The present invention relates to a nose knife used in nasal cavity surgery.
A dedicated nose knife is used in surgery for nasal cavity diseases.
A nose knife 100 in
A nose knife 101 of
In the case of nasal cavity surgery, the nose knife is inserted in a nostril, and incising and sampling and paring body tissue off, etc., are carried out. At this time, since the nasal cavity is narrow and the interior is difficult to see, an endoscope is often inserted in the nostril at the same time as the nose knife is done in the same way so as to provide treatment in recent years. Here, in the case of the nose knives 100 and 101 as illustrated in
Moreover, an angle between the handle and the blade needs to be given attention as well in order to improve usability of the nose knife. In Patent Document 1 (JP 2004-147914A), for example, curved parts are provided in two places from the handle to the blade tip so as to improve visibility of the knife during surgery, and to make the angle of the knife main body at which it touches a blood vessel be diversely variable.
In light of the problem, the present invention aims to provide a nose knife with good usability and little interference with tools such as an endoscope.
The nose knife of the present invention for solving the above problem includes a handle, a shank, and a blade. The shank is characterized in that it includes a straight part connected straight to the handle along the same axis of the handle, and a curved part integrally connected to the front end of the straight part, and the blade is provided at the front end of the curved part, and direction of a blade tip of the blade is 65 degrees to 75 degrees inclusive to the axis line of the straight part.
Moreover, length of the straight part is 50 mm to 60 mm inclusive, and the blade tip of the blade may be located 10 mm to 20 mm inclusive from the central axial line of the straight part in a perpendicular direction to the central axial line. Furthermore, cross-sectional shape of the straight part may be a circle having a diameter of 1.5 mm to 2.5 mm inclusive.
According to the nose knife of the present invention, usability of the nose knife in surgery may be improved by providing a curved part and providing a blade at a desired angle.
Furthermore, since the blade tip of the blade is only a desired distance from the straight part, the incision range when the handle is rotated may be enlarged. Moreover, making the cross-sectional shape of the straight part be a circle with a small diameter allows reduction in interference with tools such as an endoscope, thereby improving usability.
An embodiment according to the present invention is described below with reference to the accompanying drawings.
The handle 13 is a part for a surgeon to grasp during nasal cavity surgery, and is often subjected to non-slip processing. Note that the structure of a non-slip surface is not particularly limited since there are various non-slip processing methods. Moreover, since the nose knife 10 may be rotated around the axis of the handle 13 so as to make an incision, it is good that the cross-section of the handle 13 has a circular shape.
The shank 11 is made up of a straight part 11a connected straight to the handle 13 along the same axis thereof, and a curved part 11b integrally connected to the front end of the straight part 11a. Length of the straight part 11a is preferably 50 to 60 mm, and the entire length of the curved part 11b and the blade 12 added thereto is 70 mm or greater. There is a merit that the longer the length of the shank 11, the further into the nasal cavity the blade 12 reaches; however, if it is too long, usability is degraded, and therefore the resulting optimal length of the straight part 11a is 50 to 60 mm. Note that this length is long enough for the nose knife, allowing it to be used to incise and pare off portions that could not be reached in the past.
The cross-sectional shape of the straight part 11a is preferably a circle with a basic diameter of 2.0 mm within the range of 1.5 to 2.5 mm. This size of the straight part 11a has a small cross section, thereby allowing reduction in mutual interference between the nose knife and the endoscope when they are inserted into a nostril. However, a problem of strength occurs if it is too narrow, and thus the smallest value of the diameter is set to 1.5 mm.
While both of the blades 12 illustrated in
Moreover, the blade tip 12b is located 10 to 20 mm away from the central axial line of the straight part 11a in a perpendicular direction.
In this case, the distance from the central axial line of the straight part 11a to the blade tip 12b is determined by the bending shape of the curved part 11b and the angle of the blade 12. In the case where an endoscope is not used, shape of the curved part 11b and angle of the blade 12 need to be determined taking into consideration visual performance of the blade 12 during surgery, as with conventional technology.
In this manner, a conclusion has been made that with consideration of balance between incision range and usability, etc., location of the blade tip 12b is preferably within a range of 10 to 20 mm in a perpendicular direction from the central axial line of the straight part 11a, and the angle of the blade 12 is optimally approximately 70 degrees plus or minus 5 degrees to the axis direction of the straight part 11a.
The diameter of the shank 11 of the conventional nose knife is typically approximately 3.0 mm, which is determined so as to ensure flexural capacity because relatively large force is applied when the body tissue of the nasal cavity, etc., are sampled. However, use of an endoscope for nasal cavity surgery has increased in recent years, where in that case, both the nose knife and the endoscope are inserted in the nostril.
Naturally, when both the nose knife 10 and the endoscope 20 are inserted in a nostril, a smaller diameter of the shank 11 of the nose knife 10 is preferred since interference with the endoscope 20 is reduced. Moreover, since the handle 13 typically has a larger cross-section than that of the shank 11, interference between the handle 13 and the endoscope 20 also requires attention. Taking this into consideration, making the shank 11 of the nose knife 10 of the present invention narrower and longer than that of the conventional nose knife 100 reduces interference between the handle 13 and the endoscope 20.
As described above, the nose knife of the present invention has excellent usability, little interference with an endoscope, and secures sufficient strength, thereby providing excellent beneficial effects.
10: Nose knife
11
a : Straight part
11b : Curved part
12
a : Cutting edge
Number | Date | Country | Kind |
---|---|---|---|
2016-201636 | Oct 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/036786 | 10/11/2017 | WO | 00 |