FIELD OF THE INVENTION
The present invention is directed to bacterial barrier fabrics. More particularly, the present invention is directed to nonwoven bacterial barrier fabrics for use as, for example, sterilization wrap, surgical draping, surgical gowns, cover garments, such as over-suits, and the like.
BACKGROUND OF THE INVENTION
As is generally known, surgical gowns, surgical drapes, surgical face masks and sterile wrap (hereinafter collectively "surgical articles") have been designed to greatly reduce, if not prevent, the transmission through the surgical article of liquids and/or airborne contaminates. In surgical procedure environments, such liquid sources include the gown wearer's perspiration, patient liquids, such as blood and life support liquids such as plasma and saline. Examples of airborne contaminates include, but are not limited to, biological contaminates, such as bacteria, viruses and fungal spores. Such contaminates may also include particulate material such as, but not limited to, lint, mineral fines, dust, skin squares and respiratory droplets. A measure of a fabrics ability to prevent the passage of such airborne materials is sometimes expressed in terms of "filtration efficiency".
Many of these surgical articles were originally made of cotton or linen and were sterilized prior to their use in the operating room. Such surgical articles fashioned from these materials, however, permitted transmission or "strike-through" of various liquids encountered in surgical procedures. In these instances, a path was established for transmission of biological contaminates, either present in the liquid or subsequently contacting the liquid, through the surgical article. Additionally, in many instances surgical articles fashioned from cotton or linen provide insufficient barrier protection from the transmission therethrough of airborne contaminates. Furthermore, these articles were costly, and, of course, laundering and sterilization procedures were required before reuse.
Disposable surgical articles have largely replaced linen surgical articles. Advances in such disposable surgical articles include the formation of such articles from totally liquid repellent fabrics which prevent strike-through. In this way, biological contaminates carried by liquids are prevented from passing through such fabrics. However, in some instances, surgical articles formed from nonporous films, while being liquid and airborne contaminate impervious, may retain body heat and moisture and thus may become over a period of time, uncomfortable to wear.
In some instances, surgical articles fashioned from liquid repellent fabrics, such as fabrics formed from nonwoven polymers, sufficiently repel liquids and are more breathable and thus more comfortable to the wearer than nonporous materials. However, these improvements in comfort and breathability provided by such nonwoven fabrics have generally occurred at the expense of barrier properties or filtration efficiency.
While the focus thus far has been directed to surgical articles, there are many other garment or over-garment applications, such as personal protective equipment applications, whose designers require both fabric comfort and filtration efficiency. Other personal protective equipment applications include, but are not limited to, laboratory applications, clean room applications, such as semi-conductor manufacture, agriculture applications, mining applications, and environmental applications.
Therefore, there is a need for garment materials and methods for making the same which provide improved breathability and comfort as well as improved filtration efficiency. Such improved materials and methods are provided by the present invention and will become more apparent upon further review of the following specification and claims.
SUMMARY OF THE INVENTION
In response to the above problems encountered by those of skill in the art, the present invention provides an ethylene oxide sterilizable polymer web, such as, for example, a nonwoven fabric. The webs of the present invention are formed by subjecting a portion of the web to charging, and more particularly to electrostatic charging, and then ethylene oxide sterilizing the web. The web may be subjected to charging followed by ethylene oxide sterilization or ethylene oxide sterilization followed by charging. The web may also be treated with an antistatic material before or after subjecting the web to charging.
The above web may further include a second web in a juxtaposed relationship to the first web. The second web may be formed from polymer fibers wherein a portion of these fibers may be subjected to charging. An antistatic treatment may also be present about portions of the second web.
DETAILED DESCRIPTION OF THE INVENTION
Disclosed herein are compositions, and methods of making the same, which improved both the airborne contaminate barrier and filtration efficiency of a web. The web of the present invention may be formed from polymer fibers, films, foams or a combination thereof. The films and foams may be porous or non-porous.
Among the applications for such compositions and methods are included, but not limited to, applications requiring sterilizable, breathable materials having high airborne contaminate barrier properties. Such materials have application in surgical articles, such as gowns, drapes, sterile wrap and face mask, as well as other non-surgical applications such as agriculture, mining, clean room and environmental.
Polymers, and particularly thermoplastic polymers, are well suited for the formation of webs which are useful in the practice of the present invention. Nonwoven webs useful in present invention can be made from a variety of processes including, but not limited to, air laying processes, wet laid processes, hydroentangling processes, spunbonding, meltblowing, staple fiber carding and bonding, and solution spinning.
The materials suitable for forming webs of the present invention include a variety of dielectric materials such as, but not limited to, polyesters, polyolefins, nylon and copolymers, polymer blends and bi-component polymers of these materials. In the case of nonwoven webs formed from fibers, the fibers may be relatively short, staple length fibers, typically less than 3 inches, or longer more continuous fibers such as are produced by a spunbonding process.
It has been found that nonwoven webs formed from polyolefin-based fibers are particularly well-suited for the above applications. Examples of such nonwovens are the polypropylene nonwovens produced by Kimberly-Clark Corporation. And more particularly, a three layered the spunbond, meltblown, spunbond material (SMS) produced by Kimberly-Clark Corporation.
This spunbond, meltblown, spunbond material may be made from three separate layers which are laminated to one another. Such a method of making this laminated material is described in commonly assigned U.S. Pat. No. 4,041,203 to Brock et al which is herein incorporated by reference. Alteratively, the spunbond, meltblown, spunbond material may be made by first forming a spunbond, meltblown laminate. The spunbond, meltblown laminate is formed by applying a layer of meltblown on to a layer of spunbond. The second layer of spunbond is then applied to the meltblown side of the previously formed spunbond, meltblown laminate. Generally, the two outer layers provide the nonwoven fabric with strength while the inner layer provides barrier properties.
Suitable webs may be formed from a single layer or multiple layers. In the case of multiple layers, the layers are generally positioned in a juxtaposed or surface-to-surface relationship and all or a portion of the layers may be bound to adjacent layers. In the case of a nonwoven web, the nonwoven web may be formed from a plurality of separate nonwoven webs wherein the separate nonwoven webs may be formed from single or multiple layers. In those instances where the web includes multiple layers, the entire thickness of the web may be subjected to charging or individual layers may be separately subjected to charging and then combined with other layers in a juxtaposed relationship to form the finished web.
There are many well known methods of subjecting a material to charging, and particularly electrostatic charging. These well known methods include, for example, thermal, liquid-contact, electron beam and corona discharge methods. The method used for electrostatically charging the materials discussed in the Examples 1 and 2 (below) is the technique disclosed in U.S. patent application No. 07/958,958 filed Oct. 9, 1992 which is assigned to the University of Tennessee, and is herein incorporated by reference. This technique involves subjecting a material to a pair of electrical fields wherein the electrical fields have opposite polarities.
Sterilization of the web may also be accomplished by ethylene' oxide sterilization. In those instances when it is desired to sterilize surgical instruments by ethylene oxide, the surgical instruments may be wrapped in a nonwoven web. The entire package may then be subjected to an ethylene oxide sterilization cycle. When the ethylene oxide sterilization cycle is completed, the instruments, still wrapped, are then removed from the ethylene oxide sterilizing equipment and are stored in the wrapping material until-needed. When needed, the wrapping web is removed making the instruments available for handling.
The ethylene oxide sterilization cycle may vary dependent upon type of sterilizer and the size/quantity of the items being sterilized. In the Examples described below, ethylene oxide sterilization was accomplished by using either a RSSA Chamber J88-39 or J88-59, made by Vacu Dyne, Ill. Generally, the ethylene oxide sterilization cycle includes a preconditioning phase, a sterilization phase and a de-gassing phase. The process parameters for each of these phases are provided below.
______________________________________Process Parameters Set Point______________________________________A. PRECONDITIONINGTemperature 115.degree. F.Relative Humidity 63%Holding time 18 hoursB. STERILIZATIONChamber Temperature 130.0 F.during exposureChamber Temperature 130.0 F.at all other timesInitial Evacuation 1.2" AbsoluteLeak Test 1.2" AbsoluteLeak Test Dwell 5 minutesNitrogen Dilution 3.2" AbsoluteEvacuation 1.2" AbsoluteHumidity Injection 2.9" AbsolutePressure Increase toHumidification Dwell 30 minutesTimeETC Injection Pressure 15" AbsoluteTime to inject gas NACycle Exposure 2 hoursExposure Pressure 15" AbsoluteExposure Temperature 130.0 F.1st Re-evacuation 6.0" Absolute1st Nitrogen Inbleed 50.0" Absolute2nd Re-evacuation 1.6" Absolute2nd Nitrogen Inbleed 50.0" Absolute3rd Re-evacuation 1.6" Absolute3rd Nitrogen Inbleed 50.0" Absolute4th Re-evacuation 1.6" AbsoluteAir Inbleed To Atmospheric PressureC. DEGASSING PARAMETERSDegassing Time 24.0 hoursDegassing Temperature 130.degree. F.______________________________________
In those instances where the web is used in or around flammable materials or static charge build-up and/or discharge is a concern, the web may be treated with any number of antistatic materials. In these instances, the antistatic material may be applied to the web by any number of well known techniques including, but not limited to dipping the web into a solution containing the antistatic material or by spraying the web with a solution containing the antistatic material. In some instances the antistatic material may be applied to both the external surfaces of the web and the bulk of the web. In other instances, the antistatic material may be applied to portions of the web, such as a selected surface or surfaces thereof.
Of particular usefulness as an antistatic material is an alcohol phosphate salt product known as ZELEC.RTM. and available from the Du Pont Corporation. The web may be treated with the antistatic material either before or after subjecting the web to charging. Furthermore, some or all of the material layers may be treated with the antistatic material. In those instances where only some of the material layers are treated with antistatic material, the non-treated layer or layers may be subjected to charging prior to or after combining with the antistatic treated layer or layers.
To demonstrate the attributes of the present invention, the following Examples are provided.





EXAMPLE 1
Kimberly-Clark manufactures a series of single sheet laminate nonwoven web materials made from three layers of fibrous material, i.e., spunbond-meltblown-spunbond (SMS) layers. These materials are available in a variety of basis weights. The two nonwoven webs used in these Examples were such single sheet laminate materials sold by Kimberly-Clark. Each of the nonwoven webs had a basis weight of 2.2 osy (ounces per square yard). Both spunbond layers had a basis weight of 0.85 osy and the meltblown layer had a basis weight of 0.50 osy. One of the nonwoven webs was a ZELEC.RTM. treated laminate and is sold by Kimberly-Clark under the mark KIMGUARD.TM. Heavy Duty Sterile Wrap and is designated in Table I as "KIMGUARD.TM.".
The other nonwoven web, designated in Table I as "RSR" also had a basis weight of 2.2 osy but was not treated with an antistatic material. Both spunbond layers had a basis weight of 0.85 osy and the meltblown layer had a basis weight of 0.50 osy.
The method used to subject these webs to electrostatic charging (electret treating) is described in the above referenced U.S. patent application No. 07/958,958.
The surface charge for both KIMGUARD.TM. and RSR fabrics were analyzed and the data reported in Table I. The charge data for each side of these fabrics was recorded for both before ("AS RECEIVED") and after charging ("ELECTRETED"). Charge data were also recorded for ethylene oxide sterilized fabric samples which were first charged and then ethylene oxide sterilized ("AFTER EO TREATMENT"). As noted in Example 1, the KIMGUARD.TM. samples were treated with ZELEC.TM. and the RSR samples were not. Charge measurements were taken at 36 separate surface locations on each sample. For the categories, i.e., "AS RECEIVED" and "ELECTRETED", the KIMGUARD.TM. and RSR samples were each single large sheets of material. Each such sheets were then portioned into several smaller samples. Sterilization and filtration data reported in Example 2 were derived from these smaller samples.
Charge measurements reported are averaged values of positive (+) or negative (-) volts per cm.sup.2. The equipment used to measure charge was an Electrostatic Voltmeter (Trek Model 344, Trek, Inc, Median, N.Y.).
TABLE I______________________________________ After EO Treatment As Elect- Sam- Sam- Sam-Material Side Received reted ple 1 ple 2 ple 3______________________________________KIMGUARD .RTM. A -2.8 -125 -4.2 27.2 --(ZELEC .RTM.) B +1.6 -15 24.1 -5.4 --RSR A -61 +272 -89 -130 -138(Non-ZELEC .RTM.) B -87 -432 -90 -46 +54______________________________________
As illustrated by the above data, the ethylene oxide sterilization process generally diminished the overall surface charge for both the electret treated KIMGUARD.TM. and the RSR material.
EXAMPLE 2
A summary of the average bacterial filtration efficiency (BFE) test results and standard deviation (SD) are reported for the two categories investigated for KIMGUARD.TM. in Table II. The first category, reported in Table II is the "Nelson BFE". "Nelson BFE" stands for Nelson Laboratory's (Salt Lake City, Utah) bacterial filtration efficiency test. The procedure used to determine these BFEs is described in Nelson Laboratories' Protocol No. ARO/007B in accordance with MIL Spec 36954C, 4.4.1.1.1 and 4.4.1.2. This category includes the average BFE for 11 KIMGUARD.TM. fabric samples which were electret-treated then ethylene oxide-sterilized ("KIMGUARD.TM./Electret/EO") and 11 non-electret-treated KIMGUARD.TM. fabric samples which were ethylene oxide-sterilized ("KIMGUARD.TM./EO").
The second category reported in Table II is "Microbial Challenge BFE". This category includes the average BFEs for the KIMGUARD.TM. samples.
The Microbial Challenge BFE procedure utilized a six port exposure chamber. Five of the ports accommodated five separate samples. The challenge control filter material was positioned in the sixth port. Three conditions were maintained in the microbial challenge test. These were: first, a 2.8 LPM (Liters Per Minute) flow rate through each of the ports; second, an exposure time of fifteen minutes followed by a chamber exhaust of fifteen minutes, and; third, a microbial challenge that results in 1.times.10.sup.6 CFU's (Colony Forming Units) per port. Bacillus subtilis ss globigii spores, purchased from Amsco (Part No. NA-026, P-764271-022) were used to make the working spore suspension of 1.times.10.sup.6 CFUs per port recovery.
The value reported is an expression of the reduction of number of colony forming units (CFUs) or bacteria passing through a sample compared to the number CFUs passing through the challenge control filter material. This value was derived by subtracting the number of CFUs passing through a sample from the number of CFUs passing through the challenge control filter material. The difference in the number of CFUs passing through these materials is then divided by the number of CFUs passing through the challenge filter material and then multiplied by 100 to convert to percent.
TABLE II______________________________________Sample Nelson BFE Microbial Challenge BFE______________________________________KIMGUARD .RTM./Electret/EO 97.51 +/- 0.39 96.44 +/- 4.51KIMGUARD .RTM./EO 89.96 +/- 1.04 79.04 +/- 6.50______________________________________
Table III summarizes the average Nelson BFE and the Microbial Challenge BFE categories for the RSR nonwoven materials. The procedures for both the Nelson BFE and identical to the Nelson BFE and Microbial Challenge BFE procedures describe above. "RSR/Electret/EO" stands for RSR electret-treated then ethylene oxide-treated samples. "RSR/Electret" stands for RSR electret-treated samples. "RSR/EO" stands for RSR ethylene oxide-sterilized samples. 15 samples of each class of RSR material described above were analyzed and the results averaged.
TABLE III______________________________________Sample Nelson BFE Microbial Challenge BFE______________________________________RSR/Electret/EO 96.92 +/- 0.91 97.56 +/- 0.83RSR/Electret 95.75 +/- 0.60 98.91 +/- 0.64RSR/EO 79.73 +/- 3.20 79.82 +/- 5.96______________________________________
Example 2 demonstrates that barrier properties of an ethylene oxide sterilizable material are improved when such material is first subjected to charging, and particularly electrostatic charging, and then ethylene oxide sterilized as compared to the same material which is not subjected to charging prior to ethylene oxide sterilization. It will be further observed that the decrease in the surface charge which occurred after ethylene oxide sterilization (Table I) did not significantly affect the barrier properties of these materials.
While the invention has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily conceive of alterations to, variations of and equivalents to these embodiments. Accordingly, the scope of the present invention should be assessed as that of the appended claims and any equivalents thereto.
Claims
  • 1. An ethylene oxide sterilized web wherein at least one portion of the web has been subjected to electrostatic charging.
  • 2. The web of claim 1 wherein the web is formed from a nonwoven material which comprises first and second nonwoven webs joined together in juxtaposed relationship.
  • 3. The web of claim 1 having a surface and wherein such surface has a negative charge and wherein the average negative surface charge on the surface is less than 100 volts/cm.sup.2.
  • 4. The web of claim 1 having a first and a second surface and wherein these surfaces have a negative charge and wherein the average negative surface charge on the first surface is less than 100 volts/cm.sup.2 and wherein the average negative surface charge on the second surface is less than 100 volts/cm.sup.2.
  • 5. The web of claim 1 having a surface and wherein such surface has a positive charge and wherein the average positive surface charge on the surface is less than 60 volts/cm.sup.2.
  • 6. The web of claim 1 containing an antistatic material.
  • 7. An ethylene oxide sterilized nonwoven web laminate comprising:
  • two outer layers separated by an intermediate layer, wherein the two outer layers are spunbond nonwoven layers and the intermediate layer is a meltblown layer; and
  • at least one of the layers is subjected to electrostatic charging.
  • 8. The nonwoven web of claim 7 wherein all three layers are subjected to electrostatic charging.
  • 9. The nonwoven web of claim 8 wherein at least one of the layers is treated with an antistatic material.
  • 10. A charged web having a Nelson bacterial filtration efficiency of at least 96%.
  • 11. The charged web of claim 10 wherein the web is an electrostatically charged web.
  • 12. The charged web of claim 10 wherein the web is a nonwoven web.
  • 13. The charged web of claim 12 wherein the nonwoven web comprises two outer layers separated by an intermediate layer wherein the two outer layers are spunbond nonwoven layers and the intermediate layer is a meltblown layer.
  • 14. The charged web of claim 10 containing antistatic material.
  • 15. A web prepared by a process comprising sterilizing a charged web by ethylene oxide sterilization.
  • 16. The web of claim 15 wherein the charged web is an electrostatically charged web.
  • 17. The web of claim 15 wherein the charged web is a nonwoven web.
  • 18. The web of claim 17 wherein the nonwoven web comprises two outer layers separated by an intermediate layer wherein the two outer layers are spunbond nonwoven layers and the intermediate layer is a meltblown layer.
  • 19. The web of claim 15 wherein the process further comprises treatment with an antistatic material.
Parent Case Info

This application is a continuation of application Ser. No. 08/266,293 entitled "IMPROVED NONWOVEN BARRIER AND METHOD OF MAKING THE SAME" and filed in the U.S. Patent and Trademark Office on Jun. 27, 1994, now abandoned. The entirety of this Application is hereby incorporated by reference.

US Referenced Citations (220)
Number Name Date Kind
RE30782 van Turnhout Oct 1981
RE31285 van Turnhout et al. Jun 1983
RE32171 van Turnhout Jun 1986
668791 Blake et al. Feb 1901
813063 Sutton et al. Feb 1906
859998 Wentworth Jul 1907
924032 Blake et al. Jun 1909
1222305 Kraus Apr 1917
1297159 Hedberg Jun 1919
1355477 Howell Oct 1920
2106865 Bantz et al. Feb 1938
2217444 Hill Oct 1940
2328577 Oglesby Sep 1943
2378067 Cook, Jr. Mar 1945
2398792 Johnson Apr 1946
2748018 Miller May 1956
2998051 Sittel Aug 1961
3012668 Fraas Dec 1961
3059772 Baron Oct 1962
3125547 Blatz Mar 1964
3281347 Winder Oct 1966
3323933 Barford et al. Jun 1967
3338992 Kinney Aug 1967
3341007 Mayer et al. Sep 1967
3341394 Kinney Sep 1967
3380584 Fulwyler Apr 1968
3402814 Morel et al. Sep 1968
3436797 Graf et al. Apr 1969
3502763 Hartmann Mar 1970
3542615 Dobo et al. Nov 1970
3581886 Singewald et al. Jun 1971
3692606 Miller et al. Sep 1972
3692618 Dorschner et al. Sep 1972
3802817 Matsuki et al. Apr 1974
3821021 McMillan Jun 1974
3849241 Butin et al. Nov 1974
3855046 Hansen et al. Dec 1974
3859330 Proskow Jan 1975
3896802 Williams Jul 1975
3907604 Prentice Sep 1975
3909009 Cvetko et al. Sep 1975
3962386 Driscoll Jun 1976
3979529 Rebentisch et al. Sep 1976
3998916 van Turnhout Dec 1976
4011067 Carey, Jr. Mar 1977
4013816 Sabee et al. Mar 1977
4035164 Taylor Jul 1977
4041203 Brock et al. Aug 1977
4058724 McKinney et al. Nov 1977
4070218 Weber Jan 1978
4091140 Harrnon May 1978
4096289 Nischwitz et al. Jun 1978
4103062 Aberson et al. Jul 1978
4140607 Kreiseimeier et al. Feb 1979
4170304 Huke Oct 1979
4178157 van Turnhout et al. Dec 1979
4185972 Nitta et al. Jan 1980
4196245 Kitson et al. Apr 1980
4208366 Kinney Jun 1980
4209563 Sisson Jun 1980
4215682 Kubik et al. Aug 1980
4223677 Anderson Sep 1980
4273635 Beraud et al. Jun 1981
4298440 Hood Nov 1981
4305797 Knoll et al. Dec 1981
4307143 Meitner Dec 1981
4308223 Stern Dec 1981
4310478 Balslev et al. Jan 1982
4323374 Shinagawa et al. Apr 1982
4324198 Muz Apr 1982
4340563 Appel et al. Jul 1982
4342812 Selwood Aug 1982
4353799 Leonard Oct 1982
4357234 Inculet et al. Nov 1982
4363682 Thiebault Dec 1982
4363723 Knoll et al. Dec 1982
4373224 Bandai et al. Feb 1983
4374727 Takahashi et al. Feb 1983
4374888 Bornslaeger Feb 1983
4375718 Wadsworth et al. Mar 1983
4392876 Schmidt Jul 1983
4394235 Brandt et al. Jul 1983
4411795 Olson Oct 1983
4430277 Lin Feb 1984
4443513 Meitner et al. Apr 1984
4443515 Atlas Apr 1984
4451589 Morman et al. May 1984
4455195 Kinsley Jun 1984
4455237 Kinsley Jun 1984
4456648 Adamse et al. Jun 1984
4492633 Sandulyak et al. Jan 1985
4507539 Sando et al. Mar 1985
4513049 Yamasaki et al. Apr 1985
4514289 Inculet Apr 1985
4517143 Kisler May 1985
4534918 Forrest, Jr. Aug 1985
4547420 Krueger et al. Oct 1985
4551378 Carey, Jr. Nov 1985
4554207 Lee Nov 1985
4555811 Shimalla Dec 1985
4588537 Klaase et al. May 1986
4592815 Nakao Jun 1986
4594626 Frangesh Jun 1986
4618524 Groitzsch et al. Oct 1986
4622259 McAmish et al. Nov 1986
4623438 Felton et al. Nov 1986
4626263 Inoue et al. Dec 1986
4652282 Ohmori et al. Mar 1987
4652322 Lim Mar 1987
4657639 Mahadevan et al. Apr 1987
4657804 Mays et al. Apr 1987
4663220 Wisneski May 1987
4670913 Morell et al. Jun 1987
4671943 Wahlquist Jun 1987
4677017 DeAntonis et al. Jun 1987
4689241 Richart et al. Aug 1987
4699823 Kellenberger et al. Oct 1987
4705151 Eldridge Nov 1987
4707398 Boggs Nov 1987
4720415 VanderWielen et al. Jan 1988
4729371 Krueger et al. Mar 1988
4738772 Giesfeldt Apr 1988
4739882 Parikh et al. Apr 1988
4749348 Klaase et al. Jun 1988
4761326 Barnes et al. Aug 1988
4789504 Ohmori et al. Dec 1988
4795668 Krueger et al. Jan 1989
4797201 Kuppers et al. Jan 1989
4797318 Brooker et al. Jan 1989
4818464 Lau Apr 1989
4826703 Kisler May 1989
4831664 Suda May 1989
4847914 Suda Jul 1989
4859266 Akasaki et al. Aug 1989
4863785 Berman et al. Sep 1989
4863983 Johnson et al. Sep 1989
4874399 Reed et al. Oct 1989
4874659 Ando et al. Oct 1989
4883052 Weiss et al. Nov 1989
4886527 Fottinger et al. Dec 1989
4894131 Jacobs et al. Jan 1990
4901370 Suda Feb 1990
4904174 Moosmayer et al. Feb 1990
4917942 Winters Apr 1990
4920168 Nohr et al. Apr 1990
4944854 Felton et al. Jul 1990
4948515 Okumura et al. Aug 1990
4948639 Brooker et al. Aug 1990
4960820 Hwo Oct 1990
4965122 Morman Oct 1990
4983677 Johnson et al. Jan 1991
5012094 Hamade Apr 1991
5021501 Ohmori et al. Jun 1991
5032419 Lamirand et al. Jul 1991
5035941 Blackburn Jul 1991
5051159 Togashi et al. Sep 1991
5055151 Duffy Oct 1991
5057710 Nishiura et al. Oct 1991
5062158 Oka et al. Nov 1991
5077468 Hamade Dec 1991
5090975 Requejo et al. Feb 1992
5110620 Tani et al. May 1992
5112048 Deeds May 1992
5112677 Tani et al. May 1992
5118942 Hamade Jun 1992
5135724 Dinter et al. Aug 1992
5138971 Nakajima et al. Aug 1992
5143767 Matsuura et al. Sep 1992
5149335 Kellenberger et al. Sep 1992
5156902 Pieper et al. Oct 1992
5165979 Watkins et al. Nov 1992
5169706 Collier, IV et al. Dec 1992
5173356 Eaton et al. Dec 1992
5178932 Perkins et al. Jan 1993
5183701 Jacobs et al. Feb 1993
5188885 Timmons et al. Feb 1993
5204174 Daponte et al. Apr 1993
5206061 Ando et al. Apr 1993
5213881 Timmons et al. May 1993
5213882 Sassa et al. May 1993
5226992 Morman Jul 1993
5230727 Pound et al. Jul 1993
5232770 Joseph Aug 1993
5238733 Joseph et al. Aug 1993
5244482 Hassenboehler, Jr. Sep 1993
5246637 Matsuura et al. Sep 1993
5247072 Ning et al. Sep 1993
5254297 Deeds Oct 1993
5256176 Matsuura et al. Oct 1993
5257982 Cohen et al. Nov 1993
5264276 McGregor et al. Nov 1993
5284703 Everhart et al. Feb 1994
5286326 Greve Feb 1994
5294482 Gessner Mar 1994
5306534 Bosses Apr 1994
5308674 Zafiroglu May 1994
5308691 Lim et al. May 1994
5336545 Morman Aug 1994
5350620 Sundet et al. Sep 1994
5389202 Everhart et al. Feb 1995
5397413 Trimble et al. Mar 1995
5401446 Tsai Mar 1995
5407581 Onodera et al. Apr 1995
5409766 Yuasa et al. Apr 1995
5411576 Jones et al. May 1995
5436033 Mino et al. Jul 1995
5436066 Chen Jul 1995
5441550 Hassenboehler, Jr. Aug 1995
5443606 Hassenboehler, Jr. Aug 1995
5455108 Quincy et al. Oct 1995
5456972 Roth et al. Oct 1995
5464688 Timmons et al. Nov 1995
5468428 Hanschen et al. Nov 1995
5472481 Jones et al. Dec 1995
5482765 Bradley et al. Jan 1996
5486411 Hassenboehler, Jr. et al. Jan 1996
5491022 Smith Feb 1996
5493117 Tamaki et al. Feb 1996
5496507 Angadjivand et al. Mar 1996
5503745 Ogata et al. Apr 1996
Foreign Referenced Citations (1)
Number Date Country
1188452 Jun 1985 CAX
Continuations (1)
Number Date Country
Parent 266293 Jun 1994