NOT APPLICABLE
NOT APPLICABLE
NOT APPLICABLE
The present invention relates primarily to garments which can protect the wearer against the hazards of exposure to radiation. More particularly, the present invention relates to breathable, lightweight garments containing radiopaque compounds, such as barium sulfate, that are particularly suitable for use by medical professionals and patients who are exposed to radiation from medical x-rays.
It is very common in medicine today to use x-rays for diagnostic and therapeutic purposes. While these x-rays serve a beneficial medical purpose, they can also have harmful side effects for both the patient to whom the x-rays are directed and the medical workers who must administer x-rays on a day-to-day basis.
There have been a number of previous attempts to mitigate the harmful effects of x-rays through the design of radiopaque protective garments. Typically, these radiopaque garments consist of a stiff material, such as rubber, impregnated by lead or some other heavy metal which is capable of blocking x-rays. Examples of lead impregnated radiopaque garments can be found in Holland's U.S. Pat. No. 3,052,799, Whittaker's U.S. Pat. No. 3,883,749, Leguillon's U.S. Pat. No. 3,045,121, Via's U.S. Pat. No. 3,569,713 and Still's U.S. Pat. No. 5,038,047.
While the lead filled prior art garments provide a good measure of protection against the harmful effects of x-rays, these prior art garments are often heavy, stiff, expensive, bulky and lacking in breathability. As such, these garments are often uncomfortable, cumbersome and restrictive. Also, there are sterility issues with these prior art garments because they are typically too bulky and expensive to dispose of after each use.
The present invention provides a breathable, lightweight material which has radiopaque qualities and is easy to produce. In the preferred embodiment, a lightweight fabric, such as a surgical mask liner or an entire surgical gown, is formed by mixing a lightweight radiopaque compound, such as barium sulfate, with a polymer filler, preferably polyethylene, to impart radiopaque qualities to the mixture, then extruding the mixture into a plurality of interwoven filaments to form a porous, nonwoven fabric mass, and forming the filament mass into a sheet suitable to be used as a garment liner or ply in a multi-ply fabric.
Formation of nonwoven material may be effected for example by means of a spinning multiple-nozzle extrusion head, called a spinneret, containing as few as 40 nozzle holes to as many as a thousand nozzle holes, then the mass of spun filaments is then subjected to rollers or other joining and shaping processes to flatten and spread into a nonwoven, breathable fabric and continuous textile web. Impregnation of the lightweight radiopaque compound can be performed in any number of ways including soaking the fabric in a solution containing the lightweight radiopaque compound, using the fabric as a filter for a passing solution containing the lightweight radiopaque compound, placing the fabric in a reaction chamber between reagents that can react to form the lightweight radiopaque compound and creating the fabric incorporating one radiopaque compound reagent and then exposing it to a complementary reagent used to form the radiopaque compound.
Besides barium sulfate, other radiopaque substances which can be used for the present invention include, but are not limited to, barium particles, HYPAQUE™ (which is a tradename of Nycomed Corporation for Diatrizoate Meglumine Inj USP), Acetrizoate Sodium, Bunamiodyl Sodium, Diatrizoate Sodium, Ethiodized Oil, Iobenzamic Acid, Iocarmic Acid, Iocetamic Acid, Iodipamide, Iodixanol, Iodized Oil, Iodoalphionic Acid, o-Iodohippurate Sodium, Iodophthalein Sodium, Iodopyracet, Ioglycamic Acid, Iohexol, Iomeglamic Acid, Iopamidol, Iopanoic Acid, Iopentol, Iophendylate, Iophenoxic Acid, Iopromide, Iopronic Acid, Iopydol, Iopydone, Iothalamic Acid, Iotrolan, Ioversol, Ioxaglic Acid, Ioxilan, Ipodate, Meglumine Acetrizoate, Meglumine Ditrizoate Methiodal Sodium, Metrizamide, Metrizoic Acid, Phenobutiodil, Phentetiothalein Sodium, Propryliodone, Sodium Iodomethamate, Sozoiodolic Acid, Thorium Oxide and Trypanoate Sodium, and other metal salts, such as bismuth salts and uranium salts, antimony, and tungsten, complexed with a polymer.
While a surgical mask is provided as one example, the principles of the invention can also be applied to a broad range of other garments including hoods, gowns, gloves, patient drapes, partitions, coverings, etc.
As described thus far, the surgical mask 10 shown in
The surgical mask of the present invention can be given radiopaque qualities by, prior to assembly, extruding and flatting the extrusion into a web to serve as its liner 24 that is made from a lightweight radiopaque element or compound, such as barium, barium sulfate, or the reagents used to form the lightweight radiopaque compound, such as barium chloride mixed with a polymer, such as polyethylene, to form a barium sulfate lightweight radiopaque compound in suspension in polyethylene. Other suitable polymers are ethyl vinyl acetate, polyethylene, polyurethane, polyamide, polyvinyl chloride, polyvinyl alcohol, natural latex, polypropylene and polyester. As shown in
The breathable radiopaque liner 24 can then be placed between interior 20 and exterior 24 plies and sewn or sealed into the surgical mask 10 in a manner that is well known in the art. Since the radiopaque material is capable of blocking x-rays, the liner of radiopaque material placed into a surgical mask liner 24 gives an otherwise conventionally constructed surgical mask 10 the ability to block x-rays from harming the surgeon's face while still allowing breathability.
Barium sulfate is a preferred radiopaque precipitate for the present invention because, as compared with lead for example, it is lighter in weight, inexpensive, promotes breathability and has fewer known health hazards. Other lightweight radiopaque compounds can also used to form filaments and fabric for the present invention in a manner similar to that already described. These other lightweight radiopaque compounds include but are not limited to, a substance containing at least one of barium, bismuth, tungsten, iodine, antimony, copper, and uranium, including barium particles and bariums salts, bismuth, tungsten and iodine compounds, HYPAQUE™, Acetrizoate Sodium, Bunamiodyl Sodium, Diatrizoate Sodium, Ethiodized Oil, Iobenzamic Acid, Iocarmic Acid, Iocetamic Acid, Iodipamide, Iodixanol, Iodized Oil, Iodoalphionic Acid, o-Iodohippurate Sodium, Iodophthalein Sodium, Iodopyracet, Ioglycamic Acid, Iohexol, Iomeglamic Acid, Iopamidol, Iopanoic Acid, Iopentol, Iophendylate, Iophenoxic Acid, Iopromide, Iopronic Acid, Iopydol, Iopydone, Iothalamic Acid, Iotrolan, Ioversol, Ioxaglic Acid, Ioxilan, Ipodate, Meglumine Acetrizoate, Meglumine Ditrizoate Methiodal Sodium, Metrizamide, Metrizoic Acid, Phenobutiodil, Phentetiothalein Sodium, Propryliodone, Sodium Iodomethamate, Sozoiodolic Acid, Thorium Oxide and Trypanoate Sodium. These radiopaque compounds for the present invention can be purchased from a variety of chemical supply companies such as Fisher Scientific, P.O. Box 4829, Norcross, Ga. 30091 (Telephone: 1-800-766-7000), Aldrich Chemical Company, P.O. Box 2060, Milwaukee, Wis. (Telephone: 1-800-558-9160) and Sigma, P.O. Box 14508, St. Louis, Mo. 63178 (Telephone: 1-800-325-3010).
Thus far, techniques have been described for imparting radiopaque qualities into a garment through impregnation with lightweight chemical compounds. As herein described, the radiopaque material is formed into filaments and made into a nonwoven fabric to provide both the flexibility and breathability of a cloth garment and the x-ray protection of a metallic garment, as for example illustrated by the full body gown 100, hood 120, gloves 160 and booties 180 of
In the foregoing specification, the invention has been described with reference to specific preferred embodiments and methods. It will, however, be evident to those of skill in the art that various modifications and changes may be made without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative, rather than restrictive sense; the invention being limited only by the appended claims.
Number | Date | Country | |
---|---|---|---|
Parent | 10620954 | Jul 2003 | US |
Child | 11019952 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11019952 | Dec 2004 | US |
Child | 12125304 | US | |
Parent | 10238160 | Sep 2002 | US |
Child | 10620954 | US | |
Parent | 09940681 | Aug 2001 | US |
Child | 10238160 | US | |
Parent | 09206671 | Dec 1998 | US |
Child | 09940681 | US |