Field
Aspects presented herein provide techniques for rendering images.
Description of the Related Art
Rendering realistic images from virtual models requires accounting for light scattering events though the volumes of some models and the resulting light transport between points on the surfaces of the models. Such scattering, often referred to as “subsurface scattering,” is prevalent in translucent media such as human flesh and skin, snow, plastics, foods, cloth, and marble. Subsurface scattering tends to soften the features of media, cause colors to bleed within media, and permit light to diffuse across shadow edges. For example, the shadows in human ears may appear reddish rather than entirely black due to subsurface scattering effects.
For efficiency purposes, a diffusion approximation is typically used to render images which include subsurface scattering. Diffusion models approximate the cumulative effect of multiple scattering events within a volume, without simulating individual scattering events. Currently, the most widely used diffusion model is the dipole model, though other diffusion models have recently gained favor. These diffusion models make a number of simplifying assumptions, such as that the surface of the media is a flat surface bounding a slab of finite or semi-infinite thickness, that the media has a homogenous composition, and that the incident light is orthogonal to the surface, with the outgoing angle of the light out of the media often ignored.
One aspect includes a computer implemented method for rendering an image which includes subsurface scattering effects. The method includes evaluating, for each of one or more points on a surface, at least an integral of an integrand over a surface to estimate light transport to the one or more points on the surface, where the integrand includes a normalized diffusion profile. The method further includes determining total outgoing radiance at each of the one or more points by adding the respective evaluated integrals to other respective lighting terms.
Other aspects include a computer-readable medium that includes instructions that enable a processing unit to implement one or more aspects of the disclosed methods as well as a system configured to implement one or more aspects of the disclosed methods.
So that the manner in which the above recited aspects are attained and can be understood in detail, a more particular description of aspects of the disclosure, briefly summarized above, may be had by reference to the appended drawings.
It is to be noted, however, that the appended drawings illustrate only typical aspects of this disclosure and are therefore not to be considered limiting of its scope.
Current diffusion models, which approximate the effects of multiple subsurface scattering events (e.g., along scattering path 103), can produce unrealistic and undesirable results. For example, shadows in human skin rendered using the dipole model sometimes include incorrect cyan bands. Another limitation of current diffusion models is that they only consider scattering in a surface plane on which light is incident and neglect forward scattering of light through thin objects. For highly-forward scattering media such as skin, neglecting forward scattering results in overly dark transmission of light. As a result, the scattering transmission of light through human ears, nostrils, and the like are often underestimated. Yet another limitation of current diffusion models is that current approximations of the diffusion equation are not integrable or invertible. As a result, the lit surface colors that are produced using such models are difficult for artists to control, and it is also difficult to importance sample to determine points for evaluating the diffusion approximation.
As shown in panel B, a shader (not shown) rendering an image which includes subsurface scattering effects may trace a ray 106 from a camera 105 into the volume 100 up to a point 109. Here, the point 109 may be located at any distance within the media. For example, the point 109 may be located half-way between two surfaces (e.g., the upper and lower surfaces) of the volume 100. The shader may further trace multiple (e.g., 500) rays 107i out from the point 190. Illustratively, the rays 107_which are traced out are uniformly distributed on a sphere 110 having the point 109 as its center. Other distributions may be used in alternative configurations. For explanatory purposes, aspects are described herein primarily with respect to ray tracing, although techniques disclosed herein are equally applicable to other rendering approaches.
As shown, the light rays (e.g., light ray 107i) which are traced out from the point 190 intersect the model 100 at various points (e.g., point 108i). At each such intersection point, the shader may compute a distance r from a point 106a at which the incident ray 106 intersects the surface to the intersection point (e.g., point 108i) of the outgoing light ray (e.g., light ray 107i). The shader may then evaluate a normalized diffusion profile at the intersection point of the outgoing light array. As used herein, a diffusion profile (also referred to as a “diffusion function”) is a function which, given an input radius from a point at which light is incident on a surface, outputs an amount of that light which exits a point on the surface at the radius away from the point at which light is incident.
In one configuration, the normalized diffusion function may be of the form
where r is the distance between the intersection points and a, b, c, and d are constants, with b, d, and at least one of a and c being positive. Dividing, rather than multiplying, by b and d means that these constants have the same units as r (e.g. inches instead of inverse inches). The integral of Rd(r) over all radii in the plane Rd=2π∫0∞Rd(r)rdr assuming uniform incident lighting (also referred to as the “albedo”) evaluates to 1, i.e., Rd(r) is normalized to 1. Here,
is the normalization constant that ensures Rd(r) integrates to 1. In addition, in one configuration, the ratio of the constants b and d may be fixed at 3 (or approximately 3), which experience has shown tends to produce realistic and pleasing images. Further fixing the ratio of a to c (e.g., a=c) leaves one free parameter d corresponding to overall scattering distance, which may be adjusted as desired by an artist. The normalized diffusion function may thus simplify to:
Note, an integral of Rd(r) giving outgoing radiance due to subsurface scattering may be added into the standard rendering equation as an additional term:
Lo(xo,{right arrow over (ω)}o)=Le(xo,{right arrow over (ω)}o)+∫Ωƒr(x,{right arrow over (ω)}i,{right arrow over (ω)}o)Li(xo,{right arrow over (ω)}i)(−{right arrow over (ω)}i·{right arrow over (n)}i)dωi+Ls(xo,{right arrow over (ω)}o), (3)
where Lo(xo, {right arrow over (ω)}o) is the outgoing radiance at point xo having direction {right arrow over (ω)}o, Le is an emitted light term, ƒr(x, {right arrow over (ω)}i, {right arrow over (ω)}o) is a bidirectional reflectance distribution function (BRDF), Li(xo, {right arrow over (ω)}i) is the incoming light at xo having direction {right arrow over (ω)}i, (−{right arrow over (ω)}i·{right arrow over (n)}i) is a normal attenuation, and Ls(xo, {right arrow over (ω)}o) is an outgoing radiance due to subsurface scattering. Other lighting terms may also be added to the rendering equation, as appropriate.
In general, the subsurface scattering Ls(xo, {right arrow over (ω)}o) term may be determined by integrating incident radiance Li(xi, {right arrow over (ω)}i) at xi having direction {right arrow over (ω)}i times a bidirectional surface scattering distribution function (BSSRDF) S(xi, {right arrow over (ω)}i; xo, {right arrow over (ω)}o) over incident directions and area A:
Ls(xo,{right arrow over (ω)}o)=∫A∫2πS(xi,{right arrow over (ω)}i;xo{right arrow over (ω)}o)Li(xi,{right arrow over (ω)}i)({right arrow over (n)}i·{right arrow over (ω)}i)d{right arrow over (ω)}idA(xi) (4)
This integral is computationally intractable, however. Using Rd(r), equation (4) may be simplified to:
Ls(xo,{right arrow over (ω)}o)=∫A∫2πRd(r)Li(xi,{right arrow over (ω)}i)d{right arrow over (ω)}idA(xi), (5)
with r being the distance between xi and xo (i.e., ∥xi−xo∥), and Rd(r) given by equation (1).
The integral of equation (5) may be evaluated numerically using samples of Rd(r) taken at a number of surface points around the outgoing light location xo. As shown in
The CDF has domain [0, ∞] and range [0, 1], and the inverse of the CDF thus has domain [0, 1] and range [0, ∞]. The shader may plug a random number between 0 and 1 into the inverse of the CDF to determine radii at which to take samples. By further randomly generating a sampling angle, the shader may obtain a point on the surface at which to evaluate the normalized diffusion profile for the lighting integral. That is, the shader may trace a ray towards the volume, and, where that ray intersects the model, sample at surrounding locations at random angles and radii determined using the inverse of the CDF. Note, the area represented by each sample, i.e., the term dA(xi), must still be determined to evaluate the integral of equation (5) if the sampled surface is non-planar. This may be accomplished using well-known techniques in importance sampling. As another caveat, the importance sampling discussed above is in the plane. In some aspects, importance sampling based on a normalized diffusion profile may also be performed for other surfaces, such as a sphere.
In yet another configuration, the subsurface scattering term may account for the highly forward-scattering nature of some media (e.g., skin) and the differences in scattering due to the shape of the surface (e.g., convex surfaces may cause increased scattering as compared to planar surfaces) using a scaling function which compensates for out-of-plane scattering, i.e., compensates for inaccuracies due to the in-plane scattering assumption made in the diffusion profile Rd(r). In one configuration, the scaling function may increase the outgoing radiance due to subsurface scattering based on the direction and position of the incident and outgoing light. In such a case, the subsurface scattering term may take the form:
Ls(xo,{right arrow over (ω)}o)=∫A∫2πRd(r)ƒbc({right arrow over (n)}i,{right arrow over (n)}o,xi,xo)Li(xi,{right arrow over (ω)}i)({right arrow over (n)}i·{right arrow over (ω)}i)d{right arrow over (ω)}idA(xi), (7)
where ƒbc({right arrow over (n)}i, {right arrow over (n)}o, xi, xo) is a backside compensation function of the surface normals at the incident and outgoing locations, {right arrow over (n)}i and {right arrow over (n)}o, respectively, as well as the incident xi and outgoing xo light locations themselves. For forward-scattering media, ƒbc may be chosen such that a surface opposite that on which light is incident is brighter than the surface on which light is incident for equivalent scattering distances. For example, if the normals {right arrow over (n)}i, {right arrow over (n)}o are aligned and the points xo, xi on opposite sides of parallel planes (i.e., the dot product {right arrow over (n)}i·{right arrow over (n)}o is −1 and the dot product (xo−xi)·{right arrow over (n)}i is −1, while the dot product (xo−xi)·{right arrow over (n)}o is 1), then the function ƒbc may output a constant positive scaling factor s. Conversely, if the normals {right arrow over (n)}i, {right arrow over (n)}o are aligned and the points xo, xi on the same plane (i.e., the dot product {right arrow over (n)}i·{right arrow over (n)}o is 1 and the dot products (xo−xi)·{right arrow over (n)}i and (xo−xi)·{right arrow over (n)}o are 0), then the function ƒbc may output 1 (i.e., no scaling is performed). If the points xi, xo or the normals {right arrow over (n)}i, {right arrow over (n)}o are between these extremes in terms of position or orientation, respectively, then the function ƒbc may output a value between 1 and s. The particular constant s and function ƒbc used may vary for different media having different forward-scattering properties, and may be, e.g., specified by an artist or determined based on Monte-Carlo simulations of subsurface scattering.
In yet another aspect, the shader may multiply the integral of equation (5), computed for separate red, green, and blue (RGB) normalized diffusion profiles, by components of a diffuse color constant M(xo) at point xo, which may be, e.g., provided by an artist. That is, the shader may multiply the R, G, and B components of the diffuse color constant M(xo) by corresponding integrals of normalized diffusion profiles (note, this is the same as multiplying the normalized diffusion profiles for the R, G, and B components by corresponding components of M(xo) and then integrating). Doing so incorporates color information into the rendering of the subsurface scattering effect to produce a lit surface color. Previous diffusion approximations, such as the dipole model, rely upon diffusion profile functions which were uninvertible. As a result, the desired lit surface colors were typically produced using numeric, tabular inversion that may be less accurate while adding computational costs. In contrast, diffusion profiles according to aspects presented herein are normalized, so inversion of the diffusion profile function is unnecessary and the result of integration may simply be multiplied by the appropriate component of the diffuse color constant M(xo).
At step 220, the shader traces rays out from each of the points within the model. These rays are used to determine sampling locations for evaluating a normalized diffusion function at the surface. For example, the shader may trace out 500 to 1000 rays for each subsurface point to determine that number of sampling locations. In one configuration, the rays traced out from a subsurface point may be uniformly distributed on a sphere having the point as its center. In alternative configurations, other distributions of the rays may be used.
For each ray traced out, the shader evaluates, at step 230, a normalized diffusion function where the ray intersects the model. In one configuration, the normalized diffusion function may have the form
where a, b, c, and d are constants, with b, d, and at least one of a and c being positive. As discussed, Rd(r) is normalized such that it integrates over the plane to 1. In one configuration, the ratio of the constants b and d may be fixed at 3 (or approximately 3), which experience has shown tends to produce realistic and pleasing images. Further fixing the ratio of a to c (e.g., a=c) leaves one free parameter d corresponding to overall scattering distance, which may be adjusted as desired by an artist. The normalized diffusion function may thus simplify to
In one configuration, the normalized diffusion function Rd(r) may be scaled using a backside compensation scaling function ƒbc({right arrow over (n)}i, {right arrow over (n)}o, xi, xo) which compensates for out-of-plane scattering, i.e., compensates for inaccuracies due to the in-plane scattering assumption made in the diffusion profile Rd(r). For example, ƒbc may account for the forward-scattering nature of some media and differences in scattering due to the shape of the surface (e.g., convex surfaces may cause increased scattering as compared to planar surfaces). ƒbc is a function of the surface normals at the incident and outgoing locations {right arrow over (n)}i and {right arrow over (n)}o, respectively, as well as the incident xi and outgoing xo locations themselves. For forward-scattering media, ft, may be chosen such that a surface opposite that on which light is incident is brighter than the surface on which light is incident for equivalent scattering distances. For example, if the normals {right arrow over (n)}i, {right arrow over (n)}o are aligned and the points xo, xi on opposite sides of parallel planes (i.e., the dot product {right arrow over (n)}i·{right arrow over (n)}o is −1 and the dot product (xo−xi)·{right arrow over (n)}i is −1, while the dot product (xo−xi)·{right arrow over (n)}o is 1), then the function ƒbc may output a constant positive scaling factors. Here, s>1 and a particular s and function ƒbc may be, e.g., specified by an artist or determined based on Monte-Carlo simulations of subsurface scattering. Conversely, if the normals {right arrow over (n)}i, {right arrow over (n)}o are aligned and the points xo, xi on the same plane (i.e., the dot product {right arrow over (n)}i·{right arrow over (n)}o is 1 and the dot products (xo−xi)·{right arrow over (n)}i and (xo−xi)·{right arrow over (n)}o are 0), then the function ƒbc may output 1 (i.e., no scaling is performed). If the points xi, xo or the normals {right arrow over (n)}i, {right arrow over (n)}o are between these extremes in terms of position or orientation, respectively, then the function ƒbc may output a value between 1 and s.
At step 240, the shader evaluates outgoing radiances due to subsurface scattering Ls(xo,{right arrow over (ω)}o) at surface points where the incident rays intersect the surface using the values of the normalized diffusion function at the sample points determined at step 330. As discussed, Ls(xo, {right arrow over (ω)}o) may generally take the form of equation (4), which may be simplified to equation (5) and numerically integrated using the values of Rd(r) at the sample points. Although discussed as separate steps, the computations of the values of Rd(r) at sample points may be performed as part of evaluating Ls(xo, {right arrow over (ω)}o) via numerical integration.
Having obtained the outgoing radiance due to subsurface scattering Ls(xo, {right arrow over (ω)}o), the shader may further evaluate Lo(xo, {right arrow over (ω)}o), the total outgoing radiance at the point xo having direction {right arrow over (ω)}o. As discussed, Ls(xo, {right arrow over (ω)}o) may be included in the standard rendering equation as an additional term:
Lo(xo,{right arrow over (ω)}o)=Le(xo,{right arrow over (ω)}o)+∫Ωƒr(x,{right arrow over (ω)}i,{right arrow over (ω)}o)Li(xo,{right arrow over (ω)}i)(−{right arrow over (ω)}i·{right arrow over (n)}i)dωi+Ls(xo,{right arrow over (ω)}o). (8)
The shader may determine the value of the emitted light term Le(xo, {right arrow over (ω)}o) and the integral ∫Ωƒr(x, {right arrow over (ω)}i, {right arrow over (ω)}o)Li(xo, {right arrow over (ω)}i)(−{right arrow over (ω)}i·{right arrow over (n)}i)dωi using any feasible means, including well-known techniques. The shader may then add these values to the value of Ls(xo, {right arrow over (ω)}o) to obtain the total going radiance Lo(xo, {right arrow over (ω)}o).
In one configuration, the shader may multiply Ls(xo, {right arrow over (ω)}o), computed for each of the R, G, and B color components, by corresponding components of a diffuse color constant M(xo) at point xo, which may be, e.g., provided by an artist. Doing so incorporates color information into the rendering of the subsurface scattering effect to produce a lit surface color. As discussed, previous diffusion approximations, such as the dipole model, rely upon diffusion profile functions which were uninvertible, and, as a result, artist-desired colors were typically produced using numeric, tabular inversion that may be less accurate while adding computational costs. In contrast, diffusion profiles according to aspects presented herein are normalized, so inversion of the diffusion profile function is unnecessary and the result of integration may simply be multiplied by the appropriate component of the diffuse color constant M(xo).
The CDF has domain [0, ∞] and range [0,1], and the inverse of the CDF thus has domain [0,1] and range [0, ∞]. The shader may plug a random number between 0 and 1 into the inverse of the CDF to determine radii at which to take samples. By further randomly generating a sampling angle, the shader may obtain a point on the surface at which to evaluate the normalized diffusion profile for the lighting integral. That is, the shader may trace a ray towards the volume, and, where that ray intersects the model, sample the value of Rd(r) at surrounding locations which are at random angles and radii determined using the inverse of the CDF.
In one configuration, the normalized diffusion function Rd(r) used may have the form
where a, b, c, and d are constants, with b, d, and at least one of a and c being positive. In another configuration, the ratio of the constants b and d may be fixed at 3 (or approximately 3), which experience has shown tends to produce realistic and pleasing images. Further fixing the ratio of a to c (e.g., a=c) leaves one free parameter d corresponding to overall scattering distance, and the normalized diffusion function may thus simplify to
In one configuration, the normalized diffusion function Rd(r) may be scaled using a backside compensation scaling function ƒbc({right arrow over (n)}i, {right arrow over (n)}o, xi, xo) which compensates for out-of-plane scattering, i.e., compensates for inaccuracies due to the in-plane scattering assumption made in the diffusion profile Rd(r). For example, ƒbc may account for the forward-scattering nature of some media and the differences in scattering due to the shape of the surface (e.g., convex surfaces may cause increased scattering as compared to planar surfaces). As discussed, the ƒbc({right arrow over (n)}i, {right arrow over (n)}o, xi, xo) is a function of the surface normals at the incident and outgoing locations {right arrow over (n)}i and {right arrow over (n)}o, respectively, as well as the incident xi and outgoing xo locations themselves. For forward-scattering media, ƒbc may be chosen such that a surface opposite that on which light is incident is brighter than the surface on which light is incident for equivalent scattering distances. For example, if the normals {right arrow over (n)}i, {right arrow over (n)}o are aligned and the points xo, xi on opposite sides of parallel planes (i.e., the dot product {right arrow over (n)}i·{right arrow over (n)}o is −1 and the dot product (xo−xi)·{right arrow over (n)}i is −1, while the dot product (xo−xi)·{right arrow over (n)}o is 1), then the function ƒbc may output a constant positive scaling factor s>1. Conversely, if the normals {right arrow over (n)}i,{right arrow over (n)}o are aligned and the points xo,xi on the same plane (i.e., the dot product {right arrow over (n)}i·{right arrow over (n)}o is 1 and the dot products (xo−xi). {right arrow over (n)}i and (xo−xi)·{right arrow over (n)}o are 0), then the function ƒbc may output 1 (i.e., no scaling is performed). If the points xi, xo or the normals {right arrow over (n)}i,{right arrow over (n)}o are between these extremes in terms of position or orientation, respectively, then the function ƒbc may output a value between 1 and s.
At step 330, the shader evaluates an outgoing radiance at surface points due to subsurface scattering Ls(xo, {right arrow over (ω)}o) using the values of the normalized diffusion function at the sample points. Similar to step 240, Ls(xo, {right arrow over (ω)}o) may generally take the form of equation (4), which may be simplified to equation (5) and numerically integrated using the values of Rd(r) at the sample points. Although discussed as separate steps, the computations of the values of Rd(r) at sample points may be performed as part of evaluating Ls(xo, {right arrow over (ω)}o) via numerical integration.
Having obtained Ls(xo, {right arrow over (ω)}o), the shader may further evaluate Lo(xo, {right arrow over (ω)}o), the total outgoing radiance at the point xo having direction {right arrow over (ω)}o. In one configuration, Ls(xo, {right arrow over (ω)}o) may be included in the standard rendering equation as an additional term to determine Lo(xo, {right arrow over (ω)}o):
Lo(xo,{right arrow over (ω)}o)=Le(xo,{right arrow over (ω)}o)+∫Ωƒr(x,{right arrow over (ω)}i,{right arrow over (ω)}o)Li(xo,{right arrow over (ω)}i)(−{right arrow over (ω)}i·{right arrow over (n)}i)dωi+Ls(xo,{right arrow over (ω)}o). (10)
Here, the area represented by each sample, i.e., the term dA(xi), may be determined using well-known techniques in importance sampling. In another configuration, the shader may multiply the Ls(xo,{right arrow over (ω)}o), computed for each of the R, G and B color components, by a corresponding component of a diffuse color constant M(xo) at point xo, which may be, e.g., provided by an artist, in order to incorporate this color information into the rendering of the subsurface scattering effect.
As shown, system 400 includes a central processing unit (CPU) 402 and a system memory 404 communicating via a bus path that may include a memory bridge 405. CPU 402 includes one or more processing cores, and, in operation, CPU 402 is the master processor of system 400, controlling and coordinating operations of other system components. System memory 404 stores software applications and data for use by CPU 402. CPU 402 runs software applications and optionally an operating system. Memory bridge 405, which may be, e.g., a Northbridge chip, is connected via a bus or other communication path (e.g., a HyperTransport link) to an I/O (input/output) bridge 407. I/O bridge 407, which may be, e.g., a Southbridge chip, receives user input from one or more user input devices 408 (e.g., keyboard, mouse, joystick, digitizer tablets, touch pads, touch screens, still or video cameras, motion sensors, and/or microphones) and forwards the input to CPU 402 via memory bridge 405.
A display processor 412 is coupled to memory bridge 405 via a bus or other communication path (e.g., a PCI Express, Accelerated Graphics Port, or HyperTransport link). In one configuration, display processor 412 is a graphics subsystem that includes at least one graphics processing unit (GPU) and graphics memory. Graphics memory includes a display memory (e.g., a frame buffer) used for storing pixel data for each pixel of an output image. Graphics memory can be integrated in the same device as the GPU, connected as a separate device with the GPU, and/or implemented within system memory 404.
Display processor 412 periodically delivers pixels to a display device 410 (e.g., a screen or conventional CRT, plasma, OLED, SED or LCD based monitor or television). Additionally, display processor 412 may output pixels to film recorders adapted to reproduce computer generated images on photographic film. Display processor 412 can provide display device 410 with an analog or digital signal.
A system disk 414 is also connected to I/O bridge 407 and may be configured to store content and applications and data for use by CPU 402 and display processor 412. System disk 414 provides non-volatile storage for applications and data and may include fixed or removable hard disk drives, flash memory devices, and CD-ROM, DVD-ROM, Blu-ray, HD-DVD, or other magnetic, optical, or solid state storage devices.
A switch 416 provides connections between I/O bridge 407 and other components such as a network adapter 418 and various add-in cards 420 and 421. Network adapter 418 allows system 400 to communicate with other systems via an electronic communications network, and may include wired or wireless communication over local area networks and wide area networks such as the Internet.
Other components (not shown), including USB or other port connections, film recording devices, and the like, may also be connected to I/O bridge 407. For example, an audio processor may be used to generate analog or digital audio output from instructions and/or data provided by CPU 402, system memory 404, or system disk 414. Communication paths interconnecting the various components in
In one configuration, display processor 412 incorporates circuitry optimized for graphics and video processing, including, for example, video output circuitry, and constitutes a graphics processing unit (GPU). In another configuration, display processor 412 incorporates circuitry optimized for general purpose processing. In yet another configuration, display processor 412 may be integrated with one or more other system elements, such as the memory bridge 405, CPU 302, and I/O bridge 407 to form a system on chip (SoC). In still further configurations, display processor 412 is omitted and software executed by CPU 402 performs the functions of display processor 412.
Pixel data can be provided to display processor 412 directly from CPU 402. In some configurations, instructions and/or data representing a scene are provided to a render farm or a set of server computers, each similar to system 400, via network adapter 418 or system disk 414. The render farm generates one or more rendered images of the scene using the provided instructions and/or data. These rendered images may be stored on computer-readable media in a digital format and optionally returned to system 400 for display. Similarly, stereo image pairs processed by display processor 412 may be output to other systems for display, stored in system disk 414, or stored on computer-readable media in a digital format.
Alternatively, CPU 402 provides display processor 412 with data and/or instructions defining the desired output images, from which display processor 412 generates the pixel data of one or more output images, including characterizing and/or adjusting the offset between stereo image pairs. The data and/or instructions defining the desired output images can be stored in system memory 404 or graphics memory within display processor 412. In one configuration, display processor 412 includes 3D rendering capabilities for generating pixel data for output images from instructions and data defining the geometry, lighting, shading, texturing, motion, and/or camera parameters for a scene. Display processor 412 can further include one or more programmable execution units capable of executing shader programs (also referred to herein as “shaders”), tone mapping programs, and the like.
It will be appreciated that the system shown herein is illustrative and that variations and modifications are possible. The connection topology, including the number and arrangement of bridges, may be modified as desired. For instance, in some configurations, system memory 404 is connected to CPU 402 directly rather than through a bridge, and other devices communicate with system memory 404 via memory bridge 405 and CPU 402. In other alternative topologies display processor 412 is connected to I/O bridge 407 or directly to CPU 402, rather than to memory bridge 405. In still other configurations, I/O bridge 407 and memory bridge 405 might be integrated into a single chip. The particular components shown herein are optional; for instance, any number of add-in cards or peripheral devices might be supported. In some aspects, switch 416 is eliminated, and network adapter 418 and add-in cards 420, 421 connect directly to I/O bridge 407.
According to aspects disclosed herein, subsurface scattering effects are computed using a normalized diffusion profile. The shader may apply a ray tracing, point-based, or other rendering approach to evaluate the subsurface scattering. To compute subsurface scattering via ray tracing, the shader may trace a ray into a volume and trace one or more additional rays outwards from a point within the volume, as discussed above with respect to
An integral of the normalized diffusion profile giving outgoing radiance due to subsurface scattering may be added to the standard rendering equation as an additional term. To determine the lit surface color of a pixel due to subsurface scattering, the shader may multiply integrals of Rd(r), computed for normalized diffusion profiles for each of the R, G, and B components of color, by corresponding components of a diffuse color constant, which may be, e.g., a color painted by an artist on a color map associated with the surface. Further, because Rd(r) is analytically integrable, it may be integrated in importance sampling to obtain a cumulative density function. The inverse of the cumulative density function may be used to generate, for each ray traced to a surface, sample points on the surface at which to evaluate the normalized diffusion profile, as discussed above with respect to
Certain aspects may be implemented as one or more shaders executed by display processor 112. Although discussed herein primarily with respect to such shaders, other configurations of may be implemented in software stored in system memory 104 and executed by CPU 102 and/or display processor 112. Still further configurations may be implemented in fixed function hardware included within display processor 112. Other configurations may be implemented as a combination of hardware and software.
Advantageously, techniques disclosed herein permit efficient rendering of relatively realistic images that include subsurface scattering effects. The diffusion profiles disclosed herein are normalized such that no energy is lost. As a result, a surface texture color desired by an artist may be obtained by simply multiplying by a color value, thereby providing a higher degree of artistic control. The normalized diffusion profile may also match the characteristics of the full scattering solution including all numbers of scattering events, unlike previous diffusion models, which did not model single scattering events. Further, samples may be easily generated with a distribution that matches the diffusion profile, as the diffusion profile is analytically integrable. In addition, the scaling function disclosed herein compensates for out-of-plane scattering so that forward scattering media and non-planar surfaces may be rendered more realistically.
The foregoing description references aspects of the disclosure. However, it should be understood that the disclosure is not limited to specific described aspects. Instead, any combination of the following features and elements, whether related to different aspects or not, is contemplated to implement and practice the disclosure. Furthermore, although aspects of the disclosure may achieve advantages over other possible solutions and over the prior art, whether or not a particular advantage is achieved by a given aspect is not limiting of the disclosure. Thus, the following aspects, features, and advantages are merely illustrative and are not considered elements or limitations of the appended claims except where explicitly recited in a claim(s). Likewise, reference to “the disclosure” shall not be construed as a generalization of any inventive subject matter disclosed herein and shall not be considered to be an element or limitation of the appended claims except where explicitly recited in a claim(s).
Aspects of the present disclosure may be embodied as a system, method or computer program product. Accordingly, aspects of the present disclosure may take the form of an entirely hardware aspect, an entirely software aspect (including firmware, resident software, micro-code, etc.) or an aspect combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus or device.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality and operation of possible implementations of systems, methods and computer program products according to various aspects of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations can be implemented by special-purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
While the foregoing is directed to aspects of the present disclosure, other and further aspects may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
20060290719 | Tong et al. | Dec 2006 | A1 |
20070008310 | Hahn | Jan 2007 | A1 |
20080255812 | Hery | Oct 2008 | A1 |
20090109221 | Planck et al. | Apr 2009 | A1 |
20090219287 | Wang et al. | Sep 2009 | A1 |
20140198204 | Papas et al. | Jul 2014 | A1 |
20140204087 | Habel | Jul 2014 | A1 |
Entry |
---|
“Adaptive Cumulative Numerical Distribution Functions for Efficient Importance Sampling”, Eurographics Symposium on Rendering (2005), Jun. 2005. |
J. Stam; “Multiple scattering as a diffusion process”, Eurographics Rendering Workshop, pp. 41-50, 1995. |
H.W. Jensen; J. Buhler; “A Rapid Hierarchical Rendering Technique for Translucent Materials”, ACM Transactions on Graphics (TOG), vol. 21 Issue 3, pp. 576-581, Jul. 2002. |
H.W. Jensen; S. Marschner; M. Levoy; P. Hanrahan, “A Practical Model for Subsurface Light Transport”, In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 511-518, 2001. |
E. D'Eon; G. Irving, “A Quantized-Diffusion Model for Rendering Translucent Materials”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH,vol. 30 Issue 4, Article No. 56, Jul. 2011. |
Number | Date | Country | |
---|---|---|---|
20140267274 A1 | Sep 2014 | US |