NOVEL ACYLTRANSFERASES, VARIANT THIOESTERASES, AND USES THEREOF

Abstract
Disclosed are microalgal cells having an ablated or downregulated fatty acyl-ACP thioesterase (FATA) gene, wherein the cell is modified to express a heterologous lysophosphatidic acid acyltransferase (LPAAT) comprising an amino acid sequence that has at least 80% identity to an acyltransferase encoded by SEQ ID NO: 90, 89, 92, 93 or 95 and wherein the modified microalgal cell produces an oil with an elevated ratio of saturated-unsaturated-saturated triglycerides over trisaturated triglycerides as compared to a corresponding unmodified cell. Also disclosed are microalgal oils comprising at least 60% stearate-oleate-stearate (SOS) triglycerides, less than 5% trisaturates and wherein the fatty acid profile of the oil comprises at least 50% C18:0. Related methods of producing an oil are also disclosed.
Description
INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ELECTRONICALLY

This application includes a list of sequences, as shown at the end of the detailed description. The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, dated Aug. 11, 2020, is named CORBP072US_SL.txt and is 606,605 bytes in size.


FIELD OF THE INVENTION

Embodiments of the present invention relate to oils/fats, fuels, foods, and oleochemicals and their production from cultures of genetically engineered cells. Embodiments relate to nucleic acids and proteins that are involved in the fatty acid synthetic pathways; oils with a high content of triglycerides bearing fatty acyl groups upon the glycerol backbone in particular regiospecific patterns, highly stable oils, oils with high levels of oleic or mid-chain fatty acids, and products produced from such oils.


BACKGROUND OF THE INVENTION

Co-owned patent applications WO2008/151149, WO2010/063031, WO2010/063032, WO2011/150410, WO2011/150411, WO2012/061647, WO2012/061647, WO2012/106560, WO2013/158938, WO2014/120829, WO2014/151904, WO2015/051319, WO2016/007862, WO2016/014968, WO2016/044779, and WO2016/164495 relate to microbial oils and methods for producing those oils in host cells, including microalgae. These publications also describe the use of such oils to make foods, oleochemicals, fuels and other products.


Certain enzymes of the fatty acyl-CoA elongation pathway function to extend the length of fatty acyl-CoA molecules. Elongase-complex enzymes extend fatty acyl-CoA molecules in 2 carbon additions, for example myristoyl-CoA to palmitoyl-CoA, stearoyl-CoA to arachidyl-CoA, or oleoyl-CoA to eicosanoyl-CoA, eicosanoyl-CoA to erucyl-CoA. In addition, elongase enzymes also extend acyl chain length in 2 carbon increments. KCS enzymes condense acyl-CoA molecules with two carbons from malonyl-CoA to form beta-ketoacyl-CoA. KCS and elongases may show specificity for condensing acyl substrates of particular carbon length, modification (such as hydroxylation), or degree of saturation. For example, the jojoba (Simmondsia chinensis) beta-ketoacyl-CoA synthase has been demonstrated to prefer monounsaturated and saturated C18- and C20-CoA substrates to elevate production of erucic acid in transgenic plants (Lassner et al., Plant Cell, 1996, Vol 8(2), pp. 281-292), whereas specific elongase enzymes of Trypanosoma brucei show preference for elongating short and midchain saturated CoA substrates (Lee et al., Cell, 2006, Vol 126(4), pp. 691-9).


The type II fatty acid biosynthetic pathway employs a series of reactions catalyzed by soluble proteins with intermediates shuttled between enzymes as thioesters of acyl carrier protein (ACP). By contrast, the type I fatty acid biosynthetic pathway uses a single, large multifunctional polypeptide.


The oleaginous, non-photosynthetic alga, Prototheca moriformis, stores copious amounts of triacylglyceride oil under conditions when the nutritional carbon supply is in excess, but cell division is inhibited due to limitation of other essential nutrients. Bulk biosynthesis of fatty acids with carbon chain lengths up to C18 occurs in the plastids; fatty acids are then exported to the endoplasmic reticulum where (if it occurs) elongation past C18 and incorporation into triacylglycerides (TAGs) is believed to occur. Lipids are stored in large cytoplasmic organelles called lipid bodies until environmental conditions change to favor growth, whereupon they are mobilized to provide energy and carbon molecules for anabolic metabolism.


SUMMARY OF THE INVENTION

In various aspects, the inventions disclosed herein include one or more of the following embodiments. The embodiments can be practiced alone or in combination with each other.


Embodiment 1

This embodiment of the invention provides a recombinant vector construct or a host cell comprising nucleic acids that encode an acyltransferase that optionally is operable to produce an altered fatty acid profile or an altered sn-2 profile in an oil produced by a host cell expressing the nucleic acids. The nucleic acids can be a nucleic acid construct or a vector construct that also includes one or more regulatory elements. The one or more regulatory elements include promoters, targeting sequences, secretion signals and other elements that control or direct the expression of the encoded protein in the host cell. The acyltransferase encoded by the nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an acyltransferase of SEQ ID NOs: 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, or 196. The acyl transferases of this invention is a lysophosphatidic acid acyltransferase (LPAAT), glycerol phosphate acyltransferase (GPAT), diacyl glycerol acyltransferase (DGAT), lysophosphatidylcholine acyltransferase (LPCAT), or phospholipase A2 (PLA2). The acyltransferases of the invention are shown in Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 96.3%, 98%, or 99% identity to an acyltransferase of clade 1 of Table 5. In another embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 93.9%, 98%, or 99% identity to an acyltransferase of clade 2 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 86.5%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 3 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 78.5%, 80%, 85%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 4 of Table 5. In one embodiment, the recombinant vector construct of host cell comprises nucleic acids that 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an acyltransferase encoded by SEQ ID NOs: 19, 20, 21, 22, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, or 125.


Embodiment 2

This embodiment of the invention provides nucleic acids that encode an acyltransferase that when expressed produces an altered fatty acid profile or an altered sn-2 profile in an oil produced by a host cell expressing the nucleic acids. The nucleic acids can be a nucleic acid construct or a vector construct that also includes one or more regulatory elements. The one or more regulatory elements include promoters, targeting sequences, secretion signals and other elements that control or direct the expression of the encoded protein in the host cell. The acyltransferase encoded by the nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an acyltransferase of SEQ ID NOs: 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, or 196. The acyl transferases of this invention is a lysophosphatidic acid acyltransferase (LPAAT), glycerol phosphate acyltransferase (GPAT), diacyl glycerol acyltransferase (DGAT), lysophosphatidylcholine acyltransferase (LPCAT), or phospholipase A2 (PLA2). The acyltransferases of the invention are shown in Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 96.3%, 98%, or 99% identity to an acyltransferase of clade 1 of Table 5. In another embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 93.9%, 98%, or 99% identity to an acyltransferase of clade 2 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 86.5%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 3 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 78.5%, 80%, 85%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 4 of Table 5. In one embodiment, the nucleic acids comprise nucleic acids that are 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an acyltransferase encoded by SEQ ID NOs: 19, 20, 21, 22, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, or 125.


Embodiment 3

This embodiment of the invention provides codon-optimized nucleic acids that encodes an acyltransferase operable to produce an altered fatty acid profile and/or an altered sn-2 profile in an oil produced by a host cell expressing the nucleic acids. In one aspect, the codons are optimized for expression in the host cell, including host cells derived from plants. In another aspect, the codons are optimized for expression in Prototheca or Chlorella. In a further aspect the codons are optimized for expression in Prototheca moriformis or Chlorella protothecoides. The codon-optimized nucleic acids can be a nucleic acid construct or a vector construct that also includes one or more regulatory elements. The one or more regulatory elements are also codon-optimized for Prototheca or Chlorella. The one or more regulatory elements include promoters, targeting sequences, secretion signals and other elements that control or direct the expression of the encoded protein in the host cell. The acyltransferase encoded by the codon-optimized nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an acyltransferase of SEQ ID NOs: 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, or 196. When the codons are optimized for expression in a host organism, at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the codons used is the most preferred codon. Alternately, at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the codons used is the first or second most preferred codon. The codon-optimized nucleic acids encode acyltransferases that are shown in Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 96.3%, 98%, or 99% identity to an acyltransferase of clade 1 of Table 5. In another embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 93.9%, 98%, or 99% identity to an acyltransferase of clade 2 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 86.5%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 3 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 78.5%, 80%, 85%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 4 of Table 5. The acyltransferase encoded by the codon-optimized nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an acyltransferase of SEQ ID NOs: 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, or 196. In one embodiment, the codon-optimizes nucleic acids comprise nucleic acids that 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an acyltransferase encoded by SEQ ID NOs: 19, 20, 21, 22, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, or 125.


Embodiment 4

In this embodiment, the invention provides host cells that are oleaginous microorganism cells or plant cells. The microorganisms of the invention are eukaryotic microorganism. In one aspect, the host cells are microalgae. In one embodiment, the microalgae are of the phylum Chlorophyta, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae. In one embodiment, the microalgae are of the genus Prototheca or Chlorella. In one embodiment, the microalgae are of the species Prototheca moriformis, Prototheca zopfii, Prototheca wickerhamii Prototheca blaschkeae, Prototheca chlorelloides, Prototheca crieana, Prototheca dilamenta, Prototheca hydrocarbonea, Prototheca kruegeri, Prototheca portoricensis, Prototheca salmonis, Prototheca segbwema, Prototheca stagnorum, Prototheca trispora Prototheca ulmea, or Prototheca viscosa. Preferably, the microalga is of the species Prototheca moriformis. In one embodiment, the microalgae are of the species Chlorella autotrophica, Chlorella colonials, Chlorella lewinii, Chlorella minutissima, Chlorella pituitam, Chlorella pulchelloides, Chlorella pyrenoidosa, Chlorella rotunda, Chlorella singularis, Chlorella sorokiniana, Chlorella variabilis, or Chlorella volutis. Preferably, the microalga is of the species Chlorella protothecoides or Auxenochlorella protothecoides. The host cells express the nucleic acids for Embodiments relating to acyltransferases of the invention.


Embodiment 5

In this embodiment, the acyl transferase is lysophosphatidic acid acyltransferase (LPAAT), glycerol phosphate acyltransferase (GPAT), diacyl glycerol acyltransferase (DGAT), lysophosphatidylcholine acyltransferase (LPCAT), or phospholipase A2 (PLA2). In one embodiment, the acyltransferases of the invention are shown in Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 96.3%, 98%, or 99% identity to an acyltransferase of clade 1 of Table 5. In another embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 93.9%, 98%, or 99% identity to an acyltransferase of clade 2 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 86.5%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 3 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 78.5%, 80%, 85%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 4 of Table 5. The acyltransferase have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an acyltransferase of SEQ ID NOs: 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, or 196.


Embodiment 6

In this embodiment, nucleic acids encoding acyltransferases increases the production of C8:0 and/or C10:0 fatty acids or alters the sn-2 profile in the host cell. The acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 96.3%, 98%, or 99% identity to an acyltransferase of clade 1 of Table 5. In another embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 93.9%, 98%, or 99% identity to an acyltransferase of clade 2 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 86.5%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 3 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 78.5%, 80%, 85%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 4 of Table 5. The C8:0 or the C10:0 content of the oil of the host cell is increased by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 70%, 80%, 90%, or higher as compared the C8:0 and/or C10:0 content of a cell oil that does not express the recombinant nucleic acids encoding the LPAATs of the invention. The sn-2 profile of the oil is altered by the expression of the LPAATs of the invention and/or the C8:0 and/or C10:0 fatty acid at the sn-2 position is increased by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 70%, 80%, 90%, or higher as compared to the C8:0 and/or C10:0 fatty acid at the sn-2 position of the cell oil that does not express the recombinant nucleic acids encoding the LPAATs of the invention. The acyltransferase encoded by the codon-optimized nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an acyltransferase of SEQ ID NOs: 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, or 196.


Embodiment 7

This embodiment comprises nucleic acids encoding LPAATs, shown in Table 5, and disclosed herein. The LPAATs encoded by the nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an acyltransferase of SEQ ID NOs: 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, or 180.


Embodiment 8

In this embodiment, nucleic acids encoding GPATs of the invention have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 181, 182, 183, 184, 185, or 186.


Embodiment 9

In this embodiment, nucleic acids encoding DGATs of the invention have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 187, or 188.


Embodiment 10

In this embodiment, nucleic acids encoding LPCATs of the invention have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 189, 190, 191, or 192,


Embodiment 11

This embodiment comprises nucleic acids encoding PLA2s. The PLA2s encoded by the nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 193, 194, 195, or 196.


Embodiment 12

This embodiment is a method of cultivating a host cell expressing nucleic acids that encode the one or more acyl transferases of embodiments 1-11


Embodiment 13

This embodiment is a method of producing an oil by cultivating host cells that express nucleic acids that encode the one or more acyl transferases of Embodiments 1-12 and recovering the oil.


Embodiment 14

This embodiment is an oil produced by cultivating host cells that express the one or more nucleic acids that encode the acyltransferases of Examples 1-11, and recovering the oil from the host cell. When the host cell is a microalgae, the cell oil produced by the host cell has sterols that are different than the sterols produced by a plant cell. The cell oil has a sterol profile that is different than an oil obtained from a plant.


Embodiment 15

In this embodiment, a recombinant acyltransferase is provided. The recombinant acyltransferase can be produced by a host cell. The glycosylation of the recombinant acyl transferase is altered from the glycosylation pattern observed in the acyl transferase produced by the non-recombinant, wild-type cell from which the gene encoding the acyl transferase was derived. In one embodiment, the recombinant acyltransferase the invention have acyltransferase activity and the amino acid sequence comprises at least 96.3%, 98%, or 99% identity to an acyltransferase of clade 1 of Table 5. In one embodiment, the recombinant acyltransferase the invention have acyltransferase activity and the amino acid sequence comprises at least 93.9%, 98%, or 99% identity to an acyltransferase of clade 2 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 86.5%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 3 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 78.5%, 80%, 85%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 4 of Table 5. The acyltransferase encoded have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an acyltransferase of SEQ ID NOs: 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, or 196.


Embodiment 16

This embodiment of the invention provides a recombinant vector construct or a host cell comprising nucleic acids that encode a variant Brassica fatty acyl-ACP thioesterase that optionally is operable to produce an altered fatty acid profile in an oil produced by a host cell expressing the nucleic acids. The nucleic acids can be a nucleic acid construct or a vector construct that also includes one or more regulatory elements. The one or more regulatory elements include promoters, targeting sequences, secretion signals and other elements that control or direct the expression of the encoded protein in the host cell. The thioesterase encoded by the nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 165, 166, 167, or 168 and comprise one or more of amino acid variants D124A, D209A, D127A or D212A. In one embodiment, the Brassica RAPA, Brassica napus or the Brassica juncea thioesterases of the invention have fatty acyl hydrolysis activity and prefer to hydrolyze long chain fatty acyl groups from the acyl carrier protein. In one embodiment, the thioesterase genes, isolated from higher plants, are altered to create variant thioesterases that have certain amino acids that have been altered from the wild type enzyme. Due to the altered amino acid(s), the substrate specificity of the thioesterase is altered. The variant BnOTE enzymes increased C18:0 content by DCW, decreased C18:1 content by DCW, and decreased C18:2 content by DCW in host cells and the oils recovered from the host cells.


Embodiment 17

This embodiment of the invention provides a recombinant vector construct or a host cell comprising nucleic acids that encode a Garcinia mangostana variant fatty acyl-ACP thioesterase (GmFATA) that optionally is operable to produce an altered fatty acid profile in an oil produced by a host cell expressing the nucleic acids. The nucleic acids can be a nucleic acid construct or a vector construct that also includes one or more regulatory elements. The one or more regulatory elements include promoters, targeting sequences, secretion signals and other elements that control or direct the expression of the encoded protein in the host cell. The variant Garcinia thioesterase encoded by the nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, comprise one more of amino acid variants D variants L91F, L91K, L91S, G96A, G96T, G96V, G108A, G108V, S111A, S111V T156F, T156A, T156K, T156V, or V193A. In one embodiment, the G. mangostana thioesterases of the invention have fatty acyl hydrolysis activity and prefer to hydrolyze long chain fatty acyl groups from the acyl carrier protein. In one embodiment, the thioesterase genes, isolated from higher plants, are altered to create variant thioesterases that have certain amino acids that have been altered from the wild type enzyme. Due to the altered amino acid(s), the substrate specificity of the thioesterase is altered. The variant BnOTE enzymes increased C18:0 content by DCW, decreased C18:1 content by DCW, and decreased C18:2 content by DCW in host cells and the oils recovered from the host cells.


Embodiment 18

This embodiment of the invention provides nucleic acids that encode variant Brassica thioesterases or variant Garcinia thioestrases that when expressed produce an altered fatty acid profile in an oil produced by a host cell expressing the nucleic acids. The nucleic acids can be a nucleic acid construct or a vector construct that also includes one or more regulatory elements. The one or more regulatory elements include promoters, targeting sequences, secretion signals and other elements that control or direct the expression of the encoded protein in the host cell. The variant Brassica thioesterases encoded by the nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 165, 166, 167, or 168 and comprise one or more of amino acid variants D124A, D209A, D127A or D212A. The variant variant Garcinia thioestrases encoded by the nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150 and comprise one or more of amino acid variants L91F, L91K, L91S, G96A, G96T, G96V, G108A, G108V, S111A, S111V T156F, T156A, T156K, T156V, or V193A.


Embodiment 19

This embodiment of the invention provides codon-optimized nucleic acids that encodes a variant Brassica thioesterase or a variant Garcinia thioestrase operable to produce an altered fatty acid profile in an oil produced by a host cell expressing the nucleic acids. In one aspect, the codons are optimized for expression in the host cell, including host cells derived from plants. In another aspect, the codons are optimized for expression in Prototheca or Chlorella. In a further aspect the codons are optimized for expression in Prototheca moriformis or Chlorella protothecoides. The codon-optimized nucleic acids can be a nucleic acid construct or a vector construct that also includes one or more regulatory elements. The one or more regulatory elements are also codon-optimized for Prototheca or Chlorella. The one or more regulatory elements include promoters, targeting sequences, secretion signals and other elements that control or direct the expression of the encoded protein in the host cell. The variant Brassica thioesterases encoded by the nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 165, 166, 167, or 168 and comprise one or more of amino acid variants D124A, D209A, D127A or D212A. The variant variant Garcinia thioestrases encoded by the nucleic acids have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, or 150 and comprise one or more of amino acid variants L91F, L91K, L91S, G96A, G96T, G96V, G108A, G108V, S111A, S111V T156F, T156A, T156K, T156V, or V193A. When the codons are optimized for expression in a host organism, at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the codons used is the most preferred codon. Alternately, at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the codons used is the first or second most preferred codon. The codon-optimized nucleic acids encode variant Brassica thioesterases and variant Garcinia thioestrases. In one embodiment, the variant Brassica thioesterases and variant Garcinia thioestrases of the invention have thioesterase activity.


Embodiment 20

In this embodiment, the invention provides host cells that are oleaginous microorganism cells or plant cells. The microorganisms of the invention are eukaryotic microorganism. In one aspect, the host cells are microalgae. In one embodiment, the microalgae are of the phylum Chlorophyta, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae. In one embodiment, the microalgae are of the genus Prototheca or Chlorella. In one embodiment, the microalgae are of the species Prototheca moriformis, Prototheca zopfii, Prototheca wickerhamii Prototheca blaschkeae, Prototheca chlorelloides, Prototheca crieana, Prototheca dilamenta, Prototheca hydrocarbonea, Prototheca kruegeri, Prototheca portoricensis, Prototheca salmonis, Prototheca segbwema, Prototheca stagnorum, Prototheca trispora Prototheca ulmea, or Prototheca viscosa. Preferably, the microalga is of the species Prototheca moriformis. In one embodiment, the microalgae are of the species Chlorella autotrophica, Chlorella colonials, Chlorella lewinii, Chlorella minutissima, Chlorella pituitam, Chlorella pulchelloides, Chlorella pyrenoidosa, Chlorella rotunda, Chlorella singularis, Chlorella sorokiniana, Chlorella variabilis, or Chlorella volutis. Preferably, the microalga is of the species Chlorella protothecoides or Auxenochlorella protothecoides. The host cells express the nucleic acids for Embodiments relating to acyltransferases of the invention.


Embodiment 21

In this embodiment, the nucleic acid encoding the variant Brassica thioesterase encodes a variant thioesterase that has 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 165, 166, 167, or 168 and comprise one or more of amino acid variants D124A, D209A, D127A or D212A. In another aspect, the nucleic acid encoding the variant Garcinia thioesterase encodes a variant thioesterase that has 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, or 150, and comprise one or more of amino acid variants L91F, L91K, L91S, G96A, G96T, G96V, G108A, G108V, S111A, S111V T156F, T156A, T156K, T156V, or V193A.


Embodiment 22

In this embodiment, nucleic acids encoding a variant Brassica thioesterase or a variant Garcinia thioesetrase that decrease the production of C18:0 and/or decrease the production of C18:1 fatty acids and/or decreases the production of C18:2 fatty acids sn-2 in the host cell.


Embodiment 23

In this embodiment, nucleic acids encoding a variant Brassica thioesterase of the invention have SEQ ID NOs: 165, 166, 167, or 168 and comprise one or more of amino acid variants D124A, D209A, D127A or D212A.


Embodiment 24

In this embodiment, nucleic acids encoding a variant Garcinia thioesetrase of the invention have 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NOs: 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, or 150 and comprise one or more of amino acid variants L91F, L91K, L91S, G96A, G96T, G96V, G108A, G108V, S111A, S111V T156F, T156A, T156K, T156V, or V193A.


Embodiment 25

This embodiment is a method of cultivating a host cell expressing nucleic acids that encode the one or more acyl transferases of embodiments 16-24.


Embodiment 26

This embodiment is a method of producing an oil by cultivating host cells that express nucleic acids that encode the one or more variant thioesterases of Embodiments 16-25 and recovering the oil.


Embodiment 27

This embodiment is an oil produced by cultivating host cells that express the one or more nucleic acids that encode the variant transferases of Examples 16-24, and recovering the oil from the host cell. When the host cell is a microalgae, the cell oil produced by the host cell has sterols that are different than the sterols produced by a plant cell. The cell oil has a sterol profile that is different than an oil obtained from a plant.


Embodiment 28

In this embodiment, a recombinant variant thioesterase is provided. The recombinant variant thioesterase is produce by a host cell. The glycosylation of the recombinant variant thioesterase is altered from the glycosylation pattern observed in the variant thioesterase produced by the non-recombinant, wild-type cell from which the gene encoding the variant thioesterase was derived.


By way of example and not intended to be the only combination, the acyltransferase and/or the variant acyl-ACP thioesterrases of the invention can be expressed in a cell in which an endogenous desaturase, KAS, and/or fatty acyl-ACP thioesterase has been ablated or downregulated as demonstrated in the Examples. The co-expression of an acyltransferase and/or a variant acyl-ACP thioesterase concomitantly with an invertase is an embodiment of the invention, as was demonstrated in the disclosed Examples. Additionally, the expression of an acyltansferase and/or a variant acyl-ACP thioesterase with concomitant expression of a invertase and ablation or downregulation of a desaturase, KAS and/or fatty acyl-ACP thioesterase is an embodiment of the invention, as demonstrated in the disclosed Examples.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. TAG profiles of S7815 versus the S6573 parent. TAGs in brackets co-elute with the peak of the main TAG, but are present in trace amounts, and do not contribute significantly to the area. M=myristate (C14:0), P=palmitate (C16:0), Po=palmitoleate (C16:1), Ma=margaric (C17:0), S=stearate (C18:0), O=oleate (C18:1), L=linoleate (C18:2), Ln=linolenate (C18:3 α), A=arachidate (C20:0), B=behenate (C22:0), Lg=lignocerate (C24:0), Hx=hexacosanoate (C26:0). Sat-Sat-Sat=trisaturates. See Example 5.



FIG. 2. TAG profiles of lipids from fermentations of S7815 versus S6573. TAGs in brackets co-elute with the peak of the main TAG, but are present in trace amounts, and do not contribute significantly to the area. M=myristate (C14:0), P=palmitate (C16:0), S=stearate (C18:0), O=oleate (C18:1), L=linoleate (C18:2), Ln=linolenate (C18:3 α), A=arachidate (C20:0), B=behenate (C22:0), Lg=lignocerate (C24:0), Hx=hexacosanoate (C26:0). Sat-Sat-Sat=trisaturates. See Example 5.





DETAILED DESCRIPTION OF THE INVENTION
I. Definitions

An “allele” refers to a copy of a gene where an organism has multiple similar or identical gene copies, even if on the same chromosome. An allele may encode the same or similar protein.


An “oil,” “cell oil” or “cell fat” shall mean a predominantly triglyceride oil obtained from an organism, where the oil has not undergone blending with another natural or synthetic oil, or fractionation so as to substantially alter the fatty acid profile of the triglyceride. In connection with an oil comprising triglycerides of a particular regiospecificity, the cell oil or cell fat has not been subjected to interesterification or other synthetic process to obtain that regiospecific triglyceride profile, rather the regiospecificity is produced naturally, by a cell or population of cells. For a cell oil produced by a cell, the sterol profile of oil is generally determined by the sterols produced by the cell, not by artificial reconstitution of the oil by adding sterols in order to mimic the cell oil. In connection with a cell oil or cell fat, and as used generally throughout the present disclosure, the terms oil, and fat are used interchangeably, except where otherwise noted. Thus, an “oil” or a “fat” can be liquid, solid, or partially solid at room temperature, depending on the makeup of the substance and other conditions. Here, the term “fractionation” means removing material from the oil in a way that changes its fatty acid profile relative to the profile produced by the organism, however accomplished. The terms “oil,” “cell oil” and “cell fat” encompass such oils obtained from an organism, where the oil has undergone minimal processing, including refining, bleaching, deodorized, and/or degumming, which does not substantially change its triglyceride profile. A cell oil can also be a “noninteresterified cell oil”, which means that the cell oil has not undergone a process in which fatty acids have been redistributed in their acyl linkages to glycerol and remain essentially in the same configuration as when recovered from the organism.


As used herein, an oil is said to be “enriched” in one or more particular fatty acids if there is at least a 10% increase in the mass of that fatty acid in the oil relative to the non-enriched oil. For example, in the case of a cell expressing a heterologous FatB gene described herein, the oil produced by the cell is said to be enriched in, e.g., C8 and C16 fatty acids if the mass of these fatty acids in the oil is at least 10% greater than in oil produced by a cell of the same type that does not express the heterologous FatB gene (e.g., wild type oil).


“Exogenous gene” shall mean a nucleic acid that codes for the expression of an RNA and/or protein that has been introduced into a cell (e.g. by transformation/transfection), and is also referred to as a “transgene”. A cell comprising an exogenous gene may be referred to as a recombinant cell, into which additional exogenous gene(s) may be introduced. The exogenous gene may be from a different species (and so heterologous), or from the same species (and so homologous), relative to the cell being transformed. Thus, an exogenous gene can include a homologous gene that occupies a different location in the genome of the cell or is under different control, relative to the endogenous copy of the gene. An exogenous gene may be present in more than one copy in the cell. An exogenous gene may be maintained in a cell as an insertion into the genome (nuclear or plastid) or as an episomal molecule.


“FADc”, also referred to as “FAD2” or “FAD” is a gene encoding a delta-12 fatty acid desaturase. “SAD” is a gene encoding a stearoyl ACP desaturase, a delta-9 fatty acid desaturase. The desaturases desaturates a fatty acyl chain to create a double bond. SAD converts stearic acid, C18:0 to oleic acid, C18:1 and FAD converts oleic acid, C18:1 to linoleic acid, C18:2.


“Fatty acids” shall mean free fatty acids, fatty acid salts, or fatty acyl moieties in a glycerolipid. It will be understood that fatty acyl groups of glycerolipids can be described in terms of the carboxylic acid or anion of a carboxylic acid that is produced when the triglyceride is hydrolyzed or saponified.


“Fixed carbon source” is a molecule(s) containing carbon, typically an organic molecule that is present at ambient temperature and pressure in solid or liquid form in a culture media that can be utilized by a microorganism cultured therein. Accordingly, carbon dioxide is not a fixed carbon source. Typical fixed carbon source include sucrose, glucose, fructose and other well-known monosaccharides, disaccharides and polysaccharides.


“In operable linkage” is a functional linkage between two nucleic acid sequences, such a control sequence (typically a promoter) and the linked sequence (typically a sequence that encodes a protein, also called a coding sequence). A promoter is in operable linkage with an exogenous gene if it can mediate transcription of the gene.


“Microalgae” are eukaryotic microbial organisms that contain a chloroplast or other plastid, and optionally that is capable of performing photosynthesis, or a prokaryotic microbial organism capable of performing photosynthesis. Microalgae include obligate photoautotrophs, which cannot metabolize a fixed carbon source as energy, as well as heterotrophs, which can live solely off of a fixed carbon source. Microalgae also include mixotrophic organisms that can perform photosynthesis and metabolize one or more fixed carbon source. Microalgae include unicellular organisms that separate from sister cells shortly after cell division, such as Chlamydomonas, as well as microbes such as, for example, volvox, which is a simple multicellular photosynthetic microbe of two distinct cell types. Microalgae include cells such as Chlorella, Dunaliella, and Prototheca. Microalgae also include other microbial photosynthetic organisms that exhibit cell-cell adhesion, such as Agmenellum, Anabaena, and Pyrobotrys. Microalgae also include obligate heterotrophic microorganisms that have lost the ability to perform photosynthesis, such as certain dinoflagellate algae species and species of the genus Prototheca.


As used with respect to nucleic acids, the term “isolated” refers to a nucleic acid that is free of at least one other component that is typically present with the naturally occurring nucleic acid. Thus, a naturally occurring nucleic acid is isolated if it has been purified away from at least one other component that occurs naturally with the nucleic acid.


In connection with fatty acid length, “mid-chain” shall mean C8 to C16 fatty acids.


In connection with a recombinant cell, the term “knockdown” refers to a gene that has been partially suppressed (e.g., by about 1-95%) in terms of the production or activity of a protein encoded by the gene. Inhibitory RNA technology to down-regulate or knockdown expression of a gene are well known. These techniques include dsRNA, hairpin RNA, antisense RNA, interfering RNA (RNAi) and others.


Also, in connection with a recombinant cell, the term “knockout” refers to a gene that has been completely or nearly completely (e.g., >95%) suppressed in terms of the production or activity of a protein encoded by the gene. Knockouts can be prepared by ablating the gene by homologous recombination of a nucleic acid sequence into a coding sequence, gene deletion, mutation or other method. When homologous recombination is performed, the nucleic acid that is inserted (“knocked-in”) can be a sequence that encodes an exogenous gene of interest or a sequence that does not encode for a gene of interest. The ablation by homologous recombination can be performed in one, two or more alleles of the gene of interest.


An “oleaginous” cell is a cell capable of producing at least 20% lipid by dry cell weight, naturally or through recombinant or classical strain improvement. An “oleaginous microbe” or “oleaginous microorganism” is a microbe, including a microalga that is oleaginous (especially eukaryotic microalgae that store lipid). An oleaginous cell also encompasses a cell that has had some or all of its lipid or other content removed, and both live and dead cells.


An “ordered oil” or “ordered fat” is one that forms crystals that are primarily of a given polymorphic structure. For example, an ordered oil or ordered fat can have crystals that are greater than 50%, 60%, 70%, 80%, or 90% of the 13 or 13′ polymorphic form.


In connection with a cell oil, a “profile” is the distribution of particular species or triglycerides or fatty acyl groups within the oil. A “fatty acid profile” is the distribution of fatty acyl groups in the triglycerides of the oil without reference to attachment to a glycerol backbone. Fatty acid profiles are typically determined by conversion to a fatty acid methyl ester (FAME), followed by gas chromatography (GC) analysis with flame ionization detection (FID), as in Example 1. The fatty acid profile can be expressed as one or more percent of a fatty acid in the total fatty acid signal determined from the area under the curve for that fatty acid. FAME-GC-FID measurement approximate weight percentages of the fatty acids. A “sn-2 profile” is the distribution of fatty acids found at the sn-2 position of the triacylglycerides in the oil. A “regiospecific profile” is the distribution of triglycerides with reference to the positioning of acyl group attachment to the glycerol backbone without reference to stereospecificity. In other words, a regiospecific profile describes acyl group attachment at sn-1/3 vs. sn-2. Thus, in a regiospecific profile, POS (palmitate-oleate-stearate) and SOP (stearate-oleate-palmitate) are treated identically. A “stereospecific profile” describes the attachment of acyl groups at sn-1, sn-2 and sn-3. Unless otherwise indicated, triglycerides such as SOP and POS are to be considered equivalent. A “TAG profile” is the distribution of fatty acids found in the triglycerides with reference to connection to the glycerol backbone, but without reference to the regiospecific nature of the connections. Thus, in a TAG profile, the percent of SSO in the oil is the sum of SSO and SOS, while in a regiospecific profile, the percent of SSO is calculated without inclusion of SOS species in the oil. In contrast to the weight percentages of the FAME-GC-FID analysis, triglyceride percentages are typically given as mole percentages; that is the percent of a given TAG molecule in a TAG mixture.


The term “percent sequence identity,” in the context of two or more amino acid or nucleic acid sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. For sequence comparison to determine percent nucleotide or amino acid identity, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters. Optimal alignment of sequences for comparison can be conducted using the NCBI BLAST software (ncbi.nlm.nih.gov/BLAST/) set to default parameters. For example, to compare two nucleic acid sequences, one may use blastn with the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) set at the following default parameters: Matrix: BLOSUM62; Reward for match: 1; Penalty for mismatch: −2; Open Gap: 5 and Extension Gap: 2 penalties; Gap x drop-off: 50; Expect: 10; Word Size: 11; Filter: on. For a pairwise comparison of two amino acid sequences, one may use the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) with blastp set, for example, at the following default parameters: Matrix: BLOSUM62; Open Gap: 11 and Extension Gap: 1 penalties; Gap x drop-off 50; Expect: 10; Word Size: 3; Filter: on.


“Recombinant” is a cell, nucleic acid, protein or vector that has been modified due to the introduction of an exogenous nucleic acid or the alteration of a native nucleic acid. Thus, e.g., recombinant cells can express genes that are not found within the native (non-recombinant) form of the cell or express native genes differently than those genes are expressed by a non-recombinant cell. Recombinant cells can, without limitation, include recombinant nucleic acids that encode for a gene product or for suppression elements such as mutations, knockouts, antisense, interfering RNA (RNAi), hairpin RNA or dsRNA that reduce the levels of active gene product in a cell. A “recombinant nucleic acid” is a nucleic acid originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases, ligases, exonucleases, and endonucleases, using chemical synthesis, or otherwise is in a form not normally found in nature. Recombinant nucleic acids may be produced, for example, to place two or more nucleic acids in operable linkage. Thus, an isolated nucleic acid or an expression vector formed in vitro by ligating DNA molecules that are not normally joined in nature, are both considered recombinant for the purposes of this invention. Once a recombinant nucleic acid is made and introduced into a host cell or organism, it may replicate using the in vivo cellular machinery of the host cell; however, such nucleic acids, once produced recombinantly, although subsequently replicated intracellularly, are still considered recombinant for purposes of this invention. Similarly, a “recombinant protein” is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid. A recombinant protein will have a different pattern of glycosylation than the protein isolated from the wild-type organism.


The genes can be used in a variety of genetic constructs including plasmids or other vectors for expression or recombination in a host cell. The genes can be codon optimized for expression in a target host cell. The proteins produced by the genes can be used in vivo or in purified form.


For example, the gene can be prepared in an expression vector comprising an operably linked promoter and 5′UTR. Where a plastidic cell is used as the host, a suitably active plastid targeting peptide can be fused to the FATB gene, as in the examples below. Generally, for the newly identified FATB genes, there are roughly 50 amino acids at the N-terminal that constitute a plastid transit peptide, which are responsible for transporting the enzyme to the chloroplast. In the examples below, this transit peptide is replaced with a 38 amino acid sequence that is effective in the Prototheca moriformis host cell for transporting the enzyme to the plastids of those cells. Thus, the invention contemplates deletions and fusion proteins in order to optimize enzyme activity in a given host cell. For example, a transit peptide from the host or related species may be used instead of that of the newly discovered plant genes described here.


A selectable marker gene may be included in the vector to assist in isolating a transformed cell. Examples of selectable markers useful in microlagae include sucrose invertase antibiotic resistance genes and other genes useful as selectable markers. The S. carlbergensis MEL1 gene (conferring the ability to grow on melibiose), A. thaliana THIC gene (conferring the ability to grow in media free of thiamine, Saccharomyces sucrose invertase (conferring the ability to grow on sucrose) are disclosed in the Examples. Other known selectable markers are useful and within the ambit of a skilled artisan.


The terms “triglyceride”, “triacylglyceride” and “TAG” are used interchangeably as is known in the art.


II. Embodiments of the Invention

Illustrative embodiments of the present invention feature oleaginous cells that produce altered fatty acid profiles and/or altered regiospecific distribution of fatty acids in glycerolipids, and products produced from the cells. Examples of oleaginous cells include microbial cells having a type II fatty acid biosynthetic pathway, including plastidic oleaginous cells such as those of oleaginous algae and, where applicable, oil producing cells of higher plants including but not limited to commercial oilseed crops such as soy, corn, rapeseed/canola, cotton, flax, sunflower, safflower and peanut. Other specific examples of cells include heterotrophic or obligate heterotrophic microalgae of the phylum Chlorophtya, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae. Examples of oleaginous microalgae and methods of cultivation are also provided in co-owned applications WO2008/151149, WO2010/063031, WO2010/063032, WO2011/150410, WO2011/150411, WO2012/061647, WO2012/061647, WO2012/106560, and WO2013/158938, WO2014/120829, WO2014/151904, WO2015/051319, WO2016/007862, WO2016/014968, WO2016/044779, WO2016/164495, all of which are incorporated by reference, including species of Chlorella and Prototheca, a genus comprising obligate heterotrophs. The oleaginous cells can be, for example, capable of producing 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, or about 90% oil by cell weight, ±5%. Optionally, the oils produced can be low in highly unsaturated fatty acids such as DHA or EPA fatty acids. For example, the oils can comprise less than 5%, 2%, or 1% DHA and/or EPA. The above-mentioned publications also disclose methods for cultivating such cells and extracting oil, especially from microalgal cells; such methods are applicable to the cells disclosed herein and incorporated by reference for these teachings. When microalgal cells are used they can be cultivated autotrophically (unless an obligate heterotroph) or in the dark using a sugar (e.g., glucose, fructose and/or sucrose) In any of the embodiments described herein, the cells can be heterotrophic cells comprising an exogenous invertase gene so as to allow the cells to produce oil from a sucrose feedstock. Alternately, or in addition, the cells can metabolize xylose from cellulosic feedstocks. For example, the cells can be genetically engineered to express one or more xylose metabolism genes such as those encoding an active xylose transporter, a xylulose-5-phosphate transporter, a xylose isomerase, a xylulokinase, a xylitol dehydrogenase and a xylose reductase. See WO2012/154626, “GENETICALLY ENGINEERED MICROORGANISMS THAT METABOLIZE XYLOSE”, published Nov. 15, 2012, including disclosure of genetically engineered Prototheca strains that utilize xylose.


The host cells expressing the acyltransferases or the variant B. napus thioesterases or the variant G. mangostana thioesterase may, optionally, be cultivated in a bioreactor/fermenter. For example, heterotrophic oleaginous microalgal cells can be cultivated on a sugar-containing nutrient broth. Optionally, cultivation can proceed in two stages: a seed stage and a lipid-production stage. In the seed stage, the number of cells is increased from a starter culture. Thus, the seed stage(s) typically includes a nutrient rich, nitrogen replete, media designed to encourage rapid cell division. After the seed stage(s), the cells may be fed sugar under nutrient-limiting (e.g. nitrogen sparse) conditions so that the sugar will be converted into triglycerides. As used herein, “standard lipid production conditions” are disclosed here. In one embodiment, the culture conditions are nitrogen limiting. Sugar and other nutrients can be added during the fermentation but no additional nitrogen is added. The cells will consume all or nearly all of the nitrogen present, but no additional nitrogen is provided. For example, the rate of cell division in the lipid-production stage can be decreased by 50%, 80%, or more relative to the seed stage. Additionally, variation in the media between the seed stage and the lipid-production stage can induce the recombinant cell to express different lipid-synthesis genes and thereby alter the triglycerides being produced. For example, as discussed below, nitrogen and/or pH sensitive promoters can be placed in front of endogenous or exogenous genes. This is especially useful when an oil is to be produced in the lipid-production phase that does not support optimal growth of the cells in the seed stage.


The oleaginous cells express one or more exogenous genes encoding fatty acid biosynthesis enzymes. As a result, some embodiments feature cell oils that were not obtainable from a non-plant or non-seed oil, or not obtainable at all.


The oleaginous cells, including microalgal cells, can be improved via classical strain improvement techniques such as UV and/or chemical mutagenesis followed by screening or selection under environmental conditions, including selection on a chemical or biochemical toxin. For example the cells can be selected on a fatty acid synthesis inhibitor, a sugar metabolism inhibitor, or an herbicide. As a result of the selection, strains can be obtained with increased yield on sugar, increased oil production (e.g., as a percent of cell volume, dry weight, or liter of cell culture), or improved fatty acid or TAG profile. Co-owned application PCT/US2016/025023 filed on 31 Mar. 2016, herein incorporated by reference, describes methods for classically mutagenizing oleaginous cells.


The cells can be selected on one or more of 1,2-Cyclohexanedione; 19-Norethindone acetate; 2,2-dichloropropionic acid; 2,4,5-trichlorophenoxyacetic acid; 2,4,5-trichlorophenoxyacetic acid, methyl ester; 2,4-dichlorophenoxyacetic acid; 2,4-dichlorophenoxyacetic acid, butyl ester; 2,4-dichlorophenoxyacetic acid, isooctyl ester; 2,4-dichlorophenoxyacetic acid, methyl ester; 2,4-dichlorophenoxybutyric acid; 2,4-dichlorophenoxybutyric acid, methyl ester; 2,6-dichlorobenzonitrile; 2-deoxyglucose; 5-Tetradecyloxy-w-furoic acid; A-922500; acetochlor; alachlor; ametryn; amphotericin; atrazine; benfluralin; bensulide; bentazon; bromacil; bromoxynil; Cafenstrole; carbonyl cyanide m-chlorophenyl hydrazone (CCCP); carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP); cerulenin; chlorpropham; chlorsulfuron; clofibric acid; clopyralid; colchicine; cycloate; cyclohexamide; C75; DACTHAL (dimethyl tetrachloroterephthalate); dicamba; dichloroprop ((R)-2-(2,4-dichlorophenoxy)propanoic acid); Diflufenican; dihyrojasmonic acid, methyl ester; diquat; diuron; dimethylsulfoxide; Epigallocatechin gallate (EGCG); endothall; ethalfluralin; ethanol; ethofumesate; Fenoxaprop-p-ethyl; Fluazifop-p-Butyl; fluometuron; fomasefen; foramsulfuron; gibberellic acid; glufosinate ammonium; glyphosate; haloxyfop; hexazinone; imazaquin; isoxaben; Lipase inhibitor THL ((−)-Tetrahydrolipstatin); malonic acid; MCPA (2-methyl-4-chlorophenoxyacetic acid); MCPB (4-(4-chloro-o-tolyloxy)butyric acid); mesotrione; methyl dihydrojasmonate; metolachlor; metribuzin; Mildronate; molinate; naptalam; norharman; orlistat; oxadiazon; oxyfluorfen; paraquat; pendimethalin; pentachlorophenol; PF-04620110; phenethyl alcohol; phenmedipham; picloram; Platencin; Platensimycin; prometon; prometryn; pronamide; propachlor; propanil; propazine; pyrazon; Quizalofop-p-ethyl; s-ethyl dipropylthiocarbamate (EPTC); s,s,s-tributylphosphorotrithioate; salicylhydroxamic acid; sesamol; siduron; sodium methane arsenate; simazine; T-863 (DGAT inhibitor); tebuthiuron; terbacil; thiobencarb; tralkoxydim; triallate; triclopyr; triclosan; trifluralin; and vulpinic acid and others.


The oleaginous cells produce a storage oil, which is primarily triacylglyceride and may be stored in storage bodies of the cell. A raw oil may be obtained from the cells by disrupting the cells and isolating the oil. The raw oil may comprise sterols produced by the cells. Patent applications WO2008/151149, WO2010/063031, WO2010/063032, WO2011/150410, WO2011/150411, WO2012/061647, WO2012/061647, WO2012/106560, WO2013/158938, WO2014/120829, WO2014/151904, WO2015/051319, WO2016/007862, WO2016/014968, WO2016/044779, and WO2016/164495 disclose heterotrophic cultivation and oil isolation techniques for oleaginous microalgae. For example, oil may be obtained by providing or cultivating, drying and pressing the cells. The oils produced may be refined, bleached and deodorized (RBD) as known in the art or as described in WO2010/120939. The raw or RBD oils may be used in a variety of food, chemical, and industrial products or processes. Even after such processing, the oil may retain a sterol profile characteristic of the source. Sterol profiles of microalga and the microalgal cell oils are disclosed below. After recovery of the oil, a valuable residual biomass remains. Uses for the residual biomass include the production of paper, plastics, absorbents, adsorbents, drilling fluids, as animal feed, for human nutrition, or for fertilizer.


In an embodiment of the invention nucleic acids that encode novel acyl transferases are provided. The novel acyltransferases are useful in altering the fatty acid profile and/or altering the regiospecific profile of an oil produced by a host cell. The nucleic acids of the invention may contain control sequences upstream and downstream in operable linkage with the gene of interest. These control sequences include promoters, targeting sequences, untranslated sequences and other control elements. Nucleic acids of the invention encode acyltransferases that function in type II fatty acid synthesis. The acyltransferase genes are isolated from higher plants and can be expressed in a wide variety of host cells. The acyltransferases include lysophosphatidic acid acyltransferase (LPAAT), glycerol phosphate acyltransferase (GPAT), diacyl glycerol acyltransferase (DGAT), lysophosphatidylcholine acyltransferase (LPCAT), or phospholipase A2 (PLA2). and other lipid biosynthetic pathway genes as discussed herein. The acyltransferases of the invention are shown in Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 96.3%, 98%, or 99% identity to an acyltransferase of clade 1 of Table 5. In another embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 93.9%, 98%, or 99% identity to an acyltransferase of clade 2 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 86.5%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 3 of Table 5. In one embodiment, the acyltransferases of the invention have acyltransferase activity and the amino acid sequence comprises at least 78.5%, 80%, 85%, 90%, 95%, 98%, or 99% identity to an acyltransferase of clade 4 of Table 5. The acyltransferases when expressed increase the SOS, POP, POS, SLS, PLO, and/or PLO content DCW in host cells and the oils recovered from the host cells. The acyltransferases when expressed in host cells decreases the sat-sat-sat content of the oil by DCW. The acyltransferases when expressed in host cells increases the sat-unsat-sat/sat-sat-sat ratio of the oil by DCW.


In an embodiment of the invention nucleic acids that encode variant Brassica napus thiosterases (FATA) are provided. The novel thioesterases are useful in altering the fatty acid profile of an oil produced by a host cell. The variant Brassica napus thiosterases prefer to hydrolyze long chain fatty acyl groups from the acyl carrier protein. The nucleic acids of the invention may contain control sequences upstream and downstream in operable linkage with the gene of interest. These control sequences include promoters, targeting sequences, untranslated sequences and other control elements. Nucleic acids of the invention encode thiosterases that function in type II fatty acid synthesis. The thioesterase genes, isolated from higher plants, are altered to create variant thioesterases that have certain amino acids that have been altered from the wild type enzyme. Due to the altered amino acid(s), the substrate specificity of the thioesterase is altered. The variant thioesterases can be expressed in a wide variety of host cells. The nucleic acids encode the variant thioesterases having amino acid sequences that are 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NOs: 165, 166, 167, or 198_and comprise one or more of amino acid variants D124A, D209A, D127A or D212A. The variant BnOTE enzymes increased C18:0 content by DCW, decreased C18:1 content by DCW, and decreased C18:2 content by DCW in host cells and the oils recovered from the host cells.


In an embodiment of the invention nucleic acids that encode variant Garcinia mangostana thiosterases (FATA) are provided. The novel thioesterases are useful in altering the fatty acid profile of an oil produced by a host cell. The variant Garcinia mangostana thiosterases prefer to hydrolyze long chain fatty acyl groups from the acyl carrier protein. The nucleic acids of the invention may contain control sequences upstream and downstream in operable linkage with the gene of interest. These control sequences include promoters, targeting sequences, untranslated sequences and other control elements. Nucleic acids of the invention encode thiosterases that function in type II fatty acid synthesis. The thioesterase genes, isolated from higher plants, are altered to create variant thioesterases that have certain amino acids that have been altered from the wild type enzyme. Due to the altered amino acid(s), the substrate specificity of the thioesterase is altered. The variant thioesterases can be expressed in a wide variety of host cells. The nucleic acids encode the variant thioesterases having amino acid sequences that are 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NOs: 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, or 150 and comprise one or more of amino acid variants L91F, L91K, L91S, G96A, G96T, G96V, G108A, G108V, S111A, S111V T156F, T156A, T156K, T156V, or V193A. The variant GmFATA enzymes increased C18:0 content by DCW, decreased C18:1 content by DCW, and decreased C18:2 content by DCW in host cells and the oils recovered from the host cells.


The nucleic acids of the invention can be codon optimized for expression in a target host cell (e.g., using the codon usage tables of Tables 1a, 1b, 2a, and 2b. For example, at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the codons used can be the most preferred codon according to Tables 1a, 1b, 2a, and 2b. Alternately, at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the codons used can be the first or second most preferred codon according to Tables 1a, 1b, 2a, and 2b. Preferred codons for Prototheca strains and for Chlorella protothecoides are shown below in Tables 1a and 1b, respectively.









TABLE 1a





Preferred codon usage in Prototheca strains.






















Ala
GCG
345
(0.36)
Asn
AAT
8
(0.04)



GCA
66
(0.07)

AAC
201
(0.96)



GCT
101
(0.11)



GCC
442
(0.46)
Pro
CCG
161
(0.29)







CCA
49
(0.09)


Cys
TGT
12
(0.10)

CCT
71
(0.13)



TGC
105
(0.90)

CCC
267
(0.49)


Asp
GAT
43
(0.12)
Gln
CAG
226
(0.82)



GAC
316
(0.88)

CAA
48
(0.18)


Glu
GAG
377
(0.96)
Arg
AGG
33
(0.06)



GAA
14
(0.04)

AGA
14
(0.02)







CGG
102
(0.18)


Phe
TTT
89
(0.29)

CGA
49
(0.08)



TTC
216
(0.71)

CGT
51
(0.09)







CGC
331
(0.57)


Gly
GGG
92
(0.12)



GGA
56
(0.07)
Ser
AGT
16
(0.03)



GGT
76
(0.10)

AGC
123
(0.22)



GGC
559
(0.71)

TCG
152
(0.28)







TCA
31
(0.06)


His
CAT
42
(0.21)

TCT
55
(0.10)



CAC
154
(0.79)

TCC
173
(0.31)


Ile
ATA
4
(0.01)
Thr
ACG
184
(0.38)



ATT
30
(0.08)

ACA
24
(0.05)



ATC
338
(0.91)

ACT
21
(0.05)







ACC
249
(0.52)


Lys
AAG
284
(0.98)



AAA
7
(0.02)
Val
GTG
308
(0.50)







GTA
9
(0.01)


Leu
TTG
26
(0.04)

GTT
35
(0.06)



TTA
3
(0.00)

GTC
262
(0.43)



CTG
447
(0.61)



CTA
20
(0.03)
Trp
TGG
107
(1.00)



CTT
45
(0.06)



CTC
190
(0.26)
Tyr
TAT
10
(0.05)







TAC
180
(0.95)


Met
ATG
191
(1.00)










Stop
TGA/TAG/TAA

















TABLE 1b





Preferred codon usage in Chlorella protothecoides.




















TTC (Phe)
TAC (Tyr)
TGC (Cys)
TGA (Stop)



TGG (Trp)
CCC (Pro)
CAC (His)
CGC (Arg)



CTG (Leu)
CAG (Gln)
ATC (Ile)
ACC (Thr)



GAC (Asp)
TCC (Ser)
ATG (Met)
AAG (Lys)



GCC (Ala)
AAC (Asn)
GGC (Gly)
GTG (Val)



GAG (Glu)

















TABLE 2a





Codon usage for Cuphea wrightii















UUU F 0.48 19.5 (52) UCU S 0.21 19.5 (52) UAU Y 0.45 6.4 (17) UGU C 0.41 10.5 (28)


UUC F 0.52 21.3 (57) UCC S 0.26 23.6 (63) UAC Y 0.55 7.9 (21) UGC C 0.59 15.0 (40)


UUA L 0.07 5.2 (14) UCA S 0.18 16.8 (45) UAA * 0.33 0.7 (2) UGA * 0.33 0.7 (2)


UUG L 0.19 14.6 (39) UCG S 0.11 9.7 (26) UAG * 0.33 0.7 (2) UGG W 1.00 15.4 (41)


CUU L 0.27 21.0 (56) CCU P 0.48 21.7 (58) CAU H 0.60 11.2 (30) CGU R 0.09 5.6 (15)


CUC L 0.22 17.2 (46) CCC P 0.16 7.1 (19) CAC H 0.40 7.5 (20) CGC R 0.13 7.9 (21)


CUA L 0.13 10.1 (27) CCA P 0.21 9.7 (26) CAA Q 0.31 8.6 (23) CGA R 0.11 6.7 (18)


CUG L 0.12 9.7 (26) CCG P 0.16 7.1 (19) CAG Q 0.69 19.5 (52) CGG R 0.16 9.4 (25)


AUU I 0.44 22.8 (61) ACU T 0.33 16.8 (45) AAU N 0.66 31.4 (84) AGU S 0.18 16.1 (43)


AUC I 0.29 15.4 (41) ACC T 0.27 13.9 (37) AAC N 0.34 16.5 (44) AGC S 0.07 6.0 (16)


AUA I 0.27 13.9 (37) ACA T 0.26 13.5 (36) AAA K 0.42 21.0 (56) AGA R 0.24 14.2 (38)


AUG M 1.00 28.1 (75) ACG T 0.14 7.1 (19) AAG K 0.58 29.2 (78) AGG R 0.27 16.1 (43)


GUU V 0.28 19.8 (53) GCU A 0.35 31.4 (84) GAU D 0.63 35.9 (96) GGU G 0.29 26.6 (71)


GUC V 0.21 15.0 (40) GCC A 0.20 18.0 (48) GAC D 0.37 21.0 (56) GGC G 0.20 18.0 (48)


GUA V 0.14 10.1 (27) GCA A 0.33 29.6 (79) GAA E 0.41 18.3 (49) GGA G 0.35 31.4 (84)


GUG V 0.36 25.1 (67) GCG A 0.11 9.7 (26) GAG E 0.59 26.2 (70) GGG G 0.16 14.2 (38)
















TABLE 2b





Codon usage for Arabidopsis















UUU F 0.51 21.8 (678320) UCU S 0.28 25.2 (782818) UAU Y 0.52 14.6 (455089) UGU C 0.60 10.5


(327640)


UUC F 0.49 20.7 (642407) UCC S 0.13 11.2 (348173) UAC Y 0.48 13.7 (427132) UGC C 0.40 7.2 (222769)


UUA L 0.14 12.7 (394867) UCA S 0.20 18.3 (568570) UAA * 0.36 0.9 (29405) UGA * 0.44 1.2 (36260)


UUG L 0.22 20.9 (649150) UCG S 0.10 9.3 (290158) UAG * 0.20 0.5 (16417) UGG W 1.00 12.5 (388049)


CUU L 0.26 24.1 (750114) CCU P 0.38 18.7 (580962) CAU H 0.61 13.8 (428694) CGU R 0.17 9.0 (280392)


CUC L 0.17 16.1 (500524) CCC P 0.11 5.3 (165252) CAC H 0.39 8.7 (271155) CGC R 0.07 3.8 (117543)


CUA L 0.11 9.9 (307000) CCA P 0.33 16.1 (502101) CAA Q 0.56 19.4 (604800) CGA R 0.12 6.3 (195736)


CUG L 0.11 9.8 (305822) CCG P 0.18 8.6 (268115) CAG Q 0.44 15.2 (473809) CGG R 0.09 4.9 (151572)


AUU I 0.41 21.5 (668227) ACU T 0.34 17.5 (544807) AAU N 0.52 22.3 (693344) AGU S 0.16 14.0 (435738)


AUC I 0.35 18.5 (576287) ACC T 0.20 10.3 (321640) AAC N 0.48 20.9 (650826) AGC S 0.13 11.3 (352568)


AUA I 0.24 12.6 (391867) ACA T 0.31 15.7 (487161) AAA K 0.49 30.8 (957374) AGA R 0.35 19.0 (589788)


AUG M 1.00 24.5 (762852) ACG T 0.15 7.7 (240652) AAG K 0.51 32.7 (1016176) AGG R 0.20 11.0


(340922)


GUU V 0.40 27.2 (847061) GCU A 0.43 28.3 (880808) GAU D 0.68 36.6 (1139637) GGU G 0.34 22.2


(689891)


GUC V 0.19 12.8 (397008) GCC A 0.16 10.3 (321500) GAC D 0.32 17.2 (535668) GGC G 0.14 9.2


(284681)


GUA V 0.15 9.9 (308605) GCA A 0.27 17.5 (543180) GAA E 0.52 34.3 (1068012) GGA G 0.37 24.2


(751489)


GUG V 0.26 17.4 (539873) GCG A 0.14 9.0 (280804) GAG E 0.48 32.2 (1002594) GGG G 0.16 10.2


(316620)









The cell oils of this invention can be distinguished from conventional vegetable or animal triacylglycerol sources in that the sterol profile will be indicative of the host organism as distinguishable from the conventional source. Conventional sources of oil include soy, corn, sunflower, safflower, palm, palm kernel, coconut, cottonseed, canola, rape, peanut, olive, flax, tallow, lard, cocoa, shea, mango, sal, illipe, kokum, and allanblackia.


The oils provided herein are not vegetable oils. Vegetable oils are oils extracted from plants and plant seeds. Vegetable oils can be distinguished from the non-plant oils provided herein on the basis of their oil content. A variety of methods for analyzing the oil content can be employed to determine the source of the oil or whether adulteration of an oil provided herein with an oil of a different (e.g. plant) origin has occurred. The determination can be made on the basis of one or a combination of the analytical methods. These tests include but are not limited to analysis of one or more of free fatty acids, fatty acid profile, total triacylglycerol content, diacylglycerol content, peroxide values, spectroscopic properties (e.g. UV absorption), sterol profile, sterol degradation products, antioxidants (e.g. tocopherols), pigments (e.g. chlorophyll), d13C values and sensory analysis (e.g. taste, odor, and mouth feel). Many such tests have been standardized for commercial oils such as the Codex Alimentarius standards for edible fats and oils.


Sterol profile analysis is a particularly well-known method for determining the biological source of organic matter. Campesterol, b-sitosterol, and stigamsterol are common plant sterols, with b-sitosterol being a principle plant sterol. For example, b-sitosterol was found to be in greatest abundance in an analysis of certain seed oils, approximately 64% in corn, 29% in rapeseed, 64% in sunflower, 74% in cottonseed, 26% in soybean, and 79% in olive oil (Gul et al. J. Cell and Molecular Biology 5:71-79, 2006).


The sterol profile of a microalgal oil is distinct from the sterol profile of oils obtained from higher plants or animals. Oil isolated from Prototheca moriformis strain UTEX1435 were separately clarified (CL), refined and bleached (RB), or refined, bleached and deodorized (RBD) and were tested for sterol content according to the procedure described in JAOCS vol. 60, no. 8, August 1983. Results of the analysis are shown Table 3 below (units in mg/100 g):









TABLE 3







(units in mg/100 g)

















Refined,






Refined &
bleached, &



Sterol
Crude
Clarified
bleached
deodorized
















1
Ergosterol
384  
398  
293  
302  




 (56%)
 (55%)
 (50%)
 (50%)


2
5,22-cholestadien-24-
14.6
18.8
14  
15.2



methyl-3-ol
(2.1%)
(2.6%)
(2.4%)
(2.5%)



(Brassicasterol)


3
24-methylcholest-5-
10.7
11.9
10.9
10.8



en-3-ol (Campesterol or
(1.6%)
(1.6%)
(1.8%)
(1.8%)



22,23-



dihydrobrassicasterol)


4
5,22-cholestadien-24-
57.7
59.2
46.8
49.9



ethyl-3-ol (Stigmasterol
(8.4%)
(8.2%)
(7.9%)
(8.3%)



or poriferasterol)


5
24-ethylcholest-5-en-
 9.64
 9.92
 9.26
10.2



3-ol (β-Sitosterol or
(1.4%)
(1.4%)
(1.6%)
(1.7%)



clionasterol)


6
Other sterols
209  
221  
216  
213  



Total sterols
685.64
718.82
589.96
601.1 









These results show three striking features. First, ergosterol was found to be the most abundant of all the sterols, accounting for about 50% or more of the total sterols. The amount of ergosterol is greater than that of campesterol, β-sitosterol, and stigmasterol combined. Ergosterol is steroid commonly found in fungus and not commonly found in plants, and its presence particularly in significant amounts serves as a useful marker for non-plant oils. Secondly, the oil was found to contain brassicasterol. With the exception of rapeseed oil, brassicasterol is not commonly found in plant based oils. Thirdly, less than 2% β-sitosterol was found to be present. β-sitosterol is a prominent plant sterol not commonly found in microalgae, and its presence particularly in significant amounts serves as a useful marker for oils of plant origin. In summary, Prototheca moriformis strain UTEX1435 has been found to contain both significant amounts of ergosterol and only trace amounts of β-sitosterol as a percentage of total sterol content. Accordingly, the ratio of ergosterol:β-sitosterol or in combination with the presence of brassicasterol can be used to distinguish this oil from plant oils.


In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% β-sitosterol. In other embodiments the oil is free from β-sitosterol.


In some embodiments, the oil is free from one or more of β-sitosterol, campesterol, or stigmasterol. In some embodiments the oil is free from β-sitosterol, campesterol, and stigmasterol. In some embodiments the oil is free from campesterol. In some embodiments the oil is free from stigmasterol.


In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 24-ethylcholest-5-en-3-ol. In some embodiments, the 24-ethylcholest-5-en-3-ol is clionasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% clionasterol.


In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 24-methylcholest-5-en-3-ol. In some embodiments, the 24-methylcholest-5-en-3-ol is 22, 23-dihydrobrassicasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% 22,23-dihydrobrassicasterol.


In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 5,22-cholestadien-24-ethyl-3-ol. In some embodiments, the 5, 22-cholestadien-24-ethyl-3-ol is poriferasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% poriferasterol.


In some embodiments, the oil content of an oil provided herein contains ergosterol or brassicasterol or a combination of the two. In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 25% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 40% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% of a combination of ergosterol and brassicasterol.


In some embodiments, the oil content contains, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, or 5% brassicasterol. In some embodiments, the oil content contains, as a percentage of total sterols less than 10%, 9%, 8%, 7%, 6%, or 5% brassicasterol.


In some embodiments the ratio of ergosterol to brassicasterol is at least 5:1, 10:1, 15:1, or 20:1.


In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% ergosterol and less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% β-sitosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 25% ergosterol and less than 5% β-sitosterol. In some embodiments, the oil content further comprises brassicasterol.


Sterols contain from 27 to 29 carbon atoms (C27 to C29) and are found in all eukaryotes. Animals exclusively make C27 sterols as they lack the ability to further modify the C27 sterols to produce C28 and C29 sterols. Plants however are able to synthesize C28 and C29 sterols, and C28/C29 plant sterols are often referred to as phytosterols. The sterol profile of a given plant is high in C29 sterols, and the primary sterols in plants are typically the C29 sterols b-sitosterol and stigmasterol. In contrast, the sterol profiles of non-plant organisms contain greater percentages of C27 and C28 sterols. For example the sterols in fungi and in many microalgae are principally C28 sterols. The sterol profile and particularly the striking predominance of C29 sterols over C28 sterols in plants has been exploited for determining the proportion of plant and marine matter in soil samples (Huang, Wen-Yen, Meinschein W. G., “Sterols as ecological indicators”; Geochimica et Cosmochimia Acta. Vol 43. pp 739-745).


In some embodiments the primary sterols in the microalgal oils provided herein are sterols other than b-sitosterol and stigmasterol. In some embodiments of the microalgal oils, C29 sterols make up less than 50%, 40%, 30%, 20%, 10%, or 5% by weight of the total sterol content.


In some embodiments the microalgal oils provided herein contain C28 sterols in excess of C29 sterols. In some embodiments of the microalgal oils, C28 sterols make up greater than 50%, 60%, 70%, 80%, 90%, or 95% by weight of the total sterol content. In some embodiments the C28 sterol is ergosterol. In some embodiments the C28 sterol is brassicasterol.


Where a fatty acid profile of a triglyceride (also referred to as a “triacylglyceride” or “TAG”) cell oil is given here, it will be understood that this refers to a nonfractionated sample of the storage oil extracted from the cell analyzed under conditions in which phospholipids have been removed or with an analysis method that is substantially insensitive to the fatty acids of the phospholipids (e.g. using chromatography and mass spectrometry). The oil may be subjected to an RBD process to remove phospholipids, free fatty acids and odors yet have only minor or negligible changes to the fatty acid profile of the triglycerides in the oil. Because the cells are oleaginous, in some cases the storage oil will constitute the bulk of all the TAGs in the cell. Examples 1 and 2 below give analytical methods for determining TAG fatty acid composition and regiospecific structure.


Broadly categorized, certain embodiments of the invention include (i) recombinant oleaginous cells that comprise an ablation of one or two or all alleles of an endogenous polynucleotide, including polynucleotides encoding lysophosphatidic acid acyltransferase (LPAAT) or (ii) cells that produce oils having low concentrations of polyunsaturated fatty acids, including cells that are auxotrophic for unsaturated fatty acids; (iii) cells producing oils having high concentrations of particular fatty acids due to expression of one or more exogenous genes encoding enzymes that transfer fatty acids to glycerol or a glycerol ester; (iv) cells producing regiospecific oils, (v) genetic constructs or cells encoding a an LPAAT, a lysophosphatidylcholine acyltransferase (LPCAT), a phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), diacylglycerol cholinephosphotransferase (DAG-CPT) or fatty acyl elongase (FAE), (vi) cells producing low levels of saturated fatty acids and/or high levels of C18:1, C18:2, C18:3, C20:1 or C22:1, (vii) and other inventions related to producing cell oils with altered profiles. The embodiments also encompass the oils made by such cells, the residual biomass from such cells after oil extraction, oleochemicals, fuels and food products made from the oils and methods of cultivating the cells.


In any of the embodiments below, the cells used are optionally cells having a type II fatty acid biosynthetic pathway such as plant cells, yeast cells, microalgal cells including heterotrophic or obligate heterotrophic microalgal cells, including cells classified as Chlorophyta, Trebouxiophyceae, Chlorellales, Chlorellaceae, or Chlorophyceae, or cells engineered to have a type II fatty acid biosynthetic pathway using the tools of synthetic biology (i.e., transplanting the genetic machinery for a type II fatty acid biosynthesis into an organism lacking such a pathway). Use of a host cell with a type II pathway avoids the potential for non-interaction between an exogenous acyl-ACP thioesterase or other ACP-binding enzyme and the multienzyme complex of type I cellular machinery. In specific embodiments, the cell is of the species Prototheca moriformis, Prototheca krugani, Prototheca stagnora or Prototheca zopfii or has a 23S rRNA sequence with at least 65, 70, 75, 80, 85, 90 or 95% nucleotide identity SEQ ID NO: 25. By cultivating in the dark or using an obligate heterotroph, the cell oil produced can be low in chlorophyll or other colorants. For example, the cell oil can have less than 100, 50, 10, 5, 1, 0.0.5 ppm of chlorophyll without substantial purification.


The stable carbon isotope value δ13C is an expression of the ratio of 13C/12C relative to a standard (e.g. PDB, carbonite of fossil skeleton of Belemnite americana from Peedee formation of South Carolina). The stable carbon isotope value δ13C (‰) of the oils can be related to the δ13C value of the feedstock used. In some embodiments the oils are derived from oleaginous organisms heterotrophically grown on sugar derived from a C4 plant such as corn or sugarcane. In some embodiments the δ13C (‰) of the oil is from −10 to −17‰ or from −13 to −16‰.


In specific embodiments and examples discussed below, one or more fatty acid synthesis genes (e.g., encoding an acyl-ACP thioesterase, a keto-acyl ACP synthase, an LPAAT, an LPCAT, a PDCT, a DAG-CPT, an FAE a stearoyl ACP desaturase, or others described herein) is incorporated into a microalga. It has been found that for certain microalga, a plant fatty acid synthesis gene product is functional in the absence of the corresponding plant acyl carrier protein (ACP), even when the gene product is an enzyme, such as an acyl-ACP thioesterase, that requires binding of ACP to function. Thus, optionally, the microalgal cells can utilize such genes to make a desired oil without co-expression of the plant ACP gene.


For the various embodiments of recombinant cells comprising exogenous genes or combinations of genes, it is contemplated that substitution of those genes with genes having 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or 100% nucleic acid sequence identity can give similar results, as can substitution of genes encoding proteins having 60%, 70%, 80%, 85%, 90%, 91% 92%, 93%, 94%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99% or 100% amino acid sequence identity. Nucleic acids encoding the acyltransferases encode acyltransferases that have 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100%, or at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% amino acid sequence identity to the acyltransferase disclosed in clade 1, clade 2, clade 3 or clade 4 of Table 5. Likewise, for novel regulatory elements, it is contemplated that substitution of those nucleic acids with nucleic acids having 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% nucleic acid can be efficacious. In the various embodiments, it will be understood that sequences that are not necessary for function (e.g. FLAG® tags or inserted restriction sites) can often be omitted in use or ignored in comparing genes, proteins and variants.


The novel genes and gene combinations reported here can be used in higher plants using techniques that are well known in the art. For example, the use of exogenous lipid metabolism genes in higher plants is described in U.S. Pat. Nos. 6,028,247; 5,850,022; 5,639,790; 5,455,167; 5,512,482; and 5,298,421 disclose higher plants with exogenous acyl-ACP thioesterases. WO2009129582 and WO1995027791 disclose cloning of LPAAT in plants. FAD2 ablation and/or down regulation in higher plants is taught in WO 2013112578, and WO2008/006171. SAD ablation and/or down regulation in higher plants is taught in WO 2013112578, and WO 2008006171.


The expression of the novel acyltransferases is shown in Examples 4, 5, 6 and 7. The expression of Cuphea paucipetala or Cuphea ignea LPATs markedly increased the C8:0 and C10:0 fraction of the cell oil. Additionally, the expression of Cuphea paucipetala or Cuphea ignea LPAATs markedly increased the incorporation of C8:0 and C10:0 fatty acids in the sn-2 position of the TAG. This is disclosed in Example 4.


The expression of LPAT genes in host cells increased C18:2 levels and elevated the sat-unsat-sat/sat-sat-sat, (e.g., SOS/SSS) ratio of the cell oil. For example, the expression of Theobroma cacoa LPAT2 drives the transfer of unsaturated fatty acids toward the sn-2 position and reduces the incorporation of saturated fatty acids at sn-2.


The novel LPAATs, GPATs, DGATs, LPCATs, and PLA2 with specificity for mid-chain fatty acids are disclosed. In Example 7, expression of LPAATs and DGATs are disclosed.


When an acyltransferase of the invention is expressed in a host cell, one or more additional exogenous genes can concomitantly be expressed. An embodiment of this invention provides host cells that express a recombinant acyltransferase and concomitantly express one or more additional recombinant genes. The one or more additional genes include invertase, fatty acyl-ACP thioesterase (FATA, FATB), melibiase, ketoacyl synthase (KASI, KASII, KASIII, KASIV), antibiotic selective markers, tags such as FLAG, and THIC. In Examples 4, 5, 6, and 7, the co-expression of nucleic acids that encode LPAATs co-expressed with one or more exogenous genes that encode invertase, fatty acyl-ACP thioesterase, melibiase, ketoacyl synthase, THIC are disclosed.


When an acyltransferase of the invention is expressed in a host cell, an endogenous gene of the host call can concomitantly be ablated or downregulated, thereby eliminating or decreasing the expression of the gene of the host cell. This can be accomplished by using homologous recombination techniques or other RNA inhibitory technologies. The ablated or downregulated gene can be any gene in the host cell. The ablated or downregulated endogenous gene can be stearoyl ACP desaturase, fatty acyl desaturase, fatty acyl-ACP thioesterase (FATA or FATB), ketoacyl synthase (KASI, KASII, KASIII or KAS IV), or an acyltransferase (LPAAT, DGAT, GPAT, LPCAT). When an endogenous is ablated, one, two or more alleles of the endogenous can be ablated. In Example 5, the expression of a Brassica LPAAT, while concomitantly ablating an endogenous stearoyl ACP desaturase is disclosed. In Example 6, LPAATs, GPATs, DGATs, LPCATs and PLA2s with specificity for mid-chain fatty acids were expressed, while ablating a gene encoding stearoyl ACP desaturase. In Example 7 the down regulation of an endogenous FAD2 and a hairpin RNA is disclosed. In co-owned PCT/US2016/026265, applicants disclosed concomitant ablation of an endogenous LPAAT and expression of an exogenous LPAAT.


In one embodiment, the expression of the acyl transferases alters the fatty acid profile and/or the sn-2 profile of the oil produced by the host organism. The fatty acid profiles and the sn-2 profiles that result from the expression of various acyltransferases are disclosed in Tables 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, and 24. The invention provides host cells with altered fatty acid profiles and altered sn-2 profiles according to Tables 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, and 24.


As described in PCT/US2016/026265, co-owned by applicant, transcript profiling was used to discover promoters that modulate expression in response to low nitrogen conditions. The promoters are useful to selectively express various genes and to alter the fatty acid composition of microbial oils. In accordance with an embodiment, there are non-natural constructs comprising a heterologous promoter and a gene, wherein the promoter comprises at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% sequence identity to any of the promoters of SEQ ID NOs: 1-18 and the gene is differentially expressed under low vs. high nitrogen conditions. In particular, the Prototheca moriformis AMT02 (SEQ ID NO: 18) and AMT03 promoter (SEQ ID NO: 18) are useful promoters for controlling the expression of an exogenous gene. For example, the promoters can be placed in front of a FAD2 gene in a linoleic acid auxotroph to produce an oil with less than 5, 4, 3, 2, or 1% linoleic acid after culturing first under high nitrogen conditions, then next culturing under low nitrogen conditions. Additional promoters, in particulare Prototheca and Chlorella promoters are described in the sequences and descriptions in this application. For example, the Prototheca HXT1, SAD, LDH1 and other Prototheca promoters are described in Examples 6, 7, 8, and 9. Additionally, the Chlorella SAD, ACT and other Chlorella promoters are described in Examples 6, 7, 8, and 9.


In embodiments of the present invention, oleaginous cells expressing one or more of the genes encoding acyltransferases and/or variant FATA can produce an oil with at least 20, 40, 60 or 70% of C8, C10, C12, C14, C16, or C18 fatty acids.


The invention also provides host cells expressing one or more of the genes encoding acyltransferases and/or variant FATA can produce an oil enriched is oils that are sat-unsat-sat. Oils of this type include SOS, POP, POS, SLS, PLO, PLO. The sat-unsat-sat oils comprise at least 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% of the cell oil by dry cell weight.


The invention also provides host cells expressing one or more of the genes encoding acyltransferases and/or variant FATA can produce an oil that is decreased in tri-saturated oils, sat-sat-sat. Oils of this type include PPP, PSS, PPS, SSS, SPS, and PSP. The sat-sat-sat oils comprise less than 50%, 40%, 30%, 20%, 15%, 10%, 8%, 6%, 5%, 4%, 3%, 2%, or 1% of the cell oil by molar fraction or dry cell weight.


The host cells of the invention can produce 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, or about 90% oil by cell weight, ±5%. Optionally, the oils produced can be low in DHA or EPA fatty acids. For example, the oils can comprise less than 5%, 2%, or 1% DHA and/or EPA.


In other embodiments of the invention, there is a process for producing an oil, triglyceride, fatty acid, or derivative of any of these, comprising transforming a cell with any of the nucleic acids discussed herein. In another embodiment, the transformed cell is cultivated to produce an oil and, optionally, the oil is extracted. Oil extracted in this way can be used to produce food, oleochemicals or other products.


The oils discussed above alone or in combination are useful in the production of foods, fuels and chemicals (including plastics, foams, films, etc). The oils, triglycerides, fatty acids from the oils may be subjected to C—H activation, hydroamino methylation, methoxy-carbonation, ozonolysis, enzymatic transformations, epoxidation, methylation, dimerization, thiolation, metathesis, hydro-alkylation, lactonization, or other chemical processes.


After extracting the oil, a residual biomass may be left, which may have use as a fuel, as an animal feed, or as an ingredient in paper, plastic, or other product. For example, residual biomass from heterotrophic algae can be used in such products.


EXAMPLES
Example 1: Fatty Acid Analysis by Fatty Acid Methyl Ester Detection

Lipid samples were prepared from dried biomass. 20-40 mg of dried biomass was resuspended in 2 mL of 5% H2SO4 in MeOH, and 200 ul of toluene containing an appropriate amount of a suitable internal standard (C19:0) was added. The mixture was sonicated briefly to disperse the biomass, then heated at 70-75° C. for 3.5 hours. 2 mL of heptane was added to extract the fatty acid methyl esters, followed by addition of 2 mL of 6% K2CO3 (aq) to neutralize the acid. The mixture was agitated vigorously, and a portion of the upper layer was transferred to a vial containing Na2SO4 (anhydrous) for gas chromatography analysis using standard FAME GC/FID (fatty acid methyl ester gas chromatography flame ionization detection) methods. Fatty acid profiles reported below were determined by this method.


Example 2: Analysis of Regiospecific Profile

LC/MS TAG distribution analyses were carried out using a Shimadzu Nexera ultra high performance liquid chromatography system that included a SIL-30AC autosampler, two LC-30AD pumps, a DGU-20A5 in-line degasser, and a CTO-20A column oven, coupled to a Shimadzu LCMS 8030 triple quadrupole mass spectrometer equipped with an APCI source. Data was acquired using a Q3 scan of m/z 350-1050 at a scan speed of 1428 u/sec in positive ion mode with the CID gas (argon) pressure set to 230 kPa. The APCI, desolvation line, and heat block temperatures were set to 300, 250, and 200° C., respectively, the flow rates of the nebulizing and drying gases were 3.0 L/min and 5.0 L/min, respectively, and the interface voltage was 4500 V. Oil samples were dissolved in dichloromethane-methanol (1:1) to a concentration of 5 mg/mL, and 0.8 μL of sample was injected onto Shimadzu Shim-pack XR-ODS III (2.2 μm, 2.0×200 mm) maintained at 30° C. A linear gradient from 30% dichloromethane-2-propanol (1:1)/acetonitrile to 51% dichloromethane-2-propanol (1:1)/acetonitrile over 27 minutes at 0.48 mL/min was used for chromatographic separations.


Example 3: Cultivation of Microalgae
Standard Lipid Production Conditions:

Cells scraped from a source plate with toothpicks were used to inoculate pre-seed cultures of 0.5 mL EB03, 0.5% glucose, 1×DAS2 cultures in 96-well blocks. Pre-seed cultures were grown for 70-75 h at 28° C., 900 rpm in a Multitron shaker. 40 μl of pre-seed cultures were used to inoculate seed cultures of 0.46 mL H29, 4% glucose, 25 mM citrate pH 5 or 100 mM PIPES pH 7.3, 1×DAS2 (8% inoculum), and grown for 24-28 h at 28° C., 900 rpm in a Multitron shaker. 40 μL of seed cultures were used to inoculate lipid production cultures of 0.46 mL H43, 6% glucose, 25 mM citrate pH 5, 1×DAS2 (8% inoculum), and grown for 70-75 h at 28° C., 900 rpm in a Multitron shaker. Fatty acid profiles and lipid titer analyses were performed as disclosed in Examples 1 and 2.


50 mL Shake Flask Format

Cells scraped from a source plate with inoculation loops, or cell cultures from cryovials were used to inoculate pre-seed cultures of 10 mL EB03, 0.5% glucose, 1×DAS2 cultures in 50 mL bioreactor tubes. Pre-seed cultures were grown for 70-75 h at 28° C., 200 rpm in a Kuhner shaker. 0.8 mL of pre-seed cultures were used to inoculate seed cultures of 10 mL H29, 4% glucose, 25 mM citrate pH 5 or 100 mM PIPES pH 7.3, 1×DAS2 (8% inoculum), and grown for 24-28 h at 28° C., 200 rpm in a Kuhner shaker. 100 μL of seed cultures were used to inoculate lipid production cultures of 49.9 mL H43, 6% glucose, 25 mM citrate pH 5 or 100 mM PIPES pH 7.3, 1×DAS2 (0.2% inoculum), and grown for 118-122 h at 28° C., 200 rpm in a Kuhner shaker. Fatty acid profiles and lipid titer analyses were performed as disclosed in Examples 1 and 2.


EB03


















Dry chemicals




Component
Concentration (g/L)







K2HPO4
3



Sodium Phosphate Dibasic Heptahydrate
5.66



(Na2HPO4 7H2O)



citric acid monohydrate
1.2



ammonium sulfate
1



MgSO4 7H2O
0.23



CaCl2 2H2O
0.03














Stock solutions




Component
Concentration (mL/L)







100X C-Trace (3)
10



Antifoam Sigma 204
0.225










H29


















Dry chemicals
Final



Component
Concentration (g/L)







K2HPO4 (Potassium phosphate
0.25



dibasic anhydrous)



NaH2PO4 (Sodium phosphate
0.18



monobasic)



MgSO4•7H2O (Magnesium
0.24



sulfate heptahydrate)



Citric acid monohydrate
0.25







Stock solutions



Component
Concentration (mL/L)







0.017M stock CaCl2•2H2O
10



0.151M (NH4)2SO4
52.2



100X C-Trace (2)
10



Antifoam Sigma 204
0.225










H43


















Dry chemicals
Final



Component
Concentration (g/L)







K2HPO4
0.25



NaH2PO4
0.18



MgSO4 7H2O
0.24



Citric acid H2O
0.25







Stock solutions



Component
Concentration (mL/L)







0.017M stock CaCl2 2H2O
10



100X C-Trace (2)
10



Antifoam Sigma 204
0.225



0.151M (NH4)2SO4
12.5










1000×DAS2
















Dry chemicals
Final



Component
Concentration (g/L)



















Thiamine-HCl
0.67



d-Biotin
0.010



Cyanocobalimin (vit B-12)
0.008



Calcium Pantothenate
0.02



PABA (p-aminobenzoic acid)
0.04










100×C-Trace(2)
















Dry chemicals
Final



Component
Concentration (g/L)



















CuSO4—5H2O
0.011



CoC12—6H2O
0.081



H3BO3
0.33



ZnSO4—7H2O
1.4



MnSO4—H2O
0.81



Na2MoO4—2H2O
0.039



FeSO4—7H2O
0.11



NiCl2—6H2O
0.013



Citric Acid Monohydrate
3.0










100×C-Trace (3)
















Dry chemicals
Final



Component
Concentration (g/L)



















CuSO4—5H2O
0.011



H3BO3
0.33



ZnSO4—7H2O
1.4



MnSO4—H2O
0.81



Na2MoO4—2H2O
0.039



FeSO4—7H2O
0.11



NiCl2—6H2O
0.013



Citric Acid Monohydrate
3.0










Example 4: Identification of Novel LPAAT Genes from Sequenced Transcriptomes and Engineering Sn-2 Tag Regiospecificity in UTEX1435 by Expression of Heterologous LPAAT Genes from Cuphea paucipetala, Cuphea ignea, Cuphea painteri, and Cuphea hookeriana

Lysophosphatidic acyltransferase (LPAAT) genes from plant seeds were cloned and expressed in the transgenic strain, S6511, derived from UTEX 1435 (P. moriformis). Expression of the heterologous LPAATs increases C8:0 and C10:0 fatty acid levels and dramatically increases incorporation of C8:0 and C10:0 fatty acids at the sn-2 position of triacylglycerols (TAGs) in transgenic strains.


TAGs are synthesized from various chain length acyl-CoAs and glycerol-3-phosphate by consecutive action of three ER-resident enzymes of the Kennedy pathway-glycerol phosphate acyltransferase (GPAT), LPAAT, and diacylglycerol acyltransferase (DGAT). Substrate specificities of these acyltransferases are known to determine the fatty acid composition of the resulting TAGs. LPAAT acylates the sn-2 hydroxyl group of lysophosphatidic acid (LPA) to form phosphatidic acid (PA), a precursor to TAG. In co-owned applications WO2013/158938, WO2015/051139, and PCT/US2016/026265 we demonstrated expression of LPAAT from Cocos nucifera (CnLPAAT, accession no. AAC49119; Knutzon et al., 1995).


Strain S6511 expresses the acyl-ACP thioesterase (FATB2) gene from Cuphea hookeriana (ChFATB2), leading to C8:0 and C10:0 fatty acid accumulation of ca. 14% and 28%, respectively. Strain S6511 is a strain made according to the methods disclosed in co-owned WO2010/063031 and WO2010/063032, herein incorporated by reference. Briefly, S6511 is a strain that express sucrose invertase and a C. hookeriana FATB2. The construct pSZ3101: 6S::CrTUB2-ScSUC2-CvNR_a:PmAMT03-CpSAD1tp_trimmed:ChFATB2-CvNR_d::6S was engineered into S3150, a strain classically mutagenized to increase lipid yield. We identified novel C8:0- and C10:0-specific LPAATs from seeds exhibiting high levels of C8:0 and C10:0 fatty acids. After we identified and cloned LPAATs we expressed the LPAAT genes in S6511.


Method for Identification of LPAATs

Seeds were obtained from species exhibiting elevated levels of midchain and other specialized fatty acids (Table 4).









TABLE 4







Fatty acid profiles of mature seeds.

































C18:1






C22:





C8:
C10:
C12:
C14:
C16:
C18:
C18:
(petro-
C18:
C20:
C20:
C22:
C22:
C22:
2n9,
C22:




0
0
0
0
0
0
1
selinate)
2
0
1
0
1n17
1n9
17
2n6



























S01_Cc
Cinnamomum
0.4

54.7


39.0

1.6
0.7
0.1
2.9

0.6
0.0









camphora


















S02_Uc
Umbellularia
0.9

28.8


63.0

2.3
0.4
0.1
3.4

0.6
0.0









californica


















S03_Ld
Limnanthes
0.0
0.0
0.0
0.4
0.7
0.4
2.7

1.5
1.5

59.9

0.3

2.8


17.4


9.3

0.5



douglasii


















S04_Chs
Cuphea
0.2
6.5

83.7

5.1
1.1
0.1
0.0

1.7
0.1









hyssopifolia


















S05_Ccr
Cuphea
1.6
8.1

59.2


15.2

3.9
0.6
0.0

5.4
0.2









carthagenensis


















S06_Cpr
Cuphea
2.0
11.5

61.3


10.8

2.7
0.5
0.0

5.2
0.1









parsonsia


















S07_Cg
Cuphia
7.1

85.1

1.7
0.3
1.0
0.2
0.0

2.1
0.1









glossostoma


















S08_Cht
Cuphea
3.5

44.3


40.0

4.3
1.2
0.3
2.2

3.6
0.1









heterophylla


















S11_Dc
Daucus
0.0
0.0
0.0
0.1
5.9
0.8
11.5

65.9

13.0
0.5
0.3
0.3







carrota


















S14_Cw
Cuphea
0.5
20.2

62.5

5.8
2.2
0.3
2.7

4.7










wrightii


















S15_Bj
Brassica
0.0
0.0
0.0
0.1
3.2
0.7
12.1

19.2
0.5
6.3
0.8


38.9


1.3



juncea


















S16_Br
Brassica
0.0
0.0
0.0
0.1
2.8
1.0
16.0

16.8
0.7
8.3
1.0


40.4


0.8



rapa



















nipposinica


















S17_Ca
Cuphea

90.8

2.7
0.0
0.1
1.2
0.1
1.8

2.8










avigera var.



















pulcherrima


















S18_Ch
Cuphea

64.7


29.7

0.1
0.2
1.3
0.1
1.9

2.0










hookeriana


















S19_Cpal
Cuphea

28.9

0.8
1.3

55.1

6.2
0.2
3.0

3.4











palustris



















S20_Cpai
Cuphea

67.0

20.8
0.1
0.2
2.6
0.3
3.1

4.5










painteri


















S21_Cpau
Cuphea
1.5

91.0

1.2
0.7
1.5
0.2
1.1

2.1










paucipetala


















S22_Chook
Cuphea

62.8


31.9

0.2
0.2
1.0
0.1
2.1

1.2










hookeriana


















S23_Cglut
Cuphea
5.2

29.9


46.4

3.9
1.9
0.4
0.0

8.1










glutinosa


















S24_Caequ
Cuphea

27.1

0.0
1.4

57.4

6.0
0.2
3.2

3.8










aequipetala


















S25_Ccalc
Cuphea

8.0


20.4


46.8

7.6
3.2
0.6
3.7

8.5










calcarata


















S26_Chook
Cuphea

70.4


23.1

0.1
0.2
1.5
0.2
2.5

1.8










hookeriana


















S27_Cproc
Cuphea
0.9

86.3

0.0
1.6
2.2
0.4
3.2

3.3










procumbens


















S28_Cignea
Cuphea
3.1

84.9

0.7
0.3
2.6
0.2
2.9

4.4










ignea


















S35_Ccras
Cuphea
1.3

87.7

1.3
0.4
2.0
0.5
3.3

2.7










crassiflora


















S36_Ckoe
Cuphea
0.0

87.4

1.4
0.8
2.2
0.4
2.3

4.5










koehneana


















S37_Clept
Cuphea
1.3

86.1

1.3
0.4
2.2
0.5
3.1

4.1










leptopoda


















S40_Clop
Cuphea
0.5

82.3

2.4
1.6
3.0
0.6
3.9

4.9










lophostoma


















S41_Sal
Sassafras

4.3


65.2


22.8

0.9
0.8
5.1
0.0

0.6











albidum db






The percentage of each fatty acid making up the seed oil is shown; abundant and unusual fatty acid species are indicated in bold.






Briefly, RNA was extracted from dried plant seeds and submitted for paired-end sequencing using the Illumina Hiseq 2000 platform. RNA sequence reads were assembled into corresponding seed transcriptomes using the Trinity software package. LPAAT-containing cDNA contigs were identified by mining transcriptomes for sequences with homology to a known LPAAT that was previously identified in-house, CuPSR23 LPAAT2-1 (see WO2013/158938), using BLAST. For some sequences, a high-confidence, full-length transcript was assembled using Trinity. The resulting amino acid sequences of all new LPAATs were subjected to phylogenetic analyses using previously known, full-length LPAAT sequences (available via NCBI) as well as sequences of previously known LPAATs whose sequences were derived at Solazyme. The analysis showed that the amino acid sequences of the newly discovered LPPAATs were not similar to previously known LPAATs. Table 5 shows the clade analysis in which the novel LPAATs were clustered according to a neighbor joining algorithm. These were found to form 4 clades as listed in Table 5.









TABLE 5







Clade Analysis of LPAATs















Percent






amino acid



Amino Acid


identity


Clade
SEQ ID Nos.


to members


No.
in Clade
Full Genus Species
Function
of clade





1
S15 BjLPAAT1d

Brassica juncea


96.3



S15 BjLPAAT1c

Brassica juncea




S15 BjLPAAT1a

Brassica juncea




S15 BjLPAAT1b

Brassica juncea



2
CuPSR23LPAAT2-1

Cuphea PSR23

Prefer C8/
93.9



S40 ClopLPAAT1

Cuphea lophostoma

C10 sn-2



S21 CpauLPAAT1

Cuphea paucipetala




S37 CleptLPAAT1

Cuphea leptopoda




S27 CprocLPAAT1b

Cuphea procumbens




S27 CprocLPAAT1

Cuphea procumbens




S04 ChsLPAAT2

Cuphea hyssopifolia




S28 CigneaLPAAT1

Cuphea ignea




S05 CcrLPAAT2a

Cuphea carthagenensis




S06 CprLPAAT1

Cuphea parsonsia




S05 CcrLPAAT2b

Cuphea carthagenensis




S17 CaLPAAT3

Cuphea avigera var.






pulcherrima




S26 ChookLPAAT1

Cuphea hookeriana




S20 CpaiLPAAT1

Cuphea painteri




S04 ChsLPAAT1

Cuphea hyssopifolia




S25 Ccalc1a

Cuphea calcarata




S25 Ccalc1b

Cuphea calcarata




S14 CwLPAAT1

Cuphea wrightii




S08 ChtLPAAT1a

Cuphea heterophylla




S08 ChtLPAAT1b

Cuphea heterophylla




S36 CkoeLPAAT2

Cuphea koehneana




S02 UcLPAAT1b

Umbellularia californica




S02 UcLPAAT1a

Umbellularia californica




S01 CcLPAAT1a

Cinnamomum camphora




S01 CcLPAAT1b

Cinnamomum camphora




S41 SaILPAAT1

Sassafras albidum db



3
S14 CwLPAAT2a

Cuphea wrightii

C18:2
86.5



S14 CwLPAAT2b

Cuphea wrightii




S25 CcalcLPAAT2

Cuphea calcarata




S19 CpaILPAAT1

Cuphea palustris




S22 ChookLPAAT3b

Cuphea hookeriana




S17 CaLPAAT1

Cuphea avigera var.






pulcherrima




S22 ChookLPAAT3a

Cuphea hookeriana




CuPSR23LPAAT3-1

Cuphea PSR23




S27 CprocLPAAT2b

Cuphea procumbens




S27 CprocLPAAT2a

Cuphea procumbens




S18 ChLPAAT2a

Cuphea hookeriana




S24 CaequLPAAT1d

Cuphea aequipetala




S24 CaequLPAAT1b

Cuphea aequipetala




S24 CaequLPAAT1a

Cuphea aequipetala




S24 CaequLPAAT1c

Cuphea aequipetala




S23 CglutLPAAT1a

Cuphea glutinosa




S23 CglutLPAAT1b

Cuphea glutinosa




S26 ChookLPAAT2b

Cuphea hookeriana




S07 CgLPAAT1c

Cuphia glossostoma




S07 CgLPAAT1b

Cuphia glossostoma




S07 CgLPAAT1a

Cuphia glossostoma




S28 CigneaLPAAT2

Cuphea ignea




S36 CkoeLPAAT1

Cuphea koehneana




S35 CcrasLPAAT1a

Cuphea crassiflora




S35 CcrasLPAAT1c

Cuphea crassiflora




S35 CcrasLPAAT1b

Cuphea crassiflora




S35 CcrasLPAAT1d

Cuphea crassiflora



4
Gh LPAAT2B

Garcinia hombroriana

Reduced
78.5



Gi LPAAT2B-1

Garcinia indica

trisaturates,



Gh LPAAT2A

Garcinia hombroriana

increase



Gi LPAAT2A

Garcinia indica

unsaturates



Gh LPAAT2C

Garcinia hombroriana

at Sn-2



Gi LPAAT2C-2

Garcinia indica

position



S03 LdLPAAT1

Limnanthes douglasii




S11 DcLPAAT1

Daucus carrota





(carrot)



S11 DcLPAAT2

Daucus carrota





(carrot)



S11 DcLPAAT2

Daucus carrota




(truncated)
(carrot)










Functionality of LPAATs in P. moriformis


To increase the levels of C8:0 and C10:0 fatty acids in strain S6511, as well as to test the functionality of the newly identified LPAATs, we identified midchain-specific LPAATs from the transcriptomes of species exhibiting high levels of C8:0 and C10:0 fatty acids in their oil seeds and introduced the genes into S6511. LPAATs that co-clustered with CuPSR23 LPAAT2-1, specifically CpauLPAAT1, CigneaLPAAT1, ChookLPAAT1, and CpaiLPAAT1, were selected for synthesis and testing. CpauLPAAT1, CigneaLPAAT1, ChookLPAAT1, and CpaiLPAAT1 were synthesized in a codon-optimized form to reflect UTEX 1435 codon usage. Transgenic strains were generated via transformation of the strain S6511 with a construct encoding one of the four LPAAT genes. The construct pSZ3840 encoding CpauLPAAT1 is shown as an example, but identical methods were used to generate each of the remaining three constructs. Construct pSZ3840 can be written as pLOOP::PmHXT1-ScarMEL1-CvNR:PmAMT3-CpauLPAAT1-CvNR::pLOOP. The sequence of the transforming DNA is provided in FIG. 2 (pSZ3840). The relevant restriction sites in the construct from 5′-3′, BspQI, KpnI, SpeI, XhoI, EcoRI, SpeI, XhoI, SacI, BspQI, respectively, are indicated in lowercase, bold, and underlined. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold lowercase sequences at the 5′ and 3′ end of the construct represent genomic DNA from UTEX 1435 that target integration to the pLOOP locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the selection cassette has the P. moriformis HXT1 promoter driving expression of the Saccharomyces carlsbergensis MEL1 (conferring the ability to grow on melibiose) and the Chlorella vulgaris Nitrate reductase (NR) gene 3′ UTR. The promoter is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for ScarMEL1 are indicated in bold, uppercase italics, while the coding region is indicated with lowercase italics. The 3′ UTR is indicated by lowercase underlined text. The second cassette containing the codon optimized CpauLPAAT1 gene from Cuphea paucipetala is driven by the P. moriformis AMT3 promoter and has the Chlorella vulgaris Nitrate reductase (NR) gene 3′ UTR. In this cassette, the AMT3 promoter is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for the CpauLPAAT1 gene are indicated in bold, uppercase italics, while the coding region is indicated by lowercase italics. The 3′ UTR is indicated by lowercase underlined text. The final construct was sequenced to ensure correct reading frame and targeting sequences.










SEQ ID NO: 19



pSZ3840/D2554 transforming construct (CpauLPAAT1)





embedded image





aatacaatattcagtatgtcgcgggcggcgacggcggggagctgatgtcgcgctgggtattgcttaatcgccagcttcgcccccgt







cttggcgcgaggcgtgaacaagccgaccgatgtgcacgagcaaatcctgacactagaagggctgactcgcccggcacggctgaa







ttacacaggcttgcaaaaataccagaatttgcacgcaccgtattcgcggtattttgttggacagtgaatagcgatgcggcaatggc







ttgtggcgttagaaggtgcgacgaaggtggtgccaccactgtgccagccagtcctggcggctcccagggccccgatcaagagcca







ggacatccaaactacccacagcatcaacgccccggcctatactcgaaccccacttgcactctgcaatggtatgggaaccacgggg








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gcctgacgccccagatgggctgggacaactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccga







ccgcatctccgacctgggcctgaaggacatgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccga







cggcttcctggtcgccgacgagcagaagttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgtt







cggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttct







tcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaagggccagttcggcacgcccgagatctcctacca







ccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatcttctactccctgtgcaactggggccaggacctga







ccttctactggggctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgct






gcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctccatcatgaacatcctgaacaaggccgccccc






atgggccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaacctgacggacgacga







ggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcct







cctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcgcgtctggcgctacta







cgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccggccccctggacaacggcgaccaggtcgtggc







gctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggaggagatcttcttcgactccaacctgggctccaagaa







gctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacggcgtccgccatcctgggccgcaaca







agaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacggcctgtccaagaacgacacccgcctgttcgg







ccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacggcatcgcgttctaccgcctgcgcccc








embedded image





acacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagtt







gctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacg







ctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtact








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





atcaacctgttccaggccctgtgcttcgtgctggtgtggcccctgtccaagaacgcctaccgccgcatcaaccgcgtgttcgccg







agctgctgctgtccgagctgctgtgcctgttcgactggtgggccggcgccaagctgaagctgttcaccgaccccgagaccttcc







gcctgatgggcaaggagcacgccctggtgatcatcaaccacatgaccgagctggactggatgctgggctgggtgatgggcca







gcacctgggctgcctgggctccatcctgtccgtggccaagaagtccaccaagttcctgcccgtgctgggctggtccatgtggttct







ccgagtacctgtacatcgagcgctcctgggccaaggaccgcaccaccctgaagtcccacatcgagcgcctgaccgactacccc







ctgcccttctggatggtgatcttcgtggagggcacccgcttcacccgcaccaagctgctggccgcccagcagtacgccgcctcct







ccggcctgcccgtgccccgcaacgtgctgatcccccgcaccaagggcttcgtgtcctgcgtgtcccacatgcgctccttcgtgccc







gccgtgtacgacgtgaccgtggccttccccaagacctcccccccccccaccctgctgaacctgttcgagggccagtccatcgtgc







tgcacgtgcacatcaagcgccacgccatgaaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagtt







cgtggagaaggacgccctgctggacaagcacaacgccgaggacaccttctccggccaggaggtgcaccgcaccggctcccg







ccccatcaagtccctgctggtggtgatctcctgggtggtggtgatcaccttcggcgccctgaagttcctgcagtggtcctcctgga







agggcaaggccttctccgtgatcggcctgggcatcgtgaccctgctgatgcacatgctgatcctgtcctcccaggccgagcgctc








embedded image






embedded image





gacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtg







ctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatcc







ctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaac








embedded image





gtacgacgttgggcacgcccatgaaagtttgtataccgagcttgttgagcgaactgcaagcgcggctcaaggatacttgaactcct







ggattgatatcggtccaataatggatggaaaatccgaacctcgtgcaagaactgagcaaacctcgttacatggatgcacagtcgc







cagtccaatgaacattgaagtgagcgaactgttcgcttcggtggcagtactactcaaagaatgagctgctgttaaaaatgcactct







cgttctctcaagtgagtggcagatgagtgctcacgccttgcacttcgctgcccgtgtcatgccctgcgccccaaaatttgaaaaaag







ggatgagattattgggcaatggacgacgtcgtcgctccgggagtcaggaccggcggaaaataagaggcaacacactccgcttctt








embedded image








The sequence for all of the other LPAAT constructs are identical to that of pSZ3840 with the exception of the encoded LPAAT. The LPAAT sequence alone with flanking SpeI and XhoI restriction sites is provided for the remaining LPAAT constructs are shown below. The amino acid sequence of the LPAAT proteins is provided below.









pSZ3841/D2555 (CpaiLPAAT1)


SEQ ID NO: 20




actagt

custom-character
gccatcccctccgccgccgtggtgttcctgttcggcctgc







tgttcttcacctccggcctgatcatcaacctgttccaggccttctgctt







cgtgctgatctcccccctgtccaagaacgcctaccgccgcatcaaccgc







gtgacgccgagctgctgcccctggagacctgtggctgttccactggtgc







gccggcgccaagctgaagctgttcaccgaccccgagaccttccgcctga







tgggcaaggagcacgccctggtgatcatcaaccacaagatcgagctgga







ctggatggtgggctgggtgctgggccagcacctgggctgcctgggctcc







atcctgtccgtggccaagaagtccaccaagttcctgcccgtgttcggct







ggtccctgtggttctccggctacctgttcctggagcgctcctgggccaa







ggacaagatcaccctgaagtcccacatcgagtccctgaaggactacccc







ctgcccttctggctgatcatcttcgtggagggcacccgcttcacccgca







ccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgt







gccccgcaacgtgctgatcccccacaccaagggcttcgtgtcctccgtg







tcccacatgcgctccttcgtgcccgccatctacgacgtgaccgtggcct







tccccaagacctcccccccccccaccatgctgaagctgacgagggccag







tccgtggagctgcacgtgcacatcaagcgccacgccatgaaggacctgc







ccgagtccgacgacgccgtggcccagtggtgccgcgacaagttcgtgga







gaaggacgccctgctggacaagcacaactccgaggacaccttctccggc







caggaggtgcaccacgtgggccgccccatcaaggccctgctggtggtga







tctcctgggtggtggtgatcatcttcggcgccctgaagttcctgctgtg







gtcctccctgctgtcctcctggaagggcaaggccactccgtgatcggcc







tgggcatcgtggccggcatcgtgaccctgctgatgcacatcctgatcct







gtcctcccaggccgagggctccaaccccgtgaaggccgcccccgccaag







ctgaagaccgagctgtcctcctccaagaaggtgaccaacaaggagaac







custom-character
custom-character

ctcgag







pSZ3842/D2556 (CigneaLPAAT1)


SEQ ID NO: 21




actagt

custom-character
gccatcgccgccgccgccgtgatcttcctgttcggcctgc







tgttcttcgcctccggcatcatcatcaacctgttccaggccctgtgctt







cgtgctgatctggcccctgtccaagaacgtgtaccgccgcatcaaccgc







gtgacgccgagctgctgctgatggacctgctgtgcctgttccactggtg







ggccggcgccaagatcaagctgacaccgaccccgagaccttccgcctga







tgggcatggagcacgccctggtgatcatgaaccacaagaccgacctgga







ctggatggtgggctggatcctgggccagcacctgggctgcctgggctcc







atcctgtccatcgccaagaagtccaccaagttcatccccgtgctgggct







ggtccgtgtggactccgagtacctgttcctggagcgctcctgggccaag







gacaagtccaccctgaagtcccacatggagaagctgaaggactaccccc







tgcccttctggctggtgatcttcgtggagggcacccgcttcacccgcac







caagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtg







ccccgcaacgtgctgatcccccacaccaagggcttcgtgtcctgcgtgt







ccaacatgcgctccacgtgcccgccgtgtacgacgtgaccgtggccttc







cccaagtcctcccccccccccaccatgctgaagctgttcgagggccagt







ccatcgtgctgcacgtgcacatcaagcgccacgccctgaaggacctgcc







cgagtccgacgacgccgtggcccagtggtgccgcgacaagttcgtggag







aaggacgccctgctggacaagcacaacgccgaggacaccttctccggcc







aggaggtgcaccacatcggccgccccatcaagtccctgctggtggtgat







cgcctgggtggtggtgatcatcttcggcgccctgaagttcctgcagtgg







tcctccctgctgtccacctggaagggcaaggccttctccgtgatcggcc







tgggcatcgccaccctgctgatgcacatgctgatcctgtcctcccaggc







cgagcgctccaaccccgccaaggtggccaag
custom-character

ctcgag







pSZ3844/D2557 (ChookLPAAT1)


SEQ ID NO: 22




actagt

custom-character
gccatcccctccgccgccgtggtgttcctgttcggcctgc







tgttcttcacctccggcctgatcatcaacctgttccaggccttctgctt







cgtgctgatctcccccctgtccaagaacgcctaccgccgcatcaaccgc







gtgacgccgagctgctgcccctggagacctgtggctgttccactggtgc







gccggcgccaagctgaagctgttcaccgaccccgagaccttccgcctga







tgggcaaggagcacgccctggtgatcatcaaccacaagatcgagctgga







ctggatggtgggctgggtgctgggccagcacctgggctgcctgggctcc







atcctgtccgtggccaagaagtccaccaagttcctgcccgtgttcggct







ggtccctgtggttctccgagtacctgttcctggagcgctcctgggccaa







ggacaagatcaccctgaagtcccacatcgagtccctgaaggactacccc







ctgcccttctggctgatcatcttcgtggagggcacccgcttcacccgca







ccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgt







gccccgcaacgtgctgatcccccacaccaagggcttcgtgtcctccgtg







tcccacatgcgctccttcgtgcccgccatctacgacgtgaccgtggcct







tccccaagacctcccccccccccaccatgctgaagctgacgagggccag







tccgtggagctgcacgtgcacatcaagcgccacgccatgaaggacctgc







ccgagtccgacgacgccgtggcccagtggtgccgcgacaagttcgtgga







gaaggacgccctgctggacaagcacaactccgaggacaccttctccggc







caggaggtgcaccacgtgggccgccccatcaaggccctgctggtggtga







tctcctgggtggtggtgatcatcttcggcgccctgaagttcctgctgtg







gtcctccctgctgtcctcctggaagggcaaggccactccgtgatcggcc







tgggcatcgtggccggcatcgtgaccctgctgatgcacatcctgatcct







gtcctcccaggccgagggctccaaccccgtgaaggccgcccccgccaag







ctgaagaccgagctgtcctcctccaagaaggtgaccaacaaggagaac







custom-character
custom-character

ctcgag








To determine the impact of the CpauLPAAT1, CigneaLPAAT1, ChookLPAAT1, and CpaiLPAAT1 genes on mid-chain fatty acid accumulation, the above constructs containing the codon optimized CpauLPAAT1, CigneaLPAAT1, ChookLPAAT1, and CpaiLPAAT1 genes were transformed into strain S6511. Primary transformants were clonally purified and grown under standard lipid production conditions at pH7.0 (all the strains require growth at pH 7.0 to allow for maximal expression of the LPAAT gene driven by the pH-regulated AMT3 promoter). The resulting profiles from a set of representative clones arising from these transformations are shown in Table 6.









TABLE 6







Transformants of pSZ3840 (CpauLPAAT1), pSZ3841 (CpaiLPAAT1),


pSZ3842 (CigneaLPAAT1), and pSZ3844 (ChookLPAAT1). The fatty acid profiles for


transgenic strains expressing LPAATs derived from C. paucipetala, C. painteri, C. ignea, and


C. hookeriana.


















Sample ID
C8:0
C10:0
C12:0
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 a





Parent
S6511a
14.4
27.7
0.6
1.3
8.8
1.6
38.2
5.4
0.4



S6511b
14.5
27.7
0.6
1.3
8.6
1.6
38.4
5.3
0.4


pSZ3840 CpauLPAAT1
S6511; T792; D2554-20
16.6
29.9
0.7
1.3
8.0
1.0
35.2
5.2
0.5



S6511; T792; D2554-17
14.6
28.7
0.6
1.3
8.4
1.7
37.1
5.7
0.5



S6511; T792; D2554-41
15.2
28.5
0.7
1.3
8.3
1.4
37.5
5.2
0.4



S6511; T792; D2554-35
14.7
28.4
0.6
1.3
8.6
1.6
37.3
5.6
0.5



S6511; T792; D2554-27
15.2
27.6
0.7
1.3
9.5
1.5
37.1
5.1
0.4


pSZ3841 CpaiLPAAT1
S6511; T792; D2555-34
17.3
29.5
0.7
1.3
7.8
1.2
35.1
5.1
0.4



S6511; T792; D2555-43
17.5
29.1
0.7
1.3
8.0
0.9
35.4
5.0
0.5



S6511; T792; D2555-10
15.7
28.3
0.7
1.3
8.6
1.6
36.2
5.7
0.5



S6511; T792; D2555-22
16.0
27.9
0.7
1.3
8.4
0.9
37.8
5.0
0.4



S6511; T792; D2555-44
15.3
27.5
0.6
1.3
8.1
1.8
38.2
5.4
0.4


pSZ3842 CigneaLPAAT1
S6511; T792; D2556-38
16.2
29.2
0.7
1.3
8.1
1.3
36.1
5.2
0.5



S6511; T792; D2556-22
14.3
28.5
0.7
1.3
8.5
1.6
37.6
5.7
0.5



S6511; T792; D2556-44
13.6
28.4
0.7
1.4
9.0
1.5
36.3
6.7
0.7



S6511; T792; D2556-14
14.1
28.0
0.6
1.3
8.6
1.7
38.0
5.6
0.5



S6511; T792; D2556-36
14.3
28.0
0.6
1.3
8.6
1.7
37.9
5.7
0.5


pSZ3844 ChookLPAAT1
S6511; T792; D2557-47
15.8
29.3
0.7
1.3
8.2
1.2
36.5
5.0
0.5



S6511; T792; D2557-24
16.8
28.8
0.7
1.3
8.1
1.2
35.8
5.4
0.5



S6511; T792; D2557-30
15.2
28.3
0.7
1.3
8.5
1.6
36.8
5.7
0.5



S6511; T792; D2557-39
14.7
28.2
0.7
1.3
8.7
1.5
37.3
5.7
0.5



S6511; T792; D2557-26
15.3
27.7
0.7
1.4
8.7
0.9
37.7
5.4
0.5









The transformants in Table 6 display a marked increase in the production of C8:0 and C10:0 fatty acids upon expression of the heterologous LPAATs. To determine if expression of the heterologous LPAAT genes affected the regiospecificity of fatty acids at the sn-2 position, we analyzed TAGs from representative D2554 (CpauLPAAT1), D2555 (CpaiLPAAT1), D2556 (CigneaLPAAT1), and D2557 (ChookLPAAT1) strains utilizing the porcine pancreatic lipase method. Cells were grown under conditions to maximize midchain fatty acid levels and to generate sufficient biomass for TAG analysis. TAG and sn-2 profiles are shown in Table 7.


Table 7:


Inclusion of C8:0 and C10:0 fatty acids at the sn-2 position of TAGs. Selected transformants were subjected to porcine pancreatic lipase determination of fatty acid inclusion at the sn-2 position. The general fatty acid distribution in triacylglycerols (TAG) is shown to indicate fatty acid abundance for each transformant. In addition, the sn-2-specific distribution is shown. Numbers highlighted in bold and italic reflect significantly increased inclusion of the noted fatty acid compared to the parent S6511.














TABLE 7









S6511; T792;
S6511; T792;
S6511; T792;
S6511; T792;




D2554-20
D2555-34
D2556-38
D2557-24


Strain:
S6511
(CpauLPAAT1)
(CpaiLPAAT1)
(CigneaLPAAT1)
(ChookLPAAT1)

















Analysis
TAG
sn-2
TAG
sn-2
TAG
sn-2
TAG
sn-2
TAG
sn-2





















Fatty Acid
C8:0
14.4
8.5
16.6
12.8
17.3

22.3

16.2
10.0
16.8

29.1



(area %)
C10:0
27.7
26.4
29.9

39.0

29.5
22.2
29.2

36.2

28.8
19.4



C12:0
0.6
0.4
0.7
0.3
0.7
0.4
0.7
0.4
0.7
0.3



C14:0
1.3
1.0
1.3
1.0
1.3
0.9
1.3
1.2
1.3
0.9



C16:0
8.8
0.9
8.0
1.1
7.8
1.1
8.1
1.2
8.1
0.9



C18:0
1.6
0.2
1.0
0.4
1.2
0.5
1.3
0.5
1.2
0.3



C18:1
38.2
52.5
35.2
37.8
35.1
43.6
36.1
42.2
35.8
40.7



C18:2
5.4
8.9
5.2
6.2
5.1
7.9
5.2
7.0
5.4
7.1



C18:3 α
0.4
0.8
0.5
0.7
0.4
0.9
0.5
0.8
0.5
0.7



C8 + C10
42.2
34.9
46.4
51.8
46.8
44.5
45.5
46.1
45.6
48.5



sum









As disclosed in Table 7, the CpauLPAAT1 and CigneaLPAAT1 genes show remarkable specificity towards C10:0 fatty acids. D2554-20 exhibits 39.0% of C10:0 in the sn-2 position versus just 26.4% in the S6511 base strain without the heterologous LPAAT, demonstrating a 1.5 fold increase in C10:0 inclusion at the sn-2 position. D2556-38 exhibits 36.2% of C10:0 in the sn-2 position versus 26.4% in the S6511 base strain, demonstrating a 1.4 fold increase in C10:0 inclusion at the sn-2 position. Although there is a small increase in C8:0 levels in the D2554-20 and D2555-34 strains, the vast majority of sn-2 targeting is C10:0-specific. Similarly, CpaiLPAAT1 and ChookLPAAT1 show remarkable specificity towards C8:0 fatty acids. D2555-34 exhibits 22.3% C8:0 in the sn-2 position versus just 8.5% in the S6511 base strain without the heterologous LPAAT, demonstrating a 2.6 fold increase in C8:0 inclusion at the sn-2 position. D2557-24 exhibits 29.1% C8:0 in the sn-2 position versus 8.5%, demonstrating a 3.4 fold increase in C8:0 inclusion at the sn-2 position. We teach that CpauLPAAT1 and CigneaLPAAT1 are C10:0-specific LPAATs and that CpaiLPAAT1 and ChookLPAAT1 are C8:0-specific LPAATs. Knutzon D S, Lardizabal K D, Nelsen J S, Bleibaum J L, Davies H M, Metz J G (1995) Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates. Plant Physiol 109:999-1006


Amino Acid Sequences for Novel LPAAT Genes









CpauLPAAT1


SEQ ID NO: 23


MAIPAAAVIFLFGLLFFTSGLIINLFQALCFVLVWPLSKNAYRRINRV





FAELLLSELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVIINHMTEL





DWMLGWVMGQHLGCLGSILSVAKKSTKFLPVLGWSMWFSEYLYIERSW





AKDRTTLKSHIERLTDYPLPFWMVIFVEGTRFTRTKLLAAQQYAASSG





LPVPRNVLIPRTKGFVSCVSHMRSFVPAVYDVTVAFPKTSPPPTLLNL





FEGQSIVLHVHIKRHAMKDLPESDDAVAQWCRDKFVEKDALLDKHNAE





DTFSGQEVHRTGSRPIKSLLVVISWVVVITFGALKFLQWSSWKGKAFS





VIGLGIVTLLMHMLILSSQAERSSNPAKVAQAKLKTELSISKKATDKEN





CprocLPAAT1


SEQ ID NO: 24


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPISKNAYRRINRVF





AELLLSELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVIINHMTELDW





MVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWNKD





KSTLKSHIERLKDYPLPFWLVIFAEGTRFTQTKLLAAQQYAASSGLPVP





RNVLIPRTKGFVSCVSHMRSFVPAVYDLTVAFPKTSPPPTLLNLFEGQS





VVLHVHIKRHAMKDLPESDDEVAQWCRDKFVEKDALLDKHNAEDTFSGQ





ELQHTGRRPIKSLLVVISWVVVIAFGALKFLQWSSWKGKAFSVIGLGIV





TLLMHMLILSSQAERSKPAKVAQAKLKTELSISKTVTDKEN





CprocLPAAT1b


SEQ ID NO: 25


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPISKNAYRRINRVF





AELLLSELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVIINHMTELDW





MVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWNKD





KSTLKSHIERLKDYPLPFWLVIFAEGTRFTQTKLLAAQQYAASSGLPVP





RNVLIPRTKGFVSCVSHMRSFVPAVYDLTVAFPKTSPPPTLLNLFEGQS





VVLHVHIKRHAMKDLPESDDEVAQWCRDKFVEK





CprocLPAAT2a


SEQ ID NO: 26


IVNLVQAVCFVLVRPLSKNTYRRINRVVAELLWLELVWLIDWWAGVKIK





VFTDHETFHLMGKEHALVICNHKSDIDWLVGWVLAQRSGCLGSTLAVMK





KSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLNRLKDYPLPFWLA





LFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSF





VPAIYDVTVAIPKTSPPPTLIRMFKGQSSVLHVHLKRHVMKDLPESDDA





VAQWCRDIFVEKDALLDKHNADDTFSGQELQDTGRPIKSLLVVISWAVL





EVFGAVKFLQWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTP





AKVAPAKAKIEGESSKTEMEKEK





CprocLPAAT2b


SEQ ID NO: 27 


IVNLVQAVCFVLVRPLSKNTYRRINRVVAELLWLELVWLIDWWAGVKIK





VFTDHETFHLMGKEHALVICNHKSDIDWLVGWVLAQRSGCLGSTLAVMK





KSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLNRLKDYPLPFWLA





LFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSF





VPAIYDVTVAIPKTSPPPTLIRMFKGQSSVLHVHLKRHVMKDLPESDDA





VAQWCRDIFVEKDALLDKHNADDTFSGQELQDTGRPIKSLLV





CpaiLPAAT1


SEQ ID NO: 28 


MAIPSAAVVFLFGLLFFTSGLIINLFQAFCFVLISPLSKNAYRRINRVF





AELLPLEFLWLFHWCAGAKLKLFTDPETFRLMGKEHALVIINHKIELDW





MVGWVLGQHLGCLGSILSVAKKSTKFLPVFGWSLWFSGYLFLERSWAKD





KITLKSHIESLKDYPLPFWLIIFVEGTRFTRTKLLAAQQYAASSGLPVP





RNVLIPHTKGFVSSVSHMRSFVPAIYDVTVAFPKTSPPPTMLKLFEGQS





VELHVHIKRHAMKDLPESDDAVAQWCRDKFVEKDALLDKHNSEDTFSGQ





EVHHVGRPIKALLVVISWVVVIIFGALKFLLWSSLLSSWKGKAFSVIGL





GIVAGIVTLLMHILILSSQAEGSNPVKAAPAKLKTELSSSKKVTNKEN





ChookLPAAT1


SEQ ID NO: 29 


MAIPSAAVVFLFGLLFFTSGLIINLFQAFCFVLISPLSKNAYRRINRVF





AELLPLEFLWLFHWCAGAKLKLFTDPETFRLMGKEHALVIINHKIELDW





MVGWVLGQHLGCLGSILSVAKKSTKFLPVFGWSLWFSEYLFLERSWAKD





KITLKSHIESLKDYPLPFWLIIFVEGTRFTRTKLLAAQQYAASSGLPVP





RNVLIPHTKGFVSSVSHMRSFVPAIYDVTVAFPKTSPPPTMLKLFEGQS





VELHVHIKRHAMKDLPESDDAVAQWCRDKFVEKDALLDKHNSEDTFSGQ





EVHHVGRPIKALLVVISWVVVIIFGALKFLLWSSLLSSWKGKAFSVIGL





GIVAGIVTLLMHILILSSQAEGSNPVKAAPAKLKTELSSSKKVTNKEN





ChookLPAAT2a


SEQ ID NO: 30 


LSLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRINRVVAELLWLELVWL





IDWWAGVKIKVFTDHETFNLMGKEHALVVCNHKSDIDWLVGWVLAQRSG





CLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLKRL





KDYPLPFWLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPRTKGF





VSSVSHMRSFVPAIYDVTVAIPKTSVPPTMLRIFKGQSSVLHVHLKRHL





MKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPIKS





LLVVISWAVLVIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILI





LFSQSERSTPAKVAPAKPKNEGESSKTEMEKEH





ChookLPAAT2b


SEQ ID NO: 31


QIKVFTDHETFNLMGKEHALVVCNHKSDIDWLVGWVLAQWSGCLGSTLA





VMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLKRLKDYPLPF





WLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHM





RSFVPAIYDVTVAIPKTSVPPTMLRIFKGQSSVLHVHLKRHLMKDLPES





DDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPIKSLLVVISW





AVLVIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILILFSQSER





STPAKVAPAKLKKEGESSKPETDKQN





ChookLPAAT3a


SEQ ID NO: 32


LSLLFFVSGLIVNLVQAVCFVLIRPLLKNTYRRINRVVAELLWLELVWL





IDWWAGIKIKVFTDHETFHLMGKEHALVICNHKSDIDWLVGWVLAQRSG





CLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLNRL





KDYPLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGF





VSSVSQMRSFVPAIYDVTVAIPKTSPPPTLLRMFKGQSSVLHVHLKRHL





MNDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTGRPIKS





LLVVISWATLVVFGAVKFLQWSSLLSSWKGLAFSGIGLGIITLLMHILI





LFSQSERSTPAKVAPAKPKNEGESSKTEMEKEH





ChookLPAAT3b


SEQ ID NO: 33


LSLLFFVSGLIVNLVQAVCFVLIRPLLKNTYRRINRVVAELLWLELVWL





IDWWAGIKIKVFTDHETFHLMGKEHALVICNHKSDIDWLVGWVLAQRSG





CLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLNRL





KDYPLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGF





VSSVSQMRSFVPAIYDVTVAIPKTSPPPTLLRMFKGQSSVLHVHLKRHL





MNDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPIKS





LLVVISWAVLEIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILI





LFSQSERSTPAKVAPAKPKKEGESSKPETDKEN





CigneaLPAAT1


SEQ ID NO: 34


MAIAAAAVIFLFGLLFFASGIIINLFQALCFVLIWPLSKNVYRRINRVF





AELLLMDLLCLFHWWAGAKIKLFTDPETFRLMGMEHALVIMNHKTDLDW





MVGWILGQHLGCLGSILSIAKKSTKFIPVLGWSVWFSEYLFLERSWAKD





KSTLKSHMEKLKDYPLPFWLVIFVEGTRFTRTKLLAAQQYAASSGLPVP





RNVLIPHTKGFVSCVSNMRSFVPAVYDVTVAFPKSSPPPTMLKLFEGQS





IVLHVHIKRHALKDLPESDDAVAQWCRDKFVEKDALLDKHNAEDTFSGQ





EVHHIGRPIKSLLVVIAWVVVIIFGALKFLQWSSLLSTWKGKAFSVIGL





GIATLLMHMLILSSQAERSNPAKVAK





CigneaLPAAT2


SEQ ID NO: 35


MAIAAAAVIFLFGLLFFASGIIINLFQALCFVLIWPLSKNVYRRINRVF





AELLLMDLLCLFHWWAGAKIKLFTDPETFRLMGMEHALVIMNHKTDLDW





MVGWILGQHLGCLGSILSIAKKSTKFIPVLGWSVWFSEYLFLERSWAKD





ESTLKSGLNRLKDYPLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVP





KNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSAPPTLLRMFKGQS





SVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQ





ELHDIGRPVKSLLVVISWAMLVVFGAVKFLQWSSLLSSWKGLAFSGIGL





GIITLLMHILILFSQSERSTPAKVAPAKQKNNEGESSKTEMEKEH





DeLPAAT1


SEQ ID NO: 36


SGLVVNLIQAFFFVLVRPFSKNAYRKINRVVAELLWLELIWLIDWWAGV





KIQLYTDPETFKLMGKEHALVICNHKSDIDWLVGWILAQRSGCLGSALA





VMKKSSKFLPVIGWSMWFSEYLFLERSWAKDENTLKSGFQRLRDFPHAF





WLALFVEGTRFTQAKLLAAQEYASSMGLPAPRNVLIPRTKGFVTAVTHM





RPFVPAVYDVTLAIPKTSPPPTMLRLFKGQSSVVHIHLKRHLMSDLPKS





DDSVAQWCKDAFVVKDNLLDKHKENDSFGDGVLQDTGRPLNSLVVVISW





ACLLIFGALKFFQWSSILSSWKGLAFSAVGLGIVTVLMQILIQFSQSER





SNRPMPSKHAK





DeLPAAT2


SEQ ID NO: 37 


MAIPTAAYVVPLGAIFFFSGLLVNLIQAFFFITVWPLSKKTYIRINKVI





VELLWLEFVWLADWWAGLKIEVYADAETFQLMGKEHALVICNHKSDIDW





LVGWILAQRAGCLGSSFAVTKKSARYLPVVGWSIWFSGAIFLERSWEKD





ENTLKAGFQRLREFPCAFWLGLFVEGTRFTQAKLLAAQEYASTMGLPFP





RNVLIPRTKGFIAAVNHMREFVPAIYDLTFAFPKDSPPPTMLRLLKGQP





SVVHVHIKRHLMKDLPEKNEAVAQWCKDVFLVKDKLLDKHKDDGSFGDG





ELHEIGRPLKSLVVVTTWACLLILGTLKFLLWSSLLSSWKGLIFSATGL





AVLTVLMQFLIQSTQSERSNPASLSK





CerLPAAT1a


SEQ ID NO: 38


LGLLFFISGLAVNLIQAVCFVFLRPLSKNTYRKINRVLAELLWLQLVWL





VDWWAGVKIKVFADRESFNLMGKEHALVICNHKSDIDWLVGWVLAQRSG





CLGSSLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKEGLRRL





KDFPRPFWLALFVEGTRFTQAKLLAAQEYATSQGLPVPRNVLIPRTKVH





VHVKRHLMKELPETDEAVAQWCKDLFVEKDKLLDKHVAEDTFSDQPLQD





IGRPVKPLLVVSSWACLVAYGALKFLQWSSLLSSWKGIAVSAVALAIVT





ILMQIMILFSQSERSIPAKVA





CerLPAAT1b


SEQ ID NO: 39


LGLLFFISGLAVNLIQAVCFVFLRPLSKNTYRKINRVLAELLWLQLVWL





VDWWAGVKIKVFADRESFNLMGKEHALVICNHKSDIDWLVGWVLAQRSG





CLGSSLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKEGLRRL





KDFPRPFWLALFVEGTRFTQAKLLAAQEYATSQGLPVPRNVLIPRTKGF





VSAVSHMRSFVPAVYDMTVAIPKSSPSPTMLRLFKGQSSVVHVHVKRHL





MKELPETDEAVAQWCKDLFVEKDKLLDKHVAEDTFSDQPLQDIGRPVKP





LLVVSSWACLVAYGALKFLQWSSLLSSWKGIAVSAVALAIVTILMQIMI





LFSQSERSIPTKVA





CerLPAAT2a


SEQ ID NO: 40


MAIAAAAVVFLFGLLFFTSGLIINLAQAVCFVLIWPLSKNAYRRINRVF





AELLLLELLWLFHWRAGAKLKLFADPETFRLFGKEHALVICNHRTDLDW





MVGWVLGQHFGCLGSILSVAKKSTKFLPVLGWSMWFSEYLFLERSWAKD





KSTLKSHTERLKDYPLPFWLGIFVEGTRFTRAKLLAAQQYAASSGLPVP





RNVLIPHTKLHVHIKRYAMKDLPESDDAVAQWCRDIYVEKDAFLDKHNA





EDTFSGQEVHHIGRPIKSLLVVISWVVVIIFGALKFLRWSSLLSSWKGK





AFSVIGLGIVTLLVNILILSSQAERSNPAKVAPAKLKTELSPSKKVTNK





EN





CerLPAAT2b


SEQ ID NO: 41


MAIAAAAVVFLFGLLFFTSGLIINLAQAVCFVLIWPLSKNAYRRINRVF





AELLLLELLWLFHWRAGAKLKLFADPETFRLFGKEHALVICNHRTDLDW





MVGWVLGQHFGCLGSILSVAKKSTKFLPVLGWSMWFSEYLFLERSWAKD





KSTLKSHTERLKDYPLPFWLGIFVEGTRFTRAKLLAAQQYAASSGLPVP





RNVLIPHTKGFVSSMSHMRSFVPAVYDLTVAFPKTSPPPTLLKLFEGQS





VVLHVHIKRYAMKDLPESDDAVAQWCRDIYVEKDAFLDKHNAEDTFSGQ





EVHHIGRPIKSLLVVISWVVVIIFGALKFLRWSSLLSSWKGKAFSVIGL





GIVTLLVNILILSSQAERSNPAKVAPAKLKTELSPSKKVTNKEN





BrLPAAT1a


SEQ ID NO: 42


AAAVIVPLGILFFISGLVVNLLQAICYVLIRPLSKNTYRKINRVVAETL





WLELVWIVDWWAGVKIQVFADNETFNRMGKEHALVVCNHRSDIDWLVGW





ILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTL





KSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASSELPVPRNVL





IPRTKGFVSAVSNMRSFVPAIYDMTVAIPKTSPPPTMLRLFKGQPSVVH





VHIKCHSMKDLPESDDAIAQWCRDQFVAKDALLDKHIAADTFPGQQEQN





IGRPIKSLAVVLSWSCLLILGAMKFLHWSNLFSSWKGIAFSALGLGIIT





LCMQILIRSSQSERSTPAKVVPAKPKDNHNDSGSSSQTE





BrLPAAT1b


SEQ ID NO: 43


AAAVIVPLGILFFISGLVVNLLQAVCYVLVRPMSKNTYRKINRVVAETL





WLELVWIVDWWAGVKIQVFADDETFNRMGKEHALVVCNHRSDIDWLVGW





ILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTL





KSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASSELPVPRNVL





IPRTKGFVSAVSNMRSFVPAIYDMTVAIPKTSPPPTMLRLFKGQPSVVH





VHIKCHSMKDLPESDDAIAQWCRDQFVAKDALLDKHIAADTFPGQQEQN





IGRPIKSLAVVLSWSCLLILGAMKFLHWSNLFSSWKGIAFSALGLGIIT





LCMQILIRSSQSERSTPAKVVPAKPKDNHNDSGSSSQTE





BrLPAAT1e


SEQ ID NO: 44 


MAIAAAVIVPLGLLFFISGLLMNLLQAICYVLVRPLSKNTYRKINRVVA





ETLWLELVWIVDWWAGVKIKVFADNETFSRMGKEHALVVCNHRSDIDWL





VGWILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDE





STLKSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASSELPVPR





NVLIPRTKGFVSAVSNMRSFVPAIYDMTVAIPKTSPPPTMLRLFKGQPS





VVHVHIKCHSMKDLPESDDAIAQWCRDQFVAKDALLDKHIAADTFPGQQ





EQNIGRPIKSLAVVLSWSCLLILGAMKFLHWSNLFSSWKGIAFSALGLG





IITLCMQILIRSSQSERSTPAKVVPAKPKDNHNDSGSSSQTE





BjLPAAT1a


SEQ ID NO: 45 


INLVVAETLWLELVWIVDWWAGVKIQVFADDETFNRMGKEHALVVCNHR





SDIDWLVGWILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLER





NWAKDESTLKSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASS





ELPVPRNVLIPRTKGFVSAVSNMRSFVPAIYDMTVAIPKTSPPPTMLRL





FKGQPSVVHVHIKCHSMKDLPESDDAIAQWCRDQFVAKDALLDKHIAAD





TFPGQKEQNIGRPIKSLAVSLIKTFPWLHPHQLTNIFVLFQVVVSWACL





LTLGAMKFLHWSNLFSSWKGIALSAFGLGIITLCMQILIRSSQSERSTP





AKVAPAKPK





BjLPAAT1b


SEQ ID NO: 46 


INLVVAETLWLELVWIVDWWAGVKIQVFADDETFNRMGKEHALVVCNHR





SDIDWLVGWILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLER





NWAKDESTLKSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASS





ELPVPRNVLIPRTKGFVSAVSNMRSFVPAIYDMTVAIPKTSPPPTMLRL





FKGQPSVVHVHIKCHSMKDLPEPEDEIAQWCRDQFVAKDALLDKHIAAD





TFPGQKEQNIGRPIKSLAVVVSWACLLTLGAMKFLHWSNLFSSWKGIAL





SAFGLGIITLCMQILIRSSQSERSTPAKVAPAKPK





BjLPAAT1e


SEQ ID NO: 47 


INLVVAETLWLELVWIVDWWAGVKIQVFADDETFNRMGKEHALVVCNHR





SDIDWLVGWILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLER





NWAKDESTLKSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASS





ELPVPRNVLIPRTKGFVSAVSNMRSFVPAIYDMTVAIPKTSPPPTMLRL





FKGQPSVVHVHIKCHSMKDLPESDDAIAQWCRDQFVAKDALLDKHIAAD





TFPGQQEQNIGRPIKSLAVVLSWSCLLILGAMKFLHWSNLFSSWKGIAF





SALGLGIITLCMQILIRSSQSERSTPAKVVPAKPKDNHNDSGSSSQTE





BjLPAAT1d


SEQ ID NO: 48 


INLVVAETLWLELVWIVDWWAGVKIQVFADDETFNRMGKEHALVVCNHR





SDIDWLVGWILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLER





NWAKDESTLKSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASS





ELPVPRNVLIPRTKGFVSAVSNMRSFVPAIYDMTVAIPKTSPPPTMLRL





FKGQPSVVHVHIKCHSMKDLPESDDAIAQWCRDQFVAKDALLDKHIAAD





TFPGQQEQNIGRPIKSLAVSLS





CeLPAAT1a


SEQ ID NO: 49


MAIGVAAIVVPLGLLFILSGLMVNLIQAICFILVRPLSKNMYRRVNRVV





VELLWLELIWLIDWWGGVKVDVYADSETFQSLGKEHALVVSNHRSDIDW





LVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYVFLERSWAKD





ESTLKSGLRRLKDFPRPFWLALFVEGTRFTQAKLLAAREYAASTGLPIP





RNVLIPRTKGFVSAVSNMRSFVPAIYDVTVAIPKTQPSPTMLRIFNRQP





SVVHVHIKRHSMNQLPQTDEGVGQWCKDIFVAKDALLDRHLAE





CcLPAAT1b


SEQ ID NO: 50 


MAIGVAAIVVPLGLLFILSGLMVNLIQAICFILVRPLSKNMYRRVNRVV





VELLWLELIWLIDWWGGVKVDVYADSETFQSLGKEHALVVSNHRSDIDW





LVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYVFLERSWAKD





ESTLKSGLRRLKDFPRPFWLALFVEGTRFTQAKLLAAREYAASTGLPIP





RNVLIPRTKGFVSAVSNMRSFVPAIYDVTVAIPKTQPSPTMLRIFNRQP





SVVHVHIKRHSMNQLPQTDEGVAQWCKDIFVAKDALLDRHLAEGKFDEK





EFKRIRRPIKSLLVISSWSFLLMFGVFKFLKWSALLSTWKGVAVSTTVL





LLVTVVMYMFILFSQSERSSPRKVAPSGPENG





UcLPAAT1a


SEQ ID NO: 51 


MAIGVAAIVVPLGLLFILSGLIINLIQAICFILVRPLSKNMYRKVNRVV





VELLWLELIWLIDWWGGVKVDVYADSETFQSLGKEHALVVSNHRSDIDW





LVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYVFLERSWAKD





ESTLKSGLQRLKDFPRPFWLALFVEGTRFTQAKLLAAQEYAASTGLPIP





RNVLIPRTKGFVSAVSNMRSFVPAIYDVTVAIPKTQPSPTMLRIFNRQP





SVVHVHIKRHSMNQLPQTDEGVAQWCKDIFVAKDALLDRHLAEGKFDEK





EFKLIRRPIKSLLVISSWSFLLMFGVFKFLKWSALLSTWKGVAVSTAVL





LLVTVVMYMFILFSQSERSSPRKVAPIGPENG





UcLPAAT1b


SEQ ID NO: 52 


MAIGVAAIVVPLGLLFILSGLIINLIQAICFILVRPLSKNMYRKVNRVV





VELLWLELIWLIDWWGGVKVDVYADSETFQSLGKEHALVVSNHRSDIDW





LVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYVFLERSWAKD





ESTLKSGLQRLKDFPRPFWLALFVEGTRFTQAKLLAAQEYAASTGLPIP





RNVLIPRTKGFVSAVSNMRSFVPAIYDVTVAIPKTQPSPTMLRIFNRQP





SVVHVHIKRHSMNQLPQTDEGVAQWCKDIFVAKDALLDRHLAE





LdLPAAT1


SEQ ID NO: 53 


SLLFFMSGLVVNFIQAVFYVLVRPISKNTYRRINTLVAELLWLELVWVI





DWWAGVKVQLYTDTESFRLMGKEHALLICNHRSDIDWLIGWVLAQRCGC





LSSSIAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDENTLKSGLQRLN





DFPKPFWLALFVEGTRFTKAKLLAAQEYAASAGLPVPRNVLIPRTKGFV





SAVSNMRSFVPAIYDLTVAIPKTTEQPTMLRLFRGKSSVVHVHLKRHLM





KDLPKTDDGVAQWCKDQFISKDALLDKHVAEDTFSGLEVQDIGRPMKSL





VVVVSWMCLLCLGLVKFLQWSALLSSWKGMMITTFVLGIVTVLMHILIR





SSQSEHSTPAK





CaequLPAAT1a


SEQ ID NO: 54 


QRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSG





LKRLKDYPLPFWLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPR





PTKGFVSSVSHMRSFVAIYDVTVAIPKMSTPPTMLRIFKGQSSVLHVHL





KRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGR





PVKSLLVVISWAVLVIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLM





HILILFSQSERSTPAKVAPAKPKKEGESSKTETEKEN





CaequLPAAT1b


SEQ ID NO: 55 


DWWAGVKIKVFTDHETLSLMGKEHALVISNHKSDIDWLVGWVLAQRSGC





LGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLKRLK





DYPLPFWLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPRTKGFV





SSVSHMRSFVPAIYDVTVAIPKMSTPPTMLRIFKGQSSVLHVHLKRHLM





KDLPESDDAVAQWCRDIFVEKDALLDKHN





AEDTFSGQELQDIGRPVKSLLV





CaequLPAAT1e


SEQ ID NO: 56


DWWAGVKIKVFTDHETLSLMGKEHALVISNHKSDIDWLVGWVLAQRSGC





LGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLKRLK





DYPLPFWLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPRTKGFV





SSVSHMRSFVPAIYDVTVAIPKMSTPPTMLRIFKGQSSVLHVHLKRHLM





KDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPVKSL





LVVISWAVLVIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILIL





FSQSERSTPAKVAPAKPKKEGESSKTETEKEN





CaequLPAAT1d


SEQ ID NO: 57


QRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSG





LKRLKDYPLPFWLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPR





TKGFVSSVSHMRSFVPAIYDVTVAIPKMSTPPTMLRIFKGQSSVLHVHL





KRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGR





PVKSLLV





CglutLPAAT1a


SEQ ID NO: 58 


LSLLFFVSGLFVNLVQAVCFVLIRPFSKNTYRRINRVVAELLWLELVWL





IDWWAGVKIKVFTDHETLSLMGKEHALVISNHKSDIDWLVGWVLAQRSG





CLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLKRL





KDYPLPFWLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPRTKGF





VSSVSHMRSFVPAIYDVTVAIPKMSTPPTMLRIFKGQSSVLHVHLKRHL





MKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPVKS





LLVVISWAVLVIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILI





LFSQSERSTPAKVAPAKPKKEGESSKTETEKEN





CglutLPAAT1b


SEQ ID NO: 59


QAVCFVLIRPFSKNTYRRINRVVAELLWLELVWLIDWWAGVKIKVFTDH





ETLSLMGKEHALVISNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKF





LPVIGWSMWFSEYLFLERSWAKDESTLKSGLKRLKDYPLPFWLALFVEG





TRFTQAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIY





DVTVAIPKMSTPPTMLRIFKGQSSVLHVHLKRHLMKDLPESDDAVAQWC





RDIFVEKDALLDKHNAEDTFSGQELQDIGRPVKSLLVVISWAVLVIFGA





VKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILILFSQSERSTPAKVAP





AKPKKEGESSKTETEKEN





CprLPAAT1


SEQ ID NO: 60


MAIAAAAVVFLFGLLFFTSGLIINLAQAVCFVLIWPLSKNAYRRINRVF





AELLLLELLWLFHWRAGAKLKLFADPETFRLFGKEHALVICNHRTDLDW





MVGWVLGQHFGCLGSILSVAKKSTKFLPVLGWSMWFSEYLFLERSWAKD





KSTLKSHTERLKDYPLPFWLGIFVEGTRFTRAKLLAAQQYAASSGLPVP





RNVLIPHTKGFVSSMSHMRSFVPAVYDLTVAFPKTSPPPTLLKLFEGQS





VVLHVHIKRYAMKDLPESDDAVAQWCRDIYVEKDAFLDKHNAEDTFSGQ





EVHHIGRPIKSLLVVISWVVVIIFGALKFLRWSSLLSSWKGKAFSVIGL





GIVTLLVNILILSSQAERSNPAKVVPAKLKTELSPSKKVTNKEN





ChsLPAAT1


SEQ ID NO: 61


MAIPSAAVVFLFGLLFFASGLIINLVQAVCFVLIWPLSKNTCRRINIVF





QDMLLSELLWLFHWRAGAKLKFFTDPETYRHMGKEHALVITNHRTDLDW





MIGWVLGEHLGCLGSILSVVKKSTKFLPVLGWSMWFSEYLFLERNWAKD





KSTFKSHIERLEDFPQPFWFGIFVEGTRFTRAKLLAAQQYAASSGLPVP





RNVLIPHTKGFVSSVSHMRSFVPAVYETTMTFPKTSPPPTLLKLFEGQP





LVLHIHMKRHAMKDIPESDDAVAQWCRDKFVEKDALLDKHNAEDTFGGL





EVHIGRSIKSLMVVICWVVVIIFGALKFLQWSSLLSSWKGIAFIGIGLG





IVNLLVHVLILSSQAERSAPTKVAPAKLKTKLLSSKKITNKEN





ChsLPAAT2


SEQ ID NO: 62 


MAIPSAAVVFLFGLLFFASGLIINLVQAVCFVLIWPLSKNTCRRINIVF





QDMLLSELLWLFHWRAGAKLKFFTDPETYRHMGKEHALVITNHRTDLDW





MIGWVLGEHLGCLGSILSVVKKSTKFLPVLGWSMWFSEYLFLERNWAKD





KSTFKSHIERLEDFPQPFWFGIFVEGTRFTRAKLLAAQQYAASSGLPVP





RNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTMLRMFKGQS





SVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQ





ELQDIGRPIKSLVVVISWAALVVFGAVKFLQWSSLLSSWKGLAFSGIGL





GIITLLMHILILFSQSERSTPAKVAPAKPKREGESSKTEMDKEN





CcaleLPAAT1a


SEQ ID NO: 63


MAIPAAAVVFLFGLLFFPSGLIINLFQAVCFVLIWPFSRNTCRRINIVF





QEMLLSELLWLFHWRAGAKLKLFADPETYRHMGKEHALLITNHRTDLDW





MIGWALGQHLGCLGSILSVVKKSTKFLPSHIERLEDFPQPFWMAIFVEG





TRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSCVSHMRSFVPAVY





ETTMTFPKTSPPPTLLKLFEGQPIVLHVHMKRHAMKDIPESDEAVAQWC





RDKFVEKDSLLDKHNAGDTFSCQEIHIGRPIKSLMVVISWVVVIIFGAL





KFLQWSSLLSSWKGIAFSGIGLGIVTLLVHILILSSQAERSTPAKVAPA





KLKTELSSSTKVTNKEN





CcaleLPAAT1b


SEQ ID NO: 64 


MAIPAAAVVFLFGLLFFPSGLIINLFQAVCFVLIWPFSRNTCRRINIVF





QEMLLSELLWLFHWRAGAKLKLFADPETYRHMGKEHALLITNHRTDLDW





MIGWALGQHLGCLGSILSVVKKSTKFLPVLGWSMWFSEYLFLERNWAKD





KSTFKSHIERLEDFPQPFWMAIFVEGTRFTRAKLLAAQQYAASSGLPVP





RNVLIPRTKGFVSCVSHMRSFVPAVYETTMTFPKTSPPPTLLKLFEGQP





IVLHVHMKRHAMKDIPESDEAVAQWCRDKFVEKDSLLDKHNAGDTFSCQ





EIHIGRPIKSLMVVISWVVVIIFGALKFLQWSSLLSSWKGIAFSGIGLG





IVTLLVHILILSSQAERSTPAKVAPAKLKTELSSSTKVTNKEN





CcaleLPAAT2


SEQ ID NO: 65


LSLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRINRVVAELLWLELVWL





IDWWAGVKIKVFTDHETFRLMGTEHALVISNHKSDIDWLVGWVLAQRSG





CLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLNRL





KDYPLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGF





VSSVSHMRSFVPAIYDVTVAIPKTSPPPTMLRMFKGQSSVLHVHLKRHL





MKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPIKS





LVVVISWAALVVFGAVKFLQWSSLLSSWKGLAFSGIALGIITLLMHILI





LFSQSERSTPAKVAPAKPKKEGESSKTETDKEN





ChtLPAAT1a


SEQ ID NO: 66


MAIPAAAVIFLFSILFFASGLIINLVQAVCFVLIWPLSKNTCRRINLVF





QEMLLSELLGLFHWRAGAKLKLYTDPETYPLLGKEHALLMINHRTDLDW





MIGWVLGQHLGCLGSILSVVKKSTKFLPVLGWSMWFSEYLFLERNWAKD





KSTFKSHIERLEDFPQPFWMAIFVEGTRFTRAKLLAAQQYAASSGLPVP





RNVLIPHTKGFVSTVSHMRSFVPAVYDTTLTFPKTSPPPTLLNLFAGQP





IVLHIHIKRHAMKDIPESDDAVAQWCRDKFVEKDALLDKHNAEDAFSDQ





EFPISRSIKSLMVVISWVMVIIFGALKFLQWSSLLSSWKGKAFSVIAVG





IVTLLMHMSILSSQAERSNPAKVALPKLKTELPSSKKVLNKEN





ChtLPAAT1b


SEQ ID NO: 67


MAIPAAAVIFLFSILFFASGLIINLVQAVCFVLIWPLSKNTCRRINLVF





QEMLLSELLGLFHWRAGAKLKLYTDPETYPLLGKEHALLMINHRTDLDW





MIGWVLGQHLGCLGSILSVVKKSTKFLPVLGWSMWFSEYLFLERNWAKD





KSTFKSHIERLEDFPQPFWMAIFVEGTRFTRAKLLAAQQYAASSGLPVP





RNVLIPHTKGFVSTVSHMRSFVPAVYDTTLTFPKTSPPPTLLNLFAGQP





IVLHIHIKRHAMKDIPESDDAVAQWCRDKFVEKDALLDKHNAEDAFSDQ





EFPISRSIKSLMVVISWVMVIIFGALKFLQWSSLLSSWKGIAFSGIGLG





IVTLLMHILILSSQAERSTPAKVAQAKVKTELPSSTKVTNKGN





CwLPAAT1


SEQ ID NO: 68


MAIPAAAVIFLFGILFFASGLIINLVQAVCFVLIWPLSKNTCRRINLVF





QEMLLSELLWLFHWRAGAELKLFTDPETYRLLGKEHALVMTNHRTDLDW





MIGWVTGQHLGCLGSILSIAKKSTKFLPVLGWSMWFSEYLFLERNWAKD





KSTFKSHIERLEDFPQPFWMAIFVEGTRFTRAKLLAAQQYAASSGLPVP





RNVLIPHTKGFVSSVCHMRSFVPAVYDTTLTFPKNSPPPTLLNLFAGQP





IVLHIHIKRHAMKDMPKSDDAVAQWCRDKFVKKDALLDKHNTEDTFSDQ





EFPIGRPIKSLMVVISWVVVIIFGTLKFLQWSSLLSSWKGIAFSGIGLG





IVTLLVHILILSSQAERSTPPKVAPAKLKTELSSTTKVINKGN





CwLPAAT2b


SEQ ID NO: 69


LGLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRLNRVVAELLWLELVWL





IDWWAGVKIKVFTDHETFHLMGKEHALVICNHKSDIDWLVGWVLAQRSG





CLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLNRL





KDYPLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGF





RVSSVSHMRSFVPAIYDVTVAIPKTSPPPTMLMFKGQSSVDALLDKHNA





DDTFSGQELHDIGRPIKSLLVVISWAVLVVFGAVKFLQWSSLLSSWKGI





AFSGIGLGIVTLLVHILILSSQAERSTSAKVAQAKVKTELSSSKKVKNK





GN





CwLPAAT2a


SEQ ID NO: 70


LGLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRLNRVVAELLWLELVWL





IDWWAGVKIKVFTDHETFHLMGKEHALVICNHKSDIDWLVGWVLAQRSG





CLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLNRL





KDYPLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGF





VSSVSHMRSFVPAIYDVTVAIPKTSPPPTMLRMFKGQSSVLHVHLKRHL





MKDLPESDDAVAQWCRDIFVEKDVLLDKHNAEDTFSGQELQDIGRPVKS





LLVVISWTLLVIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILI





LFSQSERSTPAKVAPAKPKKEGESSKMETDKEN





CgLPAAT1a


SEQ ID NO: 71


LAGWMGSSSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDE





STLKSGLNRLKDYPLPFWLALFVEGTRFTRAKLLAAQQYAASLGLPVPR





NVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTMIRMFKGQSS





VLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQE





LQDTGRPIKSLLVVISWAVLEVFGAVKFLQWSSLLSSWKGLAFSGIGLG





IITLLMHILILFSQSERSTPAKVAPAKPKNEGESSKAEMEKEK





CgLPAAT1b


SEQ ID NO: 72


LAGWMGSSSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDE





STLKSGLNRLKDYPLPFWLALFVEGTRFTRAKLLAAQQYAASLGLPVPR





NVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTMIRMFKGQSS





VLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQE





LQDTGRPIKSLLVRCFLVLSLIYLNGIMLKLRGPCLQVVISWAVLEVFG





AVKFLQWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTPAKVA





PAKPKNEGESSKAEMEKEK





CgLPAAT1c


SEQ ID NO: 73


LAGWMGSSSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDE





STLKSGLNRLKDYPLPFWLALFVEGTRFTRAKLLAAQQYAASLGLPVPR





NVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTMIRMFKGQSS





VLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQE





LQDTGRPIKSLLVVTSWAVLVISGAVKFLQWSSLLSSWKGLAFSGIGLG





IVTLLMHILILFSQSERSTPAKVAPAKPKKEGESSKTEKDKEN





CpalLPAAT1


SEQ ID NO: 74


LGLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRINRVVAELLWLELVWL





IDWWAGVKIKVFTDHETLSLMGKEHALVICNHKSDIDWLVGWVLAQRSG





CLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDENTLKSGLNRL





KDYPLPFWLALFVEGTRFTRAKLLAAQQYATSSGLPVPRNVLIPRTKGF





VSSVSHMRSFVPAIYDVTVAIPKTSPPPTMLRMFKGQSSVLHVHLKRHL





MKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTGRPIKS





LLVVISWAVLVIFGAVKFLQWSSLLSSWKGLAFSGVGLGIITLLMHILI





LFSQSERSTPAKVAPAKPKKDGESSKTEIEKEN





CaLPAAT1


SEQ ID NO: 75


MAIAAAAVIVPVSLLFFVSGLIVNLVQAVCFVLIRPLFKNTYRRINRVV





AELLWLELVWLIDWWAGVKIKVFTDHETFHLMGKEHALVICNHKSDIDW





LVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKD





ESTLKSGLNRLKDYPLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVP





RNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTLLRMFKGQS





SVLHVHLKRHQMNDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQ





ELQDTGRPIKSLLIVISWAVLVVFGAVKFLQWSSLLSSWKGLAFSGIGL





GVITLLMHILILFSQSERSTPAKVAPAKPKIEGESSKTEMEKEH





CaLPAAT3


SEQ ID NO: 76


MTIASAAVVFLFGILLFTSGLIINLFQAFCSVLVWPLSKNAYRRINRVF





AEFLPLEFLWLFHWWAGAKLKLFTDPETFRLMGKEHALVIINHKIELDW





MVGWVLGQHLGCLGSILSVAKKSTKFLPVFGWSLWFSEYLFLERNWAKD





KKTLKSHIERLKDYPLPFWLIIFVEGTRFTRTKLLAAQQYAASAGLPVP





TRNVLIPHTKGFVSSVSHMRSFVPAIYDVTVAFPKSPPPTMLKLFEGHF





VELHVHIKRHAMKDLPESEDAVAQWCRDKFVEKDALLDKHNAEDTFSGQ





EVHHVGRPIKSLLVVISWVVVIIFGALKFLQWSSLLSSWKGIAFSVIGL





GTVALLMQILILSSQAERSIPAKETPANLKTELSSSKKVTNKEN





SalLPAAT1


SEQ ID NO: 77


MAIGAAAIVVPLGLLFMLSGLMVNLIQAICFILVRPLSKNMYRRVNRVV





VELLWLELIWLIDWWGGVKVDVYADSETFQSLGKEHALVVSNHKSDIDW





LVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYVFLERSWAKD





ESTLKSGLQRLKDFPRPFWLALFVEGTRFTQAKLLAAQEYAASTGLPIP





RNVLIPRTKGFVSAVSNMRSFVPAIYDVTVAIPKTQPSPTMLRIFNRQP





SVVHVRIKRHSMNQLPPTDEGVAQWCKDIFVAKDALLDRHLAEGKFDEK





EFKRIRRPIKSLLVISSWSFLLLFGVFKFLKWSALLSTWKGVAVSTAVL





LLVTVVMYMFILFSQSERSSPRKVAPSGPENG





CleptLPAAT1


SEQ ID NO: 78 


MAIPAAVVIFLFGLLFFSSGLIINLFQALCFVLIWPLSKNAYRRINRVF





AELLLSELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVIINHMTELDW





MVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWDKD





KSTLKSHIERLKDYPLPFWLVIFAEGTRFTRTKLLAAQQYAASSGLPVP





RNVLIPRTKGFVSCVNHMRSFVPAVYDLTVAFPKTSPPPTLLNLFEGQS





VVLHVHIKRHAMKDLPESDDAVAQWCRDKFVEKDALLDKHNAEDTFSSQ





EVHHTGSRPIKSLLVVISWVVVITFGALKFLQWSSWKGKAFSVIGLGIV





TLLMHMLILSSQAERSKPAKVTQAKLKTELSISKKVTDKEN





ClopLPAAT1


SEQ ID NO: 79


MAIAAAAVIFLFGLLFFASGLIINLFQALCFVLIRPLSKNAYRRINRVF





AELLLSELLCLFDWWAGAKLKLFTDPETLRLMGKEHALIIINHMTELDW





MVGWVMGQHFGCLGSIISVAKKSTKFLPVLGWSMWFSEYLYLERSWAKD





KSTLKSHIERLKDYPLPFWLVIFVEGTRFTRTKLLAAQEYAASSGLPVP





RNVLIPRTKGFVSCVNHMRSFVPAVYDVTVAFPKTSPQPTLLNLFEGRS





IVLHVHIKRHAMKDLPESDDAVAQWCRDKFVEKDALLDKHNAEDTFSGQ





EVHHTGRRPIKSLLVVMSWVVVTTFGALKFLQWSSWKGKAFSVIGLGIV





TLLMHVLILSSQAERSNPAKVVQAELNTELSISKKVTNKGN





CcrasLPAAT1a


SEQ ID NO: 80


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPLWKNAYRRINRVF





AELLLSELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVIINHMTELDW





MVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWDKD





KSTLKSHIERLKDYPLPFWLVIFAEGTRFTRTKLLAAQQYAASSGLPVP





RNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTLIRMFKGQS





SVLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQ





ELQDTGRPIKSLLVVISWAVLEVFGAVKFLQWSSLLSSWKGLAFSGIGL





GIITLLMHILILFSQSERSTPAKVAPAKAK





CcrasLPAAT1b


SEQ ID NO: 81


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPLWKNAYRRINRVF





AELLLSELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVIINHMTELDW





MVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWDKD





GKSTLKSHIERLKDYPLPFWLVIFAETRFTRTKLLAAQQYAASSGLPVP





RNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTLIRMFKGQS





SVLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQ





ELQDTGRPIKSLLVRCFLVLSLIYLNGIILKLCGLCLQVVISWAVLEVF





GAVKFLQWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTPAKV





APAKAK





CcrasLPAAT1c


SEQ ID NO: 82


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPLWKNAYRRINRVF





AELLLSELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVIINHMTELDW





MVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWDKD





KSTLKSHIERLKDYPLPFWLVIFAEGTRFTRTKLLAAQQYAASSGLPVP





RNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTLIRMFKGQS





SVLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQ





ELQDTGRPIKSLLVVISWAVLEVFGAVKFLQWSSLLSSWKGLAFSGIGL





GIITLLMHILILFSQSERSTPAKVAPAKAKMEGESSKTEMEMEK





CcrasLPAAT1d


SEQ ID NO: 83


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPLWKNAYRRINRVF





AELLLSELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVIINHMTELDW





MVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWDKD





KSTLKSHIERLKDYPLPFWLVIFAEGTRFTRTKLLAAQQYAASSGLPVP





RNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTLIRMFKGQS





SVLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQ





ELQDTGRPIKSLLVRCFLVLSLIYLNGIILKLCGLCLQVVISWAVLEVF





GAVKFLQWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTPAKV





APAKAKMEGESSKTEMEMEK





CkoeLPAAT1


SEQ ID NO: 84 


MAIAAAPVIFLFGLLFFASGLIINLFQAICFVLIWPLSKNAYRRINRVF





AELLLSELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVITNHKIDLDW





MIGWILGQHFGCLGSVISIAKKSTKFLPIFGWSLWFSEYLFLERNWAKD





KRTLKSHIERMKDYPLPLWLILFVEGTRFTRTKLLAAQQYAASSGLPVP





RNVLIPHTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTLIRMFKGQS





SVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQ





ELQETGRPIKSLLVVISWAVLEVYGAVKFLQWSSLLSSWKGLAFSGIGL





GLITLLMHILILFSQSERSTPAKVAPAKPKKEGESSKTEMEKEK





CkoeLPAAT2


SEQ ID NO: 85


MHVLLEMVTFRFSSFFVFDNVQALCFVLIWPLSKSAYRKINRVFAELLL





SELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVITNHKIDLDWMIGWI





LGQHFGCLGSVISIAKKSTKFLPIFGWSLWFSEYLFLERNWAKDKRTLK





SHIERMKDYPLPLWLILFVEGTRFTRTKLLAAQQYAASSGLPVPRNVLI





PHTKGFVSSVSHMRSFVPAVYDVTVAFPKTSPPPTMLSLFEGQSVVLHV





THIKRHAMKDLPDSDDAVAQWCRDKFVEKDALLDKHNAEDFSGQEVHHV





GRPIKSLLVVISWMVVIIFGALKFLQWSSLLSSWKGKAFSAIGLGIATL





LMHVLVVFSQADRSNPAKVPPAKLNTELSSSKKVTNKEN






Example 5: Expression of LPAATs to Improve Sn-2 Selectivity in Prototheca moriformis

In the example we disclose genetically engineered Prototheca moriformis strains in which we have modified fatty acid and triacylglycerol biosynthesis to maximize the accumulation of Stearoyl-Oleoyl-Stearoyl (SOS) TAGs, and minimize the production of trisaturated TAGs. Oils from these strains resemble plant seed oils known as “structuring fats”, which have high proportions of Saturated-Oleate-Saturated TAGs and low levels of trisaturates. These structuring fats (often called “butters”) are generally solid at room temperature but melt sharply between 35-40° C.


Strains with high SOS and low trisaturates were obtained by three successive transformations, beginning with S5100, a classically improved derivative of S376 (improved to increase lipid titer), a wild type isolate of Prototheca moriformis. S5100 was transformed with a construct to which increased expression of PmKASII-1 and ablated the SAD2-1 allele. The resultant strain, S5780, produced oil with increased C18:0 and lower C16:0 content relative to S5100. S5780 was prepared according to the methods disclosed in co-owned application WO2013/158938 and as described below. C18:0 levels were increased further by transformation of S5780 with a construct overexpressing the C18:0-specific FATA1 thioesterase gene from Garcinia mangostana (GarmFATA1), generating strain S6573. S6573 was disclosed in co-owned application WO2015/051319. Finally, accumulation of trisaturated TAGS was reduced by expression of genes encoding LPAATs from Brassica napus, Theobroma cacao, Garcinia hombororiana or Garcinia indica in S6573 as described below.


Construct Used for SAD2 Knockout and PmKASII-1 Overexpression in S5100 to Produce S5780

The sequence of the transforming DNA from the SAD2-1 ablation, PmKASII over-expression construct, pSZ2624, is shown below. The construct is written as: pSZ2624: SAD2-1vD::PmKASII-1tp_PmKASII-1_FLAG-CvNR:CpACT-AtTHIC-CpEF1a::SAD2-1vE Relevant restriction sites are indicated in lowercase, bold, and are from 5′-3′ PmeI, SpeI, AscI, ClaI, SacI, AvrII, EcoRV, AflII, KpnI, XbaI, MfeI, BamHI, BspQI and PmeI. Underlined sequences at the 5′ and 3′ flanks of the construct represent genomic DNA from P. moriformis that enable targeted integration of the transforming DNA via homologous recombination at the SAD2-1 locus. The SAD2-1 5′ integration flank contained the endogeneous SAD2-1 promoter, enabling the in situ activation of the PmKASII gene. Proceeding in the 5′ to 3′ direction, the region encoding the PmKASII plastid targeting sequence is indicated by lowercase, underlined italics. The sequence that encodes the mature PmKASII polypeptide is indicated with lowercase italics, while a 3×FLAG epitope encoding sequence is in bold italics. The initiator ATG and terminator TGA for PmKASII-FLAG are indicated by uppercase italics. The 3′ UTR of the Chlorella vulgaris nitrate reductase (CvNR) gene is indicated by small capitals. Two spacer regions are represented by lowercase text. The CpACT promoter driving the expression of the AtTHIC gene (encoding 4-amino-5-hydroxymethyl-2-methylpyrimidine synthase activity, thereby permitting the strain to grow in the absence of exogeneous thiamine) is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for AtTHIC are indicated by uppercase italics, while the coding region is indicated with lowercase italics. The 3′ UTR of the Chlorella protothecoides EF1a (CpEF1a) gene is indicated by small capitals. The use of THIC as a selection marker was described in co-owned applications WO2011/150410 and WO2013/150411.









pSZ2624 Nucleotide sequence of the transforming 


DNA


SEQ ID NO: 86



gtttaaac
GCCGGTCACCACCCGCATGCTCGTACTACAGCGCACGCACC







GCTTCGTGATCCACCGGGTGAACGTAGTCCTCGACGGAAACATCTGGTT







CGGGCCTCCTGCTTGCACTCCCGCCCATGCCGACAACCTTTCTGCTGTT







ACCACGACCCACAATGCAACGCGACACGACCGTGTGGGACTGATCGGTT







CACTGCACCTGCATGCAATTGTCACAAGCGCTTACTCCAATTGTATTCG







TTTGTTTTCTGGGAGCAGTTGCTCGACCGCCCGCGTCCCGCAGGCAGCG







ATGACGTGTGCGTGGCCTGGGTGTTTCGTCGAAAGGCCAGCAACCCTAA







ATCGCAGGCGATCCGGAGATTGGGATCTGATCCGAGTTTGGACCAGATC







CGCCCCGATGCGGCACGGGAACTGCATCGACTCGGCGCGGAACCCAGCT







TTCGTAAATGCCAGATTGGTGTCCGATACCTGGATTTGCCATCAGCGAA







ACAAGACTTCAGCAGCGAGCGTATTTGGCGGGCGTGCTACCAGGGTTGC







ATACATTGCCCATTTCTGTCTGGACCGCTTTACTGGCGCAGAGGGTGAG







TTGATGGGGTTGGCAGGCATCGAAACGCGCGTGCATGGTGTGCGTGTCT







GTTTTCGGCTGCACGAATTCAATAGTCGGATGGGCGACGGTAGAATTGG







GTGTGGCGCTCGCGTGCATGCCTCGCCCCGTCGGGTGTCATGACCGGGA







CTGGAATCCCCCCTCGCGACCATCTTGCTAACGCTCCCGACTCTCCCGA







CCGCGCGCAGGATAGACTCTTGTTCAACCAATCGACA
actagt
ATGcag







accgcccaccagcgcccccccaccgagggccactgatcggcgcccgcct







gcccaccgcctcccgccgcgccgtgcgccgcgcctggtcccgcatcgcc







cgcg
ggcgcgcc
gccgccgccgccgacgccaaccccgcccgccccgagc







gccgcgtggtgatcaccggccagggcgtggtgacctccctgggccagac







catcgagcagactactcctccctgctggagggcgtgtccggcatctccc







agatccagaagacgacaccaccggctacaccaccaccatcgccggcgag







atcaagtccctgcagctggacccctacgtgcccaagcgctgggccaagc







gcgtggacgacgtgatcaagtacgtgtacatcgccggcaagcaggccct







ggagtccgccggcctgcccatcgaggccgccggcctggccggcgccggc







ctggaccccgccctgtgcggcgtgctgatcggcaccgccatggccggca







tgacctccacgccgccggcgtggaggccctgacccgcggcggcgtgcgc







aagatgaaccccactgcatccccactccatctccaacatgggcggcgcc







atgctggccatggacatcggatcatgggccccaactactccatctccac







cgcctgcgccaccggcaactactgcatcctgggcgccgccgaccacatc







cgccgcggcgacgccaacgtgatgctggccggcggcgccgacgccgcca







tcatcccctccggcatcggcggcttcatcgcctgcaaggccctgtccaa







gcgcaacgacgagcccgagcgcgcctcccgcccctgggacgccgaccgc







gacggatcgtgatgggcgagggcgccggcgtgctggtgctggaggagct







ggagcacgccaagcgccgcggcgccaccatcctggccgagctggtgggc







ggcgccgccacctccgacgcccaccacatgaccgagcccgacccccagg







gccgcggcgtgcgcctgtgcctggagcgcgccctggagcgcgcccgcct







ggcccccgagcgcgtgggctacgtgaacgcccacggcacctccaccccc







gccggcgacgtggccgagtaccgcgccatccgcgccgtgatcccccagg







actccctgcgcatcaactccaccaagtccatgatcggccacctgctggg







cggcgccggcgccgtggaggccgtggccgccatccaggccctgcgcacc







ggctggctgcaccccaacctgaacctggagaaccccgcccccggcgtgg







accccgtggtgctggtgggcccccgcaaggagcgcgccgaggacctgga







cgtggtgctgtccaactccttcggcttcggcggccacaactcctgcgtg







atcttccgcaagtacgacgag
custom-character
custom-character







custom-character
custom-character
custom-character
custom-character







TGA
atcgatAGATCTCTTAAGGCAGCAGCAGCTCGGATAGTATCGACA






CACTCTGGACGCTGGTCGTGTGATGGACTGTTGCCGCCACACTTGCTGC





CTTGACCTGTGAATATCCCTGCCGCTTTTATCAAACAGCCTCAGTGTGT





TTGATCTTGTGTGTACGCGCTTTTGCGAGTTGCTAGCTGCTTGTGCTAT





TTGCGAATACCACCCCCAGCATCCCCTTCCCTCGTTTCATATCGCTTGC





ATCCCAACCGCAACTTATCTACGCTGTCCTGCTATCCCTCAGCGCTGCT





CCTGCTCCTGCTCACTGCCCCTCGCACAGCCTTGGTTTGGGCTCCGCCT





GTATTCTCCTGGTACTGCAACCTGTAAACCAGCACTGCAATGCTGATGC





ACGGGAAGTAGTGGGATGGGAACACAAATGGAAAGCTTAATTAAgagct






ccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctg






tcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgct





tggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgtt





ggcgaggtggcaggtgacaatgatcggtggagctgatggtcgaaacgtt





cacagcctaggtgatatccatcttaaggatctaagtaagattcgaagcg





ctcgaccgtgccggacggactgcagccccatgtcgtagtgaccgccaat





gtaagtgggctggcgtaccctgtacgtgagtcaacgtcactgcacgcgc





accaccctctcgaccggcaggaccaggcatcgcgagatacagcgcgagc





cagacacggagtgccgagctatgcgcacgctccaactaggtaccagttt





aggtccagcgtccgtggggggggacgggctgggagcttgggccgggaag





ggcaagacgatgcagtccctctggggagtcacagccgactgtglgtgtt





gcactgtgcggcccgcagcactcacacgcaaaatgcctggccgacaggc





aggccctgtccagtgcaacatccacggtccctctcatcaggctcacctt





gctcattgacataacggaatgcgtaccgctctttcagatctgtccatcc





agagaggggagcaggctccccaccgacgctgtcaaacttgcttcctgcc





caaccgaaaacattattgtttgagggggggggggggggggcagattgca





tggcgggatatctcgtgaggaacatcactgggacactgtggaacacagt





gagtgcagtatgcagagcatgtatgctaggggtcagcgcaggaaggggg





cctttcccagtctcccatgccactgcaccgtatccacgactcaccagga





ccagcttcttgatcggcttccgctcccgtggacaccagtglgtagcctc





tggactccaggtatgcgtgcaccgcaaaggccagccgatcgtgccgatt





cctgggtggaggatatgagtcagccaacttggggctcagagtgcacact





ggggcacgatacgaaacaacatctacaccgtgtcctccatgctgacaca





ccacagcttcgctccacctgaatgtgggcgcatgggcccgaatcacagc





caatgtcgctgctgccataatgtgatccagaccctctccgcccagatgc





cgagcggatcgtgggcgctgaatagattcctgtttcgatcactgtttgg





gtcctttccttttcgtctcggatgcgcgtctcgaaacaggctgcgtcgg





gctttcggatcccttttgctccctccgtcaccatcctgcgcgcgggcaa





gttgcttgaccctgggctgataccagggttggagggtattaccgcgtca





ggccattcccagcccggattcaattcaaagtctgggccaccaccctccg





ccgctctgtctgatcactccacattcgtgcatacactacgttcaagtcc





tgatccaggcgtgtctcgggacaaggtgtgcttgagtttgaatctcaag





gacccactccagcacagctgctggttgaccccgccctcgcaatctagaA






TGgccgcgtccgtccactgcaccctgatgtccgtggtctgcaacaacaa







gaaccactccgcccgccccaagctgcccaactcctccctgctgcccgga







tcgacgtggtggtccaggccgcggccacccgatcaagaaggagacgacg







accacccgcgccacgctgacgacgacccccccacgaccaactccgagcg







cgccaagcagcgcaagcacaccatcgacccctcctcccccgacaccagc







ccatcccctccacgaggagtgatccccaagtccacgaaggagcacaagg







aggtggtgcacgaggagtccggccacgtcctgaaggtgcccaccgccgc







gtgcacctgtccggcggcgagcccgccacgacaactacgacacgtccgg







cccccagaacgtcaacgcccacatcggcctggcgaagctgcgcaaggag







tggatcgaccgccgcgagaagctgggcacgccccgctacacgcagatgt







actacgcgaagcagggcatcatcacggaggagatgctgtactgcgcgac







gcgcgagaagctggaccccgagacgtccgctccgaggtcgcgcggggcc







gcgccatcatcccctccaacaagaagcacctggagctggagcccatgat







cgtgggccgcaagacctggtgaaggtgaacgcgaacatcggcaactccg







ccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccac







catgtggggcgccgacaccatcatggacctgtccacgggccgccacatc







cacgagacgcgcgagtggatcctgcgcaactccgcggtccccgtgggca







ccgtccccatctaccaggcgctggagaaggtggacggcatcgcggagaa







cctgaactgggaggtgaccgcgagacgctgatcgagcaggccgagcagg







gcgtggactacttcacgatccacgcgggcgtgctgctgcgctacatccc







cctgaccgccaagcgcctgacgggcatcgtgtcccgcggcggctccatc







cacgcgaagtggtgcctggcctaccacaaggagaacttcgcctacgagc







actgggacgacatcctggacatctgcaaccagtacgacgtcgccctgtc







catcggcgacggcctgcgccccggctccatctacgacgccaacgacacg







gcccagacgccgagctgctgacccagggcgagctgacgcgccgcgcgtg







ggagaaggacgtgcaggtgatgaacgagggccccggccacgtgcccatg







cacaagatccccgagaacatgcagaagcagctggagtggtgcaacgagg







cgcccactacaccctgggccccctgacgaccgacatcgcgcccggctac







gaccacatcacctccgccatcggcgcggccaacatcggcgccctgggca







ccgccctgctgtgctacgtgacgcccaaggagcacctgggcctgcccaa







ccgcgacgacgtgaaggcgggcgtcatcgcctacaagatcgccgcccac







gcggccgacctggccaagcagcacccccacgcccaggcgtgggacgacg







cgctgtccaaggcgcgatcgagaccgctggatggaccagacgcgctgtc







cctggaccccatgacggcgatgtccaccacgacgagacgctgcccgcgg







acggcgcgaaggtcgcccacactgctccatgtgcggccccaagactgct







ccatgaagatcacggaggacatccgcaagtacgccgaggagaacggcta







cggctccgccgaggaggccatccgccagggcatggacgccatgtccgag







gagacaacatcgccaagaagacgatctccggcgagcagcacggcgaggt







cggcggcgagatctacctgcccgagtcctacgtcaaggccgcgcagaag







TGA
caattgACGGAGCGTCGTGCGGGAGGGAGTGTGCCGAGCGGGGAGT






CCCGGTCTGTGCGAGGCCCGGCAGCTGACGCTGGCGAGCCGTACGCCCC





GAGGGTCCCCCTCCCCTGCACCCTCTTCCCCTTCCCTCTGACGGCCGCG





CCTGTTCTTGCATGTTCAGCGACggatccTAGGGAGCGACGAGTGTGCG






TGCGGGGCTGGCGGGAGTGGGACGCCCTCCTCGCTCCTCTCTGTTCTGA







ACGGAACAATCGGCCACCCCGCGCTACGCGCCACGCATCGAGCAACGAA







GAAAACCCCCCGATGATAGGTTGCGGTGGCTGCCGGGATATAGATCCGG







CCGCACATCAAAGGGCCCCTCCGCCAGAGAAGAAGCTCCTTTCCCAGCA







GACTCCTTCTGCTGCCAAAACACTTCTCTGTCCACAGCAACACCAAAGG







ATGAACAGATCAACTTGCGTCTCCGCGTAGCTTCCTCGGCTAGCGTGCT







TGCAACAGGTCCCTGCACTATTATCTTCCTGCTTTCCTCTGAATTATGC







GGCAGGCGAGCGCTCGCTCTGGCGAGCGCTCCTTCGCGCCGCCCTCGCT







GATCGAGTGTACAGTCAATGAATGGTCCTGGGCGAAGAACGAGGGAATT







TGTGGGTAAAACAAGCATCGTCTCTCAGGCCCCGGCGCAGTGGCCGTTA







AAGTCCAAGACCGTGACCAGGCAGCGCAGCGCGTCCGTGTGCGGGCCCT







GCCTGGCGGCTCGGCGTGCCAGGCTCGAGAGCAGCTCCCTCAGGTCGCC







TTGGACGGCCTCTGCGAGGCCGGTGAGGGCCTGCAGGAGCGCCTCGAGC







GTGGCAGTGGCGGTCGTATCCGGGTCGCCGGTCACCGCCTGCGACTCGC







CATCCgaagagcgtttaaac







Construct D1683 (pSZ2624), was transformed into S5100. Primary transformants were clonally purified and grown under standard lipid production conditions at pH 5. Integration of pSZ2624 at the SAD2-1 locus was verified by DNA blot analysis. The fatty acid profiles and lipid titers of lead strains were assayed in 50-mL shake flasks (Table 8). Simultaneous ablation of SAD2-1 and over-expression of PmKASII (driven in situ by the SAD2-1 promoter) resulted in C18:0 levels up to 26.1%. C16:0 accumulation was reduced from 15.3% in S5100 to <6% the strains derived from D1683, demonstrating that PmKASII-1 over-expression promoted the elongation of C16:0 to C18:0. S5780 was chosen for further development as it had the highest lipid titer relative to the S5100 parent.









TABLE 8







Fatty acid profiles of SAD2-1 ablation, PmKASII-1 overexpression


strains derived from D1683-1, compared to the S5100 parent.









Primary

S5100; T531; D1683.1













Strain
S5100
S5780
S5781
S5782
S5783
S5784

















Fatty Acid
C14:0
0.7
0.7
0.8
0.7
0.7
0.7


Area %
C16:0
15.3

5.9


6.0


6.0


5.8


5.8




C16:1
0.5
0.1
0.0
0.1
0.0
0.0



C18:0
4.0

25.6


26.1


26.0


25.0


25.3




C18:1

71.0

55.7
54.5
54.6
56.3
55.6



C18:2
7.3
8.0
8.5
8.5
8.1
8.4



C18:3 α
0.5
0.7
0.8
0.8
0.7
0.7



C20:0
0.3

1.8


1.9


1.8


1.8


1.8




C20:1
0.2
0.6
0.6
0.6
0.7
0.7



C22:0
0.1
0.2
0.3
0.3
0.3
0.2



C24:0
0.1
0.4
0.4
0.4
0.4
0.4



saturates
20.6
34.7
35.6
35.4
34.1
34.5









We disclose additional methods of elevating C18:0 levels that can be used in conjunction with SAD2 knockout and KASII over-expression. Previously we described acyl-ACP thioesterases from Brassica napus (BnFATA) (Co-owned application WO2012/106560), Garcinia mangostana (GarmFATA1) (Co-owned application WO2015/051319) and Theobroma cacao (TcFATA) (Co-owned application WO2013/158938) with specificity towards cleavage of C18:0-ACP, and we observed that average C18:0 levels were higher in strains in which we replaced the native BnFATA transit peptide with the Chlorella protothecoides SAD1 transit peptide (CpSAD1tp). A DNA construct was made for expression of a chimeric gene encoding CpSAD1tp fused to the predicted GarmFATA1 mature polypeptide and a FLAG tag sequence.


The sequence of the transforming DNA from the GarmFATA1 expression construct pSZ3204 is shown below. The construct is written as pSZ3204: 6SA::CrTUB2-ScSUC2-CvNR:PmSAD2-2-CpSAD1tp_GarmFATA1_FLAG-CvNR::6SB. Relevant restriction sites are indicated in lowercase, bold, and are from 5′-3′ BspQI, KpnI, XbaI, MfeI, BamHI, AvrII, EcoRV, SpeI, AscI, ClaI, AflII, SacI and BspQI. Underlined sequences at the 5′ and 3′ flanks of the construct represent genomic DNA from P. moriformis that enable targeted integration of the transforming DNA via homologous recombination at the 6S locus. Proceeding in the 5′ to 3′ direction, the CrTUB2 promoter driving the expression of Saccharomyces cerevisiae SUC2 (ScSUC2) gene, enabling strains to utilize exogeneous sucrose, is indicated by lowercase, boxed text. The initiator ATG and terminator TGA of ScSUC2 are indicated by uppercase italics, while the coding region is represented by lowercase italics. The 3′ UTR of the CvNR gene is indicated by small capitals. A spacer region is represented by lowercase text. The P. moriformis SAD2-2 (PmSAD2-2) promoter driving the expression of the chimeric CpSAD1tp_GarmFATA1_FLAG gene is indicated by lowercase, boxed text. The initiator ATG and terminator TGA are indicated by uppercase italics; the sequence encoding CpSAD1tp is represented by lowercase, underlined italics; the sequence encoding the GarmFATA1 mature polypeptide is indicated by lowercase italics; and the 3×FLAG epitope tag is represented by uppercase, bold italics. A second CvNR 3′ UTR is indicated by small capitals.









pSZ3204


SEQ ID NO: 87



gctcttc
GCCGCCGCCACTCCTGCTCGAGCGCGCCCGCGCGTGCGCCGC







CAGCGCCTTGGCCTTTTCGCCGCGCTCGTGCGCGTCGCTGATGTCCATC







ACCAGGTCCATGAGGTCTGCCTTGCGCCGGCTGAGCCACTGCTTCGTCC







GGGCGGCCAAGAGGAGCATGAGGGAGGACTCCTGGTCCAGGGTCCTGAC







GTGGTCGCGGCTCTGGGAGCGGGCCAGCATCATCTGGCTCTGCCGCACC







GAGGCCGCCTCCAACTGGTCCTCCAGCAGCCGCAGTCGCCGCCGACCCT







GGCAGAGGAAGACAGGTGAGGGGGGTATGAATTGTACAGAACAACCACG







AGCCTTGTCTAGGCAGAATCCCTACCAGTCATGGCTTTACCTGGATGAC







GGCCTGCGAACAGCTGTCCAGCGACCCTCGCTGCCGCCGCTTCTCCCGC







ACGCTTCTTTCCAGCACCGTGATGGCGCGAGCCAGCGCCGCACGCTGGC







GCTGCGCTTCGCCGATCTGAGGACAGTCGGGGAACTCTGATCAGTCTAA







ACCCCCTTGCGCGTTAGTGTTGCCATCCTTTGCAGACCGGTGAGAGCCG







ACTTGTTGTGCGCCACCCCCCACACCACCTCCTCCCAGACCAATTCTGT







CACCTTTTTGGCGAAGGCATCGGCCTCGGCCTGCAGAGAGGACAGCAGT







GCCCAGCCGCTGGGGGTTGGCGGATGCACGCTCA
ggtaccattcttgcg






ctatgacacttccagcaaaaggtagggcgggctgcgagacggcttcccg





gcgctgcatgcaacaccgatgatgcttcgaccccccgaagctccttcgg





ggctgcatgggcgctccgatgccgctccagggcgagcgctgtttaaata





gccaggcccccgattgcaaagacattatagcgagctaccaaagccatat





tcaaacacctagatcactaccacttctacacaggccactcgagcttgtg





atcgcactccgctaagggggcgcctcttcctcttcgtttcagtcacaac





ccgcaaactctagaatatcaATGctgctgcaggccttcctgttcctgct






ggccggcttcgccgccaagatcagcgcctccatgacgaacgagacgtcc







gaccgccccctggtgcacttcacccccaacaagggctggatgaacgacc







ccaacggcctgtggtacgacgagaaggacgccaagtggcacctgtactt







ccagtacaacccgaacgacaccgtctgggggacgcccttgttctggggc







cacgccacgtccgacgacctgaccaactgggaggaccagcccatcgcca







tcgccccgaagcgcaacgactccggcgccttctccggctccatggtggt







ggactacaacaacacctccggcttcttcaacgacaccatcgacccgcgc







cagcgctgcgtggccatctggacctacaacaccccggagtccgaggagc







agtacatctcctacagcctggacggcggctacaccttcaccgagtacca







gaagaaccccgtgctggccgccaactccacccagttccgcgacccgaag







gtcttctggtacgagccctcccagaagtggatcatgaccgcggccaagt







cccaggactacaagatcgagatctactcctccgacgacctgaagtcctg







gaagctggagtccgcgttcgccaacgagggcttcctcggctaccagtac







gagtgccccggcctgatcgaggtccccaccgagcaggaccccagcaagt







cctactgggtgatgttcatctccatcaaccccggcgccccggccggcgg







ctccttcaaccagtacttcgtcggcagcttcaacggcacccacttcgag







gccttcgacaaccagtcccgcgtggtggacttcggcaaggactactacg







ccctgcagaccttcttcaacaccgacccgacctacgggagcgccctggg







catcgcgtgggcctccaactgggagtactccgccttcgtgcccaccaac







ccctggcgctcctccatgtccctcgtgcgcaagttctccctcaacaccg







agtaccaggccaacccggagacggagctgatcaacctgaaggccgagcc







gatcctgaacatcagcaacgccggcccctggagccggttcgccaccaac







accacgttgacgaaggccaacagctacaacgtcgacctgtccaacagca







ccggcaccctggagttcgagctggtgtacgccgtcaacaccacccagac







gatctccaagtccgtgttcgcggacctctccctctggttcaagggcctg







gaggaccccgaggagtacctccgcatgggcttcgaggtgtccgcgtcct







ccttcttcctggaccgcgggaacagcaaggtgaagttcgtgaaggagaa







cccctacttcaccaaccgcatgagcgtgaacaaccagcccttcaagagc







gagaacgacctgtcctactacaaggtgtacggcttgctggaccagaaca







tcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacaccta







cttcatgaccaccgggaacgccctgggctccgtgaacatgacgacgggg







gtggacaacctgttctacatcgacaagttccaggtgcgcgaggtcaagT







GA
caattgGCAGCAGCAGCTCGGATAGTATCGACACACTCTGGACGCTG






GTCGTGTGATGGACTGTTGCCGCCACACTTGCTGCCTTGACCTGTGAAT





ATCCCTGCCGCTTTTATCAAACAGCCTCAGTGTGTTTGATCTTGTGTGT





ACGCGCTTTTGCGAGTTGCTAGCTGCTTGTGCTATTTGCGAATACCACC





CCCAGCATCCCCTTCCCTCGTTTCATATCGCTTGCATCCCAACCGCAAC





TTATCTACGCTGTCCTGCTATCCCTCAGCGCTGCTCCTGCTCCTGCTCA





CTGCCCCTCGCACAGCCTTGGTTTGGGCTCCGCCTGTATTCTCCTGGTA





CTGCAACCTGTAAACCAGCACTGCAATGCTGATGCACGGGAAGTAGTGG





GATGGGAACACAAATGGAggatcccgcgtctcgaacagagcgcgcagag





gaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccac





aataaccacctgacgaatgcgcttggttcttcgtccattagcgaagcgt





ccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcg





gtggagctgatggtcgaaacgttcacagcctagggatatcctgaagaat





gggaggcaggtgttgttgattatgagtgtgtaaaagaaaggggtagaga





gccgtcctcagatccgactactatgcaggtagccgctcgcccatgcccg





cctggctgaatattgatgcatgcccatcaaggcaggcaggcatactgtg





cacgcaccaagcccacaatcttccacaacacacagcatgtaccaacgca





cgcgtaaaagttggggtgctgccagtgcgtcatgccaggcatgatgtgc





tcctgcacatccgccatgatctcctccatcgtctcgggtgtttccggcg





cctggtccgggagccgttccgccagatacccagacgccacctccgacct





cacggggtacttttcgagcgtctgccggtagtcgacgatcgcgtccacc





atggagtagccgaggcgccggaactggcgtgacggagggaggagaggga





ggagagagaggggggggggggggggggatgattacacgccagtctcaca





acgcatgcaagacccgtttgattatgagtacaatcatgcactactagat





ggatgagcgccaggcataaggcacaccgacgttgatggcatgagcaact





cccgcatcatatttcctattgtcctcacgccaagccggtcaccatccgc





atgctcatattacagcgcacgcaccgcttcgtgatccaccgggtgaacg





tagtcctcgacggaaacatctggctcgggcctcgtgctggcactccctc





ccatgccgacaacctttctgctgtcaccacgacccacgatgcaacgcga





cacgacccggtgggactgatcggttcactgcacctgcatgcaattgtca





caagcgcatactccaatcgtatccgtttgatttctgtgaaaactcgctc





gaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtgacctgggtgt





ttcgtcgaaaggccagcaaccccaaatcgcaggcgatccggagattggg





atctgatccgagcttggaccagatcccccacgatgcggcacgggaactg





catcgactcggcgcggaacccagcMcgtaaatgccagattggtgtccga





taccttgatttgccatcagcgaaacaagacttcagcagcgagcgtattt





ggcgggcgtgctaccagggttgcatacattgcccatttctgtctggacc





gctttaccggcgcagagggtgagttgatggggttggcaggcatcgaaac





gcgcgtgcatggtgtgtgtgtctgttttcggctgcacaatttcaatagt





cggatgggcgacggtagaattgggtgttgcgctcgcgtgcatgcctcgc





cccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccctcct





gctaacgctcccgactctcccgcccgcgcgcaggatagactctagttca





accaatcgacaactagtATGgccaccgcatccactactcggcgacaatg







cccgctgcggcgacctgcgtcgctcggcgggctccgggccccggcgccc









agcgaggcccctccccgtgcgcg

ggcgcgcc
atccccccccgcatcatc







gtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccg







tggtgtcctccggcctggccgaccgcctgcgcctgggctccctgaccga







ggacggcctgtcctacaaggagaagacatcgtgcgctgctacgaggtgg







gcatcaacaagaccgccaccgtggagaccatcgccaacctgctgcagga







ggtgggctgcaaccacgcccagtccgtgggctactccaccggcggatac







caccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgc







atgcacatcgagatctacaagtaccccgcctggtccgacgtggtggaga







tcgagtcctggggccagggcgagggcaagatcggcacccgccgcgactg







gatcctgcgcgactacgccaccggccaggtgatcggccgcgccacctcc







aagtgggtgatgatgaaccaggacacccgccgcctgcagaaggtggacg







tggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcct







ggccaccccgaggagaacaactcctccctgaagaagatctccaagctgg







aggacccctcccagtactccaagctgggcctggtgccccgccgcgccga







cctggacatgaaccagcacgtgaacaacgtgacctacatcggctgggtg







ctggagtccatgccccaggagatcatcgacacccacgagctgcagacca







tcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactc







cctgacctcccccgagccctccgaggacgccgaggccgtgacaaccaca







acggcaccaacggctccgccaacgtgtccgccaacgaccacggctgccg







caacacctgcacctgctgcgcctgtccggcaacggcctggagatcaacc







gcggccgcaccgagtggcgcaagaagcccacccgc
custom-character







custom-character
custom-character
custom-character
custom-character







custom-character
TGA
atcgatagatctcttaagGCAGCAGCAGCTCGGATA






GTATCGACACACTCTGGACGCTGGTCGTGTGATGGACTGTTGCCGCCAC





ACTTGCTGCCTTGACCTGTGAATATCCCTGCCGCTTTTATCAAACAGCC





TCAGTGTGTTTGATCTTGTGTGTACGCGCTTTTGCGAGTTGCTAGCTGC





TTGTGCTATTTGCGAATACCACCCCCAGCATCCCCTTCCCTCGTTTCAT





ATCGCTTGCATCCCAACCGCAACTTATCTACGCTGTCCTGCTATCCCTC





AGCGCTGCTCCTGCTCCTGCTCACTGCCCCTCGCACAGCCTTGGTTTGG





GCTCCGCCTGTATTCTCCTGGTACTGCAACCTGTAAACCAGCACTGCAA





TGCTGATGCACGGGAAGTAGTGGGATGGGAACACAAATGGAaagcttaa





ttaagagctcTTGTTTTCCAGAAGGAGTTGCTCCTTGAGCCTTTCATTC






TCAGCCTCGATAACCTCCAAAGCCGCTCTAATTGTGGAGGGGGTTCGAA







TTTAAAAGCTTGGAATGTTGGTTCGTGCGTCTGGAACAAGCCCAGACTT







GTTGCTCACTGGGAAAAGGACCATCAGCTCCAAAAAACTTGCCGCTCAA







CACCGCGTACCTCTGCTTTGCGCAATCTGCCCTGTTGAAATCGCCACCA







CATTCATATTGTGACGCTTGAGCAGTCTGTAATTGCCTCAGAATGTGGA







ATCATCTGCCCCCTGTGCGAGCCCATGCCAGGCATGTCGCGGGCGAGGA







CACCCGCCACTCGTACAGCAGACCATTATGCTACCTCACAATAGTTCAT







AACAGTGACCATATTTCTCGAAGCTCCCCAACGAGCACCTCCATGCTCT







GAGTGGCCACCCCCCGGCCCTGGTGCTTGCGGAGGGCAGGTCAACCGGC







ATGGGGCTACCGAAATCCCCGACCGGATCCCACCACCCCCGCGATGGGA







AGAATCTCTCCCCGGGATGTGGGCCCACCACCAGCACAACCTGCTGGCC







CAGGCGAGCGTCAAACCATACCACACAAATATCCTTGGCATCGGCCCTG







AATTCCTTCTGCCGCTCTGCTACCCGGTGCTTCTGTCCGAAGCAGGGGT







TGCTAGGGATCGCTCCGAGTCCGCAAACCCTTGTCGCGTGGCGGGGCTT







GTTCGAGCTT
gaagagc







Construct D1940 (pSZ3204), was transformed into the S5780 parent strain. Primary transformants were clonally purified and grown under standard lipid production conditions at pH 5. Integration of pSZ3204 at the 6S locus was verified by DNA blot analysis. The fatty acid profiles and lipid titers of lead strains were assayed in 50-mL shake flasks (Table 9). Over-expression of GarmFATA1 (driven by the SAD2-2 promoter) resulted in C18:0 levels up to 54.3%. C16:0 levels were comparable in strains derived from D1940 and the S5780 parent. S6573 was chosen for further development as it had the highest lipid titer of the strains with >50% C18:0.









TABLE 9







Fatty acid profiles of GarmFATA1 overexpressing stable strains


derived from D1940 primary transformants.














Primary

D1683.1
D1940.19
D1940.20
D1940.23
D1940.46
D1940.5
















Strain
S5100
S5780
S6571
S6572
S6573
S6574
S6575
S6578
S6580




















Fatty Acid Area %
C14:0
0.7
0.0
0.8
0.0
0.8
0.7
0.7
0.0
0.0



C16:0
18.0

5.9


6.3


6.6


6.3


5.0


5.1


5.0


5.3




C16:1
0.5
0.0
0.1
0.1
0.1
0.0
0.1
0.1
0.1



C18:0
3.9

29.0


52.7


54.3


53.7


43.1


46.0


45.4


47.9




C18:1
69.8
54.3
31.4
30.1
30.5
41.5
38.5
40.0
37.2



C18:2
5.9
6.4
5.7
5.8
5.6
6.3
6.2
6.1
6.2



C18:3 α
0.5
0.7
0.6
0.6
0.6
0.6
0.5
0.6
0.5



C20:0
0.3

2.4


1.8


1.6


1.7


2.1


2.0


2.0


2.0




C20:1
0.1
0.6
0.1
0.1
0.1
0.2
0.1
0.1
0.1



C22:0
0.1
0.3
0.2
0.2
0.2
0.3
0.3
0.2
0.2



C24:0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



saturates
23.1
37.7
61.9
62.8
62.8
51.2
54.2
52.7
55.5









Lysophosphatidic acid acetyltransferase (LPAAT) enzymes are responsible for the transfer of acyl groups to the sn-2 position on the glycerol backbone. We disclose here that we can reduce the accumulation of excessive amounts of trisaturates in our high SOS strains by expressing heterologous LPAAT genes which were better than the endogenous acyltransferases at discriminating against saturated fatty acids. Expression of LPAT2 homologs from B. napus, T cacao, Garcinia hombroriana and Garcinia indica and their effect on the formation of trisaturated TAGs in the high-C18:0 S6573 strain is disclosed below.


The sequence of the transforming DNA from the BnLPAT2(Bn1.13) expression construct pSZ4198 is shown below The construct is written as pSZ4198: PLOOP::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-BnLPAT2(Bn1.13)-CvNR::PLOOP. Relevant restriction sites are indicated in lowercase, bold, and are from 5′-3′ BspQI, KpnI, SpeI, SnaBI, EcoRI, SpeI, ClaI, BglII, AflII, HindIII, SacI and BspQI. Underlined sequences at the 5′ and 3′ flanks of the construct represent genomic DNA from P. moriformis that enable targeted integration of the transforming DNA via homologous recombination at the PLOOP locus. Proceeding in the 5′ to 3′ direction, the PmHXT1 promoter driving the expression of S. carlbergensis MEL1 (ScarMEL1) gene, enabling strains to utilize exogeneous melibiose, is indicated by lowercase, boxed text. The initiator ATG and terminator TGA of ScarMEL1 are indicated by uppercase italics, while the coding region is represented by lowercase italics. The 3′ UTR of the CvNR gene is indicated by small capitals. The P. moriformis SAD2-2v2 promoter driving the expression of the BnLPAT2(Bn1.13) gene is indicated by lowercase, boxed text. The initiator ATG and terminator TGA are indicated by uppercase italics; the sequence encoding BnLPAT2(Bn1.13) is represented by lowercase, underlined italics. A second CvNR 3′ UTR is indicated by small capitals. The Brassica napus LPAAT2(BN1.13) sequence is from Genbank accession GU045434.














SEQ ID NO: 88: Nucleotide sequence of the transforming DNA from pSZ4198



gctcttccgctAACGGAGGTCTGTCACCAAATGGACCCCGTCTATTGCGGGAAACCACG




GCGATGGCACGTTTCAAAACTTGATGAAATACAATATTCAGTATGTCGCGGGCGG




CGACGGCGGGGAGCTGATGTCGCGCTGGGTATTGCTTAATCGCCAGCTTCGCCCC




CGTCTTGGCGCGAGGCGTGAACAAGCCGACCGATGTGCACGAGCAAATCCTGAC




ACTAGAAGGGCTGACTCGCCCGGCACGGCTGAATTACACAGGCTTGCAAAAATA




CCAGAATTTGCACGCACCGTATTCGCGGTATTTTGTTGGACAGTGAATAGCGATG




CGGCAATGGCTTGTGGCGTTAGAAGGTGCGACGAAGGTGGTGCCACCACTGTGC




CAGCCAGTCCTGGCGGCTCCCAGGGCCCCGATCAAGAGCCAGGACATCCAAACT




ACCCACAGCATCAACGCCCCGGCCTATACTCGAACCCCACTTGCACTCTGCAATG




GTATGGGAACCACGGGGCAGTCTTGTGTGGGTCGCGCCTATCGCGGTCGGCGAA




GACCGGGAA
ggtaccgcggtgagaatcgaaaatgcatcgtttctaggttcggagacggtcaattccctgctccggcgaatctg



tcggtcaagctggccagtggacaatgttgctatggcagcccgcgcacatgggcctcccgacgcggccatcaggagcccaaacagc


gtgtcagggtatgtgaaactcaagaggtccctgctgggcactccggccccactccgggggcgggacgccaggcattcgcggtcggt


cccgcgcgacgagcgaaatgatgattcggttacgagaccaggacgtcgtcgaggtcgagaggcagcctcggacacgtctcgctag


ggcaacgccccgagtccccgcgagggccgtaaacattgtttctgggtgtcggagtgggcattttgggcccgatccaatcgcctcatgc


cgctctcgtctggtcctcacgttcgcgtacggcctggatcccggaaagggcggatgcacgtggtgttgccccgccattggcgcccac


gtttcaaagtccccggccagaaatgcacaggaccggcccggctcgcacaggccatgctgaacgcccagatttcgacagcaacacca


tctagaataatcgcaaccatccgcgttttgaacgaaacgaaacggcgctgtttagcatgtttccgacatcgtgggggccgaagcatgct


ccggggggaggaaagcgtggcacagcggtagcccattctgtgccacacgccgacgaggaccaatccccggcatcagccttcatcg


acggctgcgccgcacatataaagccggacgcctaaccggtttcgtggttatgactagtATGttcgcgttctacttcctgacggcctgc



atctccctgaagggcgtgacggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaaca




cgacgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctaca




agtacatcatcctggacgactgctggtcctccggccgcgactccgacggcacctggtcgccgacgagcagaagaccccaacgg




catgggccacgtcgccgaccacctgcacaacaactccacctgacggcatgtactcctccgcgggcgagtacacgtgcgccggct




accccggctccctgggccgcgaggaggaggacgcccagacttcgcgaacaaccgcgtggactacctgaagtacgacaactgc




tacaacaagggccagacggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccg




ccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccgg




cgacgtcacggcggagacacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcacc




actgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaa




cctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttaccatgtgggccatggtgaagtcccccctgat




catcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactcc




aacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtc




cggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggagg




agatcacttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaa




ctccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacg




gcctgtccaagaacgacacccgcctgacggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccg




cccacggcatcgcgactaccgcctgcgcccctcctccTGA
tacgtactcgagGCAGCAGCAGCTCGGATAGT



ATCGACACACTCTGGACGCTGGTCGTGTGATGGACTGTTGCCGCCACACTTGCTG


CCTTGACCTGTGAATATCCCTGCCGCTTTTATCAAACAGCCTCAGTGTGTTTGATC


TTGTGTGTACGCGCTTTTGCGAGTTGCTAGCTGCTTGTGCTATTTGCGAATACCAC


CCCCAGCATCCCCTTCCCTCGTTTCATATCGCTTGCATCCCAACCGCAACTTATCT


ACGCTGTCCTGCTATCCCTCAGCGCTGCTCCTGCTCCTGCTCACTGCCCCTCGCAC


AGCCTTGGTTTGGGCTCCGCCTGTATTCTCCTGGTACTGCAACCTGTAAACCAGC


ACTGCAATGCTGATGCACGGGAAGTAGTGGGATGGGAACACAAATGGAAagctgtag



aattcctggctcgggcctcgtgctggcactccctcccatgccgacaacctttctgctgtcaccacgacccacgatgcaacgcgacacg



acccggtgggactgatcggttcactgcacctgcatgcaattgtcacaagcgcatactccaatcgtatccgtttgatttctgtgaaaactcg


ctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtgacctgggtgtttcgtcgaaaggccagcaaccccaaatcgcaggc


gatccggagattgggatctgatccgagcttggaccagatcccccacgatgcggcacgggaactgcatcgactcggcgcggaaccca


gctttcgtaaatgccagattggtgtccgataccttgatttgccatcagcgaaacaagacttcagcagcgagcgtatttggcgggcgtgct


accagggttgcatacattgcccatttctgtctggaccgctttaccggcgcagagggtgagttgatggggttggcaggcatcgaaacgc


gcgtgcatggtgtgtgtgtctgttttcggctgcacaatttcaatagtcggatgggcgacggtagaattgggtgttgcgctcgcgtgcatgc


ctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccctcctgctaacgctcccgactctcccgcccgcgcgcag


gatagactctagttcaaccaatcgacaactagtATGgccatggccgccgccgtgatcgtgcccctgggcatcctgacttcatctcc



ggcctggtggtgaacctgctgcaggccatctgctacgtgctgatccgccccctgtccaagaacacctaccgcaagatcaaccgcg




tggtggccgagaccctgtggctggagctggtgtggatcgtggactggtgggccggcgtgaagatccaggtgacgccgacaacg




agaccacaaccgcatgggcaaggagcacgccctggtggtgtgcaaccaccgctccgacatcgactggctggtgggctggatcc




tggcccagcgctccggctgcctgggctccgccctggccgtgatgaagaagtcctccaagacctgcccgtgatcggctggtccatgt




ggactccgagtacctgacctggagcgcaactgggccaaggacgagtccaccctgaagtccggcctgcagcgcctgaacgactt




cccccgcccataggctggccctgacgtggagggcacccgatcaccgaggccaagctgaaggccgcccaggagtacgccgc




ctcctccgagctgcccgtgccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtccaacatgcgctccttcgt




gcccgccatctacgacatgaccgtggccatccccaagacctcccccccccccaccatgctgcgcctgacaagggccagccctcc




gtggtgcacgtgcacatcaagtgccactccatgaaggacctgcccgagtccgacgacgccatcgcccagtggtgccgcgacca




gacgtggccaaggacgccctgctggacaagcacatcgccgccgacaccaccccggccagcaggagcagaacatcggccgc




cccatcaagtccctggccgtggtgctgtcctggtcctgcctgctgatcctgggcgccatgaagacctgcactggtccaacctgactc




ctcctggaagggcatcgccactccgccctgggcctgggcatcatcaccctgtgcatgcagatcctgatccgctcctcccagtccga




gcgctccacccccgccaaggtggtgcccgccaagcccaaggacaaccacaacgactccggctcctcctcccagaccgaggtg




gagaagcagaagTGA
atcgatagatctcttaagGCAGCAGCAGCTCGGATAGTATCGACACACT



CTGGACGCTGGTCGTGTGATGGACTGTTGCCGCCACACTTGCTGCCTTGACCTGT


GAATATCCCTGCCGCTTTTATCAAACAGCCTCAGTGTGTTTGATCTTGTGTGTACG


CGCTTTTGCGAGTTGCTAGCTGCTTGTGCTATTTGCGAATACCACCCCCAGCATCC


CCTTCCCTCGTTTCATATCGCTTGCATCCCAACCGCAACTTATCTACGCTGTCCTG


CTATCCCTCAGCGCTGCTCCTGCTCCTGCTCACTGCCCCTCGCACAGCCTTGGTTT


GGGCTCCGCCTGTATTCTCCTGGTACTGCAACCTGTAAACCAGCACTGCAATGCT


GATGCACGGGAAGTAGTGGGATGGGAACACAAATGGAaagcttaattaagagctcAGCGG



CGACGGTCCTGCTACCGTACGACGTTGGGCACGCCCATGAAAGTTTGTATACCGA




GCTTGTTGAGCGAACTGCAAGCGCGGCTCAAGGATACTTGAACTCCTGGATTGAT




ATCGGTCCAATAATGGATGGAAAATCCGAACCTCGTGCAAGAACTGAGCAAACC




TCGTTACATGGATGCACAGTCGCCAGTCCAATGAACATTGAAGTGAGCGAACTGT




TCGCTTCGGTGGCAGTACTACTCAAAGAATGAGCTGCTGTTAAAAATGCACTCTC




GTTCTCTCAAGTGAGTGGCAGATGAGTGCTCACGCCTTGCACTTCGCTGCCCGTG




TCATGCCCTGCGCCCCAAAATTTGAAAAAAGGGATGAGATTATTGGGCAATGGA




CGACGTCGTCGCTCCGGGAGTCAGGACCGGCGGAAAATAAGAGGCAACACACTC




CGCTTCTTA
gctcttc










Additional transforming constructs to test the activity of LPAATs from B. napus, T cacao, G. hombroriana and G. indica contained the same selectable marker, restriction sites, promoters and 3′ UTR elements as pSZ4198. The coding sequences of BnLPAT2(Bn1.5), TcLPAT2, GhomLPAT2A, GhomLPAT2B, GhomLPAT2C, GindLPAT2A, GindLPAT2B and GindLPAT2C are shown in below. In each case the initiator ATG and terminator TGA are indicated by uppercase italics; the sequence encoding the LPAT2 homolog is represented by lowercase italics. The Brassica napus LPAAT2(BN1.13) sequence is from Genbank accession GU045435. The Theobroma cacao LPAAT2 sequence is from the cocoaGenDB database.














SEQ ID NO: 89 Nucleotide sequence of the BnLPAT2(1.5) coding sequence,


used in the transforming DNA from pSZ4202



ATGgccatggccgccgccgccgtgatcgtgcccctgggcatcctgacttcatctccggcctggtggtgaacctgctgcaggccgt




gtgctacgtgctgatccgccccctgtccaagaacacctaccgcaagatcaaccgcgtggtggccgagaccctgtggctggagctg




gtgtggatcgtggactggtgggccggcgtgaagatccaggtgacgccgacgacgagaccacaaccgcatgggcaaggagca




cgccctggtggtgtgcaaccaccgctccgacatcgactggctggtgggctggatcctggcccagcgctccggctgcctgggctcc




gccctggccgtgatgaagaagtcctccaagacctgcccgtgatcggctggtccatgtggactccgagtacctgacctggagcgca




actgggccaaggacgagtccaccctgaagtccggcctgcagcgcctgaacgacacccccgccccactggctggccctgacgtg




gagggcacccgatcaccgaggccaagctgaaggccgcccaggagtacgccgcctcctcccagctgcccgtgccccgcaacgt




gctgatcccccgcaccaagggcttcgtgtccgccgtgtccaacatgcgctccttcgtgcccgccatctacgacatgaccgtggccat




ccccaagacctcccccccccccaccatgctgcgcctgacaagggccagccctccgtggtgcacgtgcacatcaagtgccactcc




atgaaggacctgcccgagtccgacgacgccatcgcccagtggtgccgcgaccagacgtggccaaggacgccctgctggacaa




gcacatcgccgccgacaccaccccggccagaaggagcacaacatcggccgccccatcaagtccctggccgtggtggtgtcctg




ggcctgcctgctgaccctgggcgccatgaagacctgcactggtccaacctgactcctccctgaagggcatcgccctgtccgccctg




ggcctgggcatcatcaccctgtgcatgcagatcctgatccgctcctcccagtccgagcgctccacccccgccaaggtggcccccg




ccaagcccaaggacaagcaccagtccggctcctcctcccagaccgaggtggaggagaagcagaagTGA






SEQ ID NO: 90 Nucleotide sequence of the TcLPAT2 coding sequence, used


in the transforming DNA from pSZ4206



ATGgccatcgccgccgccgccgtgatcgtgcccctgggcctgctgttcttcatctccggcctggtggtgaacctgatccaggccctgtgcttc




gtgctgatccgccccctgtccaagaacacctaccgcaagatcaaccgcgtggtggccgagctgctgtggctggagctgatctggctggtgg




actggtgggccggcgtgaagatcaaggtgttcatggaccccgagtccttcaacctgatgggcaaggagcacgccctggtggtggccaacc




accgctccgacatcgactggctggtgggctggctgctggcccagcgctccggctgcctgggctccgccctggccgtgatgaagaagtcctcc




aagttcctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgctcctgggccaaggacgagaacaccctgaaggc




cggcctgcagcgcctgaaggacttcccccgccccttctggctggccttcttcgtggagggcacccgcttcacccaggccaagttcctggccgc




ccaggagtacgccgcctcccagggcctgcccatcccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtcccacatgc




gctccttcgtgcccgccatctacgacatgaccgtggccatccccaagtcctccccctcccccaccatgctgcgcctgttcaagggccagccctc




cgtggtgcacgtgcacatcaagcgctgcctgatgaaggagctgcccgagaccgacgaggccgtggcccagtggtgcaaggacatgttcg




tggagaaggacaagctgctggacaagcacatcgccgaggacaccttctccgaccagcccatgcaggacctgggccgccccatcaagtcc




ctgctggtggtggcctcctgggcctgcctgatggcctacggcgccctgaagttcctgcagtgctcctccctgctgtcctcctggaagggcatcg




ccttcttcctggtgggcctggccatcgtgaccatcctgatgcacatcctgatcctgttctcccagtccgagcgctccacccccgccaaggtggc




ccccggcaagcccaagaacgacggcgagacctccgaggcccgccgcgacaagcagcagTGA






SEQ ID NO: 91 Nucleotide sequence of the GhomLPAT2A coding sequence,


used in the transforming DNA from pSZ4412.



ATGgccatccccgccgccatcgtgatcgtgcccgtgggcctgctgttcttcatctccggcctgatcgtgaacctgctgcaggccctgtgcttcg




tgctgatccgccccctgtccaagtccgcctaccgcaccatcaaccgccagctggtggagctgctgtggctggagctggtgtgcatcgtggac




tggtgggcccgcgtgaagatccagctgttcaccgacaaggagaccctgaactccatgggcaaggagcacgccctggtgatgtgcaacca




ccgctccgacatcgactggctggtgggctggatcctggcccagcgctccggctgcctgggctccaccgtggccgtgatgaagaagtcctcca




aggtgctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgcaactgggccaaggacgagtccaccctgaagtcc




ggcctgcagcgcctgcgcgacttcccccgccccttctggctggccctgttcgtggagggcacccgcttcacccagcccaagctgctggccgcc




caggagtacgccgcctccaccggcctgcccatcccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtccatcacccgc



tccttcgtgcccgtgatctacgacatcaccgtggccatccccaagtcctccccccagcccaccatgctgcgcctgttcaagggccagtcctccg



tggtgcacgtgcacctgaagcgccacctgatgaaggacctgcccgagtccgacgacgacgtggcccagtggtgccgcgaccagttcgtgg




tgaaggactccctgctggacaagcacatcgccgaggacaccttctccgaccaggagctgcaggacatcggccgccccatcaagtccctgg




tggtgttcacctcctgggtgtgcatcatcaccttcggcgccctgaagttcctgcagtggtcctccctgctgcactcctggaagggcatcgccat




ctccgcctccggcctggccatcgtgaccgtgctgatgcacatcctgatccgcttctcccagtccgagcactccacctccgccaagatcgccgcc




gagaagcacaagaacggcggcgtgtcccaggagatgggccgcgagaagcagcacTGA






SEQ ID NO: 92 Nucleotide sequence of the GhomLPAT2B coding sequence,


used in the transforming DNA from pSZ4413.



ATGgagatccccgccgtggccgtgatcgtgcccatcggcatcctgttcttcatctccggcctgatcgtgaacctgatgcaggccatctgcttc




ttcctgatccgccccctgtccaagaacacccaccgcatcgtgaaccgccagctggccgagctgctgtggctggagctgatctggatcgtgga




ctggtgggccggcgtgaagatccagctgttcaccgacaaggagaccctgcacctgatgggcaaggagcacgccctggtgatctgcaacc




actcctccgacatcgactggctggtgggctggctgctgtgccagcgctccggctgcctgggctccgccctggccgtgatgaagtcctcctcca




aggtgctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgctcctgggccaaggacgagtccaccctgaagtcc




ggcctgcagcgcctgaaggacttcccccgccccttctggctggccctgttcgtggagggcacccgcttcacccaggccaagctgctggccgc




ccaggagtacgccatgtccgccggcctgcccgtgccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtccaacatgc




gctccttcgtgcccgccatctacgacgtgaccgtggccatccccaagtcctccgtgcagcccaccatgctgcgcctgttcaagggccagtcctc




cgtggtgcaggtgcacctgaagcgccactccatgaaggacctgcccgagtccgaggacgacgtggcccagtggtgccgcgaccgcttcgt




ggtgaaggactccctgctggacaagcacaaggtggaggacaccttcaccgaccaggagctgcaggacctgggccgccccatcaagtccc




tggtggtggtgacctgctgggcctgcatcatcatcttcggcatcctgaagttcctgcagtggtcctccctgctgtactcctggaagggcatggc




catctccgcctccggcctggccgtggtgaccttcctgatgcagatcctgatccgcttctcccagtccgagcgctccacccccgccaagatcgcc




cccgccaagcccaacaaggccggcaactcctccgagaccgtgcgcgacaagcaccagTGA






SEQ ID NO: 93 Nucleotide sequence of the GhomLPAT2C coding sequence,


used in the transforming DNA from pSZ4414.



ATGgccatccccgccgccatcatcatcgtgcccctgggcctgatcttcttcacctccggcctgatcatcaacctgatccaggccgtgtgctacg




tgctgatccgccccctgtccaagtccaccttccgccgcatcaaccgcgagctggccgagctgctgtggctggagctggtgtgggtggtggac




tggtgggccggcgtgaagatccagctgttcaccgacaaggagaccctgcactccatgggcaaggagcacgccctggtgatctgcaaccac




cgctccgacatcgactggctggtgggctggatcctggcccagcgctccggctgcctgggctccgccctggccgtgatgaagaagtcctccaa




ggtgctgcccgtgatcggctggtccatgtggttctccgagtacttcttcctggagcgcaactgggccatggacgagtccaccctgaagtccg




gcctgcagcgcctgaaggacttcccccagcccttctggctggccctgttcgtggagggcacccgcttcacccagcccaagctgctggccgccc




aggagtacgccgcctccgccggcctgcccatcccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgaacatcatgcgc




tccttcgtgcccgccatctacgacgtgaccgtggccatccccaagtcctccccccagcccaccatgctgcgcctgttcaagggccagtcctccg




tggtgcacgtgcacctgaagcgccacctgatggaggacctgcccgagaccgacgacgacgtggcccagtggtgccgcgaccgcttcgtgg




tgaaggactccctgctggacaagtacgtggccgaggacaccttctccgaccaggagctgcaggacctgggccgccccatcaagtccctgg




tggtggtgacctcctgggtgtgcatcatcgccttcggctccctgaagttcctgcagtggtcctccctgctgtactcctggaagggcatcgtgat




ctccgccgcctccctggccgtggtgaccgtgctgatgcagatcctgatccgcttctcccagtccgagcgctccacctccgccaagatcgccgcc




gccaagcgcaagaacgtgggcgagcacTGA






SEQ ID NO: 94 Nucleotide sequence of the GindPAT2A coding sequence,


used in the transforming DNA from pSZ4415.



ATGgccatccccgtggtggtggtgatcgtgcccgtgggcctgctgttcttcatctccggcctgatcgtgaacctgctgcaggccctgtgcttc




gtgctgatccgccccctgtccaagtccgcctaccgcaccatcaaccgccagctggtggagctgctgtggctggagctggtgtgcatcgtgga




ctggtgggcccgcgtgaagatccagctgttcatcgacaaggagaccctgaactccatgggcaaggagcacgccctggtgatgtgcaacc




accgctcctacatcgactggctggtgggctggatcctggcccagcgctccggctgcctgggctccaccgtggccgtgatgaagaagtcctcc




aaggtgctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgcaactgggccaaggacgagtccaccctgaagt




ccggcctgcagcgcctgcgcgacttcccccgccccttctggctggccctgttcgtggagggcacccgcttcacccagcccaagctgctggccg




cccaggagtacgccgcctccaccggcctgcccatcccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtccatcaccc




gctccttcgtgcccgtgatctacgacatcaccgtggccatccccaagtcctcctcccagcccaccatgctgaagctgttcaagggccagtcctc




cgtggtgcacgtgcacctgaagcgccacctgatgaaggacctgcccgagtccgacgacgacgtggcccagtggtgccgcgcccagttcgt




ggtgaaggactccctgctggacaagcacatcgccgaggacaccttctccgaccaggagctgcaggacatcggccgccccatcaagtccct




ggtggtgttcacctcctgggtgtgcatcatcaccttcggcgccctgaagttcctgcagtggtcctccctgctgcactcctggaagggcatcgcc




atctccgcctccggcctggccatcgtgaccgtgctgatgcacatcctgatccgcttctcccagtccgagcactccacctccgccaagatcgccg




ccgagaagcacaagaacggcggcgtgtcccaggagatgggccgcgagaagcagcacTGA






SEQ ID NO: 95 Nucleotide sequence of the GindPAT2B coding sequence,


used in the transforming DNA from pSZ4416.



ATGggcatccccgccgtggccgtgatcgtgcccatcggcatcctgttcttcatctccggcttcatcgtgaacctgatgcaggccatctgcttcg




tgctgatccgccccctgtccaagaacacctaccgcatcgtgaaccgccagctggccgagttcctgtggctggagctgatctgggtggtggac




tggtgggccggcgtgaagatccagctgttcaccgacaaggagaccctgcacctgatgggcaaggagcacgccctggtgatctgcaacca




ccgctccgacatcgactggctggtgggctggctgctgtgccagcgctccggctgcctgggctccgccctggccgtgatgaagtcctcctccaa




ggtgctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgctcctgggccaaggacgagtccaccctgaagctgg




gcctgcagcgcctgaaggacttcccccgccccttctggctggccctgttcgtggagggcacccgcttcacccaggccaagctgctggccgccc




aggagtacgccatgtccgccggcctgcccgtgccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtccaacatgcgc




tccttcgtgcccgccatctacgacgtgaccgtggccatccccaagtcctccgtgcagcccaccatgctgggcctgttcaagggccagtcctgc




gtggtgcaggtgcacctgaagcgccacctgatgaaggacctgcccgagtccgaggacgacgtggcccagtggtgccgcgagcgcttcgt




ggtgaaggactccctgctggacaagcacaaggtggaggacaccttctccgaccaggagctgcaggacctgggccgccccatcaagtccct




ggtggtggtgatctcctgggcctgcatcctgatcttctggatcctgaagttcctgcagtggtcctccctgctgtactcctggaagggcatcgcc




atctccgcctgcgccatggccgtgatcgccttcctgatgcagatcctgctgcgcttctcccagtccgagcgctccacccccgccaagatcgccc




ccgccaagcccaacaacgcccgcaactcctccgagaccgtgcgcgacaagcaccagTGA






SEQ ID NO: 96 Nucleotide sequence of the GindPAT2C coding sequence,


used in the transforming DNA from pSZ4417.



ATGgccatccccgccgccatcatcatcgtgcccctgggcctgatcttcttcacctccggcttcatcatcaacctgatccaggccgtgtgctacg




tgctgatccgccccctgtccaagtccaccttccgccgcatcaaccgccagctggccgagctgctgtggctggagctggtgtgggtggtggac




tggtgggccggcgtgaagatccagctgttcaccaacaaggagaccctgcactccatcggcaaggagcacgccctggtgatctgcaaccag




cgctccgacatcgactggctggtgggctggatcctggcccagcgctccggctgcctgggctccgccctggccgtgatgaagaagtcctccaa




ggtgctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgcaactgggccatggacgagtccaccctgaagtccg




gcctgcagtggctgaaggacttcccccagcccttctggctggccctgttcgtggagggcacccgcttcacccagcccaagctgctggccgcc




caggagtacgccgcctccgccggcctgcccatcccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgaacatcatgcg




ctccttcgtgcccgccgtgtacgacgtgaccgtggccatccccaagtcctccccccagcccaccatgctgcgcctgttcaagggccagtcctcc




gtggtgcacgtgcacctgaagcgccacctgatggaggacctgcccgagaccgacgacgacgtggcccagtggtgccgcgaccgcttcgtg




gtgaaggactccctgctggacaagcacctggccgaggacaccttctccgaccaggagctgcaggacctgggccgccccatcaagtccctg




gtggtggtgacctcctgggtgtgcatcatcgccttcggcgccctgaagttcctgcagtggtcctccctgctgtactcctggaagggcatcgtg




atctccgccgcctccctggccgtggtgaccgtgctgatgcagatcctgatccgcttctcccagtccgagcgctccacctccgccaaggtggtg




gccgagaagcgcaagaacgtgggcgagcacTGA










Constructs D2971, D2973, D2975, D3219, D3221, D3223, D3225, D3227 and D3229, derived from pSZ4198, pSZ4202, pSZ4206, pSZ4412, pSZ4413, pSZ4414, pSZ4415, pSZ4416 and pSZ4417, respectively, were transformed into the S6573 parent strain. The fatty acid profiles of primary transformants are shown in Table 10. Also shown are the SOS/SSS ratios determined by LC/MS multiple response measurements. Expression of LPAT2 genes had no discernable effect on C16:0 or C18:0 accumulation, but C18:2 levels increased by 1-2% compared to the S6573 parent in strains when expressing the D2971, D2973, D2975, D3221, D3223, and D3227 constructs. Expression of LPAT2 genes increased C18:2 and also elevated ratios of SOS/SSS, showing reduced accumulation of trisaturated TAGs.









TABLE 10







Fatty acid profiles and SOS/SSS ratios of D2971, D2973, D2975,


D3219, D3221, D3223, D3225, D3227 and D3229 primary transformants.

















Strain
LPAAT gene
SOS/SSS
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
C20:0
saturates




















S5100


0.7
17.7
4.1
68.5
6.8
0.6
0.4
23.3


S6573.1

15
0.8
6.2
50.7
33.7
5.6
0.7
1.5
59.8


D2971.1
BnLPAT2(1.13)
23
0.8
6.1
51.4
30.5
8.6
0.6
1.4
60.2


D2971.2

16
0.8
6.1
54.3
28.9
7.0
0.6
1.5
63.3


D2971.4

16
0.8
6.4
53.3
29.5
7.3
0.6
1.4
62.6


S6573.2

14
0.8
6.6
52.8
31.7
5.2
0.6
1.5
62.3


D2973.2
BnLPAT2(1.5)
22
0.8
6.2
53.4
28.3
6.4
0.6
1.7
62.7


D2973.38

23
0.9
7.5
51.2
29.1
6.5
0.5
1.4
61.7


D2973.24

24
0.9
6.8
51.7
29.2
6.3
0.5
1.6
61.5


S6573.3

14
0.8
6.6
52.8
31.7
5.2
0.6
1.5
62.3


D2975.33
TcLPAT2
27
0.8
6.6
52.7
29.7
7.1
0.6
1.5
62.3


D2975.13

32
0.8
6.5
52.4
30.2
7.3
0.6
1.4
61.7


D2975.35

27
0.8
6.5
52.8
29.6
7.3
0.6
1.5
62.2


S6573.4

12
0.9
6.4
54.9
28.9
5.7
0.6
1.7
64.5


D3219.19
GhomLPAT2A
12
0.9
7.1
52.4
31.2
4.8
0.5
2.0
63.1


D3219.20

14
0.9
6.6
53.2
30.6
5.5
0.6
1.7
63.0


D3219.32

15
0.8
6.4
53.1
29.8
6.5
0.6
1.5
62.6


S6573.5

12
0.9
6.4
53.7
30.3
5.5
0.6
1.6
63.3


D3220.1
GhomLPAT2B
27
0.9
6.6
52.2
30.0
7.0
0.7
1.4
61.9


D3221.39

20
0.9
6.7
53.9
28.7
6.7
0.6
1.5
63.7


D3221.40

22
0.8
6.5
53.7
29.1
6.8
0.6
1.4
63.2


S6573.6

14
0.8
6.3
54.0
30.2
5.5
0.6
1.6
63.4


D3223.2
GhomLPAT2C
20
0.8
6.5
53.0
29.3
7.3
0.6
1.5
62.4


D3223.6

21
0.8
6.5
53.5
29.3
7.0
0.6
1.4
62.7


D3223.7

21
0.8
6.4
52.5
30.7
6.6
0.5
1.5
61.8


D3225.5
GindLPAT2A
13
0.9
6.6
53.5
30.2
5.6
0.6
1.6
63.2


S6573.7

12
0.9
6.5
53.5
29.9
5.7
0.6
1.8
63.3


D3227.6
GindLPAT2B
23
0.8
6.4
54.1
28.8
6.8
0.6
1.6
63.5


D3227.3

21
0.8
6.5
53.9
29.0
6.7
0.6
1.5
63.4


D3227.17

22
0.8
6.6
53.8
28.8
7.0
0.6
1.4
63.3


S6573.8

11
0.8
6.4
54.3
30.1
5.4
0.6
1.7
63.8


D3229.41
GindLPAT2C
11
0.9
6.6
54.2
29.7
5.6
0.6
1.7
63.9


D3229.27

13
0.8
6.4
54.1
30.0
5.6
0.6
1.7
63.6


D3229.33

12
0.8
6.4
54.0
30.2
5.5
0.6
1.7
63.5









Table 11 presents the TAG composition of the lipids produced by D2971, D2973, D2975, D3221, D3223, and D3227 primary transformants relative to the S6573 parent. SOS levels in the LPAT2-expressing strains were equivalent or slightly higher than in the S6573 controls. Trisaturates declined by up to 53%, and total Sat-Unsat-Sat levels improved in all of the strains expressing heterologous LPAT2 genes. Among the LPAT2 genes, the strains expressing the T. cacao LPAT2 homolog showed the greatest improvements in their TAG profiles).









TABLE 11







TAG composition of D2971, D2973, D2975, D3221, D3223,


and D3227 primary transformants relative to the S6573 parent.









LPAAT gene














BnLPAT2
BnLPAT2

Ghom
Ghom
Gind



(1.13)
(1.5)
TcLPAT2
LPAT2B
LPAT2C
LPAT2B









Strain

















D2971.1
D2973.38
D2975.33
D2975.13
D3221.39
D3221.40
D3223.6
D3227.3
D3227.6




















% S6573
SOS
100
100
110
104
107
107
108
103
105


TAG
Sat-Sat-Sat
57
63
48
47
74
62
68
62
70



Sat-U-Sat
109
107
113
110
112
112
109
108
107



Sat-O-Sat
97
100
105
102
106
105
102
104
104



Sat-L-Sat
174
147
155
155
139
143
141
130
125



U-U-U/Sat
85
86
72
83
64
69
78
82
79









We analyzed the fatty acid profiles, TAG profiles and lipid titers from 50 mL shake flask cultures of stable lines generated from D2975-33. C18:0 and C16:0 levels were comparable between the strains and the S6573 control, and lipid titers ranged from 75-105% of the parent strain titer (Table 12). C18:2 levels increased by more than 2% in the TcLPAT2-expressing strains.









TABLE 12







Fatty acid profiles of TcLPAT2-expressing stable lines made


from D2975-33.









Primary
D1940.19
D2975.33













Strain
S6573
S7813
S7815
S7816
S7817
S7819

















Fatty Acid
C12:0
0.2
0.2
0.2
0.2
0.2
0.2


Area %
C14:0
0.9
0.7
0.8
0.8
0.7
0.7



C16:0
6.5
5.9
6.1
5.9
6.1
6.0



C16:1
0.1
0.1
0.1
0.1
0.1
0.1



cis-9









C17:0
0.2
0.2
0.2
0.2
0.2
0.2



C18:0
56.1
55.6
55.9
56.2
53.9
53.9



C18:1
28.1
26.8
26.6
26.5
28.8
28.4



C18:2
5.5
8.1
7.7
7.9
7.7
7.8



C18:3 α
0.6
0.5
0.6
0.5
0.6
0.7



C20:0
1.5
1.5
1.4
1.3
1.3
1.5



C22:0
0.2
0.2
0.1
0.1
0.1
0.2



C24:0
0.1
0.1
0.1
0.1
0.1
0.1



saturates
65.7
64.4
65.0
64.9
62.8
62.9









The TAG profiles of S6573 and S7815 are compared in FIG. 1. SOS levels in the LPAT2-expressing strains were higher than in the S6573 control. Trisaturates were reduced from 10.2% in S6573 to 5.6% in S7815. Much of the improvement in total sat-unsat-sat levels in S7815 came from a 4% increase in stearate-linoleate-stearate (SLS) and a 1.5% increase in palmitate-linoleate-stearate (PLS), consistent with the enhanced C18:2 content of that strain. These results indicate that the T. cacoa LPAT2 reduces the incorporation of saturated fatty acids at the sn-2 position.


The performance of S7815 versus the S6573 parent strain was compared in high-density fermentations. The fatty acid profile of each strain at the two time points of the fermentations are shown in Table 13. The strains had very similar composition, with 5.5-5.7% C16:0, 56.4-56.8% C18:0, and 27.2-28.6% C18:1 as the major fatty acids. As was observed in the shake flask assays, (see Table 12), C18:2 levels increased from 5.5% in S6573 to 7.7% in S7815(Table 13). Normalized lipid titers and yields were comparable between the two strains, indicating that expression of the TcLPAT2 gene in S7815 did not have deleterious effects on growth or lipid accumulation.









TABLE 13







Fatty acid profiles of S7815 versus S6573 fermentations.









Strain
S6573
S7815


Fermentation
140207F25
140208F26















Fatty Acid
C12:0
0.19
0.20
0.20
0.21


Area %
C14:0
0.71
0.72
0.66
0.66



C16:0
5.69
5.73
5.57
5.54



C16:1 cis-7
0.05
0.05
0.05
0.06



C16:1 cis-9
0.07
0.06
0.05
0.05



C17:0
0.11
0.11
0.12
0.11



C8:0
56.01
56.78
55.50
56.37



C8:1
29.31
28.58
27.92
27.19



C8:2
5.56
5.51
7.75
7.70



C8:3 α
0.34
0.32
0.40
0.37



C20:0
1.51
1.50
1.35
1.34



C22:0
0.16
0.16
0.14
0.14



C24:0
0.10
0.09
0.09
0.08



sum C18
91.22
91.19
91.57
91.63



saturates
64.54
65.34
63.69
64.51



unsaturates
35.46
34.64
36.30
35.49









Table 13 compares the TAG profiles of the lipids produced during high-density fermentation of S7815 versus S6573. SOS and Sat-Oleate-Sat levels were almost identical between S7815 and the S6573 control. However, Sat-Linoleate-Sat levels increased by more than 7%, and di-unsaturated and tri-unsaturated TAGs (U—U-U/Sat) declined by more than 3% in S7815 compared to S6573. Trisaturates at the end points of the fermentations were reduced from 10.1% in S6573 to 6.1% in S7815. These results indicate that the activity of T. cacoa LPAT2 drives the transfer of unsaturated fatty acids towards the sn-2 position and discriminates against the incorporation of saturated fatty acids at sn-2.


Example 6: Identification and Expression of Novel LPAAT, GPAT, DGAT, LPCAT and PLA2 with Specificity for Mid-Chain Fatty Acids

In this example, we demonstrate the effect of expression of LPAAT, GPAT, DGAT, LPCAT and PLA2 enzymes involved in triacylglycerol biosynthesis (in previously described P. moriformis (UTEX 1435) transgenic strains, S7858 and S8174. S7858 and S8174 were prepared according to co-owned WO2015/051319, herein incorporated by reference. In addition co-owned WO2010/063031 and WO2010/063032 teach the expression Cuphea hookerianas FATB2. Briefly, strain S7858 is a strain that express sucrose invertase and a Cuphea. hookeriana FATB2. To make S7858, the construct pSZ4329 (SEQ ID NO: 197) was engineered into S3150, a strain classically mutagenized to increase lipid yield. The plasmid, pSZ4329 is written as THI4α::CrTUB2-ScSUC2-PmPGH:PmAcp-P1p-CpSAD1tp_trimmed_ChFATB2_FLAG-CvNR::THI4a The annotation of the coding portions of pSZ4329 is shown in the Table A below.













TABLE A







Nucleotide
Nucleotide
Nucleotide


pSZ4329
Identity
Number
Number
Length



















THI4a 3′ flank
3′ flanking sequences
5,692
6,394
703



of endogenous THI4





CvNR
3′UTR
5,278
5,679
402


ChFATB2
CDS
4,105
5,271
1,167


CpSAD1tp-trimmed
CDS
3,991
4,104
114


PmACP-P1 promoter
promoter
3,411
3,981
571


Buffer DNA

3,199
3,404
206


UTR04424=PmPGH
3′UTR
2,749
3,192
444


UTR






ScSUC2(o)
CDS
1,144
2,742
1,599


CrTUB2 promoter
promoter





THI4a 5′ flank
5′ flanking sequences
820
1,131
312



of endogenous THI4
27
813
787









Strain S7858, accumulates C8:0 fatty acids to about 12% and C10:0 fatty acids to about 22-24%. Briefly, strain S8174 is a strain that express sucrose invertase and a Cuphea. Avigera var. pulcherrima FATB2. To make S8174, the construct pSZ5078 (SEQ ID NO: 198) was engineered into S3150, a strain classically mutagenized to increase lipid yield. pSZ5078 is written as THI4a5′::CrTUB2_ScSUC2_PmPGH:PmAMT3_CpSAD1tp_trimmed-CaFATB1_Flag_CvNR::THI4a3′. Strain S8174 accumulates C8:0 fatty acids to about 24% and C10:0 fatty acids to about 10%. The annotation of the coding portions of pSZ5078 is shown in the Table B below.













TABLE B







Nucleotide
Nucleotide
Nucleotide


pSZ5078
Identity
Number
Number
Length



















THI4a 3′
3′ flanking sequences
6,200
6,902
703


flank
of endogenous THI4





CvNR
3′UTR
5,786
6,187
402


CaFATB1
CDS
4,602
5,771
1,170


wild-type






CpSAD1tp
CDS
4,488
4,601
114


AMT3
promoter eukaryotic
3,411
4,481
1,071


Buffer DNA
misc_feature
3,199
3,404
206


PmPGH
3′UTR
2,749
3,192
444


ScSUC2(o)
CDS
1,144
2,742
1,599


CrTUB2
promoter
820
1,131
312


promoter






THI4a 5′
5′ flanking sequences
27
813
787


flank
of endogenous THI4









The pool of acyl-CoAs in the ER can be utilized for the synthesis of TAGs as well as phospholipids and long chain fatty acids. The enzymes involved in the synthesis of TAGS and phospholids actively compete against each other for the same substrates. Acyl-CoAs can associate with lysophosphatidate to form phosphatidate which is converted to phosphatidylcholine (PC) and other phospholipid species. PC can be desaturated by FAD2 and FAD3 enzymes to generate polyunsaturated fatty acids, which can be cleaved by phosphotransferases and reenter the acyl-CoA pool. Acyl-CoAs can also be generated from PC directly by acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT). LPCAT can also catalyze the reverse reaction to consume acyl-CoA. Removal of fatty acids from PC to form acyl-CoAs can also be catalyzed by phospholipase A2 (PLA2). TAG formation in the ER from acyl-CoAs requires action of glycerol phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferase (LPAAT) and diacyl glycerol acyltransferase (DGAT).


The endogenous P. moriformis TAG biosynthesis machinery has evolved to function with the longer chain fatty acids that the strain normally makes. We introduced heterologous acyltransferases and phospholipases from species that naturally accumulate high levels of short chain fatty acids into Prototheca to increase accumulation of C8:0 fatty acids. We identified the following plant enzymes in NCBI as shown in Table 14 below.









TABLE 14







Genes representing target enzymes identified from higher plants


that produce high amounts of C8:0 and C10:0. All these genes were


synthesized with codon usage optimized for expression in Prototheca.









Species
Gene
Enzyme






text missing or illegible when filed

cnLPAAT1
LPAAT


Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPAAT1




Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPAAT1




Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPAAT1




Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPAAT1




Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPAAT1




Cuphea avigera var.  text missing or illegible when filed

text missing or illegible when filed  LPAAT1




Cuphea avigera var.  text missing or illegible when filed

text missing or illegible when filed  LPAAT2




Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPAAT1




Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPAAT1




Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPAAT2




Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPAAT2




Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPAAT2




Cuphea avigera var.  text missing or illegible when filed

text missing or illegible when filed  GPAT9 text missing or illegible when filed

GPAT


Cuphea  text missing or illegible when filed

text missing or illegible when filed  GPAT9 text missing or illegible when filed  1




Cuphea  text missing or illegible when filed

text missing or illegible when filed  GPAT9 text missing or illegible when filed  2




Cuphea  text missing or illegible when filed

text missing or illegible when filed  GPAT9 text missing or illegible when filed  2




Cuphea  text missing or illegible when filed

text missing or illegible when filed  GPAT9 text missing or illegible when filed  2




Cuphea  text missing or illegible when filed

text missing or illegible when filed  GPAT9 text missing or illegible when filed  2




Cuphea avigera var.  text missing or illegible when filed

text missing or illegible when filed  DGAT1

DGAT


Cuphea  text missing or illegible when filed

text missing or illegible when filed  DGAT1 text missing or illegible when filed  1




Cuphea avigera var.  text missing or illegible when filed

text missing or illegible when filed  LPCAT

LPCAT


Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPCAT




Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPCAT




Cuphea  text missing or illegible when filed

text missing or illegible when filed  LPCAT1




Cuphea avigera var.  text missing or illegible when filed

text missing or illegible when filed  PLA2 text missing or illegible when filed  1

PLA2


Cuphea  text missing or illegible when filed

text missing or illegible when filed  PLA2 text missing or illegible when filed  1




Cuphea  text missing or illegible when filed

text missing or illegible when filed  PLA2 text missing or illegible when filed  2




Cuphea  text missing or illegible when filed

text missing or illegible when filed  PLA2 text missing or illegible when filed  2







text missing or illegible when filed indicates data missing or illegible when filed







We made a set of constructs expressing heterologous short chain specific acyltransferases and PLA2s as shown in Table 15. The genes were codon optimized to reflect UTEX 1435 codon usage.









TABLE 15







List of constructs transformed into S7858 or S8174









D#
Strain
Construct





D4289
S7858
SAD2-1vD::CpauLPAAT1 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4290
S7858
SAD2-1vD:: text missing or illegible when filed  LPAAT1 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4291
S7858
SAD2-1vD::CigneaLPAAT1 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4292
S7858
SAD2-1vD:: text missing or illegible when filed  LPAAT1 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4293
S7858
SAD2-1vD::ChookLPAAT1 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4404
S7858
SAD2-1vD::CnLPAAT1 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4517
S8174
SAD2-1vD::CavigLPAAT1 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4518
S8174
SAD2-1vD::CavigLPAAT2 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4519
S8174
SAD2-1vD::CavigLPAAT1 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4690
S8174
SAD2-1vD::CuPSR23 LPAAT2 text missing or illegible when filed  1 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4728
S8174
SAD2-1vD::CkoeLPAAT text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4729
S8174
SAD2-1vD::CkoeLPAAT2 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4730
S8174
SAD2-1vD::CprocLPAAT2 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4551/D5683
S8174
SAD2-1vD::CavigGPAT9 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4552/D4684
S8174
SAD2-1vD::ChookGPAT9-1-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4553/D4685
S8174
SAD2-1vD::CignGPAT9-1-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4554/D4686
S8174
SAD2-1vD::CignGPAT9-2-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4724
S8174
SAD2-1vD:: text missing or illegible when filed  GPAT9-1-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4725
S8174
SAD2-1vD:: text missing or illegible when filed  GPAT9-2-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4549
S8174
SAD2-1vD::CavigDGAT1 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4681
S8174
SAD2-1vD::CavigDGAT1 text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4556/D4688
S8174
SAD2-1vD::CavigLPCAT text missing or illegible when filed  PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4726
S8174
SAD2-1vD:: text missing or illegible when filed  LPCAT-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4556/D4689
S8174
SAD2-1vD::CpauLPCAT-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4727
S8174
SAD2-1vD::CschuLPCAT-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4732
S8174
SAD2-1vD::CavigPLA2-1-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4734
S8174
SAD2-1vD::CignPLA2-1-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4735
S8174
SAD2-1vD::CuPSR23PLA2-2-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex


D4736
S8174
SAD2-1vD::CprocPLA2-2-PmATP:PmHXT1 text missing or illegible when filed  ScarMEL-PmPGK::SAD2Bex






text missing or illegible when filed indicates data missing or illegible when filed







All the constructs shown in Table 15 can be written as SAD2-1vD::gene of interest-PmATP-PmHXT1-ScarMEL-PmPGK::SAD2B, and were made to target the transforming DNA to the SAD2 locus on the genome, thereby disrupting the expression of at least one allele of the endogenous stearoyl ACP desaturase. Sequences of all the transforming DNAs are provided below. The relevant restriction sites in the construct from 5′-3′ are- Pme I, BspQ I, Kpn I, Xho I, Avr II, Spe I, SnaB I, EcoR V, Sac I, BspQ I, Pme I respectively are indicated in lowercase, bold, and underlined. Pme I sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences at the 5′ and 3′ end of the construct represent genomic DNA from UTEX 1435 that target integration to the SAD2 locus via homologous recombination, wherein the SAD2 5′ flank provides the promoter for the gene of interest downstream. The primary construct was made with the previously characterized CnLPAAT gene as shown below and all other constructs were made by replacing the CnLPAAT gene with other genes of interest using the restriction sites, Kpn I and Xho I that span the gene on either side. Proceeding in the 5′ to 3′ direction, the first cassette has the codon optimized Cocos nucifera LPAAT and the Prototheca moriformis ATP synthase (PmATP) gene 3′ UTR. The initiator ATG and terminator TGA for cDNAs are indicated by uppercase italics, while the coding region is indicated with lowercase italics. The 3′ UTR is indicated by lowercase underlined text. The second cassette containing the selection gene melibiose from Saccharomyces carlsbergensis (ScarMEL1) is driven by the endogenous HXT1 promoter, and has the endogenous phosphoglycerate kinase (PmPGK) gene 3′ UTR. In this cassette, the PmHXT1 promoter is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for the ScarMEL1 gene are indicated in uppercase italics, while the coding region is indicated by lowercase italics. The 3′ UTR is indicated by lowercase underlined text. All the final constructs were sequenced to ensure correct reading frames and targeting sequences.










pSZX61 Sequence of the transforming DNA expressing



CnLPAAT downstream of the SAD2 promoter in the cassette followed by the ScarMEL1


gene for selection downstream of the PmHXT1 promoter in the second cassette.





SEQ ID NO: 97 




gtttaaacgccggtcaccacccgcatgctcgtactacagcgcacgcaccgcttcgtgatccaccgggtgaacgtagtcctcgacgg








aaacatctggttcgggcctcctgcttgcactcccgcccatgccgacaacctttctgctgttaccacgacccacaatgcaacgcgaca







cgaccgtgtgggactgatcggttcactgcacctgcatgcaattgtcacaagcgcttactccaattgtattcgtttgttttctgggagc







agttgctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtggcctgggtgtttcgtcgaaaggccagcaaccctaaatcg







caggcgatccggagattgggatctgatccgagtttggaccagatccgccccgatgcggcacgggaactgcatcgactcggcgcgg







aacccagctttcgtaaatgccagattggtgtccgatacctggatttgccatcagcgaaacaagacttcagcagcgagcgtatttgg







cgggcgtgctaccagggttgcatacattgcccatttctgtctggaccgctttactggcgcagagggtgagttgatggggttggcagg







catcgaaacgcgcgtgcatggtgtgcgtgtctgttttcggctgcacgaattcaatagtcggatgggcgacggtagaattgggtgtg







gcgctcgcgtgcatgcctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccatcttgctaacgctcccgactc







tcccgaccgcgcgcaggatagactcttgttcaaccaatcgaca

ggtacc

ATGgacgcctccggcgcctcctccttcctgcgcggccgct







gcctggagtcctgcttcaaggcctccttcggctacgtaatgtcccagcccaaggacgccgccggccagccctcccgccgccccgccgacgcc







gacgacttcgtggacgacgaccgctggatcaccgtgatcctgtccgtggtgcgcatcgccgcctgcttcctgtccatgatggtgaccaccatc







gtgtggaacatgatcatgctgatcctgctgccctggccctacgcccgcatccgccagggcaacctgtacggccacgtgaccggccgcatgct







gatgtggattctgggcaaccccatcaccatcgagggctccgagttctccaacacccgcgccatctacatctgcaaccacgcctccctggtgg







acatcttcctgatcatgtggctgatccccaagggcaccgtgaccatcgccaagaaggagatcatctggtatcccctgttcggccagctgtac







gtgctggccaaccaccagcgcatcgaccgctccaacccctccgccgccatcgagtccatcaaggaggtggcccgcgccgtggtgaagaag







aacctgtccctgatcatcttccccgagggcacccgctccaagaccggccgcctgctgcccttcaagaagggcttcatccacatcgccctccag







acccgcctgcccatcgtgccgatggtgctgaccggcacccacctggcctggcgcaagaactccctgcgcgtgcgccccgcccccatcaccgt







gaagtacttctcccccatcaagaccgacgactgggaggaggagaagatcaaccactacgtggagatgatccacgccctgtacgtggacc







acctgcccgagtcccagaagcccctggtgtccaagggccgcgacgcctccggccgctccaactccTGAttaattaactcgagatgtggaga







tgtagggtggtcgactcgttggaggtgggtgtttttttttatcgagtgcgcggcgcggcaaacgggtccctttttatcgaggtgttccca







acgccgcaccgccctcttaaaacaacccccaccaccacttgtcgaccttctcgtttgttatccgccacggcgccccggaggggcgtcg







tctggccgcgcgggcagctgtatcgccgcgctcgctccaatggtgtgtaatcttggaaagataataatcgatggatgaggaggaga







gcgtgggagatcagagcaaggaatatacagttggcacgaagcagcagcgtactaagctgtagcgtgttaagaaagaaaaactcg








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





cgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctgcgacgtctccga







gcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtacatcatcctggacgact







gctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagaccccaacggcatgggccacgtcgccgac







cacctgcacaacaactccttcctgacggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggctccctgggcc







gcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaagggccagt







tcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatcttctactccct







gtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggcgg







agttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctccatcatga







acatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcggcg







tcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaa







cgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaacggcatcccc







gccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccggccccctgg







acaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggaggagatcttcttc







gactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacggc







gtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacggcctgtcca







agaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacggc







atcgcgttctaccgcctgcgcccctcctccTGA
tacaacttat

tacgtattctgaccggcgctgatgtggcgcggacgccgtcgtac








tctttcagactttactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgcaattaattgtgtgatgaagaaaggg







tggcacaagatggatcgcgaatgtacgagatcgacaacgatggtgattgttatgaggggccaaacctggctcaatcttgtcgcatgt







ccggcgcaatgtgatccagcggcgtgactctcgcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactgatcgcattgcc







atcccgtcaactcacaagcctactctagctcccattgcgcactcgggcgcccggctcgatcaatgttctgagcggagggcgaagcgt







caggaaatcgtctcggcagctggaagcgcatggaatgcggagcggagatcgaatcagatatcAAGCTCCATCgagctccagc







cacggcaacaccgcgcgccttgcggccgagcacggcgacaagaacctgagcaagatctgcgggctgatcgccagcgacgaggg







ccggcacgagatcgcctacacgcgcatcgtggacgagttcttccgcctcgaccccgagggcgccgtcgccgcctacgccaacatga







tgcgcaagcagatcaccatgcccgcgcacctcatggacgacatgggccacggcgaggccaacccgggccgcaacctcttcgccga







cttctccgcggtcgccgagaagatcgacgtctacgacgccgaggactactgccgcatcctggagcacctcaacgcgcgctggaag







gtggacgagcgccaggtcagcggccaggccgccgcggaccaggagtacgtcctgggcctgccccagcgcttccggaaactcgcc







gagaagaccgccgccaagcgcaagcgcgtcgcgcgcaggcccgtcgccttctcctggatctccgggcgcgagatcatggtctagg







gagcgacgagtgtgcgtgcggggctggcgggagtgggacgccctcctcgctcctctctgttctgaacggaacaatcggccaccccg







cgctacgcgccacgcatcgagcaacgaagaaaaccccccgatgataggttgcggtggctgccgggatatagatccggccgcaca







tcaaagggcccctccgccagagaagaagctcctttcccagcagactcct

gaagagcgtttaaac

.







The sequence for all of the other acyltransferase constructs are identical to that of pSZEX61 with the exception of the encoded acyltransferase. The acyltransferase sequence alone is provided below for the remaining acyltransferase constructs.














SEQ ID NO: 98 CpauLPAAT1



ggtacc
ATGgccatccccgccgccgccgtgatcttcctgttcggcctgctgttcttcacctccggcctgatcatcaacctgttccagg




ccctgtgcttcgtgctggtgtggcccctgtccaagaacgcctaccgccgcatcaaccgcgtgttcgccgagctgctgctgtccgagc




tgctgtgcctgttcgactggtgggccggcgccaagctgaagctgttcaccgaccccgagaccttccgcctgatgggcaaggagca




cgccctggtgatcatcaaccacatgaccgagctggactggatgctgggctgggtgatgggccagcacctgggctgcctgggctcc




atcctgtccgtggccaagaagtccaccaagttcctgcccgtgctgggctggtccatgtggttctccgagtacctgtacatcgagcgct




cctgggccaaggaccgcaccaccctgaagtcccacatcgagcgcctgaccgactaccccctgcccttctggatggtgatcttcgtg




gagggcacccgcttcacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgcaacgtg




ctgatcccccgcaccaagggcttcgtgtcctgcgtgtcccacatgcgctccttcgtgcccgccgtgtacgacgtgaccgtggccttcc




ccaagacctcccccccccccaccctgctgaacctgttcgagggccagtccatcgtgctgcacgtgcacatcaagcgccacgccat




gaaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagttcgtggagaaggacgccctgctggacaag




cacaacgccgaggacaccttctccggccaggaggtgcaccgcaccggctcccgccccatcaagtccctgctggtggtgatctcct




gggtggtggtgatcaccttcggcgccctgaagttcctgcagtggtcctcctggaagggcaaggccttctccgtgatcggcctgggc




atcgtgaccctgctgatgcacatgctgatcctgtcctcccaggccgagcgctcctccaaccccgccaaggtggcccaggccaagc




tgaagaccgagctgtccatctccaagaaggccaccgacaaggagaacTGA
ctcgag






SEQ ID NO: 99 CprocLPAAT1




ggtacc

custom-character
custom-character
custom-character




custom-character
custom-character
custom-character




custom-character
custom-character
custom-character




custom-character
custom-character
custom-character




custom-character
custom-character
custom-character
custom-character




custom-character
custom-character
custom-character
custom-character




custom-character
custom-character
custom-character
custom-character




custom-character
custom-character
custom-character




custom-character
custom-character
custom-character




custom-character
custom-character
custom-character




custom-character
custom-character
custom-character




custom-character
custom-character
custom-character




custom-character
custom-character
custom-character




custom-character
custom-character

ctcgag







SEQ ID NO: 100 CpaiLPAAT1




ggtacc

ATGgccatcccctccgccgccgtggtgacctgacggcctgctgacttcacctccggcctgatcatcaacctgaccagg




ccactgcacgtgctgatctcccccctgtccaagaacgcctaccgccgcatcaaccgcgtgacgccgagctgctgcccctggagtt




cctgtggctgaccactggtgcgccggcgccaagctgaagctgacaccgaccccgagaccaccgcctgatgggcaaggagcac




gccctggtgatcatcaaccacaagatcgagctggactggatggtgggctgggtgctgggccagcacctgggctgcctgggctcca




tcctgtccgtggccaagaagtccaccaagacctgcccgtgacggctggtccctgtggactccggctacctgacctggagcgctcc




tgggccaaggacaagatcaccctgaagtcccacatcgagtccctgaaggactaccccctgccataggctgatcatcacgtgga




gggcacccgatcacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgcaacgtgct




gatcccccacaccaagggcttcgtgtcctccgtgtcccacatgcgctccttcgtgcccgccatctacgacgtgaccgtggccttcccc



aagacctcccccccccccaccatgctgaagctgacgagggccagtccgtggagctgcacgtgcacatcaagcgccacgccatg



aaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagacgtggagaaggacgccctgctggacaagc




acaactccgaggacaccactccggccaggaggtgcaccacgtgggccgccccatcaaggccctgctggtggtgatctcctgggt




ggtggtgatcatcacggcgccctgaagacctgctgtggtcctccctgctgtcctcctggaagggcaaggccactccgtgatcggcc




tgggcatcgtggccggcatcgtgaccctgctgatgcacatcctgatcctgtcctcccaggccgagggctccaaccccgtgaaggc




cgcccccgccaagctgaagaccgagctgtcctcctccaagaaggtgaccaacaaggagaacTGA

ctcgag







SEQ ID NO: 101 ChookLPAAT1




ggtacc

ATGgccatcccctccgccgccgtggtgacctgacggcctgctgacttcacctccggcctgatcatcaacctgaccagg




ccactgatcgtgctgatctcccccctgtccaagaacgcctaccgccgcatcaaccgcgtgacgccgagctgctgcccctggagtt




cctgtggctgaccactggtgcgccggcgccaagctgaagctgacaccgaccccgagaccaccgcctgatgggcaaggagcac




gccctggtgatcatcaaccacaagatcgagctggactggatggtgggctgggtgctgggccagcacctgggctgcctgggctcca




tcctgtccgtggccaagaagtccaccaagacctgcccgtgacggctggtccctgtggactccgagtacctgacctggagcgctcc




tgggccaaggacaagatcaccctgaagtcccacatcgagtccctgaaggactaccccctgccataggctgatcatcacgtgga




gggcacccgatcacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgcaacgtgct




gatcccccacaccaagggcttcgtgtcctccgtgtcccacatgcgctccttcgtgcccgccatctacgacgtgaccgtggccttcccc




aagacctcccccccccccaccatgctgaagctgacgagggccagtccgtggagctgcacgtgcacatcaagcgccacgccatg




aaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagacgtggagaaggacgccctgctggacaagc




acaactccgaggacaccactccggccaggaggtgcaccacgtgggccgccccatcaaggccctgctggtggtgatctcctgggt




ggtggtgatcatcacggcgccctgaagacctgctgtggtcctccctgctgtcctcctggaagggcaaggccactccgtgatcggcc




tgggcatcgtggccggcatcgtgaccctgctgatgcacatcctgatcctgtcctcccaggccgagggctccaaccccgtgaaggc




cgcccccgccaagctgaagaccgagctgtcctcctccaagaaggtgaccaacaaggagaacTGA

ctcgag







SEQ ID NO: 102 CignLPAAT1




ggtacc

ATGgccatcgccgccgccgccgtgatcacctgacggcctgctgacttcgcctccggcatcatcatcaacctgaccag




gccctgtgcttcgtgctgatctggcccctgtccaagaacgtgtaccgccgcatcaaccgcgtgttcgccgagctgctgctgatggac




ctgctgtgcctgaccactggtgggccggcgccaagatcaagctgacaccgaccccgagaccaccgcctgatgggcatggagca




cgccctggtgatcatgaaccacaagaccgacctggactggatggtgggctggatcctgggccagcacctgggctgcctgggctc




catcctgtccatcgccaagaagtccaccaagacatccccgtgctgggctggtccgtgtggactccgagtacctgacctggagcgc




tcctgggccaaggacaagtccaccctgaagtcccacatggagaagctgaaggactaccccctgccataggctggtgatcacgt




ggagggcacccgatcacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgcaacgt




gctgatcccccacaccaagggcttcgtgtcctgcgtgtccaacatgcgctccttcgtgcccgccgtgtacgacgtgaccgtggcctt




ccccaagtcctcccccccccccaccatgctgaagctgacgagggccagtccatcgtgctgcacgtgcacatcaagcgccacgcc




ctgaaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagacgtggagaaggacgccctgctggacaa




gcacaacgccgaggacaccactccggccaggaggtgcaccacatcggccgccccatcaagtccctgctggtggtgatcgcctg




ggtggtggtgatcatcacggcgccctgaagacctgcagtggtcctccctgctgtccacctggaagggcaaggccactccgtgatc




ggcctgggcatcgccaccctgctgatgcacatgctgatcctgtcctcccaggccgagcgctccaaccccgccaaggtggccaag




TGA

ctcgag







SEQ ID NO: 103 CavigLPAAT1




ggtacc

ATGaccatcgcctccgccgccgtggtgttcctgttcggcatcctgctgttcacctccggcctgatcatcaacctgttccag




gccttctgctccgtgctggtgtggcccctgtccaagaacgcctaccgccgcatcaaccgcgtgttcgccgagttcctgcccctggag




ttcctgtggctgttccactggtgggccggcgccaagctgaagctgttcaccgaccccgagaccttccgcctgatgggcaaggagc




acgccctggtgatcatcaaccacaagatcgagctggactggatggtgggctgggtgctgggccagcacctgggctgcctgggctc




catcctgtccgtggccaagaagtccaccaagacctgcccgtgttcggctggtccctgtggttctccgagtacctgttcctggagcgc




aactgggccaaggacaagaagaccctgaagtcccacatcgagcgcctgaaggactaccccctgcccttctggctgatcatcttcg




tggagggcacccgcttcacccgcaccaagctgctggccgcccagcagtacgccgcctccgccggcctgcccgtgccccgcaac




gtgctgatcccccacaccaagggatcgtgtcctccgtgtcccacatgcgctccacgtgcccgccatctacgacgtgaccgtggcct




tccccaagacctcccccccccccaccatgctgaagctgttcgagggccacttcgtggagctgcacgtgcacatcaagcgccacgc




catgaaggacctgcccgagtccgaggacgccgtggcccagtggtgccgcgacaagttcgtggagaaggacgccctgctggac




aagcacaacgccgaggacaccttctccggccaggaggtgcaccacgtgggccgccccatcaagtccctgctggtggtgatctcc




tgggtggtggtgatcatcttcggcgccctgaagttcctgcagtggtcctccctgctgtcctcctggaagggcatcgccttctccgtgat




cggcctgggcaccgtggccctgctgatgcagatcctgatcctgtcctcccaggccgagcgctccatccccgccaaggagaccccc




gccaacctgaagaccgagctgtcctcctccaagaaggtgaccaacaaggagaacTGA

ctcgag







SEQ ID NO: 104 CavigLPAAT2




ggtacc

ATGgccatcgccgccgccgccgtgatcgtgcccgtgtccctgctgttcttcgtgtccggcctgatcgtgaacctggtgca




ggccgtgtgcttcgtgctgatccgccccctgttcaagaacacctaccgccgcatcaaccgcgtggtggccgagctgctgtggctgg




agctggtgtggctgatcgactggtgggccggcgtgaagatcaaggtgttcaccgaccacgagaccttccacctgatgggcaagg




agcacgccctggtgatctgcaaccacaagtccgacatcgactggctggtgggctgggtgctggcccagcgctccggctgcctggg




ctccaccctggccgtgatgaagaagtcctccaagttcctgcccgtgatcggctggtccatgtggactccgagtacctgttcctggag




cgcaactgggccaaggacgagtccaccctgaagtccggcctgaaccgcctgaaggactaccccctgcccttctggctggccctgt




tcgtggagggcacccgcttcacccgcgccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgca




acgtgctgatcccccgcaccaagggatcgtgtcctccgtgtcccacatgcgctcatcgtgcccgccatctacgacgtgaccgtgg




ccatccccaagacctcccccccccccaccctgctgcgcatgttcaagggccagtcctccgtgctgcacgtgcacctgaagcgcca




ccagatgaacgacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacatcttcgtggagaaggacgccctgctgg




acaagcacaacgccgaggacaccttctccggccaggagctgcaggacaccggccgccccatcaagtccctgctgatcgtgatct




cctgggccgtgctggtggtgttcggcgccgtgaagttcctgcagtggtcctccctgctgtcctcctggaagggcctggccttctccgg




catcggcctgggcgtgatcaccctgctgatgcacatcctgatcctgttctcccagtccgagcgctccacccccgccaaggtggccc




ccgccaagcccaagatcgagggcgagtcctccaagaccgagatggagaaggagcacTGA

ctcgag







SEQ ID NO: 105 CpalLPAAT1




ggtacc

ATGgccatcgccgccgccgccgtgatcgtgcccctgggcctgctgttcttcgtgtccggcctgatcgtgaacctggtgca




ggccgtgtgcttcgtgctgatccgccccctgtccaagaacacctaccgccgcatcaaccgcgtggtggccgagctgctgtggctgg




agctggtgtggctgatcgactggtgggccggcgtgaagatcaaggtgttcaccgaccacgagaccctgtccctgatgggcaagg




agcacgccctggtgatctgcaaccacaagtccgacatcgactggctggtgggctgggtgctggcccagcgctccggctgcctggg




ctccaccctggccgtgatgaagaagtcctccaagttcctgcccgtgatcggctggtccatgtggttctccgagtacctgcccgagtcc




gacgacgccgtggcccagtggtgccgcgacatcttcgtggagaaggacgccctgctggacaagcacaacgccgaggacacctt




ctccggccaggagctgcaggacaccggccgccccatcaagtccctgctggtggtgatctcctgggccgtgctggtgatcttcggcg




ccgtgaagttcctgcagtggtcctccctgctgtcctcctggaagggcctggccttctccggcgtgggcctgggcatcatcaccctgct




gatgcacatcctgatcctgttctcccagtccgagcgctccacccccgccaaggtggcccccgccaagcccaagaaggacggcga




gtcctccaagaccgagatcgagaaggagaacgttcctggagcgctcctgggccaaggacgagaacaccctgaagtccggcct




gaaccgcctgaaggactaccccctgcccttctggctggccctgttcgtggagggcacccgcttcacccgcgccaagctgctggcc




gcccagcagtacgccacctcctccggcctgcccgtgccccgcaacgtgctgatcccccgcaccaagggcttcgtgtcctccgtgtc




ccacatgcgctcatcgtgcccgccatctacgacgtgaccgtggccatccccaagacctcccccccccccaccatgctgcgcatgtt




caagggccagtcctccgtgctgcacgtgcacctgaagcgccacctgatgaaggacctTGA

ctcgag







SEQ ID NO: 106 CuPSR23 LPAAT2




ggtacc

ATGgccatcgccgccgccgccgtgatcacctgttcggcctgatatatcgcctccggcctgatcatcaacctgttccag




gccctgtgcttcgtgctgatccgccccctgtccaagaacgcctaccgccgcatcaaccgcgtgttcgccgagctgctgctgtccgag




ctgctgtgcctgacgactggtgggccggcgccaagctgaagctgttcaccgaccccgagaccaccgcctgatgggcaaggagc




acgccctggtgatcatcaaccacatgaccgagctggactggatggtgggctgggtgatgggccagcacttcggctgcctgggctc




catcatctccgtggccaagaagtccaccaagacctgcccgtgctgggctggtccatgtggactccgagtacctgtacctggagcg




ctcctgggccaaggacaagtccaccctgaagtcccacatcgagcgcctgatcgactaccccctgcccactggctggtgatcacgt




ggagggcacccgcttcacccgcaccaagctgctggccgcccagcagtacgccgtgtcctccggcctgcccgtgccccgcaacgt




gctgatcccccgcaccaagggcacgtgtcctgcgtgtcccacatgcgctccacgtgcccgccgtgtacgacgtgaccgtggccac




cccaagacctcccccccccccaccctgctgaacctgacgagggccagtccatcatgctgcacgtgcacatcaagcgccacgcca




tgaaggacctgcccgagtccgacgacgccgtggccgagtggtgccgcgacaagacgtggagaaggacgccctgctggacaa




gcacaacgccgaggacaccactccggccaggaggtgtgccactccggctcccgccagctgaagtccctgctggtggtgatctcc




tgggtggtggtgaccaccttcggcgccctgaagacctgcagtggtcctcctggaagggcaaggccactccgccatcggcctggg




catcgtgaccctgctgatgcacgtgctgatcctgtcctcccaggccgagcgctccaaccccgccgaggtggcccaggccaagctg




aagaccggcctgtccatctccaagaaggtgaccgacaaggagaacTGA

ctcgag







SEQ ID NO: 107 CkoeLPAAT1




ggtacc

ATGgccatccccgccgccgtggccgtgatccccatcggcctgctgacatcatctccggcctgatcgtgaacctgatcca




ggccgtggtgtacgtgctgatccgccccctgtccaagaacctgcaccgcaagatcaacaagcccatcgccgagctgctgtggctg




gagctgatctggctggtggactggtgggccggcatcaaggtggaggtgtacgccgactcccagaccctggagctgatgggcaag




gagcacgccctgctgatctgcaaccaccgctccgacatcgactggctggtgggctgggtgctggcccagcgcgcccgctgcctgg




gctccgccctggccatcatgaagaagtccgccaagttcctgcccgtgatcggctggtccatgtggactccgactacatcacctgga




ccgcacctgggccaaggacgagaagaccctgaagtccggatcgagcgcctggccgacttccccatgccatctggctggccctg




acgtggagggcacccgatcaccaaggccaagctgctggccgcccaggagtacgccgcctcccgcggcctgcccgtgccccag




aacgtgctgatcccccgcaccaagggatcgtgaccgccgtgacccacatgcgctcctacgtgcccgccatctacgactgcaccg




tggacatctccaaggcccaccccgccccctccatcctgcgcctgatccgcggccagtcctccgtggtgaaggtgcagatcacccg




ccactccatgcaggagctgcccgagaccgccgacggcatctcccagtggtgcatggacctgttcgtgaccaaggacggcacctg




gagaagtaccactccaaggacatcacggctccctgcccgtgcagaacatcggccgccccgtgaagtccctgatcgtggtgctgtg




ctggtactgcctgatggccacggcctgacaagacttcatgtggtcctccctgctgtcctcctgggagggcatcctgtccctgggcctg




atcctgctggccgtggccatcgtgatgcagatcctgatccagtccaccgagtccgagcgctccacccccgtgaagtccatccaga




aggacccctccaaggagaccctgctgcagaacTGA

ctcgag




SEQ ID NO: 108 CkoeLPAAT2




ggtacc

ATGcacgtgctgctggagatggtgaccaccgcactcctccacttcgtgacgacaacgtgcaggccctgtgatcgtgct




gatctggcccctgtccaagtccgcctaccgcaagatcaaccgcgtgacgccgagctgctgctgtccgagctgctgtgcctgacga




ctggtgggccggcgccaagctgaagctgacaccgaccccgagaccaccgcctgatgggcaaggagcacgccctggtgatcac




caaccacaagatcgacctggactggatgatcggctggatcctgggccagcacttcggctgcctgggctccgtgatctccatcgcca




agaagtccaccaagacctgcccatcacggctggtccctgtggactccgagtacctgacctggagcgcaactgggccaaggaca




agcgcaccctgaagtcccacatcgagcgcatgaaggactaccccctgcccctgtggctgatcctgacgtggagggcacccgat




cacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgcaacgtgctgatcccccacac




caagggcttcgtgtcctccgtgtcccacatgcgctccttcgtgcccgccgtgtacgacgtgaccgtggccttccccaagacctcccc




cccccccaccatgctgtccctgacgagggccagtccgtggtgctgcacgtgcacatcaagcgccacgccatgaaggacctgccc




gactccgacgacgccgtggcccagtggtgccgcgacaagacgtggagaaggacgccctgctggacaagcacaacgccgagg




acaccactccggccaggaggtgcaccacgtgggccgccccatcaagtccctgctggtggtgatctcctggatggtggtgatcatct




tcggcgccctgaagacctgcagtggtcctccctgctgtcctcctggaagggcaaggccactccgccatcggcctgggcatcgcca



ccctgctgatgcacgtgctggtggtgactcccaggccgaccgctccaaccccgccaaggtgccccccgccaagctgaacaccga



gctgtcctcctccaagaaggtgaccaacaaggagaacTGA

ctcgag







SEQ ID NO: 109 CprocLPAAT2




ggtacc

ATGgccatccccgccgccgtggccgtgatccccatcggcctgctgacatcatctccggcctgatcgtgaacctgatcca




ggccgtggtgtacgtgctgatccgccccctgtccaagaacctgtaccgcaagatcaacaagcccatcgccgagctgctgtggctg




gagctgatctggctggtggactggtgggccggcatcaaggtggaggtgtacgccgactccgagaccctggagtccatgggcaag




gagcacgccctgctgatctgcaaccaccgctccgacatcgactggctggtgggctgggtgctggcccagcgcgcccgctgcctgg




gctccgccctggccatcatgaagaagtccgccaagttcctgcccgtgatcggctggtccatgtggttctccgactacatcttcctgga




ccgcacctgggagaaggacgagaagaccctgaagtccggcttcgagcgcctggccgacttccccatgcccttctggctggccct




gttcgtggagggcacccgcttcaccaaggccaagctgctggccgcccaggagttcgccgcctcccgcggcctgcccgtgcccca




gaacgtgctgatcccccgcaccaagggcttcgtgaccgccgtgacccacatgcgctcctacgtgcccgccatctacgactgcacc




gtggacatctccaaggcccaccccgccccctccatcctgcgcctgatccgcggccagtcctccgtggtgaaggtgcagatcaccc




gccactccatgcaggagctgcccgagacccccgacggcatctcccagtggtgcatggacctgttcgtgaccaaggacgccttcct




ggagaagtaccactccaaggacatcttcggctccctgcccgtgcacgacatcggccgccccgtgaagtccctgatcgtggtgctgt




gctggtactccctgatggccttcggcactacaagttcttcatgtggtcctccctgctgtcctcctgggagggcatcctgtccctgggcct




ggtgctgatcgtgatcgccatcgtgatgcagatcctgatccagtcctccgagtccgagcgctccacccccgtgaagtccgtgcaga




aggacccctccaaggagaccctgctgcagaacTGA

ctcgag







SEQ ID NO: 110 CavigGPAT9




ggtacc

ATGgccaccggcggctccctgaagccctcctcctccgacctggacctggaccaccccaacatcgaggactacctgcc




ctccggctcctccatcaacgagcccgccggcaagctgcgcctgcgcgacctgctggacatctcccccaccctgaccgaggccgc




cggcgccatcgtggacgactccttcacccgctgatcaagtccatcccccgcgagccctggaactggaacctgtacctgttccccct




gtggtgcatcggcgtgctgatccgctacttcatcctgttccccggccgcgtgatcgtgctgaccatgggctggatcaccgtgatctcct




catcatcgccgtgcgcgtgctgctgaagggccacgacgccctgcagatcaagctggagcgcctgatcgtgcagctgctgtgctcc




tcatcgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgccccaagcaggtgtacgtggccaacc




acacctccatgatcgacttcttcatcctggaccagatgaccgtgttctccgtgatcatgcagaagcaccccggctgggtgggcctgc




tgcagtccaccctgctggagtccgtgggctgcatctggacgaccgcgccgaggccaaggaccgcggcatcgtggccaagaagc




tgtgggaccacgtgcacggcgagggcaacaaccccctgctgatcttccccgagggcacctgcgtgaacaacaactactccgtga




tgttcaagaagggcgccttcgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatcttcgtggacgccttctgg




aactccaagaagcagtccttcacccgccacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacttggagcc




ccagaccctgaagcccggcgagacccccatcgagttcgccgagcgcgtgcgcgacatcatctccgcccgcgccggcctgaaga




aggtgccctgggacggctacctgaagtactcccgcccctcccccaagcaccgcgagcgcaagcagcagaccttcgccgagtcc




gtgctgcagcgcctggaggagTGA

ctcgag







SEQ ID NO: 111 ChookGPAT9-1




ggtacc

ATGgccaccgccggctccctgaagccctcccgctccgagctggacttcgaccgccccaacatcgaggactacctgcc




ctccggctcctccatcatcgagcccgccggcaagctgcgcctgcgcgacctgctggacatctcccccaccctgaccgaggccgcc




ggcgccatcgtggacgactccttcacccgctgatcaagtccaacccccccgagccctggaactggaacatctacctgttccccct




gtggtgcttcggcgtgctgatccgctacctgatcctgttccccgcccgcgtgatcgtgctgaccatcggctggatcatcttcctgtcctc




cttcatccccgtgcacctgctgctgaagggccacgacgccctgcgcatcaagctggagcgcctgctggtggagctgatctgctcat




cttcgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgccccaagcaggtgtacgtggccaaccac




acctccatgatcgacttcttcatcctggaccagatgaccgtgttctccgtgatcatgcagaagcaccccggctgggtgggcctgctg




cagtccaccctgctggagtccgtgggctgcatctggttcgaccgcgccgaggccaaggaccgcggcatcgtggccaagaagctg




tgggaccacgtgcacggcgagggcaacaaccccctgctgatcttccccgagggcacctgcgtgaacaacaactactccgtgatg




ttcaagaagggcgccttcgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatcttcgtggacgccttctggaa




ctccaagaagcagtccttcacccgccacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacttggagcccc




agaccctgaagcccggcgagacccccatcgagttcgccgagcgcgtgcgcgacatcatctccgtgcgcgccggcctgaagaag




gtgccctgggacggctacctgaagtactcccgcccctcccccaagcacaccgagcgcaagcagcagaacttcgccgagtccgt




gctgcagcgcctggagaagaagTGA

ctcgag







SEQ ID NO: 112 CignGPAT9-1




ggtacc

ATGgccaccggcggccgcctgaagccctcctcctccgagctggacctggaccgcgccaacaccgaggactacctgc




cctccggctcctccatcaacgagcccgtgggcaagctgcgcctgcgcgacctgctggacatctcccccaccctgaccgaggccg




ccggcgccatcgtggacgactccttcacccgctgcttcaagtccatcccccccgagccctggaactggaacatctacctgttccccc




tgtggtgatcggcgtgctgatccgctacttcatcctgttccccgcccgcgtgatcgtgctgaccatcggctggatcaccgtgatctcct




catcaccgccgtgcgcacctgctgaagggccacaacgccctgcagatcaagctggagcgcctgatcgtgcagctgctgtgctcc




tcatcgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgccccaagcaggtgtacgtggccaacc




acacctccatgatcgacacctgatcctggaccagatgaccgtgactccgtgatcatgcagaagcaccccggctgggtgggcctg




ctgcagtccaccctgctggagtccgtgggctgcatctggacaaccgcgccgaggccaaggaccgcgagatcgtggccaagaag




ctgtgggaccacgtgcacggcgagggcaacaaccccctgctgatcaccccgagggcacctgcgtgaacaaccactactccgtg




atgacaagaagggcgccacgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatcacgtggacgccactg




gaactcccgcaagcagtccacaccatgcacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacaggagc




cccagaccctgaagcccggcgagaccgccatcgagacgccgagcgcgtgcgcgacatcatctccgtgcgcgccggcctgaag




aaggtgccctgggacggctacctgaagtactcccgcccctcccccaagcaccgcgagtccaagcagcagtccacgccgagtcc




gtgctgcgccgcctggaggagaagTGA

ctcgag







SEQ ID NO: 113 CignGPAT9-2




ggtacc

ATGgccaccggcggccgcctgaagccctcctcctccgagctggacctggaccgcgccaacaccgaggactacctgc




cctccggctcctccatcaacgagcccgtgggcaagctgcgcctgcgcgacctgctggacatctcccccaccctgaccgaggccg




ccggcgccatcgtggacgactccacacccgctgatcaagtccatcccccccgagccctggaactggaacatctacctgaccccc




tgtggtgatcggcgtgctgatccgctacttcatcctgaccccgcccgcgtgatcgtgctgaccatcggctggatcaccgtgatctcct




catcaccgccgtgcgcacctgctgaagggccacaacgccctgcagatcaagctggagcgcctgatcgtgcagctgctgtgctcc




tccacgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgccccaagcaggtgtacgtggccaacc




acacctccatgatcgacacctgatcctggaccagatgaccgtgactccgtgatcatgcagaagcaccccggctgggtgggcctg




ctgcagtccaccctgctggagtccgtgggctgcatctggacaaccgcgccgaggccaaggaccgcgagatcgtggccaagaag




ctgtgggaccacgtgcacggcgagggcaacaaccccctgctgatcaccccgagggcacctgcgtgaacaaccactactccgtg




atgacaagaagggcgccacgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatcacgtggacgccactg




gaactccaagaagcactccacacccgccacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacaggagc




cccagaccctgaagcccggcgagacccccatcgagacgccgagcgcgtgcgcgacatcatctccgtgcgcgccgacctgaag




aaggtgccctgggacggctacctgaagtactcccgcccctcccccaagcaccgcgagcgcaagcagcagaagacgccgagtc




cgtgctgcgccgcctggaggagaagTGA

ctcgag







SEQ ID NO: 114 CpalGPAT9-1




ggtacc

ATGgccaccgccggccgcctgaagccctcctcctccgagctggagctggacctggaccgccccaacatcgaggact




acctgccctccggctcctccatcaacgagcccgccggcaagctgcgcctgcgcgacctgctggacatctcccccatgctgaccga




ggccgccggcgccatcgtggacgactccacacccgctgatcaagtccatcccccccgagccctggaactggaacatctacctgt




tccccctgtggtgatcggcgtgctgatccgctacctgatcctgaccccgcccgcgtgatcgtgctgaccgtgggctggatcaccgtg




atctcctccacatcaccgtgcgcacctgctgaagggccacgactccctgcgcatcaagctggagcgcctgatcgtgcagctgttct




gctcctccacgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgcccccagcaggtgtacgtggcc




aaccacacctccatgatcgacttcatcatcctgaaccagatgaccgtgactccgccatcatgcagaagcaccccggctgggtggg




cctgatccagtccaccatcctggagtccgtgggctgcatctggacaaccgcgccgaggccaaggaccgcgagatcgtggccaa




gaagctgctggaccacgtgcacggcgagggcaacaaccccctgctgatcaccccgagggcacctgcgtgaacaaccactactc




cgtgatgacaagaagggcgccacgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatcacgtggacgcct




tctggaactccaagaagcagtccacaccatgcacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacagg




agccccagaccctgaagcccggcgagacccccatcgagacgccgagcgcgtgcgcgacatcatctccgtgcgcgccggcctg




aagaaggtgccctgggacggctacctgaagtactcccgcccctcccccaagcaccgcgagcgcaagcagcagtccacgccga




gtccgtgctgcgccgcctggagaagcgcTGA

ctcgag







SEQ ID NO: 115 CpalGPATt9-2




ggtacc

ATGgccaccgccggccgcctgaagccctcctcctccgagctggagctggacctggaccgccccaacatcgaggact




acctgccctccggctcctccatcaacgagcccgccggcaagctgcgcctgcgcgacctgctggacatctcccccatgctgaccga




ggccgccggcgccatcgtggacgactccacacccgctgatcaagtccatcccccccgagccctggaactggaacatctacctgt




tccccctgtggtgatcggcgtgctgatccgctacctgatcctgaccccgcccgcgtgatcgtgctgaccgtgggctggatcaccgtg




atctcctccacatcaccgtgcgcacctgctgaagggccacgactccctgcgcatcaagctggagcgcctgatcgtgcagctgttct




gctcctccacgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgcccccagcaggtgtacgtggcc




aaccacacctccatgatcgacttcatcatcctgaaccagatgaccgtgactccgccatcatgcagaagcaccccggctgggtggg




cctgatccagtccaccatcctggagtccgtgggctgcatctggacaaccgcgccgaggccaaggaccgcgagatcgtggccaa




gaagctgctggaccacgtgcacggcgagggcaacaaccccctgctgatcaccccgagggcacctgcgtgaacaaccactactc




cgtgatgttcaagaagggcgccttcgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatcttcgtggacgcct




tctggaactccaagaagctgtcatcaccatgcacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacttgg




agccccagaccctgaagcccggcgagacccccatcgagttcgccgagcgcgtgcgcgacatcatctccgtgcgcgccggcctg




aagaaggtgccctgggacggctacctgaagtactcccgcccctcccccaagcaccgcgagcgcaagcagcagaccttcgccg




agtccgtgctgcgccgcctggaggagaagggcaacgtggtgcccaccgtgaacTGA

ctcgag







SEQ ID NO: 116 CavigDGAT1




ggtacc

ATGgccatcgccgacggcggcatcatcggcgccgccggctccatctccgccctgaccgccgacaccgaccccccct




ccctgcgccgccgcaacgtgcccgccggccaggcctccgccgtgtccgccttctccaccgagtccatggccaagcacctgtgcga




cccctcccgcgagccctccccctcccccaagtcctccgacgacggcaaggaccccgacatcggctccgtggactccctgaacga




gaagccctcctcccccgccgccggcaagggccgcctgcagcacgacctgcgatcacctaccgcgcctcctcccccgcccaccg




caaggtgaaggagtcccccctgtcctcctccaacatcttcaagcagtcccacgccggcctgttcaacctgtgcgtggtggtgctggt




ggccgtgaactcccgcctgatcatcgagaacctgatgaagtacggcctgctgatcaagaccggcttctggttctcctcccgctccct




gcgcgactggcccctgttcatgtgctgcctgtccctgcccatcttccccctggccgccttcctggtggagaagctggcccagaagaa




ccgcctgcaggagcccaccgtggtgtgctgccacgtgctgatcacctccgtgtccatcctgtaccccgtgctggtgatcctgcgctg




cgactccgccgtgctgtccggcgtggccctgatgctgttcgcctgcatcgtgtggctgaagctggtgtcctacgcccactccaactac




gacatgcgctacgtggccaagtccctggacaagggcgagcccgtggtggactccgtgatcgccgaccacccctaccgcgtgga




ctacaaggacctggtgtacttcatggtggcccccaccctgtgctaccagctgtcctaccccctgaccccctgcgtgcgcaagtcctg




gatcgcccgccaggtgatgaagctggtgctgttcaccggcgtgatgggcttcatcgtggagcagtacatcaaccccatcgtgcag




aactccaagcaccccctgaagggcgacctgctgtacgccatcgagcgcgtgctgaagctgtccgtgcccaacctgtacgtgtggc




tgtgcatgttctactgcttcttccacctgtggctgaacatcctggccgagctgatctgcttcggcgaccgcgagttctacaaggactgg




tggaacgccaagaccgtggaggagtactggcgcatgtggaacatgcccgtgcacaagtggatggtgcgccacatctacttcccct



gcctgcgcaacggcatcccccgcggcgtggccgtgctgatcgccttcctggtgtccgccgtgttccacgagctgtgcatcgccgtgc



cctgccacgtgttcaagctgtgggccttcatcggcatcatgttccaggtgcccctggtgctggtgtccaactgcctgcagaagaagtt




ccagtcctccatggccggcaacatgttatctggttcatcttctgcatcttcggccagcccatgtgcgtgctgctgtactaccacgacct




gatgaaccgcaagggctcccgcatcgacTGA

ctcgag







SEQ ID NO: 117 ChookDGAT1-1




ggtacc

ATGgccatcgccgacggcggctccgccggcgccgccggctccatctccggctccgacccctccccctccaccgcccc




ctccctgcgccgccgcaacgcctccgccggccaggccttctccaccgagtccatggcccgcgacctgtgcgacccctcccgcga




gccctccctgtcccccaagtcctccgacgacggcaaggaccccgccgacgacatcggcgccgccgactccgtggactccggcg




gcgtgaaggacgagaagccctcctcccaggccgccgccaaggcccgcctggagcacgacctgcgatcacctaccgcgcctcc




tcccccgcccaccgcaaggtgaaggagtcccccctgtcctcctccaacatcttcaagcagtcccacgccggcctgttcaacctgtg




cgtggtggtgctggtggccgtgaactcccgcctgatcatcgagaacctgatgaagtacggcctgctgatcaagaccggcttctggtt




ctcctcccgctccctgcgcgactggcccctgttcatgtgctgcctgtccctgcccatcaccccctggccgccttcctggtggagaagc




tggcccagaagaaccgcctgcaggagcccaccgtggtgtgctgccacgtgatcatcacctccgtgtccatcctgtaccccgtgctg




gtgatcctgcgctgcgactccgccgtgctgtccggcgtggccctgatgctgttcgcctgcatcgtgtggctgaagctggtgtcctacg




cccacgccaactacgacatgcgctccgtggccaagtccctggacaagggcgagaccgtggccgactccgtgatcgtggaccac




ccctaccgcgtggactacaaggacctggtgtacttcatggtggcccccaccctgtgctaccagctgtcctaccccctgaccccctac




gtgcgcaagtcctgggtggcccgccaggtgatgaagctggtgctgttcaccggcgtgatgggcttcatcgtggagcagtacatcaa




ccccatcgtgcagaactccaagcaccccctgaagggcgacctgctgtacgccatcgagcgcgtgctgaagctgtccgtgcccaa




cctgtacgtgtggctgtgcatgttctactgcttcttccacctgtggctgaacatcctggccgagctgacctgcttcggcgaccgcgagt




tctacaaggactggtggaacgccaagaccgtggaggagtactggcgcatgtggaacatgcccgtgcacaagtggatggtgcgc




cacatctacttcccctgcctgcgcaacggcatcccccgcggcgtggccgtgctgatcgccttcctggtgtccgccgtgttccacgag




ctgtgcatcgccgtgccctgccacgtgttcaagctgtgggccttcatcggcatcatgttccaggtgcccctggtgctggtgtccaactg




cctgcagaagaagttccagtcctccatggccggcaacatgttatctggttcatcttctgcatcttcggccagcccatgtgcgtgctgct




gtactaccacgacctgatgaaccgcaagggctcccgcatcgacTGA

ctcgag







SEQ ID NO: 118 CavigLPCAT




ggtacc

ATGggcctggtgtccgtggccgccgccatcggcgtgtccgtgcccgtggcccgcttcctgctgtgcttcctggccaccat




ccccgtgtccttcctgtggcgcctggtgcccggccgcctgcccaagcacctgtactccgccgcctccggcgccatcctgtcctacct




gtcatcggcgcctcctccaacctgcacttcatcgtgcccatgaccctgggctacctgtccatgctgttcttccgcccatctccggcct




gctgaccttcttcctgggcttcggctacctgatcggctgccacgtgtactacatgtccggcgacgcctggaaggagggcggcatcg




acgccaccggcgccctgatggtgctgaccctgaaggtgatctcctgctccatgaactacaacgacggcctgctgaaggaggagg




gcctgcgcgagtcccagaagaagaaccgcctgaccaagatgccctccctgatcgagtacttcggctactgcctgtgctgcggctc




ccacttcgccggccccgtgtacgagatgaaggactacctggagtggaccgagggcaagggcatctggtcccgctcccagaagg




agcccaagccctccccatcggcggcgccctgcgcgccatcatccaggccgccgtgtgcatggccatgtacctgtacctggtgccc




caccaccccctgacccgcttcaccgagcccgtgtactacgagtggggatcttccgccgcctgtcctaccagtacatggccgccctg




accgcccgctggaagtactacttcatctggtccatctccgaggcctccctgatcatctccggcctgggcttctccggctggaccgagt




cctccccccccaagccccgctgggaccgcgccaagaacgtggacatcatcggcgtggagttcgccaagtcctccgtgcagctgc




ccctggtgtggaacatccaggtgtccatctggctgcgccactacgtgtacgaccgcctggtgcagaacggcaagcgccccggctt




caccagctgctggccacccagaccgtgtccgccgtgtggcacggcctgtaccccggctacatcatatatcgtgcagtccgccctg




atgatcgccggctcccgcgtgatctaccgctggcagcaggccgtgccccccaagatgggcctggtgaagaacatcttcgtgttctt




caacttcgcctacaccctgctggtgctgaactactccgccgtgggcttcatggtgctgtccatgcacgagaccctggcctcctacgg




ctccgtgtactacatcggcaccatcctgcccatcaccctgatcctgctgtcctacgtgatcaagcccggcaagcccgcccgctccaa




ggcccacaaggagcagTGA

ctcgag







SEQ ID NO: 119 CpalLPCAT




ggtacc

ATGgagctgggctccgtggccgccgccatcggcgtgtccgtgcccgtggcccgcttcctgctgtgcttcctggccaccat




ccccgtgtccttcctgtggcgcctggtgcccggccgcctgcccaagcacctgtactccgccgcctccggcgccatcctgtcctacct




gtcatcggcccctcctccaacctgcacttcatcgtgcccatgaccctgggctacctgtccatgctgttcttccgcccatctccggcct




gctgaccttcttcctgggcttcggctacctgatcggctgccacgtgtactacatgtccggcgacgcctggaaggagggcggcatcg




acgccaccggcgccctgatggtgctgaccctgaaggtgatctcctgctccatcaactacaacgacggcctgctgaaggaggagg




gcctgcgcgagtcccagaagaagaaccgcctgaccaagatgccctccctgatcgagtacatcggctactgcctgtgctgcggctc




ccacttcgccggccccgtgtacgagatgaaggactacctggagtggaccgagggcaagggcgtgtggtcccactccgagaagg




agcccaagccctccccatcggcggcgccctgcgcgccatcatccaggccgccgtgtgcatggccatgtacatgtacctggtgccc




caccaccccctgtcccgatcaccgagcccgtgtactacgagtggggcacttccgccgcctgtcctaccagtacatggccggcctg




accgcccgctggaagtactacttcatctggtccatctccgaggcctccctgatcatctccggcctgggcttctccggctggaccgagt




cctccccccccaagccccgctgggaccgcgccaagaacgtggacatcatcggcgtggagttcgccaagtcctccgtgcagctgc




ccctggtgtggaacatccaggtgtccacctggctgcgccactacgtgtacgaccgcctggtgcagaacggcaagcgccccggctt




caccagctgctggccacccagaccgtgtccgccatctggcacggcctgtaccccggctacatcatatatcgtgcagtccgccctg




atgatcgccggctcccgcgtgatctaccgctggcagcaggccgtgccccccaagatgggcctggtgaagaacatcttcgtgttctt




caacttcgcctacaccctgctggtgctgaactactccgccgtgggcttcatggtgctgtccatgcacgagaccctggcctcctacgg




ctccgtgtactacatcggcaccatcctgcccatcaccctgatcctgctgtcctacgtgatcaagcccggcaagcccgcccgctccaa




ggcccacaaggagcagTGA

ctcgag







SEQ ID NO: 120 CpauLPCAT




ggtacc

ATGgagctggagatcggctccgtggccgccgccatcggcgtgtccgtgcccgtggcccgatcctgctgtgatcagg




ccaccatccccgtgtccttcctgtgccgcctgctgcccgcccgcctgcccaagcacctgtactccgccgcctccggcgccatcctgt




cctacctgtcatcggcccctcctccaacctgcacttcatcgtgcccatgtccctgggctacctgtccatgctgttcttccgccccttctcc




ggcctgctgaccttcttcagggatcggctacctgatcggctgccacgtgtactacatgtccggcgacgcctggaaggagggcgg




catcgacgccaccggcgccctgatggtgctgaccctgaaggtgatctcctgctccatcaactacaacgacggcctgctgaaggag




gagggcctgcgcgagtcccagaagaagaaccgcctgaccaagatgccctccctgatcgagtacttcggctactgcctgtgctgcg




gctcccacttcgccggccccgtgtacgagatgaaggactacctggagtggaccgagggcaagggcatctggtcccgctccgaga




aggaccccaagccctccccatcggcggcgccctgcgcgccatcatccaggccgccgtgtgcatggccatgcacatgtacctggt




gccccaccaccccctgacccgcttcaccgagcccgtgtactacgagtggggatcttccgccgcctgtcctaccagtacatggccg




cccagaccgcccgctggaagtactacttcatctggtccatctccgaggcctccctgatcatctccggcctgggcttctccggctggac




cgagtcctccccccccaagccccgctgggacaaggccaagaacgtggacatcatcggcgtggagttcgccaagtcctccgtgca




gctgcccctggtgtggaacatccaggtgtccacctggctgcgccactacgtgtacgaccgcctggtgcagaacggcaagcgccc




cggcttcttccagctgctggccacccagaccgtgtccgccgtgtggcacggcctgtaccccggctacatcatcttcttcgtgcagtcc




gccctgatgatcgccggctcccgcgtgatctaccgctggcagcaggccgtgccccagaagatgggcctggtgaagaacatcttcg




tgttcttcaacttcgcctacaccctgctggtgctgaactactccgccgtgggcttcatggtgctgtccatgcacgagaccctggcctcc




tacggctccgtgtactacatcggcaccatcctgcccatcaccctgatcctgctgtcctacgtgatcaagcccggcaagcccacccg




ctccaaggtgcacaaggagcagTGA

ctcgag







SEQ ID NO: 121 CschuLPCAT




ggtacc

ATGgagctggagatggagcccctggccgccgccatcggcgtgtccgtggccgtgttccgcttcctggtgtgcttcatcg




ccaccatccccgtgtccttcatctgccgcctggtgcccggcggcctgccccgccacctgttctccgccgcctccggcgccgtgctgtc




ctacctgtcatcggatctcctccaacctgcacttcctggtgcccatgaccctgggctacctgtccatgatcctgttccgccgatctgc




ggcatcctgaccttcttcctgggcttcggctacctgatcggctgccacgtgtactacatgtccggcgacgcctggaaggagggcgg




catcgacgccaccggcgccctgatggtgctgaccctgaaggtgatctcctgctccatcaactacaacgacggcctgctgaaggag




gagggcctgcgcgagtcccagaagaagaaccgcctgatccgcctgccctccctgatcgagtacttcggctactgcctgtgctgcg




gctcccacttcgccggccccgtgtacgagatgaaggactacctggactggaccgagggcaagggcatctggtcccactccgaga




agggccccaagccctcccccctgcgcgccgccctgcgcgccatcatccaggccggcttctgcatggccatgtacctgtacctggtg




ccccactaccccctgacccgcttcaccgaccccgtgtactacgagtggggcatcctgcgccgcctgtcctaccagtacatggcctc




cttcaccgcccgctggaagtactacttcatctggtccatctccgaggcctccctgatcatctccggcctgggcttctccggctggacc




gagtcctccccccccaagccccgctgggaccgcgccaagaacgtggacatcctgggcgtggagctggccaagtcctccgtgca




gatccccctggtgtggaacatccaggtgtccacctggctgcgccactacgtgtacgaccgcctggtgcagaacggcaagcgccc




cggatcctgcagctgctggccacccagaccgtgtccgccatctggcacggcgtgtaccccggctacctgatcacttcgtgcagtcc




gccctgatgatcgccggctcccgcgccatctaccgctggcagcaggccgtgccccccaagatgtccctggtgaagaacaccctg




gtgttcttcaacttcgcctacaccctgctggtgctgaactactccgccgtgggcttcatggtgctgtccatgcacgagaccctggcctc




ctacggctccgtgtactacgtgggcaccatcctgcccgtgaccctgatcctgctgggctacgtgatcaagcccggcaagtcccccc




gctccaaggcctccaaggagcagTGA

ctcgag







SEQ ID NO: 122 CavigPLA2-1




ggtacc

ATGaacttcgacttcctgtccaacatcccctggttcggcgccaaggcctccgacaacgccggctcctcatcggctccg




ccaccatcgtgatccagcagcccccccccgtgtcccgcggcttcgacatccgccactggggctggccctggtccgtgctgtccgtg




ctgccctggggcaagcccggctgcgacgagctgcgcgccccccccaccaccatcaaccgccgcctgaagcgcaacgccacct




ccatgcactcctccgccgtgcgcggcaacgccgaggccgcccgcgtgcgcttccgcccctacgtgtccaaggtgccctggcaca




ccggcttccgcggcctgctgtcccagctgttcccccgctacggccactactgcggccccaactggtcctccggcaagaacggcgg




ctcccccgtgtgggaccagcgccccatcgactggctggactactgctgctactgccacgacatcggctacgacacccacgacca




ggccaagctgctggaggccgacctggccttcctggagtgcctggagcgcccctcctaccccaccaagggcgacgcccacgtgg




cccacatgtacaagaccatgtgcgtgaccggcctgcgcaacgtgctgatcccctaccgcacccagctgctgcgcctgaactcccg




ccagcccctgatcgacttcggctggctgtccaacgccgcctggaagggctggaacgcccagaagtccTGA

ctcgag







SEQ ID NO: 123 CignPLA2-1




ggtacc

ATGaacctggacttcctgtccaagatcccctggttcgaggccaaggcctccgagaaccccggcctgaacctgggctcc




accaccatcgtgatcaagcagccccgccagggcttcgacatccgccactggggctggccctggtccgtgctgacctggggcaac




cgcgtgaccgacgaggtgcacgccccccccaccaccatcaaccgccgcctgaagcgcaacgccaccggccccgccgtgcag




ggcgacaccgaggccgcccgcctgcgcttccgcccctacgtgtccaaggtgccctggcacaccggcttccgcggcctgctgtccc




agctgttcccccgctacggccactactgcggccccaactggtcctccggcaagaacggcggctcccccgtgtgggaccagcgcc




ccatcgactggctggactactgctgctactgccacgacatcggctacgacacccacgaccaggccaagctgctggaggccgacc




tggccttcctggagtgcctggagcgcccctcctaccccaccaccggcgacgcccacgtggcccacatgtacaagaccatgtgcgt




gaccggcctgcgcaacgtgctgatcccctaccgcacccagctgctgcgcctgaacttccgccagcccctgatcgacttcggctggc




tgtccaacgccgcctggaagggctggtccgcccagaagaccTGA

ctcgag







SEQ ID NO: 124 CuPSR23PLA2-2




ggtacc

ATGgtgcacctgccccacaccctgaagctgggcctggtgatcgccatctccatctccggcctgtgcactcctccacccc




cgcccgcgccctgaacgtgggcatccaggccgccggcgtgaccgtgtccgtgggcaagggctgctcccgcaagtgcgagtccg




acactgcaaggtgccccccacctgcgctacggcaagtactgcggcctgatgtactccggctgccccggcgagaagccctgcgac




ggcctggacgcctgctgcatgaagcacgacgcctgcgtgcaggccaagaacaacgactacctgtcccaggagtgctcccagaa




cctgctgaactgcatggcctccaccgcatgtccggcggcaagcagacaagggctccacctgccaggtggacgaggtggtggac




gtgctgaccgtggtgatggaggccgccctgctggccggccgctacctgcacaagcccTGA

ctcgag







SEQ ID NO: 125 CprocPLA2-2




ggtacc

ATGgtgcacctgccccacaccctgaagctgggcctggtgatcgccatctccatctccggcctgtgcctgtcctccacccc




cgcccgcgccctgaacgtgggcatccaggccgccggcgtgaccgtgtccgtgggcaagggctgctcccgcaagtgcgagtccg




acactgcaaggtgccccccacctgcgctacggcaagtactgcggcctgatgtactccggctgccccggcgagaagccctgcgac




ggcctggacgcctgctgcatgaagcacgacgcctgcgtgcaggccaagaacgacgactacctgtcccaggagtgctcccagaa




cctgctgaactgcatggcctccaccgcatgtccggcggcaagcagacaagggctccacctgccaggtggacgaggtggtggac




gtgctgaccgtggtgatggaggccgccctgctggccggccgctacctgcacaagcccTGA

ctcgag











The constructs containing the codon optimized genes described above driven by the UTEX 1453 SAD2 promoter, were transformed into strain S7858 or S8714. Transformations, cell culture, lipid production and fatty acid analysis were all carried out as described herein. The transgenic strains were selected for their ability to grow on melibiose. Stable transformants were grown under standard lipid production conditions at pH5 (for transgenic strains generated in the strain S7858) or at pH7 (for the transgenic strains generated in the strain S8174) for fatty acid analysis.


Expression of LPAATs

In WO2013/158938 we disclosed that Cocos nucifera LPAAT enzymes exhibit chain length specificity for the fatty acid acyl-CoA that it attach to the glycerol backbone. We disclosed the impact of expressing CnLPAAT in a transgenic strain also expressing a laurate specific thioesterase. In this example we transformed 5 LPAAT enzymes derived from C8-C10 rich Cuphea species and the CnLPAAT into S7858, and the remaining 8 LPAAT enzymes were transformed into S8174. The resulting fatty acid profiles from a set of representative transgenic lines arising from these transformations are shown in Tables 16 and 17. Expression of these genes as shown in Table 16 resulted in increases in C8:0 and/or- C10:0 fatty acid accumulation.









TABLE 16





Fatty acid profiles of representative transgenic strains of S7858


expressing optimized versions of the CpauLPAAT1, CpalLPAAT1, CignLPAAT1,


CprocLPAAT1, ChookLPAAT1 and CnLPAAT1.



















Sample ID
C8:0
C10:0
C12:0
C8-C10





S6165
 0.00
 0.00
0.05
 0.00


S7858
11.70
23.36
0.48
35.06











CpauLPAAT1 @ SAD2-1vD locus
CprocLPAAT1 @ SAD2-1vD locus
















Sample ID
C8:0
C10:0
C12:0
C8-C10
Sample ID
C8:0
C10:0
C12:0
C8-C10





S7858; D4289-7 
12.69
25.06
0.51
37.75
S7858; D4292-15
11.86
24.05
0.46
35.91


S7858; D4289-12
11.98
24.54
0.48
36.52
S7858; D4292-11
11.49
24.01
0.48
35.50


S7858; D4289-2 
11.68
24.14
0.49
35.82
S7858; D4292-22
11.49
23.81
0.47
35.30


S7858; D4289-13
11.53
24.18
0.49
35.71
S7858; D4292-3 
11.46
23.76
0.46
35.22


S7858; D4289-11
11.47
23.85
0.46
35.32
S7858; D4292-24
11.38
23.64
0.46
35.02











CpaiLPAAT1 @ SAD2-1vD locus
ChookLPAAT1 @ SAD2-1vD locus
















Sample ID
C8:0
C10:0
C12:0
C8-C10
Sample ID
C8:0
C10:0
C12:0
C8-C10





S7858; D4290-3 
13.43
25.04
0.52
38.47
S7858; D4293-4 
11.09
24.48
0.51
35.57


S7858; D4290-25
12.98
24.75
0.51
37.73
S7858; D4293-16
12.03
24.24
0.48
36.27


S7858; D4290-5 
12.27
25.00
0.52
37.27
S7858; D4293-6 
11.83
23.79
0.48
35.62


S7858; D4290-12
11.98
24.21
0.48
36.19
S7858; D4293-2 
11.81
23.69
0.47
35.50


S7858; D4290-22
11.91
23.86
0.49
35.77
S7858; D4293-12
11.65
23.11
0.49
34.76











CignLPAAT1 @ SAD2-1vD locu
CnLPAAT1 @ SAD2-1vD locus
















Sample ID
C8:0
C10:0
C12:0
C8-C10
Sample ID
C8:0
C10:0
C12:0
C8-C10





S7858; D4291-13
12.95
24.78
0.52
37.73
S7858; D4404-11
12.30
24.31
0.47
36.61


S7858; D4291-20
12.13
24.63
0.49
36.76
S7858; D4404-6 
12.03
24.02
0.46
36.05


S7858; D4291-15
12.12
24.35
0.47
36.47
S7858; D4404-13
11.48
23.98
0.46
35.46


S7858; D4291-22
11.94
24.50
0.47
36.44
S7858; D4404-2 
11.54
23.71
0.46
35.25


S7858; D4291-7 
12.11
23.14
0.50
35.25
S7858; D4404-1 
11.76
23.36
0.48
35.12
















TABLE 17





Fatty acid profiles of representative transgenic strains of S8174


expressing CavigLPAAT1, CavigLPAAT2, CpalLPAAT1, CuPSR23LPAAT1,


CkoeLPAAT1, CkoeLPAAT2, CprocLPAAT1 and CprocLPAAT2 before lipase treatment.



















Sample ID
C8:0
C10:0
C12:0
C8-C10





S7485
 0.00
0.00
0.07
 0.00


S8174
24.32
9.24
0.37
33.56











CavigLPAAT1 @ SAD2-1vD locus
CkoeLPAAT1 @ SAD2-1vD locus




















C8-




C8-


Sample ID
C8:0
C10:0
C12:0
C10
Sample ID
C8:0
C10:0
C12:0
C10





S8174: D4517-23
25.42
9.63
0.39
35.05
S8174; D4728-8 
25.44
10.31
0.46
35.75


S8174: D4517-9 
25.44
9.61
0.39
35.05
S8174; D4728-10
24.15
9.51
0.43
33.66


S8174: D4517-8 
25.09
9.84
0.39
34.93
S8174; D4728-5 
23.88
9.56
0.45
33.44


S8174: D4517-18
25.20
9.65
0.39
34.85
S8174; D4728-6 
23.58
9.28
0.40
32.86


S8174: D4517-2 
25.20
9.57
0.37
34.77
S8174; D4728-9 
23.47
9.25
0.40
32.72











Cavig LPAAT2 @ SAD2-1vD locus
CkoeLPAAT2-1 @ SAD2-1vD locus




















C8-




C8-


Sample ID
C8:0
C10:0
C12:0
C10
Sample ID
C8:0
C10:0
C12:0
C10





S8174: D4518-2 
24.25
9.97
0.42
34.22
S8174; D4729-2
25.20
9.81
0.43
35.01


S8174: D4518-45
24.09
9.65
0.39
33.74
S8174; D4729-1
23.49
10.60
0.46
34.09


S8174: D4518-34
23.94
9.71
0.38
33.65
S8174; D4729-4
22.25
9.45
0.40
31.70


S8174: D4518-10
24.11
9.50
0.37
33.61
S8174; D4729-5
18.24
8.22
0.35
26.46


S8174: D4518-4 
23.93
9.59
0.39
33.52
















CpalLPAAT1 @ SAD2-1vD locus
CprocLPAAT2 @ SAD2-1vD locus




















C8-




C8-


Sample ID
C8:0
C10:0
C12:0
C10
Sample ID
C8:0
C10:0
C12:0
C10





S8174: D4519-27
25.06
9.75
0.37
34.81
S8174; D4730-14
24.97
9.92
0.41
34.89


S8174: D4519-4 
23.05
10.74
0.47
33.79
S8174; D4730-13
23.26
10.72
0.49
33.98


S8174: D4519-28
24.11
9.54
0.37
33.65
S8174; D4730-1 
23.79
10.15
0.49
33.94


S8174: D4519-10
23.57
9.51
0.38
33.08
S8174; D4730-7 
23.42
10.13
0.36
33.55


S8174: D4519-12
23.55
9.49
0.38
33.04
S8174; D4730-5 
23.69
9.49
0.42
33.18











CuPSR23LPAAT2-1 @ SAD2-1vD locus
CuPSR23LPAAT4 @ SAD2-1vD locus




















C8-




C8-


Sample ID
C8:0
C10:0
C12:0
C10
Sample ID
C8:0
C10:0
C12:0
C10





S8174; D4690-2
25.88
10.62
0.43
36.50
S8174; D4731-1
25.94
10.87
0.56
36.81


S8174; D4690-1
24.60
9.82
0.44
34.42
S8174; D4731-3
22.79
11.52
0.59
34.31


S8174; D4690-3
24.13
9.62
0.47
33.75
S8174; D4731-5
22.89
11.22
0.53
34.11


S8174; D4690-4
23.38
9.97
0.41
33.35
S8174; D4731-2
22.99
11.07
0.45
34.06







S8174; D4731-4
21.15
9.63
0.43
30.78









To assess the regiospecific activity of novel LPAAT enzymes, oil extracted from some of these transformants were treated with porcine pancreatic lipase, which selectively hydrolyzes the fatty acids at the sn-1 and sn-3 positions from the glycerol unit of the triacylglycerol, leaving monoacylglycerols (MAGs) with fatty acids located only at the sn-2 position. The resulting mixture of monoacylglycrols (2-MAGs), were isolated by solid phase extraction on an amino propyl cartridge followed by transesterifcation to generate fatty acid methyl esters (FAMEs). The fatty acid profiles of these FAMEs, which represent the profile of fatty acids at the sn-2 position of the various TAGs, were determined by GC-FID. When compared to the fatty acid profiles from transesterification of the oil without lipase treatment, the sn-2 fatty acid profiles show that the expressed LPAAT are selective for the sn-2 position.


The sn-2 analyses after lipase treatment disclosed in Table 18 show that CavigLPAAT1, CpaiLPAAT exhibit selectivity for either C8:0 fatty acids and CpauLPAAT, CignLPAAT are selective for C10:0 fatty acids, demonstrating that the heterologous LPAATs expressed in these transgenic strains have activities that acylate at the sn-2 position with preference for C8:0 or C10:0.









TABLE 18





Fatty acid profiles & sn-2 analysis of representative transgenic strains


of S7858 & S8174 expressing codon optimized versions of the CnLPAAT1,


CpauLPAAT1, CpaiLPAAT1, CignLPAAT1, ChookLPAAT1 and CavigLPAAT1,


CavigLPAAT2, CpalLPAAT1





















text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed

















Fatty Acid
FA profile
sn-2
FA profile
sn-2
FA profile
sn-2
FA profile
sn-2
FA profile
sn-2





C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
















text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed















text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed















Fatty Acid
FA profile
sn-2
FA profile
sn-2
FA profile
sn-2
FA profile
sn-2





C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed


C text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed















text missing or illegible when filed
text missing or illegible when filed
text missing or illegible when filed






text missing or illegible when filed indicates data missing or illegible when filed







Expression of GPATs, DGATs, LPCATs and PLA2s:

The constructs expressing the other acyltransferases (GPAT, DGAT, LPCAT, and PLA2) were transformed into S8174. Stable transformants were grown under standard lipid production conditions at pH7 and analyzed for fatty acid profiles. Similar to the transgenic lines expressing LPAATs, expression of these genes (GPAT, DGAT, LPCAT, and PLA2) also resulted in increases in C8:0-C10:0 fatty acid accumulation (Tables 19a, 19b, and 20). The data presented shows that we have identified novel GPATs, DGATs, LPCATs and PLA2s that show high specificity for C8-C10 fatty acids. To determine the regiospecificity of the novel GPAT, DGAT, LPCAT, and PLA2 enzymes, sn-2 analysis is performed as disclosed in this example and elsewhere herein.









TABLE 19a





Fatty acid profiles of representative transgenic strains of S8174


expressing GPATs and DGATs



















Sample ID
C8:0
C10:0
C12:0
C8-C10





S7485
 0.00
0.00
0.07
 0.00


S8174
24.61
9.10
0.42
33.71











CavigGPAT9 @ SAD2-1vD locus
CignGPAT9-2 @ SAD2-1vD locus
















Sample ID
C8:0
C10:0
C12:0
C8-C10
Sample ID
C8:0
C10:0
C12:0
C8-C10





S8174; D4551-8
24.52
9.05
0.36
33.57
S8174; D4554-9
24.49
9.13
0.45
33.62


S8174; D4551-7
24.24
9.04
0.36
33.28
S8174; D4554-3
24.28
8.90
0.42
33.18


S8174; D4551-2
23.93
8.92
0.37
32.85
S8174; D4554-7
23.86
8.96
0.43
32.82


S8174; D4551-6
23.63
8.92
0.41
32.55
S8174; D4554-8
23.99
8.81
0.39
32.80


S8174; D4551-3
23.35
8.90
0.43
32.25
S8174; D4554-4
23.87
8.78
0.4
32.65











ChookGPAT9-1 @ SAD2-1vD locus
CpalGPAT9-1 @ SAD2-1vD locus
















Sample ID
C8:0
C10:0
C12:0
C8-C10
Sample ID
C8:0
C10:0
C12:0
C8-C10





S8174; D4552-6 
23.57
9.00
0.36
32.57
S8174; D4724-6
25.61
9.52
0.39
35.13


S8174; D4552-4 
23.62
8.87
0.37
32.49
S8174; D4724-7
24.91
9.36
0.41
34.27


S8174; D4552-9 
23.39
8.97
0.40
32.36
S8174; D4724-2
24.43
9.46
0.39
33.89


S8174; D4552-8 
23.28
8.80
0.40
32.08
S8174; D4724-5
24.01
9.25
0.39
33.26


S8174; D4552-11
23.18
8.80
0.44
31.98
S8174; D4724-4
24.30
8.93
0.39
33.23











CignGPAT9-1 @ SAD2-1vD locus
CpalGPAT9-2 @ SAD2-1vD locus
















Sample ID
C8:0
C10:0
C12:0
C8-C10
Sample ID
C8:0
C10:0
C12:0
C8-C10





S8174; D4553-12
25.19
9.42
0.40
34.61
S8174; D4725-5
24.24
10.30
0.48
34.54


S8174; D4685-1 
24.33
10.24
0.46
34.57
S8174; D4725-6
24.81
9.29
0.41
34.10


S8174; D4553-15
25.11
9.33
0.41
34.44
S8174; D4725-7
24.35
9.51
0.42
33.86


S8174; D4553-1 
24.56
9.50
0.44
34.06
S8174; D4725-8
24.37
9.39
0.40
33.76


S8174; D4553-6 
24.74
9.16
0.40
33.90
S8174; D4725-9
24.28
9.29
0.41
33.57
















TABLE 19b







Fatty acid profiles of representative transgenic strains of S8174


expressing DGATs











Sample ID
C8:0
C10:0
C12:0
C8-C10





S7485
0.00
0.00
0.07
0.00


S8174
24.61
9.10
0.42
33.71







Cavig DGAT1 @ SAD2-1vD locus











S8174; D4549-7
24.89
9.28
0.36
34.17


S8174; D4549-6
24.53
9.04
0.47
33.57


S8174; D4549-4
23.93
8.99
0.41
32.92


S8174; D4549-1
23.93
8.97
0.38
32.90


S8174; D4549-3
23.76
8.9
0.36
32.66







Chook DGAT1 @ SAD2-1vD locus











S8174; D4550-1
24.67
9.12
0.41
33.79


S8174; D4550-3
24.64
9.06
0.42
33.70


S8174; D4682-1
23.72
9.68
0.5
33.40


S8174; D4682-2
23.49
9.66
0.41
33.15


S8174; D4550-2
22.42
8.81
0.41
31.23
















TABLE 20





Fatty acid profiles of representative transgenic strains of S8174


expressing LPCATs and PLA2s



















Sample ID
C8:0
C10:0
C12:0
C8-C10





S7485
 0.00
0.00
0.07
 0.00


S8174
24.61
9.10
0.42
33.71











Cavig LPCAT @ SAD2-1vD locus
Cavig PLA2-1 @ SAD2-1vD locus
















Sample ID
C8:0
C10:0
C12:0
C8-C10
Sample ID
C8:0
C10:0
C12:0
C8-C10





S8174; D4555-1
26.6
9.38
0.47
35.98
S8174; D4732-1
26.31
11.24
0.60
37.55


S8174; D4555-3
26.4
9.47
0.39
35.87
S8174; D4732-2
25.30
11.88
0.50
37.18


S8174; D4688-1
25.95
9.67
0.44
35.62
S8174; D4732-3
25.29
11.01
0.48
36.30


S8174; D4688-3
25.47
9.89
0.44
35.36
S8174; D4732-4
25.30
11.00
0.47
36.30


S8174; D4555-2
25.52
9.55
0.36
35.07
S8174; D4732-5
25.07
11.20
0.44
36.27











Cpau LPCAT @ SAD2-1vD locus
CignPLA2-1 @ SAD2-1vD locus
















Sample ID
C8:0
C10:0
C12:0
C8-C10
Sample ID
C8:0
C10:0
C12:0
C8-C10





S8174; D4556-3
25.55
9.21
0.43
34.76
S8174; D4734-6
26.39
11.34
0.47
37.73


S8174; D4556-4
25.24
9.46
0.41
34.70
S8174; D4734-1
26.17
10.90
0.46
37.07


S8174; D4689-7
24.63
9.86
0.43
34.49
S8174; D4734-5
25.58
11.12
0.57
36.70


S8174; D4556-1
25.18
9.13
0.42
34.31
S8174; D4734-4
25.48
11.17
0.57
36.65


S8174; D4689-6
24.05
9.89
0.48
33.94
S8174; D4734-2
24.75
11.32
0.46
36.07











Cpal LPCAT @ SAD2-1vD locus
CuPSR23PLA2-2 @ SAD2-1vD locus
















Sample ID
C8:0
C10:0
C12:0
C8-C10
Sample ID
C8:0
C10:0
C12:0
C8-C10





S8174; D4726-4
26.34
9.76
0.41
36.10
S8174; D4735-5
25.81
11.16
0.44
36.97


S8174; D4726-2
25.92
9.9
0.44
35.82
S8174; D4735-1
25.95
10.92
0.47
36.87


S8174; D4726-3
26.15
9.62
0.41
35.77
S8174; D4735-8
25.54
10.91
0.42
36.45


S8174; D4726-5
26.09
9.55
0.41
35.64
S8174; D4735-7
25.45
10.95
0.44
36.40


S8174; D4726-1
25.64
9.57
0.39
35.21
S8174; D4735-6
25.51
10.88
0.41
36.39











Cschu LPCAT @ SAD2-1vD locus
Cproc PLA2-2 @ SAD2-1vD locus
















Sample ID
C8:0
C10:0
C12:0
C8-C10
Sample ID
C8:0
C10:0
C12:0
C8-C10





S8174; D4727-1 
26.24
9.95
0.45
36.19
S8174; D4736-2
25.60
10.87
0.42
36.47


S8174; D4727-7 
26.26
9.84
0.42
36.10
S8174; D4736-4
25.55
10.76
0.40
36.31


S8174; D4727-9 
26.13
9.87
0.42
36.00
S8174; D4736-3
25.40
10.87
0.36
36.27


S8174; D4727-11
25.99
9.97
0.44
35.96
S8174; D4736-5
25.45
10.46
0.39
35.91


S8174; D4727-16
26.28
9.68
0.44
35.96
S8174; D4736-1
24.34
11.06
0.48
35.40









Example 7: Expression of LPAAT and/or DGAT in Prototheca to Produce High SOS and Low Trisaturated TAGs

In this example we describe genetically engineered Prototheca moriformis strains in which we have modified fatty acid and triacylglycerol biosynthesis to maximize the accumulation of Stearoyl-Oleoyl-Stearoyl (SOS) TAGs, and minimize the production of trisaturated TAGs. Tailored oils from these strains resemble plant seed oils known as “structuring fats”, which have high proportions of Saturated-Oleate-Saturated TAGs and low levels of trisaturates. These structuring fats (often called “butters”) are generally solid at room temperature but melt sharply between 35-40° C.


High-SOS strains were obtained by three successive transformations beginning with strain S5100, a classically improved derivative, of a wild type isolate of Prototheca moriformis, S376. Strain S5100 was transformed with plasmid pSZ5654 to generate strain S8754, which produces an oil with increased stearic acid (C18:0) content, lower palmitic acid (C16:0) and reduced linoleic acid (C18:2cisΔ9,12) content relative to S5100. In turn, strain S8754 was transformed with plasmid pSZ5868 to generate strain S8813, which produces oil with higher C18:0, lower C16:0 and improved sn-2 selectivity compared to S8754. Finally, strain S8813 was transformed with plasmids pSZ6383 or pSZ6384 to generate strains S9119, S9120 and S9121, producing oils rich in C18:0 with reduced levels of C18:2cisΔ9,12 and improved sn-3 selectivity.


Construct Used for SAD2 Knockout in S5100


The first intermediate strains were prepared by transformation of strain S5100 with integrative plasmid pSZ5654 (SAD2-1vD::PmKASII-1tp_PmKASII-1_FLAG-CvNR:CrTUB2-PmFAD2hpA-CvNR:PmHXT1-2v2-ScarMEL1-PmPGK::SAD2-1vE). The construct targeted ablation of allele 1 of the endogenous stearoyl-ACP desaturase 2 gene (SAD2), concomitant with expression of the PmKASII gene encoding P. moriformis β-keto-acyl-ACP synthase, and a RNAi hairpin sequence to down-regulate fatty acid desaturase (FAD2) gene expression. Deletion of one allele of SAD2 reduced SAD activity, resulting in elevated levels of C18:0. Overexpression of PmKASII stimulated elongation of C16:0 to C18:0, further increasing C18:0. FAD2 is responsible for the conversion of C18:1cisΔ9 (oleic) to C18:2cisΔ9,12 (linoleic) fatty acids, and RNAi of FAD2 resulted in decreased C18:2. Thus, the first intermediate strains had higher levels of C18:0 and decreased C16:0 and C18:2 fatty acid levels relative to the S5100 parent. The Saccharomyces carlsbergensis MEL1 gene, encoding a secreted melibiase served as a selectable marker as part of plasmid pSZ5654, enabling the strain to grow on melibiose.


The sequence of the pSZ5654 transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, bold and underlining and are 5′-3′ PmeI, SpeI, AscI, ClaI, SacI, AvrII, EcoRV, EcoRI, SpeI, BsiWI, XhoI, SacI, KpnI, SnaBI, BspQI and PmeI, respectively. PmeI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent SAD2-1 5′ genomic DNA that permit targeted integration at the SAD2-1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, bold, lowercase sequences represent SAD2-1 5′ genomic DNA sequences that permit targeted integration at the FATA-1 locus via homologous recombination. The initiator ATG of the sequence encoding the P. moriformis KASII-1 transit peptide (PmKASII-1tp) is indicated by uppercase, bold italics, and the PmKASII-1tp sequence located between the ATG and the AscI site is indicated with lowercase, underlined italics. The PmKASII-1 coding region is indicated by lowercase italics. A sequence encoding a 3×FLAG tag fused to the C-terminus of PmKASII-1 is represented by uppercase italics, and the TGA terminator codon is indicated with uppercase, bold italics. The Chlorella vulgaris nitrate reductase (NR) gene 3′ UTR is indicated by lowercase underlined text. A spacer sequence is represented by lowercase text. The C. reinhardtii TUB2 promoter, driving expression of the PmFAD2hpA sequence is indicated by boxed text. Bold italics denote the PmFAD2hpA sequence followed by lowercase underlined text representing C. vulgaris nitrate reductase 3′ UTR. A second spacer sequence is represented by lowercase text. The P. moriformis HXT1 promoter driving the expression of the S. carlbergensis MEL1 gene is indicated by boxed text. The initiator ATG and terminator TGA for MEL1 gene are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The P. moriformis PGK 3′ UTR is indicated by lowercase underlined text. The SAD2-1 3′ genomic region indicated by bold, lowercase text.










Nucleotide sequence of transforming DNA contained in pSZ5654






SEQ ID NO: 126 





gtttaaac

gccggtcaccacccgcatgctcgtactacagcgcacgcaccgcttcgtgatccaccgggtgaacgtagtcctcgacgg








aaacatctggttcgggcctcctgcttgcactcccgcccatgccgacaacctttctgctgttaccacgacccacaatgcaacgcgaca







cgaccgtgtgggactgatcggttcactgcacctgcatgcaattgtcacaagcgcttactccaattgtattcgtttgttttctgggagc







agttgctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtggcctgggtgtttcgtcgaaaggccagcaaccctaaatcg







caggcgatccggagattgggatctgatccgagtttggaccagatccgccccgatgcggcacgggaactgcatcgactcggcgcgg







aacccagctttcgtaaatgccagattggtgtccgatacctggatttgccatcagcgaaacaagacttcagcagcgagcgtatttgg







cgggcgtgctaccagggttgcatacattgcccatttctgtctggaccgctttactggcgcagagggtgagttgatggggttggcagg







catcgaaacgcgcgtgcatggtgtgcgtgtctgttttcggctgcacgaattcaatagtcggatgggcgacggtagaattgggtgtg







gcgctcgcgtgcatgcctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccatcttgctaacgctcccgactc








embedded image






gccactacttcaacacccacctacccaccacctcccaccacaccatacaccacacctaatcccacatcacccac

g

ggcgcgcc

gc







cgccgccgccgacgccaaccccgcccgccccgagcgccgcgtggtgatcaccggccagggcgtggtgacctccctgggccag







accatcgagcagttctactcctccctgctggagggcgtgtccggcatctcccagatccagaagttcgacaccaccggctacacc







accaccatcgccggcgagatcaagtccctgcagctggacccctacgtgcccaagcgctgggccaagcgcgtggacgacgtga







tcaagtacgtgtacatcgccggcaagcaggccctggagtccgccggcctgcccatcgaggccgccggcctggccggcgccgg







cctggaccccgccctgtgcggcgtgctgatcggcaccgccatggccggcatgacctccttcgccgccggcgtggaggccctgac







ccgcggcggcgtgcgcaagatgaaccccttctgcatccccttctccatctccaacatgggcggcgccatgctggccatggacatc







ggcttcatgggccccaactactccatctccaccgcctgcgccaccggcaactactgcatcctgggcgccgccgaccacatccgcc







gcggcgacgccaacgtgatgctggccggcggcgccgacgccgccatcatcccctccggcatcggcggcttcatcgcctgcaag







gccctgtccaagcgcaacgacgagcccgagcgcgcctcccgcccctgggacgccgaccgcgacggcttcgtgatgggcgagg







gcgccggcgtgctggtgctggaggagctggagcacgccaagcgccgcggcgccaccatcctggccgagctggtgggcggcg







ccgccacctccgacgcccaccacatgaccgagcccgacccccagggccgcggcgtgcgcctgtgcctggagcgcgccctggag







cgcgcccgcctggcccccgagcgcgtgggctacgtgaacgcccacggcacctccacccccgccggcgacgtggccgagtaccg







cgccatccgcgccgtgatcccccaggactccctgcgcatcaactccaccaagtccatgatcggccacctgctgggcggcgccgg







cgccgtggaggccgtggccgccatccaggccctgcgcaccggctggctgcaccccaacctgaacctggagaaccccgcccccg






gcgtggaccccgtggtgctggtgggcccccgcaaggagcgcgccgaggacctggacgtggtgctgtccaactccttcggcttc






ggcggccacaactcctgcgtgatcttccgcaagtacgacgagATGGACTACAAGGACCACGACGGCGACTACAA








embedded image





cactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcc







tcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctc







gtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgca







cagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggga







tgggaacacaaatggagagctccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcg






gcatacaccacaataaccacctgacgaatgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcg







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





cacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacag







cctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccc







tcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg







cacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgg







gatgggaacacaaatggaaagctgtagagctcgatctaagtaagattcgaagcgctcgaccgtgccggacggactgcagccccat






gtcgtagtgaccgccaatgtaagtgggctggcgtttccctgtacgtgagtcaacgtcactgcacgcgcaccaccctctcgaccggca







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctgcgacgtctccgagcagctgctgc







tggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtacatcatcctggacgactgctggtcctcc







ggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatgggccacgtcgccgaccacctgcaca







acaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggctccctgggccgcgaggagg







aggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaagggccagttcggcacgcc







cgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatcttctactccctgtgcaactg







gggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgc







gccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctccatcatgaacatcctga







acaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaac







ctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaaca







acctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcg







cgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccggccccctggacaacggc







gaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggaggagatcttcttcgactccaac







ctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacggcgtccgccat







cctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacggcctgtccaagaacgac







acccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacggcatcgcgttct








embedded image





ttactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgcaattaattgtgtgatgaagaaagggtggcacaaga







tggatcgcgaatgtacgagatcgacaacgatggtgattgttatgaggggccaaacctggctcaatcttgtcgcatgtccggcgcaat







gtgatccagcggcgtgactctcgcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactgatcgcattgccatcccgtcaa







ctcacaagcctactctagctcccattgcgcactcgggcgcccggctcgatcaatgttctgagcggagggcgaagcgtcaggaaatcg







tctcggcagctggaagcgcatggaatgcggagcggagatcgaatcaggatcc
ttagggagcgacgagtgtgcgtgcggggctggc







gggagtgggacgccctcctcgctcctctctgttctgaacggaacaatcggccaccccgcgctacgcgccacgcatcgagcaacga







agaaaaccccccgatgataggttgcggtggctgccgggatatagatccggccgcacatcaaagggcccctccgccagagaagaa






gctcctttcccagcagactccttctgctgccaaaacacttctctgtccacagcaacaccaaaggatgaacagatcaacttgcgtctc






cgcgtagcttcctcggctagcgtgcttgcaacaggtccctgcactattatcttcctgctttcctctgaattatgcggcaggcgagcgct







cgctctggcgagcgctccttcgcgccgccctcgctgatcgagtgtacagtcaatgaatggtcctgggcgaagaacgagggaatttg







tgggtaaaacaagcatcgtctctcaggccccggcgcagtggccgttaaagtccaagaccgtgaccaggcagcgcagcgcgtccgt







gtgcgggccctgcctggcggctcggcgtgccaggctcgagagcagctccctcaggtcgccttggacggcctctgcgaggccggtga







gggcctgcaggagcgcctcgagcgtggcagtggcggtcgtatccgggtcgccggtcaccgcctgcgactcgccatcc

gaagagcg









tttaaac








Construct pSZ5654 was transformed into S5100. Primary transformants were clonally purified and screened under standard lipid production conditions at pH 5. Integration of pSZ5654 at the SAD2-1 locus was verified by DNA blot analysis. The fatty acid profiles and lipid titers of lead strains were assayed in 50-mL shake flasks (Table 21). S8754 was selected as the lead strain for additional rounds of genetic engineering. As shown in Table 21, C16:0 decreased from 17.6% to less than 6%, C18:0 increased from 4.3% to about 28%, C18:2 decreased from 5.8% to 1.3%.









TABLE 21







Fatty acid profiles of SAD2-1 ablation strains.

















Sample ID
S5100
S8741
S8742
S8743
S8744
S8745
S8746
S8752
S8753
S8754




















C14:0
0.7
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6


C16:0
17.6
5.9
5.9
5.8
5.9
5.9
5.9
5.9
5.8
5.9


C16:1 cis-9
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1


C18:0
4.3
28.2
28.1
27.7
27.8
27.4
28.2
28.3
28.3
28.1


C18:1
69.8
60.1
60.2
60.6
60.5
60.9
60.0
60.0
60.0
60.0


C18:2
5.8
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.2
1.3


C18:3 α
0.5
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


C20:0
0.3
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2


saturates
23.2
37.5
37.5
37.1
37.2
36.8
37.7
37.7
37.7
37.6


lipid (g/L)
13.5
12.8
12.5
12.5
12.5
12.3
12.3
12.3
12.4
12.3









Construct Used for FATA-1 Knockout in S8754

The second intermediate strains were prepared by transformation of strain S8754 with integrative plasmid pSZ5868 (FATA-1vB::CpSAD1tp_GarmFATA1(G108A)_FLAG-PmSAD2-1:PmG3PDH-1-TcLPAT2-PmATP:CrTUB2-ScSUC2-PmPGH::FATA-1vC). This construct targeted ablation of allele 1 of the endogenous fatty acyl-ACP thioesterase gene (FATA-1), and contained expression modules for GarmFATA1(G108A), encoding a variant of the Garcinia mangostana FATA1 thioesterase with improved activity, and TcLPAT2 encoding the Theobroma cacao lysophosphatidic acid acyltransferase (LPAAT). Deletion of one copy of FATA-1 reduced endogenous thioesterase activity, further reducing C16:0 accumulation. Expression of GarmFATA1(G108A) stimulated C18:0-ACP hydrolysis, further increasing C18:0. TcLPAT2 had superior specificity for transfer of C18:1 to the sn-2 position of triacylglycerides than the endogeneous LPAAT, leading to reduced accumulation of trisaturates. The second intermediate strains had increased C18:0 and lower C16:0 compared their parent, S8754. The S. cerevisiae SUC2 gene encoding a secreted sucrose invertase, served as a selectable marker as part of plasmid pSZ5868 and enabled the strain to grow on sucrose.


The sequence of the pSZ5868 transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, bold and underlining and are 5′-3′ BspQI, PmeI, SpeI, AscI, ClaI, SacI, AvrII, NdeI, NsiI, AfIII, KpnI, XbaI, MfeI, BamHI, BspQI and PmeI, respectively. BspQI and PmeI sites delimit the 5′ and 3′ ends of the transforming DNA. Proceeding in the 5′ to 3′ direction, bold, lowercase sequences represent FATA-1 5′ genomic DNA that permit targeted integration at the FATA-1 locus via homologous recombination. The initiator ATG of the sequence encoding the C. protothecoides SAD1 transit peptide (CpSAD1tp) is indicated by uppercase, bold italics, and the remainder of the CpSAD1tp sequence located between the ATG and the AscI site is indicated with lowercase, underlined italics. The GarmFATA1(G108A) coding region is indicated by lowercase italics. A sequence encoding a 3×FLAG tag fused to the C-terminus of GarmFATA1(G108A) is represented by uppercase italics, and the TGA terminator codon is indicated with uppercase, bold italics. The P. moriformis SAD2-1 3′ UTR is indicated by lowercase underlined text. A spacer sequence is represented by lowercase text. The P. moriformis G3PDH-1 promoter, driving expression of the TcLPAT2 sequence is indicated by boxed text. The initiator ATG and terminator TGA codons of the TcLPAT2 gene are indicated by uppercase, bold italics, while the remainder of the coding region is represented with italics. Lowercase underlined text represents the P. moriformis ATP 3′ UTR. A second spacer sequence is represented by lowercase text. The C. reinhardtii TUB2 promoter driving the expression of the S. cerevisiae SUC2 gene is indicated by boxed text. The initiator ATG and terminator TGA for SUC2 are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The P. moriformis PGH 3′ UTR is indicated by lowercase underlined text. The FATA-1 3′ genomic region indicated by bold, lowercase text.










Nucleotide sequence of transforming DNA contained in pSZ5868






SEQ ID NO: 127 





gaagagc
gcccaatgtttaaacctcttttgctgcgtctcctcaggcttgggggcctccttgggcttgggtgccgccatgatctgcgcg








catcagagaaacgttgctggtaaaaaggagcgcccggctgcgcaatatatatataggcatgccaacacagcccaacctcactcg







ggagcccgtcccaccacccccaagtcgcgtgccttgacggcatactgctgcagaagcttcatgagaatgatgccgaacaagaggg







gcacgaggacccaatcccggacatccttgtcgataatgatctcgtgagtccccatcgtccgcccgacgctccggggagcccgccga







tgctcaagacgagagggccctcgaccaggaggggctggcccgggcgggcactggcgtcgaaggtgcgcccgtcgttcgcctgca







gtcctatgccacaaaacaagtcttctgacggggtgcgtttgctcccgtgcgggcaggcaacagaggtattcaccctggtcatgggg







agatcggcgatcgagctgggataagagatacggtcccgcgcaaggatcgctcatcctggtctgagccggacagtcattctggcaa







gcaatgacaacttgtcaggaccggaccgtgccatatatttctcacctagcgccgcaaaacctaacaatttgggagtcactgtgcca







ctgagttcgactggtagctgaatggagtcgctgctccactaaacgaattgtcagcaccgccagccggccgaggacccgagtcata








embedded image






ggcgggctccgggccccggcgcccagcgaggcccctccccgtgcgcg
ggcgcgcc

atccccccccgcatcatcgtggtgtcctc







ctcctcctccaaggtgaaccccctgaagaccgaggccgtggtgtcctccggcctggccgaccgcctgcgcctgggctccctgacc







gaggacggcctgtcctacaaggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacc







atcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccgccggcttctccaccacccccacc







atgcgcaagctgcgcctgatctgggtgaccgcccgcatgcacatcgagatctacaagtaccccgcctggtccgacgtggtgga







gatcgagtcctggggccagggcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggt







gatcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggtggacgtggacgtgcgcga







cgagtacctggtgcactgcccccgcgagctgcgcctggccttccccgaggagaacaactcctccctgaagaagatctccaagct







ggaggacccctcccagtactccaagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtg







acctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcagaccatcaccctggactaccg







ccgcgagtgccagcacgacgacgtggtggactccctgacctcccccgagccctccgaggacgccgaggccgtgttcaaccaca







acggcaccaacggctccgccaacgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg







gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcATGGACTACAAGGACCACGACGGCG








embedded image





gcggggctggcgggagtgggacgccctcctcgctcctctctgttctgaacggaacaatcggccaccccgcgctacgcgccacgcatc







gagcaacgaagaaaaccccccgatgataggttgcggtggctgccgggatatagatccggccgcacatcaaagggcccctccgcca







gagaagaagctcctttcccagcagactccttctgctgccaaaacacttctctgtccacagcaacaccaaaggatgaacagatcaact







tgcgtctccgcgtagcttcctcggctagcgtgcttgcaacaggtccctgcactattatcttcctgctttcctctgaattatgcggcaggc







gagcgctcgctctggcgagcgctccttcgcgccgccctcgctgatcgagtgtacagtcaatgaatggtgagctccgcgtctcgaaca






gagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgcttg





gttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgatggt







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





tcgccgccgccgccgtgatcgtgcccctgggcctgctgttcttcatctccggcctggtggtgaacctgatccaggccctgtgcttcg







tgctgatccgccccctgtccaagaacacctaccgcaagatcaaccgcgtggtggccgagctgctgtggctggagctgatctggc






tggtggactggtgggccggcgtgaagatcaaggtgttcatggaccccgagtccttcaacctgatgggcaaggagcacgccct






ggtggtggccaaccaccgctccgacatcgactggctggtgggctggctgctggcccagcgctccggctgcctgggctccgccct







ggccgtgatgaagaagtcctccaagttcctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgctcct







gggccaaggacgagaacaccctgaaggccggcctgcagcgcctgaaggacttcccccgccccttctggctggccttcttcgtg







gagggcacccgcttcacccaggccaagttcctggccgcccaggagtacgccgcctcccagggcctgcccatcccccgcaacgt







gctgatcccccgcaccaagggcttcgtgtccgccgtgtcccacatgcgctccttcgtgcccgccatctacgacatgaccgtggcc







atccccaagtcctccccctcccccaccatgctgcgcctgttcaagggccagccctccgtggtgcacgtgcacatcaagcgctgcct







gatgaaggagctgcccgagaccgacgaggccgtggcccagtggtgcaaggacatgttcgtggagaaggacaagctgctgg







acaagcacatcgccgaggacaccactccgaccagcccatgcaggacctgggccgccccatcaagtccctgctggtggtggcc







tcctgggcctgcctgatggcctacggcgccctgaagttcctgcagtgctcctccctgctgtcctcctggaagggcatcgccacttc







ctggtgggcctggccatcgtgaccatcctgatgcacatcctgatcctgttctcccagtccgagcgctccacccccgccaaggtgg








embedded image





agggtggtcgactcgttggaggtgggtgtttttttttatcgagtgcgcggcgcggcaaacgggtccctttttatcgaggtgttcccaac







gccgcaccgccctcttaaaacaacccccaccaccacttgtcgaccttctcgtttgttatccgccacggcgccccggaggggcgtcgtc







tggccgcgcgggcagctgtatcgccgcgctcgctccaatggtgtgtaatcttggaaagataataatcgatggatgaggaggagagc







gtgggagatcagagcaaggaatatacagttggcacgaagcagcagcgtactaagctgtagcgtgttaagaaagaaaaactcgctg







ttaggctgtattaatcaaggagcgtatcaataattaccgaccctatacctttatctccaacccaatcgcggcttaaggatctaagtaa






gattcgaagcgctcgaccgtgccggacggactgcagccccatgtcgtagtgaccgccaatgtaagtgggctggcgtttccctgtacg





tgagtcaacgtcactgcacgcgcaccaccctctcgaccggcaggaccaggcatcgcgagatacagcgcgagccagacacggagtg







embedded image






embedded image






embedded image






embedded image






embedded image





ccgaccgccccctggtgcacttcacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgagaaggacgc







caagtggcacctgtacttccagtacaacccgaacgacaccgtctgggggacgcccttgactggggccacgccacgtccgacg







acctgaccaactgggaggaccagcccatcgccatcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtg







gactacaacaacacctccggcttcttcaacgacaccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccg







gagtccgaggagcagtacatctcctacagcctggacggcggctacaccttcaccgagtaccagaagaaccccgtgctggccg







ccaactccacccagaccgcgacccgaaggtcttctggtacgagccctcccagaagtggatcatgaccgcggccaagtcccag







gactacaagatcgagatctactcctccgacgacctgaagtcctggaagctggagtccgcgttcgccaacgagggcacctcgg







ctaccagtacgagtgccccggcctgatcgaggtccccaccgagcaggaccccagcaagtcctactgggtgatgttcatctccat







caaccccggcgccccggccggcggctccttcaaccagtacttcgtcggcagcttcaacggcacccacttcgaggccttcgacaa







ccagtcccgcgtggtggacttcggcaaggactactacgccctgcagaccttcttcaacaccgacccgacctacgggagcgccct







gggcatcgcgtgggcctccaactgggagtactccgccacgtgcccaccaacccctggcgctcctccatgtccctcgtgcgcaag







ttctccctcaacaccgagtaccaggccaacccggagacggagctgatcaacctgaaggccgagccgatcctgaacatcagca







acgccggcccctggagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacctgtccaacagcac







cggcaccctggagttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttcgcggacctctccctctgg







ttcaagggcctggaggaccccgaggagtacctccgcatgggcttcgaggtgtccgcgtcctccttcttcctggaccgcgggaac







agcaaggtgaagttcgtgaaggagaacccctacttcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaac







gacctgtcctactacaaggtgtacggcttgctggaccagaacatcctggagctgtacttcaacgacggcgacgtcgtgtccacc







aacacctacttcatgaccaccgggaacgccctgggctccgtgaacatgacgacgggggtggacaacctgttctacatcgaca








embedded image





cgaaacaagcccctggagcatgcgtgcatgatcgtctctggcgccccgccgcgcggtttgtcgccctcgcgggcgccgcggccgcg







ggggcgcattgaaattgttgcaaaccccacctgacagattgagggcccaggcaggaaggcgttgagatggaggtacaggagtcaa







gtaactgaaagtttttatgataactaacaacaaagggtcgtttctggccagcgaatgacaagaacaagattccacatttccgtgtag







aggcttgccatcgaatgtgagcgggcgggccgcggacccgacaaaacccttacgacgtggtaagaaaaacgtggcgggcactgtc







cctgtagcctgaagaccagcaggagacgatcggaagcatcacagcacaggatcc
tgaggacagggtggttggctggatggggaa







acgctggtcgcgggattcgatcctgctgcttatatcctccctggaagcacacccacgactctgaagaagaaaacgtgcacacaca






caacccaaccggccgaatatttgcttccttatcccgggtccaagagagactgcgatgcccccctcaatcagcatcctcctccctgcc






gcttcaatcttccctgcttgcctgcgcccgcggtgcgccgtctgcccgcccagtcagtcactcctgcacaggccccttgtgcgcagtg







ctcctgtaccctttaccgctccttccattctgcgaggccccctattgaatgtattcgttgcctgtgtggccaagcgggctgctgggcgc







gccgccgtcgggcagtgctcggcgactttggcggaagccgattgttcttctgtaagccacgcgcttgctgctttgggaagagaagg







gggggggtactgaatggatgaggaggagaaggaggggtattggtattatctgagttggggaggcagggagagttggaaaatgt







aagtggcacgacgggcaaggagaatggtgagcatgtgcatggtgatgtcgttggtcgaggacgatcctgcacgcgtgtatctgat







gtagaatacggcaatcaccctagtctacatctataccttctccgtataacgccctttccaaatgccctcccgtttctctcctattcttg







atccacatgatgaccctggcactatttcaagggctggag

aagagcgtttaaac








Construct pSZ5868 was transformed into S8754. Primary transformants were clonally purified and screened under standard lipid production conditions at pH 5. Integration of pSZ5868 at the FATA-1 locus was verified by DNA blot analysis. The fatty acid profiles and lipid titers of lead strains were assayed in 50-mL shake flasks (Table 22). S8813 was selected as the lead strain for the final round of genetic engineering. As shown in Table 22 as compared to strain S8754, C16:0 decreased from 5.9% to 3.4%, and C18:0 increased from 27.3% to about 45%. C18:2 increased slightly from 1.3% to about 1.6% due to the activity of the T. cacao LPAAT.









TABLE 22







Fatty acid profiles of FATA-1 ablation strains.













Strain
55100
58754
58813
58814

















C14:0
0.7
0.6
0.5
0.5



C16:0
18.8
5.9
3.4
3.4



C16:1 cis-9
0.5
0.0
0.0
0.0



C18:0
4.0
27.3
45.3
44.8



C18:1
68.3
60.9
45.9
46.3



C18:2
6.3
1.3
1.5
1.6



C18:3 α
0.6
0.3
0.3
0.3



C20:0
0.3
2.4
2.0
2.1



saturates
24.2
37.0
52.0
51.5



lipid (g/L)
12.7
11.9
11.9
11.9










Constructs Used for FAD2 Knockout in S8813

The high-SOS strains were generated by transformation of strain S8813 with integrative plasmid pSZ6383 (FAD2-1vA::PmLDH1-AtTHIC-PmHSP90:PmSAD2-2v2-TcDGAT1-CvNR:PmSAD2-1v3-CpSAD1tp_GarmFATA1(G108A)_FLAG-PmSAD2-1::FAD2-1vB), plasmid pSZ6384 (FAD2-1vA::PmLDH1-AtTHIC-PmHSP90:PmSAD2-2v2-TcDGAT2-CvNR:PmSAD2-1v3-CpSAD1tp_GarmFATA1(G108A)_FLAG-PmSAD2-1::FAD2-1vB), or plasmid pSZ6377 (FAD2-1vA::PmLDH1-AtTHIC-PmHSP90: PmSAD2-1v3-CpSAD1tp_GarmFATA1(G108A)_FLAG-PmSAD2-1::FAD2-1vB). These constructs targeted ablation of allele 1 of the endogenous fatty acid desaturase 2 gene (FAD2-1), and contained expression modules for a second copy of GarmFATA1(G108A), and either TcDGAT1 encoding the Theobroma cacao diacylglycerol O-acyltransferase 1 (pSZ6383) or TcDGAT2 encoding the Theobroma cacao diacylglycerol O-acyltransferase 2 (pSZ6384). Deletion of one allele of FAD2 further reduced C18:2 accumulation. Expression of GarmFATA1(G108A) stimulated C18:0-ACP hydrolysis, further increasing C18:0. TcDGAT1 and TcDGAT2 had superior specificity for transfer of C18:0 to the sn-3 position of triacylglycerides than the endogeneous DGAT, leading to an increase in C18:0 and lipid titer, and a reduction in trisaturated TAGs. The final strains had higher C18:0, lower C16:0 and lower C18:2 than their parent, S8813. The Arabidopsis thaliana THIC gene (AtTHIC) catalyzes the conversion of 5-aminoimidazole ribotide (AIR) to 4-amino-5-hydroxymethylpyrimidine (HMP), providing the pyrimidine ring structure for the biosynthesis of thiamine. AtTHIC served as a selectable marker as part of plasmids pSZ6383 and pSZ6384, allowing the strains to grow in the absence of exogenous thiamine.


The sequence of the pSZ6383 transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, bold and underlined text, and are 5′-3′ BspQI, KpnI, XbaI, SnaBI, BamHI, AvrII, SpeI, ClaI, AflII, EcoRI, SpeI, AscI, ClaI, SacI and BspQ I, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Proceeding in the 5′ to 3′ direction, bold, lowercase sequences represent FAD2-1 5′ genomic DNA that permits targeted integration at the FAD2-1 locus via homologous recombination. The P. moriformis LDH1 promoter driving the expression of the Arabidopsis thaliana THIC gene is indicated by boxed text. The initiator ATG and terminator TGA for AtTHIC are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The P. moriformis HSP90 3′ UTR is indicated by lowercase underlined text. A spacer sequence is represented by lowercase text. The P. moriformis SAD2-2 promoter, driving expression of the TcDGAT1 sequence is indicated by boxed text. The initiator ATG and terminator TGA codons of the TcDGAT1 gene are indicated by uppercase, bold italics, while the remainder of the coding region is represented with italics. Lowercase underlined text represents the C. vulgaris NR 3′ UTR. A second spacer sequence is represented by lowercase text. The P. moriformis SAD2-1 promoter, indicated by boxed italicized text, is utilized to drive the expression of the G. mangostana FATA1 gene. The initiator ATG of the sequence encoding the C. protothecoides SAD1 transit peptide (CpSAD1tp) is indicated by uppercase, bold italics, and the remainder of the CpSAD1tp sequence located between the ATG and the AscI site is indicated with lowercase, underlined italics. The GarmFATA1(G108A) coding region is indicated by lowercase italics. A sequence encoding a 3×FLAG tag fused to the C-terminus of GarmFATA1(G108A) is represented by uppercase italics, and the TGA terminator codon is indicated with uppercase, bold italics. The P. moriformis SAD2-1 3′ UTR is indicated by lowercase underlined text. The FAD2-1 3′ genomic region is indicated by bold, lowercase text.










Nucleotide sequence of transforming DNA contained in pSZ6383






SEQ ID NO: 128 





gctcttc

gcgaaggtcattttccagaacaacgaccatggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcga








cccagtcgctcgcaggagaacgcggcaactgccgagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattg







gtagcattataattcggcttccgcgctgtttatgggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccag







ctccgggcgaccgggctccgtgtcgccgggcaccacctcctgccatgagtaacagggccgccctctcctcccgacgttggccaact







gaataccgtgtcttggggccctacatgatgggctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggacgtggtctga







atcctccaggcgggtttccccgagaaagaaagggtgccgatttcaaagcagagccatgtgccgggccctgtggcctgtgttggcgc







ctatgtagtcaccccccctcacccaattgtcgccagtttgcgcaatccataaactcaaaactgcagcttctgagctgcgctgttcaa








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctgatgtccgtggtctgcaacaacaagaaccactccgcccgccccaagctgcccaactcctccctgctgcccggcttcgacgtgg







tggtccaggccgcggccacccgcttcaagaaggagacgacgaccacccgcgccacgctgacgttcgacccccccacgaccaa







ctccgagcgcgccaagcagcgcaagcacaccatcgacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttc







cccaagtccacgaaggagcacaaggaggtggtgcacgaggagtccggccacgtcctgaaggtgcccttccgccgcgtgcac







ctgtccggcggcgagcccgccttcgacaactacgacacgtccggcccccagaacgtcaacgcccacatcggcctggcgaagct







gcgcaaggagtggatcgaccgccgcgagaagctgggcacgccccgctacacgcagatgtactacgcgaagcagggcatcat







cacggaggagatgctgtactgcgcgacgcgcgagaagctggaccccgagttcgtccgctccgaggtcgcgcggggccgcgc







catcatcccctccaacaagaagcacctggagctggagcccatgatcgtgggccgcaagttcctggtgaaggtgaacgcgaac







atcggcaactccgccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccaccatgtggggcgccgacacca







tcatggacctgtccacgggccgccacatccacgagacgcgcgagtggatcctgcgcaactccgcggtccccgtgggcaccgtc







cccatctaccaggcgctggagaaggtggacggcatcgcggagaacctgaactgggaggtgttccgcgagacgctgatcgag







caggccgagcagggcgtggactacttcacgatccacgcgggcgtgctgctgcgctacatccccctgaccgccaagcgcctgac







gggcatcgtgtcccgcggcggctccatccacgcgaagtggtgcctggcctaccacaaggagaacttcgcctacgagcactggg







acgacatcctggacatctgcaaccagtacgacgtcgccctgtccatcggcgacggcctgcgccccggctccatctacgacgcca







acgacacggcccagttcgccgagctgctgacccagggcgagctgacgcgccgcgcgtgggagaaggacgtgcaggtgatg







aacgagggccccggccacgtgcccatgcacaagatccccgagaacatgcagaagcagctggagtggtgcaacgaggcgcc







cttctacaccctgggccccctgacgaccgacatcgcgcccggctacgaccacatcacctccgccatcggcgcggccaacatcgg







cgccctgggcaccgccctgctgtgctacgtgacgcccaaggagcacctgggcctgcccaaccgcgacgacgtgaaggcgggc







gtcatcgcctacaagatcgccgcccacgcggccgacctggccaagcagcacccccacgcccaggcgtgggacgacgcgctgt







ccaaggcgcgcttcgagttccgctggatggaccagttcgcgctgtccctggaccccatgacggcgatgtccttccacgacgaga







cgctgcccgcggacggcgcgaaggtcgcccacttctgctccatgtgcggccccaagttctgctccatgaagatcacggaggac







atccgcaagtacgccgaggagaacggctacggctccgccgaggaggccatccgccagggcatggacgccatgtccgagga






gttcaacatcgccaagaagacgatctccggcgagcagcacggcgaggtcggcggcgagatctacctgcccgagtcctacgtc







embedded image





cgcacgcatccaacgaccgtatacgcatcgtccaatgaccgtcggtgtcctctctgcctccgttttgtgagatgtctcaggcttggtgc







atcctcgggtggccagccacgttgcgcgtcgtgctgcttgcctctcttgcgcctctgtggtactggaaaatatcatcgaggcccgttttt







ttgctcccatttcctttccgctacatcttgaaagcaaacgacaaacgaagcagcaagcaaagagcacgaggacggtgaacaagtct







gtcacctgtatacatctatttccccgcgggtgcacctactctctctcctgccccggcagagtcagctgccttacgtgacggatcccgcg






tctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacga





atgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtgga







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





cgagatcctgggctccaccgccaccgtgacctcctcctcccactccgactccgacctgaacctgctgtccatccgccgccgcacct







ccaccaccgccgccgcccgcgcccccgaccgcgacgactccggcaacggcgaggccgtggacgaccgcgaccgcgtggagt







ccgccaacctgatgtccaacgtggccgagaacgccaacgagatgcccaactcctccgacacccgcttcacctaccgcccccgcg







tgcccgcccaccgccgcatcaaggagtcccccctgtcctccggcgccatcttcaagcagtcccacgccggcctgttcaacctgtgc







atcgtggtgctggtggccgtgaactcccgcctgatcatcgagaacctgatgaagtacggctggctgatccgctccggcttctggt







tctcctcccgctccctgtccgactggcccctgttcatgtgctgcctgaccctgcccatcttccccctggccgccttcgtggtggagaa







gctggtgcagcgcaactacatctccgagcccgtggtggtgttcctgcacgccatcatctccaccaccgccgtgctgtaccccgtg







atcgtgaacctgcgctgcgactccgccttcctgtccggcgtggccctgatgctgttcgcctgcatcgtgtggctgaagctggtgtc







ctacgcccacaccaacaacgacatgcgcgccctggccaagtccgccgagaagggcgacgtggacccctcctacgacgtgtcct







tcaagtccctggcctacttcatggtggcccccaccctgtgctaccagcagtcctacccccgcacccccgccgtgcgcaagtcctgg







gtggtgcgccagttcatcaagctgatcgtgttcaccggcctgatgggcttcatcatcgagcagtacatcaaccccatcgtgcag







aactcccagcaccccctgaagggcaacctgctgtacgccatcgagcgcgtgctgaagctgtccgtgcccaacctgtacgtgtgg







ctgtgcatgttctactgcttcttccacctgtggctgaacatcctggccgagctgctgcgcttcggcgaccgcgagttctacaagga







ctggtggaacgccaagaccgtggaggagtactggcgcatgtggaacatgcccgtgcacaagtggatggtgcgccacatctac







ttcccctgcctgcgcaacggcatccccaagggcgtggccatcgtgatcgccttcctggtgtccgccgtgttccacgagctgtgcat







cgccgtgccctgccacatgttcaagctgtgggccttcatcggcatcatgttccaggtgcccctggtgctgatcaccaactacctgc







aggacaagttccgctcctccatggtgggcaacatgatcttctggttcatcttctccatcctgggccagcccatgtgcgtgctgctgt








embedded image





gacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaac







agcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttc







cctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccct







cgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagt







gggatgggaacacaaatggacttaaggatctaagtaagattcgaagcgctcgaccgtgccggacggactgcagccccatgtcgta






gtgaccgccaatgtaagtgggctggcgtttccctgtacgtgagtcaacgtcactgcacgcgcaccaccctctcgaccggcaggacca





ggcatcgcgagatacagcgcgagccagacacggagtgccgagctatgcgcacgctccaactagatatcatgtggatgatgagcat







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






aatgcccactgcggcgacctgcgtcgctcggcgggctccgggccccggcgcccagcgaggcccctccccgtgcgcg
ggcgcgc









c

atccccccccgcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtgtcctccggcctgg







ccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaaggagaagttcatcgtgcgctgctacgaggtgggc







atcaacaagaccgccaccgtggagaccatcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctact







ccaccgccggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgcacatcgagatctaca







agtaccccgcctggtccgacgtggtggagatcgagtcctggggccagggcgagggcaagatcggcacccgccgcgactgga







tcctgcgcgactacgccaccggccaggtgatcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctg






cagaaggtggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttccccgaggagaaca






actcctccctgaagaagatctccaagctggaggacccctcccagtactccaagctgggcctggtgccccgccgcgccgacctgg







acatgaaccagcacgtgaacaacgtgacctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacga







gctgcagaccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcccccgagccctccg







aggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaacgtgtccgccaacgaccacggctgccgcaactt







cctgcacctgctgcgcctgtccggcaacggcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcAT







GGACTACAAGGACCACGACGGCGACTACAAGGACCACGACATCGACTACAAGGACGACGACGACAA








embedded image





tcggccaccccgcgctacgcgccacgcatcgagcaacgaagaaaaccccccgatgataggttgcggtggctgccgggatatagat







ccggccgcacatcaaagggcccctccgccagagaagaagctcctttcccagcagactccttctgctgccaaaacacttctctgtcca







cagcaacaccaaaggatgaacagatcaacttgcgtctccgcgtagcttcctcggctagcgtgcttgcaacaggtccctgcactattat







cttcctgctttcctctgaattatgcggcaggcgagcgctcgctctggcgagcgctccttcgcgccgccctcgctgatcgagtgtacagt







caatgaatggtgagctc
ctcactcagcgcgcctgcgcggggatgcggaacgccgccgccgccttgtcttttgcacgcgcgactccgt







cgcttcgcgggtggcacccccattgaaaaaaacctcaattctgtttgtggaagacacggtgtacccccaaccacccacctgcacct







ctattattggtattattgacgcgggagcgggcgttgtactctacaacgtagcgtctctggttttcagctggctcccaccattgtaaatt







cttgctaaaatagtgcgtggttatgtgagaggtatggtgtaacagggcgtcagtcatgttggttttcgtgctgatctcgggcacaag







gcgtcgtcgacgtgacgtgcccgtgatgagagcaataccgcgctcaaagccgacgcatggcctttactccgcactccaaacgact







gtcgctcgtatttttcggatatctattttttaagagcgagcacagcgccgggcatgggcctgaaaggcctcgcggccgtgctcgtgg







tgggggccgcgagcgcgtggggcatcgcggcagtgcaccaggcgcagacggaggaacgcatggtgagtgcgcatcacaagatg







catgtcttgttgtctgtactataatgctagagcatcaccaggggcttagtcatcgcacctgctttggtcattacagaaattgcacaag







ggcgtcctccgggatgaggagatgtaccagctcaagctggagcggcttcgagccaagcaggagcgcggcgcatgacgacctacc







cacatgc

gaagagc








The sequence of the pSZ6384 transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, bold and underlined text, and are 5′-3′ BspQI, KpnI, XbaI, SnaBI, BamHI, AvrII, SpeI, ClaI, AfIII, EcoRI, SpeI, AscI, ClaI, SacI and BspQ I, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Proceeding in the 5′ to 3′ direction, bold, lowercase sequences represent FAD2-1 5′ genomic DNA that permits targeted integration at the FAD2-1 locus via homologous recombination. The P. moriformis LDH1 promoter driving the expression of the Arabidopsis thaliana THIC gene is indicated by boxed text. The initiator ATG and terminator TGA for AtTHIC are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The P. moriformis HSP90 3′ UTR is indicated by lowercase underlined text. A spacer sequence is represented by lowercase text. The P. moriformis SAD2-2 promoter, driving expression of the TcDGAT2 sequence is indicated by boxed text. The initiator ATG and terminator TGA codons of the TcDGAT2 gene are indicated by uppercase, bold italics, while the remainder of the coding region is represented with italics. Lowercase underlined text represents the C. vulgaris NR 3′ UTR. A second spacer sequence is represented by lowercase text. The P. moriformis SAD2-1 promoter, indicated by boxed italicized text, is utilized to drive the expression of the G. mangostana FATA1 gene. The initiator ATG of the sequence encoding the C. protothecoides SAD1 transit peptide (CpSAD1tp) is indicated by uppercase, bold italics, and the remainder of the CpSAD1tp sequence located between the ATG and the AscI site is indicated with lowercase, underlined italics. The GarmFATA1(G108A) coding region is indicated by lowercase italics. A sequence encoding a 3×FLAG tag fused to the C-terminus of GarmFATA1(G108A) is represented by uppercase italics, and the TGA terminator codon is indicated with uppercase, bold italics. The P. moriformis SAD2-1 3′ UTR is indicated by lowercase underlined text. The FAD2-1 3′ genomic region is indicated by bold, lowercase text.










Nucleotide sequence of transforming DNA contained in pSZ6384






SEQ ID NO: 129 





gctcttc

gcgaaggtcattttccagaacaacgaccatggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcga








cccagtcgctcgcaggagaacgcggcaactgccgagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattg







gtagcattataattcggcttccgcgctgtttatgggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccag







ctccgggcgaccgggctccgtgtcgccgggcaccacctcctgccatgagtaacagggccgccctctcctcccgacgttggccaact







gaataccgtgtcttggggccctacatgatgggctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggacgtggtctga







atcctccaggcgggtttccccgagaaagaaagggtgccgatttcaaagcagagccatgtgccgggccctgtggcctgtgttggcgc







ctatgtagtcaccccccctcacccaattgtcgccagtttgcgcaatccataaactcaaaactgcagcttctgagctgcgctgttcaa








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctgatgtccgtggtctgcaacaacaagaaccactccgcccgccccaagctgcccaactcctccctgctgcccggcttcgacgtgg







tggtccaggccgcggccacccgcttcaagaaggagacgacgaccacccgcgccacgctgacgttcgacccccccacgaccaa







ctccgagcgcgccaagcagcgcaagcacaccatcgacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttc







cccaagtccacgaaggagcacaaggaggtggtgcacgaggagtccggccacgtcctgaaggtgcccttccgccgcgtgcac







ctgtccggcggcgagcccgccttcgacaactacgacacgtccggcccccagaacgtcaacgcccacatcggcctggcgaagct







gcgcaaggagtggatcgaccgccgcgagaagctgggcacgccccgctacacgcagatgtactacgcgaagcagggcatcat







cacggaggagatgctgtactgcgcgacgcgcgagaagctggaccccgagttcgtccgctccgaggtcgcgcggggccgcgc







catcatcccctccaacaagaagcacctggagctggagcccatgatcgtgggccgcaagttcctggtgaaggtgaacgcgaac







atcggcaactccgccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccaccatgtggggcgccgacacca







tcatggacctgtccacgggccgccacatccacgagacgcgcgagtggatcctgcgcaactccgcggtccccgtgggcaccgtc







cccatctaccaggcgctggagaaggtggacggcatcgcggagaacctgaactgggaggtgttccgcgagacgctgatcgag







caggccgagcagggcgtggactacttcacgatccacgcgggcgtgctgctgcgctacatccccctgaccgccaagcgcctgac







gggcatcgtgtcccgcggcggctccatccacgcgaagtggtgcctggcctaccacaaggagaacttcgcctacgagcactggg







acgacatcctggacatctgcaaccagtacgacgtcgccctgtccatcggcgacggcctgcgccccggctccatctacgacgcca







acgacacggcccagttcgccgagctgctgacccagggcgagctgacgcgccgcgcgtgggagaaggacgtgcaggtgatg







aacgagggccccggccacgtgcccatgcacaagatccccgagaacatgcagaagcagctggagtggtgcaacgaggcgcc







cttctacaccctgggccccctgacgaccgacatcgcgcccggctacgaccacatcacctccgccatcggcgcggccaacatcgg







cgccctgggcaccgccctgctgtgctacgtgacgcccaaggagcacctgggcctgcccaaccgcgacgacgtgaaggcgggc







gtcatcgcctacaagatcgccgcccacgcggccgacctggccaagcagcacccccacgcccaggcgtgggacgacgcgctgt







ccaaggcgcgcttcgagttccgctggatggaccagttcgcgctgtccctggaccccatgacggcgatgtccttccacgacgaga







cgctgcccgcggacggcgcgaaggtcgcccacttctgctccatgtgcggccccaagttctgctccatgaagatcacggaggac







atccgcaagtacgccgaggagaacggctacggctccgccgaggaggccatccgccagggcatggacgccatgtccgagga







gttcaacatcgccaagaagacgatctccggcgagcagcacggcgaggtcggcggcgagatctacctgcccgagtcctacgtc








embedded image





cgcacgcatccaacgaccgtatacgcatcgtccaatgaccgtcggtgtcctctctgcctccgttttgtgagatgtctcaggcttggtgc







atcctcgggtggccagccacgttgcgcgtcgtgctgcttgcctctcttgcgcctctgtggtactggaaaatatcatcgaggcccgttttt







ttgctcccatttcctttccgctacatcttgaaagcaaacgacaaacgaagcagcaagcaaagagcacgaggacggtgaacaagtct







gtcacctgtatacatctatttccccgcgggtgcacctactctctctcctgccccggcagagtcagctgccttacgtgacggatcccgcg






tctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacga





atgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtgga







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gaggagcgcaaggccaccggctaccgcgagactccggccgccacgagacccctccaacaccatgcacgccctgctggccat







gggcatctggctgggcgccatccacttcaacgccctgctgctgctgactccttcctgacctgcccttctccaagttcctggtggtgt







tcggcctgctgctgctgacatgatcctgcccatcgacccctactccaagttcggccgccgcctgtcccgctacatctccaagcacg







cctgctcctacttccccatcaccctgcacgtggaggacatccacgccttccaccccgaccgcgcctacgtgttcggcttcgagccc







cactccgtgctgcccatcggcgtggtggccctggccgacctgaccggcttcatgcccctgcccaagatcaaggtgctggcctcct







ccgccgtgttctacacccccacctgcgccacatctggacctggctgggcctgacccccgccaccaagaagaacttctcctccctg







ctggacgccggctactcctgcatcctggtgcccggcggcgtgcaggagaccaccacatggagcccggctccgagatcgccttc







ctgcgcgcccgccgcggcttcgtgcgcatcgccatggagatgggctcccccctggtgcccgtgttctgcttcggccagtcccacgt







gtacaagtggtggaagcccggcggcaagttctacctgcagttctcccgcgccatcaagttcacccccatcttcttctggggcatct







tcggctcccccctgccctaccagcaccccatgcacgtggtggtgggcaagcccatcgacgtgaagaagaacccccagcccatc







gtggaggaggtgatcgaggtgcacgaccgcttcgtggaggccctgcaggacctgttcgagcgccacaaggcccaggtgggc








embedded image





gctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgttt







gatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcg







cttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggt







ttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacac







aaatggacttaaggatctaagtaagattcgaagcgctcgaccgtgccggacggactgcagccccatgtcgtagtgaccgccaatgt






aagtgggctggcgtttccctgtacgtgagtcaacgtcactgcacgcgcaccaccctctcgaccggcaggaccaggcatcgcgagat







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






gcgacctgcgtcgctcggcgggctccgggccccggcgcccagcgaggcccctccccgtgcgc

g

ggcgcgcc

atccccccccgca






tcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtgtcctccggcctggccgaccgcctgcg






cctgggctccctgaccgaggacggcctgtcctacaaggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagacc







gccaccgtggagaccatcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccgccggctt







ctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgcacatcgagatctacaagtaccccgcctg







gtccgacgtggtggagatcgagtcctggggccagggcgagggcaagatcggcacccgccgcgactggatcctgcgcgacta







cgccaccggccaggtgatcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggtgga







cgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttccccgaggagaacaactcctccctga







agaagatctccaagctggaggacccctcccagtactccaagctgggcctggtgccccgccgcgccgacctggacatgaacca







gcacgtgaacaacgtgacctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcagacc







atcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcccccgagccctccgaggacgccga







ggccgtgttcaaccacaacggcaccaacggctccgccaacgtgtccgccaacgaccacggctgccgcaacttcctgcacctgct







gcgcctgtccggcaacggcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcATGGACTACAA








embedded image





ggagcgacgagtgtgcgtgcggggctggcgggagtgggacgccctcctcgctcctctctgttctgaacggaacaatcggccacccc







gcgctacgcgccacgcatcgagcaacgaagaaaaccccccgatgataggttgcggtggctgccgggatatagatccggccgcaca







tcaaagggcccctccgccagagaagaagctcctttcccagcagactccttctgctgccaaaacacttctctgtccacagcaacacca







aaggatgaacagatcaacttgcgtctccgcgtagcttcctcggctagcgtgcttgcaacaggtccctgcactattatcttcctgctttc







ctctgaattatgcggcaggcgagcgctcgctctggcgagcgctccttcgcgccgccctcgctgatcgagtgtacagtcaatgaatggt








gagctc

ctcactcagcgcgcctgcgcggggatgcggaacgccgccgccgccttgtcttttgcacgcgcgactccgtcgcttcgcggg







tggcacccccattgaaaaaaacctcaattctgtttgtggaagacacggtgtacccccaaccacccacctgcacctctattattggta







ttattgacgcgggagcgggcgttgtactctacaacgtagcgtctctggttttcagctggctcccaccattgtaaattcttgctaaaat







agtgcgtggttatgtgagaggtatggtgtaacagggcgtcagtcatgttggttttcgtgctgatctcgggcacaaggcgtcgtcgac







gtgacgtgcccgtgatgagagcaataccgcgctcaaagccgacgcatggcctttactccgcactccaaacgactgtcgctcgtatt







tttcggatatctattttttaagagcgagcacagcgccgggcatgggcctgaaaggcctcgcggccgtgctcgtggtgggggccgcg







agcgcgtggggcatcgcggcagtgcaccaggcgcagacggaggaacgcatggtgagtgcgcatcacaagatgcatgtcttgttg







tctgtactataatgctagagcatcaccaggggcttagtcatcgcacctgctttggtcattacagaaattgcacaagggcgtcctccg







ggatgaggagatgtaccagctcaagctggagcggcttcgagccaagcaggagcgcggcgcatgacgacctacccacatgc

gaa









gagc








The sequence of the pSZ6377 transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, bold and underlined text, and are 5′-3′ BspQI, KpnI, XbaI, SnaBI, BamHI, AvrII, SpeI, AscI, ClaI, SacI and BspQ respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Proceeding in the 5′ to 3′ direction, bold, lowercase sequences represent FAD2-1 5′ genomic DNA that permits targeted integration at the FAD2-1 locus via homologous recombination. The P. moriformis LDH1 promoter driving the expression of the Arabidopsis thaliana THIC gene is indicated by boxed text. The initiator ATG and terminator TGA for AtTHIC are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The P. moriformis HSP90 3′ UTR is indicated by lowercase underlined text. A spacer sequence is represented by lowercase text. The P. moriformis SAD2-1 promoter, indicated by boxed italicized text, is utilized to drive the expression of the G. mangostana FATA1 gene. The initiator ATG of the sequence encoding the C. protothecoides SAD1 transit peptide (CpSAD1tp) is indicated by uppercase, bold italics, and the remainder of the CpSAD1tp sequence located between the ATG and the AscI site is indicated with lowercase, underlined italics. The GarmFATA1(G108A) coding region is indicated by lowercase italics. A sequence encoding a 3×FLAG tag fused to the C-terminus of GarmFATA1(G108A) is represented by uppercase italics, and the TGA terminator codon is indicated with uppercase, bold italics. The P. moriformis SAD2-1 3′ UTR is indicated by lowercase underlined text. The FAD2-1 3′ genomic region is indicated by bold, lowercase text.










Nucleotide sequence of transforming DNA contained in pSZ6377






SEQ ID NO:130 





gctcttc

gcgaaggtcattttccagaacaacgaccatggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcga








cccagtcgctcgcaggagaacgcggcaactgccgagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattg







gtagcattataattcggcttccgcgctgtttatgggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccag







ctccgggcgaccgggctccgtgtcgccgggcaccacctcctgccatgagtaacagggccgccctctcctcccgacgttggccaact







gaataccgtgtcttggggccctacatgatgggctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggacgtggtctga







atcctccaggcgggtttccccgagaaagaaagggtgccgatttcaaagcagagccatgtgccgggccctgtggcctgtgttggcgc







ctatgtagtcaccccccctcacccaattgtcgccagtttgcgcaatccataaactcaaaactgcagcttctgagctgcgctgttcaa








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctgatgtccgtggtctgcaacaacaagaaccactccgcccgccccaagctgcccaactcctccctgctgcccggcttcgacgtgg







tggtccaggccgcggccacccgcttcaagaaggagacgacgaccacccgcgccacgctgacgttcgacccccccacgaccaa







ctccgagcgcgccaagcagcgcaagcacaccatcgacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttc






cccaagtccacgaaggagcacaaggaggtggtgcacgaggagtccggccacgtcctgaaggtgcccttccgccgcgtgcac






ctgtccggcggcgagcccgccttcgacaactacgacacgtccggcccccagaacgtcaacgcccacatcggcctggcgaagct







gcgcaaggagtggatcgaccgccgcgagaagctgggcacgccccgctacacgcagatgtactacgcgaagcagggcatcat







cacggaggagatgctgtactgcgcgacgcgcgagaagctggaccccgagttcgtccgctccgaggtcgcgcggggccgcgc







catcatcccctccaacaagaagcacctggagctggagcccatgatcgtgggccgcaagttcctggtgaaggtgaacgcgaac







atcggcaactccgccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccaccatgtggggcgccgacacca







tcatggacctgtccacgggccgccacatccacgagacgcgcgagtggatcctgcgcaactccgcggtccccgtgggcaccgtc







cccatctaccaggcgctggagaaggtggacggcatcgcggagaacctgaactgggaggtgttccgcgagacgctgatcgag







caggccgagcagggcgtggactacttcacgatccacgcgggcgtgctgctgcgctacatccccctgaccgccaagcgcctgac







gggcatcgtgtcccgcggcggctccatccacgcgaagtggtgcctggcctaccacaaggagaacttcgcctacgagcactggg







acgacatcctggacatctgcaaccagtacgacgtcgccctgtccatcggcgacggcctgcgccccggctccatctacgacgcca







acgacacggcccagttcgccgagctgctgacccagggcgagctgacgcgccgcgcgtgggagaaggacgtgcaggtgatg







aacgagggccccggccacgtgcccatgcacaagatccccgagaacatgcagaagcagctggagtggtgcaacgaggcgcc







cttctacaccctgggccccctgacgaccgacatcgcgcccggctacgaccacatcacctccgccatcggcgcggccaacatcgg







cgccctgggcaccgccctgctgtgctacgtgacgcccaaggagcacctgggcctgcccaaccgcgacgacgtgaaggcgggc







gtcatcgcctacaagatcgccgcccacgcggccgacctggccaagcagcacccccacgcccaggcgtgggacgacgcgctgt







ccaaggcgcgcttcgagttccgctggatggaccagttcgcgctgtccctggaccccatgacggcgatgtccttccacgacgaga







cgctgcccgcggacggcgcgaaggtcgcccacttctgctccatgtgcggccccaagttctgctccatgaagatcacggaggac







atccgcaagtacgccgaggagaacggctacggctccgccgaggaggccatccgccagggcatggacgccatgtccgagga







gttcaacatcgccaagaagacgatctccggcgagcagcacggcgaggtcggcggcgagatctacctgcccgagtcctacgtc








embedded image





cgcacgcatccaacgaccgtatacgcatcgtccaatgaccgtcggtgtcctctctgcctccgttttgtgagatgtctcaggcttggtgc







atcctcgggtggccagccacgttgcgcgtcgtgctgcttgcctctcttgcgcctctgtggtactggaaaatatcatcgaggcccgttttt







ttgctcccatttcctttccgctacatcttgaaagcaaacgacaaacgaagcagcaagcaaagagcacgaggacggtgaacaagtct







gtcacctgtatacatctatttccccgcgggtgcacctactctctctcctgccccggcagagtcagctgccttacgtgacggatcccgcg






tctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacga





atgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtgga







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






ccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggcgggctccgggccccggcgcccagcgaggc









ccctccccgtgcgcgggcgcgcc

atccccccccgcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgag







gccgtggtgtcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaaggagaagttcatc







gtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagaccatcgccaacctgctgcaggaggtgggctgcaac







cacgcccagtccgtgggctactccaccgccggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgccc







gcatgcacatcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagggcgagggcaaga







tcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtgatcggccgcgccacctccaagtgggtgatgatg







aaccaggacacccgccgcctgcagaaggtggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcc







tggccttccccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactccaagctgggcctg







gtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgacctacatcggctgggtgctggagtccatgcccca







ggagatcatcgacacccacgagctgcagaccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactcc







ctgacctcccccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaacgtgtccgccaa







cgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacggcctggagatcaaccgcggccgcaccgagtggc







gcaagaagcccacccgcATGGACTACAAGGACCACGACGGCGACTACAAGGACCACGACATCGACTACA








embedded image





ctctctgttctgaacggaacaatcggccaccccgcgctacgcgccacgcatcgagcaacgaagaaaaccccccgatgataggttgc






ggtggctgccgggatatagatccggccgcacatcaaagggcccctccgccagagaagaagctcctttcccagcagactccttctgct






gccaaaacacttctctgtccacagcaacaccaaaggatgaacagatcaacttgcgtctccgcgtagcttcctcggctagcgtgcttg







caacaggtccctgcactattatcttcctgctttcctctgaattatgcggcaggcgagcgctcgctctggcgagcgctccttcgcgccgc







cctcgctgatcgagtgtacagtcaatgaatggtgagctc
ctcactcagcgcgcctgcgcggggatgcggaacgccgccgccgcctt







gtcttttgcacgcgcgactccgtcgcttcgcgggtggcacccccattgaaaaaaacctcaattctgtttgtggaagacacggtgtac







ccccaaccacccacctgcacctctattattggtattattgacgcgggagcgggcgttgtactctacaacgtagcgtctctggttttca







gctggctcccaccattgtaaattcttgctaaaatagtgcgtggttatgtgagaggtatggtgtaacagggcgtcagtcatgttggtt







ttcgtgctgatctcgggcacaaggcgtcgtcgacgtgacgtgcccgtgatgagagcaataccgcgctcaaagccgacgcatggcc







tttactccgcactccaaacgactgtcgctcgtatttttcggatatctattttttaagagcgagcacagcgccgggcatgggcctgaa







aggcctcgcggccgtgctcgtggtgggggccgcgagcgcgtggggcatcgcggcagtgcaccaggcgcagacggaggaacgcat







ggtgagtgcgcatcacaagatgcatgtcttgttgtctgtactataatgctagagcatcaccaggggcttagtcatcgcacctgcttt







ggtcattacagaaattgcacaagggcgtcctccgggatgaggagatgtaccagctcaagctggagcggcttcgagccaagcagg







agcgcggcgcatgacgacctacccacatgc

gaagagc








Constructs pSZ6383, pSZ6384 and pSZ6377 were transformed into S8813. Primary transformants were clonally purified and screened under standard lipid production conditions at pH 5. Integration of pSZ6383 or pSZ6384 at the FAD2-1 locus was verified by DNA blot analysis. The fatty acid profiles, sn-2 profiles and lipid titers of lead strains were assayed in 50-mL shake flasks (Table 23). FAD2-1 ablation reduced C18:2 to <1% in most strains. Expression of a second copy of GarmFATA1(G108A) and TcDGAT1 (S8990, S8992, S8998 & S8999), or TcDGAT2 (S8994, S9000 & S9047) elevated C18:0 to >56%. The D5393-28 strain, expressing a second copy of GarmFATA1(G108A) without either of the cocoa DGAT genes (pSZ6377) had a similar fatty acid profile, but lower lipid titer. As shown in Table 23, as compared to strain S8813, for strains expressing either TcDGAT1 or TcDGAT2, C16:0 increased from 3.2% to 3.7%-4.0%, C18:0 increased from 45.8% to about 56%, C18:2 decreased from 1.4% to about 1.0%.









TABLE 23







Fatty acid profiles of FAD2-1 ablation strains.
















Strain
S8813
D5393-28
S8990
S8992
S8998
S8999
S8994
S9000
S9047



















C12:0
0.1
0.2
0.2
0.2
0.1
0.2
0.1
0.1
0.2


C14:0
0.4
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


C16:0
3.2
3.8
3.7
3.8
3.9
4.0
3.7
3.8
3.5


C16:1 cis-7
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


C16:1 cis-9
0.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


C17:0
0.1
0.2
0.2
0.1
0.2
0.1
0.2
0.2
0.2


C18:0
45.8
56.0
56.6
56.0
56.2
56.0
56.3
56.4
56.5


C18:1
45.9
35.8
35.4
35.9
35.7
35.5
35.9
35.7
35.9


C18:2
1.4
1.0
0.9
1.0
0.9
1.1
0.9
0.9
0.8


C18:3 α
0.3
0.3
0.3
0.2
0.3
0.2
0.2
0.3
0.3


C20:0
2.0
1.6
1.6
1.5
1.6
1.5
1.5
1.5
1.5


C22:0
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


C24:0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


saturates
52.1
62.6
63.1
62.6
62.9
62.8
62.8
62.9
62.7









Liquid chromatography and mass spectrometry were used to analyze the TAG composition of final strains. The strains accumulated 68-71% SOS, with trisaturates ranging from 2.5-2.8%. The D5393-28 strain, expressing a second copy of GarmFATA1(G108A) without either of the cocoa DGAT genes had similar SOS content but slightly higher trisaturates. The TAG composition of a typical Shea stearin and a sample of Kokum butter are shown for comparison









TABLE 24







LC/MS TAG profiles of FAD2-1 ablation strains.


























Shea
Kokum


Strain
D5393-28
S8990
S8992
S8998
S8999
S8994
S9000
S9047
stearin
butter




















OOL








0.4



LLS








0.2



POL








0.3



OOO








1.3
1.7


SOL








1.0
0.4


LaOS + MOP
0.2
0.3
0.3
0.2
0.3
0.3
0.4
0.2




OOP
0.5
0.2
0.3
0.2
0.2
0.4
0.3
0.2
0.8
0.7


PLS (+SLnS)
0.6
0.7
0.7
0.7
0.7
0.6
0.6
0.4
0.6
0.3


POP (+MOS)
1.1
1.0
1.0
1.1
1.1
1.0
1.2
0.8
0.7
0.4


OOS
10.5
10.3
11.3
11.0
11.0
10.9
10.1
10.6
6.4
11.8


SLS (+PLA)
1.9
1.7
2.0
1.6
2.1
1.8
1.9
1.5
5.5
1.4


POS
8.4
8.5
8.4
8.7
8.9
8.4
10.0
7.7
6.3
4.8


MaOS
0.3











SOG
0.4
0.5
0.5
0.6
0.3
0.5
0.4
0.5




OOA
0.5
0.3
0.4
0.4
0.4
0.4
0.4
0.4
0.2
0.2


SOS (+POA)
68.4
69.7
68.7
69.1
68.3
69.4
68.0
71.4
69.7
76.6


SSP (+MSA)
0.5
0.5
0.5
0.4
0.5
0.5
0.5
0.4
0.2



SOA + POB
3.9
3.8
3.5
3.6
3.4
3.5
3.5
3.4
4.0
1.0


SSS (+PSA)
2.6
2.3
2.2
2.1
2.3
2.2
2.3
2.1
2.0
0.5


SOB + LgOP + AOA
0.4
0.2
0.2
0.3
0.3
0.3
0.3
0.3
0.4



SSA (+PBS)








0.2



SOLg (+POHx)








0.3



SUM (area %)
99.8
99.9
99.8
99.9
99.8
99.9
100.0
99.9
100.0
100.0


Sat-Sat-Sat
3.1
2.8
2.7
2.5
2.7
2.7
2.8
2.5
2.4
0.5


Sat-U-Sat
84.9
85.9
84.7
85.3
85.1
85.0
86.0
85.8
87.5
84.7


Sat-O-Sat
82.4
83.5
82.0
82.9
82.3
82.6
83.4
83.9
81.4
83.1


Sat-L-Sat
2.5
2.4
2.6
2.3
2.8
2.4
2.6
1.9
6.1
1.6


U-U-U/Sat
11.8
11.3
12.4
12.2
12.0
12.2
11.3
11.7
10.6
14.8





La = laurate (C12:0), M = myristate (C14:0), P = palmitate (C16:0), Ma = margarate (C17:0), S = stearate (C18:0), O = oleate (C18:1), L = linoleate (C18:2), Ln = α-linolenate (C18:3 α), A = arachidate (C20:0), G = (C20:1), B = behenate (C22:0), Lg = lignocerate (C24:0), Hx = hexacosanoate (C26:0). Sat = saturated, U = unsaturated






Example 8 Variant Brassica napus Thioeserase

In this example, we demonstrate the modification of the enzyme specificity of a FATA thioesterase originally isolated from Brassica napus (BnOTE, accession CAA52070), by site directed mutagenesis targeting two amino acids positions D124 and D209).


To determine the impact of each amino acid substitution on the enzyme specificity of the BnOTE, the wild-type and the mutant BnOTE genes were cloned into a vector enabling expression and expressed in P. moriformis strain S8588. Strain S8588 is a strain in which the endogenous FATA1 allele has been disrupted and expresses a Prototheca moriformis KASII gene and sucrose invertase. Recombinant strains with FATA1 disruption and co-expression of P. moriformis KASII and invertase were previously disclosed in co-owned applications WO2012/106560 and WO2013/15898, herein incorporated by reference.


Strains that express wild type or mutant BnOTE enzymes, constructs pSZ6315, pSZ6316, pSZ6317, or pSZ6318 were expressed in S8588. In these constructs, the Saccharomyces carlsbergensis MEL1 gene (Accession no: AAA34770) was utilized as the selectable marker to introduce the wild-type and mutant BnOTE genes into the FAD2-2 locus of P. moriformis strain S8588 by homologous recombination using previously described transformation methods (biolistics). The constructs that have been expressed in S8588 are listed in Table 25.









TABLE 25







DNA lot# and plasmid ID of DNA constructs that expressing wild-type and mutant BnOTE genes









DNA
Solazynne



Lot#
Plasmid
Construct





D5309
pSZ6315
FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE-PmSAD2-1




utr::FAD2-2


D5310
pSZ6316
FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE(D124A)-PmSAD2-1




utr::FAD2-2


D5311
pSZ6317
FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE(D209A)-PmSAD2-1




utr::FAD2-2


D5312
pSZ6318
FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE(D124A, D209A)-




PmSAD2-1 utr::FAD2-2









pSZ6315


The construct psZ6315 can be written as FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE-PmSAD2-1 utr::FAD2-2. The sequence of the pSZ6315 transforming DNA is provided below. Relevant restriction sites in pSZ6315 are indicated in lowercase, bold and underlining and are 5′-3′ SgrAI, Kpn I, SnaBI, AvrII, SpeI, AscI, ClaI, Sac I, SbfI, respectively. SgrAI and SbfI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent FAD2-2 genomic DNA that permit targeted integration at FAD2-2 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the P. moriformis HXT1 promoter driving the expression of the Saccharomyces carlsbergensis MEL1 gene is indicated by boxed text. The initiator ATG and terminator TGA for MEL1 gene are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The P. moriformis PGK 3′ UTR is indicated by lowercase underlined text followed by the P. moriformis SAD2-2 V3 promoter, indicated by boxed italics text. The Initiator ATG and terminator TGA codons of the wild-type BnOTE are indicated by uppercase, bold italics, while the remainder of the coding region is indicated by bold italics in lower case. The three-nucleotide codon corresponding to the target amino acids, D124 and D209, are in lower case, italicized, bolded and wave underlined. The P. moriformis SAD2-1 3′UTR is again indicated by lowercase underlined text followed by the FAD2-2 genomic region indicated by bold, lowercase text.










Nucleotide sequence of transforming DNA contained in pSZ6315






SEQ ID NO: 131 





caccggcg

cgctgcttcgcgtgccgggtgcagcaatcagatccaagtctgacgacttgcgcgcacgcgccggatccttcaattccaaagtgtcg








tccgcgtgcgcttcttcgccttcgtcctcttgaacatccagcgacgcaagcgcagggcgctgggcggctggcgtcccgaaccggcctcggcgcac







gcggctgaaattgccgatgtcggcaatgtagtgccgctccgcccacctctcaattaagtttttcagcgcgtggttgggaatgatctgcgctcatg







gggcgaaagaaggggttcagaggtgctttattgttactcgactgggcgtaccagcattcgtgcatgactgattatacatacaaaagtacagctc







gcttcaatgccctgcgattcctactcccgagcgagcactcctctcaccgtcgggttgcttcccacgaccacgccggtaagagggtctgtggcctc







gcgcccctcgcgagcgcatattccagccacgtctgtatgattttgcgctcatacgtctggcccgtcgaccccaaaatgacgggatcctgcataa







tatcgcccgaaatgggatccaggcattcgtcaggaggcgtcagccccgcgggagatgccggtcccgccgcattggaaaggtgtagagggggt








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgacc







gcatctccgacctgggcctgaaggacatgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctg







gtcgccgacgagcagaagttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgc







gggcgagtacacgtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacct







gaagtacgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaa







gacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtc







cggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgc







tccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcgg







cgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtga







acaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcgcgtct







ggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccggccccctggacaacggcgaccaggtcgtg







gcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggaggagatcttcttcgactccaacctgggctccaagaagctga







cctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccg







gcatcctgtacaacgccaccgagcagtcctacaaggacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtc








embedded image





accggcgctgatgtggcgcggacgccgtcgtactctttcagactttactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgc







aattaattgtgtgatgaagaaagggtggcacaagatggatcgcgaatgtacgagatcgacaacgatggtgattgttatgaggggccaaacctg







gctcaatcttgtcgcatgtccggcgcaatgtgatccagcggcgtgactctcgcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactg







atcgcattgccatcccgtcaactcacaagcctactctagctcccattgcgcactcgggcgcccggctcgatcaatgttctgagcggagggcgaag







cgtcaggaaatcgtctcggcagctggaagcgcatggaatgcggagcggagatcgaatcaggatcccgcgtctcgaacagagcgcgcagagga






acgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgcttggttcttcgtccattagcgaagcgt







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





tcgctcctctctgttctgaacggaacaatcggccaccccgcgctacgcgccacgcatcgagcaacgaagaaaaccccccgatgataggttgcgg







tggctgccgggatatagatccggccgcacatcaaagggcccctccgccagagaagaagctcctttcccagcagactccttctgctgccaaaaca







cttctctgtccacagcaacaccaaaggatgaacagatcaacttgcgtctccgcgtagcttcctcggctagcgtgcttgcaacaggtccctgcacta







ttatcttcctgctttcctctgaattatgcggcaggcgagcgctcgctctggcgagcgctccttcgcgccgccctcgctgatcgagtgtacagtcaat







gaatggtgagctc
cgcgcctgcgcgaggacgcagaacaacgctgccgccgtgtcttttgcacgcgcgactccggcgcttcgctggtggcacccc







cataaagaaaccctcaattctgtttgtggaagacacggtgtacccccacccacccacctgcacctctattattggtattattgacgcgggagtgg







gcgttgtaccctacaacgtagcttctctagttttcagctggctcccaccattgtaaattcatgctagaatagtgcgtggttatgtgagaggtatag







tgtgtctgagcagacggggcgggatgcatgtcgtggtggtgatctttggctcaaggcgtcgtcgacgtgacgtgcccgatcatgagagcaatac







cgcgctcaaagccgacgcatagcctttactccgcaatccaaacgactgtcgctcgtattifttggatatctattttaaagagcgagcacagcgcc







gggcatgggcctgaaaggcctcgcggccgtgctcgtggtgggggccgcgagcgcgtggggcatcgcggcagtgcaccaggcgcagacggag







gaacgcatggtgcgtgcgcaatataagatacatgtattgttgt

cctgcagg







Nucleotide sequence of BnOTE (D124A) in pSZ6316





SEQ ID NO: 132 





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image








The sequence of the pSZ6317 transforming DNA is same as pSZ6315 except the D209A point mutation, the BnOTE D209A DNA sequence is provided below. The three-nucleotide codon corresponding to the target two amino acids, D124 and D209, are in lower case, italicized, bolded and wave underlined. pSZ6317 is written as FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE (D209A)-PmSAD2-1 utr::FAD2-2










SEQ ID NO: 133 Nucleotide sequence of BnOTE (D209A) in pSZ6317:




custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
atggactacaaggaccacgacggcgactacaaggaccacgacatcgactacaagg







acgacgacgacaag
custom-character







The sequence of the pSZ6318 transforming DNA is same as pSZ6315 except two point mutations, D124A and D209A, the BnOTE (D124A, D209A) DNA sequence is provided below. The three-nucleotide codon corresponding to the target two amino acids, D124 and D209, are in lower case, italicized, bolded and wave underlined. pSZ6318 is written as FAD2-2::PmHXT1-ScarMEL1-PmPGK:PmSAD2-2 V3-CpSADtp-BnOTE (D124A, D209A)-PmSAD2-1 utr::FAD2-2










SEQ ID NO: 134 Nucleotide sequence of BnOTE (D124A, D209A) in pSZ6318




custom-character
custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character
custom-character







custom-character
custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
custom-character







custom-character
atggactacaaggaccacgacggcgactacaaggaccacgacatcgactacaagg







acgacgacgacaag
custom-character







The DNA constructs containing the wild-type and mutant BnOTE genes were transformed into the parental strain S8588. Primary transformants were clonally purified and grown under standard lipid production conditions at pH5.0. The resulting profiles from representative clones arising from transformations with pSZ6315, pSZ6316, pSZ6317, and pSZ6318 into S8588 are shown in Table 26. The parental strain S8588 produces 5.4% C18:0, when transformed with the DNA cassette expressing wild-type BnOTE, the transgenic lines produce ˜11% C18:0. The BnOTE mutant (D124A) increased the amount of C18:0 by at least 2 fold compared to the wild-type protein. In contrast, the BnOTE D209A mutation appears to have no impact on the enzyme activity/specificity of the BnOTE thioesterase. Finally, expression of the BnOTE (D124A, D209A) resulted in very similar fatty acid profile to what we observed in the transformants from S8588 expressing BnOTE (D124A), again indicating that D209A has no significant impact on the enzyme activity.









TABLE 26







Fatty acid profiles in S8588 and derivative transgenic lines transformed with


wild-type and mutant BnOTE genes











Fatty Acid Area %












Transforming DNA
Sample ID
C16:0
C18:0
C18:1
C18:2
















pH5; S8588 (parental strain)
3.00
5.43
81.75
6.47


D5309, pSZ6315;
pH5; S8588, D5309-6;
3.86
11.68
76.51
5.06


wild-type BnOTE
pH5; S8588, D5309-2;
3.50
11.00
77.80
4.95



pH5; S8588, D5309-9 ;
3.51
10.72
78.03
5.00



pH5; S8588, D5309-10;
3.55
10.69
78.06
4.96



pH5; S8588, D5309-11;
3.61
10.69
78.05
4.95


D5310, pSZ6316,
pH5; S8588, D5310-6;
4.27
31.55
55.31
5.30


BnOTE (D124A)
pH5; S8588, D5310-1;
4.53
30.85
54.71
6.03



pH5; S8588, D5310-5;
5.21
20.75
65.43
5.02



pH5; S8588, D5310-10;
4.99
19.18
67.75
5.00



pH5; S8588, D5310-2;
4.90
18.92
68.17
4.98


D5311, pSZ6317,
pH5; S8588, D5311-3;
3.50
11.90
76.95
4.98


BnOTE (D209A)
pH5; S8588, D5311-4;
3.63
11.35
77.44
4.94



pH5; S8588, D5311-14;
3.47
11.23
77.68
4.98



pH5; S8588, D5311-10;
3.60
11.20
77.53
5.00



pH5; S8588, D5311-12;
3.53
11.12
77.59
5.09


D5312, pSZ6318,
pH5; S8588, D5312-20;
4.79
37.97
47.74
6.01


BnOTE (D124A,
pH5; S8588, D5312-40;
5.97
22.94
62.20
5.11


D209A)
pH5; S8588, D5312-39;
6.07
22.75
62.24
5.17



pH5; S8588, D5312-16;
5.25
18.81
67.36
5.09



pH5; S8588, D5312-26;
4.93
18.70
68.37
4.96









Example 9 Variant Garcinia mangostana Thioeserase

In this example, we demonstrate the ability to modify the activity and specificity of a FATA thioesterase originally isolated from Garcinia mangostana (GmFATA, accession 004792), using site directed mutagenesis targeting six amino acid positions within the enzyme and various combinations thereof. Facciotti et al (NatBiotech 1999) had previously altered three of the amino acids (G108, S111, V193). The remaining three amino acids targeted are L91, G96, and T156.


To test the impact of each mutation on the activity of the GmFATA, the wild-type and mutant genes were cloned into a vector enabling expression within the P. moriformis strain S3150. Table 27 summarizes the results from a three day lipid profile screen comparing the wild-type GmFATA with the 14 mutants. Three GmFATA mutants (DNA lot numbers D3998, D4000, D4003) increased the amount of C18:0 by at least 1.5 fold compared to the wild-type protein (DNA lot number D3997). D3998 and D4003 were mutations that had been described by Facciotti et al (NatBiotech 1999) as substitutions that increased the activity of the GmFATA. Strain S3150 expressing the mutations contained in DNA lot number D4000 was based on research at Solazyme which demonstrated this position influenced the activity of the FATB thioesterases. All of the constructs were codon optimized to reflect UTEX 1435 codon usage. Non-mutated GmFATA increases the fatty acid content of C18:0 and decreases the fatty acid content of C18:1 and C18:2. As can be seen in Table 27 the G90A mutant GmFATA increases the fatty acid content of C18:0 and decreases the fatty acid content of C18:1 and C18:2 when compared to the wild-type GmFATA.
















TABLE 27





Algal









Strain
DNA #
GmFATA
C14:0
C16:0
C18:0
C18:1
C18:2






















P.

S3150
1.63
29.82
3.08
55.95
7.22















moriformis

D3997
Wild-Type
1.79
29.28
7.32
52.88
6.21


S3150
pSZ5083
GmFATA








D3998
S111A,
1.84
28.88
11.19
49.08
6.21



pSZ5084
V193A








D3999
S111V,
1.73
29.92
3.23
56.48
6.46



pSZ5085
V193A








D4000
G96A
1.76
30.19
12.66
45.99
6.01



pSZ5086









D4001
G96T
1.82
30.60
3.58
55.50
6.28



pSZ5087









D4002
G96V
1.78
29.35
3.45
56.77
6.43



pSZ5088









D4003
G108A
1.77
29.06
12.31
47.86
6.08



pSZ5089









D4007
G108V
1.81
28.78
5.71
55.05
6.26



pSZ5093









D4004
L91F
1.76
29.60
6.97
53.04
6.13



pSZ5090









D4005
L91K
1.87
28.89
4.38
56.24
6.35



pSZ5091









D4006
L91S
1.85
28.06
4.81
56.45
6.47



pSZ5092









D4008
T156F
1.81
28.71
3.65
57.35
6.31



pSZ5094









D4009
T156A
1.72
29.66
5.44
54.54
6.26



pSZ5095









D4010
T156K
1.73
29.95
3.17
56.86
6.21



pSZ5096









D4011
T156V
1.80
29.17
4.97
55.44
6.27



pSZ5097















Nucleotide sequence of the GmFATA wild-type parental gene expression vector is shown below (D3997, pSZ5083). The plasmid pSZ5083 can be written as THI4a::CrTUB2-NeoR-PmPGH:PmSAD2-2Ver3-CpSAD1tp_GarmFATA1 FLAG-CvNR::THI4a. The 5′ and 3′ homology arms enabling targeted integration into the Thi4 locus are noted with lowercase; the CrTUB2 promoter is noted in uppercase italic which drives expression of the neomycin selection marker noted with lowercase italic followed by the PmPGH 3′UTR terminator highlighted in uppercase. The PmSAD2-1 promoter (noted in bold text) drives the expression of the GmFATA gene (noted with lowercase bold text) and is terminated with the CvNR 3′UTR noted in underlined, lower case bold. Restriction cloning sites and spacer DNA fragments are noted as underlined, uppercase plain lettering. The nucleotide sequence for all of the GmFATA constructs disclosed in this example is identical to that of pSZ5083 with the exception of the encoded GmFATA. The promoter, 3′UTR, selection marker and targeting arms are the same as described for pSZ5083. The individual GmFATA mutant sequences are shown below. The amino acid sequence of the unmutagenized GmFATA is showing in FIG. 1. The amino acid sequences of the altered GmFATA proteins are shown below.














SEQ ID NO: 135 pSZ5083


ccctcaactgcgacgctgggaaccttctccgggcaggcgatgtgcgtgggtttgcctccttg


gcacggctctacaccgtcgagtacgccatgaggcggtgatggctgtgtcggttgccacttcg


tccagagacggcaagtcgtccatcctctgcgtgtgtggcgcgacgctgcagcagtccctctg


cagcagatgagcgtgactttggccatttcacgcactcgagtgtacacaatccatttttctta


aagcaaatgactgctgattgaccagatactgtaacgctgatttcgctccagatcgcacagat


agcgaccatgttgctgcgtctgaaaatctggattccgaattcgaccctggcgctccatccat


gcaacagatggcgacacttgttacaattcctgtcacccatcggcatggagcaggtccactta


gattcccgatcacccacgcacatctcgctaatagtcattcgttcgtgtcttcgatcaatctc


aagtgagtgtgcatggatcttggttgacgatgcggtatgggtttgcgccgctggctgcaggg


tctgcccaaggcaagctaacccagctcctctccccgacaatactctcgcaggcaaagccggt


cacttgccttccagattgccaataaactcaattatggcctctgtcatgccatccatgggtct


gatgaatggtcacgctcgtgtcctgaccgttccccagcctctggcgtcccctgccccgccca


ccagcccacgccgcgcggcagtcgctgccaaggctgtctcggaGGTACCCTTTCTTGCGCTA



TGACACTTCCAGCAAAAGGTAGGGCGGGCTGCGAGACGGCTTCCCGGCGCTGCATGCAACAC




CGATGATGCTTCGACCCCCCGAAGCTCCTTCGGGGCTGCATGGGCGCTCCGATGCCGCTCCA




GGGCGAGCGCTGTTTAAATAGCCAGGCCCCCGATTGCAAAGACATTATAGCGAGCTACCAAA



GCCATATTCAAACACCTAGATCACTACCACTTCTACACAGGCCACTCGAGCTTGTGATCGCA



CTCCGCTAAGGGGGCGCCTCTTCCTCTTCGTTTCAGTCACAACCCGCAAAC
TCTAGAATATC




A
atgatcgagcaggacggcctccacgccggctcccccgccgcctgggtggagcgcctgttcg




gctacgactgggcccagcagaccatcggctgctccgacgccgccgtgttccgcctgtccgcc




cagggccgccccgtgctgttcgtgaagaccgacctgtccggcgccctgaacgagctgcagga




cgaggccgcccgcctgtcctggctggccaccaccggcgtgccctgcgccgccgtgctggacg




tggtgaccgaggccggccgcgactggctgctgctgggcgaggtgcccggccaggacctgctg




tcctcccacctggcccccgccgagaaggtgtccatcatggccgacgccatgcgccgcctgca




caccctggaccccgccacctgccccttcgaccaccaggccaagcaccgcatcgagcgcgccc




gcacccgcatggaggccggcctggtggaccaggacgacctggacgaggagcaccagggcctg




gcccccgccgagctgttcgcccgcctgaaggcccgcatgcccgacggcgaggacctggtggt




gacccacggcgacgcctgcctgcccaacatcatggtggagaacggccgcttctccggcttca




tcgactgcggccgcctgggcgtggccgaccgctaccaggacatcgccctggccacccgcgac




atcgccgaggagctgggcggcgagtgggccgaccgcttcctggtgctgtacggcatcgccgc




ccccgactcccagcgcatcgccttctaccgcctgctggacgagttcttctga
CAATTGACGC



CCGCGCGGCGCACCTGACCTGTTCTCTCGAGGGCGCCTGTTCTGCCTTGCGAAACAAGCCCC


TGGAGCATGCGTGCATGATCGTCTCTGGCGCCCCGCCGCGCGGTTTGTCGCCCTCGCGGGCG


CCGCGGCCGCGGGGGCGCATTGAAATTGTTGCAAACCCCACCTGACAGATTGAGGGCCCAGG


CAGGAAGGCGTTGAGATGGAGGTACAGGAGTCAAGTAACTGAAAGTTTTTATGATAACTAAC


AACAAAGGGTCGTTTCTGGCCAGCGAATGACAAGAACAAGATTCCACATTTCCGTGTAGAGG


CTTGCCATCGAATGTGAGCGGGCGGGCCGCGGACCCGACAAAACCCTTACGACGTGGTAAGA


AAAACGTGGCGGGCACTGTCCCTGTAGCCTGAAGACCAGCAGGAGACGATCGGAAGCATCAC


AGCACAGGATCCCGCGTCTCGAACAGAGCGCGCAGAGGAACGCTGAAGGTCTCGCCTCTGTC



GCACCTCAGCGCGGCATACACCACAATAACCACCTGACGAATGCGCTTGGTTCTTCGTCCAT




TAGCGAAGCGTCCGGTTCACACACGTGCCACGTTGGCGAGGTGGCAGGTGACAATGATCGGT




GGAGCTGATGGTCGAAACGTTCACAGCCTAGGGATATC
GTGAAAACTCGCTCGACCGCCCGC




GTCCCGCAGGCAGCGATGACGTGTGCGTGACCTGGGTGTTTCGTCGAAAGGCCAGCAACCCC




AAATCGCAGGCGATCCGGAGATTGGGATCTGATCCGAGCTTGGACCAGATCCCCCACGATGC




GGCACGGGAACTGCATCGACTCGGCGCGGAACCCAGCTTTCGTAAATGCCAGATTGGTGTCC




GATACCTTGATTTGCCATCAGCGAAACAAGACTTCAGCAGCGAGCGTATTTGGCGGGCGTGC




TACCAGGGTTGCATACATTGCCCATTTCTGTCTGGACCGCTTTACCGGCGCAGAGGGTGAGT




TGATGGGGTTGGCAGGCATCGAAACGCGCGTGCATGGTGTGTGTGTCTGTTTTCGGCTGCAC




AATTTCAATAGTCGGATGGGCGACGGTAGAATTGGGTGTTGCGCTCGCGTGCATGCCTCGCC




CCGTCGGGTGTCATGACCGGGACTGGAATCCCCCCTCGCGACCCTCCTGCTAACGCTCCCGA




CTCTCCCGCCCGCGCGCAGGATAGACTCTAGTTCAACCAATCGACA
ACTAGT
atggccaccg




catccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggcgggctccggg




ccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatccccccccgcatcatcgt




ggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtgtcctccggcc




tggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaaggagaagttc




atcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagaccatcgccaacct




gctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggcggcttctcca




ccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgcacatcgagatc




tacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagggcgagggcaa




gatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtgatcggccgcg




ccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggtggacgtggac




gtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttccccgaggagaa




caactcctccctgaagaagatctccaagctggaggacccctcccagtactccaagctgggcc




tggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgacctacatcggc




tgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcagaccatcaccct




ggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcccccgagccct




ccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaacgtgtccgcc




aacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacggcctggagat




caaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaaggaccacgacg




gcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga
ATCGATgcagca





gcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccaca






cttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgat






cttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccaccccca






gcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctg






ctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctc






cgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaag






tagtgggatgggaacacaaatggaAAGCTTGAGCTC
cagcgccatgccacgccctttgatgg



cttcaagtacgattacggtgttggattgtgtgtttgttgcgtagtgtgcatggtttagaata


atacacttgatttcttgctcacggcaatctcggcttgtccgcaggttcaaccccatttcgga


gtctcaggtcagccgcgcaatgaccagccgctacttcaaggacttgcacgacaacgccgagg


tgagctatgtttaggacttgattggaaattgtcgtcgacgcatattcgcgctccgcgacagc


acccaagcaaaatgtcaagtgcgttccgatttgcgtccgcaggtcgatgttgtgatcgtcgg


cgccggatccgccggtctgtcctgcgcttacgagctgaccaagcaccctgacgtccgggtac


gcgagctgagattcgattagacataaattgaagattaaacccgtagaaaaatttgatggtcg


cgaaactgtgctcgattgcaagaaattgatcgtcctccactccgcaggtcgccatcatcgag


cagggcgttgctcccggcggcggcgcctggctggggggacagctgttctcggccatgtgtgt


acgtagaaggatgaatttcagctggttttcgttgcacagctgtttgtgcatgatttgtttca


gactattgttgaatgtttttagatttcttaggatgcatgatttgtctgcatgcgact





SEQ ID NO: 136 Amino acid sequence of Gm FATA wild-type parental gene;


D3997, pSZ5083. The algal transit peptide is underlined and the FLAG epitope tag is


uppercase bold



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO:137 Amino acid sequence of Gm FATA S111A, V193A mutant gene;


D3998, pSZ5084. The algal transit peptide is underlined, the FLAG epitope tag is


uppercase bold and the S111A, V193A residues are lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFaTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDaDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO:138 Amino acid sequence of Gm FATA S111V, V193A mutant gene;


D3999, pSZ5085. The algal transit peptide is underlined, the FLAG epitope tag is


uppercase bold and the S111V, V193A residues are lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFvTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDaDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 139 Amino acid sequence of Gm FATA G96A mutant gene; D4000,


pSZ5086. The algal transit peptide is underlined, the FLAG epitope tag is uppercase


bold and the G96A residue is lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVaCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 140 Amino acid sequence of Gm FATA G96T mutant gene; D4001,


pSZ5087. The algal transit peptide is underlined, the FLAG epitope tag is uppercase


bold and the G96T residue is lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVtCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 141 Amino acid sequence of Gm FATA G96V mutant gene; D4002,


pSZ5088. The algal transit peptide is underlined, the FLAG epitope tag is uppercase


bold and the G96V residue is lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVvCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 142 Amino acid sequence of Gm FATA G108A mutant gene;


D4003, pSZ5089. The algal transit peptide is underlined, the FLAG epitope tag is


uppercase bold and the G108A residue is lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTaGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 143 Amino acid sequence of Gm FATA L91F mutant gene; D4004,


pSZ5090. The algal transit peptide is underlined, the FLAG epitope tag is uppercase


bold and the L91F residue is lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANfLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 144 Amino acid sequence of Gm FATA L91K mutant gene; D4005,


pSZ5091. The algal transit peptide is underlined, the FLAG epitope tag is uppercase


bold and the L91K residue is lower-case bold



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANkLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO:145 FIG. 10. Amino acid sequence of Gm FATA L915 mutant


gene; D4006, pSZ5092. The algal transit peptide is underlined, the FLAG epitope tag is


uppercase bold and the L91S residue is lower-case bold



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANsLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 146 Amino acid sequence of Gm FATA G108V mutant gene;


D4007, pSZ5093. The algal transit peptide is underlined, the FLAG epitope tag is


uppercase bold and the G108V residue is lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTvGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 147 Amino acid sequence of Gm FATA T156F mutant gene;


D4008, pSZ5094. The algal transit peptide is underlined, the FLAG epitope tag is


uppercase bold and the T156F residue is lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGfRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 148 Amino acid sequence of Gm FATA T156A mutant gene;


D4009, pSZ5095. The algal transit peptide is underlined, the FLAG epitope tag is


uppercase bold and the T156A residue is lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGaRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 149 Amino acid sequence of Gm FATA T156K mutant gene; D4010,


pSZ5096. The algal transit peptide is underlined, the FLAG epitope tag is uppercase


bold and the T156K residue is lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGkRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 150 Amino acid sequence of Gm FATA T156V mutant gene;


D4011, pSZ5097. The algal transit peptide is underlined, the FLAG epitope tag is


uppercase bold and the T156V residue is lower-case bold.



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL



TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK


YPAWSDVVEIESWGQGEGKIGvRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL


AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ


HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD



GDYKDHDIDYKDDDDK






SEQ ID NO: 151 Nucleotide sequence of the GmFATA S111A, V193A mutant gene


(D3998, pSZ5084). The promoter, 3′UTR, selection marker and targeting arms are the same


as pSZ5083.


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc


ggcttcgccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgcggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 152 Nucleotide sequence of the GmFATA S111V, V193A mutant gene


(D3999, pSZ5085). The promoter, 3′UTR, selection marker and targeting arms are the


same as pSZ5083.


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc


ggcttcgtcaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgcggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 153 Nucleotide sequence of the GmFATA G96A mutant gene (D4000,


pSZ5086). The promoter, 3′UTR, selection marker and targeting arms are the same as


pSZ5083


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacctgctgcaggaggtggcgtgcaaccacgcccagtccgtgggctactccaccggc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 154 Nucleotide sequence of the GmFATA G96T mutant gene (D4001,


pSZ5087). The promoter, 3′UTR, selection marker and targeting arms are the same as


pSZ5083


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacctgctgcaggaggtgacgtgcaaccacgcccagtccgtgggctactccaccggc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 155 Nucleotide sequence of the GmFATA G96V mutant gene (D4002,


pSZ5088). The promoter, 3′UTR, selection marker and targeting arms are the same as


pSZ5083.


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacctgctgcaggaggtggtgtgcaaccacgcccagtccgtgggctactccaccggc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 156 Nucleotide sequence of the GmFATA G108A mutant gene


(D4003, pSZ5089). The promoter, 3′UTR, selection marker and targeting arms are the


same as pSZ50836.


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccgcc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 157 Nucleotide sequence of the GmFATA L91F mutant gene (D4004,


pSZ5090). The promoter, 3′UTR, selection marker and targeting arms are the same as


pSZ5083


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacttcctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 158 Nucleotide sequence of the GmFATA L91K mutant gene (D4005,


pSZ5091). The promoter, 3′UTR, selection marker and targeting arms are the same as


pSZ5083.


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacaagctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 159 Nucleotide sequence of the GmFATA L91S mutant gene (D4006,


pSZ5092). The promoter, 3′UTR, selection marker and targeting arms are the same as


pSZ5083.


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaactcgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 160 Nucleotide sequence of the GmFATA G108V mutant gene


(D4007, pSZ5093). The promoter, 3′UTR, selection marker and targeting arms are the


same as pSZ5083.


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccgtc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 161 Nucleotide sequence of the GmFATA T156F mutant gene (D4008,


pSZ5094). The promoter, 3′UTR, selection marker and targeting arms are the same as


pSZ5083.


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcttccgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 162 Nucleotide sequence of the GmFATA T156A mutant gene (D4009,


pSZ5095). The promoter, 3′UTR, selection marker and targeting arms are the same as


pSZ5083


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcgcgcgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 163 Nucleotide sequence of the GmFATA T156K mutant gene (D4010,


pSZ5096). The promoter, 3′UTR, selection marker and targeting arms are the same as


pSZ5083.


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcaagcgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





SEQ ID NO: 164 Nucleotide sequence of the GmFATA T156V mutant gene (D4011,


pSZ5097). The promoter, 3′UTR, selection marker and targeting arms are the same as


pSZ5083


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc


gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc


gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg


tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa


ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca


tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc


ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca


catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg


gcgagggcaagatcggcgtgcgccgcgactggatcctgcgcgactacgccaccggccaggtg


atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt


ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc


ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc


aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac


ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga


ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc


cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa


cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg


gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag


gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga





















SEQUENCES


SEQ ID NO: 1













gcgaggggtc
tgcctgggcc
agccgctccc
tctgaacacg
ggacgcgtgg
tccaattcgg
60


gcttcgggac
cctttggcgg
tttgaacgcc
tgggagaggg
cgcccgcgag
cctggggacc
120


ccggcaacgg
cttccccaga
gcctgccttg
caatctcgcg
cgtcctctcc
ctcagcacgt
180


ggcggttcca
cgtgtggtcg
ggcgtcccgg
actagctcac
gtcgtgacct
agcttaatga
240


acccagccgg
gcctgcagca
ccaccttaga
ggttttgatt
atttgattag
accaatctat
300


tcacc





305







SEQ ID NO: 2













ggcgaataga
ttggtataat
gaaataatca
aaacctctta
ggcggtgcta
caggcccggc
60


tgggttcatt
aagctaggtc
acgacgcgag
ctagtccggg
aagcccgacc
acacgtggaa
120


ccgccacgtg
ctgagggaga
ggacgcgcga
gattgcaagg
caggctctgg
ggaagccgtt
180


gccggggtcc
ccaggctcgc
gggcgcccca
tccctggcgt
tcaaaccgcc
aaagggtccc
240


gaagcccgaa
ttggaccacg
cgtcccgtgt
ttagagggag
cggctggccc
aggcagaccc
300


ctcgc





305







SEQ ID NO: 3













ggtgaataga
ttggtctaat
caaataatca
aaacctctaa
ggtggtgctg
caggcccggc
60


tgggttcatt
aagctaggtc
acgacgtgag
ctagtccggg
acgcccgacc
acacgtggaa
120


ccgccacgtg
ctgagggaga
ggacgcgcga
gattgcaagg
caggctctgg
ggaagccgtt
180


gccggggtcc
ccaggctcgc
gggcgccctc
tcccaggcg
tcaaaccgcc
aaagggtccc
240


gaagcccgaa
ttggaccacg
cgtcccgtgt
tcagagggag
cggctggccc
aggcagaccc
300


ctcgc





305







SEQ ID NO: 4













gtgatgggtt
ctttagacga
tccagcccag
gatcatgtgt
tgcccacatg
gagcctatcc
60


acgctggcct
agaaggcaag
cacatttcaa
ggtgaaccca
cgtccatgga
gcgatggcgc
120


caatatctcg
cctctagacc
aagcggttct
caccccaact
gcgtcatttg
tatgtatggc
180


tgcaaagttg
tcggtacgat
agaggccgcc
aacctggcgg
cgagggcgag
gagctggttg
240


ccgatctgtg
cccaagcatg
tgtcggagct
cggctgtctc
ggcagcgagc
tcctgtgcaa
300


ggggcttgca
tcgagaatgt
caggcgatag
acactgcacg
ttggggacac
ggaggtgccc
360


ctgtggcgtg
tcctggatgc
cctcgggtcc
gtcgcgagaa
gctctggcga
ccagcacccg
420


gccacaaccg
cagcaggcgt
tcacccacaa
gaatcttcca
gatcgtgatg
cgcatgtatc
480


gtgacacgat
tggcgaggtc
cgcaggacgc
acacggactc
gtccactcat
cagaactggt
540


cagggcaccc
atctgcgtcc
cttttcagga
accacccacc
gctgccaggc
accttcgcca
600


gcggcggact
ccacacagag
aatgccttgc
tgtgagagac
catggccggc
aagtgctgtc
660


ggatctgccc
gcatacggtc
agtccccagc
acaaggaagc
caagagtaca
ggctgttggt
720


gtcgatggag
gagtggccgt
tcccacaagt
agtgagcggc
agctgctcaa
cggcttcccc
780


ctgttcatct
tggcaaagcc
agtgacttcc
tacaagtatg
tgatgcagat
cggcactgca
840


atctgtcggc
atgcgtacag
aacatcggct
cgccagggca
gcgttgctcg
ctctggatga
900


gctgcttggg
aggaatcatc
ggcacacgcc
cgtgccgtgc
ccgcgccccg
cgcccgtcgg
960


gaaaggcccc
cggttaggac
actgccgcgt
cagccagtcg
tgggatcgat
cggacgtggc
1020


gaatcctcgc
ccggacaccc
tcatcacacc
ccacatttcc
ctgcaagcaa
tcttgccgac
1080


aaaatagtca
agatccattg
ggtttaggga
acacgtgcga
gactgggcag
ctgtatctgt
1140


ccttgccccg
cgtcaaattc
ctgggcgtga
cgcagtcaca
ggagaatcta
ttagaccctg
1200


gacttgcagc
tcagtcatgg
gcgtgagtgg
ctaaagcacc
taggtcaggc
gagtaccgcc
1260


ccttccccag
gattcactct
tctgcgattg
acgttgagcc
tgcatcgggc
tgcttcgtca
1320


cc





1322







SEQ ID NO: 5













tcggagctaa
agcagagact
ggacaagact
tgcgttcgca
tactggtgac
acagaatagc
60


tcccatctat
tcatacgcct
ttgggaaaag
gaacgagcct
tgtggcctct
gcattgctgc
120


ctgctttgag
gccgaggacg
gtgcgggacg
ctcagatcca
tcagcgatcg 
ccccaccctc
180


agagcacctc
cgatccaagg
caatactatc
aggcaaagtt
tccaaattca
aacattccaa
240


aatcacgcca
gggactggat
cacacacgca
gatcagcgcc
gttttgctct
ttgcctacgg
300


gcgactgtgc
cacttgtcga
cccctggtga
cgggagggac
cacgcctgcg
gttggcatcc
360


acttcgacgg
acccagggac
ggtttctcat
gccaaacctg
agatttgagc
acccagatga
420


gcacattatg
cgttttagga
tgcctgagca
gcgggcgtgc
aggaatctgg
tctcgccaga
480


ttcaccgaag
atgcgcccat
cggagcgagg
cgagggcttt
gtgaccacgc
aaggcagtgt
540


gaggcaaaca
catagggaca
cctgcgtctt
tcaatgcaca
gacatctatg
gtgcccatgt
600


atataaaatg
ggctacttct
gagtcaaacc
aacgcaaact
gcgctatggc
aaggccggcc
660


aaggttggaa
tcccggtctg
tctggatttg
agtttgtggg
ggctatcacg
tgacaatccc
720


tgggattggg
cggcagcagc
gcacggcctg
ggtggcaatg
gcgcactaat
actgctgaaa
780


gcacggctct
gcatcccttt
ctcttgacct
gcgattggtc
cttttcgcaa
gcgtgatcat
840


c





841







SEQ ID NO: 6













tcggagctaa
agcagaaact
gaacaagact
tgcgttcgca
tacttgtgac
actgaatagg
60


ttcaatctat
tcatacgcct
ttgggaaact
gaacgagcct
tgtggcctct
gcattgctgc
120


ctgctttgag
gccgaggacg
gcgcggaacg
cacagatcca
tcagcgatcg
ccccaccctc
180


agagtacatc
cgatccaagg
caatactatc
aggcaaagtt
tccaaattca
aacattccaa
240


aattacgtca
gggactggat
cacacacgca
gatcagcgcc
gttttgctct
ttgcctacgg
300


gcgactgtgc
cacttgtcga
cgcctggtga
cgggagggac
cacgcctgcg
gttggcatcc
360


acttcgacgg
acccagggac
ggtctcacat
gccaaacctg
agatttgagc
accaagatga
420


gcacattatg
cgtttttgga
tgcctgagca
gcgggcgtgc
aggaatctgg
tctcgccaga
480


ttcaccgaag
atgcggccat
cggagcgagg
cgagggctgt
gtggccacgc
caggcagtgt
540


gaggcaaaca
cacagggaca
tctgcttctt
tcgatgcaca
gacatctatg
ttgcccgtgc
600


atataaaatg
ggctacttct
gaatcaaacc
aacgcaaact
tcgctatggc
aaggccggcc
660


aaggttggaa
tcccggtctg
tctggatttg
agtttgtggg
ggctatcacg
tgacaatccc
720


tgggattggg
cggcagcagc
gcacggcctg
gatggcaatg
gcgcactaat
actgctgaaa
780


gcacggctct
gcatcccttt
ctcttgacct
gcgattggtc
cttttcgcaa
gcgtgatcat
840


c





841







SEQ ID NO: 7













caccgatcac
tccgtcgccg
cccaagagaa
atcaacctcg
atggagggcg
aggtggatca
60


gaggtattgg
ttatcgttcg
ttcttagtct
caatcaatcg
tacaccttgc
agttgcccga
120


gtttctccac
acatacagca
cctcccgctc
ccagcccatt
cgagcgaccc
aatccgggcg
180


atcccagcga
tcgtcgtcgc
ttcagtgctg
accggtggaa
agcaggagat
ctcgggcgag
240


caggaccaca
tccagcccag
gatcttcgac
tggctcagag
ctgaccctca
cgcggcacag
300


caaaagtagc
acgcacgcgt
tatgcaaact
ggttacaacc
tgtccaacag
tgttgcgacg
360


ttgactggct
acattgtctg
tctgtcgcga
gtgcgcctgg
gcccttacgg
tgggacactg
420


gaactccgcc
ccgagtcgaa
cacctagggc
gacgcccgca
gcttggcatg
acagctctcc
480


ttgtgttcta
aataccttgc
gcgtgtggga 
ga


512







SEQ ID NO: 8













atccaccgat
cactccgtcg
ccgcccaaga
gaattcaacc
tcgatggagg
gcaaggtgga
60


tcagaggtat
tggttatcgt
tcgctattag
tctcaatcaa
tcgtgcacct
tgcagttgct
120


cgagtttctc
cacacataca
gcacctcccg
ctcccagccc
attcgagcga
cccaatccgg
180


gcgatcccag
cgatcgtcgt
cgcttcagtg
ctgaccggtg
gaaagcagga
gatctcgggc
240


gagcaggacc
acatccagca
caggatcttc
gactggctca
gagctgaccc
tcacgcggca
300


cagcaaaagt
agcccgcacg
cgttatgcaa
acaggttaca
acctgtccaa
cactgttgcg
360


acgttgactg
gctacattgt
ctgtctgtcg
cgagtacgcc
tggaccctta
cggtgggaca
420


ctggaactcc
gccccgagtc
gaacacctag
ggcgacgccc
gcagcttggc
atgacagctc
480


tccttgtatt
ctaaatacct
cgcgcgtgtg
ggagaa


516







SEQ ID NO: 9













atgatgcgcg
tgtacgacta
tcaaggaaga
aagaggactt
aatttcttac
cttctaacca
60


ccatattctt
tttgctggat
gcttgctcgt
ctcgatgaca
attgtgaacc
tcttgtgtga
120


ccctgaccct
gctgcaaggc
tctccgaccg
cacgcaaggc
gcagccggcg
cgtccggagg
180


cgatcggatc
caatccagtc
gtcctcccgc
agcccgggca
cgtttgccca
tgcaggccct
240


tccacaccgc
tcaagagact
cccgaacacc
gcccactcgg
cactcgcttc
ggctgccgag
300


tgcgcgtttg
agtttgccct
gccacagaag
acacc


335







SEQ ID NO: 10













atgatgcgcg
tgtacgacta
tcaaggaaga
aagaggactt
aatttcttac
cttctaacca
60


ccatattctt
tttgctggat
gcttgctcgt
ctcgatgaca
attgtgaacc
tcttgtgtga
120


ccctgaccct
gctgcaaggc
tctccgaccg
cacgcaaggc
gcagccggcg
cgtccggagg
180


cgatcggatc
caatccagtc
gtcctcccgc
agcccgggca
cgtttgccca
tgcaggccct
240


tccacaccgc
tcaagagact
cccgaacacc
gcccactcgg
cactcgcttc
ggctgccgag
300


tgcgcgtttg
agtttgccct
gccacaggag
acatc


335







SEQ ID NO: 11













cccgggcgag
ctgtacgcct
acggagcgag
gcctggtgtg
accgttgcga
tctcgccagc
60


agacgtcgcg
gagcctcgtc
ccaaaggccc
tttctgatcg
agcttgtcgt
ccactggacg
120


ctttaagttg
cgcgcgcgat
gggataaccg
agctgatctg
cactcagatt
ttggtttgtt
180


ttcgcgcatg
gtgcagcgag
gggaggtact
acgctggggt
acgagatcct
ccggattccc
240


agaccgtgtt
gccggcattt
acccggtcat
cgccagcgat
tcgggacgac
aaggccttat
300


cctgtgctga
gacgctcgag
cacgtttata
aaattgtggg
taccgcggta
tgcacagcgt
360


tcaacacgcg
ccacgccgaa
attggttggt
gggggagcac
gtatgggact
gacgtatggc
420


cagcagcgaa
cactcaccga
acaagtgcca
atgtatacct
tgcatcaatg
atgctccggc
480


agcttcgatt
gactgtctcg
aaaaagtgtg
agcaagcaga
tcatgtggcc
gctctgtcgc
540


gcagcacctg
acgcattcga
cacccacggc
aatgcccagg
ccagggaata
gagagtaaga
600


caactcccat
tgttcagcaa
aacattgcac
tgcagtgcct
tcacaactat
acaatgaatg
660


ggagggaata
tgggctctgc
atgggacagc
ttagctggga
cattcggcta
ctgaacaaga
720


aaaccccacg
agaaccaatt
ggcgaaacct
gccgggagga
ggtgatcgtt
tctgtaaatg
780


gcttacgcat
tcccccccgg
cggctcacga
ggggtgtggt
gaaccctgcc
agctgatcaa
840


gtgcttgctg
acgtcggcca
gggaggtgta
tgtgattggg
ccgtggggcg
tgagttatcc
900


taccgccgga
cccgcgaagt
cacatgacga
atggccgtgc
gggatgacga
gagcacgact
960


cgctctttct
tcgccggccc
ggcttcatgg
aggacaataa
taaagggtgg
ccaccggcaa
1020


cagccctcca
tacctgaacc
gattccagac
ccaaacctct
tgaattttga
gggatccagt
1080


tcaccggtat
agtcacg




1097







SEQ ID NO: 12













atccccgggc
gagctgtacg
cctacggagc
gaggcctggt
gtgaccgttg
cgatctcgcc
60


agcagacgtc
gcggagcctc
gtcccaaagg
ccctttctga
tcgagcttgt
cgtccactgg
120


acgctttaag
ttgcgcgcgc
gatgggataa
ccgagctgat
ctgcactcag
attttggttt
180


gttttcgcgc
atggtgcagc
gaggggaggt
actacgctgg
ggtacgagat
cctccggatt
240


cccagaccgt
gttgccggca
tttacccggt
catcgccagc
gattcgggac
gacaaggcct
300


tatcctgtgc
tgagacgctc
gagcacgttt
ataaaattgt
ggtcaccgtg
gtacgcacag
360


cgtccaacac
gcgccacgcc
gaaattcgtt
ggtgggggag
cacgtatcgg
actgacgtat
420


ggccagcagc
gaacactcac
caaacaggtg
ccaatgtata
gcttgcatca
atgatgctct
480


ggcagcttcg
attgactgtc
tcgaaaaagt
gtgtgcaaac
agattatgtg
gccgctctgt
540


ggccgcgcag
cacctgacgc
actcgacacc
cacggcaatg
cccaggccaa
ggaacagaga
600


gtaagacaac
tcccattgtt
cagtaaaaca
ttgcactgca
gtgccttcac
aaacatacaa
660


cgaatgggag
ggaatatggg
cttcgaatgg
gacagcttag
ctgggacatt
cggttactga
720


acaagaaaac
cccacgagaa
ccaactggcg
aaacctgccg
ggaggaggtg
atcgtttttg
780


taaatggctt
acgcattccc
cccccggcgg
ctcacggggg
gtgtggtgaa
ccctgccagc
840


tgatcaagtg
cttgctgacg
tcggccaggg
aggtgtatgt
gatttggccg
tggggcgtga
900


gttatcctac
cgccggaccc
gcgaagtcac
atgacgaatg
gccgtgcggg
atgacgagag
960


cagggctcgc
tctttcttcg
ccggcccggc
ttcatggagg
acaataataa
agggtggcca
1020


ccggcaacag
ccctccatac
ctgaaccga
ttccagaccca
aacctcttga
attttgaggg
1080


atccagttca
ccggtatagt
cacga



1105







SEQ ID NO: 13













gcgagtggtt
ttgctgccgg
gaagggagtg
gggagcgtcg
agcgagggac
gcggcgctcg
60


aggcgcacgt
cgtctgtcaa
cgcgcgcggc
cctcgcggcc
cgcggcccca
cccagctcta
120


atcatcgaaa
actaagaggc
tccacacgcc
tgtcgtagaa
tgcatgggat
tcgccagtag
180


accacgatct
gcgccgaaga
agctggtcta
cccgacgttt
tttgttgctc
ctttattctg
240


aatgatatga
agatagtgtg
cgcagtgcca
cgcataggca
tcaggagcaa
gggaggacgg
300


gtcaacttga
aagaaccaaa
ccatccatcc
gagaaatgcg
catcatcttt
gtagtaccat
360


caaacgcctt
ggccaatgtc
ttctgcatgg
acaacacaac
ctgctcctgg
ccacacggtc
420


gacttggagc
gccccatgcg
cccaggtcgc
cacgacccgc
ggcccagcgc
gcggcgattc
480


gcctcacgag
atcccggcgg
acccggcacg
cccgcgggcc
gacggtgcgc
ttggcgatgc
540


tgctcattaa
cccacggccg
tcacccgatc
cacatgctct
ttttcaacac
atccacattg
600


gaatagagct
ctaccagggt
gagtactgca
ttctttgggg
ctgggaggac
cccactcgac
660


acctggtcct
tcatcggccg
aaagcccgaa
cctgagcgct
tccccgcccc
gttcctcatc
720


cccgactttc
cgatggccca
ttgcagtttc
aaac


754







SEQ ID NO: 14













atctgggtgg
aggactggga
gtaagatgta
aggatattaa
ttaaacattc
tagtttgttg
60


atggcacaac
agtcaatgca
tttcagtcgt
cttgctcctt
ataacctatg
cgtgtgccat
120


cgccggccat
gcacctgtgg
cgtggtaccg
accatcgggg
agaggcccga
gattcggagg
180


tacctcccgc
cctgggcgag
cccttcacgt
gacggcacaa
gtcccttgca
tcggcccgcg
240


agcacggaat
acagagcccc
gtgcccccca
cgggccctca
catcatccac
tccattgttc
300


ttgccacacc
gatcagca




318







SEQ ID NO: 15













tgggtggagg
actgggaaga
agatgtaagg
atatcaattt
aacattctag
tttgttgatg
60


gcacaacagt
cactgaatac
cgggcgtctg
gctgctaaaa
tagccggagc
gtgtgccatc
120


gccggccatg
catctgtggc
gtggtaccga
ccatcaggga
gaggcccgag
attcggaggt
180


acctcccgcc
ctgggcgagc
ccttcacgtg
acggcacaag
tcccttgcat
cggcccgcga
240


gcacggaata
cagagccccg
tgctccccac
gggccctcac
atcatccact
ccattgttct
300


tgccacaccg 
atcagc




316







SEQ ID NO: 16













ataacgaggc
acaatgatcg
atatttctat
cgaacaactg
tatttagccc
tgtacgtacc
60


ccgctcttgg
gccagcccgt
ccgtgcttgc
cttcggaaaa
ttgcatggcg
cctcatgcaa
120


actcgcgctc
tcacagcaga
tctcgcccag
ctcccgggag
agcaatcgcg
ggtggggccc
180


ggggcgaatc
caggacgcgc
cccgcggggc
cgctccactc
gccagggcca
atgggcggct
240


tatagtcctg
gcatgggctc
tgcatgcaca
gtatcgcagt
ttgggcgagg
tgttgccccc
300












gcgatttcga
atacgcgacg
cccggtactc
gtgcgagaac
agggttcttg








Prototheca moriformis (UTEX 1435)Amt02 promoter


SEQ ID NO: 17


TCACCAGCGGACAAAGCACCGGTGTATCAGGTCCGTGTCATCCACTCTAAAGAGCTCGACTACGACCTACTGATG





GCCCTAGATTCTTCATCAAAAACGCCTGAGACACTTGCCCAGGATTGAAACTCCCTGAAGGGACCACCAGGGGCC





CTGAGTTGTTCCTTCCCCCCGTGGCGAGCTGCCAGCCAGGCTGTACCTGTGATCGGGGCTGGCGGGAAAACAGGC





TTCGTGTGCTCAGGTTATGGGAGGTGCAGGACAGCTCATTAAACGCCAACAATCGCACAATTCATGGCAAGCTAA





TCAGTTATTTCCCATTAACGAGCTATAATTGTCCCAAAATTCTGGTCTACCGGGGGTGATCCTTCGTGTACGGGC





CCTTCCCTCAACCCTAGGTATGCGCACATGCGGTCGCCGCGCAACGCGCGCGAGGGCCGAGGGTTTGGGACGGGC





CGTCCCGAAATGCAGTTGCACCCGGATGCGTGGCACCTTTTTTGCGATAATTTATGCAATGGACTGCTCTGCAAA





ATTCTGGCTCTGTCGCCAACCCTAGGATCAGCGGTGTAGGATTTCGTAATCATTCGTCCTGATGGGGAGCTACCG





ACTGCCCTAGTATCAGCCCGACTGCCTGACGCCAGCGTCCACTTTTGTGCACACATTCCATTCGTGCCCAAGACA





TTTCATTGTGGTGCGAAGCGTCCCCAGTTACGCTCACCTGATCCCCAACCTCCTTATTGTTCTGTCGACAGAGTG





GGCCCAGAGGCCGGTCGCAGCC


Prototheca moriformis (UTEX 1435) Amt03 promoter


SEQ ID NO: 18


Ggccgacaggacgcgcgtcaaaggtgctggtcgtgtatgccctggccggcaggtcgttgctgctgctggttagtg





attccgcaaccctgattttggcgtcttattttggcgtggcaaacgctggcgcccgcgagccgggccggcggcgat





gcggtgccccacggctgccggaatccaagggaggcaagagcgcccgggtcagttgaagggctttacgcgcaaggt





acagccgctcctgcaaggctgcgtggtggaattggacgtgcaggtcctgctgaagttcctccaccgcctcaccag





cggacaaagcaccggtgtatcaggtccgtgtcatccactctaaagagctcgactacgacctactgatggccctag





attcttcatcaaaaacgcctgagacacttgcccaggattgaaactccctgaagggaccaccaggggccctgagtt





gttccttccccccgtggcgagctgccagccaggctgtacctgtgatcgaggctggcgggaaaataggcttcgtgt





gctcaggtcatgggaggtgcaggacagctcatgaaacgccaacaatcgcacaattcatgtcaagctaatcagcta





tttcctcttcacgagctgtaattgtcccaaaattctggtctaccgggggtgatccttcgtgtacgggcccttccc





tcaaccctaggtatgcgcgcatgcggtcgccgcgcaactcgcgcgagggccgagggtttgggacgggccgtcccg





aaatgcagttgcacccggatgcgtggcaccttttttgcgataatttatgcaatggactgctctgcaaaattctgg





ctctgtcgccaaccctaggatcagcggcgtaggatttcgtaatcattcgtcctgatggggagctaccgactaccc





taatatcagcccgactgcctgacgccagcgtccacttttgtgcacacattccattcgtgcccaagacatttcatt





gtggtgcgaagcgtccccagttacgctcacctgtttcccgacctccttactgttctgtcgacagagcgggcccac





aggccggtcgcagcc


pSZ3840/D2554 transforming construct (CpauLPAAT1)


SEQ ID NO: 19




gctcttc
cgctaacggaggtctgtcaccaaatggaccccgtctattgcgggaaaccacggcgatggcacgtttcaaaacttgatga







aatacaatattcagtatgtcgcgggcggcgacggcggggagctgatgtcgcgctgggtattgcttaatcgccagcttcgcccccgt







cttggcgcgaggcgtgaacaagccgaccgatgtgcacgagcaaatcctgacactagaagggctgactcgcccggcacggctgaa







ttacacaggcttgcaaaaataccagaatttgcacgcaccgtattcgcggtattttgttggacagtgaatagcgatgcggcaatggc







ttgtggcgttagaaggtgcgacgaaggtggtgccaccactgtgccagccagtcctggcggctcccagggccccgatcaagagcca







ggacatccaaactacccacagcatcaacgccccggcctatactcgaaccccacttgcactctgcaatggtatgggaaccacgggg








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gcctgacgccccagatgggctgggacaactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacaggccga







ccgcatctccgacctgggcctgaaggacatgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccga







cggcttcctggtcgccgacgagcagaagttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgtt







cggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagact







tcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaagggccagttcggcacgcccgagatctcctacca







ccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatcttctactccctgtgcaactggggccaggacctga







ccactactggggctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgct







gcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctccatcatgaacatcctgaacaaggccgccccc







atgggccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaacctgacggacgacga







ggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcct







cctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcgcgtctggcgctacta







cgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccggccccctggacaacggcgaccaggtcgtggc







gctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggaggagatcttcttcgactccaacctgggctccaagaa







gctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacggcgtccgccatcctgggccgcaaca







agaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacggcctgtccaagaacgacacccgcctgttcgg







ccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacggcatcgcgttctaccgcctgcgcccc








embedded image





acacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagtt







gctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacg







ctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtact








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





atcaacctgttccaggccctgtgcttcgtgctggtgtggcccctgtccaagaacgcctaccgccgcatcaaccgcgtgttcgccg







agctgctgctgtccgagctgctgtgcctgttcgactggtgggccggcgccaagctgaagctgttcaccgaccccgagaccttcc







gcctgatgggcaaggagcacgccctggtgatcatcaaccacatgaccgagctggactggatgctgggctgggtgatgggcca







gcacctgggctgcctgggctccatcctgtccgtggccaagaagtccaccaagttcctgcccgtgctgggctggtccatgtggttct







ccgagtacctgtacatcgagcgctcctgggccaaggaccgcaccaccctgaagtcccacatcgagcgcctgaccgactacccc







ctgcccactggatggtgatcttcgtggagggcacccgcttcacccgcaccaagctgctggccgcccagcagtacgccgcctcct







ccggcctgcccgtgccccgcaacgtgctgatcccccgcaccaagggcttcgtgtcctgcgtgtcccacatgcgctccttcgtgccc







gccgtgtacgacgtgaccgtggccttccccaagacctcccccccccccaccctgctgaacctgttcgagggccagtccatcgtgc







tgcacgtgcacatcaagcgccacgccatgaaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagtt







cgtggagaaggacgccctgctggacaagcacaacgccgaggacaccttctccggccaggaggtgcaccgcaccggctcccg







ccccatcaagtccctgctggtggtgatctcctgggtggtggtgatcaccttcggcgccctgaagttcctgcagtggtcctcctgga







agggcaaggccttctccgtgatcggcctgggcatcgtgaccctgctgatgcacatgctgatcctgtcctcccaggccgagcgctc








embedded image









embedded image





gacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtg







ctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatcc







ctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaac







cagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttgagctcagcggcgacggtcctgctacc







gtacgacgttgggcacgcccatgaaagtttgtataccgagcttgttgagcgaactgcaagcgcggctcaaggatacttgaactcct







ggattgatatcggtccaataatggatggaaaatccgaacctcgtgcaagaactgagcaaacctcgttacatggatgcacagtcgc







cagtccaatgaacattgaagtgagcgaactgttcgcttcggtggcagtactactcaaagaatgagctgctgttaaaaatgcactct







cgttctctcaagtgagtggcagatgagtgctcacgccttgcacttcgctgcccgtgtcatgccctgcgccccaaaatttgaaaaaag







ggatgagattattgggcaatggacgacgtcgtcgctccgggagtcaggaccggcggaaaataagaggcaacacactccgcttctt







a

gctcttc




pSZ3841/D2555 (CpaiLPAAT1)


SEQ ID NO: 20




embedded image





gccttctgcttcgtgctgatctcccccctgtccaagaacgcctaccgccgcatcaaccgcgtgacgccgagctgctgcccctgga







gacctgtggctgttccactggtgcgccggcgccaagctgaagctgttcaccgaccccgagaccttccgcctgatgggcaagga







gcacgccctggtgatcatcaaccacaagatcgagctggactggatggtgggctgggtgctgggccagcacctgggctgcctg







ggctccatcctgtccgtggccaagaagtccaccaagttcctgcccgtgttcggctggtccctgtggttctccggctacctgttcctg







gagcgctcctgggccaaggacaagatcaccctgaagtcccacatcgagtccctgaaggactaccccctgcccttctggctgatc







atcttcgtggagggcacccgcttcacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgcccc







gcaacgtgctgatcccccacaccaagggcttcgtgtcctccgtgtcccacatgcgctccttcgtgcccgccatctacgacgtgacc







gtggccttccccaagacctcccccccccccaccatgctgaagctgacgagggccagtccgtggagctgcacgtgcacatcaag







cgccacgccatgaaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagttcgtggagaaggacgcc







ctgctggacaagcacaactccgaggacaccttctccggccaggaggtgcaccacgtgggccgccccatcaaggccctgctggt







ggtgatctcctgggtggtggtgatcatcttcggcgccctgaagttcctgctgtggtcctccctgctgtcctcctggaagggcaagg







ccactccgtgatcggcctgggcatcgtggccggcatcgtgaccctgctgatgcacatcctgatcctgtcctcccaggccgaggg








embedded image






embedded image




pSZ3842/D2556(CigneaLPAAT1)


SEQ ID NO: 21




embedded image





gccctgtgcttcgtgctgatctggcccctgtccaagaacgtgtaccgccgcatcaaccgcgtgacgccgagctgctgctgatgg







acctgctgtgcctgttccactggtgggccggcgccaagatcaagctgacaccgaccccgagaccttccgcctgatgggcatgg







agcacgccctggtgatcatgaaccacaagaccgacctggactggatggtgggctggatcctgggccagcacctgggctgcct







gggctccatcctgtccatcgccaagaagtccaccaagttcatccccgtgctgggctggtccgtgtggactccgagtacctgttcc







tggagcgctcctgggccaaggacaagtccaccctgaagtcccacatggagaagctgaaggactaccccctgcccttctggctg







gtgatcttcgtggagggcacccgcttcacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgc







cccgcaacgtgctgatcccccacaccaagggcttcgtgtcctgcgtgtccaacatgcgctccacgtgcccgccgtgtacgacgt







gaccgtggccttccccaagtcctcccccccccccaccatgctgaagctgttcgagggccagtccatcgtgctgcacgtgcacatc







aagcgccacgccctgaaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagttcgtggagaaggac







gccctgctggacaagcacaacgccgaggacaccttctccggccaggaggtgcaccacatcggccgccccatcaagtccctgct







ggtggtgatcgcctgggtggtggtgatcatcttcggcgccctgaagttcctgcagtggtcctccctgctgtccacctggaagggc







aaggccttctccgtgatcggcctgggcatcgccaccctgctgatgcacatgctgatcctgtcctcccaggccgagcgctccaacc








embedded image




pSZ3844/D2557 (ChookLPAAT1)


SEQ ID NO: 22




embedded image





gccttctgcttcgtgctgatctcccccctgtccaagaacgcctaccgccgcatcaaccgcgtgacgccgagctgctgcccctgga







gacctgtggctgttccactggtgcgccggcgccaagctgaagctgttcaccgaccccgagaccttccgcctgatgggcaagga







gcacgccctggtgatcatcaaccacaagatcgagctggactggatggtgggctgggtgctgggccagcacctgggctgcctg







ggctccatcctgtccgtggccaagaagtccaccaagttcctgcccgtgttcggctggtccctgtggttctccgagtacctgttcctg







gagcgctcctgggccaaggacaagatcaccctgaagtcccacatcgagtccctgaaggactaccccctgcccttctggctgatc






atcttcgtggagggcacccgcttcacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgcccc






gcaacgtgctgatcccccacaccaagggcttcgtgtcctccgtgtcccacatgcgctccttcgtgcccgccatctacgacgtgacc







gtggccttccccaagacctcccccccccccaccatgctgaagctgacgagggccagtccgtggagctgcacgtgcacatcaag







cgccacgccatgaaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagttcgtggagaaggacgcc







ctgctggacaagcacaactccgaggacaccttctccggccaggaggtgcaccacgtgggccgccccatcaaggccctgctggt







ggtgatctcctgggtggtggtgatcatcttcggcgccctgaagttcctgctgtggtcctccctgctgtcctcctggaagggcaagg







ccactccgtgatcggcctgggcatcgtggccggcatcgtgaccctgctgatgcacatcctgatcctgtcctcccaggccgaggg








embedded image






embedded image




CpauLPAAT1


SEQ ID NO: 23


MAIPAAAVIFLFGLLFFTSGLIINLFQALCFVLVWPLSKNAYRRINRVFAELLLSELLCLFDWWAGAKLKLFTDP





ETFRLMGKEHALVIINHMTELDWMLGWVMGQHLGCLGSILSVAKKSTKFLPVLGWSMWFSEYLYIERSWAKDRTT





LKSHIERLTDYPLPFWMVIFVEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPRTKGFVSCVSHMRSFVPAVYDVT





VAFPKTSPPPTLLNLFEGQSIVLHVHIKRHAMKDLPESDDAVAQWCRDKFVEKDALLDKHNAEDTFSGQEVHRTG





SRPIKSLLVVISWVVVITFGALKFLQWSSWKGKAFSVIGLGIVTLLMHMLILSSQAERSSNPAKVAQAKLKTELS





ISKKATDKEN SEQ ID NO:


CprocL2AAT1


SEQ ID NO: 24


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPISKNAYRRINRVFAELLLSELLCLFDWWAGAKLKLFTDP





ETFRLMGKEHALVIINHMTELDWMVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWNKDKST





LKSHIERLKDYPLPFWLVIFAEGTRFTQTKLLAAQQYAASSGLPVPRNVLIPRTKGFVSCVSHMRSFVPAVYDLT





VAFPKTSPPPTLLNLFEGQSVVLHVHIKRHAMKDLPESDDEVAQWCRDKEVEKDALLDKHNAEDTFSGQELQHTG





RRPIKSLLVVISWVVVIAFGALKFLQWSSWKGKAFSVIGLGIVTLLMHMLILSSQAERSKPAKVAQAKLKTELSI





SKTVTDKEN


CprocL2AAT1b


SEQ ID NO: 25


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPISKNAYRRINRVFAELLLSELLCLFDWWAGAKLKLFTDP





ETFRLMGKEHALVIINHMTELDWMVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWNKDKST





LKSHIERLKDYPLPFWLVIFAEGTRFTQTKLLAAQQYAASSGLPVPRNVLIPRTKGFVSCVSHMRSFVPAVYDLT





VAFPKTSPPPTLLNLFEGQSVVLHVHIKRHAMKDLPESDDEVAQWCRDKEVEK SEQ ID NO:


CprocL2AAT2a


SEQ ID NO: 26


IVNLVQAVCFVLVRPLSKNTYRRINRVVAELLWLELVWLIDWWAGVKIKVFTDHETFHLMGKEHALVICNHKSDI





DWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLNRLKDYPLPFWLALFV





EGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTLIRMFKGQSS





VLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNADDTFSGQELQDTGRPIKSLLVVISWAVLEVFGAV





KFLQWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTPAKVAPAKAKIEGESSKTEMEKEK


CprocL2AAT2b


SEQ ID NO: 27


IVNLVQAVCFVLVRPLSKNTYRRINRVVAELLWLELVWLIDWWAGVKIKVFTDHETFHLMGKEHALVICNHKSDI





DWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLNRLKDYPLPFWLALFV





EGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTLIRMFKGQSS





VLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNADDTFSGQELQDTGRPIKSLLV


CpaiLPAAT1


SEQ ID NO: 28


MAIPSAAVVFLFGLLFFTSGLIINLFQAFCFVLISPLSKNAYRRINRVFAELLPLEFLWLFHWCAGAKLKLFTDP





ETFRLMGKEHALVIINHKIELDWMVGWVLGQHLGCLGSILSVAKKSTKFLPVFGWSLWFSGYLFLERSWAKDKIT





LKSHIESLKDYPLPFWLIIFVEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPHTKGFVSSVSHMRSFVPAIYDVT





VAFPKTSPPPTMLKLFEGQSVELHVHIKRHAMKDLPESDDAVAQWCRDKEVEKDALLDKHNSEDTFSGQEVHHVG





RPIKALLVVISWVVVIIFGALKFLLWSSLLSSWKGKAFSVIGLGIVAGIVTLLMHILILSSQAEGSNPVKAAPAK


LKTELSSSKKVTNKEN


ChookLPAAT1


SEQ ID NO: 29


MAIPSAAVVFLFGLLFFTSGLIINLFQAFCFVLISPLSKNAYRRINRVFAELLPLEFLWLFHWCAGAKLKLFTDP





ETFRLMGKEHALVIINHKIELDWMVGWVLGQHLGCLGSILSVAKKSTKFLPVFGWSLWFSEYLFLERSWAKDKIT





LKSHIESLKDYPLPFWLIIFVEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPHTKGFVSSVSHMRSFVPAIYDVT





VAFPKTSPPPTMLKLFEGQSVELHVHIKRHAMKDLPESDDAVAQWCRDKEVEKDALLDKHNSEDTFSGQEVHHVG





RPIKALLVVISWVVVIIFGALKFLLWSSLLSSWKGKAFSVIGLGIVAGIVTLLMHILILSSQAEGSNPVKAAPAK





LKTELSSSKKVTNKEN


ChookL2AAT2a


SEQ ID NO: 30


LSLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRINRVVAELLWLELVWLIDWWAGVKIKVFTDHETFNLMGKEHA





LVVCNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLKRLKDY





PLPFWLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSVPPT





MLRIFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPIKSLLVVIS





WAVLVIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILILFSQSERSTPAKVAPAKPKNEGESSKTEMEKE





H


ChookL2AAT2b


SEQ ID NO: 31


QIKVFTDHETFNLMGKEHALVVCNHKSDIDWLVGWVLAQWSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLER





SWAKDESTLKSGLKRLKDYPLPFWLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSF





VPAIYDVTVAIPKTSVPPTMLRIFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFS





GQELQDIGRPIKSLLVVISWAVLVIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILILFSQSERSTPAKV





APAKLKKEGESSKPETDKQN


ChookL2AAT3a


SEQ ID NO: 32


LSLLFFVSGLIVNLVQAVCFVLIRPLLKNTYRRINRVVAELLWLELVWLIDWWAGIKIKVFTDHETFHLMGKEHA





LVICNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLNRLKDY





PLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSQMRSFVPAIYDVTVAIPKTSPPPT





LLRMFKGQSSVLHVHLKRHLMNDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTGRPIKSLLVVIS





WATLVVFGAVKFLQWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTPAKVAPAKPKNEGESSKTEMEKE





H


ChookL2AAT3b


SEQ ID NO: 33


LSLLFFVSGLIVNLVQAVCFVLIRPLLKNTYRRINRVVAELLWLELVWLIDWWAGIKIKVFTDHETFHLMGKEHA





LVICNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLNRLKDY





PLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSQMRSFVPAIYDVTVAIPKTSPPPT





LLRMFKGQSSVLHVHLKRHLMNDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPIKSLLVVIS





WAVLEIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILILFSQSERSTPAKVAPAKPKKEGESSKPETDKE





N


CigneaLPAAT1


SEQ ID NO: 34


MAIAAAAVIFLFGLLFFASGIIINLFQALCFVLIWPLSKNVYRRINRVFAELLLMDLLCLFHWWAGAKIKLFTDP





ETFRLMGMEHALVIMNHKTDLDWMVGWILGQHLGCLGSILSIAKKSTKFIPVLGWSVWFSEYLFLERSWAKDKST





LKSHMEKLKDYPLPFWLVIFVEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPHTKGFVSCVSNMRSFVPAVYDVT





VAFPKSSPPPTMLKLFEGQSIVLHVHIKRHALKDLPESDDAVAQWCRDKEVEKDALLDKHNAEDTFSGQEVHHIG





RPIKSLLVVIAWVVVIIFGALKFLQWSSLLSTWKGKAFSVIGLGIATLLMHMLILSSQAERSNPAKVAK


CigneaLPAAT2


SEQ ID NO: 35


MAIAAAAVIFLFGLLFFASGIIINLFQALCFVLIWPLSKNVYRRINRVFAELLLMDLLCLFHWWAGAKIKLFTDP





ETFRLMGMEHALVIMNHKTDLDWMVGWILGQHLGCLGSILSIAKKSTKFIPVLGWSVWFSEYLFLERSWAKDEST





LKSGLNRLKDYPLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPKNVLIPRTKGFVSSVSHMRSFVPAIYDVT





VAIPKTSAPPTLLRMFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELHDIG





RPVKSLLVVISWAMLVVFGAVKFLQWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTPAKVAPAKQKNN





EGESSKTEMEKEH


DcLPAAT1


SEQ ID NO: 36


SGLVVNLIQAFFEVLVRPFSKNAYRKINRVVAELLWLELIWLIDWWAGVKIQLYTDPETFKLMGKEHALVICNHK





SDIDWLVGWILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDENTLKSGFQRLRDFPHAFWLA





LEVEGTRFTQAKLLAAQEYASSMGLPAPRNVLIPRTKGFVTAVTHMRPFVPAVYDVTLAIPKTSPPPTMLRLFKG





QSSVVHIHLKRHLMSDLPKSDDSVAQWCKDAFVVKDNLLDKHKENDSFGDGVLQDTGRPLNSLVVVISWACLLIF





GALKFFQWSSILSSWKGLAFSAVGLGIVTVLMQILIQFSQSERSNRPMPSKHAK





DcLPAAT2


SEQ ID NO: 37


MAIPTAAYVVPLGAIFFFSGLLVNLIQAFFFITVWPLSKKTYIRINKVIVELLWLEFVWLADWWAGLKIEVYADA





ETFQLMGKEHALVICNHKSDIDWLVGWILAQRAGCLGSSFAVTKKSARYLPVVGWSIWFSGAIFLERSWEKDENT





LKAGFQRLREFPCAFWLGLFVEGTRFTQAKLLAAQEYASTMGLPFPRNVLIPRTKGFIAAVNHMREFVPAIYDLT





FAFPKDSPPPTMLRLLKGQPSVVHVHIKRHLMKDLPEKNEAVAQWCKDVFLVKDKLLDKHKDDGSFGDGELHEIG





RPLKSLVVVTTWACLLILGTLKFLLWSSLLSSWKGLIFSATGLAVLTVLMQFLIQSTQSERSNPASLSK


CcrLPAATla


SEQ ID NO: 38


LGLLFFISGLAVNLIQAVCFVFLRPLSKNTYRKINRVLAELLWLQLVWLVDWWAGVKIKVFADRESFNLMGKEHA





LVICNHKSDIDWLVGWVLAQRSGCLGSSLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKEGLRRLKDF





PRPFWLALFVEGTRFTQAKLLAAQEYATSQGLPVPRNVLIPRTKVHVHVKRHLMKELPETDEAVAQWCKDLFVEK





DKLLDKHVAEDTFSDQPLQDIGRPVKPLLVVSSWACLVAYGALKFLQWSSLLSSWKGIAVSAVALAIVTILMQIM





ILFSQSERSIPAKVA


CcrLPAAT1b


SEQ ID NO: 39


LGLLFFISGLAVNLIQAVCFVFLRPLSKNTYRKINRVLAELLWLQLVWLVDWWAGVKIKVFADRESFNLMGKEHA





LVICNHKSDIDWLVGWVLAQRSGCLGSSLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKEGLRRLKDF





PRPFWLALFVEGTRFTQAKLLAAQEYATSQGLPVPRNVLIPRTKGFVSAVSHMRSFVPAVYDMTVAIPKSSPSPT





MLRLFKGQSSVVHVHVKRHLMKELPETDEAVAQWCKDLFVEKDKLLDKHVAEDTFSDQPLQDIGRPVKPLLVVSS





WACLVAYGALKFLQWSSLLSSWKGIAVSAVALAIVTILMQIMILFSQSERSIPTKVA


CcrL2AAT2a


SEQ ID NO: 40


MAIAAAAVVFLFGLLFFTSGLIINLAQAVCFVLIWPLSKNAYRRINRVFAELLLLELLWLFHWRAGAKLKLFADP





ETFRLFGKEHALVICNHRTDLDWMVGWVLGQHFGCLGSILSVAKKSTKFLPVLGWSMWFSEYLFLERSWAKDKST





LKSHTERLKDYPLPFWLGIFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPHTKLHVHIKRYAMKDLPESDDAV





AQWCRDIYVEKDAFLDKHNAEDTFSGQEVHHIGRPIKSLLVVISWVVVIIFGALKFLRWSSLLSSWKGKAFSVIG





LGIVTLLVNILILSSQAERSNPAKVAPAKLKTELSPSKKVTNKEN


CcrL2AAT2b


SEQ ID NO: 41


MAIAAAAVVFLFGLLFFTSGLIINLAQAVCFVLIWPLSKNAYRRINRVFAELLLLELLWLFHWRAGAKLKLFADP





ETFRLFGKEHALVICNHRTDLDWMVGWVLGQHFGCLGSILSVAKKSTKFLPVLGWSMWFSEYLFLERSWAKDKST





LKSHTERLKDYPLPFWLGIFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPHTKGFVSSMSHMRSFVPAVYDLT





VAFPKTSPPPTLLKLFEGQSVVLHVHIKRYAMKDLPESDDAVAQWCRDIYVEKDAFLDKHNAEDTFSGQEVHHIG





RPIKSLLVVISWVVVIIFGALKFLRWSSLLSSWKGKAFSVIGLGIVTLLVNILILSSQAERSNPAKVAPAKLKTE





LSPSKKVTNKEN


BrLPAATla


SEQ ID NO: 42


AAAVIVPLGILFFISGLVVNLLQAICYVLIRPLSKNTYRKINRVVAETLWLELVWIVDWWAGVKIQVFADNETFN





RMGKEHALVVCNHRSDIDWLVGWILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSG





LQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASSELPVPRNVLIPRTKGFVSAVSNMRSFVPAIYDMTVAIP





KTSPPPTMLRLFKGQPSVVHVHIKCHSMKDLPESDDAIAQWCRDQFVAKDALLDKHIAADTFPGQQEQNIGRPIK





SLAVVLSWSCLLILGAMKFLHWSNLFSSWKGIAFSALGLGIITLCMQILIRSSQSERSTPAKVVPAKPKDNHNDS





GSSSQTE


BrLPAAT1b


SEQ ID NO: 43


AAAVIVPLGILFFISGLVVNLLQAVCYVLVRPMSKNTYRKINRVVAETLWLELVWIVDWWAGVKIQVFADDETFN





RMGKEHALVVCNHRSDIDWLVGWILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSG





LQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASSELPVPRNVLIPRTKGFVSAVSNMRSFVPAIYDMTVAIP





KTSPPPTMLRLFKGQPSVVHVHIKCHSMKDLPESDDAIAQWCRDQFVAKDALLDKHIAADTFPGQQEQNIGRPIK





SLAVVLSWSCLLILGAMKFLHWSNLFSSWKGIAFSALGLGIITLCMQILIRSSQSERSTPAKVVPAKPKDNHNDS





GSSSQTE


BrLPAAT1c


SEQ ID NO: 44


MAIAAAVIVPLGLLFFISGLLMNLLQAICYVLVRPLSKNTYRKINRVVAETLWLELVWIVDWWAGVKIKVFADNE





TFSRMGKEHALVVCNHRSDIDWLVGWILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTL





KSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASSELPVPRNVLIPRTKGFVSAVSNMRSFVPAIYDMTV





AIPKTSPPPTMLRLFKGQPSVVHVHIKCHSMKDLPESDDAIAQWCRDQFVAKDALLDKHIAADTFPGQQEQNIGR





PIKSLAVVLSWSCLLILGAMKFLHWSNLFSSWKGIAFSALGLGIITLCMQILIRSSQSERSTPAKVVPAKPKDNH





NDSGSSSQTE


BjLPAAT1a


SEQ ID NO: 45


INLVVAETLWLELVWIVDWWAGVKIQVFADDETFNRMGKEHALVVCNHRSDIDWLVGWILAQRSGCLGSALAVMK





KSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASSELP





VPRNVLIPRTKGFVSAVSNMRSFVPAIYDMTVAIPKTSPPPTMLRLFKGQPSVVHVHIKCHSMKDLPESDDAIAQ





WCRDQFVAKDALLDKHIAADTFPGQKEQNIGRPIKSLAVSLIKTFPWLHPHQLTNIFVLFQVVVSWACLLTLGAM





KFLHWSNLFSSWKGIALSAFGLGIITLCMQILIRSSQSERSTPAKVAPAKPK


BjLPAAT1b


SEQ ID NO: 46


INLVVAETLWLELVWIVDWWAGVKIQVFADDETFNRMGKEHALVVCNHRSDIDWLVGWILAQRSGCLGSALAVMK





KSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASSELP





VPRNVLIPRTKGFVSAVSNMRSFVPAIYDMTVAIPKTSPPPTMLRLFKGQPSVVHVHIKCHSMKDLPEPEDEIAQ





WCRDQFVAKDALLDKHIAADTFPGQKEQNIGRPIKSLAVVVSWACLLTLGAMKFLHWSNLFSSWKGIALSAFGLG





IITLCMQILIRSSQSERSTPAKVAPAKPK


BjLPAAT1c


SEQ ID NO: 47


INLVVAETLWLELVWIVDWWAGVKIQVFADDETFNRMGKEHALVVCNHRSDIDWLVGWILAQRSGCLGSALAVMK





KSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASSELP





VPRNVLIPRTKGFVSAVSNMRSFVPAIYDMTVAIPKTSPPPTMLRLFKGQPSVVHVHIKCHSMKDLPESDDAIAQ





WCRDQFVAKDALLDKHIAADTFPGQQEQNIGRPIKSLAVVLSWSCLLILGAMKFLHWSNLFSSWKGIAFSALGLG





IITLCMQILIRSSQSERSTPAKVVPAKPKDNHNDSGSSSQTE


BjLPAAT1d


SEQ ID NO: 48


INLVVAETLWLELVWIVDWWAGVKIQVFADDETFNRMGKEHALVVCNHRSDIDWLVGWILAQRSGCLGSALAVMK





KSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASSELP





VPRNVLIPRTKGFVSAVSNMRSFVPAIYDMTVAIPKTSPPPTMLRLFKGQPSVVHVHIKCHSMKDLPESDDAIAQ





WCRDQFVAKDALLDKHIAADTFPGQQEQNIGRPIKSLAVSLS


CcLPAAT1a


SEQ ID NO: 49


MAIGVAAIVVPLGLLFILSGLMVNLIQAICFILVRPLSKNMYRRVNRVVVELLWLELIWLIDWWGGVKVDVYADS





ETFQSLGKEHALVVSNHRSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYVFLERSWAKDEST





LKSGLRRLKDFPRPFWLALFVEGTRFTQAKLLAAREYAASTGLPIPRNVLIPRTKGFVSAVSNMRSFVPAIYDVT





VAIPKTQPSPTMLRIFNRQPSVVHVHIKRHSMNQLPQTDEGVGQWCKDIFVAKDALLDRHLAE


CcLPAAT1b


SEQ ID NO: 50


MAIGVAAIVVPLGLLFILSGLMVNLIQAICFILVRPLSKNMYRRVNRVVVELLWLELIWLIDWWGGVKVDVYADS





ETFQSLGKEHALVVSNHRSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYVFLERSWAKDEST





LKSGLRRLKDFPRPFWLALFVEGTRFTQAKLLAAREYAASTGLPIPRNVLIPRTKGFVSAVSNMRSFVPAIYDVT





VAIPKTQPSPTMLRIFNRQPSVVHVHIKRHSMNQLPQTDEGVAQWCKDIFVAKDALLDRHLAEGKFDEKEFKRIR





RPIKSLLVISSWSFLLMFGVFKFLKWSALLSTWKGVAVSTTVLLLVTVVMYMFILFSQSERSSPRKVAPSGPENG


UcLPAAT1a


SEQ ID NO: 51


MAIGVAAIVVPLGLLFILSGLIINLIQAICFILVRPLSKNMYRKVNRVVVELLWLELIWLIDWWGGVKVDVYADS





ETFQSLGKEHALVVSNHRSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYVFLERSWAKDEST





LKSGLQRLKDFPRPFWLALFVEGTRFTQAKLLAAQEYAASTGLPIPRNVLIPRTKGEVSAVSNMRSFVPAIYDVT





VAIPKTQPSPTMLRIFNRQPSVVHVHIKRHSMNQLPQTDEGVAQWCKDIFVAKDALLDRHLAEGKFDEKEFKLIR





RPIKSLLVISSWSFLLMFGVFKFLKWSALLSTWKGVAVSTAVLLLVTVVMYMFILFSQSERSSPRKVAPIGPENG


UcLPAAT1b


SEQ ID NO: 52


MAIGVAAIVVPLGLLFILSGLIINLIQAICFILVRPLSKNMYRKVNRVVVELLWLELIWLIDWWGGVKVDVYADS





ETFQSLGKEHALVVSNHRSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYVFLERSWAKDEST





LKSGLQRLKDFPRPFWLALFVEGTRFTQAKLLAAQEYAASTGLPIPRNVLIPRTKGEVSAVSNMRSFVPAIYDVT





VAIPKTQPSPTMLRIFNRQPSVVHVHIKRHSMNQLPQTDEGVAQWCKDIFVAKDALLDRHLAE


LdLPAAT1


SEQ ID NO: 53


SLLFFMSGLVVNFIQAVFYVLVRPISKNTYRRINTLVAELLWLELVWVIDWWAGVKVQLYTDTESFRLMGKEHAL





LICNHRSDIDWLIGWVLAQRCGCLSSSIAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDENTLKSGLQRLNDFP





KPFWLALFVEGTRFTKAKLLAAQEYAASAGLPVPRNVLIPRTKGFVSAVSNMRSFVPAIYDLTVAIPKTTEQPTM





LRLFRGKSSVVHVHLKRHLMKDLPKTDDGVAQWCKDQFISKDALLDKHVAEDTFSGLEVQDIGRPMKSLVVVVSW





MCLLCLGLVKFLQWSALLSSWKGMMITTFVLGIVTVLMHILIRSSQSEHSTPAK


CaequLPAAT1a


SEQ ID NO: 54


QRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLKRLKDYPLPFWLALFVEGTRFTQAK





LLAAQQYAASSGLPVPRNVLIPRTKGEVSSVSHMRSFVPAIYDVTVAIPKMSTPPTMLRIFKGQSSVLHVHLKRH





LMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPVKSLLVVISWAVLVIFGAVKFLQWSSLL





SSWKGLAFSGIGLGIVTLLMHILILFSQSERSTPAKVAPAKPKKEGESSKTETEKEN


CaequLPAAT1b


SEQ ID NO: 55


DWWAGVKIKVFTDHETLSLMGKEHALVISNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSE





YLFLERSWAKDESTLKSGLKRLKDYPLPFWLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPRTKGEVSSV





SHMRSFVPAIYDVTVAIPKMSTPPTMLRIFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHN





AEDTFSGQELQDIGRPVKSLLV


CaequLPAAT1c


SEQ ID NO: 56


DWWAGVKIKVFTDHETLSLMGKEHALVISNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSE





YLFLERSWAKDESTLKSGLKRLKDYPLPFWLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPRTKGEVSSV





SHMRSFVPAIYDVTVAIPKMSTPPTMLRIFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHN





AEDTFSGQELQDIGRPVKSLLVVISWAVLVIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILILFSQSER





STPAKVAPAKPKKEGESSKTETEKEN


CaequLPAAT1d


SEQ ID NO: 57


QRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLKRLKDYPLPFWLALFVEGTRFTQAK





LLAAQQYAASSGLPVPRNVLIPRTKGEVSSVSHMRSFVPAIYDVTVAIPKMSTPPTMLRIFKGQSSVLHVHLKRH





LMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPVKSLLV


CglutLPAAT1a


SEQ ID NO: 58


LSLLFFVSGLFVNLVQAVCFVLIRPFSKNTYRRINRVVAELLWLELVWLIDWWAGVKIKVFTDHETLSLMGKEHA





LVISNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLKRLKDY





PLPFWLALFVEGTRFTQAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKMSTPPT





MLRIFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPVKSLLVVIS





WAVLVIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILILFSQSERSTPAKVAPAKPKKEGESSKTETEKE





N


CglutLPAAT1b


SEQ ID NO: 59


QAVCFVLIRPFSKNTYRRINRVVAELLWLELVWLIDWWAGVKIKVFTDHETLSLMGKEHALVISNHKSDIDWLVG





WVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLKRLKDYPLPFWLALFVEGTRF





TQAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKMSTPPTMLRIFKGQSSVLHVH





LKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPVKSLLVVISWAVLVIFGAVKFLQW





SSLLSSWKGLAFSGIGLGIVTLLMHILILFSQSERSTPAKVAPAKPKKEGESSKTETEKEN


CprLPAAT1


SEQ ID NO: 60


MAIAAAAVVFLFGLLFFTSGLIINLAQAVCFVLIWPLSKNAYRRINRVFAELLLLELLWLFHWRAGAKLKLFADP





ETFRLFGKEHALVICNHRTDLDWMVGWVLGQHFGCLGSILSVAKKSTKFLPVLGWSMWFSEYLFLERSWAKDKST





LKSHTERLKDYPLPFWLGIFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPHTKGFVSSMSHMRSFVPAVYDLT





VAFPKTSPPPTLLKLFEGQSVVLHVHIKRYAMKDLPESDDAVAQWCRDIYVEKDAFLDKHNAEDTFSGQEVHHIG





RPIKSLLVVISWVVVIIFGALKFLRWSSLLSSWKGKAFSVIGLGIVTLLVNILILSSQAERSNPAKVVPAKLKTE





LSPSKKVTNKEN


ChsLPAAT1


SEQ ID NO: 61


MAIPSAAVVFLFGLLFFASGLIINLVQAVCFVLIWPLSKNTCRRINIVFQDMLLSELLWLFHWRAGAKLKFFTDP





ETYRHMGKEHALVITNHRTDLDWMIGWVLGEHLGCLGSILSVVKKSTKFLPVLGWSMWFSEYLFLERNWAKDKST





FKSHIERLEDFPQPFWFGIFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPHTKGFVSSVSHMRSFVPAVYETT





MTFPKTSPPPTLLKLFEGQPLVLHIHMKRHAMKDIPESDDAVAQWCRDKFVEKDALLDKHNAEDTFGGLEVHIGR





SIKSLMVVICWVVVIIFGALKFLQWSSLLSSWKGIAFIGIGLGIVNLLVHVLILSSQAERSAPTKVAPAKLKTKL





LSSKKITNKEN


ChsLPAAT2


SEQ ID NO: 62


MAIPSAAVVFLFGLLFFASGLIINLVQAVCFVLIWPLSKNTCRRINIVFQDMLLSELLWLFHWRAGAKLKFFTDP





ETYRHMGKEHALVITNHRTDLDWMIGWVLGEHLGCLGSILSVVKKSTKFLPVLGWSMWFSEYLFLERNWAKDKST





FKSHIERLEDFPQPFWFGIFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVT





VAIPKTSPPPTMLRMFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIG





RPIKSLVVVISWAALVVFGAVKFLQWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTPAKVAPAKPKRE





GESSKTEMDKEN


CcalcLPAAT1a


SEQ ID NO: 63


MAIPAAAVVFLFGLLFFPSGLIINLFQAVCFVLIWPFSRNTCRRINIVFQEMLLSELLWLFHWRAGAKLKLFADP





ETYRHMGKEHALLITNHRTDLDWMIGWALGQHLGCLGSILSVVKKSTKFLPSHIERLEDFPQPFWMAIFVEGTRF





TRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSCVSHMRSFVPAVYETTMTFPKTSPPPTLLKLFEGQPIVLHVH





MKRHAMKDIPESDEAVAQWCRDKFVEKDSLLDKHNAGDTFSCQEIHIGRPIKSLMVVISWVVVIIFGALKFLQWS





SLLSSWKGIAFSGIGLGIVTLLVHILILSSQAERSTPAKVAPAKLKTELSSSTKVTNKEN


CcalcLPAAT1b


SEQ ID NO: 64


MAIPAAAVVFLFGLLFFPSGLIINLFQAVCFVLIWPFSRNTCRRINIVFQEMLLSELLWLFHWRAGAKLKLFADP





ETYRHMGKEHALLITNHRTDLDWMIGWALGQHLGCLGSILSVVKKSTKFLPVLGWSMWFSEYLFLERNWAKDKST





FKSHIERLEDFPQPFWMAIFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSCVSHMRSFVPAVYETT





MTFPKTSPPPTLLKLFEGQPIVLHVHMKRHAMKDIPESDEAVAQWCRDKFVEKDSLLDKHNAGDTFSCQEIHIGR





PIKSLMVVISWVVVIIFGALKFLQWSSLLSSWKGIAFSGIGLGIVTLLVHILILSSQAERSTPAKVAPAKLKTEL





SSSTKVTNKEN


Cca1cLPAAT2


SEQ ID NO: 65


LSLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRINRVVAELLWLELVWLIDWWAGVKIKVFTDHETFRLMGTEHA





LVISNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLNRLKDY





PLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPT





MLRMFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDIGRPIKSLVVVIS





WAALVVFGAVKFLQWSSLLSSWKGLAFSGIALGIITLLMHILILFSQSERSTPAKVAPAKPKKEGESSKTETDKE





N


ChtLPAAT1a


SEQ ID NO: 66


MAIPAAAVIFLFSILFFASGLIINLVQAVCFVLIWPLSKNTCRRINLVFQEMLLSELLGLFHWRAGAKLKLYTDP





ETYPLLGKEHALLMINHRTDLDWMIGWVLGQHLGCLGSILSVVKKSTKFLPVLGWSMWFSEYLFLERNWAKDKST





FKSHIERLEDFPQPFWMAIFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPHTKGFVSTVSHMRSFVPAVYDTT





LTFPKTSPPPTLLNLFAGQPIVLHIHIKRHAMKDIPESDDAVAQWCRDKFVEKDALLDKHNAEDAFSDQEFPISR





SIKSLMVVISWVMVIIFGALKFLQWSSLLSSWKGKAFSVIAVGIVTLLMHMSILSSQAERSNPAKVALPKLKTEL





PSSKKVLNKEN


ChtLPAAT1b


SEQ ID NO: 67


MAIPAAAVIFLFSILFFASGLIINLVQAVCFVLIWPLSKNTCRRINLVFQEMLLSELLGLFHWRAGAKLKLYTDP





ETYPLLGKEHALLMINHRTDLDWMIGWVLGQHLGCLGSILSVVKKSTKFLPVLGWSMWFSEYLFLERNWAKDKST





FKSHIERLEDFPQPFWMAIFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPHTKGFVSTVSHMRSFVPAVYDTT





LTFPKTSPPPTLLNLFAGQPIVLHIHIKRHAMKDIPESDDAVAQWCRDKFVEKDALLDKHNAEDAFSDQEFPISR





SIKSLMVVISWVMVIIFGALKFLQWSSLLSSWKGIAFSGIGLGIVTLLMHILILSSQAERSTPAKVAQAKVKTEL





PSSTKVTNKGN


CwLPAAT1


SEQ ID NO: 68


MAIPAAAVIFLFGILFFASGLIINLVQAVCFVLIWPLSKNTCRRINLVFQEMLLSELLWLFHWRAGAELKLFTDP





ETYRLLGKEHALVMTNHRTDLDWMIGWVTGQHLGCLGSILSIAKKSTKFLPVLGWSMWFSEYLFLERNWAKDKST





FKSHIERLEDFPQPFWMAIFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPHTKGFVSSVCHMRSFVPAVYDTT





LTFPKNSPPPTLLNLFAGQPIVLHIHIKRHAMKDMPKSDDAVAQWCRDKFVKKDALLDKHNTEDTFSDQEFPIGR





PIKSLMVVISWVVVIIFGTLKFLQWSSLLSSWKGIAFSGIGLGIVTLLVHILILSSQAERSTPPKVAPAKLKTEL





SSTTKVINKGN


CwLPAAT2b


SEQ ID NO: 69


LGLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRLNRVVAELLWLELVWLIDWWAGVKIKVFTDHETFHLMGKEHA





LVICNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLNRLKDY





PLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPT





MLRMFKGQSSVDALLDKHNADDTFSGQELHDIGRPIKSLLVVISWAVLVVFGAVKFLQWSSLLSSWKGIAFSGIG





LGIVTLLVHILILSSQAERSTSAKVAQAKVKTELSSSKKVKNKGN


CwLPAAT2a


SEQ ID NO: 70


LGLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRLNRVVAELLWLELVWLIDWWAGVKIKVFTDHETFHLMGKEHA





LVICNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLNRLKDY





PLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPT





MLRMFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDVLLDKHNAEDTFSGQELQDIGRPVKSLLVVIS





WTLLVIFGAVKFLQWSSLLSSWKGLAFSGIGLGIVTLLMHILILFSQSERSTPAKVAPAKPKKEGESSKMETDKE





N


CgLPAAT1a


SEQ ID NO: 71


LAGWMGSSSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLNRLKDYPLPFWLALFVEGT





RFTRAKLLAAQQYAASLGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTMIRMFKGQSSVLH





VHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTGRPIKSLLVVISWAVLEVFGAVKFL





QWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTPAKVAPAKPKNEGESSKAEMEKEK


CgLPAAT1b


SEQ ID NO: 72


LAGWMGSSSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLNRLKDYPLPFWLALFVEGT





RFTRAKLLAAQQYAASLGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTMIRMFKGQSSVLH





VHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTGRPIKSLLVRCFLVLSLIYLNGIML





KLRGPCLQVVISWAVLEVFGAVKFLQWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTPAKVAPAKPKN





EGESSKAEMEKEK


CgLPAAT1c


SEQ ID NO: 73


LAGWMGSSSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDESTLKSGLNRLKDYPLPFWLALFVEGT





RFTRAKLLAAQQYAASLGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTMIRMFKGQSSVLH





VHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTGRPIKSLLVVTSWAVLVISGAVKFL





QWSSLLSSWKGLAFSGIGLGIVTLLMHILILFSQSERSTPAKVAPAKPKKEGESSKTEKDKEN


CpalLPAAT1


SEQ ID NO: 74


LGLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRINRVVAELLWLELVWLIDWWAGVKIKVFTDHETLSLMGKEHA





LVICNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERSWAKDENTLKSGLNRLKDY





PLPFWLALFVEGTRFTRAKLLAAQQYATSSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPT





MLRMFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTGRPIKSLLVVIS





WAVLVIFGAVKFLQWSSLLSSWKGLAFSGVGLGIITLLMHILILFSQSERSTPAKVAPAKPKKDGESSKTEIEKE


N


CaLPAAT1


SEQ ID NO: 75


MAIAAAAVIVPVSLLFFVSGLIVNLVQAVCFVLIRPLFKNTYRRINRVVAELLWLELVWLIDWWAGVKIKVFTDH





ETFHLMGKEHALVICNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDEST





LKSGLNRLKDYPLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVT





VAIPKTSPPPTLLRMFKGQSSVLHVHLKRHQMNDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTG





RPIKSLLIVISWAVLVVFGAVKFLQWSSLLSSWKGLAFSGIGLGVITLLMHILILFSQSERSTPAKVAPAKPKIE





GESSKTEMEKEH


CaLPAAT3


SEQ ID NO: 76


MTIASAAVVFLFGILLFTSGLIINLFQAFCSVLVWPLSKNAYRRINRVFAEFLPLEFLWLFHWWAGAKLKLFTDP





ETFRLMGKEHALVIINHKIELDWMVGWVLGQHLGCLGSILSVAKKSTKFLPVFGWSLWFSEYLFLERNWAKDKKT





LKSHIERLKDYPLPFWLIIFVEGTRFTRTKLLAAQQYAASAGLPVPRNVLIPHTKGFVSSVSHMRSFVPAIYDVT





VAFPKTSPPPTMLKLFEGHFVELHVHIKRHAMKDLPESEDAVAQWCRDKEVEKDALLDKHNAEDTFSGQEVHHVG





RPIKSLLVVISWVVVIIFGALKFLQWSSLLSSWKGIAFSVIGLGTVALLMQILILSSQAERSIPAKETPANLKTE





LSSSKKVTNKEN


SalL2AAT1


SEQ ID NO: 77


MAIGAAAIVVPLGLLFMLSGLMVNLIQAICFILVRPLSKNMYRRVNRVVVELLWLELIWLIDWWGGVKVDVYADS





ETFQSLGKEHALVVSNHKSDIDWLVGWVLAQRSGCLGSTLAVMKKSSKFLPVIGWSMWFSEYVFLERSWAKDEST





LKSGLQRLKDFPRPFWLALFVEGTRFTQAKLLAAQEYAASTGLPIPRNVLIPRTKGFVSAVSNMRSFVPAIYDVT





VAIPKTQPSPTMLRIFNRQPSVVHVRIKRHSMNQLPPTDEGVAQWCKDIFVAKDALLDRHLAEGKFDEKEFKRIR





RPIKSLLVISSWSFLLLFGVFKFLKWSALLSTWKGVAVSTAVLLLVTVVMYMFILFSQSERSSPRKVAPSGPENG


C1eptL2AAT1


SEQ ID NO: 78


MAIPAAVVIFLFGLLFFSSGLIINLFQALCFVLIWPLSKNAYRRINRVFAELLLSELLCLFDWWAGAKLKLFTDP





ETFRLMGKEHALVIINHMTELDWMVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWDKDKST





LKSHIERLKDYPLPFWLVIFAEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPRTKGFVSCVNHMRSFVPAVYDLT





VAFPKTSPPPTLLNLFEGQSVVLHVHIKRHAMKDLPESDDAVAQWCRDKFVEKDALLDKHNAEDTFSSQEVHHTG





SRPIKSLLVVISWVVVITFGALKFLQWSSWKGKAFSVIGLGIVTLLMHMLILSSQAERSKPAKVTQAKLKTELSI





SKKVTDKEN


ClopLPAAT1


SEQ ID NO: 79


MAIAAAAVIFLFGLLFFASGLIINLFQALCFVLIRPLSKNAYRRINRVFAELLLSELLCLFDWWAGAKLKLFTDP





ETLRLMGKEHALIIINHMTELDWMVGWVMGQHFGCLGSIISVAKKSTKFLPVLGWSMWFSEYLYLERSWAKDKST





LKSHIERLKDYPLPFWLVIFVEGTRFTRTKLLAAQEYAASSGLPVPRNVLIPRTKGFVSCVNHMRSFVPAVYDVT





VAFPKTSPQPTLLNLFEGRSIVLHVHIKRHAMKDLPESDDAVAQWCRDKFVEKDALLDKHNAEDTFSGQEVHHTG





RRPIKSLLVVMSWVVVTTFGALKFLQWSSWKGKAFSVIGLGIVTLLMHVLILSSQAERSNPAKVVQAELNTELSI





SKKVTNKGN


CcrasLPAAT1a


SEQ ID NO: 80


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPLWKNAYRRINRVFAELLLSELLCLFDWWAGAKLKLFTDP





ETFRLMGKEHALVIINHMTELDWMVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWDKDKST





LKSHIERLKDYPLPFWLVIFAEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVT





VAIPKTSPPPTLIRMFKGQSSVLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTG





RPIKSLLVVISWAVLEVFGAVKFLQWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTPAKVAPAKAK


CcrasLPAAT1b


SEQ ID NO: 81


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPLWKNAYRRINRVFAELLLSELLCLFDWWAGAKLKLFTDP





ETFRLMGKEHALVIINHMTELDWMVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWDKDKST





LKSHIERLKDYPLPFWLVIFAEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVT





VAIPKTSPPPTLIRMFKGQSSVLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTG





RPIKSLLVRCFLVLSLIYLNGIILKLCGLCLQVVISWAVLEVFGAVKFLQWSSLLSSWKGLAFSGIGLGIITLLM


HILILFSQSERSTPAKVAPAKAKSEQ ID NO:


CcrasLPAAT1c


SEQ ID NO: 82


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPLWKNAYRRINRVFAELLLSELLCLFDWWAGAKLKLFTDP





ETFRLMGKEHALVIINHMTELDWMVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWDKDKST





LKSHIERLKDYPLPFWLVIFAEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVT





VAIPKTSPPPTLIRMFKGQSSVLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTG





RPIKSLLVVISWAVLEVFGAVKFLQWSSLLSSWKGLAFSGIGLGIITLLMHILILFSQSERSTPAKVAPAKAKME





GESSKTEMEMEK


CcrasLPAAT1d


SEQ ID NO: 83


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPLWKNAYRRINRVFAELLLSELLCLFDWWAGAKLKLFTDP





ETFRLMGKEHALVIINHMTELDWMVGWVMGQHFGCLGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWDKDKST





LKSHIERLKDYPLPFWLVIFAEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPAIYDVT





VAIPKTSPPPTLIRMFKGQSSVLHVHLKRHVMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQDTG





RPIKSLLVRCFLVLSLIYLNGIILKLCGLCLQVVISWAVLEVFGAVKFLQWSSLLSSWKGLAFSGIGLGIITLLM





HILILFSQSERSTPAKVAPAKAKMEGESSKTEMEMEK


CkoeLPAAT1


SEQ ID NO: 84


MAIAAAPVIFLFGLLFFASGLIINLFQAICFVLIWPLSKNAYRRINRVFAELLLSELLCLFDWWAGAKLKLFTDP





ETFRLMGKEHALVITNHKIDLDWMIGWILGQHFGCLGSVISIAKKSTKFLPIFGWSLWFSEYLFLERNWAKDKRT





LKSHIERMKDYPLPLWLILFVEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPHTKGFVSSVSHMRSFVPAIYDVT





VAIPKTSPPPTLIRMFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCRDIFVEKDALLDKHNAEDTFSGQELQETG





RPIKSLLVVISWAVLEVYGAVKFLQWSSLLSSWKGLAFSGIGLGLITLLMHILILFSQSERSTPAKVAPAKPKKE





GESSKTEMEKEK


CkoeLPAAT2


SEQ ID NO: 85


MHVLLEMVTFRFSSFFVFDNVQALCFVLIWPLSKSAYRKINRVFAELLLSELLCLFDWWAGAKLKLFTDPETFRL





MGKEHALVITNHKIDLDWMIGWILGQHFGCLGSVISIAKKSTKFLPIFGWSLWFSEYLFLERNWAKDKRTLKSHI





ERMKDYPLPLWLILFVEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPHTKGFVSSVSHMRSFVPAVYDVTVAFPK





TSPPPTMLSLFEGQSVVLHVHIKRHAMKDLPDSDDAVAQWCRDKFVEKDALLDKHNAEDTFSGQEVHHVGRPIKS





LLVVISWMVVIIFGALKFLQWSSLLSSWKGKAFSAIGLGIATLLMHVLVVFSQADRSNPAKVPPAKLNTELSSSK





KVTNKEN


pSZ2624 PmKASII


SEQ ID NO: 86



gtttaaac
GCCGGTCACCACCCGCATGCTCGTACTACAGCGCACGCACCGCTTCGTGA







TCCACCGGGTGAACGTAGTCCTCGACGGAAACATCTGGTTCGGGCCTCCTGCTTG







CACTCCCGCCCATGCCGACAACCTTTCTGCTGTTACCACGACCCACAATGCAACG







CGACACGACCGTGTGGGACTGATCGGTTCACTGCACCTGCATGCAATTGTCACAA







GCGCTTACTCCAATTGTATTCGTTTGTTTTCTGGGAGCAGTTGCTCGACCGCCCGC







GTCCCGCAGGCAGCGATGACGTGTGCGTGGCCTGGGTGTTTCGTCGAAAGGCCA







GCAACCCTAAATCGCAGGCGATCCGGAGATTGGGATCTGATCCGAGTTTGGACC







AGATCCGCCCCGATGCGGCACGGGAACTGCATCGACTCGGCGCGGAACCCAGCT







TTCGTAAATGCCAGATTGGTGTCCGATACCTGGATTTGCCATCAGCGAAACAAGA







CTTCAGCAGCGAGCGTATTTGGCGGGCGTGCTACCAGGGTTGCATACATTGCCCA







TTTCTGTCTGGACCGCTTTACTGGCGCAGAGGGTGAGTTGATGGGGTTGGCAGGC







ATCGAAACGCGCGTGCATGGTGTGCGTGTCTGTTTTCGGCTGCACGAATTCAATA







GTCGGATGGGCGACGGTAGAATTGGGTGTGGCGCTCGCGTGCATGCCTCGCCCC







GTCGGGTGTCATGACCGGGACTGGAATCCCCCCTCGCGACCATCTTGCTAACGCT







CCCGACTCTCCCGACCGCGCGCAGGATAGACTCTTGTTCAACCAATCGACA
actagt







ATG

cagaccgcccaccagcgcccccccaccgagggccactgcttcggcgcccgcctgcccaccgcctcccgccgcgccgtgc









gccgcgcctggtcccgcatcgcccgcg

ggcgcgcc
gccgccgccgccgacgccaaccccgcccgccccgagcgccgcgtggt







gatcaccggccagggcgtggtgacctccctgggccagaccatcgagcagactactcctccctgctggagggcgtgtccggcatct






cccagatccagaagacgacaccaccggctacaccaccaccatcgccggcgagatcaagtccctgcagctggacccctacgtgc






ccaagcgctgggccaagcgcgtggacgacgtgatcaagtacgtgtacatcgccggcaagcaggccctggagtccgccggcctg







cccatcgaggccgccggcctggccggcgccggcctggaccccgccctgtgcggcgtgctgatcggcaccgccatggccggcat







gacctccacgccgccggcgtggaggccctgacccgcggcggcgtgcgcaagatgaaccccactgcatccccactccatctcca







acatgggcggcgccatgctggccatggacatcggatcatgggccccaactactccatctccaccgcctgcgccaccggcaacta







ctgcatcctgggcgccgccgaccacatccgccgcggcgacgccaacgtgatgctggccggcggcgccgacgccgccatcatcc







cctccggcatcggcggcttcatcgcctgcaaggccctgtccaagcgcaacgacgagcccgagcgcgcctcccgcccctgggac







gccgaccgcgacggatcgtgatgggcgagggcgccggcgtgctggtgctggaggagctggagcacgccaagcgccgcggcg







ccaccatcctggccgagctggtgggcggcgccgccacctccgacgcccaccacatgaccgagcccgacccccagggccgcgg







cgtgcgcctgtgcctggagcgcgccctggagcgcgcccgcctggcccccgagcgcgtgggctacgtgaacgcccacggcacct







ccacccccgccggcgacgtggccgagtaccgcgccatccgcgccgtgatcccccaggactccctgcgcatcaactccaccaagt







ccatgatcggccacctgctgggcggcgccggcgccgtggaggccgtggccgccatccaggccctgcgcaccggctggctgcac







cccaacctgaacctggagaaccccgcccccggcgtggaccccgtggtgctggtgggcccccgcaaggagcgcgccgaggacc







tggacgtggtgctgtccaactccttcggcttcggcggccacaactcctgcgtgatcttccgcaagtacgacgag
atggactacaag







gaccacgacggcgactacaaggaccacgacatcgactacaaggatcgacgacgacaag
TGA
atcgatAGATCTCTT






AAGGCAGCAGCAGCTCGGATAGTATCGACACACTCTGGACGCTGGTCGTGTGAT





GGACTGTTGCCGCCACACTTGCTGCCTTGACCTGTGAATATCCCTGCCGCTTTTAT





CAAACAGCCTCAGTGTGTTTGATCTTGTGTGTACGCGCTTTTGCGAGTTGCTAGCT





GCTTGTGCTATTTGCGAATACCACCCCCAGCATCCCCTTCCCTCGTTTCATATCGC





TTGCATCCCAACCGCAACTTATCTACGCTGTCCTGCTATCCCTCAGCGCTGCTCCT





GCTCCTGCTCACTGCCCCTCGCACAGCCTTGGTTTGGGCTCCGCCTGTATTCTCCT





GGTACTGCAACCTGTAAACCAGCACTGCAATGCTGATGCACGGGAAGTAGTGGG





ATGGGAACACAAATGGAAAGCTTAATTAAgagctccgcgtctcgaacagagcgcgcagaggaacgct





gaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgcttggttcttcgtccattagcgaagc





gtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgatggtcgaaacgttcacagcctaggtg






atatccatcttaaggatctaagtaagattcgaagcgctcgaccgtgccggacggactgcagccccatgtcgtagtgaccgccaatgta






agtgggctggcgtaccctgtacgtgagtcaacgtcactgcacgcgcaccaccctctcgaccggcaggaccaggcatcgcgagatac





agcgcgagccagacacggagtgccgagctatgcgcacgctccaactaggtaccagtttaggtccagcgtccgtggggggggacg





ggctgggagcttgggccgggaagggcaagacgatgcagtccctctggggagtcacagccgactgtgtgtgttgcactgtgcggccc





gcagcactcacacgcaaaatgcctggccgacaggcaggccctgtccagtgcaacatccacggtccctctcatcaggctcaccttgct





cattgacataacggaatgcgtaccgctctttcagatctgtccatccagagaggggagcaggctccccaccgacgctgtcaaacttgctt





cctgcccaaccgaaaacattattgtttgagggggggggggggggggcagattgcatggcgggatatctcgtgaggaacatcactgg





gacactgtggaacacagtgagtgcagtatgcagagcatgtatgctaggggtcagcgcaggaagggggcctttcccagtctcccatgc





cactgcaccgtatccacgactcaccaggaccagcttcttgatcggcttccgctcccgtggacaccagtgtgtagcctctggactccagg





tatgcgtgcaccgcaaaggccagccgatcgtgccgattcctgggtggaggatatgagtcagccaacttggggctcagagtgcacact





ggggcacgatacgaaacaacatctacaccgtgtcctccatgctgacacaccacagcttcgctccacctgaatgtgggcgcatgggcc





cgaatcacagccaatgtcgctgctgccataatgtgatccagaccctctccgcccagatgccgagcggatcgtgggcgctgaatagatt





cctgtttcgatcactgtttgggtcctttccillicgtctcggatgcgcgtctcgaaacaggctgcgtcgggctttcggatcccttttgctccct





ccgtcaccatcctgcgcgcgggcaagttgcttgaccctgggctgataccagggttggagggtattaccgcgtcaggccattcccagcc





cggattcaattcaaagtctgggccaccaccctccgccgctctgtctgatcactccacattcgtgcatacactacgttcaagtcctgatcca





ggcgtgtctcgggacaaggtgtgcttgagtttgaatctcaaggacccactccagcacagctgctggttgaccccgccctcgcaatcta






ga
ATGgccgcgtccgtccactgcaccctgatgtccgtggtctgcaacaacaagaaccactccgcccgccccaagctgcccaac







tcctccctgctgcccggatcgacgtggtggtccaggccgcggccacccgatcaagaaggagacgacgaccacccgcgccacg







ctgacgacgacccccccacgaccaactccgagcgcgccaagcagcgcaagcacaccatcgacccctcctcccccgacacca







gcccatcccctccacgaggagtgatccccaagtccacgaaggagcacaaggaggtggtgcacgaggagtccggccacgtcct







gaaggtgcccaccgccgcgtgcacctgtccggcggcgagcccgccacgacaactacgacacgtccggcccccagaacgtcaa







cgcccacatcggcctggcgaagctgcgcaaggagtggatcgaccgccgcgagaagctgggcacgccccgctacacgcagatg






tactacgcgaagcagggcatcatcacggaggagatgctgtactgcgcgacgcgcgagaagctggaccccgagacgtccgctc






cgaggtcgcgcggggccgcgccatcatcccctccaacaagaagcacctggagctggagcccatgatcgtgggccgcaagacc







tggtgaaggtgaacgcgaacatcggcaactccgccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccacc







atgtggggcgccgacaccatcatggacctgtccacgggccgccacatccacgagacgcgcgagtggatcctgcgcaactccgc







ggtccccgtgggcaccgtccccatctaccaggcgctggagaaggtggacggcatcgcggagaacctgaactgggaggtgacc







gcgagacgctgatcgagcaggccgagcagggcgtggactacttcacgatccacgcgggcgtgctgctgcgctacatccccctga







ccgccaagcgcctgacgggcatcgtgtcccgcggcggctccatccacgcgaagtggtgcctggcctaccacaaggagaacttcg







cctacgagcactgggacgacatcctggacatctgcaaccagtacgacgtcgccctgtccatcggcgacggcctgcgccccggct







ccatctacgacgccaacgacacggcccagacgccgagctgctgacccagggcgagctgacgcgccgcgcgtgggagaagga







cgtgcaggtgatgaacgagggccccggccacgtgcccatgcacaagatccccgagaacatgcagaagcagctggagtggtgc







aacgaggcgcccactacaccctgggccccctgacgaccgacatcgcgcccggctacgaccacatcacctccgccatcggcgcg







gccaacatcggcgccctgggcaccgccctgctgtgctacgtgacgcccaaggagcacctgggcctgcccaaccgcgacgacgt







gaaggcgggcgtcatcgcctacaagatcgccgcccacgcggccgacctggccaagcagcacccccacgcccaggcgtggga







cgacgcgctgtccaaggcgcgatcgagaccgctggatggaccagacgcgctgtccctggaccccatgacggcgatgtccacc







acgacgagacgctgcccgcggacggcgcgaaggtcgcccacactgctccatgtgcggccccaagactgctccatgaagatca







cggaggacatccgcaagtacgccgaggagaacggctacggctccgccgaggaggccatccgccagggcatggacgccatgt







ccgaggagacaacatcgccaagaagacgatctccggcgagcagcacggcgaggtcggcggcgagatctacctgcccgagtc







ctacgtcaaggccgcgcagaagTGA
caattgACGGAGCGTCGTGCGGGAGGGAGTGTGCCGAG






CGGGGAGTCCCGGTCTGTGCGAGGCCCGGCAGCTGACGCTGGCGAGCCGTACGC





CCCGAGGGTCCCCCTCCCCTGCACCCTCTTCCCCTTCCCTCTGACGGCCGCGCCTG





TTCTTGCATGTTCAGCGACggatccTAGGGAGCGACGAGTGTGCGTGCGGGGCTGGC






GGGAGTGGGACGCCCTCCTCGCTCCTCTCTGTTCTGAACGGAACAATCGGCCACC







CCGCGCTACGCGCCACGCATCGAGCAACGAAGAAAACCCCCCGATGATAGGTTG







CGGTGGCTGCCGGGATATAGATCCGGCCGCACATCAAAGGGCCCCTCCGCCAGA







GAAGAAGCTCCTTTCCCAGCAGACTCCTTCTGCTGCCAAAACACTTCTCTGTCCA







CAGCAACACCAAAGGATGAACAGATCAACTTGCGTCTCCGCGTAGCTTCCTCGG







CTAGCGTGCTTGCAACAGGTCCCTGCACTATTATCTTCCTGCTTTCCTCTGAATTA







TGCGGCAGGCGAGCGCTCGCTCTGGCGAGCGCTCCTTCGCGCCGCCCTCGCTGAT







CGAGTGTACAGTCAATGAATGGTCCTGGGCGAAGAACGAGGGAATTTGTGGGTA







AAACAAGCATCGTCTCTCAGGCCCCGGCGCAGTGGCCGTTAAAGTCCAAGACCG







TGACCAGGCAGCGCAGCGCGTCCGTGTGCGGGCCCTGCCTGGCGGCTCGGCGTG







CCAGGCTCGAGAGCAGCTCCCTCAGGTCGCCTTGGACGGCCTCTGCGAGGCCGG







TGAGGGCCTGCAGGAGCGCCTCGAGCGTGGCAGTGGCGGTCGTATCCGGGTCGC







CGGTCACCGCCTGCGACTCGCCATCCgaagagcgtttaaac



pSZ3204 GarmFATA


SEQ ID NO: 87



gctettc
GCCGCCGCCACTCCTGCTCGAGCGCGCCCGCGCGTGCGCCGCCAGCGCCTT







GGCCTTTTCGCCGCGCTCGTGCGCGTCGCTGATGTCCATCACCAGGTCCATGAGG







TCTGCCTTGCGCCGGCTGAGCCACTGCTTCGTCCGGGCGGCCAAGAGGAGCATG







AGGGAGGACTCCTGGTCCAGGGTCCTGACGTGGTCGCGGCTCTGGGAGCGGGCC







AGCATCATCTGGCTCTGCCGCACCGAGGCCGCCTCCAACTGGTCCTCCAGCAGCC







GCAGTCGCCGCCGACCCTGGCAGAGGAAGACAGGTGAGGGGGGTATGAATTGTA







CAGAACAACCACGAGCCTTGTCTAGGCAGAATCCCTACCAGTCATGGCTTTACCT







GGATGACGGCCTGCGAACAGCTGTCCAGCGACCCTCGCTGCCGCCGCTTCTCCCG







CACGCTTCTTTCCAGCACCGTGATGGCGCGAGCCAGCGCCGCACGCTGGCGCTGC







GCTTCGCCGATCTGAGGACAGTCGGGGAACTCTGATCAGTCTAAACCCCCTTGCG







CGTTAGTGTTGCCATCCTTTGCAGACCGGTGAGAGCCGACTTGTTGTGCGCCACC







CCCCACACCACCTCCTCCCAGACCAATTCTGTCACCTTTTTGGCGAAGGCATCGG







CCTCGGCCTGCAGAGAGGACAGCAGTGCCCAGCCGCTGGGGGTTGGCGGATGCA







CGCTCA
ggtaccctttcttgcgctatgacacttccagcaaaaggtagggcgggctgcgagacggcttcccggcgctgcatgcaa






caccgatgatgcttcgaccccccgaagctccttcggggctgcatgggcgctccgatgccgctccagggcgagcgctgtttaaatagc





caggcccccgattgcaaagacattatagcgagctaccaaagccatattcaaacacctagatcactaccacttctacacaggccactcga





gcttgtgatcgcactccgctaagggggcgcctcttcctcttcgtttcagtcacaacccgcaaactctagaatatcaATGctgctgcag






gccttcctgttcctgctggcggcttcgccgccaagatcagcgcctccatgacgaacgagacgtccgaccgccccctggtgcactt







cacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgagaaggacgccaagtggcacctgtacaccagt







acaacccgaacgacaccgtctgggggacgccatgactggggccacgccacgtccgacgacctgaccaactgggaggaccag






cccatcgccatcgccccgaagcgcaacgactccggcgccactccggctccatggtggtggactacaacaacacctccggcactt






caacgacaccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccggagtccgaggagcagtacatctcct







acagcctggacggcggctacaccacaccgagtaccagaagaaccccgtgctggccgccaactccacccagaccgcgacccg







aaggtcactggtacgagccctcccagaagtggatcatgaccgcggccaagtcccaggactacaagatcgagatctactcctccg







acgacctgaagtcctggaagctggagtccgcgacgccaacgagggcacctcggctaccagtacgagtgccccggcctgatcga







ggtccccaccgagcaggaccccagcaagtcctactgggtgatgacatctccatcaaccccggcgccccggccggcggctcatc







aaccagtacttcgtcggcagatcaacggcacccacttcgaggccacgacaaccagtcccgcgtggtggacttcggcaaggact







actacgccctgcagaccacttcaacaccgacccgacctacgggagcgccctgggcatcgcgtgggcctccaactgggagtactc







cgccacgtgcccaccaacccctggcgctcctccatgtccctcgtgcgcaagactccctcaacaccgagtaccaggccaacccgg







agacggagctgatcaacctgaaggccgagccgatcctgaacatcagcaacgccggcccctggagccggacgccaccaacac







cacgagacgaaggccaacagctacaacgtcgacctgtccaacagcaccggcaccctggagacgagctggtgtacgccgtcaa







caccacccagacgatctccaagtccgtgacgcggacctctccctctggacaagggcctggaggaccccgaggagtacctccgc







atgggatcgaggtgtccgcgtcctccacacctggaccgcgggaacagcaaggtgaagacgtgaaggagaacccctacttcac







caaccgcatgagcgtgaacaaccagccatcaagagcgagaacgacctgtcctactacaaggtgtacggcagctggaccaga







acatcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacacctacttcatgaccaccgggaacgccctgggctccgt







gaacatgacgacgggggtggacaacctgttctacatcgacaagttccaggtgcgcgaggtcaagTGA
caattgGCAGCA






GCAGCTCGGATAGTATCGACACACTCTGGACGCTGGTCGTGTGATGGACTGTTGC





CGCCACACTTGCTGCCTTGACCTGTGAATATCCCTGCCGCTTTTATCAAACAGCCT





CAGTGTGTTTGATCTTGTGTGTACGCGCTTTTGCGAGTTGCTAGCTGCTTGTGCTA





TTTGCGAATACCACCCCCAGCATCCCCTTCCCTCGTTTCATATCGCTTGCATCCCA





ACCGCAACTTATCTACGCTGTCCTGCTATCCCTCAGCGCTGCTCCTGCTCCTGCTC





ACTGCCCCTCGCACAGCCTTGGTTTGGGCTCCGCCTGTATTCTCCTGGTACTGCAA





CCTGTAAACCAGCACTGCAATGCTGATGCACGGGAAGTAGTGGGATGGGAACAC





AAATGGAggatcccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcata





caccacaataaccacctgacgaatgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtgg





caggtgacaatgatcggtggagctgatggtcgaaacgttcacagcctagggatatcctgaagaatgggaggcaggtgttgttgattat





gagtgtgtaaaagaaaggggtagagagccgtcctcagatccgactactatgcaggtagccgctcgcccatgcccgcctggctgaata





ttgatgcatgcccatcaaggcaggcaggcatactgtgcacgcaccaagcccacaatcttccacaacacacagcatgtaccaacgcac





gcgtaaaagttggggtgctgccagtgcgtcatgccaggcatgatgtgctcctgcacatccgccatgatctcctccatcgtctcgggtgtt





tccggcgcctggtccgggagccgttccgccagatacccagacgccacctccgacctcacggggtactittcgagcgtctgccggtag





tcgacgatcgcgtccaccatggagtagccgaggcgccggaactggcgtgacggagggaggagagggaggagagagagggggg





ggggggggggggatgattacacgccagtctcacaacgcatgcaagacccgtttgattatgagtacaatcatgcactactagatggatg





agcgccaggcataaggcacaccgacgttgatggcatgagcaactcccgcatcatatttcctattgtcctcacgccaagccggtcaccat





ccgcatgctcatattacagcgcacgcaccgcttcgtgatccaccgggtgaacgtagtcctcgacggaaacatctggctcgggcctcgt





gctggcactccctcccatgccgacaacctttctgctgtcaccacgacccacgatgcaacgcgacacgacccggtgggactgatcggtt





cactgcacctgcatgcaattgtcacaagcgcatactccaatcgtatccgtttgatttctgtgaaaactcgctcgaccgcccgcgtcccgc





aggcagcgatgacgtgtgcgtgacctgggtgtttcgtcgaaaggccagcaaccccaaatcgcaggcgatccggagattgggatctg





atccgagcttggaccagatcccccagatgcggcacgggaactgcatcgactcggcgcggaacccagctttcgtaatgccagattg





gtgtccgataccttgatttgccatcagcgaaacaagacttcagcagcgagcgtatttggcgggcgtgctaccagggttgcatacattgc





ccatttctgtctggaccgctttaccggcgcagagggtgagttgatggggttggcaggcatcgaaacgcgcgtgcatggtgtglgtgtct





gttttcggctgcacaatttcaatagtcggatgggcgacggtagaattgggtgttgcgctcgcgtgcatgcctcgccccgtcgggtgtcat





gaccgggactggaatcccccctcgcgaccctcctgctaacgctcccgactctcccgcccgcgcgcaggatagactctagttcaacca





atcgacaactagtATGgccaccgcatccactactcggcgacaatgcccgctgcggcgacctgcgtcgctcggcgggctccggg







ccccggcgcccagcgaggcccctccccgtgcgc

gggcgcgcc
atccccccccgcatcatcgtggtgtcctcctcctcctccaagg







tgaaccccctgaagaccgaggccgtggtgtcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgt







cctacaaggagaagacatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagaccatcgccaacctgctgc







aggaggtgggctgcaaccacgcccagtccgtgggctactccaccggcggcactccaccacccccaccatgcgcaagctgcgcc







tgatctgggtgaccgcccgcatgcacatcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggcca







gggcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtgatcggccgcgccacctcc







aagtgggtgatgatgaaccaggacacccgccgcctgcagaaggtggacgtggacgtgcgcgacgagtacctggtgcactgccc







ccgcgagctgcgcctggccaccccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactc







caagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgacctacatcggctgggtgctgg







agtccatgccccaggagatcatcgacacccacgagctgcagaccatcaccctggactaccgccgcgagtgccagcacgacga







cgtggtggactccctgacctcccccgagccctccgaggacgccgaggccgtgacaaccacaacggcaccaacggctccgcca







acgtgtccgccaacgaccacggctgccgcaacacctgcacctgctgcgcctgtccggcaacggcctggagatcaaccgcggcc







gcaccgagtggcgcaagaagcccacccgcATGGACTACAAGGACCACGACGGCGACTACAAGGA







CCACGACATCGACTACAAGGACGACGACGACAAGTGA
ategatagatctcttaagGCAGCAG






CAGCTCGGATAGTATCGACACACTCTGGACGCTGGTCGTGTGATGGACTGTTGCC





GCCACACTTGCTGCCTTGACCTGTGAATATCCCTGCCGCTTTTATCAAACAGCCTC





AGTGTGTTTGATCTTGTGTGTACGCGCTTTTGCGAGTTGCTAGCTGCTTGTGCTAT





TTGCGAATACCACCCCCAGCATCCCCTTCCCTCGTTTCATATCGCTTGCATCCCAA





CCGCAACTTATCTACGCTGTCCTGCTATCCCTCAGCGCTGCTCCTGCTCCTGCTCA





CTGCCCCTCGCACAGCCTTGGTTTGGGCTCCGCCTGTATTCTCCTGGTACTGCAAC





CTGTAAACCAGCACTGCAATGCTGATGCACGGGAAGTAGTGGGATGGGAACACA





AATGGAaagcttaattaagagctcTTGTTTTCCAGAAGGAGTTGCTCCTTGAGCCTTTCATTC






TCAGCCTCGATAACCTCCAAAGCCGCTCTAATTGTGGAGGGGGTTCGAATTTAAA







AGCTTGGAATGTTGGTTCGTGCGTCTGGAACAAGCCCAGACTTGTTGCTCACTGG







GAAAAGGACCATCAGCTCCAAAAAACTTGCCGCTCAAACCGCGTACCTCTGCTTT







CGCGCAATCTGCCCTGTTGAAATCGCCACCACATTCATATTGTGACGCTTGAGCA







GTCTGTAATTGCCTCAGAATGTGGAATCATCTGCCCCCTGTGCGAGCCCATGCCA







GGCATGTCGCGGGCGAGGACACCCGCCACTCGTACAGCAGACCATTATGCTACC







TCACAATAGTTCATAACAGTGACCATATTTCTCGAAGCTCCCCAACGAGCACCTC







CATGCTCTGAGTGGCCACCCCCCGGCCCTGGTGCTTGCGGAGGGCAGGTCAACC







GGCATGGGGCTACCGAAATCCCCGACCGGATCCCACCACCCCCGCGATGGGAAG







AATCTCTCCCCGGGATGTGGGCCCACCACCAGCACAACCTGCTGGCCCAGGCGA







GCGTCAAACCATACCACACAAATATCCTTGGCATCGGCCCTGAATTCCTTCTGCC







GCTCTGCTACCCGGTGCTTCTGTCCGAAGCAGGGGTTGCTAGGGATCGCTCCGAG







TCCGCAAACCCTTGTCGCGTGGCGGGGCTTGTTCGAGCTT
gaagagc



pSZ4198 (BnLPAT2)


SEQ ID NO: 88 



gctcttccgctAACGGAGGTCTGTCACCAAATGGACCCCGTCTATTGCGGGAAACCACG







GCGATGGCACGTTTCAAAACTTGATGAAATACAATATTCAGTATGTCGCGGGCGG







CGACGGCGGGGAGCTGATGTCGCGCTGGGTATTGCTTAATCGCCAGCTTCGCCCC







CGTCTTGGCGCGAGGCGTGAACAAGCCGACCGATGTGCACGAGCAAATCCTGAC







ACTAGAAGGGCTGACTCGCCCGGCACGGCTGAATTACACAGGCTTGCAAAAATA







CCAGAATTTGCACGCACCGTATTCGCGGTATTTTGTTGGACAGTGAATAGCGATG







CGGCAATGGCTTGTGGCGTTAGAAGGTGCGACGAAGGTGGTGCCACCACTGTGC







CAGCCAGTCCTGGCGGCTCCCAGGGCCCCGATCAAGAGCCAGGACATCCAAACT







ACCCACAGCATCAACGCCCCGGCCTATACTCGAACCCCACTTGCACTCTGCAATG







GTATGGGAACCACGGGGCAGTCTTGTGTGGGTCGCGCCTATCGCGGTCGGCGAA







GACCGGGAA
ggtaccgcggtgagaatcgaaaatgcatcgtttctaggttcggagacggtcaattccctgctccggcgaatctg






tcggtcaagctggccagtggacaatgttgctatggcagcccgcgcacatgggcctcccgacgcggccatcaggagcccaaacagc





gtgtcagggtatgtgaaactcaagaggtccctgctgggcactccggccccactccgggggcgggacgccaggcattcgcggtcggt





cccgcgcgacgagcgaaatgatgattcggttacgagaccaggacgtcgtcgaggtcgagaggcagcctcggacacgtctcgctag





ggcaacgccccgagtccccgcgagggccgtaaacattgtttctgggtgtcggagtgggcattttgggcccgatccaatcgcctcatgc





cgctctcgtctggtcctcacgttcgcgtacggcctggatcccggaaagggcggatgcacgtggtgttgccccgccattggcgcccac





gtttcaaagtccccggccagaaatgcacaggaccggcccggctcgcacaggccatgctgaacgcccagatttcgacagcaacacca





tctagaataatcgcaaccatccgcgttttgaacgaaacgaaacggcgctgtttagcatgtttccgacatcgtgggggccgaagcatgct





ccggggggaggaaagcgtggcacagcggtagcccattctgtgccacacgccgacgaggaccaatccccggcatcagccttcatcg





acggctgcgccgcacatataaagccggacgcctaaccggtttcgtggttatgactagtATGttcgcgttctacttcctgacggcctgc






atctccctgaagggcgtgacggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaaca







cgacgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctaca







agtacatcatcctggacgactgctggtcctccggccgcgactccgacggcacctggtcgccgacgagcagaagaccccaacgg







catgggccacgtcgccgaccacctgcacaacaactccacctgacggcatgtactcctccgcgggcgagtacacgtgcgccggct







accccggctccctgggccgcgaggaggaggacgcccagacttcgcgaacaaccgcgtggactacctgaagtacgacaactgc







tacaacaagggccagacggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccg







ccccatcactactccctgtgcaactggggccaggacctgaccactactggggctccggcatcgcgaactcctggcgcatgtccgg







cgacgtcacggcggagacacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcacc







actgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaa







cctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacactccatgtgggccatggtgaagtcccccctgat







catcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactcc







aacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtc







cggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggagg







agatcacttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaa







ctccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacg







gcctgtccaagaacgacacccgcctgacggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccg







cccacggcatcgcgactaccgcctgcgcccctcctccTGA
tacgtactcgagGCAGCAGCAGCTCGGATAGT






ATCGACACACTCTGGACGCTGGTCGTGTGATGGACTGTTGCCGCCACACTTGCTG





CCTTGACCTGTGAATATCCCTGCCGCTTTTATCAAACAGCCTCAGTGTGTTTGATC





TTGTGTGTACGCGCTTTTGCGAGTTGCTAGCTGCTTGTGCTATTTGCGAATACCAC





CCCCAGCATCCCCTTCCCTCGTTTCATATCGCTTGCATCCCAACCGCAACTTATCT





ACGCTGTCCTGCTATCCCTCAGCGCTGCTCCTGCTCCTGCTCACTGCCCCTCGCAC





AGCCTTGGTTTGGGCTCCGCCTGTATTCTCCTGGTACTGCAACCTGTAAACCAGC





ACTGCAATGCTGATGCACGGGAAGTAGTGGGATGGGAACACAAATGGAAagctgtag






aattcctggctcgggcctcgtgctggcactccctcccatgccgacaacctttctgctgtcaccacgacccacgatgcaacgcgacacg






acccggtgggactgatcggttcactgcacctgcatgcaattgtcacaagcgcatactccaatcgtatccgtttgatttctgtgaaaactcg





ctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtgacctgggtgtttcgtcgaaaggccagcaaccccaaatcgcaggc





gatccggagattgggatctgatccgagcttggaccagatcccccacgatgcggcacgggaactgcatcgactcggcgcggaaccca





gctttcgtaaatgccagattggtgtccgataccttgatttgccatcagcgaaacaagacttcagcagcgagcgtatttggcgggcgtgct





accagggttgcatacattgcccatttctgtctggaccgctttaccggcgcagagggtgagttgatggggttggcaggcatcgaaacgc





gcgtgcatggtgtgtgtgtctgttttcggctgcacaatttcaatagtcggatgggcgacggtagaattgggtgttgcgctcgcgtgcatgc





ctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccctcctgctaacgctcccgactctcccgcccgcgcgcag





gatagactctagttcaaccaatcgacaactagtATGgccatggccgccgccgtgatcgtgcccctgggcatcctgttcttcatctcc






ggcctggtggtgaacctgctgcaggccatctgctacgtgctgatccgccccctgtccaagaacacctaccgcaagatcaaccgcg







tggtggccgagaccctgtggctggagctggtgtggatcgtggactggtgggccggcgtgaagatccaggtgacgccgacaacg







agaccttcaaccgcatgggcaaggagcacgccctggtggtgtgcaaccaccgctccgacatcgactggctggtgggctggatcc







tggcccagcgctccggctgcctgggctccgccctggccgtgatgaagaagtcctccaagacctgcccgtgatcggctggtccatgt







ggactccgagtacctgacctggagcgcaactgggccaaggacgagtccaccctgaagtccggcctgcagcgcctgaacgactt







cccccgccccactggctggccctgacgtggagggcacccgatcaccgaggccaagctgaaggccgcccaggagtacgccgc







ctcctccgagctgcccgtgccccgcaacgtgctgatcccccgcaccaagggatcgtgtccgccgtgtccaacatgcgctccacgt







gcccgccatctacgacatgaccgtggccatccccaagacctcccccccccccaccatgctgcgcctgacaagggccagccctcc







gtggtgcacgtgcacatcaagtgccactccatgaaggacctgcccgagtccgacgacgccatcgcccagtggtgccgcgacca







gacgtggccaaggacgccctgctggacaagcacatcgccgccgacaccaccccggccagcaggagcagaacatcggccgc







cccatcaagtccctggccgtggtgctgtcctggtcctgcctgctgatcctgggcgccatgaagacctgcactggtccaacctgactc







ctcctggaagggcatcgccactccgccctgggcctgggcatcatcaccctgtgcatgcagatcctgatccgctcctcccagtccga







gcgctccacccccgccaaggtggtgcccgccaagcccaaggacaaccacaacgactccggctcctcctcccagaccgaggtg






gagaagcagaagTGAatcgatagatctcttaagGCAGCAGCAGCTCGGATAGTATCGACACACT





CTGGACGCTGGTCGTGTGATGGACTGTTGCCGCCACACTTGCTGCCTTGACCTGT





GAATATCCCTGCCGCTTTTATCAAACAGCCTCAGTGTGTTTGATCTTGTGTGTACG





CGCTTTTGCGAGTTGCTAGCTGCTTGTGCTATTTGCGAATACCACCCCCAGCATCC





CCTTCCCTCGTTTCATATCGCTTGCATCCCAACCGCAACTTATCTACGCTGTCCTG





CTATCCCTCAGCGCTGCTCCTGCTCCTGCTCACTGCCCCTCGCACAGCCTTGGTTT





GGGCTCCGCCTGTATTCTCCTGGTACTGCAACCTGTAAACCAGCACTGCAATGCT





GATGCACGGGAAGTAGTGGGATGGGAACACAAATGGAaagettaattaagagatcAGCGG






CGACGGTCCTGCTACCGTACGACGTTGGGCACGCCCATGAAAGTTTGTATACCGA







GCTTGTTGAGCGAACTGCAAGCGCGGCTCAAGGATACTTGAACTCCTGGATTGAT







ATCGGTCCAATAATGGATGGAAAATCCGAACCTCGTGCAAGAACTGAGCAAACC







TCGTTACATGGATGCACAGTCGCCAGTCCAATGAACATTGAAGTGAGCGAACTGT







TCGCTTCGGTGGCAGTACTACTCAAAGAATGAGCTGCTGTTAAAAATGCACTCTC







GTTCTCTCAAGTGAGTGGCAGATGAGTGCTCACGCCTTGCACTTCGCTGCCCGTG







TCATGCCCTGCGCCCCAAAATTTGAAAAAAGGGATGAGATTATTGGGCAATGGA







CGACGTCGTCGCTCCGGGAGTCAGGACCGGCGGAAAATAAGAGGCAACACACTC







CGCTTCTTA
gctcttc



pSZ4198 BnLPAT2(1.5)


SEQ ID NO: 89



ATGgccatggccgccgccgccgtgatcgtgcccctgggcatcctgacttcatctccggcctggtggtgaacctgctgcaggccgt







gtgctacgtgctgatccgccccctgtccaagaacacctaccgcaagatcaaccgcgtggtggccgagaccctgtggctggagctg







gtgtggatcgtggactggtgggccggcgtgaagatccaggtgacgccgacgacgagaccacaaccgcatgggcaaggagca







cgccctggtggtgtgcaaccaccgctccgacatcgactggctggtgggctggatcctggcccagcgctccggctgcctgggctcc







gccctggccgtgatgaagaagtcctccaagacctgcccgtgatcggctggtccatgtggactccgagtacctgacctggagcgca







actgggccaaggacgagtccaccctgaagtccggcctgcagcgcctgaacgacacccccgccccactggctggccctgacgtg







gagggcacccgatcaccgaggccaagctgaaggccgcccaggagtacgccgcctcctcccagctgcccgtgccccgcaacgt







gctgatcccccgcaccaagggcttcgtgtccgccgtgtccaacatgcgctccttcgtgcccgccatctacgacatgaccgtggccat







ccccaagacctcccccccccccaccatgctgcgcctgacaagggccagccctccgtggtgcacgtgcacatcaagtgccactcc







atgaaggacctgcccgagtccgacgacgccatcgcccagtggtgccgcgaccagacgtggccaaggacgccctgctggacaa







gcacatcgccgccgacaccaccccggccagaaggagcacaacatcggccgccccatcaagtccctggccgtggtggtgtcctg







ggcctgcctgctgaccctgggcgccatgaagacctgcactggtccaacctgactcctccctgaagggcatcgccctgtccgccctg







ggcctgggcatcatcaccctgtgcatgcagatcctgatccgctcctcccagtccgagcgctccacccccgccaaggtggcccccg







ccaagcccaaggacaagcaccagtccggctcctcctcccagaccgaggtggaggagaagcagaagTGA



pSZ4206 TcLPAT2 GhomLPAT2A


SEQ ID NO: 90



ATGgccatcgccgccgccgccgtgatcgtgcccctgggcctgctgttcttcatctccggcctggtggtgaacctgatccaggccctgtgcttc







gtgctgatccgccccctgtccaagaacacctaccgcaagatcaaccgcgtggtggccgagctgctgtggctggagctgatctggctggtgg







actggtgggccggcgtgaagatcaaggtgttcatggaccccgagtccttcaacctgatgggcaaggagcacgccctggtggtggccaacc







accgctccgacatcgactggctggtgggctggctgctggcccagcgctccggctgcctgggctccgccctggccgtgatgaagaagtcctcc







aagttcctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgctcctgggccaaggacgagaacaccctgaaggc







cggcctgcagcgcctgaaggacttcccccgccccttctggctggccttcttcgtggagggcacccgcttcacccaggccaagttcctggccgc







ccaggagtacgccgcctcccagggcctgcccatcccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtcccacatgc







gctccttcgtgcccgccatctacgacatgaccgtggccatccccaagtcctccccctcccccaccatgctgcgcctgttcaagggccagccctc







cgtggtgcacgtgcacatcaagcgctgcctgatgaaggagctgcccgagaccgacgaggccgtggcccagtggtgcaaggacatgttcg







tggagaaggacaagctgctggacaagcacatcgccgaggacaccttctccgaccagcccatgcaggacctgggccgccccatcaagtcc







ctgctggtggtggcctcctgggcctgcctgatggcctacggcgccctgaagttcctgcagtgctcctccctgctgtcctcctggaagggcatcg







ccttcttcctggtgggcctggccatcgtgaccatcctgatgcacatcctgatcctgttctcccagtccgagcgctccacccccgccaaggtggc







ccccggcaagcccaagaacgacggcgagacctccgaggcccgccgcgacaagcagcagTGA



Nucleotide sequence of the GhomLPAT2A coding sequence, used in the


transforming DNA from pSZ4412.


SEQ ID NO: 91



ATGgccatccccgccgccatcgtgatcgtgcccgtgggcctgctgttcttcatctccggcctgatcgtgaacctgctgcaggccctgtgcttcg







tgctgatccgccccctgtccaagtccgcctaccgcaccatcaaccgccagctggtggagctgctgtggctggagctggtgtgcatcgtggac







tggtgggcccgcgtgaagatccagctgttcaccgacaaggagaccctgaactccatgggcaaggagcacgccctggtgatgtgcaacca







ccgctccgacatcgactggctggtgggctggatcctggcccagcgctccggctgcctgggctccaccgtggccgtgatgaagaagtcctcca







aggtgctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgcaactgggccaaggacgagtccaccctgaagtcc







ggcctgcagcgcctgcgcgacttcccccgccccttctggctggccctgttcgtggagggcacccgcttcacccagcccaagctgctggccgcc







caggagtacgccgcctccaccggcctgcccatcccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtccatcacccgc







tccttcgtgcccgtgatctacgacatcaccgtggccatccccaagtcctccccccagcccaccatgctgcgcctgttcaagggccagtcctccg







tggtgcacgtgcacctgaagcgccacctgatgaaggacctgcccgagtccgacgacgacgtggcccagtggtgccgcgaccagttcgtgg







tgaaggactccctgctggacaagcacatcgccgaggacaccttctccgaccaggagctgcaggacatcggccgccccatcaagtccctgg






tggtgttcacctcctgggtgtgcatcatcaccttcggcgccctgaagttcctgcagtggtcctccctgctgcactcctggaagggcatcgccat






ctccgcctccggcctggccatcgtgaccgtgctgatgcacatcctgatccgcttctcccagtccgagcactccacctccgccaagatcgccgcc







gagaagcacaagaacggcggcgtgtcccaggagatgggccgcgagaagcagcacTGA



Nucleotide sequence of the GhomLPAT2B coding sequence, used in the


transforming DNA from pSZ4413.


SEQ ID NO: 92



ATGgagatccccgccgtggccgtgatcgtgcccatcggcatcctgttcttcatctccggcctgatcgtgaacctgatgcaggccatctgcttc







ttcctgatccgccccctgtccaagaacacccaccgcatcgtgaaccgccagctggccgagctgctgtggctggagctgatctggatcgtgga







ctggtgggccggcgtgaagatccagctgttcaccgacaaggagaccctgcacctgatgggcaaggagcacgccctggtgatctgcaacc







actcctccgacatcgactggctggtgggctggctgctgtgccagcgctccggctgcctgggctccgccctggccgtgatgaagtcctcctcca







aggtgctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgctcctgggccaaggacgagtccaccctgaagtcc







ggcctgcagcgcctgaaggacttcccccgccccttctggctggccctgttcgtggagggcacccgcttcacccaggccaagctgctggccgc







ccaggagtacgccatgtccgccggcctgcccgtgccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtccaacatgc







gctccttcgtgcccgccatctacgacgtgaccgtggccatccccaagtcctccgtgcagcccaccatgctgcgcctgttcaagggccagtcctc







cgtggtgcaggtgcacctgaagcgccactccatgaaggacctgcccgagtccgaggacgacgtggcccagtggtgccgcgaccgcttcgt







ggtgaaggactccctgctggacaagcacaaggtggaggacaccttcaccgaccaggagctgcaggacctgggccgccccatcaagtccc







tggtggtggtgacctgctgggcctgcatcatcatcttcggcatcctgaagttcctgcagtggtcctccctgctgtactcctggaagggcatggc







catctccgcctccggcctggccgtggtgaccttcctgatgcagatcctgatccgcttctcccagtccgagcgctccacccccgccaagatcgcc







cccgccaagcccaacaaggccggcaactcctccgagaccgtgcgcgacaagcaccagTGA



Nucleotide sequence of the GhomLPAt2C coding sequence, used in the


transforming DNA from pSZ4414.


SEQ ID NO: 93



ATGgccatccccgccgccatcatcatcgtgcccctgggcctgatcttcttcacctccggcctgatcatcaacctgatccaggccgtgtgctacg







tgctgatccgccccctgtccaagtccaccttccgccgcatcaaccgcgagctggccgagctgctgtggctggagctggtgtgggtggtggac







tggtgggccggcgtgaagatccagctgttcaccgacaaggagaccctgcactccatgggcaaggagcacgccctggtgatctgcaaccac







cgctccgacatcgactggctggtgggctggatcctggcccagcgctccggctgcctgggctccgccctggccgtgatgaagaagtcctccaa







ggtgctgcccgtgatcggctggtccatgtggttctccgagtacttcttcctggagcgcaactgggccatggacgagtccaccctgaagtccg







gcctgcagcgcctgaaggacttcccccagcccttctggctggccctgttcgtggagggcacccgcttcacccagcccaagctgctggccgccc







aggagtacgccgcctccgccggcctgcccatcccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgaacatcatgcgc







tccttcgtgcccgccatctacgacgtgaccgtggccatccccaagtcctccccccagcccaccatgctgcgcctgttcaagggccagtcctccg







tggtgcacgtgcacctgaagcgccacctgatggaggacctgcccgagaccgacgacgacgtggcccagtggtgccgcgaccgcttcgtgg







tgaaggactccctgctggacaagtacgtggccgaggacaccttctccgaccaggagctgcaggacctgggccgccccatcaagtccctgg







tggtggtgacctcctgggtgtgcatcatcgccttcggctccctgaagttcctgcagtggtcctccctgctgtactcctggaagggcatcgtgat







ctccgccgcctccctggccgtggtgaccgtgctgatgcagatcctgatccgcttctcccagtccgagcgctccacctccgccaagatcgccgcc







gccaagcgcaagaacgtgggcgagcacTGA



Nucleotide sequence of the GindPAT2A coding sequence, used in the transforming


DNA from pSZ4415.


SEQ ID NO: 94



ATGgccatccccgtggtggtggtgatcgtgcccgtgggcctgctgttcttcatctccggcctgatcgtgaacctgctgcaggccctgtgcttc







gtgctgatccgccccctgtccaagtccgcctaccgcaccatcaaccgccagctggtggagctgctgtggctggagctggtgtgcatcgtgga







ctggtgggcccgcgtgaagatccagctgttcatcgacaaggagaccctgaactccatgggcaaggagcacgccctggtgatgtgcaacc







accgctcctacatcgactggctggtgggctggatcctggcccagcgctccggctgcctgggctccaccgtggccgtgatgaagaagtcctcc







aaggtgctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgcaactgggccaaggacgagtccaccctgaagt







ccggcctgcagcgcctgcgcgacttcccccgccccttctggctggccctgttcgtggagggcacccgcttcacccagcccaagctgctggccg







cccaggagtacgccgcctccaccggcctgcccatcccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtccatcaccc







gctccttcgtgcccgtgatctacgacatcaccgtggccatccccaagtcctcctcccagcccaccatgctgaagctgttcaagggccagtcctc







cgtggtgcacgtgcacctgaagcgccacctgatgaaggacctgcccgagtccgacgacgacgtggcccagtggtgccgcgcccagttcgt







ggtgaaggactccctgctggacaagcacatcgccgaggacaccttctccgaccaggagctgcaggacatcggccgccccatcaagtccct







ggtggtgttcacctcctgggtgtgcatcatcaccttcggcgccctgaagttcctgcagtggtcctccctgctgcactcctggaagggcatcgcc







atctccgcctccggcctggccatcgtgaccgtgctgatgcacatcctgatccgcttctcccagtccgagcactccacctccgccaagatcgccg







ccgagaagcacaagaacggcggcgtgtcccaggagatgggccgcgagaagcagcacTGA



Nucleotide sequence of the GindPAT2B coding sequence, used in the transofrming


DNA from pSZ4416.


SEQ ID NO: 95


ATGggcatccccgccgtggccgtgatcgtgcccatcggcatcctgttcttcatctccggcttcatcgtgaacctgatgcaggccatctgcttcg






tgctgatccgccccctgtccaagaacacctaccgcatcgtgaaccgccagctggccgagttcctgtggctggagctgatctgggtggtggac







tggtgggccggcgtgaagatccagctgttcaccgacaaggagaccctgcacctgatgggcaaggagcacgccctggtgatctgcaacca







ccgctccgacatcgactggctggtgggctggctgctgtgccagcgctccggctgcctgggctccgccctggccgtgatgaagtcctcctccaa







ggtgctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgctcctgggccaaggacgagtccaccctgaagctgg







gcctgcagcgcctgaaggacttcccccgccccttctggctggccctgttcgtggagggcacccgcttcacccaggccaagctgctggccgccc







aggagtacgccatgtccgccggcctgcccgtgccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtccaacatgcgc







tccttcgtgcccgccatctacgacgtgaccgtggccatccccaagtcctccgtgcagcccaccatgctgggcctgttcaagggccagtcctgc







gtggtgcaggtgcacctgaagcgccacctgatgaaggacctgcccgagtccgaggacgacgtggcccagtggtgccgcgagcgcttcgt







ggtgaaggactccctgctggacaagcacaaggtggaggacaccttctccgaccaggagctgcaggacctgggccgccccatcaagtccct







ggtggtggtgatctcctgggcctgcatcctgatcttctggatcctgaagttcctgcagtggtcctccctgctgtactcctggaagggcatcgcc







atctccgcctgcgccatggccgtgatcgccttcctgatgcagatcctgctgcgcttctcccagtccgagcgctccacccccgccaagatcgccc







ccgccaagcccaacaacgcccgcaactcctccgagaccgtgcgcgacaagcaccagTGA



Nucleotide sequence of the GindPAT2C coding sequence, used in the transforming


DNA from pSZ4417.


SEQ ID NO: 96



ATGgccatccccgccgccatcatcatcgtgcccctgggcctgatcttcttcacctccggcttcatcatcaacctgatccaggccgtgtgctacg







tgctgatccgccccctgtccaagtccaccttccgccgcatcaaccgccagctggccgagctgctgtggctggagctggtgtgggtggtggac







tggtgggccggcgtgaagatccagctgttcaccaacaaggagaccctgcactccatcggcaaggagcacgccctggtgatctgcaaccag







cgctccgacatcgactggctggtgggctggatcctggcccagcgctccggctgcctgggctccgccctggccgtgatgaagaagtcctccaa







ggtgctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgcaactgggccatggacgagtccaccctgaagtccg







gcctgcagtggctgaaggacttcccccagcccttctggctggccctgttcgtggagggcacccgcttcacccagcccaagctgctggccgcc







caggagtacgccgcctccgccggcctgcccatcccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgaacatcatgcg







ctccttcgtgcccgccgtgtacgacgtgaccgtggccatccccaagtcctccccccagcccaccatgctgcgcctgttcaagggccagtcctcc







gtggtgcacgtgcacctgaagcgccacctgatggaggacctgcccgagaccgacgacgacgtggcccagtggtgccgcgaccgcttcgtg







gtgaaggactccctgctggacaagcacctggccgaggacaccttctccgaccaggagctgcaggacctgggccgccccatcaagtccctg







gtggtggtgacctcctgggtgtgcatcatcgccttcggcgccctgaagttcctgcagtggtcctccctgctgtactcctggaagggcatcgtg







atctccgccgcctccctggccgtggtgaccgtgctgatgcagatcctgatccgcttctcccagtccgagcgctccacctccgccaaggtggtg







gccgagaagcgcaagaacgtgggcgagcacTGA



pSZEX61 Transorming DNA expressing CnLPAAT.


SEQ ID NO: 97



gtttaaacgccggtcaccacccgcatgctcgtactacagcgcacgcaccgcttcgtgatccaccgggtgaacgtagtcctcgacgg







aaacatctggttcgggcctcctgcttgcactcccgcccatgccgacaacctttctgctgttaccacgacccacaatgcaacgcgaca







cgaccgtgtgggactgatcggttcactgcacctgcatgcaattgtcacaagcgcttactccaattgtattcgtttgttttctgggagc







agttgctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtggcctgggtgtttcgtcgaaaggccagcaaccctaaatcg







caggcgatccggagattgggatctgatccgagtttggaccagatccgccccgatgcggcacgggaactgcatcgactcggcgcgg







aacccagctttcgtaaatgccagattggtgtccgatacctggatttgccatcagcgaaacaagacttcagcagcgagcgtatttgg







cgggcgtgctaccagggttgcatacattgcccatttctgtctggaccgctttactggcgcagagggtgagttgatggggttggcagg







catcgaaacgcgcgtgcatggtgtgcgtgtctgttttcggctgcacgaattcaatagtcggatgggcgacggtagaattgggtgtg







gcgctcgcgtgcatgcctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccatcttgctaacgctcccgactc







tcccgaccgcgcgcaggatagactcttgttcaaccaatcgaca

ggtacc

ATGgacgcctccggcgcctcctccttcctgcgcggccgct







gcctggagtcctgcttcaaggcctccttcggctacgtaatgtcccagcccaaggacgccgccggccagccctcccgccgccccgccgacgcc







gacgacttcgtggacgacgaccgctggatcaccgtgatcctgtccgtggtgcgcatcgccgcctgcttcctgtccatgatggtgaccaccatc







gtgtggaacatgatcatgctgatcctgctgccctggccctacgcccgcatccgccagggcaacctgtacggccacgtgaccggccgcatgct







gatgtggattctgggcaaccccatcaccatcgagggctccgagttctccaacacccgcgccatctacatctgcaaccacgcctccctggtgg







acatcttcctgatcatgtggctgatccccaagggcaccgtgaccatcgccaagaaggagatcatctggtatcccctgttcggccagctgtac







gtgctggccaaccaccagcgcatcgaccgctccaacccctccgccgccatcgagtccatcaaggaggtggcccgcgccgtggtgaagaag







aacctgtccctgatcatcttccccgagggcacccgctccaagaccggccgcctgctgcccttcaagaagggcttcatccacatcgccctccag







acccgcctgcccatcgtgccgatggtgctgaccggcacccacctggcctggcgcaagaactccctgcgcgtgcgccccgcccccatcaccgt







gaagtacttctcccccatcaagaccgacgactgggaggaggagaagatcaaccactacgtggagatgatccacgccctgtacgtggacc







acctgcccgagtcccagaagcccctggtgtccaagggccgcgacgcctccggccgctccaactccTGAttaattaactcgagatgtggaga







tgtagggtggtcgactcgttggaggtgggtgtttttttttatcgagtgcgcggcgcggcaaacgggtccctttttatcgaggtgttccca







acgccgcaccgccctcttaaaacaacccccaccaccacttgtcgaccttctcgtttgttatccgccacggcgccccggaggggcgtcg







tctggccgcgcgggcagctgtatcgccgcgctcgctccaatggtgtgtaatcttggaaagataataatcgatggatgaggaggaga







gcgtgggagatcagagcaaggaatatacagttggcacgaagcagcagcgtactaagctgtagcgtgttaagaaagaaaaactcg








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





cgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctgcgacgtctccga







gcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtacatcatcctggacgact







gctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagaccccaacggcatgggccacgtcgccgac







cacctgcacaacaactccttcctgacggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggctccctgggcc







gcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaagggccagt







tcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatcttctactccct







gtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggcgg







agttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctccatcatga







acatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcggcg







tcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaa







cgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaacggcatcccc







gccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccggccccctgg







acaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggaggagatcttcttc







gactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacggc







gtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacggcctgtcca







agaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacggc







atcgcgactaccgcctgcgcccctcctccTGA
tacaacttat

tacgtattctgaccggcgctgatgtggcgcggacgccgtcgtac








tctttcagactttactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgcaattaattgtgtgatgaagaaaggg







tggcacaagatggatcgcgaatgtacgagatcgacaacgatggtgattgttatgaggggccaaacctggctcaatcttgtcgcatgt







ccggcgcaatgtgatccagcggcgtgactctcgcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactgatcgcattgcc







atcccgtcaactcacaagcctactctagctcccattgcgcactcgggcgcccggctcgatcaatgttctgagcggagggcgaagcgt







caggaaatcgtctcggcagctggaagcgcatggaatgcggagcggagatcgaatcagatatcAAGCTCCATCgagctccagc







cacggcaacaccgcgcgccttgcggccgagcacggcgacaagaacctgagcaagatctgcgggctgatcgccagcgacgaggg







ccggcacgagatcgcctacacgcgcatcgtggacgagttcttccgcctcgaccccgagggcgccgtcgccgcctacgccaacatga







tgcgcaagcagatcaccatgcccgcgcacctcatggacgacatgggccacggcgaggccaacccgggccgcaacctcttcgccga







cttctccgcggtcgccgagaagatcgacgtctacgacgccgaggactactgccgcatcctggagcacctcaacgcgcgctggaag







gtggacgagcgccaggtcagcggccaggccgccgcggaccaggagtacgtcctgggcctgccccagcgcttccggaaactcgcc







gagaagaccgccgccaagcgcaagcgcgtcgcgcgcaggcccgtcgccttctcctggatctccgggcgcgagatcatggtctagg







gagcgacgagtgtgcgtgcggggctggcgggagtgggacgccctcctcgctcctctctgttctgaacggaacaatcggccaccccg







cgctacgcgccacgcatcgagcaacgaagaaaaccccccgatgataggttgcggtggctgccgggatatagatccggccgcaca







tcaaagggcccctccgccagagaagaagctcctttcccagcagactcct

gaagagcgtttaaac




CpauLPAAT1


SEQ ID NO: 98




ggtacc

ATGgccatccccgccgccgccgtgatcttcctgttcggcctgctgttcttcacctccggacctgatcatcaacctgttccaggccctgtg







cttcgtgctggtgtggcccctgtccaagaacgcctaccgccgcatcaaccgcgtgttcgccgagctgctgctgtccgagctgctgtgcctgttc







gactggtgggccggcgccaagctgaagctgttcaccgaccccgagaccttccgcctgatgggcaaggagcacgccctggtgatcatcaac







cacatgaccgagctggactggatgctgggctgggtgatgggccagcacctgggctgcctgggctccatcctgtccgtggccaagaagtcc







accaagttcctgcccgtgctgggctggtccatgtggttctccgagtacctgtacatcgagcgctcctgggccaaggaccgcaccaccctgaa







gtcccacatcgagcgcctgaccgactaccccctgcccttctggatggtgatcttcgtggagggcacccgcttcacccgcaccaagctgctggc







cgcccagcagtacgccgcctcctccggcctgcccgtgccccgcaacgtgctgatcccccgcaccaagggcttcgtgtcctgcgtgtcccacat







gcgctccttcgtgcccgccgtgtacgacgtgaccgtggccttccccaagacctcccccccccccaccctgctgaacctgttcgagggccagtcc







atcgtgctgcacgtgcacatcaagcgccacgccatgaaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagttc







gtggagaaggacgccctgctggacaagcacaacgccgaggacaccttctccggccaggaggtgcaccgcaccggctcccgccccatcaa







gtccctgctggtggtgatctcctgggtggtggtgatcaccttcggcgccctgaagttcctgcagtggtcctcctggaagggcaaggccttctc







cgtgatcggcctgggcatcgtgaccctgctgatgcacatgctgatcctgtcctcccaggccgagcgctcctccaaccccgccaaggtggccc







aggccaagctgaagaccgagctgtccatctccaagaaggccaccgacaaggagaacTGA

ctcgag




CprocLPAAT1


SEQ ID NO: 99



ggtaccATGgccatccccgccgccgccgtgatcttcctgttcggcctgatcttcttcgcctccggcctgatcatcaacctgttccag






gccctgtgcttcgtgctgatctggcccatctccaagaacgcctaccgccgcatcaaccgcgtgttcgccgagctgctgctgtccgag





ctgctgtgcctgttcgactggtgggccggcgccaagctgaagctgttcaccgaccccgagaccttccgcctgatgggcaaggagc





acgccaggtgatcatcaaccacatgaccgagaggactggatggtgggagggtgatgggccagcactteggagcctgggctc





catcctgtccgtggccaagaagtccaccaagttcctgcccgtgctgggctggtccatgtggttcaccgagtacctgtacatcgagcg





ctcctggaacaaggacaagtccaccctgaagtcccacatcgagcgcctgaaggactaccccctgcccttctggctggtgatcttcg





ccgagggcacccgatcacccagaccaagagaggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgcaac





gtgctgatcccccgcaccaagggcttcgtgtcctgcgtgtcccacatgcgctccttcgtgcccgccgtgtacgacctgaccgtggcct





tccccaagacctcccccccccccaccctgctgaacctgttcgagggccagtccgtggtgctgcacgtgcacatcaagcgccacgc





catgaaggacctgcccgagtccgacgacgaggtggcccagtggtgccgcgacaagncgtggagaaggacgccagaggac





aagcacaacgccgaggacaccttaccggccaggagagcagcacaccggccgccgccccatcaagtccctgaggtggtgat





ctcctgggtggtggtgatcgccttcggcgccctgaagttcctgcagtggtcctcctggaagggcaaggccttctccgtgatcggcctg





ggcatcgtgaccagagatgcacatgagatcctgtecteccaggccgagcgaccaagcccgccaaggtggcccaggccaag





ctgaagaccgagctgtccatctccaagaccgtgaccgacaaggagaacTGActcgag


CpaiLPAAT1


SEQ ID NO: 100




ggtacc

ATGgccatcccctccgccgccgtggtgttcctgttcggcctgctgttcttcacctccggcctgatcatcaacctgttccagg







ccttctgcttcgtgctgatctcccccctgtccaagaacgcctaccgccgatcaaccgcgtgttcgccgagctgctgcccctggagtt







cctgtggctgaccactggtgcgccggcgccaagctgaagctgacaccgaccccgagaccaccgcctgatgggcaaggagcac







gccctggtgatcatcaaccacaagatcgagctggactggatggtgggctgggtgctgggccagcacctgggctgcctgggctcca







tcctgtccgtggccaagaagtccaccaagacctgcccgtgacggctggtccctgtggactccggctacctgacctggagcgctcc







tgggccaaggacaagatcaccctgaagtcccacatcgagtccctgaaggactaccccctgccataggctgatcatcacgtgga







gggcacccgatcacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgcaacgtgct







gatcccccacaccaagggcttcgtgtcctccgtgtcccacatgcgctccttcgtgcccgccatctacgacgtgaccgtggccttcccc







aagacctcccccccccccaccatgctgaagctgacgagggccagtccgtggagctgcacgtgcacatcaagcgccacgccatg







aaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagacgtggagaaggacgccctgctggacaagc







acaactccgaggacaccactccggccaggaggtgcaccacgtgggccgccccatcaaggccctgctggtggtgatctcctgggt







ggtggtgatcatcacggcgccctgaagacctgctgtggtcctccctgctgtcctcctggaagggcaaggccactccgtgatcggcc







tgggcatcgtggccggcatcgtgaccctgctgatgcacatcctgatcctgtcctcccaggccgagggctccaaccccgtgaaggc







cgcccccgccaagctgaagaccgagctgtcctcctccaagaaggtgaccaacaggagaacTGA

ctcgag




ChookLPAAT1


SEQ ID NO: 101




ggtacc

ATGgccatcccctccgccgccgtggtgttcctgttcggcctgctgttcttcacctccggcctgatcatcaacctgttccagg







ccttctgcttcgtgctgatctcccccctgtccaagaacgcctaccgccgcatcaaccgcgtgttcgccgagctgctgcccctggagtt







cctgtggctgaccactggtgcgccggcgccaagctgaagctgacaccgaccccgagaccaccgcctgatgggcaaggagcac







gccctggtgatcatcaaccacaagatcgagctggactggatggtgggctgggtgctgggccagcacctgggctgcctgggctcca







tcctgtccgtggccaagaagtccaccaagacctgcccgtgacggctggtccctgtggactccgagtacctgacctggagcgctcc






tgggccaaggacaagatcaccctgaagtcccacatcgagtccctgaaggactaccccctgccataggctgatcatcacgtgga






gggcacccgatcacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgcaacgtgct







gatcccccacaccaagggcttcgtgtcctccgtgtcccacatgcgctccttcgtgcccgccatctacgacgtgaccgtggccttcccc







aagacctcccccccccccaccatgctgaagctgacgagggccagtccgtggagctgcacgtgcacatcaagcgccacgccatg







aaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagacgtggagaaggacgccctgctggacaagc







acaactccgaggacaccactccggccaggaggtgcaccacgtgggccgccccatcaaggccctgctggtggtgatctcctgggt







ggtggtgatcatcacggcgccctgaagacctgctgtggtcctccctgctgtcctcctggaagggcaaggccactccgtgatcggcc







tgggcatcgtggccggcatcgtgaccctgctgatgcacatcctgatcctgtcctcccaggccgagggctccaaccccgtgaaggc







cgcccccgccaagctgaagaccgagctgtcctcctccaagaaggtgaccaacaaggagaacTGA

ctcgag




CignLPAAT1


SEQ ID NO: 102




ggtacc

ATGgccatcgccgccgccgccgtgatcttcctgttcggcctgctgttcttcgcctccggcatcatcatcaacctgttccag







gccctgtgcacgtgctgatctggcccctgtccaagaacgtgtaccgccgcatcaaccgcgtgacgccgagctgctgctgatggac







ctgctgtgcctgaccactggtgggccggcgccaagatcaagctgacaccgaccccgagaccaccgcctgatgggcatggagca







cgccctggtgatcatgaaccacaagaccgacctggactggatggtgggctggatcctgggccagcacctgggctgcctgggctc







catcctgtccatcgccaagaagtccaccaagacatccccgtgctgggctggtccgtgtggactccgagtacctgacctggagcgc







tcctgggccaaggacaagtccaccctgaagtcccacatggagaagctgaaggactaccccctgccataggctggtgatcacgt







ggagggcacccgatcacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgcaacgt







gctgatcccccacaccaagggcttcgtgtcctgcgtgtccaacatgcgctccttcgtgcccgccgtgtacgacgtgaccgtggcctt







ccccaagtcctcccccccccccaccatgctgaagctgacgagggccagtccatcgtgctgcacgtgcacatcaagcgccacgcc







ctgaaggacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacaagacgtggagaaggacgccctgctggacaa







gcacaacgccgaggacaccactccggccaggaggtgcaccacatcggccgccccatcaagtccctgctggtggtgatcgcctg







ggtggtggtgatcatcacggcgccctgaagacctgcagtggtcctccctgctgtccacctggaagggcaaggccactccgtgatc







ggcctgggcatcgccaccctgctgatgcacatgctgatcctgtcctcccaggccgagcgctccaaccccgccaaggtggccaag







TGA

ctcgag




CavigLPAAT1


SEQ ID NO: 103




ggtacc

ATGaccatcgcctccgccgccgtggtgttcctgttcggcatcctgctgttcacctccggcctgatcatcaacctgttccag







gccttctgctccgtgctggtgtggcccctgtccaagaacgcctaccgccgcatcaaccgcgtgttcgccgagttcctgcccctggag







ttcctgtggctgttccactggtgggccggcgccaagctgaagctgttcaccgaccccgagaccttccgcctgatgggcaaggagc







acgccctggtgatcatcaaccacaagatcgagctggactggatggtgggctgggtgctgggccagcacctgggctgcctgggctc







catcctgtccgtggccaagaagtccaccaagacctgcccgtgacggctggtccctgtggactccgagtacctgacctggagcgc







aactgggccaaggacaagaagaccctgaagtcccacatcgagcgcctgaaggactaccccctgccataggctgatcatcttcg







tggagggcacccgatcacccgcaccaagctgctggccgcccagcagtacgccgcctccgccggcctgcccgtgccccgcaac







gtgctgatcccccacaccaagggcttcgtgtcctccgtgtcccacatgcgctccttcgtgcccgccatctacgacgtgaccgtggcct







tccccaagacctcccccccccccaccatgctgaagctgacgagggccacttcgtggagctgcacgtgcacatcaagcgccacgc







catgaaggacctgcccgagtccgaggacgccgtggcccagtggtgccgcgacaagacgtggagaaggacgccctgctggac







aagcacaacgccgaggacaccactccggccaggaggtgcaccacgtgggccgccccatcaagtccctgctggtggtgatctcc







tgggtggtggtgatcatcacggcgccctgaagacctgcagtggtcctccctgctgtcctcctggaagggcatcgccactccgtgat







cggcctgggcaccgtggccctgctgatgcagatcctgatcctgtcctcccaggccgagcgctccatccccgccaaggagaccccc







gccaacctgaagaccgagctgtcctcctccaagaaggtgaccaacaaggagaacTGA

ctcgag




CavigLPAAT2


SEQ ID NO: 104




ggtacc

ATGgccatcgccgccgccgccgtgatcgtgcccgtgtccctgctgttcttcgtgtccggcctgatcgtgaacctggtgca







ggccgtgtgatcgtgctgatccgccccctgacaagaacacctaccgccgcatcaaccgcgtggtggccgagctgctgtggctgg







agctggtgtggctgatcgactggtgggccggcgtgaagatcaaggtgacaccgaccacgagaccaccacctgatgggcaagg







agcacgccctggtgatctgcaaccacaagtccgacatcgactggctggtgggctgggtgctggcccagcgctccggctgcctggg







ctccaccctggccgtgatgaagaagtcctccaagacctgcccgtgatcggctggtccatgtggactccgagtacctgacctggag







cgcaactgggccaaggacgagtccaccctgaagtccggcctgaaccgcctgaaggactaccccctgccataggctggccctgt







tcgtggagggcacccgatcacccgcgccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgca






acgtgctgatcccccgcaccaagggcttcgtgtcctccgtgtcccacatgcgctccttcgtgcccgccatctacgacgtgaccgtgg






ccatccccaagacctcccccccccccaccctgctgcgcatgacaagggccagtcctccgtgctgcacgtgcacctgaagcgcca







ccagatgaacgacctgcccgagtccgacgacgccgtggcccagtggtgccgcgacatcacgtggagaaggacgccctgctgg







acaagcacaacgccgaggacaccactccggccaggagctgcaggacaccggccgccccatcaagtccctgctgatcgtgatct







cctgggccgtgctggtggtgacggcgccgtgaagacctgcagtggtcctccctgctgtcctcctggaagggcctggccactccgg







catcggcctgggcgtgatcaccctgctgatgcacatcctgatcctgactcccagtccgagcgctccacccccgccaaggtggccc







ccgccaagcccaagatcgagggcgagtcctccaagaccgagatggagaaggagcacTGA

ctcgag




CpalLPAAT1


SEQ ID NO: 105




ggtacc

ATGgccatcgccgccgccgccgtgatcgtgcccctgggcctgctgttcttcgtgtccggcctgatcgtgaacctggtgca







ggccgtgtgcttcgtgctgatccgccccctgtccaagaacacctaccgccgcatcaaccgcgtggtggccgagctgctgtggctgg







agctggtgtggctgatcgactggtgggccggcgtgaagatcaaggtgttcaccgaccacgagaccctgtccctgatgggcaagg







agcacgccctggtgatctgcaaccacaagtccgacatcgactggctggtgggctgggtgctggcccagcgctccggctgcctggg







ctccaccctggccgtgatgaagaagtcctccaagttcctgcccgtgatcggctggtccatgtggttctccgagtacctgcccgagtcc







gacgacgccgtggcccagtggtgccgcgacatcttcgtggagaaggacgccctgctggacaagcacaacgccgaggacacctt







ctccggccaggagctgcaggacaccggccgccccatcaagtccctgctggtggtgatctcctgggccgtgctggtgatcttcggcg







ccgtgaagttcctgcagtggtcctccctgctgtcctcctggaagggcctggccttctccggcgtgggcctgggcatcatcaccctgct







gatgcacatcctgatcctgttctcccagtccgagcgctccacccccgccaaggtggcccccgccaagccaagaaggacggcga







gtcctccaagaccgagatcgagaaggagaacgttcctggagcgctcctgggccaaggacgagaacaccctgaagtccggcct







gaaccgcctgaaggactaccccctgcccUctggctggccctgttcgtggagggcacccgcttcacccgcgccaagctgctggcc







gcccagcagtacgccacctcctccggcctgcccgtgccccgcaacgtgctgatcccccgcaccaagggcttcgtgtcctccgtgtc







ccacatgcgctcatcgtgcccgccatctacgacgtgaccgtggccatccccaagacctcccccccccccaccatgctgcgcatgtt







caagggccagtcctccgtgctgcacgtgcacctgaagcgccacctgatgaaggacctTGA

ctcgag




CuPSR23 LPAAT2


SEQ ID NO: 106




ggtacc

ATGgccatcgccgccgccgccgtgatcttcctgttcggcctgatcttcttcgcctccggcctgatcatcaacctgttccag







gccctgtgcttcgtgctgatccgccccctgtccaagaacgcctaccgccgcatcaaccgcgtgttcgccgagctgctgctgtccgag







ctgctgtgcctgttcgactggtgggccggcgccaagctgaagctgttcaccgaccccgagaccttccgcctgatgggcaaggagc







acgccctggtgatcatcaaccacatgaccgagctggactggatggtgggctgggtgatgggccagcacttcggctgcctgggctc







catcatctccgtggccaagaagtccaccaagttcctgcccgtgctgggctggtccatgtggttctccgagtacctgtacctggagcg







ctcctgggccaaggacaagtccaccctgaagtcccacatcgagcgcctgatcgactaccccctgcccttctggctggtgatcttcgt







ggagggcacccgcttcacccgcaccaagctgctggccgcccagcagtacgccgtgtcctccggcctgcccgtgccccgcaacgt







gctgatcccccgcaccaagggcttcgtgtcctgcgtgtcccacatgcgctcatcgtgcccgccgtgtacgacgtgaccgtggccttc







cccaagacctcccccccccccaccctgctgaacctgttcgagggccagtccatcatgctgcacgtgcacatcaagcgccacgcca







tgaaggacctgcccgagtccgacgacgccgtggccgagtggtgccgcgacaagttcgtggagaaggacgccctgctggacaa







gcacaacgccgaggacaccttctccggccaggaggtgtgccactccggctcccgccagctgaagtccctgctggtggtgatctcc







tgggtggtggtgaccaccttcggcgccctgaagttcctgcagtggtcctcctggaagggcaaggccttctccgccatcggcctggg







catcgtgaccctgctgatgcacgtgctgatcctgtcctcccaggccgagcgctccaaccccgccgaggtggcccaggccaagctg







aagaccggcctgtccatctccaagaaggtgaccgacaaggagaacTGA

ctcgag




CkoeLPAAT1


SEQ ID NO: 107




ggtacc

ATGgccatccccgccgccgtggccgtgatccccatcggcctgctgttcatcatctccggcctgatcgtgaacctgatcca







ggccgtggtgtacgtgctgatccgccccctgtccaagaacctgcaccgcaagatcaacaagcccatcgccgagctgctgtggctg







gagctgatctggctggtggactggtgggccggcatcaaggtggaggtgtacgccgactcccagaccctggagctgatgggcaag







gagcacgccctgctgatctgcaaccaccgctccgacatcgactggctggtgggctgggtgctggcccagcgcgcccgctgcctgg







gctccgccctggccatcatgaagaagtccgccaagttcctgcccgtgatcggctggtccatgtggttctccgactacatcttcctgga







ccgcacctgggccaaggacgagaagaccctgaagtccggcttcgagcgcctggccgacttccccatgcccttctggctggccctg







ttcgtggagggcacccgcttcaccaaggccaagctgctggccgcccaggagtacgccgcctcccgcggcctgcccgtgccccag







aacgtgctgatcccccgcaccaagggcttcgtgaccgccgtgacccacatgcgctcctacgtgcccgccatctacgactgcaccg







tggacatctccaaggcccaccccgccccctccatcctgcgcctgatccgcggccagtcctccgtggtgaaggtgcagatcacccg






ccactccatgcaggagctgcccgagaccgccgacggcatctcccagtggtgcatggacctgttcgtgaccaaggacggcttcctg






gagaagtaccactccaaggacatcttcggctccctgcccgtgcagaacatcggccgccccgtgaagtccctgatcgtggtgctgtg







ctggtactgcctgatggccttcggcctgttcaagttcttcatgtggtcctccctgctgtcctcctgggagggcatcctgtccctgggcctg







atcctgctggccgtggccatcgtgatgcagatcctgatccagtccaccgagtccgagcgctccacccccgtgaagtccatccaga







aggacccctccaaggagaccctgctgcagaacTGA

ctcgag




CkoeLPAAT2


SEQ ID NO: 108




ggtacc

ATGcacgtgctgctggagatggtgaccttccgcttctcctccttcttcgtgttcgacaacgtgcaggccctgtgcttcgtgct







gatctggcccctgtccaagtccgcctaccgcaagatcaaccgcgtgttcgccgagctgctgctgtccgagctgctgtgcctgttcga







ctggtgggccggcgccaagctgaagctgttcaccgaccccgagaccttccgcctgatgggcaaggagcacgccctggtgatcac







caaccacaagatcgacctggactggatgatcggctggatcctgggccagcacttcggctgcctgggctccgtgatctccatcgcca







agaagtccaccaagttcctgcccatchcggctggtccctgtggttctccgagtacctgttcctggagcgcaactgggccaaggaca







agcgcaccctgaagtcccacatcgagcgcatgaaggactaccccctgcccctgtggctgatcctgttcgtggagggcacccgctt







cacccgcaccaagctgctggccgcccagcagtacgccgcctcctccggcctgcccgtgccccgcaacgtgctgatcccccacac







caagggcttcgtgtcctccgtgtcccacatgcgctcatcgtgcccgccgtgtacgacgtgaccgtggcchccccaagacctcccc







cccccccaccatgctgtccctgttcgagggccagtccgtggtgctgcacgtgcacatcaagcgccacgccatgaaggacctgccc







gactccgacgacgccgtggcccagtggtgccgcgacaagttcgtggagaaggacgccctgctggacaagcacaacgccgagg







acaccttctccggccaggaggtgcaccacgtgggccgccccatcaagtccctgctggtggtgatctcctggatggtggtgatcatct







tcggcgccctgaagttcctgcagtggtcctccctgctgtcctcctggaagggcaaggccttctccgccatcggcctgggcatcgcca







ccctgctgatgcacgtgctggtggtgttctcccaggccgaccgctccaaccccgccaaggtgccccccgccaagctgaacaccga







gctgtcctcctccaagaaggtgaccaacaaggagaacTGA

ctcgag




CprocLPAAT2


SEQ ID NO: 109




ggtacc

ATGgccatccccgccgccgtggccgtgatccccatcggcctgctgttcatcatctccggcctgatcgtgaacctgatcca







ggccgtggtgtacgtgctgatccgccccctgtccaagaacctgtaccgcaagatcaacaagcccatcgccgagctgctgtggctg







gagctgatctggctggtggactggtgggccggcatcaaggtggaggtgtacgccgactccgagaccctggagtccatgggcaag







gagcacgccctgctgatctgcaaccaccgctccgacatcgactggctggtgggctgggtgctggcccagcgcgcccgctgcctgg







gctccgccctggccatcatgaagaagtccgccaagttcctgcccgtgatcggctggtccatgtggttctccgactacatcttcctgga







ccgcacctgggagaaggacgagaagaccctgaagtccggcttcgagcgcctggccgachccccatgcccttctggctggccct







gttcgtggagggcacccgcttcaccaaggccaagctgctggccgcccaggagttcgccgcctcccgcggcctgcccgtgcccca







gaacgtgctgatcccccgcaccaagggcttcgtgaccgccgtgacccacatgcgctcctacgtgcccgccatctacgactgcacc







gtggacatctccaaggcccaccccgccccctccatcctgcgcctgatccgcggccagtcctccgtggtgaaggtgcagatcaccc







gccactccatgcaggagctgcccgagacccccgacggcatctcccagtggtgcatggacctgttcgtgaccaaggacgcttcct







ggagaagtaccactccaaggacatcttcggctccctgcccgtgcacgacatcggccgccccgtgaagtccctgatcgtggtgctgt







gctggtactccctgatggcchcggcactacaagttcttcatgtggtcctccctgctgtcctcctgggagggcatcctgtccctgggcct







ggtgctgatcgtgatcgccatcgtgatgcagatcctgatccagtcctccgagtccgagcgctccacccccgtgaagtccgtgcaga







aggacccctccaaggagaccctgctgcagaacTGA

ctcgag




CavigGPAT9


SEQ ID NO: 110




ggtacc

ATGgccaccggcggctccctgaagccctcctcctccgacctggacctggaccaccccaacatcgaggactacctgcc







ctccggctcctccatcaacgagcccgccggcaagctgcgcctgcgcgacctgctggacatctcccccaccctgaccgaggccgc







cggcgccatcgtggacgactcchcacccgctgatcaagtccatcccccgcgagccctggaactggaacctgtacctgttccccct







gtggtgcatcggcgtgctgatccgctacttcatcctgttccccggccgcgtgatcgtgctgaccatgggctggatcaccgtgatctcct







catcatcgccgtgcgcgtgctgctgaagggccacgacgccctgcagatcaagctggagcgcctgatcgtgcagctgctgtgctcc







tcatcgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgccccaagcaggtgtacgtggccaacc







acacctccatgatcgacttchcatcctggaccagatgaccgtgttctccgtgatcatgcagaagcaccccggctgggtgggcctgc







tgcagtccaccctgctggagtccgtgggctgcatctggacgaccgcgccgaggccaaggaccgcggcatcgtggccaagaagc







tgtgggaccacgtgcacggcgagggcaacaaccccctgctgatchccccgagggcacctgcgtgaacaacaactactccgtga







tgttcaagaagggcgcchcgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatchcgtggacgcatctgg







aactccaagaagcagtcchcacccgccacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacttggagcc






ccagaccctgaagcccggcgagacccccatcgagttcgccgagcgcgtgcgcgacatcatctccgcccgcgccggcctgaaga






aggtgccctgggacggctacctgaagtactcccgcccctcccccaagcaccgcgagcgcaagcagcagacchcgccgagtcc







gtgctgcagcgcctggaggagTGA

ctcgag




ChookGPAT9-1


SEQ ID NO: 111




ggtacc

ATGgccaccgccggctccctgaagccctcccgctccgagctggacttcgaccgccccaacatcgaggactacctgcc







ctccggctcctccatcatcgagcccgccggcaagctgcgcctgcgcgacctgctggacatctcccccaccctgaccgaggccgcc







ggcgccatcgtggacgactcatcacccgctgatcaagtccaacccccccgagccctggaactggaacatctacctgttccccct







gtggtgatcggcgtgctgatccgctacctgatcctgttccccgcccgcgtgatcgtgctgaccatcggctggatcatatcctgtcctc







atcatccccgtgcacctgctgctgaagggccacgacgccctgcgcatcaagctggagcgcctgctggtggagctgatctgctcat







atcgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgccccaagcaggtgtacgtggccaaccac







acctccatgatcgacttatcatcctggaccagatgaccgtgttctccgtgatcatgcagaagcaccccggctgggtgggcctgctg







cagtccaccctgctggagtccgtgggctgcatctggttcgaccgcgccgaggccaaggaccgcggcatcgtggccaagaagctg







tgggaccacgtgcacggcgagggcaacaaccccctgctgatatccccgagggcacctgcgtgaacaacaactactccgtgatg







ttcaagaagggcgcatcgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatatcgtggacgcatctggaa







ctccaagaagcagtcatcacccgccacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacttggagcccc







agaccctgaagcccggcgagacccccatcgagttcgccgagcgcgtgcgcgacatcatctccgtgcgcgccggcctgaagaag







gtgccctgggacggctacctgaagtactcccgcccctcccccaagcacaccgagcgcaagcagcagaacttcgccgagtccgt







gctgcagcgcctggagaagaagTGA

ctcgag




CignGPAT9-1


SEQ ID NO: 112




ggtacc

ATGgccaccggcggccgcctgaagccctcctcctccgagctggacctggaccgcgccaacaccgaggactacctgc







cctccggctcctccatcaacgagcccgtgggcaagctgcgcctgcgcgacctgctggacatctcccccaccctgaccgaggccg







ccggcgccatcgtggacgactcatcacccgctgatcaagtccatcccccccgagccctggaactggaacatctacctgttccccc







tgtggtgatcggcgtgctgatccgctacttcatcctgttccccgcccgcgtgatcgtgctgaccatcggctggatcaccgtgatctcct







catcaccgccgtgcgatcctgctgaagggccacaacgccctgcagatcaagctggagcgcctgatcgtgcagctgctgtgctcc







tcatcgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgccccaagcaggtgtacgtggccaacc







acacctccatgatcgacttcctgatcctggaccagatgaccgtgttctccgtgatcatgcagaagcaccccggctgggtgggcctg







ctgcagtccaccctgctggagtccgtgggctgcatctggttcaaccgcgccgaggccaaggaccgcgagatcgtggccaagaag







ctgtgggaccacgtgcacggcgagggcaacaaccccctgctgatatccccgagggcacctgcgtgaacaaccactactccgtg







atgttcaagaagggcgcatcgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatatcgtggacgcatctg







gaactcccgcaagcagtcatcaccatgcacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacttggagc







cccagaccctgaagcccggcgagaccgccatcgagttcgccgagcgcgtgcgcgacatcatctccgtgcgcgccggcctgaag







aaggtgccctgggacggctacctgaagtactcccgcccctcccccaagcaccgcgagtccaagcagcagtcatcgccgagtcc







gtgctgcgccgcctggaggagaagTGA

ctcgag




CignGPAT9-2


SEQ ID NO: 113




ggtacc

ATGgccaccggcggccgcctgaagccctcctcctccgagctggacctggaccgcgccaacaccgaggactacctgc







cctccggctcctccatcaacgagcccgtgggcaagctgcgcctgcgcgacctgctggacatctcccccaccctgaccgaggccg







ccggcgccatcgtggacgactcatcacccgctgatcaagtccatcccccccgagccctggaactggaacatctacctgttccccc







tgtggtgatcggcgtgctgatccgctacttcatcctgttccccgcccgcgtgatcgtgctgaccatcggctggatcaccgtgatctcct







catcaccgccgtgcgatcctgctgaagggccacaacgccctgcagatcaagctggagcgcctgatcgtgcagctgctgtgctcc







tcatcgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgccccaagcaggtgtacgtggccaacc







acacctccatgatcgacttcctgatcctggaccagatgaccgtgttctccgtgatcatgcagaagcaccccggctgggtgggcctg







ctgcagtccaccctgctggagtccgtgggctgcatctggttcaaccgcgccgaggccaaggaccgcgagatcgtggccaagaag







ctgtgggaccacgtgcacggcgagggcaacaaccccctgctgatatccccgagggcacctgcgtgaacaaccactactccgtg







atgttcaagaagggcgcatcgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatatcgtggacgcatctg







gaactccaagaagcactcatcacccgccacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacttggagc







cccagaccctgaagcccggcgagacccccatcgagttcgccgagcgcgtgcgcgacatcatctccgtgcgcgccgacctgaag







aaggtgccctgggacggctacctgaagtactcccgcccctcccccaagcaccgcgagcgcaagcagcagaagttcgccgagtc







cgtgctgcgccgcctggaggagaagTGA

ctcgag




CpalGPAT9-1


SEQ ID NO: 114




ggtacc

ATGgccaccgccggccgcctgaagccctcctcctccgagctggagctggacctggaccgcccaacatcgaggact







acctgccctccggctcctccatcaacgagcccgccggcaagctgcgcctgcgcgacctgctggacatctcccccatgctgaccga







ggccgccggcgccatcgtggacgactccacacccgctgatcaagtccatcccccccgagccctggaactggaacatctacctgt







tccccctgtggtgatcggcgtgctgatccgctacctgatcctgaccccgcccgcgtgatcgtgctgaccgtgggctggatcaccgtg







atctcctccacatcaccgtgcgcacctgctgaagggccacgactccctgcgcatcaagctggagcgcctgatcgtgcagctgttct







gctcctccacgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgcccccagcaggtgtacgtggcc







aaccacacctccatgatcgacttcatcatcctgaaccagatgaccgtgactccgccatcatgcagaagcaccccggctgggtggg







cctgatccagtccaccatcctggagtccgtgggctgcatctggacaaccgcgccgaggccaaggaccgcgagatcgtggccaa







gaagctgctggaccacgtgcacggcgagggcaacaaccccctgctgatcaccccgagggcacctgcgtgaacaaccactactc







cgtgatgacaagaagggcgccacgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatcacgtggacgcct







tctggaactccaagaagcagtccacaccatgcacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacagg







agccccagaccctgaagcccggcgagacccccatcgagacgccgagcgcgtgcgcgacatcatctccgtgcgcgccggcctg







aagaaggtgccctgggacggctacctgaagtactcccgcccctcccccaagcaccgcgagcgcaagcagcagtccacgccga







gtccgtgctgcgccgcctggagaagcgcTGA

ctcgag




CpalGPATt9-2


SEQ ID NO: 115




ggtacc

ATGgccaccgccggccgcctgaagccctcctcctccgagctggagctggacctggaccgccccaacatcgaggact







acctgccctccggctcctccatcaacgagcccgccggcaagctgcgcctgcgcgacctgctggacatctcccccatgctgaccga







ggccgccggcgccatcgtggacgactccacacccgctgatcaagtccatcccccccgagccctggaactggaacatctacctgt







tccccctgtggtgatcggcgtgctgatccgctacctgatcctgaccccgcccgcgtgatcgtgctgaccgtgggctggatcaccgtg







atctcctccacatcaccgtgcgcacctgctgaagggccacgactccctgcgcatcaagctggagcgcctgatcgtgcagctgttct







gctcctccacgtggcctcctggaccggcgtggtgaagtaccacggcccccgcccctccatccgcccccagcaggtgtacgtggcc







aaccacacctccatgatcgacttcatcatcctgaaccagatgaccgtgactccgccatcatgcagaagcaccccggctgggtggg







cctgatccagtccaccatcctggagtccgtgggctgcatctggacaaccgcgccgaggccaaggaccgcgagatcgtggccaa







gaagctgctggaccacgtgcacggcgagggcaacaaccccctgctgatcaccccgagggcacctgcgtgaacaaccactactc







cgtgatgacaagaagggcgccacgagctgggctgcaccgtgtgccccgtggccatcaagtacaacaagatcacgtggacgcct







tctggaactccaagaagctgtcatcaccatgcacctgctgcagctgatgacctcctgggccgtggtgtgcgacgtgtggtacagg







agccccagaccctgaagcccggcgagacccccatcgagacgccgagcgcgtgcgcgacatcatctccgtgcgcgccggcctg







aagaaggtgccctgggacggctacctgaagtactcccgcccctcccccaagcaccgcgagcgcaagcagcagaccacgccg







agtccgtgctgcgccgcctggaggagaagggcaacgtggtgcccaccgtgaacTGA

ctcgag




CavigDGAT1


SEQ ID NO: 116




ggtacc

ATGgccatcgccgacggcggcatcatcggcgccgccggctccatctccgccctgaccgccgacaccgaccccccct







ccctgcgccgccgcaacgtgcccgccggccaggcctccgccgtgtccgccactccaccgagtccatggccaagcacctgtgcga







cccctcccgcgagccctccccctcccccaagtcctccgacgacggcaaggaccccgacatcggctccgtggactccctgaacga







gaagccctcctcccccgccgccggcaagggccgcctgcagcacgacctgcgcttcacctaccgcgcctcctcccccgcccaccg







caaggtgaaggagtcccccctgtcctcctccaacatcacaagcagtcccacgccggcctgacaacctgtgcgtggtggtgctggt







ggccgtgaactcccgcctgatcatcgagaacctgatgaagtacggcctgctgatcaagaccggataggactcctcccgctccct







gcgcgactggcccctgacatgtgctgcctgtccctgcccatcaccccctggccgccacctggtggagaagctggcccagaagaa







ccgcctgcaggagcccaccgtggtgtgctgccacgtgctgatcacctccgtgtccatcctgtaccccgtgctggtgatcctgcgctg







cgactccgccgtgctgtccggcgtggccctgatgctgacgcctgcatcgtgtggctgaagctggtgtcctacgcccactccaactac







gacatgcgctacgtggccaagtccctggacaagggcgagcccgtggtggactccgtgatcgccgaccacccctaccgcgtgga







ctacaaggacctggtgtacttcatggtggcccccaccctgtgctaccagctgtcctaccccctgaccccctgcgtgcgcaagtcctg







gatcgcccgccaggtgatgaagctggtgctgacaccggcgtgatgggatcatcgtggagcagtacatcaaccccatcgtgcag







aactccaagcaccccctgaagggcgacctgctgtacgccatcgagcgcgtgctgaagctgtccgtgcccaacctgtacgtgtggc







tgtgcatgactactgatcaccacctgtggctgaacatcctggccgagctgatctgatcggcgaccgcgagactacaaggactgg







tggaacgccaagaccgtggaggagtactggcgcatgtggaacatgcccgtgcacaagtggatggtgcgccacatctacacccct







gcctgcgcaacggcatcccccgcggcgtggccgtgctgatcgccacctggtgtccgccgtgaccacgagctgtgcatcgccgtgc







cctgccacgtgttcaagctgtgggcchcatcggcatcatgttccaggtgcccctggtgctggtgtccaactgcctgcagaagaagtt







ccagtcctccatggccggcaacatgttatctgghcatchctgcatchcggccagcccatgtgcgtgctgctgtactaccacgacct







gatgaaccgcaagggctccgcatcgacTGA

ctcgag




ChookDGAT1-1


SEQ ID NO: 117




ggtacc

ATGgccatcgccgacggcggctccgccggcgccgccggctccatctccggctccgacccctccccctccaccgcccc







ctccctgcgccgccgcaacgcctccgccggccaggcchaccaccgagtccatggcccgcgacctgtgcgacccctcccgcga







gccctccctgtcccccaagtcctccgacgacggcaaggaccccgccgacgacatcggcgccgccgactccgtggactccggcg







gcgtgaaggacgagaagccctcctcccaggccgccgccaaggcccgcctggagcacgacctgcgatcacctaccgcgcctcc







tcccccgcccaccgcaaggtgaaggagtcccccctgtcctcctccaacatchcaagcagtcccacgccggcctgttcaacctgtg







cgtgggtggtgctggtggccgtgaactcccgcctgatcatcgagaacctgatgagtacggcctgctgataagaccggcttctggtt







ctcctcccgctccctgcgcgactggcccctgttcatgtgctgcctgtccctgcccatcaccccctggccgcchcctggtggagaagc







tggcccagaagaaccgcctgcaggagcccaccgtggtgtgctgccacgtgatcatcacctccgtgtccatcctgtaccccgtgctg







gtgatcctgcgctgcgactccgccgtgctgtccggcgtggccctgatgctgttcgcctgcatcgtgtggctgaagctggtgtcctacg







cccacgccaactacgacatgcgctccgtggccaagtccctggacaagggcgagaccgtggccgactccgtgatcgtggaccac







ccctaccgcgtggactacaaggacctggtgtacttcatggtggcccccaccctgtgctaccagctgtcctaccccctgaccccctac







gtgcgcaagtcctgggtggcccgccaggtgatgaagctggtgctgttcaccggcgtgatgggchcatcgtggagcagtacatcaa







ccccatcgtgcagaactccaagcaccccctgaagggcgacctgctgtacgccatcgagcgcgtgctgaagctgtccgtgcccaa







cctgtacgtgtggctgtgcatgttctactgatchccacctgtggctgaacatcctggccgagctgacctgatcggcgaccgcgagt







tctacaaggactggtggaacgccaagaccgtggaggagtactggcgcatgtggaacatgcccgtgcacaagtggatggtgcgc







cacatctacttcccctgcctgcgcaacggcatcccccgcggcgtggccgtgctgatcgcchcctggtgtccgccgtgttccacgag







ctgtgcatcgccgtgccctgccacgtgttcaagctgtgggcchcatcggcatcatgttccaggtgcccctggtgctggtgtccaactg







cctgcagaagaagttccagtcctccatggccggcaacatgttatctgghcatchctgcatchcggccagcccatgtgcgtgctgct







gtactaccacgacctgatgaaccgaagggctcccgcatcgacTGA

ctcgag




CavigLPCAT


SEQ ID NO: 118



ggtaccATGggcctggtgtccgtggccgccgccatcggcgtgtccgtgcccgtggcccgcttcctgctgtgcttcctggccaccat







ccccgtgtcchcctgtggcgcctggtgcccggccgcctgcccaagcacctgtactccgccgcctccggcgccatcctgtcctacct







gtcatcggcgcctcctccaacctgcacttcatcgtgcccatgaccctgggctacctgtccatgctgttchccgcccatctccggcct







gctgaccttcttcctgggcttcggctacctgatcggctgccacgtgtactacatgtccggcgacgcctggaaggagggcggcatcg







acgccaccggcgccctgatggtgctgaccctgaaggtgatctcctgctccatgaactacaacgacggcctgctgaaggaggagg







gcctgcgcgagtcccagaagaagaaccgcctgaccaagatgccctccctgatcgagtacttcggctactgcctgtgctgcggctc







ccacttcgccggccccgtgtacgagatgaaggactacctggagtggaccgagggcaagggcatctggtcccgctcccagaagg







agcccaagccctccccatcggcggcgccctgcgcgccatcatccaggccgccgtgtgcatggccatgtacctgtacctggtgccc







caccaccccctgacccgatcaccgagcccgtgtactacgagtggggcttchccgccgcctgtcctaccagtacatggccgccctg







accgcccgctggaagtactacttcatctggtccatctccgaggcctccctgatcatctccggcctgggcttctccggctggaccgagt







cctccccccccaagccccgctgggaccgcgccaagaacgtggacatcatcggcgtggagttcgccaagtcctccgtgcagctgc







ccctggtgtggaacatccaggtgtccatctggctgcgccactacgtgtacgaccgcctggtgcagaacggcaagcgccccggat







caccagctgctggccacccagaccgtgtccgccgtgtggcacggcctgtaccccggctacatcatchatcgtgcagtccgccctg







atgatcgccggctcccgcgtgatctaccgctggcagcaggcggtgcccccaagatgggcctggtgaagaacatcttcgtgttctt







caacttcgcctacaccctgctggtgctgaactactccgccgtgggchcatggtgctgtccatgcacgagaccctggcctcctacgg







ctccgtgtactacatcggcaccatcctgcccatcaccctgatcctgctgtcctacgtgatcaagcccggcaagcccgcccgctccaa







ggcccacaaggagcagTGA

ctcgag




CpalLPCAT


SEQ ID NO: 119




ggtacc

ATGgagctgggctccgtggccgccgccatcggcgtgtccgtgcccgtggcccgcttcctgctgtgcttcctggccaccat







ccccgtgtcchcctgtggcgcctggtgcccggccgcctgcccaagcacctgtactccgccgcctccggcgccatcctgtcctacct







gtccttcggcccctcctccaacctgcacttcatcgtgcccatgaccctgggctacctgtccatgctgttcttccgccccttctcggcct







gctgaccttcttcctgggcttcggctacctgatcggctgccacgtgtactacatgtccggcgacgcctggaaggagggcggcatcg







acgccaccggcgccctgatggtgctgaccctgaaggtgatctcctgctccatcaactacaacgacggcctgctgaaggaggagg






gcctgcgcgagtcccagaagaagaaccgcctgaccaagatgccctccctgatcgagtacatcggctactgcctgtgctgcggctc






ccacttcgccggccccgtgtacgagatgaaggactacctggagtggaccgagggcaagggcgtgtggtcccactccgagaagg







agcccaagccctccccatcggcggcgccctgcgcgccatcatccaggccgccgtgtgcatggccatgtacatgtacctggtgccc







caccaccccctgtcccgatcaccgagcccgtgtactacgagtggggcacttccgccgcctgtcctaccagtacatggccggcctg







accgcccgctggaagtactacttcatctggtccatctccgaggcctccctgatcatctccggcctgggcttctccggctggaccgagt







cctccccccccaagccccgctgggaccgcgccaagaacgtggacatcatcggcgtggagttcgccaagtcctccgtgcagctgc







ccctggtgtggaacatccaggtgtccacctggctgcgccactacgtgtacgaccgcctggtgcagaacggcaagcgccccggat







caccagctgctggccacccagaccgtgtccgccatctggcacggcctgtaccccggctacatcatatatcgtgcagtccgccctg







atgatcgccggctcccgcgtgatctaccgctggcagcaggccgtgccccccaagatgggcctggtgaagaacatcttcgtgttctt







caacttcgcctacaccctgctggtgctgaactactccgccgtgggatcatggtgctgtccatgcacgagaccctggcctcctacgg







ctccgtgtactacatcggcaccatcctgcccatcaccctgatcctgctgtcctacgtgatcaagcccggcaagcccgcccgctccaa







ggcccacaaggagcagTGA

ctcgag




CpauLPCAT


SEQ ID NO: 120




ggtacc

ATGgagctggagatcggctccgtggccgccgccatcggcgtgtccgtgcccgtggcccgcttcctgctgtgcttcctgg







ccaccatccccgtgtccttcctgtgccgcctgctgcccgcccgcctgcccaagcacctgtactccgccgcctccggcgccatcctgt







cctacctgtccttcggcccctcctccaacctgcacttcatcgtgcccatgtccctgggctacctgtccatgctgttcttccgccccttctcc







ggcctgctgaccttcttcctgggcttcggctacctgatcggctgccacgtgtactacatgtccggcgacgcctggaaggagggcgg







catcgacgccaccggcgccctgatggtgctgaccctgaaggtgatctcctgctccatcaactacaacgacggcctgctgaaggag







gagggcctgcgcgagtcccagaagaagaaccgcctgaccaagatgccctccctgatcgagtacttcggctactgcctgtgctgcg







gctcccacttcgccggccccgtgtacgagatgaaggactacctggagtggaccgagggcaagggcatctggtcccgctccgaga







aggaccccaagccctccccatcggcggcgccctgcgcgccatcatccaggccgccgtgtgcatggccatgcacatgtacctggt







gccccaccaccccctgacccgcttcaccgagcccgtgtactacgagtggggcttcttccgccgcctgtcctaccagtacatggccg







cccagaccgcccgctggaagtactacttcatctggtccatctccgaggcctccctgatcatctccggcctgggcttctccggctggac







cgagtcctccccccccaagccccgctgggacaaggccaagaacgtggacatcatcggcgtggagttcgccaagtcctccgtgca







gctgcccctggtgtggaacatccaggtgtccacctggctgcgccactacgtgtacgaccgcctggtgcagaacggcaagcgccc







cggcttcttccagctgctggccacccagaccgtgtccgccgtgtggcacggcctgtaccccggctacatcatcttcttcgtgcagtcc







gccctgatgatcgccggctcccgcgtgatctaccgctggcagcaggccgtgccccagaagatgggcctggtgaagaacatcttcg







tgttcttcaacttcgcctacaccctgctggtgctgaactactccgccgtgggcttcatggtgctgtccatgcacgagaccctggcctcc







tacggctccgtgtactacatcggcaccatcctgcccatcaccctgatcctgctgtcctacgtgatcaagcccggcaagcccacccg







ctccaaggtgcacaaggagcagTGA

ctcgag




CschuLPCAT


SEQ ID NO: 121




ggtacc

ATGgagctggagatggagcccctggccgccgccatcggcgtgtccgtggccgtgttccgcttcctggtgtgcttcatcg







ccaccatccccgtgtccttcatctgccgcctggtgcccggcggcctgccccgccacctgttctccgccgcctccggcgccgtgctgtc







ctacctgtccttcggcttctcctccaacctgcacttcctggtgcccatgaccctgggctacctgtccatgatcctgttccgccgcttctgc







ggcatcctgaccttcttcctgggcttcggctacctgatcggctgccacgtgtactacatgtccggcgacgcctggaaggagggcgg







catcgacgccaccggcgccctgatggtgctgaccctgaaggtgatctcctgctccatcaactacaacgacggcctgctgaaggag







gagggcctgcgcgagtcccagaagaagaaccgcctgatccgcctgccctccctgatcgagtacttcggctactgcctgtgctgcg







gctcccacttcgccggccccgtgtacgagatgaaggactacctggactggaccgagggcaagggcatctggtcccactccgaga







agggccccaagccctcccccctgcgcgccgccctgcgcgccatcatccaggccggcttctgcatggccatgtacctgtacctggtg







ccccactaccccctgacccgcttcaccgaccccgtgtactacgagtggggcatcctgcgccgcctgtcctaccagtacatggcctc







cttcaccgcccgctggaagtactacttcatctggtccatctccgaggcctccctgatcatctccggcctgggcttctccggctggacc







gagtcctccccccccaagccccgctgggaccgcgccaagaacgtggacatcctgggcgtggagctggccaagtcctccgtgca







gatccccctggtgtggaacatccaggtgtccacctggctgcgccactacgtgtacgaccgcctggtgcagaacggcaagcgccc







cggatcctgcagctgctggccacccagaccgtgtccgccatctggcacggcgtgtaccccggctacctgatcacttcgtgcagtcc







gccctgatgatcgccggctcccgcgccatctaccgctggcagcaggccgtgccccccaagatgtccctggtgaagaacaccctg







gtgacttcaacttcgcctacaccctgctggtgctgaactactccgccgtgggatcatggtgctgtccatgcacgagaccctggcctc






ctacggctccgtgtactacgtgggcaccatcctgcccgtgaccctgatcctgctgggctacgtgatcaagcccggcaagtcccccc






gctccaaggcctccaaggagcagTGA

ctcgag




CavigPLA2-1


SEQ ID NO: 122




ggtacc

ATGaacttcgacttcctgtccaacatcccctggttcggcgccaaggcctccgacaacgccggctcctccttcggctccg







ccaccatcgtgatccagcagcccccccccgtgtcccgcggatcgacatccgccactggggctggccctggtccgtgctgtccgtg







ctgccctggggcaagcccggctgcgacgagctgcgcgccccccccaccaccatcaaccgccgcctgaagcgcaacgccacct







ccatgcactcctccgccgtgcgcggcaacgccgaggccgcccgcgtgcgcaccgcccctacgtgtccaaggtgccctggcaca







ccggcaccgcggcctgctgtcccagctgacccccgctacggccactactgcggccccaactggtcctccggcaagaacggcgg







ctcccccgtgtgggaccagcgccccatcgactggctggactactgctgctactgccacgacatcggctacgacacccacgacca







ggccaagctgctggaggccgacctggccacctggagtgcctggagcgcccctcctaccccaccaagggcgacgcccacgtgg







cccacatgtacaagaccatgtgcgtgaccggcctgcgcaacgtgctgatcccctaccgcacccagctgctgcgcctgaactcccg







ccagcccctgatcgacttcggctggctgtccaacgccgcctggaagggctggaacgcccagaagtccTGA

ctcgag




CignPLA2-1


SEQ ID NO: 123




ggtacc

ATGaacctggacttcctgtccaagatcccctggttcgaggccaaggcctccgagaaccccggcctgaacctgggctcc







accaccatcgtgatcaagcagccccgccagggatcgacatccgccactggggctggccctggtccgtgctgacctggggcaac







cgcgtgaccgacgaggtgcacgccccccccaccaccatcaaccgccgcctgaagcgcaacgccaccggccccgccgtgcag







ggcgacaccgaggccgcccgcctgcgcaccgcccctacgtgtccaaggtgccctggcacaccggcaccgcggcctgctgtccc







agctgacccccgctacggccactactgcggccccaactggtcctccggcaagaacggcggctcccccgtgtgggaccagcgcc







ccatcgactggctggactactgctgctactgccacgacatcggctacgacacccacgaccaggccaagctgctggaggccgacc







tggccacctggagtgcctggagcgcccctcctaccccaccaccggcgacgcccacgtggcccacatgtacaagaccatgtgcgt







gaccggcctgcgcaacgtgctgatcccctaccgcacccagctgctgcgcctgaacttccgccagcccctgatcgacttcggctggc







tgtccaacgccgcctggaagggctggtccgcccagaagaccTGA

ctcgag




CuPSR23PLA2-2


SEQ ID NO: 124




ggtacc

ATGgtgcacctgccccacaccctgaagctgggcctggtgatcgccatctccatctccggcctgtgcttctcctccacccc







cgcccgcgccctgaacgtgggcatccaggccgccggcgtgaccgtgtccgtgggcaagggctgctcccgcaagtgcgagtccg







acactgcaaggtgccccccacctgcgctacggcaagtactgcggcctgatgtactccggctgccccggcgagaagccctgcgac







ggcctggacgcctgctgcatgaagcacgacgcctgcgtgcaggccaagaacaacgactacctgtcccaggagtgctcccagaa







cctgctgaactgcatggcctccaccgcatgtccggcggcaagcagacaagggctccacctgccaggtggacgaggtggtggac







gtgctgaccgtggtgatggaggccgccctgctggccggccgctacctgcacaagcccTGA

ctcgag




CprocPLA2-2


SEQ ID NO: 125




ggtacc

ATGgtgcacctgccccacaccctgaagctgggcctggtgatcgccatctccatctccggcctgtgcctgtcctccacccc







cgcccgcgccctgaacgtgggcatccaggccgccggcgtgaccgtgtccgtgggcaagggctgctcccgcaagtgcgagtccg







acactgcaaggtgccccccacctgcgctacggcaagtactgcggcctgatgtactccggctgccccggcgagaagccctgcgac







ggcctggacgcctgctgcatgaagcacgacgcctgcgtgcaggccaagaacgacgactacctgtcccaggagtgctcccagaa







cctgctgaactgcatggcctccaccgcatgtccggcggcaagcagacaagggctccacctgccaggtggacgaggtggtggac







gtgctgaccgtggtgatggaggccgccctgctggccgccgctacctgcacaagcccTGA

ctcgag







Nucleotide sequence of transforming DNA contained in pSZ5654


PmKASII


SEQ ID NO: 126




gtttaaac

gccggtcaccacccgcatgctcgtactacagcgcacgcaccgcttcgtgatccaccgggtgaacgtagtcctcgacgg







aaacatctggttcgggcctcctgcttgcactcccgcccatgccgacaacctttctgctgttaccacgacccacaatgcaacgcgaca







cgaccgtgtgggactgatcggttcactgcacctgcatgcaattgtcacaagcgcttactccaattgtattcgtttgttttctgggagc







agttgctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtggcctgggtgtttcgtcgaaaggccagcaaccctaaatcg







caggcgatccggagattgggatctgatccgagtttggaccagatccgccccgatgcggcacgggaactgcatcgactcggcgcgg







aacccagctttcgtaaatgccagattggtgtccgatacctggatttgccatcagcgaaacaagacttcagcagcgagcgtatttgg







cgggcgtgctaccagggttgcatacattgcccatttctgtctggaccgctttactggcgcagagggtgagttgatggggttggcagg







catcgaaacgcgcgtgcatggtgtgcgtgtctgttttcggctgcacgaattcaatagtcggatgggcgacggtagaattgggtgtg







gcgctcgcgtgcatgcctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccatcttgctaacgctcccgactc








embedded image





gccactgcttcggcgcccgcctgcccaccgcctcccgccgcgccgtgcgccgcgcctggtcccgcatcgcccggggcgcgccac







cgccgccgccgacgccaaccccgcccgccccgagcgccgcgtggtgatcaccggccagggcgtggtgacctccctgggccag







accatcgagcagttctactcctccctgctggagggcgtgtccggcatctcccagatccagaagttcgacaccaccggctacacc







accaccatcgccggcgagatcaagtccctgcagctggacccctacgtgcccaagcgctgggccaagcgcgtggacgacgtga







tcaagtacgtgtacatcgccggcaagcaggccctggagtccgccggcctgcccatcgaggccgccggcctggccggcgccgg







cctggaccccgccctgtgcggcgtgctgatcggcaccgccatggccggcatgacctccttcgccgccggcgtggaggccctgac







ccgcggcggcgtgcgcaagatgaaccccttctgcatccccttctccatctccaacatgggcggcgccatgctggccatggacatc







ggcttcatgggccccaactactccatctccaccgcctgcgccaccggcaactactgcatcctgggcgccgccgaccacatccgcc







gcggcgacgccaacgtgatgctggccggcggcgccgacgccgccatcatcccctccggcatcggcggcttcatcgcctgcaag







gccctgtccaagcgcaacgacgagcccgagcgcgcctcccgcccctgggacgccgaccgcgacggcttcgtgatgggcgagg







gcgccggcgtgctggtgctggaggagctggagcacgccaagcgccgcggcgccaccatcctggccgagctggtgggcggcg







ccgccacctccgacgcccaccacatgaccgagcccgacccccagggccgcggcgtgcgcctgtgcctggagcgcgccctggag







cgcgcccgcctggcccccgagcgcgtgggctacgtgaacgcccacggcacctccacccccgccggcgacgtggccgagtaccg







cgccatccgcgccgtgatcccccaggactccctgcgcatcaactccaccaagtccatgatcggccacctgctgggcggcgccgg







cgccgtggaggccgtggccgccatccaggccctgcgcaccggctggctgcaccccaacctgaacctggagaaccccgcccccg







gcgtggaccccgtggtgctggtgggcccccgcaaggagcgcgccgaggacctggacgtggtgctgtccaactccttcggcttc







ggcggccacaactcctgcgtgatcttccgcaagtacgacgagATGGACTACAAGGACCACGACGGCGACTACAA








embedded image





cactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcc







tcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctc







gtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgca







cagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggga







tgggaacacaaatggagagctccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcg






gcatacaccacaataaccacctgacgaatgcgcttggttcttcgtccattagcgaagcgtccgttcacacacgtgccacgttggcg




embedded image






embedded image






embedded image






embedded image









embedded image








cacgatcgggacgctgcgcaaggccatccccgcgcactgtttcgagcgctcggcgcttcgtagcagcatgtacctggcctttg







acatcgcggtcatgtccctgctctacgtcgcgtcgacgtacatcgaccctgcaccggtgcctacgtgggtcaagtacggcatc







atgtggccgctctactggttcttccaggtgtgtttgagggttttggttgcccgtattgaggtcctggtggcgcgcatggaggag







aaggcgcctgtcccgctgacccccccggctaccctcccggcaccttccagggcgcgtacgagaagaaccagtagagcggcca







catgatgccgtacttgacccacgtaggcaccggtgcagggtcgatgtacgtcgacgcgacgtagagcagggacatgaccg







cgatgtcaaaggccaggtacatgctgctacgaagcgccgagcgctcgaaacagtgcgcggggatggccttgcgcagcgtc







ccgatcgtgaacggaggcttctccacaggctgcctgttcgtcttgatagccat

ctcgaggcagcagcagctcggatagtatcga








cacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacag







cctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccc







tcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg







cacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgg







gatgggaacacaaatggaaagctgtagagctcgatctaagtaagattcgaagcgctcgaccgtgccggacggactgcagccccat






gtcgtagtgaccgccaatgtaagtgggctggcgtttccctgtacgtgagtcaacgtcactgcacgcgcaccaccctctcgaccggca







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctgcgacgtctccgagcagctgctgc







tggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtacatcatcctggacgactgctggtcctcc







ggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatgggccacgtcgccgaccacctgcaca







acaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggctccctgggccgcgaggagg







aggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaagggccagttcggcacgcc







cgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatcttctactccctgtgcaactg







gggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgc







gccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctccatcatgaacatcctga







acaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaac







ctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaaca







acctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcg







cgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccggccccctggacaacggc







gaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggaggagatcttcttcgactccaac







ctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacggcgtccgccat







cctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacggcctgtccaagaacgac







acccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacggcatcgcgttct








embedded image





ttactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgcaattaattgtgtgatgaagaaagggtggcacaaga







tggatcgcgaatgtacgagatcgacaacgatggtgattgttatgaggggccaaacctggctcaatcttgtcgcatgtccggcgcaat







gtgatccagcggcgtgactctcgcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactgatcgcattgccatcccgtcaa







ctcacaagcctactctagctcccattgcgcactcgggcgcccggctcgatcaatgttctgagcggagggcgaagcgtcaggaaatcg







tctcggcagctggaagcgcatggaatgcggagcggagatcgaatcaggatcc
ttagggagcgacgagtgtgcgtgcggggctggc







gggagtgggacgccctcctcgctcctctctgttctgaacggaacaatcggccaccccgcgctacgcgccacgcatcgagcaacga







agaaaaccccccgatgataggttgcggtggctgccgggatatagatccggccgcacatcaaagggcccctccgccagagaagaa







gctcctttcccagcagactccttctgctgccaaaacacttctctgtccacagcaacaccaaaggatgaacagatcaacttgcgtctc







cgcgtagcttcctcggctagcgtgcttgcaacaggtccctgcactattatcttcctgctttcctctgaattatgcggcaggcgagcgct







cgctctggcgagcgctccttcgcgccgccctcgctgatcgagtgtacagtcaatgaatggtcctgggcgaagaacgagggaatttg







tgggtaaaacaagcatcgtctctcaggccccggcgcagtggccgttaaagtccaagaccgtgaccaggcagcgcagcgcgtccgt







gtgcgggccctgcctggcggctcggcgtgccaggctcgagagcagctccctcaggtcgccttggacggcctctgcgaggccggtga







gggcctgcaggagcgcctcgagcgtggcagtggcggtcgtatccgggtcgccggtcaccgcctgcgactcgccatccgaagagcg








tttaaac




Nucleotide sequence of transforming DNA contained in pSZ5868


GarmFATA1(G108A)


SEQ ID NO: 127




gaagagc
gcccaatgtttaaacctcttttgctgcgtctcctcaggcttgggggcctccttgggcttgggtgccgccatgatctgcgcg







catcagagaaacgttgctggtaaaaaggagcgcccggctgcgcaatatatatataggcatgccaacacagcccaacctcactcg







ggagcccgtcccaccacccccaagtcgcgtgccttgacggcatactgctgcagaagcttcatgagaatgatgccgaacaagaggg







gcacgaggacccaatcccggacatccttgtcgataatgatctcgtgagtccccatcgtccgcccgacgctccggggagcccgccga







tgctcaagacgagagggccctcgaccaggaggggctggcccgggcgggcactggcgtcgaaggtgcgcccgtcgttcgcctgca







gtcctatgccacaaaacaagtcttctgacggggtgcgtttgctcccgtgcgggcaggcaacagaggtattcaccctggtcatgggg







agatcggcgatcgagctgggataagagatacggtcccgcgcaaggatcgctcatcctggtctgagccggacagtcattctggcaa







gcaatgacaacttgtcaggaccggaccgtgccatatatttctcacctagcgccgcaaaacctaacaatttgggagtcactgtgcca







ctgagttcgactggtagctgaatggagtcgctgctccactaaacgaattgtcagcaccgccagccggccgaggacccgagtcata








embedded image





ggcgggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgcc
atccccccccgcatcatcgtggtgtcctc







ctcctcctccaaggtgaaccccctgaagaccgaggccgtggtgtcctccggcctggccgaccgcctgcgcctgggctccctgacc







gaggacggcctgtcctacaaggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacc







atcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccgccggcttctccaccacccccacc







atgcgcaagctgcgcctgatctgggtgaccgcccgcatgcacatcgagatctacaagtaccccgcctggtccgacgtggtgga







gatcgagtcctggggccagggcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggt







gatcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggtggacgtggacgtgcgcga







cgagtacctggtgcactgcccccgcgagctgcgcctggccttccccgaggagaacaactcctccctgaagaagatctccaagct







ggaggacccctcccagtactccaagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtg







acctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcagaccatcaccctggactaccg







ccgcgagtgccagcacgacgacgtggtggactccctgacctcccccgagccctccgaggacgccgaggccgtgttcaaccaca







acggcaccaacggctccgccaacgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg







gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcATGGACTACAAGGACCACGACGGCG







ACTACAAGGACCACGACATCGACTACAAGGACGACGACGACAAG
TGA

atcgatggagcgacgagtgtgcgt








gcggggctggcgggagtgggacgccctcctcgctcctctctgttctgaacggaacaatcggccaccccgcgctacgcgccacgcatc







gagcaacgaagaaaaccccccgatgataggttgcggtggctgccgggatatagatccggccgcacatcaaagggcccctccgcca







gagaagaagctcctttcccagcagactccttctgctgccaaaacacttctctgtccacagcaacaccaaaggatgaacagatcaact







tgcgtctccgcgtagcttcctcggctagcgtgcttgcaacaggtccctgcactattatcttcctgctttcctctgaattatgcggcaggc







gagcgctcgctctggcgagcgctccttcgcgccgccctcgctgatcgagtgtacagtcaatgaatggtgagctccgcgtctcgaaca






gagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgcttg





gttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgatggt







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





tcgccgccgccgccgtgatcgtgcccctgggcctgctgttcttcatctccggcctggtggtgaacctgatccaggccctgtgcttcg







tgctgatccgccccctgtccaagaacacctaccgcaagatcaaccgcgtggtggccgagctgctgtggctggagctgatctggc







tggtggactggtgggccggcgtgaagatcaaggtgttcatggaccccgagtccttcaacctgatgggcaaggagcacgccct







ggtggtggccaaccaccgctccgacatcgactggctggtgggctggctgctggcccagcgctccggctgcctgggctccgccct







ggccgtgatgaagaagtcctccaagttcctgcccgtgatcggctggtccatgtggttctccgagtacctgttcctggagcgctcct







gggccaaggacgagaacaccctgaaggccggcctgcagcgcctgaaggacttcccccgccccttctggctggccttcttcgtg







gagggcacccgcttcacccaggccaagttcctggccgcccaggagtacgccgcctcccagggcctgcccatcccccgcaacgt







gctgatcccccgcaccaagggcttcgtgtccgccgtgtcccacatgcgctccttcgtgcccgccatctacgacatgaccgtggcc







atccccaagtcctccccctcccccaccatgctgcgcctgttcaagggccagccctccgtggtgcacgtgcacatcaagcgctgcct







gatgaaggagctgcccgagaccgacgaggccgtggcccagtggtgcaaggacatgacgtggagaaggacaagctgctgg







acaagcacatcgccgaggacaccactccgaccagcccatgcaggacctgggccgccccatcaagtccctgctggtggtggcc







tcctgggcctgcctgatggcctacggcgccctgaagttcctgcagtgctcctccctgctgtcctcctggaagggcatcgccacttc







ctggtgggcctggccatcgtgaccatcctgatgcacatcctgatcctgttctcccagtccgagcgctccacccccgccaaggtgg








embedded image





agggtggtcgactcgttggaggtgggtgtttttttttatcgagtgcgcggcgcggcaaacgggtccctttttatcgaggtgttcccaac







gccgcaccgccctcttaaaacaacccccaccaccacttgtcgaccttctcgtttgttatccgccacggcgccccggaggggcgtcgtc







tggccgcgcgggcagctgtatcgccgcgctcgctccaatggtgtgtaatcttggaaagataataatcgatggatgaggaggagagc







gtgggagatcagagcaaggaatatacagttggcacgaagcagcagcgtactaagctgtagcgtgttaagaaagaaaaactcgctg







ttaggctgttaatcaaggagcgtatcaataattaccgaccctatacctttatctccaacccaatcgcggcttaaggatctaagtaa






gattcgaagcgctcgaccgtgccggacggactgcagccccatgtcgtagtgaccgccaatgtaagtgggctggcgtttccctgtacg





tgagtcaacgtcactgcacgcgcaccaccctctcgaccggcaggaccaggcatcgcgagatacagcgcgagccagacacggagtg







embedded image






embedded image






embedded image






embedded image






embedded image





ccgaccgccccctggtgcacttcacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgagaaggacgc







caagtggcacctgtacttccagtacaacccgaacgacaccgtctgggggacgcccttgactggggccacgccacgtccgacg







acctgaccaactgggaggaccagcccatcgccatcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtg







gactacaacaacacctccggcttcttcaacgacaccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccg







gagtccgaggagcagtacatctcctacagcctggacggcggctacaccttcaccgagtaccagaagaaccccgtgctggccg







ccaactccacccagttccgcgacccgaaggtcttctggtacgagccctcccagaagtggatcatgaccgcggccaagtcccag







gactacaagatcgagatctactcctccgacgacctgaagtcctggaagctggagtccgcgttcgccaacgagggcacctcgg







ctaccagtacgagtgccccggcctgatcgaggtccccaccgagcaggaccccagcaagtcctactgggtgatgttcatctccat







caaccccggcgccccggccggcggctccttcaaccagtacttcgtcggcagcttcaacggcacccacttcgaggccttcgacaa







ccagtcccgcgtggtggacttcggcaaggactactacgccctgcagaccttcttcaacaccgacccgacctacgggagcgccct







gggcatcgcgtgggcctccaactgggagtactccgccacgtgcccaccaacccctggcgctcctccatgtccctcgtgcgcaag







actccctcaacaccgagtaccaggccaacccggagacggagctgatcaacctgaaggccgagccgatcctgaacatcagca







acgccggcccctggagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacctgtccaacagcac







cggcaccctggagttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttcgcggacctctccctctgg







ttcaagggcctggaggaccccgaggagtacctccgcatgggcttcgaggtgtccgcgtcctccttcttcctggaccgcgggaac







agcaaggtgaagttcgtgaaggagaacccctacttcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaac







gacctgtcctactacaaggtgtacggcttgctggaccagaacatcctggagctgtacttcaacgacggcgacgtcgtgtccacc







aacacctacttcatgaccaccgggaacgccctgggctccgtgaacatgacgacgggggtggacaacctgttctacatcgaca








embedded image





cgaaacaagcccctggagcatgcgtgcatgatcgtctctggcgccccgccgcgcggtttgtcgccctcgcgggcgccgcggccgcg







ggggcgcattgaaattgttgcaaaccccacctgacagattgagggcccaggcaggaaggcgttgagatggaggtacaggagtcaa







gtaactgaaagtttttatgataactaacaacaaagggtcgtttctggccagcgaatgacaagaacaagattccacatttccgtgtag







aggcttgccatcgaatgtgagcgggcgggccgcggacccgacaaaacccttacgacgtggtaagaaaaacgtggcgggcactgtc







cctgtagcctgaagaccagcaggagacgatcggaagcatcacagcacaggatcc
tgaggacagggtggttggctggatggggaa







acgctggtcgcgggattcgatcctgctgcttatatcctccctggaagcacacccacgactctgaagaagaaaacgtgcacacaca







caacccaaccggccgaatatttgcttccttatcccgggtccaagagagactgcgatgcccccctcaatcagcatcctcctccctgcc







gcttcaatcttccctgcttgcctgcgcccgcggtgcgccgtctgcccgcccagtcagtcactcctgcacaggccccttgtgcgcagtg







ctcctgtaccctttaccgctccttccattctgcgaggccccctattgaatgtattcgttgcctgtgtggccaagcgggctgctgggcgc







gccgccgtcgggcagtgctcggcgactttggcggaagccgattgttcttctgtaagccacgcgcttgctgctttgggaagagaagg







gggggggtactgaatggatgaggaggagaaggaggggtattggtattatctgagttggggaggcagggagagttggaaaatgt







aagtggcacgacgggcaaggagaatggtgagcatgtgcatggtgatgtcgttggtcgaggacgatcctgcacgcgtgtatctgat







gtagaatacggcaatcaccctagtctacatctataccttctccgtataacgccctttccaaatgccctcccgtttctctcctattcttg







atccacatgatgaccctggcactatttcaagggctgga

gaagagcgtttaaac




Nucleotide sequence of transforming DNA contained in pSZ6383


TcDGAT1 and GarmFATA1(G108A)


SEQ ID NO: 128




gctcttc

gcgaaggtcattttccagaacaacgaccatggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcga







cccagtcgctcgcaggagaacgcggcaactgccgagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattg







gtagcattataattcggcttccgcgctgtttatgggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccag







ctccgggcgaccgggctccgtgtcgccgggcaccacctcctgccatgagtaacagggccgccctctcctcccgacgttggccaact







gaataccgtgtcttggggccctacatgatgggctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggacgtggtctga







atcctccaggcgggtttccccgagaaagaaagggtgccgatttcaaagcagagccatgtgccgggccctgtggcctgtgttggcgc







ctatgtagtcaccccccctcacccaattgtcgccagtttgcgcaatccataaactcaaaactgcagcttctgagctgcgctgttcaa








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctgatgtccgtggtctgcaacaacaagaaccactccgcccgccccaagctgcccaactcctccctgctgcccggcttcgacgtgg







tggtccaggccgcggccacccgcttcaagaaggagacgacgaccacccgcgccacgctgacgttcgacccccccacgaccaa







ctccgagcgcgccaagcagcgcaagcacaccatcgacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttc







cccaagtccacgaaggagcacaaggaggtggtgcacgaggagtccggccacgtcctgaaggtgcccttccgccgcgtgcac







ctgtccggcggcgagcccgccttcgacaactacgacacgtccggcccccagaacgtcaacgcccacatcggcctggcgaagct







gcgcaaggagtggatcgaccgccgcgagaagctgggcacgccccgctacacgcagatgtactacgcgaagcagggcatcat







cacggaggagatgctgtactgcgcgacgcgcgagaagctggaccccgagttcgtccgctccgaggtcgcgcggggccgcgc







catcatcccctccaacaagaagcacctggagctggagcccatgatcgtgggccgcaagttcctggtgaaggtgaacgcgaac







atcggcaactccgccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccaccatgtggggcgccgacacca







tcatggacctgtccacgggccgccacatccacgagacgcgcgagtggatcctgcgcaactccgcggtccccgtgggcaccgtc







cccatctaccaggcgctggagaaggtggacggcatcgcggagaacctgaactgggaggtgttccgcgagacgctgatcgag







caggccgagcagggcgtggactacttcacgatccacgcgggcgtgctgctgcgctacatccccctgaccgccaagcgcctgac







gggcatcgtgtcccgcggcggctccatccacgcgaagtggtgcctggcctaccacaaggagaacttcgcctacgagcactggg







acgacatcctggacatctgcaaccagtacgacgtcgccctgtccatcggcgacggcctgcgccccggctccatctacgacgcca







acgacacggcccagttcgccgagctgctgacccagggcgagctgacgcgccgcgcgtgggagaaggacgtgcaggtgatg







aacgagggccccggccacgtgcccatgcacaagatccccgagaacatgcagaagcagctggagtggtgcaacgaggcgcc







cttctacaccctgggccccctgacgaccgacatcgcgcccggctacgaccacatcacctccgccatcggcgcggccaacatcgg







cgccctgggcaccgccctgctgtgctacgtgacgcccaaggagcacctgggcctgcccaaccgcgacgacgtgaaggcgggc







gtcatcgcctacaagatcgccgcccacgcggccgacctggccaagcagcacccccacgcccaggcgtgggacgacgcgctgt







ccaaggcgcgcttcgagttccgctggatggaccagttcgcgctgtccctggaccccatgacggcgatgtccttccacgacgaga







cgctgcccgcggacggcgcgaaggtcgcccacttctgctccatgtgcggccccaagttctgctccatgaagatcacggaggac







atccgcaagtacgccgaggagaacggctacggctccgccgaggaggccatccgccagggcatggacgccatgtccgagga







gttcaacatcgccaagaagacgatctccggcgagcagcacggcgaggtcggcggcgagatctacctgcccgagtcctacgtc








embedded image





cgcacgcatccaacgaccgtatacgcatcgtccaatgaccgtcggtgtcctctctgcctccgttttgtgagatgtctcaggcttggtgc







atcctcgggtggccagccacgttgcgcgtcgtgctgcttgcctctcttgcgcctctgtggtactggaaaatatcatcgaggcccgttttt







ttgctcccatttcctttccgctacatcttgaaagcaaacgacaaacgaagcagcaagcaaagagcacgaggacggtgaacaagtct







gtcacctgtatacatctatttccccgcgggtgcacctactctctcctgccccggcagagtcagctgccttacgtgacggatcccgcg






tctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacga





atgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtgga







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





cgagatcctgggctccaccgccaccgtgacctcctcctcccactccgactccgacctgaacctgctgtccatccgccgccgcacct







ccaccaccgccgccgcccgcgcccccgaccgcgacgactccggcaacggcgaggccgtggacgaccgcgaccgcgtggagt







ccgccaacctgatgtccaacgtggccgagaacgccaacgagatgcccaactcctccgacacccgcttcacctaccgcccccgcg







tgcccgcccaccgccgcatcaaggagtcccccctgtcctccggcgccatcttcaagcagtcccacgccggcctgttcaacctgtgc







atcgtggtgctggtggccgtgaactcccgcctgatcatcgagaacctgatgaagtacggctggctgatccgctccggcttctggt







tctcctcccgctccctgtccgactggcccctgttcatgtgctgcctgaccctgcccatcttccccctggccgccttcgtggtggagaa







gctggtgcagcgcaactacatctccgagcccgtggtggtgttcctgcacgccatcatctccaccaccgccgtgctgtaccccgtg







atcgtgaacctgcgctgcgactccgccttcctgtccggcgtggccctgatgctgttcgcctgcatcgtgtggctgaagctggtgtc







ctacgcccacaccaacaacgacatgcgcgccctggccaagtccgccgagaagggcgacgtggacccctcctacgacgtgtcct







tcaagtccctggcctacttcatggtggcccccaccctgtgctaccagcagtcctacccccgcacccccgccgtgcgcaagtcctgg







gtggtgcgccagttcatcaagctgatcgtgttcaccggcctgatgggcttcatcatcgagcagtacatcaaccccatcgtgcag







aactcccagcaccccctgaagggcaacctgctgtacgccatcgagcgcgtgctgaagctgtccgtgcccaacctgtacgtgtgg







ctgtgcatgttctactgcttcttccacctgtggctgaacatcctggccgagctgctgcgcttcggcgaccgcgagttctacaagga







ctggtggaacgccaagaccgtggaggagtactggcgcatgtggaacatgcccgtgcacaagtggatggtgcgccacatctac







ttcccctgcctgcgcaacggcatccccaagggcgtggccatcgtgatcgccttcctggtgtccgccgtgttccacgagctgtgcat






cgccgtgccctgccacatgttcaagctgtgggccttcatcggcatcatgttccaggtgcccctggtgctgatcaccaactacctgc






aggacaagttccgctcctccatggtgggcaacatgatcttctggttcatcttctccatcctgggccagcccatgtgcgtgctgctgt








embedded image





gacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaac







agcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttc







cctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccct







cgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagt







gggatgggaacacaaatggacttaaggatctaagtaagattcgaagcgctcgaccgtgccggacggactgcagccccatgtcgta






gtgaccgccaatgtaagtgggctggcgtttccctgtacgtgagtcaacgtcactgcacgcgcaccaccctctcgaccggcaggacca





ggcatcgcgagatacagcgcgagccagacacggagtgccgagctatgcgcacgctccaactagatatcatgtggatgatgagcat







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





aatgcccgctgcggcgacctgcgtcgctcggcgggctccagggccccggcgcccagcgaggcccctccccgtgcgcggcgcgc








c

atccccccccgcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtgtcctccggcctgg







ccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaaggagaagttcatcgtgcgctgctacgaggtgggc







atcaacaagaccgccaccgtggagaccatcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctact







ccaccgccggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgcacatcgagatctaca







agtaccccgcctggtccgacgtggtggagatcgagtcctggggccagggcgagggcaagatcggcacccgccgcgactgga







tcctgcgcgactacgccaccggccaggtgatcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctg







cagaaggtggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttccccgaggagaaca







actcctccctgaagaagatctccaagctggaggacccctcccagtactccaagctgggcctggtgccccgccgcgccgacctgg







acatgaaccagcacgtgaacaacgtgacctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacga







gctgcagaccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcccccgagccctccg







aggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaacgtgtccgccaacgaccacggctgccgcaactt







cctgcacctgctgcgcctgtccggcaacggcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcAT







GGACTACAAGGACCACGACGGCGACTACAAGGACCACGACATCGACTACAAGGACGACGACGACAA








embedded image





tcggccaccccgcgctacgcgccacgcatcgagcaacgaagaaaaccccccgatgataggttgcggtggctgccgggatatagat







ccggccgcacatcaaagggcccctccgccagagaagaagctcctttcccagcagactccttctgctgccaaaacacttctctgtcca







cagcaacaccaaaggatgaacagatcaacttgcgtctccgcgtagcttcctcggctagcgtgcttgcaacaggtccctgcactattat







cttcctgctttcctctgaattatgcggcaggcgagcgctcgctctggcgagcgctccttcgcgccgccctcgctgatcgagtgtacagt







caatgaatggtgagctc
ctcactcagcgcgcctgcgcggggatgcggaacgccgccgccgccttgtcttttgcacgcgcgactccgt







cgcttcgcgggtggcacccccattgaaaaaaacctcaattctgtttgtggaagacacggtgtacccccaaccacccacctgcacct







ctattattggtattattgacgcgggagcgggcgttgtactctacaacgtagcgtctctggttttcagctggctcccaccattgtaaatt







cttgctaaaatagtgcgtggttatgtgagaggtatggtgtaacagggcgtcagtcatgttggttttcgtgctgatctcgggcacaag







gcgtcgtcgacgtgacgtgcccgtgatgagagcaataccgcgctcaaagccgacgcatggcctttactccgcactccaaacgact







gtcgctcgtatttttcggatatctattttttaagagcgagcacagcgccgggcatgggcctgaaaggcctcgcggccgtgctcgtgg







tgggggccgcgagcgcgtggggcatcgcggcagtgcaccaggcgcagacggaggaacgcatggtgagtgcgcatcacaagatg







catgtcttgttgtctgtactataatgctagagcatcaccaggggcttagtcatcgcacctgctttggtcattacagaaattgcacaag







ggcgtcctccgggatgaggagatgtaccagctcaagctggagcggcttcgagccaagcaggagcgcggcgcatgacgacctacc







cacatgc

gaagagc




Nucleotide sequence of transforming DNA contained in pSZ6384


TcDGAT2-and GarmFATA1(G108A)


SEQ ID NO: 129




gctcttc

gcgaaggtcattttccagaacaacgaccatggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcga







cccagtcgctcgcaggagaacgcggcaactgccgagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattg







gtagcattataattcggcttccgcgctgtttatgggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccag






ctccgggcgaccgggctccgtgtcgccgggcaccacctcctgccatgagtaacagggccgccctctcctcccgacgttggccaact






gaataccgtgtcttggggccctacatgatgggctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggacgtggtctga







atcctccaggcgggtttccccgagaaagaaagggtgccgatttcaaagcagagccatgtgccgggccctgtggcctgtgttggcgc







ctatgtagtcaccccccctcacccaattgtcgccagtttgcgcaatccataaactcaaaactgcagcttctgagctgcgctgttcaa








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctgatgtccgtggtctgcaacaacaagaaccactccgcccgccccaagctgcccaactcctccctgctgcccggcttcgacgtgg







tggtccaggccgcggccacccgcttcaagaaggagacgacgaccacccgcgccacgctgacgttcgacccccccacgaccaa







ctccgagcgcgccaagcagcgcaagcacaccatcgacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttc







cccaagtccacgaaggagcacaaggaggtggtgcacgaggagtccggccacgtcctgaaggtgcccttccgccgcgtgcac







ctgtccggcggcgagcccgccttcgacaactacgacacgtccggcccccagaacgtcaacgcccacatcggcctggcgaagct







gcgcaaggagtggatcgaccgccgcgagaagctgggcacgccccgctacacgcagatgtactacgcgaagcagggcatcat







cacggaggagatgctgtactgcgcgacgcgcgagaagctggaccccgagttcgtccgctccgaggtcgcgcggggccgcgc







catcatcccctccaacaagaagcacctggagctggagcccatgatcgtgggccgcaagttcctggtgaaggtgaacgcgaac







atcggcaactccgccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccaccatgtggggcgccgacacca







tcatggacctgtccacgggccgccacatccacgagacgcgcgagtggatcctgcgcaactccgcggtccccgtgggcaccgtc







cccatctaccaggcgctggagaaggtggacggcatcgcggagaacctgaactgggaggtgttccgcgagacgctgatcgag







caggccgagcagggcgtggactacttcacgatccacgcgggcgtgctgctgcgctacatccccctgaccgccaagcgcctgac







gggcatcgtgtcccgcggcggctccatccacgcgaagtggtgcctggcctaccacaaggagaacttcgcctacgagcactggg







acgacatcctggacatctgcaaccagtacgacgtcgccctgtccatcggcgacggcctgcgccccggctccatctacgacgcca







acgacacggcccagttcgccgagctgctgacccagggcgagctgacgcgccgcgcgtgggagaaggacgtgcaggtgatg







aacgagggccccggccacgtgcccatgcacaagatccccgagaacatgcagaagcagctggagtggtgcaacgaggcgcc







cttctacaccctgggccccctgacgaccgacatcgcgcccggctacgaccacatcacctccgccatcggcgcggccaacatcgg







cgccctgggcaccgccctgctgtgctacgtgacgcccaaggagcacctgggcctgcccaaccgcgacgacgtgaaggcgggc







gtcatcgcctacaagatcgccgcccacgcggccgacctggccaagcagcacccccacgcccaggcgtgggacgacgcgctgt







ccaaggcgcgcttcgagttccgctggatggaccagttcgcgctgtccctggaccccatgacggcgatgtccttccacgacgaga







cgctgcccgcggacggcgcgaaggtcgcccacttctgctccatgtgcggccccaagttctgctccatgaagatcacggaggac







atccgcaagtacgccgaggagaacggctacggctccgccgaggaggccatccgccagggcatggacgccatgtccgagga







gttcaacatcgccaagaagacgatctccggcgagcagcacggcgaggtcggcggcgagatctacctgcccgagtcctacgtc








embedded image





cgcacgcatccaacgaccgtatacgcatcgtccaatgaccgtcggtgtcctctctgcctccgttttgtgagatgtctcaggcttggtgc







atcctcgggtggccagccacgttgcgcgtcgtgctgcttgcctctcttgcgcctctgtggtactggaaaatatcatcgaggcccgttttt







ttgctcccatttcctttccgctacatcttgaaagcaaacgacaaacgaagcagcaagcaaagagcacgaggacggtgaacaagtct







gtcacctgtatacatctatttccccgcgggtgcacctactctctctcctgccccggcagagtcagctgccttacgtgacggatcccgcg






tctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacga





atgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtgga







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gaggagcgcaaggccaccggctaccgcgagttctccggccgccacgagttcccctccaacaccatgcacgccctgctggccat







gggcatctggctgggcgccatccacttcaacgccctgctgctgctgttctccttcctgttcctgcccttctccaagttcctggtggtgt







tcggcctgctgctgctgttcatgatcctgcccatcgacccctactccaagttcggccgccgcctgtcccgctacatctccaagcacg







cctgctcctacttccccatcaccctgcacgtggaggacatccacgccttccaccccgaccgcgcctacgtgttcggcttcgagccc







cactccgtgctgcccatcggcgtggtggccctggccgacctgaccggcttcatgcccctgcccaagatcaaggtgctggcctcct







ccgccgtgttctacacccccttcctgcgccacatctggacctggctgggcctgacccccgccaccaagaagaacttctcctccctg







ctggacgccggctactcctgcatcctggtgcccggcggcgtgcaggagaccttccacatggagcccggctccgagatcgccttc







ctgcgcgcccgccgcggcttcgtgcgcatcgccatggagatgggctcccccctggtgcccgtgttctgcttcggccagtcccacgt







gtacaagtggtggaagcccggcggcaagttctacctgcagttctcccgcgccatcaagttcacccccatcttcttctggggcatct







tcggctcccccctgccctaccagcaccccatgcacgtggtggtgggcaagcccatcgacgtgaagaagaacccccagcccatc







gtggaggaggtgatcgaggtgcacgaccgcttcgtggaggccctgcaggacctgttcgagcgccacaaggcccaggtgggc








embedded image





gctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgttt







gatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcg







cttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggt







ttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacac







aaatggacttaaggatctaagtaagattcgaagcgctcgaccgtgccggacggactgcagccccatgtcgtagtgaccgccaatgt






aagtgggctggcgtttccctgtacgtgagtcaacgtcactgcacgcgcaccaccctctcgaccggcaggaccaggcatcgcgagat







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






gcgacctgcgtcgctcggcgggctccgggccccggcgcccagcgaggcccctccccgtgcgcg
ggcgcgcc

atccccccccgca







tcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtgtcctccggcctggccgaccgcctgcg







cctgggctccctgaccgaggacggcctgtcctacaaggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagacc







gccaccgtggagaccatcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccgccggctt







ctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgcacatcgagatctacaagtaccccgcctg







gtccgacgtggtggagatcgagtcctggggccagggcgagggcaagatcggcacccgccgcgactggatcctgcgcgacta







cgccaccggccaggtgatcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggtgga







cgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttccccgaggagaacaactcctccctga







agaagatctccaagctggaggacccctcccagtactccaagctgggcctggtgccccgccgcgccgacctggacatgaacca







gcacgtgaacaacgtgacctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcagacc







atcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcccccgagccctccgaggacgccga







ggccgtgttcaaccacaacggcaccaacggctccgccaacgtgtccgccaacgaccacggctgccgcaacttcctgcacctgct







gcgcctgtccggcaacggcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcATGGACTACAA








embedded image





ggagcgacgagtgtgcgtgcggggctggcgggagtgggacgccctcctcgctcctctctgttctgaacggaacaatcggccacccc







gcgctacgcgccacgcatcgagcaacgaagaaaaccccccgatgataggttgcggtggctgccgggatatagatccggccgcaca







tcaaagggcccctccgccagagaagaagctcctttcccagcagactccttctgctgccaaaacacttctctgtccacagcaacacca







aaggatgaacagatcaacttgcgtctccgcgtagcttcctcggctagcgtgcttgcaacaggtccctgcactattatcttcctgctttc







ctctgaattatgcggcaggcgagcgctcgctctggcgagcgctccttcgcgccgccctcgctgatcgagtgtacagtcaatgaatggt








gagctc

ctcactcagcgcgcctgcgcggggatgcggaacgccgccgccgccttgtcttttgcacgcgcgactccgtcgcttcgcggg







tggcacccccattgaaaaaaacctcaattctgtttgtggaagacacggtgtacccccaaccacccacctgcacctctattattggta







ttattgacgcgggagcgggcgttgtactctacaacgtagcgtctctggttttcagctggctcccaccattgtaaattcttgctaaaat







agtgcgtggttatgtgagaggtatggtgtaacagggcgtcagtcatgttggttttcgtgctgatctcgggcacaaggcgtcgtcgac







gtgacgtgcccgtgatgagagcaataccgcgctcaaagccgacgcatggcctttactccgcactccaaacgactgtcgctcgtatt






tttcggatatctattttttaagagcgagcacagcgccgggcatgggcctgaaaggcctcgcggccgtgctcgtggtgggggccgcg






agcgcgtggggcatcgcggcagtgcaccaggcgcagacggaggaacgcatggtgagtgcgcatcacaagatgcatgtcttgttg







tctgtactataatgctagagcatcaccaggggcttagtcatcgcacctgctttggtcattacagaaattgcacaagggcgtcctccg







ggatgaggagatgtaccagctcaagctggagcggcttcgagccaagcaggagcgcggcgcatgacgacctacccacatgc

gaa









gagc




Nucleotide sequence of transforming DNA contained in pSZ6377


GarmFATA1(G108A)


SEQ ID NO: 130




gctcttc

gcgaaggtcattttccagaacaacgaccatggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcga







cccagtcgctcgcaggagaacgcggcaactgccgagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattg







gtagcattataattcggcttccgcgctgtttatgggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccag







ctccgggcgaccgggctccgtgtcgccgggcaccacctcctgccatgagtaacagggccgccctctcctcccgacgttggccaact







gaataccgtgtcttggggccctacatgatgggctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggacgtggtctga







atcctccaggcgggtttccccgagaaagaaagggtgccgatttcaaagcagagccatgtgccgggccctgtggcctgtgttggcgc







ctatgtagtcaccccccctcacccaattgtcgccagtttgcgcaatccataaactcaaaactgcagcttctgagctgcgctgttcaa








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctgatgtccgtggtctgcaacaacaagaaccactccgcccgccccaagctgcccaactcctccctgctgcccggcttcgacgtgg







tggtccaggccgcggccacccgcttcaagaaggagacgacgaccacccgcgccacgctgacgttcgacccccccacgaccaa







ctccgagcgcgccaagcagcgcaagcacaccatcgacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttc







cccaagtccacgaaggagcacaaggaggtggtgcacgaggagtccggccacgtcctgaaggtgcccttccgccgcgtgcac







ctgtccggcggcgagcccgccttcgacaactacgacacgtccggcccccagaacgtcaacgcccacatcggcctggcgaagct







gcgcaaggagtggatcgaccgccgcgagaagctgggcacgccccgctacacgcagatgtactacgcgaagcagggcatcat







cacggaggagatgctgtactgcgcgacgcgcgagaagctggaccccgagttcgtccgctccgaggtcgcgcggggccgcgc







catcatcccctccaacaagaagcacctggagctggagcccatgatcgtgggccgcaagttcctggtgaaggtgaacgcgaac







atcggcaactccgccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccaccatgtggggcgccgacacca







tcatggacctgtccacgggccgccacatccacgagacgcgcgagtggatcctgcgcaactccgcggtccccgtgggcaccgtc







cccatctaccaggcgctggagaaggtggacggcatcgcggagaacctgaactgggaggtgttccgcgagacgctgatcgag







caggccgagcagggcgtggactacttcacgatccacgcgggcgtgctgctgcgctacatccccctgaccgccaagcgcctgac







gggcatcgtgtcccgcggcggctccatccacgcgaagtggtgcctggcctaccacaaggagaacttcgcctacgagcactggg







acgacatcctggacatctgcaaccagtacgacgtcgccctgtccatcggcgacggcctgcgccccggctccatctacgacgcca







acgacacggcccagttcgccgagctgctgacccagggcgagctgacgcgccgcgcgtgggagaaggacgtgcaggtgatg







aacgagggccccggccacgtgcccatgcacaagatccccgagaacatgcagaagcagctggagtggtgcaacgaggcgcc







cttctacaccctgggccccctgacgaccgacatcgcgcccggctacgaccacatcacctccgccatcggcgcggccaacatcgg







cgccctgggcaccgccctgctgtgctacgtgacgcccaaggagcacctgggcctgcccaaccgcgacgacgtgaaggcgggc







gtcatcgcctacaagatcgccgcccacgcggccgacctggccaagcagcacccccacgcccaggcgtgggacgacgcgctgt







ccaaggcgcgcttcgagttccgctggatggaccagttcgcgctgtccctggaccccatgacggcgatgtccttccacgacgaga







cgctgcccgcggacggcgcgaaggtcgcccacttctgctccatgtgcggccccaagttctgctccatgaagatcacggaggac







atccgcaagtacgccgaggagaacggctacggctccgccgaggaggccatccgccagggcatggacgccatgtccgagga







gttcaacatcgccaagaagacgatctccggcgagcagcacggcgaggtcggcggcgagatctacctgcccgagtcctacgtc








embedded image





cgcacgcatccaacgaccgtatacgcatcgtccaatgaccgtcggtgtcctctctgcctccgttttgtgagatgtctcaggcttggtgc







atcctcgggtggccagccacgttgcgcgtcgtgctgcttgcctctcttgcgcctctgtggtactggaaaatatcatcgaggcccgttttt







ttgctcccatttcctttccgctacatcttgaaagcaaacgacaaacgaagcagcaagcaaagagcacgaggacggtgaacaagtct







gtcacctgtatacatctatttccccgcgggtgcacctactctctctcctgccccggcagagtcagctgccttacgtgacggatcccgcg






tctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacga





atgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtgga







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggcgggctccgggccccggcgcccagcgaggc








ccctccccgtgcgcg
ggcgcgcc

atccccccccgcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgag







gccgtggtgtcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaaggagaagttcatc







gtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagaccatcgccaacctgctgcaggaggtgggctgcaac







cacgcccagtccgtgggctactccaccgccggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgccc







gcatgcacatcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagggcgagggcaaga







tcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtgatcggccgcgccacctccaagtgggtgatgatg







aaccaggacacccgccgcctgcagaaggtggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcc







tggccttccccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactccaagctgggcctg







gtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgacctacatcggctgggtgctggagtccatgcccca







ggagatcatcgacacccacgagctgcagaccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactcc







ctgacctcccccgagccctccgaggacgccgaggccgtgacaaccacaacggcaccaacggctccgccaacgtgtccgccaa







cgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacggcctggagatcaaccgcggccgcaccgagtggc







gcaagaagcccacccgcATGGACTACAAGGACCACGACGGCGACTACAAGGACCACGACATCGACTACA





embedded image





ctctctgttctgaacggaacaatcggccaccccgcgctacgcgccacgcatcgagcaacgaagaaaaccccccgatgataggttgc







ggtggctgccgggatatagatccggccgcacatcaaagggcccctccgccagagaagaagctcctttcccagcagactccttctgct







gccaaaacacttctctgtccacagcaacaccaaaggatgaacagatcaacttgcgtctccgcgtagcttcctcggctagcgtgcttg







caacaggtccctgcactattatcttcctgctttcctctgaattatgcggcaggcgagcgctcgctctggcgagcgctccttcgcgccgc







cctcgctgatcgagtgtacagtcaatgaatggtgagctc
ctcactcagcgcgcctgcgcggggatgcggaacgccgccgccgcctt







gtcttttgcacgcgcgactccgtcgcttcgcgggtggcacccccattgaaaaaaacctcaattctgtttgtggaagacacggtgtac







ccccaaccacccacctgcacctctattattggtattattgacgcgggagcgggcgttgtactctacaacgtagcgtctctggttttca







gctggctcccaccattgtaaattcttgctaaaatagtgcgtggttatgtgagaggtatggtgtaacagggcgtcagtcatgttggtt







ttcgtgctgatctcgggcacaaggcgtcgtcgacgtgacgtgcccgtgatgagagcaataccgcgctcaaagccgacgcatggcc







tttactccgcactccaaacgactgtcgctcgtatttttcggatatctattttttaagagcgagcacagcgccgggcatgggcctgaa







aggcctcgcggccgtgctcgtggtgggggccgcgagcgcgtggggcatcgcggcagtgcaccaggcgcagacggaggaacgcat







ggtgagtgcgcatcacaagatgcatgtcttgttgtctgtactataatgctagagcatcaccaggggcttagtcatcgcacctgcttt







ggtcattacagaaattgcacaagggcgtcctccgggatgaggagatgtaccagctcaagctggagcggcttcgagccaagcagg







agcgcggcgcatgacgacctacccacatgc

gaagagc




Nucleotide sequence of transforming DNA contained in pSZ6315 BnOTE


SEQ ID NO: 131




caccggcg

cgctgcttcgcgtgccgggtgcagcaatcagatccaagtctgacgacttgcgcgcacgcgccggatccttcaattccaaagtgtcg







tccgcgtgcgcttcttcgccttcgtcctcttgaacatccagcgacgcaagcgcagggcgctgggcggctggcgtcccgaaccggcctcggcgcac







gcggctgaaattgccgatgtcggcaatgtagtgccgctccgcccacctctcaattaagtttttcagcgcgtggttgggaatgatctgcgctcatg







gggcgaaagaaggggttcagaggtgctttattgttactcgactgggcgtaccagcattcgtgcatgactgattatacatacaaaagtacagctc







gcttcaatgccctgcgattcctactcccgagcgagcactcctctcaccgtcgggttgcttcccacgaccacgccggtaagagggtctgtggcctc







gcgcccctcgcgagcgcatattccagccacgtctgtatgattttgcgctcatacgtctggcccgtcgaccccaaaatgacgggatcctgcataa







tatcgcccgaaatgggatccaggcattcgtcaggaggcgtcagccccgcgggagatgccggtcccgccgcattggaaaggtgtagagggggt








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgacc







gcatctccgacctgggcctgaaggacatgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctg







gtcgccgacgagcagaagttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgc







gggcgagtacacgtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacct







gaagtacgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaa







gacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtc







cggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgc







tccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcgg







cgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtga







acaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcgcgtct







ggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccggccccctggacaacggcgaccaggtcgtg







gcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggaggagatcttcttcgactccaacctgggctccaagaagctga







cctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccg







gcatcctgtacaacgccaccgagcagtcctacaaggacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtc








embedded image





accggcgctgatgtggcgcggacgccgtcgtactctttcagactttactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgc







aattaattgtgtgatgaagaaagggtggcacaagatggatcgcgaatgtacgagatcgacaacgatggtgattgttatgaggggccaaacctg







gctcaatcttgtcgcatgtccggcgcaatgtgatccagcggcgtgactctcgcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactg







atcgcattgccatcccgtcaactcacaagcctactctagctcccattgcgcactcgggcgcccggctcgatcaatgttctgagcggagggcgaag







cgtcaggaaatcgtctcggcagctggaagcgcatggaatgcggagcggagatcgaatcaggatcccgcgtctcgaacagagcgcgcagagga






acgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgcttggttcttcgtccattagcgaagcgt







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





tcgctcctctctgttctgaacggaacaatcggccaccccgcgctacgcgccacgcatcgagcaacgaagaaaaccccccgatgataggttgcgg







tggctgccgggatatagatccggccgcacatcaaagggcccctccgccagagaagaagctcctttcccagcagactccttctgctgccaaaaca







cttctctgtccacagcaacaccaaaggatgaacagatcaacttgcgtctccgcgtagcttcctcggctagcgtgcttgcaacaggtccctgcacta







ttatcttcctgctttcctctgaattatgcggcaggcgagcgctcgctctggcgagcgctccttcgcgccgccctcgctgatcgagtgtacagtcaat







gaatggtgagctc
cgcgcctgcgcgaggacgcagaacaacgctgccgccgtgtcttttgcacgcgcgactccggcgcttcgctggtggcacccc







cataaagaaaccctcaattctgtttgtggaagacacggtgtacccccacccacccacctgcacctctattattggtattattgacgcgggagtgg







gcgttgtaccctacaacgtagcttctctagttttcagctggctcccaccattgtaaattcatgctagaatagtgcgtggttatgtgagaggtatag







tgtgtctgagcagacggggcgggatgcatgtcgtggtggtgatctttggctcaaggcgtcgtcgacgtgacgtgcccgatcatgagagcaatac







cgcgctcaaagccgacgcatagcctttactccgcaatccaaacgactgtcgctcgtatttfttggatatctattttaaagagcgagcacagcgcc







gggcatgggcctgaaaggcctcgcggccgtgctcgtggtgggggccgcgagcgcgtggggcatcgcggcagtgcaccaggcgcagacggag







gaacgcatggtgcgtgcgcaatataagatacatgtattgttgt

cctgcagg




Nucleotide sequence of BnOTE (D124A) in pSZ6316:


SEQ ID NO: 132




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image




Nucleotide sequence of BnOTE (D209A) in pSZ6317:


SEQ ID NO: 133




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image




Nucleotide sequence of BnOTE (D124A, D209A) in pSZ6318


SEQ ID NO: 134




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image




Nucleotide sequence of transforming DNA contained in pSZ5083


GarmGATA1


SEQ ID NO: 135


ccctcaactgcgacgctgggaaccttctccgggcaggcgatgtgcgtgggtttgcctccttg





gcacggctctacaccgtcgagtacgccatgaggcggtgatggctgtgtcggttgccacttcg





tccagagacggcaagtcgtccatcctctgcgtgtgtggcgcgacgctgcagcagtccctctg





cagcagatgagcgtgactttggccatttcacgcactcgagtgtacacaatccatttttctta





aagcaaatgactgctgattgaccagatactgtaacgctgatttcgctccagatcgcacagat





agcgaccatgttgctgcgtctgaaaatctggattccgaattcgaccctggcgctccatccat





gcaacagatggcgacacttgttacaattcctgtcacccatcggcatggagcaggtccactta





gattcccgatcacccacgcacatctcgctaatagtcattcgttcgtgtcttcgatcaatctc





aagtgagtgtgcatggatcttggttgacgatgcggtatgggtttgcgccgctggctgcaggg





tctgcccaaggcaagctaacccagctcctctccccgacaatactctcgcaggcaaagccggt





cacttgccttccagattgccaataaactcaattatggcctctgtcatgccatccatgggtct





gatgaatggtcacgctcgtgtcctgaccgttccccagcctctggcgtcccctgccccgccca





ccagcccacgccgcgcggcagtcgctgccaaggctgtctcggaGGTACCCTTTCTTGCGCTA






TGACACTTCCAGCAAAAGGTAGGGCGGGCTGCGAGACGGCTTCCCGGCGCTGCATGCAACAC







CGATGATGCTTCGACCCCCCGAAGCTCCTTCGGGGCTGCATGGGCGCTCCGATGCCGCTCCA







GGGCGAGCGCTGTTTAAATAGCCAGGCCCCCGATTGCAAAGACATTATAGCGAGCTACCAAA







GCCATATTCAAACACCTAGATCACTACCACTTCTACACAGGCCACTCGAGCTTGTGATCGCA







CTCCGCTAAGGGGGCGCCTCTTCCTCTTCGTTTCAGTCACAACCCGCAAAC
TCTAGAATATC







A
atgatcgagcaggacggcctccacgccggctcccccgccgcctgggtggagcgcctgttcg







gctacgactgggcccagcagaccatcggctgctccgacgccgccgtgttccgcctgtccgcc







cagggccgccccgtgctgttcgtgaagaccgacctgtccggcgccctgaacgagctgcagga







cgaggccgcccgcctgtcctggctggccaccaccggcgtgccctgcgccgccgtgctggacg







tggtgaccgaggccggccgcgactggctgctgctgggcgaggtgcccggccaggacctgctg







tcctcccacctggcccccgccgagaaggtgtccatcatggccgacgccatgcgccgcctgca







caccctggaccccgccacctgccccttcgaccaccaggccaagcaccgcatcgagcgcgccc







gcacccgcatggaggccggcctggtggaccaggacgacctggacgaggagcaccagggcctg







gcccccgccgagctgttcgcccgcctgaaggcccgcatgcccgacggcgaggacctggtggt







gacccacggcgacgcctgcctgcccaacatcatggtggagaacggccgcttctccggcttca







tcgactgcggccgcctgggcgtggccgaccgctaccaggacatcgccctggccacccgcgac







atcgccgaggagctgggcggcgagtgggccgaccgcttcctggtgctgtacggcatcgccgc







ccccgactcccagcgcatcgccttctaccgcctgctggacgagttcttctga
CAATTGACGC






CCGCGCGGCGCACCTGACCTGTTCTCTCGAGGGCGCCTGTTCTGCCTTGCGAAACAAGCCCC





TGGAGCATGCGTGCATGATCGTCTCTGGCGCCCCGCCGCGCGGTTTGTCGCCCTCGCGGGCG





CCGCGGCCGCGGGGGCGCATTGAAATTGTTGCAAACCCCACCTGACAGATTGAGGGCCCAGG





CAGGAAGGCGTTGAGATGGAGGTACAGGAGTCAAGTAACTGAAAGTTTTTATGATAACTAAC





AACAAAGGGTCGTTTCTGGCCAGCGAATGACAAGAACAAGATTCCACATTTCCGTGTAGAGG





CTTGCCATCGAATGTGAGCGGGCGGGCCGCGGACCCGACAAAACCCTTACGACGTGGTAAGA





AAAACGTGGCGGGCACTGTCCCTGTAGCCTGAAGACCAGCAGGAGACGATCGGAAGCATCAC





AGCACAGGATCCCGCGTCTCGAACAGAGCGCGCAGAGGAACGCTGAAGGTCTCGCCTCTGTC






GCACCTCAGCGCGGCATACACCACAATAACCACCTGACGAATGCGCTTGGTTCTTCGTCCAT







TAGCGAAGCGTCCGGTTCACACACGTGCCACGTTGGCGAGGTGGCAGGTGACAATGATCGGT







GGAGCTGATGGTCGAAACGTTCACAGCCTAGGGATATC
GTGAAAACTCGCTCGACCGCCCGC







GTCCCGCAGGCAGCGATGACGTGTGCGTGACCTGGGTGTTTCGTCGAAAGGCCAGCAACCCC







AAATCGCAGGCGATCCGGAGATTGGGATCTGATCCGAGCTTGGACCAGATCCCCCACGATGC







GGCACGGGAACTGCATCGACTCGGCGCGGAACCCAGCTTTCGTAAATGCCAGATTGGTGTCC







GATACCTTGATTTGCCATCAGCGAAACAAGACTTCAGCAGCGAGCGTATTTGGCGGGCGTGC







TACCAGGGTTGCATACATTGCCCATTTCTGTCTGGACCGCTTTACCGGCGCAGAGGGTGAGT







TGATGGGGTTGGCAGGCATCGAAACGCGCGTGCATGGTGTGTGTGTCTGTTTTCGGCTGCAC







AATTTCAATAGTCGGATGGGCGACGGTAGAATTGGGTGTTGCGCTCGCGTGCATGCCTCGCC







CCGTCGGGTGTCATGACCGGGACTGGAATCCCCCCTCGCGACCCTCCTGCTAACGCTCCCGA







CTCTCCCGCCCGCGCGCAGGATAGACTCTAGTTCAACCAATCGACA
ACTAGT
atggccaccg







catccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggcgggctccggg







ccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatccccccccgcatcatcgt







ggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtgtcctccggcc







tggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaaggagaagttc







atcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagaccatcgccaacct







gctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggcggcttctcca







ccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgcacatcgagatc







tacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagggcgagggcaa







gatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtgatcggccgcg







ccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggtggacgtggac







gtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttccccgaggagaa







caactcctccctgaagaagatctccaagctggaggacccctcccagtactccaagctgggcc







tggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgacctacatcggc







tgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcagaccatcaccct







ggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcccccgagccct







ccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaacgtgtccgcc







aacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacggcctggagat







caaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaaggaccacgacg







gcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga
ATCGATgcagca








gcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccaca









cttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgat









cttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccaccccca









gcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctg









ctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctc









cgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaag









tagtgggatgggaacacaaatggaAAGCTTGAGCTC
cagcgccatgccacgccctttgatgg






cttcaagtacgattacggtgttggattgtgtgtttgttgcgtagtgtgcatggtttagaata





atacacttgatttcttgctcacggcaatctcggcttgtccgcaggttcaaccccatttcgga





gtctcaggtcagccgcgcaatgaccagccgctacttcaaggacttgcacgacaacgccgagg





tgagctatgtttaggacttgattggaaattgtcgtcgacgcatattcgcgctccgcgacagc





acccaagcaaaatgtcaagtgcgttccgatttgcgtccgcaggtcgatgttgtgatcgtcgg





cgccggatccgccggtctgtcctgcgcttacgagctgaccaagcaccctgacgtccgggtac





gcgagctgagattcgattagacataaattgaagattaaacccgtagaaaaatttgatggtcg





cgaaactgtgctcgattgcaagaaattgatcgtcctccactccgcaggtcgccatcatcgag





cagggcgttgctcccggcggcggcgcctggctggggggacagctgttctcggccatgtgtgt





acgtagaaggatgaatttcagctggttttcgttgcacagctgtttgtgcatgatttgtttca





gactattgttgaatgtttttagatttcttaggatgcatgatttgtctgcatgcgact


Amino acid sequence of Gm FATA wild-type parental gene; D3997,


pSZ5083.


SEQ ID NO: 136



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of Gm FATA S111A, V193A mutant gene; D3998, pSZ5084.


SEQ ID NO: 137



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFaTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEI ESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDaDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD





GDYKDHDIDYKDDDDK


Amino acid sequence of Gm FATA S111V, V193A mutant gene; D3999, pSZ5085.


SEQ ID NO: 138



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFvTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEI ESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDaDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of Gm FATA G96A mutant gene; D4000,


pSZ5086.


SEQ ID NO: 139



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVaCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of Gm FATA G96T mutant gene; D4001,


pSZ5087.


SEQ ID NO: 140



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVtCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEI ESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of Gm FATA G96V mutant gene; D4002,


pSZ5088.


SEQ ID NO: 141



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVvCNHAQSVGYSTGGFSTT





YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





SKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of GmFATA G108A mutant gene; D4003,


pSZ5089.


SEQ ID NO: 142



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTaGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of GmFATA L91F mutant gene; D4004,


pSZ5090.


SEQ ID NO: 143



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANfLQEVGCDCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of GmFATA L91K mutant gene; D4005,


pSZ5091.


SEQ ID NO: 144



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANkLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Figure 10. Amino acid sequence of GmFATA L91S mutant gene;


D4006, pSZ5092. The algal transit peptide is underlined, the FLAG epitope tag is


uppercase bold and the L91S residue is lower-case cold


SEQ ID NO: 145



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANsLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of GmFATA G108V mutant gene; D4007, pSZ5093. The algal


transit peptide is underlined, the FLAG epitope tag is uppercase bold and the G108V residue is


lower-case bold.


SEQ ID NO: 146



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTvGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEIESWGQGEGKIGTRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of GmFATA T156F mutant gene; D4008,


pSZ5094. The algal transit peptide is underlined, the FLAG epitope tag is uppercase


bold and the T156F residue is lower-case bold.


SEQ ID NO: 147



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEIESWGQGEGKIGfRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of GmFATA T156A mutant gene; D4009,


pSZ5095. The algal transit peptide is underlined, the FLAG epitope tag is uppercase


bold and the T156A residue is lower-case bold.


SEQ ID NO: 148



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEIESWGQGEGKIGaRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of GmFATA T156K mutant gene; D4010, pSZ5096. The


algal transit peptide is underlined, the FLAG epitope tag is uppercase bold and the T156K residue


is lower-case bold.


SEQ ID NO:  149



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEIESWGQGEGKIGkRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Amino acid sequence of GmFATA T156V mutant gene; D4011, pSZ5097. The


algal transit peptide is underlined, the FLAG epitope tag is uppercase bold and the T156V residue


is lower-case bold.


SEQ ID NO:  150



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAIPPRIIVVSSSSSKVNPLKTEAVVSSGLADRLRLGSL






TEDGLSYKEKFIVRCYEVGINKTATVETIANLLQEVGCNHAQSVGYSTGGFSTTPTMRKLRLIWVTARMHIEIYK





YPAWSDVVEIESWGQGEGKIGvRRDWILRDYATGQVIGRATSKWVMMNQDTRRLQKVDVDVRDEYLVHCPRELRL





AFPEENNSSLKKISKLEDPSQYSKLGLVPRRADLDMNQHVNNVTYIGWVLESMPQEIIDTHELQTITLDYRRECQ





HDDVVDSLTSPEPSEDAEAVFNHNGTNGSANVSANDHGCRNFLHLLRLSGNGLEINRGRTEWRKKPTRMDYKDHD






GDYKDHDIDYKDDDDK



Nucleotide sequence of the GmFATA S111A, V193A mutant gene (D3998,


pSZ5084). The promoter, 3′UTR, selection marker and targeting arms are the same as pSZ5083.


SEQ ID NO: 151


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc





ggcttcgccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgcggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA s111V, V193A mutant gene (D3999,


pSZ5085). The promoter, 3′UTR, selection marker and targeting arms are the same as pSZ5083.


SEQ ID NO: 152


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc





ggcttcgtcaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgcggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA G96A mutant gene (D4000, pSZ5086). The


promoter, 3′UTR, selection marker and targeting arms are the same as pSZ5083


SEQ ID NO: 153


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacctgctgcaggaggtggcgtgcaaccacgcccagtccgtgggctactccaccggc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA G96T mutant gene (D4001, pSZ5087). The


promoter, 3′UTR, selection marker and targeting arms are the same as pSZ5083


SEQ ID NO: 154


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacctgctgcaggaggtgacgtgcaaccacgcccagtccgtgggctactccaccggc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA G96V mutant gene (D4002, pSZ5088). The


promoter, 3′UTR, selection marker and targeting arms are the same as pSZ5083


SEQ ID NO: 155


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacctgctgcaggaggtggtgtgcaaccacgcccagtccgtgggctactccaccggc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA G108A mutant gene (D4003, pSZ5089). The


promoter, 3′UTR, selection marker and targeting arms are the same as pSZ50836.


SEQ ID NO: 156


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccgcc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA L91F mutant gene (D4004, pSZ5090). The


promoter, 3′UTR, selection marker and targeting arms are the same as pSZ5083


SEQ ID NO: 157


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacttcctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA L91K mutant gene (D4005, pSZ5091).


SEQ ID NO: 158


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacaagctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA L91S mutant gene (D4006, pSZ5092).


SEQ ID NO: 159


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaactcgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA G108V mutant gene (D4007, pSZ5093).


SEQ ID NO: 160


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccgtc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA T156F mutant gene (D4008, pSZ5094).


SEQ ID NO: 161


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcttccgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA T156A mutant gene (D4009, pSZ5095)


SEQ ID NO: 162


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcgcgcgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA T156K mutant gene (D4010, pSZ5096).


SEQ ID NO: 163


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcaagcgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Nucleotide sequence of the GmFATA T156V mutant gene (D4011, pSZ5097).


SEQ ID NO: 164


atggccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggc





gggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccatcccccccc





gcatcatcgtggtgtcctcctcctcctccaaggtgaaccccctgaagaccgaggccgtggtg





tcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctacaa





ggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagacca





tcgccaacctgctgcaggaggtgggctgcaaccacgcccagtccgtgggctactccaccggc





ggcttctccaccacccccaccatgcgcaagctgcgcctgatctgggtgaccgcccgcatgca





catcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccagg





gcgagggcaagatcggcgtgcgccgcgactggatcctgcgcgactacgccaccggccaggtg





atcggccgcgccacctccaagtgggtgatgatgaaccaggacacccgccgcctgcagaaggt





ggacgtggacgtgcgcgacgagtacctggtgcactgcccccgcgagctgcgcctggccttcc





ccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtactcc





aagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgac





ctacatcggctgggtgctggagtccatgccccaggagatcatcgacacccacgagctgcaga





ccatcaccctggactaccgccgcgagtgccagcacgacgacgtggtggactccctgacctcc





cccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgccaa





cgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacg





gcctggagatcaaccgcggccgcaccgagtggcgcaagaagcccacccgcatggactacaag





gaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtga


Amino acid sequence of wild type BnOTE in pSZ6315 (See SEQ ID NO: 131)


SEQ ID NO:  165


MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRASQLRKPALDPLRAVISADQGSISPVNSCTPADRLRAGR





LMEDGYSYKEKFIVRSYEVGINKTATVETIANLLQEVACNHVQKCGFSTDGFATTLTMRKLHLIWVTARMHIEIYKY





PAWSDVVEIETWCQSEGRIGTRRDWILRDSATNEVIGRATSKWVMMNQDTRRLQRVTDEVRDEYLVFCPREPRL





AFPEENNSSLKKIPKLEDPAQYSMLELKPRRADLDMNQHVNNVTYIGWVLESIPQEIIDTHELQVITLDYRRECQQD





DIVDSLTTSEIPDDPISKFTGTNGSAMSSIQGHNESQFLHMLRLSENGQEINRGRTQWRKKSSRMDYKDHDGDYK





DHDIDYKDDDDK


Amino Acid sequence of BnOTE (D124A) in pSZ6316 (See SEQ ID NO: 132)


SEQ ID NO: 166


MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRASQLRKPALDPLRAVISADQGSISPVNSCTPADRLRAGR





LMEDGYSYKEKFIVRSYEVGINKTATVETIANLLQEVACNHVQKCGFSTAGFATTLTMRKLHLIWVTARMHIEIYKYP





AWSDVVEIETWCQSEGRIGTRRDWILRDSATNEVIGRATSKWVMMNQDTRRLQRVTDEVRDEYLVFCPREPRLA





FPEENNSSLKKIPKLEDPAQYSMLELKPRRADLDMNQHVNNVTYIGWVLESIPQEIIDTHELQVITLDYRRECQQDD





IVDSLTTSEIPDDPISKFTGTNGSAMSSIQGHNESQFLHMLRLSENGQEINRGRTQWRKKSSRMDYKDHDGDYKD





HDIDYKDDDDK


Amino Acid sequence of BnOTE (D209A) in pSZ6317 (See SEQ ID NO: 133)


SEQ ID NO: 167


MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRASQLRKPALDPLRAVISADQGSISPVNSCTPADRLRAGR





LMEDGYSYKEKFIVRSYEVGINKTATVETIANLLQEVACNHVQKCGFSTDGFATTLTMRKLHLIWVTARMHIEIYKY





PAWSDVVEIETWCQSEGRIGTRRDWILRDSATNEVIGRATSKWVMMNQDTRRLQRVTAEVRDEYLVFCPREPRL





AFPEENNSSLKKIPKLEDPAQYSMLELKPRRADLDMNQHVNNVTYIGWVLESIPQEIIDTHELQVITLDYRRECQQD





DIVDSLTTSEIPDDPISKFTGTNGSAMSSIQGHNESQFLHMLRLSENGQEINRGRTQWRKKSSRMDYKDHDGDYK


DHDIDYKDDDDK


Amino acid sequence of BnOTE (D124A, D209A) in pSZ6318 (See SEQ ID NO: 134)


SEQ ID NO: 168


MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRASQLRKPALDPLRAVISADQGSISPVNSCTPADRLRAGR





LMEDGYSYKEKFIVRSYEVGINKTATVETIANLLQEVACNHVQKCGFSTAGFATTLTMRKLHLIWVTARMHIEIYKYP





AWSDVVEIETWCQSEGRIGTRRDWILRDSATNEVIGRATSKWVMMNQDTRRLQRVTAEVRDEYLVFCPREPRLA





FPEENNSSLKKIPKLEDPAQYSMLELKPRRADLDMNQHVNNVTYIGWVLESIPQEIIDTHELQVITLDYRRECQQDD





IVDSLTTSEIPDDPISKFTGTNGSAMSSIQGHNESQFLHMLRLSENGQEINRGRTQWRKKSSRMDYKDHDGDYKD





HDIDYKDDDDK


CpauLPAAT


SEQ ID NO: 169


MAIPAAAVIFLFGLLFFTSGLIINLFQALCFVLVWPLSKNAYRRINRVFAELLLS





ELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVIINHMTELDWMLGWVMGQHLGC





LGS IL SVAKKS TKFLPVLGWSMWFSEYLYIERSWAKDRTTLKSHIERLTDYPLPF





WMVIFVEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPRTKGFVSCVSHMRSFVPA





VYDVTVAFPKTSPPPTLLNLFEGQSIVLHVHIKRHAMKDLPESDDAVAQWCRDKF





VEKDALLDKHNAEDTFSGQEVHRTGSRPIKSLLVVISWVVVITFGALKFLQWSSW





KGKAFSVIGLGIVTLLMHMLILSSQAERSSNPAKVAQAKLKTELSISKKATDKEN


CprocLPAAT1i


SEQ ID NO: 170 


MAIPAAAVIFLFGLIFFASGLIINLFQALCFVLIWPISKNAYRRINRVFAELLLS





ELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVIINHMTELDWMVGWVMGQHFGC





LGSILSVAKKSTKFLPVLGWSMWFTEYLYIERSWNKDKSTLKSHIERLKDYPLPF





WLVIFAEGTRFTQTKLLAAQQYAASSGLPVPRNVLIPRTKGFVSCVSHMRSFVPA





VYDLTVAFPKTSPPPTLLNLFEGQSVVLHVHIKRHAMKDLPESDDEVAQWCRDKF





VEKDALLDKHNAEDTFSGQELQHTGRRPIKSLLVVISWVVVIAFGALKFLQWSSW





KGKAFSVIGLGIVTLLMHMLILSSQAERSKPAKVAQAKLKTELSISKTVTDKEN


CpcuLPAAT1


SEQ ID NO: 171 


MAIPSAAVVFLFGLLFFTSGLIINLFQAFCFVLISPLSKNAYRRINRVFAELLPL





EFLWLFHWCAGAKLKLFTDPETFRLMGKEHALVIINHKIELDWMVGWVLGQHLGC





LGS ISVAKKSTKFLPVFGWSLWFSGYLFLERSWAKDKITLKSHIESLKDYPLPF





WLIIFVEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPHTKGFVSSVSHMRSFVPA





IYDVTVAFPKTSPPPTMLKLFEGQSVELHVHIKRHAMKDLPESDDAVAQWCRDKF





VEKDALLDKHNSEDTFSGQEVHHVGRPIKALLVVISWVVVIIFGALKFLLWSSLL





SSWKGKAFSVIGLGIVAGIVTLLMHILILSSQAEGSNPVKAAPAKLKTELSSSKK





VTNKEN


ChookLPAAT1


SEQ ID NO: 172


MAIPSAAVVFLFGLLFFTSGLINLFQAFCFVLISPLSKNAYRRINRVFAELLPL





EFLWLFHWCAGAKLKLFTDPETFRLMGKEHALVIINHKIELDWMVGWVLGQHLGC





LGSILSVAKKSTKFLPVFGWSLWFSEYLFLERSWAKDKITLKSHIESLKDYPLPF





WLIIFVEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPHTKGFVSSVSHMRSFVPA





IYDVTVAFPKTSPPPTMLKLFEGQSVELHVHIKRHAMKDLPESDDAVAQWCRDKF





VEKDALLDKHNSEDTFSGQEVHHVGRPIKALLVVISWVVVIIFGALKFLLWSSLL





SSWKGKAFSVIGLGIVAGIVTLLMHILILSSQAEGSNPVKAAPAKLKTELSSSKK





VTNKEN


CignLPAAT1


SEQ ID NO: 173 


MAIAAAAVI FLFGLLFFASGIIINLFQALCFVLIWPLSKNVYRRINRVFAELLLM





DLLCLFHWWAGAKIKLFTDPETFRLMGMEHALVIMNHKIDLDWMVGWILGQHLGC





LGSILSIAKKSTKFIPVLGWSVWFSEYLFLERSWAKDKSTLKSHMEKLKDYPLPF





WLVIFVEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPHTKGFVSCVSNMRSFVPA





VYDVTVAFPKSSPPPTMLKLFEGQSIVLHVHIKRHALKDLPESDDAVAQWCRDKF





VEKDALLDKHNAEDTFSGQEVHHIGRPIKSLLVVIAWVVVIIFGALKFLQWSSLL





STWKGKAFSVIGLGIATLLMHMLILSSQAERSNPAKVAK





CavigLPAAT1


SEQ ID NO: 174


MTIASAAVVFLFGILLFTSGLIINLFQAFCSVLVWPLSKNAYRRINRVFAEFLPL





EFLWLFHWWAGAKLKLFTDPETFRLMGKEHALVIINHKIELDWMVGWVLGQHLGC





LGSILSVAKKSTKFLPVFGWSLWFSEYLFLERNWAKDKKTLKSHIERLKDYPLPF





WLIIFVEGTRFTRTKLLAAQQYAASAGLPVPRNVLIPHTKGFVSSVSHMRSFVPA





IYDVTVAFPKTSPPPTMLKLFEGHFVELHVHIKRHAMKDLPESEDAVAQWCRDKF





VEKDALLDKHNAEDTFSGQEVHHVGRPIKSLLVVISWVVVIIFGALKFLQWSSLL





SSWKGIAFSVIGLGTVALLMQILILSSQAERSIPAKETPANLKTELSSSKKVTNK





EN


CavigLPAAT2


SEQ ID NO: 175


MAIAAAAVIVPVSLLFFVSGLIVNLVQAVCFVLIRPLFKNTYRRINRVVAELWL





ELVWLIDWWAGVKIKVFTDHETFHLMGKEHALVICNHKSDIDWLVGWVLAQRSGC





LGSTLAVMKKSSKFLPVIGWSMWFSEYLFLERNWAKDESTLKSGLNRLKDYPLPF





WLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRTKGFVSSVSHMRSFVPA





IYDVTVAI PKTSPPPTLLRMFKGQSSVLHVHLKRHQMNDLPESDDAVAQWCRDIF





VEKDALLDKHNAEDTFSGQELQDTGRPIKSLLIVISWAVLVVFGAVKFLQWSSLL





SSWKGLAFSGIGLGVITLLMHILILFSQSERSTPAKVAPAKPKIEGESSKTEMEK





EH


CpalLPAAT1


SEQ ID NO: 176 


MAIAAAAVIVPLGLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRINRVVAELLWL





ELVWLIDWWAGVKIKVFTDHETLSLMGKEHALVICNHKSDIDWLVGWVLAQRSGC





LGSTLAVMKKSSKFLPVIGWSMWFSEYLPESDDAVAQWCRDIFVEKDALLDKHNA





EDTFSGQELQDTGRPIKSLLVVISWAVLVIFGAVKFLQWSSLLSSWKGLAFSGVG





LGIITLLMHILILFSQSERSTPAKVAPAKPKKDGESSKTEIEKENVPGALLGQGR





EHPEVRPEPPEGLPPALLAGPVRGGHPLHPRQAAGRPAVRHLLRPARAPQRADPP





HQGLRVLRVPHALLRARHLRRDRGHPQDLPPPHHAAHVQGPVLRAARAPEAPPDE





GP


CuPSR23 LPAAT2


SEQ ID NO: 177 


MAIAAAAVI FLFGLIFFASGLIINLFQALCFVLIRPLSKNAYRRINRVFAELLLS





ELLCLFDWWAGAKLKLFTDPETFRLMGKEHALVIINHMTELDWMVGWVMGQHFGC





LGSIISVAKKSTKFLPVLGWSMWFSEYLYLERSWAKDKSTLKSHIERLIDYPLPF





WLVIFVEGTRFTRTKLLAAQQYAVSSGLPVPRNVLIPRTKGFVSCVSHMRSFVPA





VYDVTVAFPKTSPPPTLLNLFEGQSIMLHVHIKRHAMKDLPESDDAVAEWCRDKF





VEKDALLDKHNAEDTFSGQEVCHSGSRQLKSLLVVISWVVVTTFGALKFLQWSSW





KGKAFSAIGLGIVTLLMHVLILSSQAERSNPAEVAQAKLKTGLSISKKVTDKEN


CkoeLPAAT1


SEQ ID NO: 178


MAI PAAVAVI PIGLLFIISGLIVNLIQAVVYVLIRPLSKNLHRKINKPIAELLWL





ELIWLVDWWAGIKVEVYADSQTLELMGKEHALLICNHRSDIDWLVGWVLAQRARC





LGSALAIMKKSAKFLPVIGWSMWFSDYIFLDRTWAKDEKTLKSGFERLADFPMPF





WLALFVEGTRFTKAKLLAAQEYAASRGLPVPQNVLIPRTKGFVTAVTHMRSYVPA





IYDCTVDISKAHPAPSILRLIRGQSSVVKVQITRHSMQELPETADGISQWCMDLF





VTKDGFLEKYHSKDIFGSLPVQNIGRPVKSLIVVLCWYCLMAFGLFKFFMWSSLL





SSWEGILSLGLILLAVAIVMQILIQSTESERSTPVKSIQKDPSKETLLQN


CkoeLPAAT2


SEQ ID NO: 179


MHVLLEMVTFRFSSFFVFDNVQALCFVLIWPLSKSAYRKINRVFAELLLSELLCL





FDWWAGAKLKLFTDPETFRLMGKEHALVITNHKIDLDWMIGWILGQHFGCLGSVI





SIAKKSTKFLPIFGWSLWFSEYLFLERNWAKDKRTLKSHIERMKDYPLPLWLILF





VEGTRFTRTKLLAAQQYAASSGLPVPRNVLIPHTKGFVSSVSHMRSFVPAVYDVT





VAFPKTSPPPTMLSLFEGQSVVLHVHIKRHAMKDLPDSDDAVAQWCRDKFVEKDA





LLDKHNAEDTFSGQEVHHVGRTIKSLLVVISWMVVIIFGALKFLQWSSLLSSWKG





KAFSAIGLGIATLLMHVLVVFSQADRSNPAKVPPAKLNTELSSSKKVTNKEN


CprocLPAAT2


SEQ ID NO: 180


MAI PAAVAVIPIGLLFIISGLIVNLIQAVVYVLIRPLSKNLYRKINKPIAELLWL





ELIWLVDWWAGIKVEVYADSETLESMGKEHALLICNHRSDIDWLVGWVLAQRARC





LGSALAIMKKSAKFLPVIGWSMWFSDYIFLDRTWEKDEKTLKSGFERLADFPMPF





WLALFVEGTRFTKAKLLAAQEFAASRGLPVPQNVLIPRTKGFVTAVTHMRSYVPA





IYDCTVDISKAHPAPSILRLIRGQSSVVKVQITRHSMQELPETPDGISQWCMDLF





VTKDAFLEKYHSKDIFGSLPVHDIGRPVKSLIVVLCWYSLMAFGFYKFFMWSSLL





SSWEGILSLGLVLIVIAIVMQILIQSSESERSTPVKSVQKDPSKETLLQN


CavigGPAT9


SEQ ID NO: 181


MATGGSLKPSSSDLDLDHPNIEDYLPSGSSINEPAGKLRLRDLLDISPTLTEAAG





AIVDDSFTRCFKSIPREPWNWNLYLFPLWCIGVLIRYFILFPGRVIVLTMGWITV





ISSFIAVRVLLKGHDALQIKLERLIVQLLCSSFVASWTGVVKYHGPRPSIRPKQV





YVANHT SMIDFFILDQMTVFSVIMQKHPGWVGLLQSTLLESVGCIWFDRAEAKDR





GIVAKKLWDHVHGEGNNPLLIFPEGTCVNNNYSVMFKKGAFELGCTVCPVAIKYN





KIFVDAFWNSKKQSFTRHLLQLMTSWAVVCDVWYLEPQTLKPGETPIEFAERVRD





IISARAGLKKVPWDGYLKYSRPSPKHRERKQQTFAESVLQRLEE


ChookGPAT9-1


SEQ ID NO: 182


MATAGSLKPSRSELDFDRPNIEDYLPSGSSIIEPAGKLRLRDLLDISPTLTEAAG





AIVDDSFTRCFKSNPPEPWNWNIYLFPLWCFGVLIRYLILFPARVIVLTIGWIIF





LSSFIPVHLLLKGHDALRI KLERLLVELICSFFVASWTGVVKYHGPRPSIRPKQV





YVANHTSMIDFFILDQMTVFSVIMQKHPGWVGLLQSTLLESVGCIWFDRAEAKDR





GIVAKKLWDHVHGEGNNPLLIFPEGTCVNNNYSVMFKKGAFELGCTVCPVAIKYN





KIFVDAFWNSKKQSFTRHLLQLMTSWAVVCDVWYLEPQTLKPGETPIEFAERVRD





IISVRAGLKKVPWDGYLKYSRPSPKHTERKQQNFAESVLQRLEKK


CignGPAT9-1


SEQ ID NO: 183


MATGGRLKPSSSELDLDRANTEDYLPSGSSINEPVGKLRLRDLLDISPTLTEAAG





AIVDDSFTRCFKSIPPEPWNWNIYLFPLWCFGVLIRYFILFPARVIVLTIGWITV





ISSFTAVRFLLKGHNALQIKLERLIVQLLCSSFVASWTGVVKYHGPRPSIRPKQV





YVANHTSMIDFLILDQMTVFSVIMQKHPGWVGLLQSTLLESVGCIWFNRAEAKDR





EIVAKKLWDHVHGEGNNPLLIFPEGTCVNNHYSVMFKKGAFELGCTVCPVAIKYN





KIFVDAFWNSRKQSFTMHLLQLMTSWAVVCDVWYLEPQTLKPGETAIEFAERVRD





IIVRAGLKKVPWDGYLKYSRPSPKHRESKQQSFAESVLRRLEEK


CignGPAT9-2


SEQ ID NO: 184


MATGGRLKPSSSELDLDRANTEDYLPSGSSINEPVGKLRLRDLLDISPTLTEAAG





AIVDDSFTRCFKSIPPEPWNWNIYLFPLWCFGVLIRYFILFPARVIVLTIGWITV





ISSFTAVRFLLKGHNALQIKLERLIVQLLCSSFVASWTGVVKYHGPRPSIRPKQV





YVANHTSMIDFLILDQMTVFSVIMQKHPGWVGLLQSTLLESVGCIWFNRAEAKDR





EIVAKKLWDHVHGEGNNPLLI FPEGTCVNNHYSVMFKKGAFELGCTVCPVAIKYN





KIFVDAFWNSKKHSFTRHLLQLMTSWAVVCDVWYLEPQTLKPGETPIEFAERVRD





IISVRADLKKVPWDGYLKYSRPSPKHRERKQQKFAESVLRRLEEK


CpalGPAT9-1


SEQ ID NO: 185


MATAGRLKPSSSELELDLDRPNIEDYLPSGSSINEPAGKLRLRDLLDISPMLTEA





AGAIVDDSFTRCFKSIPPEPWNWNIYLFPLWCFGVLIRYLILFPARVIVLTVGWI





TVISSFITVRFLLKGHDSLRIKLERLIVQLFCSSFVASWTGVVKYHGPRPSIRPQ





QVYVANHTSMIDFIILNQMTVFSAIMQKHPGWVGLIQSTILESVGCIWFNRAEAK





DREIVAKKLLDHVHGEGNNPLLIFPEGTCVNNHYSVMFKKGAFELGCTVCPVAIK





YNKIFVDAFWNSKKQSFTMHLLQLMTSWAVVCDVWYLEPQTLKPGETPIEFAERV





RDIISVRAGLKKVPWDGYLKYSRPSPKHRERKQQSFAESVLRRLEKR


CpalGPATt9-2


SEQ ID NO: 186


MATAGRLKPSSSELELDLDRPNIEDYLPSGSSINEPAGKLRLRDLLDISPMLTEA





AGAIVDDSFTRCFKSIPPEPWNWNIYLFPLWCFGVLIRYLILFPARVIVLTVGWI





TVISSFITVRFLLKGHDSLRIKLERLIVQLFCSSFVASWTGVVKYHGPRPSIRPQ





QVYVANHTSMIDFIILNQMTVFSAIMQKHPGWVGLIQSTILESVGCIWFNRAEAK





DREIVAKKLLDHVHGEGNNPLLIFPEGTCVNNHYSVMFKKGAFELGCTVCPVAIK





YNKIFVDAFWNSKKLSFTMHLLQLMTSWAVVCDVWYLEPQTLKPGETPIEFAERV





RDIISVRAGLKKVPWDGYLKYSRPSPKHRERKQQTFAESVLRRLEEKGNVVPTVN


CavigDGAT1


SEQ ID NO: 187


MAIADGGIIGAAGSISALTADTDPPSLRRRNVPAGQASAVSAFSTESMAKHLCDP





SREPSPSPKSSDDGKDPDIGSVDSLNEKPSSPAAGKGRLQHDLRFTYRASSPAHR





KVKESPLSSSNIFKQSHAGLFNLCVVVLVAVNSRLIIENLMKYGLLIKTGFWFSS





RSLRDWPLFMCCLSLPIFPLAAFLVEKLAQKNRLQEPTVVCCHVLITSVSILYPV





LVILRCDSAVLSGVALMLFACIVWLKLVSYAHSNYDMRYVAKSLDKGEPVVDSVI





ADHPYRVDYKDLVYFMVAPTLCYQLSYPLTPCVRKSWIARQVMKLVLFTGVMGFI





VEQYINP IVQNSKHPLKGDLLYAIERVLKLSVPNLYVWLCMFYCFFHLWLNILAE





LICFGDREFYKDWWNAKTVEEYWRMWNMPVHKWMVRHIYFPCLRNGIPRGVAVLI





AFLVSAVFHELCIAVPCHVFKLWAFIGIMFQVPLVLVSNCLQKKFQSSMAGNMFF





WFIFCIFGQPMCVLLYYHDLMNRKGSRID


ChookDGAT1-1


SEQ ID NO: 188


MAIADGGSAGAAGSISGSDPSPSTAPSLRRRNASAGQAFSTESMARDLCDPSREP





SLSPKSSDDGKDPADDIGAADSVDSGGVKDEKPSSQAAAKARLEHDLRFTYRASS





PAHRKVKESPLSSSNIFKQSHAGLFNLCVVVLVAVNSRLIIENLMKYGLLIKTGF





WFSSRSLRDWPLFMCCLSLPIFPLAAFLVEKLAQKNRLQEPTVVCCHVIITSVSI





LYPVLVILRCDSAVLSGVALMLFACIVWLKLVSYAHANYDMRSVAKSLDKGETVA





DSVIVDHPYRVDYKDLVYFMVAPTLCYQLSYPLTPYVRKSWVARQVMKLVLFTGV





MGFIVEQYINPIVQNSKHPLKGDLLYAIERVLKLSVPNLYVWLCMFYCFFHLWLN





ILAELTCFGDREFYKDWWNAKTVEEYWRMWNMPVHKWMVRHIYFPCLRNGIPRGV





AVLIAFLVSAVFHELCIAVPCHVFKLWAFIGIMFQVPLVLVSNCLQKKFQSSMAG





NMFFWFIFCIFGQPMCVLLYYHDLMNRKGSRID


CavigLPCAT


SEQ ID NO: 189


MGLVSVAAAIGVSVPVARFLLCFLATIPVSFLWRLVPGRLPKHLYSAASGAILSY





LSFGASSNLHFIVPMTLGYLSMLFFRPFSGLLTFFLGFGYLIGCHVYYMSGDAWK





EGGIDATGALMVLTLKVISCSMNYNDGLLKEEGLRESQKKNRLTKMPSLIEYFGY





CLCCGSHFAGPVYEMKDYLEWTEGKGIWSRSQKEPKPSPFGGALRAIIQAAVCMA





MYLYLVPHHPLTRFTEPVYYEWGFFRRLSYQYMAALTARWKYYFIWSISEASLII





SGLGFSGWTESSPPKPRWDRAKNVDIIGVEFAKSSVQLPLVWNIQVSIWLRHYVY





DRLVQNGKRPGFFQLLATQTVSAVWHGLYPGYIIFFVQSALMIAGSRVIYRWQQA





VPPKMGLVKNIFVFFNFAYTLLVLNYSAVGFMVLSMHETLASYGSVYYIGTILPI





TLILLSYVIKPGKPARSKAHKEQ


CpalLPCAT


SEQ ID NO: 190


MELGSVAAAIGVSVPVARFLLCFLATIPVSFLWRLVPGRLPKHLYSAASGAILSY





LSFGPSSNLHFIVPMTLGYLSMLFFRFSGLLTFFLGFGYLIGCHVYYMSGDAWK





EGGIDATGALMVLTLKVISCSINYNDGLLKEEGLRESQKKNRLTKMPSLIEYIGY





CLCCGSHFAGPVYEMKDYLEWTEGKGVWSHSEKEPKPSPFGGALRAIIQAAVCMA





MYMYLVPHHPLSRFTEPVYYEWGFFRRLSYQYMAGLTARWKYYFIWSISEASLII





SGLGFSGWTESSPPKPRWDRAKNVDIIGVEFAKSSVQLPLVWNIQVSTWLRHYVY





DRLVQNGKRPGFFQLLATQTVSAIWHGLYPGYIIFFVQSALMIAGSRVIYRWQQA





VPPKMGLVKNIFVFFNFAYTLLVLNYSAVGFMVLSMHETLASYGSVYYIGTILPI





TLILLSYVIKPGKPARSKAHKEQ


CpauLPCAT


SEQ ID NO: 191


MELEIGSVAAAIGVSVPVARFLLCFLATIPVSFLCRLLPARLPKHLYSAASGAIL





SYLSFGPSSNLHFIVPMSLGYLSMLFFRPFSGLLTFFLGFGYLIGCHVYYMSGDA





WKEGGIDATGALMVLTLKVISCSINYNDGLLKEEGLRESQKKNRLTKMPSLIEYF





GYCLCCGSHFAGPVYEMKDYLEWTEGKGIWSRSEKDPKPSPFGGALRAIIQAAVC





MAMHMYLVPHHPLTRFTEPVYYEWGFFRRLSYQYMAAQTARWKYYFIWSISEASL





IISGLGFSGWTESSPPKPRWDKAKNVDIIGVEFAKSSVQLPLVWNIQVSTWLRHY





VYDRLVQNGKRPGFFQLLATQTVSAVWHGLYPGYIIFFVQSALMIAGSRVIYRWQ





QAVPQKMGLVKNIFVFFNFAYTLLVLNYSAVGFMVLSMHETLASYGSVYYIGTIL





PITLILLSYVIKPGKPTRSKVHKEQ


CschuLPCAT


SEQ ID NO: 192


MELEMEPLAAAIGVSVAVFRFLVCFIATIPVSFICRLVPGGLPRHLFSAASGAVL





SYLSFGFSSNLHFLVPMTLGYLSMILFRRFCGILTFFLGFGYLIGCHVYYMSGDA





WKEGGIDATGALMVLTLKVISCSINYNDGLLKEEGLRESQKKNRLIRLPSLIEYF





GYCLCCGSHFAGPVYEMKDYLDWTEGKGIWSHSEKGPKPSPLRAALRAIIQAGFC





MAMYLYLVPHYPLTRFTDPVYYEWGILRRLSYQYMASFTARWKYYFIWSISEASL





IISGLGFSGWTESSPPKPRWDRAKNVDILGVELAKSSVQIPLVWNIQVSTWLRHY





VYDRLVQNGKRPGFLQLLATQTVSAIWHGVYPGYLIFFVQSALMIAGSRAIYRWQ





QAVPPKMSLVKNTLVFFNFAYTLLVLNYSAVGFMVLSMHETLASYGSVYYVGTIL





PVTLILLGYVIKPGKSPRSKASKEQ


CawgPLA2-1


SEQ ID NO: 193


MNFDFLSNIPWFGAKASDNAGSSFGSATIVIQQPPPVSRGFDIRHWGWPWSVLSV





LPWGKPGCDELRAPPTTINRRLKRNATSMHSSAVRGNAEAARVRFRPYVSKVPWH





TGFRGLLSQLFPRYGHYCGPNWSSGKNGGSPVWDQRPIDWLDYCCYCHDIGYDTH





DQAKLLEADLAFLECLERPSYPTKGDAHVAHMYKTMCVTGLRNVLIPYRTQLLRL





NSRQPLIDFGWLSNAAWKGWNAQKS


CignPLA2-1


SEQ ID NO: 194


MNLDFLSKI PWFEAKASENPGLNLGSTTIVIKQPRQGFDIRHWGWPWSVLTWGNR





VTDEVHAPPTTINRRLKRNATGPAVQGDTEAARLRFRPYVSKVPWHTGFRGLLSQ





LFPRYGHYCGPNWSSGKNGGSPVWDQRPIDWLDYCCYCHDIGYDTHDQAKLLEAD





LAFLECLERPSYPTTGDAHVAHMYKTMCVTGLRNVLIPYRTQLLRLNFRQPLIDF





GWLSNAAWKGWSAQKT


CuPSR23PLA2-2


SEQ ID NO: 195


MVHLPHTLKLGLVIAISISGLCFSSTPARALNVGIQAAGVTVSVGKGCSRKCESD





FCKVPPFLRYGKYCGLMYSGCPGEKPCDGLDACCMKHDACVQAKNNDYLSQECSQ





NLLNCMASFRMSGGKQFKGSTCQVDEVVDVLTVVMEAALLAGRYLHKP


CprocPLA2-2


SEQ ID NO: 196


MVHLPHTLKLGLVIAISISGLCLSSTPARALNVGIQAAGVTVSVGKGCSRKCESD





FCKVPPFLRYGKYCGLMYSGCPGEKPCDGLDACCMKHDACVQAKNDDYLSQECSQ





NLLNCMASFRMSGGKQFKGSTCQVDEVVDVLTVVMEAALLAGRYLHKP


pSZ4329


SEQ ID NO: 197



agcggaagagcgcccaatgtttaaacccctcaactgcgacgctgggaaccttctccgggcaggcgatgtgcgtgggtttgcctccttggcacgg







ctctacaccgtcgagtacgccatgaggcggtgatggctgtgtcggttgccacttcgtccagagacggcaagtcgtccatcctctgcgtgtgtggc







gcgacgctgcagcagtccctctgcagcagatgagcgtgactttggccatttcacgcactcgagtgtacacaatccatttttcttaaagcaaatga







ctgctgattgaccagatactgtaacgctgatttcgctccagatcgcacagatagcgaccatgttgctgcgtctgaaaatctggattccgaattcg







accctggcgctccatccatgcaacagatggcgacacttgttacaattcctgtcacccatcggcatggagcaggtccacttagattcccgatcacc







cacgcacatctcgctaatagtcattcgttcgtgtcttcgatcaatctcaagtgagtgtgcatggatcttggttgacgatgcggtatgggtttgcgc







cgctggctgcagggtctgcccaaggcaagctaacccagctcctctccccgacaatactctcgcaggcaaagccggtcacttgccttccagattg







ccaataaactcaattatggcctctgtcatgccatccatgggtctgatgaatggtcacgctcgtgtcctgaccgttccccagcctctggcgtcccct







gccccgcccaccagcccacgccgcgcggcagtcgctgccaaggctgtctcggaggtaccctttcttgcgctatgacacttccagcaaaaggtag







ggcgggctgcgagacggcttcccggcgctgcatgcaacaccgatgatgcttcgaccccccgaagctccttcggggctgcatgggcgctccgatg







ccgctccagggcgagcgctgtttaaatagccaggcccccgattgcaaagacattatagcgagctaccaaagccatattcaaacacctagatca







ctaccacttctacacaggccactcgagcttgtgatcgcactccgctaagggggcgcctcttcctcttcgtttcagtcacaacccgcaaactctaga







atatcaatgctgctgcaggccttcctgttcctgctggccggcttcgccgccaagatcagcgcctccatgacgaacgagacgtccgaccgccccct







ggtgcacttcacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgagaaggacgccaagtggcacctgtacttccagt







acaacccgaacgacaccgtctgggggacgcccttgttctggggccacgccacgtccgacgacctgaccaactgggaggaccagcccatcgcc







atcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtggactacaacaacacctccggcttcttcaacgacaccatcgacc







cgcgccagcgctgcgtggccatctggacctacaacaccccggagtccgaggagcagtacatctcctacagcctggacggcggctacaccttca







ccgagtaccagaagaaccccgtgctggccgccaactccacccagttccgcgacccgaaggtcttctggtacgagccctcccagaagtggatca







tgaccgcggccaagtcccaggactacaagatcgagatctactcctccgacgacctgaagtcctggaagctggagtccgcgttcgccaacgagg







gcttcctcggctaccagtacgagtgccccggcctgatcgaggtccccaccgagcaggaccccagcaagtcctactgggtgatgttcatctccatc







aaccccggcgccccggccggcggctccttcaaccagtacttcgtcggcagcttcaacggcacccacttcgaggccttcgacaaccagtcccgcg







tggtggacttcggcaaggactactacgccctgcagaccttcttcaacaccgacccgacctacgggagcgccctgggcatcgcgtgggcctccaa







ctgggagtactccgccttcgtgcccaccaacccctggcgctcctccatgtccctcgtgcgcaagttctccctcaacaccgagtaccaggccaacc







cggagacggagctgatcaacctgaaggccgagccgatcctgaacatcagcaacgccggcccctggagccggttcgccaccaacaccacgttg






acgaaggccaacagctacaacgtcgacctgtccaacagcaccggcaccctggagttcgagctggtgtacgccgtcaacaccacccagacgat






ctccaagtccgtgttcgcggacctctccctctggttcaagggcctggaggaccccgaggagtacctccgcatgggcttcgaggtgtccgcgtcct







ccttcttcctggaccgcgggaacagcaaggtgaagttcgtgaaggagaacccctacttcaccaaccgcatgagcgtgaacaaccagcccttca







agagcgagaacgacctgtcctactacaaggtgtacggcttgctggaccagaacatcctggagctgtacttcaacgacggcgacgtcgtgtcca







ccaacacctacttcatgaccaccgggaacgccctgggctccgtgaacatgacgacgggggtggacaacctgttctacatcgacaagttccagg







tgcgcgaggtcaagtgacaattgacgcccgcgcggcgcacctgacctgttctctcgagggcgcctgttctgccttgcgaaacaagcccctggag







catgcgtgcatgatcgtctctggcgccccgccgcgcggtttgtcgccctcgcgggcgccgcggccgcgggggcgcattgaaattgttgcaaacc







ccacctgacagattgagggcccaggcaggaaggcgttgagatggaggtacaggagtcaagtaactgaaagtttttatgataactaacaaca







aagggtcgtttctggccagcgaatgacaagaacaagattccacatttccgtgtagaggcttgccatcgaatgtgagcgggcgggccgcggacc







cgacaaaacccttacgacgtggtaagaaaaacgtggcgggcactgtccctgtagcctgaagaccagcaggagacgatcggaagcatcacag







cacaggatcccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataacca







cctgacgaatgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtgg







agctgatggtcgaaacgttca cagcctagggatatcgcctgctcaagcgggcgctcaacatgcagagcgtcagcgagacgggctgtggcgat







cgcgagacggacgaggccgcctctgccctgtttgaactgagcgtcagcgctggctaaggggagggagactcatccccaggctcgcgccaggg







ctctgatcccgtctcgggcggtgatcggcgcgcatgactacgacccaacgacgtacgagactgatgtcggtcccgacgaggagcgccgcgagg







cactcccgggccaccgaccatgtttacaccgaccgaaagcactcgctcgtatccattccgtgcgcccgcacatgcatcatcttttggtaccgactt







cggtcttgttttacccctacgacctgccttccaaggtgtgagcaactcgcccggacatgaccgagggtgatcatccggatccccaggccccagc







agcccctgccagaatggctcgcgctttccagcctgcaggcccgtctcccaggtcgacgcaacctacatgaccaccccaatctgtcccagacccc







aaacaccctccttccctgcttctctgtgatcgctgatcagcaacaactagtaacaatggccaccgcctccaccttctccgccttcaacgcccgctg







cggcgacctgcgccgctccgccggctccggcccccgccgccccgcccgccccctgcccgtgcgcgccgccatcaacgactccgcccaccccaag







gccaacggctccgccgtgagcctgaagagcggcagcctgaacacccaggaggacacctcctccagcccccccccccgcaccttcctgcaccag







ctgcccgactggagccgcctgctgaccgccatcaccaccgtgttcgtgaagtccaagcgccccgacatgcacgaccgcaagtccaagcgcccc







gacatgctggtggacagcttcggcctggagtccaccgtgcaggacggcctggtgttccgccagtccttctccatccgctcctacgagatcggcac







cgaccgcaccgccagcatcgagaccctgatgaaccacctgcaggagacctccctgaaccactgcaagagcaccggcatcctgctggacggctt







cggccgcaccctggagatgtgcaagcgcgacctgatctgggtggtgatcaagatgcagatcaaggtgaaccgctaccccgcctggggcgaca







ccgtggagatcaacacccgcttcagccgcctgggcaagatcggcatgggccgcgactggctgatctccgactgcaacaccggcgagatcctgg







tgcgcgccaccagcgcctacgccatgatgaaccagaagacccgccgcctgtccaagctgccctacgaggtgcaccaggagatcgtgcccctgt







tcgtggacagccccgtgatcgaggactccgacctgaaggtgcacaagttcaaggtgaagaccggcgacagcatccagaagggcctgaccccc







ggctggaacgacctggacgtgaaccagcacgtgtccaacgtgaagtacatcggctggatcctggagagcatgcccaccgaggtgctggagac







ccaggagctgtgctccctggccctggagtaccgccgcgagtgcggccgcgactccgtgctggagagcgtgaccgccatggaccccagcaaggt







gggcgtgcgctcccagtaccagcacctgctgcgcctggaggacggcaccgccatcgtgaacggcgccaccgagtggcgccccaagaacgccg










gcgccaacggcgccatctccaccggcaagaccagcaacggcaactccgtgtccatggactacaaggaccacgacggcgactacaaggacca







cgacatcgactacaaggacgacgacgacaagtgactcgaggcagcagcagctcggatagtatcgacacactctggacgctggtcgtgtgatg







gactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttg







cgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatttacgc







tgtcctgctatccctcagcgctgctcctgctcctgctcactgccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctg







taaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttgagctccagcgccatgccacgccctttga







tggcttcaagtacgattacggtgttggattgtgtgtttgttgcgtagtgtgcatggtttagaataatacacttgatttcttgctcacggcaatctcg







gcttgtccgcaggttcaaccccatttcggagtctcaggtcagccgcgcaatgaccagccgctacttcaaggacttgcacgacaacgccgaggtg







agctatgtttaggacttgattggaaattgtcgtcgacgcatattcgcgctccgcgacagcacccaagcaaaatgtcaagtgcgttccgatttgcg







tccgcaggtcgatgttgtgatcgtcggcgccggatccgccggtctgtcctgcgcttacgagctgaccaagcaccctgacgtccgggtacgcgag







ctgagattcgattagacataaattgaagattaaacccgtagaaaaatttgatggtcgcgaaactgtgctcgattgcaagaaattgatcgtcctc







cactccgcaggtcgccatcatcgagcagggcgttgctcccggcggcggcgcctggctggggggacagctgttctcggccatgtgtgtacgtaga







aggatgaatttcagctggttttcgttgcacagctgtttgtgcatgatttgtttcagactattgttgaatgtttttagatttcttaggatgcatgattt






gtctgcatgcgactgaagagcgttt


pSZ5078


SEQ ID NO: 198



agcggaagagcgcccaatgtttaaacccctcaactgcgacgctgggaaccttctccgggcaggcgatgtgcgtgggtttgcctccttggcacgg







ctctacaccgtcgagtacgccatgaggcggtgatggctgtgtcggttgccacttcgtccagagacggcaagtcgtccatcctctgcgtgtgtggc







gcgacgctgcagcagtccctctgcagcagatgagcgtgactttggccatttcacgcactcgagtgtacacaatccatttttcttaaagcaaatga







ctgctgattgaccagatactgtaacgctgatttcgctccagatcgcacagatagcgaccatgttgctgcgtctgaaaatctggattccgaattcg







accctggcgctccatccatgcaacagatggcgacacttgttacaattcctgtcacccatcggcatggagcaggtccacttagattcccgatcacc







cacgcacatctcgctaatagtcattcgttcgtgtcttcgatcaatctcaagtgagtgtgcatggatcttggttgacgatgcggtatgggtttgcgc







cgctggctgcagggtctgcccaaggcaagctaacccagctcctctccccgacaatactctcgcaggcaaagccggtcacttgccttccagattg







ccaataaactcaattatggcctctgtcatgccatccatgggtctgatgaatggtcacgctcgtgtcctgaccgttccccagcctctggcgtcccct







gccccgcccaccagcccacgccgcgcggcagtcgctgccaaggctgtctcggaggtaccctttcttgcgctatgacacttccagcaaaaggtag







ggcgggctgcgagacggcttcccggcgctgcatgcaacaccgatgatgcttcgaccccccgaagctccttcggggctgcatgggcgctccgatg







ccgctccagggcgagcgctgtttaaatagccaggcccccgattgcaaagacattatagcgagctaccaaagccatattcaaacacctagatca







ctaccacttctacacaggccactcgagcttgtgatcgcactccgctaagggggcgcctcttcctcttcgtttcagtcacaacccgcaaactctaga







atatcaatgctgctgcaggccttcctgttcctgctggccggcttcgccgccaagatcagcgcctccatgacgaacgagacgtccgaccgccccct







ggtgcacttcacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgagaaggacgccaagtggcacctgtacttccagt







acaacccgaacgacaccgtctgggggacgcccttgttctggggccacgccacgtccgacgacctgaccaactgggaggaccagcccatcgcc







atcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtggactacaacaacacctccggcttcttcaacgacaccatcgacc







cgcgccagcgctgcgtggccatctggacctacaacaccccggagtccgaggagcagtacatctcctacagcctggacggcggctacaccttca







ccgagtaccagaagaaccccgtgctggccgccaactccacccagttccgcgacccgaaggtcttctggtacgagccctcccagaagtggatca







tgaccgcggccaagtcccaggactacaagatcgagatctactcctccgacgacctgaagtcctggaagctggagtccgcgttcgccaacgagg







gcttcctcggctaccagtacgagtgccccggcctgatcgaggtccccaccgagcaggaccccagcaagtcctactgggtgatgttcatctccatc







aaccccggcgccccggccggcggctccttcaaccagtacttcgtcggcagcttcaacggcacccacttcgaggccttcgacaaccagtcccgcg







tggtggacttcggcaaggactactacgccctgcagaccttcttcaacaccgacccgacctacgggagcgccctgggcatcgcgtgggcctccaa







ctgggagtactccgccttcgtgcccaccaacccctggcgctcctccatgtccctcgtgcgcaagttctccctcaacaccgagtaccaggccaacc







cggagacggagctgatcaacctgaaggccgagccgatcctgaacatcagcaacgccggcccctggagccggttcgccaccaacaccacgttg







acgaaggccaacagctacaacgtcgacctgtccaacagcaccggcaccctggagttcgagctggtgtacgccgtcaacaccacccagacgat







ctccaagtccgtgttcgcggacctctccctctggttcaagggcctggaggaccccgaggagtacctccgcatgggcttcgaggtgtccgcgtcct







ccttcttcctggaccgcgggaacagcaaggtgaagttcgtgaaggagaacccctacttcaccaaccgcatgagcgtgaacaaccagcccttca







agagcgagaacgacctgtcctactacaaggtgtacggcttgctggaccagaacatcctggagctgtacttcaacgacggcgacgtcgtgtcca







ccaacacctacttcatgaccaccgggaacgccctgggctccgtgaacatgacgacgggggtggacaacctgttctacatcgacaagttccagg







tgcgcgaggtcaagtgacaattgacgcccgcgcggcgcacctgacctgttctctcgagggcgcctgttctgccttgcgaaacaagcccctggag







catgcgtgcatgatcgtctctggcgccccgccgcgcggtttgtcgccctcgcgggcgccgcggccgcgggggcgcattgaaattgttgcaaacc







ccacctgacagattgagggcccaggcaggaaggcgttgagatggaggtacaggagtcaagtaactgaaagtttttatgataactaacaaca







aagggtcgtttctggccagcgaatgacaagaacaagattccacatttccgtgtagaggcttgccatcgaatgtgagcgggcgggccgcggacc







cgacaaaacccttacgacgtggtaagaaaaacgtggcgggcactgtccctgtagcctgaagaccagcaggagacgatcggaagcatcacag







cacaggatcccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataacca







cctgacgaatgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtgg







agctgatggtcgaaacgttcacagcctagggatatcgaattcggccgacaggacgcgcgtcaaaggtgctggtcgtgtatgccctggccggca







ggtcgttgctgctgctggttagtgattccgcaaccctgattttggcgtcttattttggcgtggcaaacgctggcgcccgcgagccgggccggcggc







gatgcggtgccccacggctgccggaatccaagggaggcaagagcgcccgggtcagttgaagggctttacgcgcaaggtacagccgctcctgc







aaggctgcgtggtggaattggacgtgcaggtcctgctgaagttcctccaccgcctcaccagcggacaaagcaccggtgtatcaggtccgtgtca







tccactctaaagagctcgactacgacctactgatggccctagattcttcatcaaaaacgcctgagacacttgcccaggattgaaactccctgaa







gggaccaccaggggccctgagttgttccttccccccgtggcgagctgccagccaggctgtacctgtgatcgaggctggcgggaaaataggcttc







gtgtgctcaggtcatgggaggtgcaggacagctcatgaaacgccaacaatcgcacaattcatgtcaagctaatcagctatttcctcttcacgag






ctgtaattgtcccaaaattctggtctaccgggggtgatccttcgtgtacgggcccttccctcaaccctaggtatgcgcgcatgcggtcgccgcgca






a ctcgcgcgagggccgagggtttgggacgggccgtcccgaaatgcagttgcacccggatgcgtggcacctiftttgcgataatttatgcaatgg







actgctctgcaaaattctggctctgtcgccaaccctaggatcagcggcgtaggatttcgtaatcattcgtcctgatggggagctaccgactaccc







taatatcagcccgactgcctgacgccagcgtccacttttgtgcacacattccattcgtgcccaagacatttcattgtggtgcgaagcgtccccagt







tacgctcacctgtttcccgacctccttactgttctgtcgacagagcgggcccacaggccggtcgcagccactagtatggccaccgcctccaccttc







tccgccttcaacgcccgctgcggcgacctgcgccgctccgccggctccggcccccgccgccccgcccgccccctgcccgtgcgcgccgccatcaa







ctcccgcgcccaccccaaggccaacggctccgccgtgtccctgaagtccggctccctgaacacccaggaggacacctcctcctcccccccccccc







gcaccttcctgcaccagctgcccgactggtcccgcctgctgaccgccatcaccaccgtgttcgtgaagtccaagcgccccgacatgcacgaccg







caagtccaagcgccccgacatgctgatggactccttcggcctggagtccatcgtgcaggagggcctggagttccgccagtccttctccatccgct







cctacgagatcggcaccgaccgcaccgcctccatcgagaccctgatgaactacctgcaggagacctccctgaaccactgcaagtccaccggca







tcctgctggacggcttcggccgcacccccgagatgtgcaagcgcgacctgatctgggtggtgaccaagatgaagatcaaggtgaaccgctacc







ccgcctggggcgacaccgtggagatcaacacctggttctcccgcctgggcaagatcggcaagggccgcgactggctgatctccgactgcaaca







ccggcgagatcctgatccgcgccacctccgcctacgccaccatgaaccagaagacccgccgcctgtccaagctgccctacgaggtgcaccagg







agatcgcccccctgttcgtggactccccccccgtgatcgaggacaacgacctgaagctgcacaagttcgaggtgaagaccggcgactccatcc







acaagggcctgacccccggctggaacgacctggacgtgaaccagcacgtgtccaacgtgaagtacatcggctggatcctggagtccatgccc







accgaggtgctggagacccaggagctgtgctccctggccctggagtaccgccgcgagtgcggccgcgactccgtgctggagtccgtgaccgcc







atggaccccaccaaggtgggcggccgctcccagtaccagcacctgctgcgcctggaggacggcaccgacatcgtgaagtgccgcaccgagtg







gcgccccaagaaccccggcgccaacggcgccatctccaccggcaagacctccaacggcaactccgtgtccatggactacaaggaccacgacg







gcgactacaaggaccacgacatcgactacaaggacgacgacgacaagtgattaattaactcgaggcagcagcagctcggatagtatcgaca







cactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgt







gtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttg







catcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgc







ctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttgagc







tccagcgccatgccacgccctttgatggcttcaagtacgattacggtgttggattgtgtgtttgttgcgtagtgtgcatggtttagaataatacac







ttgatttcttgctcacggcaatctcggcttgtccgcaggttcaaccccatttcggagtctcaggtcagccgcgcaatgaccagccgctacttcaag







gacttgcacgacaacgccgaggtgagctatgtttaggacttgattggaaattgtcgtcgacgcatattcgcgctccgcgacagcacccaagca







aaatgtcaagtgcgttccgatttgcgtccgcaggtcgatgttgtgatcgtcggcgccggatccgccggtctgtcctgcgcttacgagctgaccaa







gcaccctgacgtccgggtacgcgagctgagattcgattagacataaattgaagattaaacccgtagaaaaatttgatggtcgcgaaactgtgc







tcgattgcaagaaattgatcgtcctccactccgcaggtcgccatcatcgagcagggcgttgctcccggcggcggcgcctggctggggggacagc







tgttctcggccatgtgtgtacgtagaaggatgaatttcagctggttttcgttgcacagctgtttgtgcatgatttgtttcagactattgttgaatgtt







tttagatttcttaggatgcatgatttgtctgcatgcgactgaagcgtttaaaccgcct









Claims
  • 1. A microalgal cell having an ablated or downregulated fatty acyl-ACP thioesterase (FATA) gene, wherein the cell is modified to express a heterologous lysophosphatidic acid acyltransferase (LPAAT) comprising an amino acid sequence that has at least 80% identity to an acyltransferase encoded by SEQ ID NO: 90, 89, 92, 93 or 95 and wherein the modified microalgal cell produces an oil with an elevated ratio of saturated-unsaturated-saturated triglycerides over trisaturated triglycerides as compared to a corresponding unmodified cell.
  • 2. The microalgal cell of claim 1, wherein the cell is modified to coexpress with the heterologous LPAAT at least one exogenous gene that encodes an enzyme selected from the group consisting of invertase, a fatty acyl-ACP thioesterase, a melibiase, a ketoacyl synthase and a THIC.
  • 3. The microalgal cell of claim 1, wherein the cell is modified to ablate or downregulate the expression of at least one endogenous gene selected from the group consisting of: a stearoyl ACP desaturase, a fatty acyl desaturase, a fatty acyl-ACP thioesterase (FATA or FATB), a ketoacyl synthase (KASI, KASII, KASIII or KAS IV) and an acyltransferase (DGAT, GPAT or LPCAT).
  • 4. The microalgal cell of claim 2, wherein the cell is further modified to overexpress a gene encoding a C18:0-specific FATA1 thioesterase.
  • 5. The microalgal cell of claim 4, wherein the C18:0-specific FATA1 thioesterase is a variant Garcinia thioesterase.
  • 6. The microalgal cell of claim 5, wherein the variant Garcinia thioesterase has at least 80% identity to SEQ ID NO: 142.
  • 7. The microalgal cell of claim 6, wherein the variant Garcinia thioesterase comprises one or more of amino acid variants selected from the group consisting of L91F, L91K, L91S, G96A, G96T, G96V, G108A, G108V, S111A, S111V T156F, T156A, T156K, T156V and V193A.
  • 8. The microalgal cell of claim 7, wherein the variant Garcinia thioesterase is a variant comprising the substitutions S111A and V193A, a variant comprising the substitution G96A, or a variant comprising the substitution G108A.
  • 9. The microalgal cell of claim 2, wherein the ketoacyl synthase is a KASII.
  • 10. The microalgal cell of claim 4, wherein the ketoacyl synthase is a KASII.
  • 11. The microalgal cell of claim 3, wherein the cell is modified to ablate or downregulate the expression of an endogenous stearoyl ACP desaturase-2 (SAD2) gene and an endogenous fatty acyl desaturase-2 (FAD2) gene.
  • 12. The microalgal cell of claim 10, wherein the cell is modified to ablate or downregulate the expression of an endogenous stearoyl ACP desaturase-2 (SAD2) gene and an endogenous fatty acyl desaturase-2 (FAD2) gene.
  • 13. The microalgal cell of claim 1, wherein the cell is modified to express a Theobroma cacao diacylglycerol O-acyltransferase.
  • 14. The microalgal cell of claim 13, wherein the Theobroma cacao diacylglycerol O-acyltransferase is a Theobroma cacao diacylglycerol O-acyltransferase-1 or a Theobroma cacao diacylglycerol O-acyltransferase-2.
  • 15. The microalgal cell of claim 12, wherein the Theobroma cacao diacylglycerol O-acyltransferase is a Theobroma cacao diacylglycerol O-acyltransferase-1 or a Theobroma cacao diacylglycerol O-acyltransferase-2.
  • 16. The microalgal cell of claim 1, wherein the cell is of the genus Prototheca or Chlorella.
  • 17. The microalgal cell of claim 16, wherein the cell is a Prototheca moriformis cell.
  • 18. The microalgal cell of claim 15, wherein the cell is a Prototheca moriformis cell.
  • 19. A method of producing an oil comprising: (a) cultivating the microalgal cell of claim 1 under conditions to produce the oil; and (b) extracting the oil from the microalgal cell; wherein the oil comprises at least 50% stearate-oleate-stearate (SOS) triglycerides with an elevated ratio of saturated-unsaturated-saturated triglycerides over trisaturated triglycerides as compared to a corresponding unmodified cell.
  • 20. A method of producing an oil comprising: (a) cultivating the microalgal cell of claim under conditions to produce the oil; and (b) extracting the oil from the microalgal cell; wherein the oil comprises at least 60% stearate-oleate-stearate (SOS) triglycerides, less than 5% trisaturates and wherein the fatty acid profile of the oil comprises at least 50% C18:0.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/725,222, filed Oct. 4, 2017, which claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Patent Application No. 62/404,667, filed Oct. 5, 2016, entitled “Novel Acyltransferases, Variant Thioesterases, And Uses Thereof”, each of which is incorporated herein by reference in its entirety for all purposes.

Provisional Applications (1)
Number Date Country
62404667 Oct 2016 US
Continuations (1)
Number Date Country
Parent 15725222 Oct 2017 US
Child 16998268 US