The subject matter described herein relates to aircraft designs and more particularly to aircraft designs using tandem wings, whether such wings are joined swept wings or separate wings, with a distributed propulsion system.
Modern aircraft design is primarily based on two types of designs: fixed-wing or rotary wing. One of the most well-known forms of the fixed-wing aircraft is arguably the transonic jet airplane, an example of which is shown in
Since the development of these designs, improvements have been largely incremental. Thus, modern aircraft still look very similar to the original designs in concept.
More detail on the state of the art can be found in U.S. Provisional Application Ser. No. 62/854,145, which has been incorporated by reference in its entirety.
Disclosed herein are novel aircraft designs that enable new synergies between aerodynamics, propulsion, structure, and stability/control.
Described herein are example aircraft designs that enable synergies between aerodynamics, propulsion, structure, and stability/control. In particular, preferred embodiments of the present invention are directed at an aircraft design with tandem wings, which are preferably joined swept swings. Further included is a distributed propulsion system.
In one embodiment, the tandem wings are joined swept wings that include a first wing set and a second wing set, each having a wing span with a set of thrustors placed along the wing spans.
In other embodiments, the distribution of thrustors are placed along a longitudinal axis, a lateral axis, and a vertical axis to provide a distributed differential thrust system. This can include reverse thrust as well and a corresponding distributed differential lift system to augment or fully replace traditional aerodynamic control surfaces in providing stability and control.
Other systems, devices, methods, features and advantages of the subject matter described herein will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, devices, methods, features and advantages be included within this description, be within the scope of the subject matter described herein, and be protected by the accompanying claims. In no way should the features of the example embodiments be construed as limiting the appended claims, absent express recitation of those features in the claims.
The details of the subject matter set forth herein, both as to its structure and operation, may be apparent by study of the accompanying figures, in which like reference numerals refer to like parts. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the subject matter. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.
Described herein are example aircraft designs that enable synergies between aerodynamics, propulsion, structure, and stability/control. Before the present subject matter is described in detail, it is to be understood that this disclosure is not limited to the particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
I. Wing configurations
Tandem/Joined Wings
Most traditional aircraft use a wing mounted mid-fuselage and a horizontal stabilizer (also named tailplane) mounted aft-fuselage. The wing produces upward lift while the tailplane usually produces downward lift for stability and control. Some less conventional designs use two sets of wings instead:
A set of front-mounted leading wings or LW
A set of aft-mounted trailing wings or TW
When the LW is much smaller than the TW, it is known in the art as a canard. When the LW and the TW are similar in size, the configuration is called a tandem wing. Joined wings 200 (JW) are a special case of the canard or the tandem wing 200 configuration where the LW and TW are joined at the wingtips by shared winglets 300, as shown in
Wing Sweep and Mounting Location
In a JW configuration, one or both wings 200 can be swept forward (FSW), swept backward (BSW), or un-swept (straight) (USW). Also, in most JW configurations, one of the wings 200 is mounted high on the fuselage (not shown) while the other one is mounted low.
Alternatively, the LW can be high-mounted (wings 200 at 325 for each configuration), and the TW can be low-mounted (wings 200 at 350 for each configuration) as shown in the nine configurations of
Joining the LW to the TW in some of the configurations above result in very stretched winglets 300 along the longitudinal axis 100 of
Turning to
Turning to
Joined Swept Wings (JSW) of Configuration 400
One feature of configuration 400 is the use of joined swept wings 200 as shown in
Note that in the configuration 400 shown in
Some of the advantages of using these configurations, including configuration 400 include:
Structure: The joined wings 200 constitute a very strong and stiff structure with great strength in torsion and bending. This may reduce the structural mass and complexity, in particular compared to traditional cantilevered wings.
This structure may allow for shorter chords, therefore the distribution of the total wing lifting area between four very high aspect ratio wings instead of wings with larger chords and shorter aspect ratios. The high aspect ratio will reduce lift-induced drag and can potentially allow for total aircraft L/D much higher than 20. As an example, competition gliders with very high aspect ratio wings commonly reach L/D in excess of 60-70.
This structure may also allow for thinner roots, which will in turn reduce drag. In particular, it may reduce the need to adopt very high sweep angles for transonic flight.
The shorter chord may allow for designs that avoid separation and/or turbulent flow, thus reducing both form drag and friction drag.
The distribution of propulsion (which preferably may be electric) as described infra may reduce the chances of stall and may allow for roll control without the need for ailerons, therefore reducing the need for wings 200 with large surface areas, effectively reducing structural mass and friction drag.
Both the LW 225 and the TW 250 (
Having swept wings 200 may also provide the capability to fly fast, up to transonic speeds, due to the presence of sweep in the wings. Supersonic flight may also be possible with the right combination of sweep angle, airfoil choice and thickness, propulsion inlet and exhaust design, etc.
II. Fuselage configurations
An example fuselage 4100 is shown in
Double Blended Wing (BWB)
One aspect of a preferred embodiment combines aerodynamic advantages with structural ones, which is known in the art as flying wing or Blended-Wing Body (BWB), in which the fuselage 4100 and the wing 4225 are blended together. The B-2 bomber is a well-known BWB example. In this configuration the fuselage produces lift instead of being just dead mass. Also, the structural stresses at the wing root (wing-fuselage junction) do not sharply increase as in the case of all current transonic airplanes. Even though the single BWB by itself is a good candidate for distributed propulsion, the JSW configuration provides better distributed control authority and potentially V/STOL advantages. As shown in
In this configuration 4000, there is a front-mounted BWB using BSW 4225 connected to an aft-mounted BWB using FSW 4250. The two sets of wings 4225 and 4250 are connected by shared winglets 300 at the wing tips as well as along the centerline of the aircraft 4000 by a structural element 4500 that can simultaneously act as structural stiffener, vertical stabilizer, and a conduit for all connections such as cables, piping, etc.
Center-Mounted Double Fuselage
Some of its potential advantages are:
Wingtip-Mounted Double Fuselage
Potential advantages:
Center-Mounted Single Fuselage
Other Fuselage Configurations
Shown in
All of the configurations shown in
III. Propulsion
For this section, key concepts are provided below to facilitate explanation of various embodiments of the present invention. In particular, the terms “thrustor” and “propulsor” are explained to distinguish one from another and to explain concepts and components of embodiments of the present invention. Similarly, the terms “ducted” and “ductless” rotary blade systems are explained as they pertain to horizonal flight and vertical flight.
Thrustor
Aircraft propulsion systems generally include three distinct functions:
1. The motor provides energy/power conversion. In conventional propulsion, a reciprocating piston engine or a gas turbine can act as a powerplant. It extracts chemical energy of hydrocarbon fuel through combustion and converts it into mechanical energy. In electric propulsion, electric energy is converted into mechanical energy as electric current passes through the windings/coils of electromagnets. In both cases, the mechanical energy takes the form of:
2. The transmission transfers the converted energy/power to where it can produce thrust:
3. The propulsor is a set of rotary blades and its associated inlet/exhaust ducts (if any). Typically, it is a propeller, a rotor, or a fan that produces thrust by increasing the velocity and/or pressure of a stream of air.
The term “thrustor” is used when referring specifically to the whole system, and generally includes all three of the functions together. Turning to
Engine Types
i. Spectrum from Reaction Engines to Shaft Engines
In conventional aircraft propulsion using combustion engines, there is a wide spectrum of approaches to accomplish the above three functions of the thrustor. On one end of the spectrum, the functions are fully integrated. For instance, the propulsion system can be a pure reaction engine where the elements that participate in the thermodynamic combustion cycle (compressors, combustion chambers, turbines, and their corresponding ducts) produce the thrust (e.g. turbojet engine). In other words, all the air that produces thrust is burnt in the combustion chemical reaction. On the other end of the spectrum, the engine is just a shaft engine where the energy conversion function is completely segregated from the propulsor function (e.g. a general aviation reciprocating piston engine driving the shaft of a propeller).
ii. Turbines
In the current state of the art, the most common passenger and cargo air transport utilizes gas turbines, e.g., jet engines. Turning to
(1) Turbojet engines—the main thrust comes from exhaust “burnt air”. The air contributing to propulsion is the same air going through a thermodynamic cycle of compression, combustion, and expansion.
(2) Turboprop engines:
(3) Turboshaft engines: the turbine shaft 10940 powers a rotor. It necessitates an even more drastic mechanical reduction gearbox 10930 to slow down the RPM of the turbine (tens of thousands) to a more manageable RPM for the rotor (hundreds).
(4) and (5) Turbofan engines (
iii. Engine Design Trend
The drive toward propulsion efficiency of the past few decades has favored a continuous shift toward shaft engines over reaction engines. The primary job of most modern gas turbine jet engines is to provide shaft power to drive a propeller, a ducted fan, or a rotor. The only jet engines where a large part of the propulsive force comes from the actual “jet” are “turbojets”, and the “low-bypass turbofans”.
Even though a high-bypass turbofan engine (4) appears to be a “jet” engine, in reality, it is a blend between a reaction engine and a shaft engine that is much closer to a shaft engine than a reaction engine on the spectrum, because most of its thrust comes from its ducted fan. In fact, one of the highest BPRs in a modern turbofan engine has been achieved using a reduction gearbox, which blurs the boundary between turbofan and turboprop even further.
Therefore, for embodiments of the present invention, the next natural step in fully freeing the requirements of the “motor” function from the “transmission” and “propulsor” functions is to avoid complex conversion and transmission systems altogether and use electric motors as shaft engines and electric cables as transmission. Whether the electric power comes from batteries, a generator running on hydrocarbon fuel, hybrid motor/battery configuration, fuel cells, and so on, can depend on the range and payload requirements.
Propulsor Concept—Rotary Blade Systems.
The definition between a propeller versus a rotor or a fan does not have a bright line rule. In general, any system of rotary blades can be used for horizontal/forward thrust and/or vertical lift. Also, they can either have a duct/shroud around them or be ductless.
For the purposes of explaining various embodiments of the present invention, the term “propulsor” is used to refer to a general system of rotary blades, whether it is ducted (like a fan), or ductless (like a propeller), whether it is intended for forward thrust, vertical lift, or both. The term propulsor includes the aerodynamic rotary surfaces (blades) and fixed surfaces (ducting, stators, vanes, etc.), but does not encompass the motor and the transmission. The term “thrustor” on the other hand includes all three elements: motor, transmission, and propulsor as previously seen and noted.
Table 1 below offers naming conventions for the purpose of explaining concepts in the present application. Turning to
iv. Number of Engines
Most modern aircraft have 1 or 2 combustion engines. Aircraft with 3 or 4 combustion engines are gradually disappearing, especially after the governing bodies such as ICAO and FAA issued and updated ETOPS regulations. Aircraft with 5 or more combustion engines are extremely rare, usually old military designs.
Combustion engines are complex and costly to repair/maintain, therefore the drive to have only a minimal number of engines, e.g., 1 or 2 of them, on an aircraft is understandable. Also, large diameter turbines are usually more efficient than smaller ones, which is another factor why almost all modern transonic aircraft are twinjets. For all the advantages that a small number of combustion engines brings, it also limits the conceptual aircraft design space. In particular, the small number of engines forces the engines into a segregated propulsion role and removes the freedom to let them be an integral part of stability and control or aerodynamics.
The assumptions that govern combustion engines do not necessarily apply to electric motors. Electric motors are relatively simple and reliable, require little maintenance, have very high efficiency, are responsive to quick RPM increase/decrease, and provide high torque at almost any RPM. In one embodiment of the present invention, for the wing configurations above, such as configuration 400 in
v. Energy Source: Hybrid Electric
Battery energy density has consistently improved over the past few decades, but the rate of improvement has been relatively slow. For niche aircraft applications where limited range and/or limited payload are acceptable, the source of energy may include onboard batteries. Many drones currently correspond to these niche applications. For most practical applications though, significant range and/or payload is required to compete with existing airplanes and helicopters.
In one approach, the energy source may include hydrocarbon fuel converted to mechanical shaft power and then to electricity through the use of gas turbines or other combustion engines such as reciprocating piston engines, Wankel engines, etc. The wing configurations described above, including configuration 400 in
One advantage of using a hybrid architecture is that electric motors and combustion engines can rotate at independent RPMs, regardless of thrust needs. Electric motors are extremely responsive and can produce high torques for very wide ranges of RPM. Not only will this allow electric motors to be spun up or down in RPM very quickly, but this will not have any adverse effect on the combustion engines (such as compressor stall, poor thermal efficiency in off-nominal regimes, etc.). The combustion engines can rotate at an independent RPM optimized for electricity production in an electric generator. More detail about possible energy sources that can be included in embodiments of the present invention can be found in the following articles, (1) National Academies of Sciences, Engineering, and Medicine 2016. Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions. Washington, D.C.: The National Academies Press. https://doi.org/10.17226/23490 and (2) “Turbo- and Hybrid-Electrified Aircraft Propulsion Concepts for Commercial Transport,” by Cheryl L. Bowman, James L. Felder, and Ty V. Marien, https://ntrs.nasa.gov/search.jsp?R=20180005437 2020-04-15T22:20:11+00:00Z, both of which are herein incorporated by reference in their entirety. Note that these references have been included with the filing of this application in an IDS.
vi. Electric Thrustors or Electro-Thrustors (ET)
The thrustor of various embodiments of the present invention may include any of the propulsors described in Table 1 and
ETs have been used in hobby radio control (RC) aircraft and unmanned drones for decades. Typical examples are shown in
The use of ETs in passenger-carrying aircraft is more recent and rare. Two notable examples are the Pipistrel Alpha Electro of 2015 shown at 11800 using an electroprop and the Airbus E-fan of 2014 shown at 11850 using two electrofans.
vii. Propulsion Distribution
Both the Alpha Electro 11800 and E-fan 11850 feature “traditional” airplane architectures from the perspective of the interactions between propulsion, aerodynamics, and stability/control, because they use small numbers of electro-thrustors (ET). The Alpha Electro 11800 features a single ET, a nose-mounted electroprop (EP), while the E-fan 11850 features two ETs in the form of electrofans (EF) mounted to either side of the aft-fuselage. In order to take full advantage of the design possibilities enabled by ETs, one can distribute a large number of ETs along strategic locations of the wings and the fuselage. The term Distributed Electric Propulsion (DEP) is used to refer to aircraft that use a large number of ETs, whether their use is solely intended for propulsion alone or done in a synergistic fashion to provide additional advantages in terms of aerodynamics, structures, stability/control, and takeoff/landing performance.
It is possible to adopt a fuselage-mounted ET approach as well as a wing-mounted ET approach with preferred embodiments. In order to extract synergies between aerodynamics, structures, stability/control, and propulsion in the design of such an electric aircraft using Distributed Electric Propulsion, wing-mounted ETs offer significant advantages over fuselage-mounted ETs. In one embodiment of the present invention, a propulsor, as described above and shown in Table 1 and
Fuselage-Mounted ETs
Fuselage-mounted thrustors may offer helpful ET distribution, but the advantages may be somewhat limited to thrust production and drag reduction. Boundary layer ingestion (BLI) using aft fuselage-mounted thrustors introduce novel fuselage-mounted concepts. Such an approach has potential drag reduction benefits and may be incorporated into the wing designs describe above, including configuration 400 (at
Wing-Mounted ETs: Examples
The wing and fuselage configurations above, including configuration 400 at
The past decade has seen an explosion of designs and startups in eVTOL (electric VTOL). Some have fixed wings while others use rotary wings. Most are pure battery electric while others are hybrid electric. Currently, there are approximately 100-200 eVTOL projects throughout the world that are different from the more traditional non-VTOL airplanes, such as those shown 11800 and 11850 in
Excluding the rotary wing designs and the designs that use dedicated lift/hover propulsors (sometimes known as “lift+cruise” in the art), the most notable fixed-wing designs using some form of distributed wing-mounted propulsion are listed in Table 3 and are shown in
Some data points about these 8 airplanes (fixed-wing aircraft) and their DEP systems are:
In short, wing-distributed DEP may be helpful for fixed-wing applications in both CTOL and VTOL.
viii. Background on Possible Positioning of Traditional Wing-Mounted Thrustors
There are many possible choices for a single thrustor position on a wing.
We can then define 125 “general positions” for a single thrustor (5 slices along the span, 5 slices along the chord, and 5 slices along the thickness) as follows:
In all of these examples, the number of thrustors range from 2 to 6. The most prevalent/common traditional wing-mounted thrustors are at the following stations: S2 (RMS) along the span, C1 (XLE) along the chord, T1 (BLS) along the thickness for turbofan-based design, and T3 S (XMTS) along the thickness for propeller-based designed.
ix. Positioning and Density of Non-Traditional Wing-Mounted ETs.
Many of the most common traditional wing mounting positions discussed above are determined based on assumptions associated with thrustors using combustion engines:
In embodiments of the present invention, replacing 2 to 4 large and heavy wing-mounted combustion thrustors with tens of ETs fundamentally changes many of the mounting positions and the above assumptions. Each individual ET can be comparatively lighter, shorter in length, and smaller in diameter. Whether the electric power for the ETs is provided directly by a battery, or by 1 or 2 combustion engine generators, or fuel cells, the power transmission through electrical cables can be more practical than a mechanical transmission.
ET Distribution Opportunities
The longest dimension in most wings is generally the span. Therefore, distributing a large number of ETs along the wing span is a natural choice that lends itself to several potential advantages:
Externally-Mounted ET
There are two externally-mounted ETs known in the art, ducted and ductless, in the form of an electrofan (EF) 13600 or electroprop (EP) 13700, as shown in
Internally-Mounted Electrofan
Most wing-mounted thrustors are so large in diameter that they must be placed outside the confines of the wings. Prior to the development of highly efficient high BPR turbofans, when the only jet engines available were small-diameter turbojets, several designs featured thrustors fully embedded in the wings (at the XMTE mounting position along the thickness). These designs typically mounted the thrustors near the wing root where the wings are generally thicker, thus have more volume available, and where the mounting position has structural benefits (e.g. the small lever arm does not produce much bending moment).
This configuration may be applicable for ETs and applied to DEP. One of the dimensional advantages of ETs is that they can be made small enough to be fully embedded within a wing 200. Beyond the drag reduction benefits of such a design, this can also provide potential boundary layer control benefits. In particular, the cool air blown by an embedded EF does not create the thermal restrictions of its combustion counterpart.
Turning to
Turning to
There are various ways ducting can be achieved around the propulsor 14600 in accordance with embodiments of the present invention. A simple shared duct can be achieved by extruding the above wing 200 surfaces 14650, as shown at
A more elaborate individual duct 14700 can be tailored for each propulsor 14600, as shown in
Other embodiments may include swept and tapered wing design 15000 as shown in
Electrofan Vs. Electroprop
One can imagine that EFs and EPs will probably share some of the same advantages as their combustion counterparts, the turbofan and the turboprop (Table 10).
ET Density
This section describes possible placement of propulsors on the wings and its effect on aircraft designs in accordance with embodiments of the present invention. A twin-engine airplane with wing-mounted combustion thrustors may present, e.g., 125 positions according to the 5×5×5 slice-based classifications of the previous sections.
When it comes to electric thrustors, regardless of whether one opts for EFs, EPs, or a mixed solution, the distribution of ETs along the wing span may be denser than combustion thrustors. Given the allowable density of ET distribution along the span, the 5 general slices that we used to categorize the positions of traditional combustion thrustors along each of the 3 directions (span, chord and thickness) are still useful in only two of these directions for ETs: chord and thickness, which are incidentally the smaller dimensions of a wing. As for span, it may require more than 5 slices to categorize their locations and one must think in terms of ET density instead.
The smaller size of ETs allows one to mount them in multiple positions along all three directions. The same airplane can have ETs both above the wing and below, at the LE and the TE while distributing them along the span. The ETs may be distributed along the span of the wing with some level of density. The span and the chord being the smaller dimensions, the mounting positions remain relatively more discrete.
The following are possible mounting configurations in accordance with embodiments of the present invention:
ET Density Along Span and Thickness
Schematic representations of some of the possibilities in accordance with embodiments of the present invention in terms of ET density along span and thickness are shown in the front view sketches of
ET Density Along Span and Chord
In a similar fashion, ET distribution in accordance with embodiments of the present invention along span and thickness as shown in
Further Examples of ET Distribution, Particularly on Configuration 400
As stated earlier, there are quasi-infinite possibilities of ET distribution on a single set of wings, let alone two sets of joined wings. If we combine some of the possibilities together, the number of possibilities/configurations are still quite large as seen in Table 11 with 180 total possibilities.
Below are some distribution possibilities for configurations described above such as those wing configurations related to configuration 400 shown in
ET Configurations
6-ET Configuration
This configuration 17000 with ETs 17050 is shown in
14-ET Configuration
This configuration 17100, shown in
30-ET Configuration
x. Varying Multiple Configuration Parameters Simultaneously
Using EPs Instead of EFs
Beyond changing EFs 17050 to EPs 17075, the position of the ETs 17075 along the chord and the thickness differ compared to the previous case.
Using a Mixture of EPs and EFs
In another embodiment, a mixture of both EPs 17050 and EFs 17075 may be used. Such a configuration 17400 is shown in
Beyond mixing EPs 17075 with EFs 17050, the number of ETs have increased, and mixed chord positions were used, and the type of fuselage is BWB such as BWB 4100 as shown in
Using EPs of Different Sizes Inside and Outside the Wings
EFs 17050 with different sizes may be utilized, including internal EFs 17050 using shared extruded ducts as discussed earlier and shown in
Beyond mixing different EFs 17050, the number of EFs 17050 can be increased. An example of this configuration 17500 in accordance with embodiments of the present invention is shown in
IV. Control and Stability Through Differential Thrust
i. Aircraft Axes, Moments, and Forces.
In traditional aircraft design, stability and control along all three axes as shown in
ii. Differential Thrust
With the wing configurations described above, including configuration 400 as shown in
In general, the amount of thrust produced by each individual thrustor can be controlled using two methods:
The above two methods can be combined if need be. Other thrust control possibilities exist but they could add substantial weight and complexity:
Variable geometry inlet/exhaust: if the propulsor has any ducting, the geometry of the inlet and/or outlet can be changed to increase/decrease thrust as shown in
Thrust vectoring:
Differential thrust as used in embodiments of the present invention: it is possible to provide control and stability via differential thrust in pitch, roll, and yaw for embodiments of the present invention. This is due to the fact that one can distribute a large number of ETs along all 3 axes of a DEP aircraft using tandem wings. Also, distributing the ETs along the wings allows the fine control of not just thrust, but also the fine control of the lift created locally at the mounting location of the ET on the wing. In other words, differential thrust is accompanied with and benefits from differential induced lift.
Pitch Control
Pitch control can be augmented (or replaced altogether) in accordance with embodiments of the present invention by using one or several high-mounted thrustors producing a different amount of thrust compared to their low-mounted counterpart(s). For example, shown in
Wings:
1. LW is a low-mounted BSW
2. TW is a high-mounted FSW
Single fuselage 18075 is used.
Propulsion: 6 electrofan thrustors
In embodiments of the present invention, the arrows along longitudinal axis 18100 indicate the direction and intensity of the thrust force vectors, upward arrows 18150 indicate the direction and intensity of the induced lift force vectors, and the circular arrow 18175 indicates the pitching moment.
Pitch down control is achieved when the high-mounted thrustors on the TW produce higher thrust than two low-mounted thrustors on the LW. The pitch down moment is produced by at least two very distinct sources:
This 6-thrustor configuration 18000 above is a minimalistic configuration from the control perspective. Any other configuration with a larger number of thrustors distributed along the 3 aforementioned axes is also possible, with any number of fuselages, and with any type of propulsors mounted at different mounting stations.
In other embodiments, a configuration with a higher ET 18050 density may produce even finer levels of control.
The two wingtip-mounted ETs 18050 do not participate in pitch control. The other 28 ETs 18050 can contribute to pitch control. There are multiple ways to control and fine-tune the intensity of pitching moment. As stated previously, the simplest method of applying differential thrust is to change the RPM of the ETs 18050. If the ET 18050 density is high, one can also adjust the number of ETs 18050 participating in pitch control. In the aforementioned 30-thrustor configuration, one can use as many as 28 ETs (
In addition to changing RPM or using a different number of ETs 18050, another method in accordance with embodiments of the present invention relies on changing the blade pitch angles of the propulsors in the ETs, if such mechanism is included. A drastic pitch down moment can be achieved if the low-mounted thrustors reduce their blade pitch angles (windmill mode) or reverse them altogether (thrust reverser mode), thus producing drag instead of thrust as illustrated in
As for pitch up control, the roles of the low-mounted and high-mounted ETs are reversed: it can be achieved with higher thrust (and consequently higher induced lift) at the low-mounted LW thrustors while lower thrust (or even drag) is produced at the high-mounted TW thrustors as illustrated in
Yaw Control
Yaw control can be augmented (or replaced altogether) in accordance with embodiments of present invention by using one or several starboard-mounted thrustors producing a different amount of thrust compared to their port-mounted counterpart(s). In the 6-thrustor illustrative example shown earlier, yaw to starboard is achieved when the wingtip-mounted thrustor on the port side produces higher thrust than the wingtip-mounted thrustor on starboard as shown in
Similarly, in another embodiment a more drastic yaw to starboard moment can be achieved if the starboard-mounted thrustor reduces its blade pitch angles, if propulsor does have blade pitch control (windmill mode) or reverses them altogether (thrust reverser mode), thus producing drag instead of thrust as shown in
Roll Control
Roll control can be augmented (or replaced altogether) in accordance with embodiments of the present invention by using one or several starboard-mounted thrustors producing a different amount of air flow, and therefore induced lift, compared to their port-mounted counterpart(s). In the 6-thrustor illustrative example shown earlier, roll to port is achieved when the midspan-mounted thrustors on starboard produce higher air flow and therefore induce more lift than the midspan-mounted thrustors on port as shown in
In another embodiment, more drastic roll to port moment can be achieved if the port-mounted thrustors reduce their blade pitch angles or reverse them altogether thus producing drag instead of thrust and potentially even stalling portions of the port wings as shown in
Note that in this method of roll control via induced lift, roll and yaw occur simultaneously, which can be advantageous. In most traditional airplanes, using ailerons produces an adverse roll in the opposite direction that must be compensated by rudder action in order to perform a coordinated turn, as shown in
Stability
Traditional approaches to the stability problem lead to designs where the aircraft naturally returns to a stable level attitude upon unintended changes to the desired attitude. This is the basis for aircraft passive stability, but this natural stability comes at the expense of aircraft aerodynamic performance. In a Control Configured Vehicle (CCV), corrections to the aircraft's attitude are carried out by a Flight Control Computer (FCC). This is the basis for active stability, also known as artificial stability. Since the advent of the artificial stability in the 1970s, it has become increasingly possible to provide artificial stability through FCC to aircraft. Present embodiments may not need to be naturally stable as it can make use of state-of-the-art relaxed static stability and fly-by-wire (RSS/FBW) systems as needed, in conjunction with the control system described above. The differential thrust control mechanisms described above are well-adapted to computer-assisted active stability.
V. Takeoff and Landing
Lift Production: Airplane Vs. Helicopter
One of ordinary skill in the art can compare certain aspects of lift production in airplanes vs. helicopters. Fixed-wing airplanes and rotary-wing helicopters produce lift in both similar and different ways. The similarity resides in the fact that both aircraft types move air over and under a lifting surface.
In the case of the airplane, the lifting surface is a fixed wing and air is moved over and under the wing by moving/translating the entire craft forward. There are inherent advantages and disadvantages built into this concept. The advantage is that once the forward movement of the entire craft has gradually built up momentum, it is relatively easy to keep the momentum. The engine must simply produce enough thrust to negate the drag during cruise to conserve the momentum and therefore the lifting force. The disadvantage is that without the gradually acquired and continually maintained forward movement, there is not enough air flowing over and under the wings to keep the airplane afloat, therefore a traditional fixed-wing airplane cannot hover in place.
In the case of the helicopter, initially it is not the entire craft that is moving through the air, it is only its lifting surfaces, i.e. the rotor blades that are moved/rotated with respect to air. This gives the helicopter the ability to hover, albeit at great cost to forward flight efficiency. Even though the rotors are massive compared to an airplane's propeller, the momentum they build is much less than the momentum of the entire craft's movement. When the helicopter is near the ground, the ground effect helps the hover efficiency, but once it moves out of ground effect, the hover efficiency decreases. Once the helicopter starts moving forward, some hover efficiency is regained due to the combined helicopter forward movement and the rotor rotation. Once again, there are inherent advantages and disadvantages built into this concept. The helicopter's inherent advantage of vertical takeoff/landing and hovering in place by rotating its wings, becomes a disadvantage once it starts moving forward at fast speeds. On one side of the craft, the blade advances into the airstream while on the other side the blade retreats requiring complex mechanical solutions that continuously change the pitch angle of the blades as they rotate. Eventually, there are aerodynamic limits to what can be done with this concept. Some of the most challenging limits are that the advancing blade sees higher relative wind velocities that lead to compressibility effects and shock waves near rotor tips, while the retreating blade sees lower relative wind velocities forcing it to adopt ever higher angles of attack that eventually lead to stall.
Modes of Takeoff and Landing
The aircraft configurations described above, featuring tandem wings, distributed propulsion, differential thrust control, etc., lend themselves to improved flight performance for a wide array of applications and mission profiles. Accordingly, the present embodiments can be optimized for various requirements in terms of takeoff and landing operations (Table 12). On the simplest end of the spectrum, the configurations above can be optimized for conventional takeoff and landing (CTOL). On the opposite end, it can be optimized for vertical takeoff and landing (VTOL). In between these two extremes, short takeoff and landing (STOL) is possible. Pushing STOL operations to their limit results in what could be termed as extreme(ly) short takeoff and landing (XSTOL).
Currently, most fixed-wing aircraft operate in CTOL. Some have STOL capabilities, often military cargo airplanes. Very few have XSTOL capability, usually small bush planes. Despite decades of attempts to produce compelling fixed-wing architectures, VTOL is still heavily dominated by rotary wing aircraft.
CTOL
Conventional takeoff and landing (CTOL) involving acceleration and deceleration on a runway is the most widespread method of takeoff and landing (
High-Lift Devices
Most airplanes use some form of high-lift device at their trailing edge TE and leading edge LE for takeoff and landing. The most common devices are passive/unpowered and work by altering the shape of the wing/airfoil mechanically. They typically include flaps, slats, and slots (
TE devices usually help increase the lift of a wing while flying at the same angle of attack, which essentially allows a plane to produce high lift while flying slower. LE devices push the onset of stall to higher angles of attack. The combined usage of TE and LE devices ultimately allows airplanes to have higher lift at lower velocities allowing them to easily takeoff from and land on shorter runways at safer speeds (
From CTOL to STOL: Blowing Air onto the Wing
Powered Lift
Airflow behind a propeller is commonly referred to as slipstream. Although traditionally airflow behind a jet engine is referred to as “jet” or “jet exhaust”, in this document we will use the word slipstream regardless of whether the propulsor producing it is ducted or ductless.
Wings will produce lift whether one moves the wing through the air, or one blows air onto the wing. When lift is produced in the latter form using engine power, we have powered lift. Some powered lift approaches rely on external flow and others on internal flow.
Note that the description of powered lift as stated above might differ from the FAA's definition which is more restrictive as it assumes VTOL capability:
“Powered-lift means a heavier-than-air aircraft capable of vertical takeoff, vertical landing, and low speed flight that depends principally on engine-driven lift devices or engine thrust for lift during these flight regimes and on nonrotating airfoil(s) for lift during horizontal flight.”
Fixed wing airplanes usually have portions of the wings subjected to the slipstream. This could locally increase the lift of the wing in areas where the wing is immersed in the accelerated airflow downstream of the propulsors. STOL airplanes take advantage of propulsor slipstream combined with very elaborate high-lift devices to produce significantly higher lift during takeoff and landing compared to CTOL airplanes.
Externally Blown Wings and Large STOL Airplanes
External methods of powered lift are generally more common than the internal ones. They are widely used on large STOL airplanes and often fall into one of the following three categories.
Blown Lower Surface
The slipstream is blown onto the lower surface of the wing, usually at mounting positions RMS (S2) through MST (S4) along the span, XLE (C1) along the chord, and BLS (T1) or XLS (T2) along the thickness:
This is the most common method when using jet engines, especially for STOL military cargo airplanes.
This method was researched in the 1970s on the experimental YC-15 (
Blown Upper Surface
The slipstream is blown onto the upper surface of the wing, usually at mounting positions XRT (S1) or RMS (S2) along the span, XLE (C1) along the chord, and XUS (T4) along the thickness:
Blown upper and lower surfaces
The slipstream is blown onto both the lower and upper surfaces of the wing, usually at mounting positions RMS (S2) through MST (S4) along the span, XLE (C1) along the chord, and XLS (T2) or XMTS (T3S) along the thickness:
From STOL to XSTOL
STOL Definition
There may be some degree of vagueness in the way STOL is defined. Typically, the focus is on the total horizontal distance from the start of the takeoff or landing including a 50-foot (15-meter) obstacle to clear. One of the shortcomings of this approach is that there is no requirement on the length of the takeoff or landing roll as seen previously in
“The ability of an aircraft to clear a 50-foot (15 meters) obstacle within 1,500 feet (450 meters) of commencing takeoff or in landing, to stop within 1,500 feet (450 meters) after passing over a 50-foot (15 meters) obstacle.”
Table 13 and
Takeoff and landing in CTOL typically occur at shallow angles in the vicinity of 3 degrees. STOL operations on the other hand could include very steep angles beyond 6 degrees.
STOL performance is highly sensitive to aircraft size/weight. Wikipedia has a list of STOL airplanes, reproduced almost in its entirety with a few additions and deletions in Table 14. Even though the list is incomplete, it allows one to notice a few standout facts:
Extreme STOL (XSTOL)
There may not be a clear definition as to what constitutes XSTOL. Previously mentioned is that the definition of STOL had a number of shortcomings:
The Square-Cube law makes the latter particularly challenging in aircraft design. As an aircraft doubles in length/span/height, the surfaces/areas that determine its flight characteristics quadruple and the corresponding volumes octuple. For example, a larger frontal area or a larger wetted area results in more drag. Similarly, a larger volume of material with a fixed density results in a correspondingly larger mass/weight. In the case of weight, the true takeoff and landing performance of an airplane can be measured at maximum takeoff weight (MTOW) and maximum design landing weight (MDLW).
XSTOL may be defined by the following criteria:
Alternatively, a simplified version combining the above two criteria into a single criterion may be expressed as: takeoff to or land from 50 ft (15 m)<10×fuselage length+315 ft (100 m).
If we apply the above criterion to the aircraft in Table 14, very few STOL airplanes will make the cut and qualify as XSTOL. Most airplanes that do make the cut fall into the very light category of “bush planes”, homebuilt kit-planes, and Light Sport Aircraft (LSA). We note that a few larger/heavier airplanes do make the cut. Table 15 lists four notable examples in the order of mass/size, two on each end of the mass/size spectrum.
Light XSTOL Examples: Fieseler Fi 156 Storch and Zenith STOL CH 801
The Storch is probably one of the oldest XSTOL airplanes in history. Beyond a large TE flap, it has a fixed full-length LE slat as seen in
Heavy XSTOL Examples: De Havilland Canada DHC-4 Caribou and Breguet 941
The Caribou (131) and the Breguet 941 (132) both have TE flaps running along their entire wingspans.
Unlike the CH 801, they don't use one-piece flaperons. The inboard flaps are separate from the outboard flaperons and extend down to different angles.
When comparing the performances of these two larger airplanes, there is a surprising performance number hidden in the details: the Breguet 941 weighs 1.5 times more than the Caribou and yet has similar takeoff and landing distances. It even outperforms the Caribou in takeoff at 800 ft (244 m) vs. 860 ft (262 m) despite being a 40,000-lb airplane. The Breguet 941 did not see large-scale production, but it was the more revolutionary of the two and some of the lessons learned from that airplane can be adapted to powered lift for distributed electric propulsion.
Unique Features of the Breguet 941
There were 4 key airplanes involved in the development of the Breguet 941:
In a sign of being ahead of its time, the unmanned RC model was flown by 4 electric motors in 1954 in Breguet's private wind tunnel. It was coupled to an analog flight simulator that the future pilot could use for training.
Table 16 summarizes some of the characteristics of the three manned versions. Between 1958 and 1967, the 940, 941, and 941S demonstrated that XSTOL is not just a gimmick reserved for very light airplanes.
The numbers in Table 15 correspond to performance evaluations conducted in the US using the initial Br-941 at 4,000-5,000 lbs below its MTOW.
On the technological side, the Breguet 941 demonstrated a number of unique features that embodiments of the present invention innovate upon:
On the operational side, it had somewhat helicopter-like qualities and demonstrated feats that lend themselves surprisingly well to the quickly evolving field of Urban Air Mobility:
One of the innovations that enabled the Breguet 941 to achieve its unparalleled XSTOL feats is probably also one of the reasons it failed to achieve its full potential. The mechanical shaft power distribution system required extensive repair and maintenance (this constitutes an operational shortcoming). It also occupied prime real estate in the LE of the wing (this constitutes a technical shortcoming). Embodiments of the present invention address these issues.
Bridging the Gap Between XSTOL and VTOL
XSTOL Competitions
There is a community of enthusiasts that compete in XSTOL with bush planes, LSA, and various light planes modified with LE slats, TE flaps and other simple and low-tech devices. The Valdez, Alaska airport hosts such events (
How Vertical is Vertical Enough?
The feats achieved by small airplanes at XSTOL competitions is to some degree attributed to their low weight or perhaps, their unusually high thrust to weight ratios. But then again, the same can be said about helicopters. The previous sections covered XSTOL airplanes in some detail in order to convey a number of key messages:
But do helicopters actually takeoff or land vertically? Helicopters certainly enter hover vertically, but they usually do not clear a 50-ft obstacle vertically unless they really have to. As seen in the takeoff maneuvers of
Typical approach and departure surfaces around heliports use 8:1 slopes, corresponding to 7.1 degrees as shown in
If clearing a 50-ft obstacle in a takeoff or landing operation is included, it could be argued that helicopters usually do not takeoff or land vertically. It is only their ability to eliminate the ground roll portion of the operation that gives helicopters the edge in takeoff and landing.
Outside of takeoff and landing operations, it is the helicopter's hover in-place ability that also gives it an edge that has eluded fixed-wing aircraft.
Hover in-Place Vs. Forward Creep
Whether one considers light XSTOL airplanes such as bush planes or heavier ones such as the Breguet 941, they cannot hover in-place. They must creep forward for at least two reasons:
Present embodiments address the above without tiltwing (
Aircraft Configurations with VTOL and/or XSTOL Capabilities
Slipstream Deflection on JSW
One basic idea is to deflect the slipstream in ground effect mode on both the LW and the TW. If one chose to deflect the slipstream of the LW down (and slightly forward if needed) while the slipstream of the TW is deflected down (and slightly backward if needed), the two flows should in principle have minimum interference and provide ample control points along the longitudinal and the lateral directions due to the large number of thrustors. Arrows 19025 shown in
Basic Configuration
Using DEP in tandem wing configurations such as those described above, including configuration 400 in
In one embodiment,
For VTOL capability consider the following:
Due to the differential thrust control mechanism discussed in previous section, forward movement is not necessary for stability and control along any of the 3 axes. Stability and control can be instead provided and/or augmented actively, through real-time precise propulsor thrust adjustments.
If hover in-place without forward creep is required, it can be achieved in 2 different ways
If flight at very high pitch angles are needed, the tip mounted EFs 19200 can include some level of thrust vectoring as discussed earlier, preferably by moving surfaces at their ducts' inlets and outlets. Although not necessary, gimballing or minor tilting like an azimuth thrustor can be included.
While hovering using the above method, the aircraft is “hanging” from its fixed wings, rather than from a set of rotors, propellers, or fans tilted upward. The fixed wings (rather than a set of rotary wings) produce the hovering lift force by slipstream deflection, upper surface suction (Coandă effect), and lower surface overpressure helped by ground effect. The same wings that carry the aircraft during cruise, carry it during hover, in contrast to all other VTOL inventions.
Note that the above configuration uses a mixture of EPs 19200 and EFs 19100 for illustration. Other configurations with only EPs 19200, or only EFs 19100 could work similarly.
Internal EF and High-Lift
The internal EF system discussed previously (and shown in
This configuration 19500 should allow the flow to curve along the entire wing while passing through the wing.
Low Drag Cruise
The system described above can selectively turn off one of several EFs and provide a low-profile position for low-drag cruise by closing some or all of the inlets 19550 and outlets 19575 as shown in
Similarly, EPs can also be used in a low-profile position for low-drag cruise by folding back (
The following are some advantages of preferred embodiments of the present invention.
Turning to
Turning to
Turning to
Turning to
Turning to
Referring to
The structure/airframe may provide the mechanical structure for the aircraft. In certain embodiments, the structure may include a fuselage, and one or more aerodynamic surfaces. A fuselage may form the main body of the aircraft.
Aerodynamic surfaces may include one or more lifting surfaces (or wings), one or more flight control surfaces, one or more high-lift devices, and the like or a sub-combination thereof. A lifting surface may be a surface that generates lift when an airframe is propelled through the air. A flight control surface may be a surface that is selectively manipulated (e.g., pivoted) to generate aerodynamic forces that adjust or control the flight attitude of an aircraft. In certain embodiments, as described above, the flight attitude of an aircraft may be controlled primarily or exclusively using differentials in thrust or the like, rather than control using traditional aerodynamic surfaces. Accordingly, in selected embodiments, an airframe may have fewer flight control surfaces than is conventional (e.g., less than a full complement of ailerons, elevator, rudder, trim tabs, and the like), flight control surfaces of relatively small size (e.g., when compared to conventional airplanes of similar weight and size), or no flight control surfaces at all.
A high lift device may be a structure that is selectively moved or deployed in order to produce greater lift (and sometimes greater drag) when it is needed or desired. High-lift devices may include mechanical devices such as flaps, slats, slots, and the like or combinations thereof. In certain embodiments, the amount of lift may be controlled primarily or exclusively using differentials in thrust, redirections of thrust-producing flows of air, or the like. Accordingly, in selected embodiments, an airframe may have fewer high-lift devices than is conventional (e.g., less than a full complement of flaps, slats, slots, and the like), high-lift devices of relatively small size (e.g., when compared to conventional airplanes of similar weight and size), or no high-lift devices at all.
A takeoff/landing system may provide a desired interface between an aircraft and the support surface upon which the aircraft may rest. In selected embodiments, a takeoff/landing system may include rolling landing gear, retractable landing gear, landing skids, floats, skis, or the like or a sub-combination thereof. Accordingly, a takeoff/landing may be tailored to meet the particular demands of the desired or expected use to which the corresponding aircraft may be applied.
A propulsion system may propel an aircraft in a desired direction. In selected embodiments, a propulsion system may include one or more thrustors, one or more other components as desired or necessary, and the like or sub-combination thereof and may interface with an energy-storage system via an energy-distribution system.
An energy-storage system may be or provide a reservoir of energy that may be used to power one or more thrustors. In certain embodiments, an energy-storage system may comprise one or more fuel tanks storing fuel (e.g., a hydrocarbon fuel, or hydrogen fuel). Alternatively, or in addition thereto, an energy-storage system may comprise one or more electric batteries.
A thrustor may be a system that generates thrust. In selected embodiments, a thrustor may comprise a motor, a transmission, a propulsor, and the like or a sub-combination thereof. A motor may convert one form of energy into another form of energy. For example, a motor may be an internal combustion engine that converts fuel (i.e., chemical energy) into mechanical energy. Alternatively, a motor may be an electric motor that converts electricity (e.g., electrical energy in the form of electric current) into mechanical energy.
A propulsor may be a rotary blade system that creates thrust by increasing the velocity and/or pressure of a column of air. In selected embodiments, a propulsor may further include ducting that conducts air to control and optimize the thrust, the velocity, the pressure, and sometimes the direction of the air flow. Accordingly, a propulsor may be a propeller, fan (sometimes referred to as a ducted fan), or the like.
An energy-distribution system may distribute energy from an energy-storage system to one or more thrustors. The configuration or nature of an energy-distribution system may depend on the configuration or nature of an energy-storage system. For example, when an energy-storage system comprises fuel tanks, an energy-distribution system may comprise one or more fuel lines, fuel pumps, fuel filters, and the like or a sub-combination thereof. When an energy-storage system comprises one or more batteries or generators, an energy-distribution system may comprise electrical cables, power electronics, electrical transformers, electrical switches, and the like or sub-combination thereof.
In certain embodiments, an energy-distribution system may simply distribute fuel, electrical power, and the like. For example, an energy-distribution system may conduct electrical power from one or more electric batteries, generators, or fuel cells to one or more thrustors. In other embodiments, an energy-distribution system may also convert energy from one form to another form. For example, when a propulsion system is a hybrid system, an energy-distribution system may convert fuel (i.e., chemical energy) into electricity (i.e., electrical energy) using a generator.
A transmission may interface between two rotary components. Accordingly, a thrustor transmission may conduct the mechanical energy produced by a motor to a propulsor. In certain embodiments, a transmission may simply be or comprise a drive shaft that induces one revolution of a propulsor for every revolution imposed thereon by a motor. Alternatively, a transmission may include a gear box or the like that enables the revolutions produced by a motor to be different than revolutions applied to a propulsor. Accordingly, a transmission may enable a propulsor to rotate faster or slower than a corresponding motor to provide a desired thrust, efficiency, overall performance, or the like.
A control system may control the various operations or functions of an airplane. In selected embodiments, a control system may include a power source, avionics (aviation electronics), one or more actuators, one or more other components as desired or necessary, and the like or sub-combination thereof.
A power source may supply the electrical, mechanical, hydraulic, pneumatic, or other power needed by the various other components or sub-systems within a control system. In certain embodiments, a power source may comprise one or more electric batteries.
Avionics may be or include various electrical systems supporting or enabling operation of an airplane in accordance with the present invention. In selected embodiments, avionics may include a flight-control system, one or more power-management systems, one or more communication systems, one or more other systems as desired or necessary, and the like or a sub-combination thereof.
One or more actuators may convert into action or movement one or more commands or the like communicated through or originating with the avionics. For example, one or more actuators may be positioned and connected to deploy or retract an undercarriage, manipulate the position of one or more control surfaces, deploy or retract one or more high-lift devices, adjust the pitch of various blades of one or more propulsors, or the like. In selected embodiments, one or more actuators corresponding to an aircraft may be hydraulic actuators, pneumatic actuators, electric actuators (e.g., servomotors, linear electric actuators, solenoids), or the like or a combination thereof or sub-combination thereof.
While the primary subsystems of an aircraft may be discussed as separate components or as comprising separate components, it should be understood there may be significant overlap, integration, or shared multifunction use between such subsystems, and/or the components thereof. For example, in selected embodiments, certain features within a wing may be key structural members imparting rigidity and strength to the wing and, at the same time, form ducting corresponding to one or more propulsors. Accordingly, those features may simultaneously be part of an airframe and part of a propulsion system. Similar overlap or dual function may exist between other subsystems or components of an aircraft in accordance with the present invention.
Throughout this disclosure, the preferred embodiment and examples illustrated should be considered as exemplars, rather than as limitations on the present inventive subject matter, which includes many inventions. As used herein, the term “inventive subject matter,” “system,” “device,” “apparatus,” “method,” “present system,” “present device,” “present apparatus” or “present method” refers to any and all of the embodiments described herein, and any equivalents.
It should also be noted that all features, elements, components, functions, and steps described with respect to any embodiment provided herein are intended to be freely combinable and substitutable with those from any other embodiment. If a certain feature, element, component, function, or step is described with respect to only one embodiment, then it should be understood that that feature, element, component, function, or step can be used with every other embodiment described herein unless explicitly stated otherwise. This paragraph therefore serves as antecedent basis and written support for the introduction of claims, at any time, that combine features, elements, components, functions, and steps from different embodiments, or that substitute features, elements, components, functions, and steps from one embodiment with those of another, even if the following description does not explicitly state, in a particular instance, that such combinations or substitutions are possible. It is explicitly acknowledged that express recitation of every possible combination and substitution is overly burdensome, especially given that the permissibility of each and every such combination and substitution will be readily recognized by those of ordinary skill in the art.
When an element or feature is referred to as being “on” or “adjacent” to another element or feature, it can be directly on or adjacent the other element or feature or intervening elements or features may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Additionally, when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Furthermore, relative terms such as “inner,” “outer,” “upper,” “top,” “above,” “lower,” “bottom,” “beneath,” “below,” and similar terms, may be used herein to describe a relationship of one element to another. Terms such as “higher,” “lower,” “wider,” “narrower,” and similar terms, may be used herein to describe angular relationships. It is understood that these terms are intended to encompass different orientations of the elements or system in addition to the orientation depicted in the figures.
Although the terms first, second, third, etc., may be used herein to describe various elements, components, regions, and/or sections, these elements, components, regions, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, or section from another. Thus, unless expressly stated otherwise, a first element, component, region, or section discussed below could be termed a second element, component, region, or section without departing from the teachings of the inventive subject matter. As used herein, the term “and/or” includes any and all combinations of one or more of the associated list items.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. For example, when the present specification refers to “an” assembly, it is understood that this language encompasses a single assembly or a plurality or array of assemblies. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Embodiments are described herein with reference to view illustrations that are schematic illustrations. As such, the actual thickness of elements can be different, and variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances are expected. Thus, the elements illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the inventive subject matter.
The foregoing is intended to cover all modifications, equivalents and alternative constructions falling within the spirit and scope of the invention as expressed in the appended claims, wherein no portion of the disclosure is intended, expressly or implicitly, to be dedicated to the public domain if not set forth in the claims. Furthermore, any features, functions, steps, or elements of the embodiments may be recited in or added to the claims, as well as negative limitations that define the inventive scope of the claims by features, functions, steps, or elements that are not within that scope.
This application claims priority to U.S. Provisional Application Ser. No. 62/854,145, filed May 29, 2019, which is hereby expressly incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62854145 | May 2019 | US |