NOVEL BENZIMIDAZOLE DERIVATIVES

Information

  • Patent Application
  • 20140341851
  • Publication Number
    20140341851
  • Date Filed
    April 04, 2014
    10 years ago
  • Date Published
    November 20, 2014
    9 years ago
Abstract
The present invention discloses compounds of Formula (I), or pharmaceutically acceptable salts, esters, or prodrugs thereof:
Description
TECHNICAL FIELD

The present invention relates to novel antiviral agents. More specifically, the present invention relates to compounds which can inhibit the function of the NS5A protein encoded by Hepatitis C virus (HCV), compositions comprising such compounds, methods for inhibiting HCV viral replication, methods for treating or preventing HCV infection, and processes for making the compounds.


BACKGROUND OF THE INVENTION

Infection with HCV is a major cause of human liver disease throughout the world. In the US, an estimated 4.5 million Americans are chronically infected with HCV. Although only 30% of acute infections are symptomatic, greater than 85% of infected individuals develop chronic, persistent infection. Treatment costs for HCV infection have been estimated at $5.46 billion for the US in 1997. Worldwide over 200 million people are estimated to be infected chronically. HCV infection is responsible for 40-60% of all chronic liver disease and 30% of all liver transplants. Chronic HCV infection accounts for 30% of all cirrhosis, end-stage liver disease, and liver cancer in the U.S. The CDC estimates that the number of deaths due to HCV will minimally increase to 38,000/year by the year 2010.


Due to the high degree of variability in the viral surface antigens, existence of multiple viral genotypes, and demonstrated specificity of immunity, the development of a successful vaccine in the near future is unlikely. Alpha-interferon (alone or in combination with ribavirin) has been widely used since its approval for treatment of chronic HCV infection. However, adverse side effects are commonly associated with this treatment: flu-like symptoms, leukopenia, thrombocytopenia, depression from interferon, as well as anemia induced by ribavirin (Lindsay, K. L. (1997) Hepatology 26 (suppl 1): 71S-77S). This therapy remains less effective against infections caused by HCV genotype 1 (which constitutes ˜75% of all HCV infections in the developed markets) compared to infections caused by the other 5 major HCV genotypes. Unfortunately, only ˜50-80% of the patients respond to this treatment (measured by a reduction in serum HCV RNA levels and normalization of liver enzymes) and, of responders, 50-70% relapse within 6 months of cessation of treatment. Recently, with the introduction of pegylated interferon (Peg-IFN), both initial and sustained response rates have improved substantially, and combination treatment of Peg-IFN with ribavirin constitutes the gold standard for therapy. However, the side effects associated with combination therapy and the impaired response in patients with genotype 1 present opportunities for improvement in the management of this disease.


First identified by molecular cloning in 1989 (Choo, Q-L et al (1989) Science 244:359-362), HCV is now widely accepted as the most common causative agent of post-transfusion non-A, non-B hepatitis (NANBH) (Kuo, G et al (1989) Science 244:362-364). Due to its genome structure and sequence homology, this virus was assigned as a new genus in the Flaviviridae family. Like the other members of the Flaviviridae, such as flaviviruses (e.g. yellow fever virus and Dengue virus types 1-4) and pestiviruses (e.g. bovine viral diarrhea virus, border disease virus, and classic swine fever virus) (Choo, Q-L et al (1989) Science 244:359-362; Miller, R. H. and R. H. Purcell (1990) Proc. Natl. Acad. Sci. USA 87:2057-2061), HCV is an enveloped virus containing a single strand RNA molecule of positive polarity. The HCV genome is approximately 9.6 kilobases (kb) with a long, highly conserved, noncapped 5′ nontranslated region (NTR) of approximately 340 bases which functions as an internal ribosome entry site (IRES) (Wang C Y et al ‘An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5′ noncoding region’ RNA—A Publication of the RNA Society. 1(5): 526-537, 1995 July). This element is followed by a region which encodes a single long open reading frame (ORF) encoding a polypeptide of ˜3000 amino acids comprising both the structural and nonstructural viral proteins.


Upon entry into the cytoplasm of the cell, this RNA is directly translated into a polypeptide of ˜3000 amino acids comprising both the structural and nonstructural viral proteins. This large polypeptide is subsequently processed into the individual structural and nonstructural proteins by a combination of host and virally-encoded proteinases (Rice, C. M. (1996) in B. N. Fields, D. M. Knipe and P. M. Howley (eds) Virology 2nd Edition, p 931-960; Raven Press, N.Y.). There are three structural proteins, C, E1 and E2. The P7 protein is of unknown function and is comprised of a highly variable sequence. There are several nonstructural proteins. NS2 is a zinc-dependent metalloproteinase that functions in conjunction with a portion of the NS3 protein. NS3 incorporates two catalytic functions (separate from its association with NS2): a serine protease at the N-terminal end, which requires NS4A as a cofactor, and an ATP-ase-dependent helicase function at the carboxyl terminus. NS4A is a tightly associated but non-covalent cofactor of the serine protease. NS5A is a membrane-anchored phosphoprotein that is observed in basally phosphorylated (56 kDa) and hyperphosphorylated (58 kDa) forms. While its function has not fully been elucidated, NS5A is believed to be important in viral replication. The NS5B protein (591 amino acids, 65 kDa) of HCV (Behrens, S. E. et al (1996) EMBO J. 151 2-22) encodes an RNA-dependent RNA polymerase (RdRp) activity and contains canonical motifs present in other RNA viral polymerases. The NS5B protein is fairly well conserved both intra-typically (˜95-98% amino acid (aa) identity across 1b isolates) and inter-typically (˜85% aa identity between genotype 1a and 1b isolates). The essentiality of the HCV NS5B RdRp activity for the generation of infectious progeny virions has been formally proven in chimpanzees (A. A. Kolykhalov et al. (2000) Journal of Virology, 74(4): 2046-2051). Thus, inhibition of NS5B RdRp activity (inhibition of RNA replication) is predicted to be useful to treat HCV infection.


Following the termination codon at the end of the long ORF, there is a 3′ NTR which roughly consists of three regions: an ˜40 base region which is poorly conserved among various genotypes, a variable length poly(U)/polypyrimidine tract, and a highly conserved 98 base element also called the “3′ X-tail” (Kolykhalov, A. et al (1996) J. Virology 70:3363-3371; Tanaka, T. et al (1995) Biochem Biophys. Res. Commun. 215744-749; Tanaka, T. et al (1996) J. Virology 70:3307-3312; Yamada, N. et al (1996) Virology 223:255-261). The 3′NTR is predicted to form a stable secondary structure which is essential for HCV growth in chimps and is believed to function in the initiation and regulation of viral RNA replication.


Compounds useful for treating HCV-infected patients are desired which selectively inhibit HCV viral replication. In particular, compounds which are effective to inhibit the function of the NS5A protein are desired. The HCV NS5A protein is described, for example, in Tan, S.-L., Katzel, M. G. Virology 2001, 284, 1; and in Rice, C. M. Nature 2005, 435, 374.


Based on the foregoing, there exists a significant need to identify compounds with the ability to inhibit HCV. A general strategy for the development of antiviral agents is to inactivate virally encoded proteins, including NS5A, that are essential for the replication of the virus. The relevant patent disclosures describing the synthesis of HCV NS5A inhibitors are: US 2009/0202478; US 2009/0202483; WO 2009/020828; WO 2009/020825; WO 2009/102318; WO 2009/102325; WO 2009/102694; WO 2008/144380; WO 2008/021927; WO 2008/021928; WO 2008/021936; WO 2006/133326; WO 2004/014852; WO 2008/070447; WO 2009/034390; WO 2006/079833; WO 2007/031791; WO 2007/070556; WO 2007/070600; WO 2008/064218; WO 2008/154601; WO 2007/082554; and WO 2008/048589; the contents of each of which are expressly incorporated by reference herein.


SUMMARY OF THE INVENTION

The present invention relates to novel antiviral compounds represented herein below, pharmaceutical compositions comprising such compounds, and methods for the treatment or prophylaxis of viral (particularly HCV) infection in a subject in need of such therapy with said compounds. Compounds of the present invention interfere with the life cycle of the hepatitis C virus and are also useful as antiviral agents.


In its principal aspect, the present invention provides a compound of Formula (I)




embedded image


or a pharmaceutically acceptable salt thereof, wherein:


D and Z are each independently absent or optionally substituted linear aliphatic group containing zero to eight carbons;


A and E are each independently absent or a cyclic group independently selected from aryl, heteroaryl, heterocyclic, C3-C8 cycloalkyl, and C3-C8 cycloalkenyl, each optionally substituted;


T is absent or an optionally substituted aliphatic group;


Wherein one to four of A, D, E, T and Z is absent;


Ring B is a five-membered heteroaryl wherein said heteroaryl is optionally substituted; preferably, a five-membered heteroaryl containing one or more nitrogen; more preferably, imidazolyl that is C-attached to group J and one of groups Z, E, T, A and D;


R1 at each occurrence is independently selected from the group consisting of hydrogen, halogen, cyano, optionally substituted C1-C4 alkyl, —O—R11, —NRaRb, —C(O)R11, —CO2R11, and —C(O)NRaRb; preferably hydrogen, halogen and optionally substituted C1-C4 alkyl;


R11 at each occurrence is independently hydrogen or optionally substituted C1-C8 alkyl;


Ra and Rb at each occurrence are each independently selected from the group consisting of hydrogen, optionally substituted C1-C8 alkyl, and optionally substituted C2-C8 alkenyl; or Ra and Rb can be taken together with the nitrogen atom to which they are attached to form an optionally substituted heterocyclic or optionally substituted heteroaryl group;


u is 1, 2, or 3;


Q and J are each independently selected from:




embedded image


R3 and R4 at each occurrence are each independently selected from the group consisting of hydrogen, optionally substituted C1-C8 alkyl, optionally substituted C2-C8 alkenyl, and optionally substituted C3-C8 cycloalkyl; preferably hydrogen or optionally substituted C1-C4 alkyl; or alternatively, R3 and R4 can be taken together with the carbon atom to which they are attached to form optionally substituted C3-C8 cycloalkyl or optionally substituted heterocyclic;


R5 at each occurrence is independently hydrogen, optionally substituted C1-C8 alkyl, or optionally substituted C3-C8 cycloalkyl; preferably hydrogen or optionally substituted C1-C4 alkyl;


R6 at each occurrence is independently selected from the group consisting of —C(O)—R12, —C(O)—C(O)—R12, —S(O)2—R12, and —C(S)—R12, preferably —C(O)—R12, more preferably an optionally substituted amino acid acyl;


R12 at each occurrence is independently selected from the group consisting of —O—R11, —NRaRb, —R13, and —NRcRd, preferably optionally substituted C1-C8 alkyl and —O—R11;


R13 at each occurrence is independently selected from the group consisting of hydrogen, C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, heterocyclic, aryl, and heteroaryl, each optionally substituted; preferably optionally substituted C1-C8 alkyl; more preferably C1-C8 alkyl optionally substituted with amino, hydroxy, optionally substituted phenyl, protected amino, or O(C1-C4 alkyl); and


Rc and Rd at each occurrence are each independently selected from the group consisting of hydrogen, —R13, —C(O)—R13, —C(O)—OR13, —S(O)2—R13, —C(O)N(R13)2, and —S(O)2N(R13)2;


m is 0, 1, or 2, preferably 1;


n is 1, 2, 3, or 4, preferably 1 or 2;


X at each occurrence is independently selected from O, S, S(O), SO2, and C(R7)2, preferably CH2 or CHR7; provided that when m is 0, X is C(R7)2; and


R7 at each occurrence is independently selected from the group consisting of hydrogen, halogen, cyano, —O—R11, —NRaRb, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted —C1-C4 alkyl; and optionally substituted C3-C8-cycloalkyl, preferably hydrogen, methyl, cyclopropyl or halogen; or two vicinal R7 groups are taken together with the two adjacent atoms to which they are attached to form a fused, optionally substituted C3-C8 cycloalkyl or optionally substituted heterocyclic ring; preferably a fused, optionally substituted cyclopropyl; or alternatively two geminal R7 groups are taken together with the carbon atom to which they are attached to form a spiro, optionally substituted C3-C8 cycloalkyl or optionally substituted heterocyclic ring; preferably a spiro, optionally substituted cyclopropyl.


Each preferred group stated above can be taken in combination with one, any or all other preferred groups.


In another aspect, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound or combination of compounds of the present invention, or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier or excipient.


In yet another aspect, the present invention provides a method of inhibiting the replication of a RNA-containing virus comprising contacting said virus with a therapeutically effective amount of a compound or a combination of compounds of the present invention, or a pharmaceutically acceptable salt thereof. Particularly, this invention is directed to methods of inhibiting the replication of HCV.


In still another aspect, the present invention provides a method of treating or preventing infection caused by an RNA-containing virus comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound or combination of compounds of the present invention, or a pharmaceutically acceptable salt thereof. Particularly, this invention is directed to methods of treating or preventing infection caused by HCV.


Yet another aspect of the present invention provides the use of a compound or combination of compounds of the present invention, or a therapeutically acceptable salt thereof, as defined hereinafter, in the preparation of a medicament for the treatment or prevention of infection caused by RNA-containing virus, specifically HCV.







DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to compounds of Formula (I) as illustrated above, or a pharmaceutically acceptable salt thereof.


The compounds of the invention have utility in inhibiting the replication of RNA-containing virus, including, for example, HCV. Other compounds useful for inhibiting the replication of RNA-containing viruses and/or for the treatment or prophylaxis of HCV infection have been described in copending U.S. application Ser. No. 12/702,673 filed Feb. 9, 2010 entitled “Linked Dibenzimidazole Antivirals”; U.S. application Ser. No. 12/702,692 filed Feb. 9, 2010 entitled “Linked Dibenzimidazole Derivatives”; U.S. application Ser. No. 12/702,802 filed Feb. 9, 2010 entitled “Linked Dibenzimidazole Derivatives”; U.S. application Ser. No. 12/707,190 filed Feb. 17, 2010 entitled “Linked Diimidazole Antivirals”; U.S. application Ser. No. 12/707,200 filed Feb. 17, 2010 entitled “Linked Diimidazole Derivatives”; U.S. application Ser. No. 12/707,210 filed Feb. 17, 2010 entitled “Hepatitis C Virus Inhibitors”; and U.S. Provisional Application Ser. No. 61/158,071 filed Mar. 6, 2009 entitled “Hepatitis C Virus Inhibitors”; the contents of each of which are expressly incorporated by reference herein.


In one embodiment, the present invention relates to compounds of Formula (Ia), or a pharmaceutically acceptable salt thereof:




embedded image


wherein A, D, E, T, Z, Q, J, u, and R1 are as previously defined and Ring B1 is a five-membered heteroaryl that is C-attached to J and to one Z, E, T, A and D.


In another embodiment, the present invention relates to compounds of Formula (Ib), or a pharmaceutically acceptable salt thereof:




embedded image


wherein A, D, E, T, Z, Q, J, u, and R1 are as previously defined and Ring B2 is selected from imidazolyl, pyrazolyl, triazolyl, oxadiazolyl, thiazolyl, and isoxazolyl; and B2 is C-attached to J and to one Z, E, T, A and D.


In yet another embodiment, the present invention relates to compounds of Formulae (Ic-1˜Ic-4), or a pharmaceutically acceptable salt thereof:




embedded image


wherein A, D, E, T, Z, Ring B, X, u, m, n, R1, R3, R4, R5, R6 and R7 are as previously defined.


In still another embodiment, the present invention relates to compounds of Formulae (Id-1˜Id-4), or a pharmaceutically acceptable salt thereof:




embedded image


wherein A, D, E, T, Z, Ring B, R3, R4, R5, and R12 are as previously defined and X1 is independently CH2, CHF, CH(OH), or CF2.


In still another embodiment of the present invention, the absolute stereochemistry of the pyrrolidine and 2-benzimidazolylmethylamine or five-membered heteroarylmethylamine moiety is represented by Formulae (Ie-1˜Ie-4):




embedded image


wherein A, D, E, T, Z, Ring B, R3, R5, and R12 are as previously defined.


In still another embodiment, the present invention relates to compounds of Formula (If), or a pharmaceutically acceptable salt thereof:




embedded image


wherein A, D, E, T, Z, Ring B, and R11 are as previously defined.


In still another embodiment, the present invention relates to compounds of Formula (Ig), or a pharmaceutically acceptable salt thereof:




embedded image


wherein A, D, E, T, Z, Ring B, Ra and Rb are as previously defined.


In still another embodiment, the present invention relates to compounds of Formula (Ih), or a pharmaceutically acceptable salt thereof:




embedded image


wherein A, D, E, T, Z, Ring B, Rc and Rd are as previously defined.


In still another embodiment, the present invention relates to compounds of Formula (Ii), or a pharmaceutically acceptable salt thereof:




embedded image


wherein A, D, E, T, Z, Ring B, and R13 are as previously defined.


In still another embodiment, the present invention relates to compounds of Formula (Ij), or a pharmaceutically acceptable salt thereof:




embedded image


wherein A, D, E, T, Z, Ring B are as previously defined and R13a at each occurrence is independently an optionally substituted C1-C8 alkyl; preferably C1-C8 alkyl optionally substituted with amino, hydroxy, phenyl, protected amino, or O(C1-C4 alkyl); or a pharmaceutically acceptable salt thereof.


In still another embodiment, the present invention relates to compounds of Formula (IIa), or a pharmaceutically acceptable salt thereof:




embedded image


wherein Q, J, Ring B, u, and R1 are as previously defined and T is present and as previously defined.


In still another embodiment, the present invention relates to compounds of Formula (IIb), or a pharmaceutically acceptable salt thereof:




embedded image


wherein Q, J, Ring B, u, and R1 are as previously defined and A is present and as previously defined.


In still another embodiment, the present invention relates to compounds of Formula (IIc), or a pharmaceutically acceptable salt thereof:




embedded image


wherein Q, J, Ring B, u, and R1 are as previously defined and T1 is a linear aliphatic group, optionally containing one or more of an olefinic double bond and an alkynic triple bond and further, optionally comprising one or more groups selected from the group consisting of O, N(R11), C(O), S(O)2, C(O)O, C(O)N(R11), OC(O)O, OC(O)N(R11), S(O)2N(R11), N(R11)C(O)N(R11), N(R11)C(O)C(O)N(R11), N(R11)S(O)2N(R11), C(O)N(R11)S(O)2 and C(O)N(R11)S(O)2N(R11).


In still another embodiment, the present invention relates to compounds of Formula (IId), or a pharmaceutically acceptable salt thereof:




embedded image


wherein Q, J, Ring B, u, and R1 are as previously defined and T2 is an aliphatic group comprising a C3-C8 cycloalkyl or C3-C8 cycloalkenyl and optionally contains one or more of an olefinic double bond and an alkynic triple bond and further, optionally comprises one or more groups selected from the group consisting of O, N(R11), C(O), S(O)2, C(O)O, C(O)N(R11), OC(O)O, OC(O)N(R11), S(O)2N(R11), N(R11)C(O)N(R11), N(R11)C(O)C(O)N(R11), N(R11)S(O)2N(R11), C(O)N(R11)S(O)2 and C(O)N(R11)S(O)2N(R11).


In still another embodiment, the present invention relates to compounds of Formulae (IIIa-1 and IIIa-2), or a pharmaceutically acceptable salt thereof:




embedded image


wherein Q, J, Ring B, u, and R1 are as previously defined; in Formula (IIIa-1), A and T are each present and as previously defined; and in Formula (IIIa-2), T and E are each present and as previously defined.


In still another embodiment, the present invention relates to compounds of Formula (IIIa-3), or a pharmaceutically acceptable salt thereof:




embedded image


wherein n is 1 or 2; T is absent or optionally substituted C2-C4 alkenyl or optionally substituted C2-C4 alkynyl; E is phenyl, monocyclic heteroaryl, bicyclic aryl, or bicyclic heteroaryl, each optionally substituted; X at each occurrence is independently CH2, CHF, CH(OH), CHMe, CF2, or C(R7)2; wherein R7 at each occurrence is independently hydrogen or methyl; alternatively, the two geminal R7 groups are taken together with the carbon to which they are attached to form a spiro, optionally substituted C3-C8 cycloalkyl; or yet alternatively, two vicinal R7 groups are taken together with the two adjacent atoms to which they are attached to form a fused, optionally substituted C3-C8 cycloalkyl; and R12 at each occurrence is independently optionally substituted C1-C8 alkyl. In certain aspects, the invention is a compound of Formula (IIIa-3), wherein R12 at each occurrence is independently C1-C8 alkyl substituted with —NHCO2(C1-C4 alkyl) or O(C1-C4 alkyl).


In still another embodiment, the present invention relates to compounds of Formula (IIIa-3), or a pharmaceutically acceptable salt thereof; wherein two geminal R7 groups are taken together with the carbon to which they are attached to form a spiro cyclopropyl; and R12 at each occurrence is independently C1-C8 alkyl optionally substituted with amino, hydroxy, protected amino, or O(C1-C4 alkyl).


In still another embodiment, the present invention relates to compounds of Formula (IIIa-3), or a pharmaceutically acceptable salt thereof; wherein two vicinal R7 groups are taken together with the two adjacent atoms to which they are attached to form a fused cyclopropyl; and R12 at each occurrence is independently C1-C8 alkyl optionally substituted with amino, hydroxy, protected amino, or O(C1-C4 alkyl).


In still another embodiment, the present invention relates to compounds of Formula (III-a), (III-b), (III-c) or (III-d), or a pharmaceutically acceptable salt thereof:




embedded image


wherein n is 1 or 2; X at each occurrence is each independently CH2, CHF, CH(OH), CHMe, CF2, or C(R7)2; wherein R7 at each occurrence is independently hydrogen or methyl; alternatively, two geminal R7 groups are taken together with the carbon to which they are attached to form a spiro cyclopropyl; or yet alternatively, two vicinal R7 groups can be taken together with the two adjacent atoms to which they are attached to form a fused cyclopropyl; and R12 at each occurrence is independently C1-C8 alkyl optionally substituted with amino, hydroxy, protected amino, or O(C1-C4 alkyl).


In still another embodiment, the present invention relates to compounds of Formula (III-a), (III-b), (III-c) or (III-d); wherein R12 at each occurrence is independently C1-C8 alkyl substituted with —NHCO2(C1-C4 alkyl) or O(C1-C4 alkyl); or a pharmaceutically acceptable salt thereof.


In still another embodiment, the present invention relates to compounds of Formula (IIIb), or a pharmaceutically acceptable salt thereof:




embedded image


wherein Q, J, Ring B, u, and R1 are as previously defined; A and E are each present and as previously defined.


In still another embodiment, the present invention relates to compounds of Formulae (IVa-1 and IVa-2), or a pharmaceutically acceptable salt thereof:




embedded image


wherein Ring B1, Q, J, u, and R1 are as previously defined; in Formula (IVa-1), A, D, and T are each present and as previously defined; and in Formula (IVa-2), E, T, and Z are each present and as previously defined.


In still another embodiment, the present invention relates to compounds of Formula (IVb), or a pharmaceutically acceptable salt thereof:




embedded image


wherein Ring B1, Q, J, u, and R1 are as previously defined; A, E, and T are each present and as previously defined.


In still another embodiment, the present invention relates to compounds of Formulae (Va-1 and Va-2), or a pharmaceutically acceptable salt thereof:




embedded image


wherein Ring B1, Q, J, u, and R1 are as previously defined; in Formula (Va-1), D, A, T and E are each present and as previously defined; in Formula (Va-2), A, E, T, and Z are each present and as previously defined.


In still another embodiment, the present invention relates to compounds of Formula (I), or a pharmaceutically acceptable salt thereof; wherein




embedded image


at each occurrence is independently illustrated by one of the following groups:




embedded image


In still another embodiment, the present invention relates to compounds of Formula (I), or a pharmaceutically acceptable salt thereof; wherein




embedded image


at each occurrence is independently illustrated by one of the following groups:




embedded image


embedded image


Representative compounds of the present invention are those selected from compounds 1-1, 2-1, and 2-2 (shown below), and compounds 1-695 compiled in Tables 1-9:




embedded image









TABLE 1







Compounds 1-219.




embedded image













Entry


embedded image







 1


embedded image







 2


embedded image







 3


embedded image







 4


embedded image







 5


embedded image







 6


embedded image







 7


embedded image







 8


embedded image







 9


embedded image







 10


embedded image







 11


embedded image







 12


embedded image







 13


embedded image







 14


embedded image







 15


embedded image







 16


embedded image







 17


embedded image







 18


embedded image







 19


embedded image







 20


embedded image







 21


embedded image







 22


embedded image







 23


embedded image







 24


embedded image







 25


embedded image







 26


embedded image







 27


embedded image







 28


embedded image







 29


embedded image







 30


embedded image







 31


embedded image







 32


embedded image







 33


embedded image







 34


embedded image







 35


embedded image







 36


embedded image







 37


embedded image







 38


embedded image







 39


embedded image







 40


embedded image







 41


embedded image







 42


embedded image







 43


embedded image







 44


embedded image







 45


embedded image







 46


embedded image







 47


embedded image







 48


embedded image







 49


embedded image







 50


embedded image







 51


embedded image







 52


embedded image







 53


embedded image







 54


embedded image







 55


embedded image







 56


embedded image







 57


embedded image







 58


embedded image







 59


embedded image







 60


embedded image







 61


embedded image







 62


embedded image







 63


embedded image







 64


embedded image







 65


embedded image







 66


embedded image







 67


embedded image







 68


embedded image







 69


embedded image







 70


embedded image







 71


embedded image







 72


embedded image







 73


embedded image







 74


embedded image







 75


embedded image







 76


embedded image







 77


embedded image







 78


embedded image







 79


embedded image







 80


embedded image







 81


embedded image







 82


embedded image







 83


embedded image







 84


embedded image







 85


embedded image







 86


embedded image







 87


embedded image







 88


embedded image







 89


embedded image







 90


embedded image







 91


embedded image







 92


embedded image







 93


embedded image







 94


embedded image







 95


embedded image







 96


embedded image







 97


embedded image







 98


embedded image







 99


embedded image







100


embedded image







101


embedded image







102


embedded image







103


embedded image







104


embedded image







105


embedded image







106


embedded image







107


embedded image







108


embedded image







109


embedded image







110


embedded image







111


embedded image







112


embedded image







113


embedded image







114


embedded image







115


embedded image







116


embedded image







117


embedded image







118


embedded image







119


embedded image







120


embedded image







121


embedded image







122


embedded image







123


embedded image







124


embedded image







125


embedded image







126


embedded image







127


embedded image







128


embedded image







129


embedded image







130


embedded image







131


embedded image







132


embedded image







133


embedded image







134


embedded image







135


embedded image







136


embedded image







137


embedded image







138


embedded image







139


embedded image







140


embedded image







141


embedded image







142


embedded image







143


embedded image







144


embedded image







145


embedded image







146


embedded image







147


embedded image







148


embedded image







149


embedded image







150


embedded image







151


embedded image







152


embedded image







153


embedded image







154


embedded image







155


embedded image







156


embedded image







157


embedded image







158


embedded image







159


embedded image







160


embedded image







161


embedded image







162


embedded image







163


embedded image







164


embedded image







165


embedded image







166


embedded image







167


embedded image







168


embedded image







169


embedded image







170


embedded image







171


embedded image







172


embedded image







173


embedded image







174


embedded image







175


embedded image







176


embedded image







177


embedded image







178


embedded image







179


embedded image







180


embedded image







181


embedded image







182


embedded image







183


embedded image







184


embedded image







185


embedded image







186


embedded image







187


embedded image







188


embedded image







189


embedded image







190


embedded image







191


embedded image







192


embedded image







193


embedded image







194


embedded image







195


embedded image







196


embedded image







197


embedded image







198


embedded image







199


embedded image







200


embedded image







201


embedded image







202


embedded image







203


embedded image







204


embedded image







205


embedded image







206


embedded image







207


embedded image







208


embedded image







209


embedded image







210


embedded image







211


embedded image







212


embedded image







213


embedded image







214


embedded image







215


embedded image







216


embedded image







217


embedded image







218


embedded image







219


embedded image


















TABLE 2







Compounds 220-229.




embedded image
















Entry
R
R′
R″
X





220
Me
H
H
CH2


221
H
H
H
CF2


222
Me
H
H
S





223
H
H
H


embedded image







224
Me
H
H
O





225
H
H
H


embedded image







226
H
Ph
H
CH2





227
H
H
H


embedded image







228
H
H
Ph
CH2





229
H
H
H


embedded image













embedded image









TABLE 3







Compounds 234-243.




embedded image















Entry
R
R'′
R″





234
Me
Me
H


235
H
Me
H


236
Me
H
Me


237
cyclopropyl
Me
H


238
Me
Me
Me


239
Me
cyclopropyl
H


240
Me
Allyl
H


241
Et
Me
H


242
Me
CHMe2
H


243
Me
Et
H.
















TABLE 4







Compounds 244-263.




embedded image














Entry
R
R′





244


embedded image




embedded image







245


embedded image




embedded image







246


embedded image




embedded image







247


embedded image




embedded image







248


embedded image




embedded image







249


embedded image




embedded image







250


embedded image




embedded image







251


embedded image




embedded image







252


embedded image




embedded image







253


embedded image




embedded image







254


embedded image




embedded image







255


embedded image




embedded image







256


embedded image




embedded image







257


embedded image




embedded image







258


embedded image




embedded image







259


embedded image




embedded image







260


embedded image




embedded image







261


embedded image




embedded image







262


embedded image




embedded image







263


embedded image




embedded image


















TABLE 5







Compounds 264-273.




embedded image
















Entry
R
R′
R″
R′′′





264
F
H
H
H


265
F
F
H
H


266
Me
H
H
H


267
Me
Me
H
H


268
H
H
Me
Me


269
H
H
Et
Et


270
CF3
H
H
H


271
CF3
H
CF3
H


272
Cl
H
H
H


273
Cl
H
Cl
H.
















TABLE 6







Compounds 274-299.




embedded image
















Entry
R
R′
R″
R′′′





274
Me
H
H
H


275
H
CO2H
H
H


276
H
F
H
H


277
H
H
CO2H
H


278
H
H
F
H


279
H
H
H
CO2H


280
H
H
H
F


281
H
CO2Me
H
H


282
H
Cl
H
H


283
H
H
CO2Me
H


284
H
H
Cl
H


285
H
H
H
CO2Me


286
H
H
H
Cl


287
H
CONH2
H
H


288
H
Me
H
H


289
H
H
CONH2
H


290
H
H
Me
H


291
H
H
H
CONH2


292
H
H
H
Me


293
H
OMe
H
H


294
H
CF3
H
H


295
H
H
OMe
H


296
H
H
CF3
H


297
H
H
H
OMe


298
H
H
H
CF3


299
CO2Me
H
H
H.
















TABLE 7







Compounds 300-434.




embedded image













Entry
Aa





300


embedded image







301


embedded image







302


embedded image







303


embedded image







304


embedded image







305


embedded image







306


embedded image







307


embedded image







308


embedded image







309


embedded image







310


embedded image







311


embedded image







312


embedded image







313


embedded image







314


embedded image







315


embedded image







316


embedded image







317


embedded image







318


embedded image







319


embedded image







320


embedded image







321


embedded image







322


embedded image







323


embedded image







324


embedded image







325


embedded image







326


embedded image







327


embedded image







328


embedded image







329


embedded image







330


embedded image







331


embedded image







332


embedded image







333


embedded image







334


embedded image







335


embedded image







336


embedded image







337


embedded image







338


embedded image







339


embedded image







340


embedded image







341


embedded image







342


embedded image







343


embedded image







344


embedded image







345


embedded image







346


embedded image







347


embedded image







348


embedded image







349


embedded image







350


embedded image







351


embedded image







352


embedded image







353


embedded image







354


embedded image







355


embedded image







356


embedded image







357


embedded image







358


embedded image







359


embedded image







360


embedded image







361


embedded image







362


embedded image







363


embedded image







364


embedded image







365


embedded image







366


embedded image







367


embedded image







368


embedded image







369


embedded image







370


embedded image







371


embedded image







372


embedded image







373


embedded image







374


embedded image







375


embedded image







376


embedded image







377


embedded image







378


embedded image







379


embedded image







380


embedded image







381


embedded image







382


embedded image







383


embedded image







384


embedded image







385


embedded image







386


embedded image







387


embedded image







388


embedded image







389


embedded image







390


embedded image







391


embedded image







392


embedded image







393


embedded image







394


embedded image







395


embedded image







396


embedded image







397


embedded image







398


embedded image







399


embedded image







400


embedded image







401


embedded image







402


embedded image







403


embedded image







404


embedded image







405


embedded image







406


embedded image







407


embedded image







408


embedded image







409


embedded image







410


embedded image







411


embedded image







412


embedded image







413


embedded image







414


embedded image







415


embedded image







416


embedded image







417


embedded image







418


embedded image







419


embedded image







420


embedded image







421


embedded image







422


embedded image







423


embedded image







424


embedded image







425


embedded image







426


embedded image







427


embedded image







428


embedded image







429


embedded image







430


embedded image







431


embedded image







432


embedded image







433


embedded image







434


embedded image


















TABLE 8







Compounds 435-440.




embedded image













Entry
Bb





435


embedded image







436


embedded image







437


embedded image







438


embedded image







439


embedded image







440


embedded image


















TABLE 9





Compounds 441-545
















441


embedded image







442


embedded image







443


embedded image







444


embedded image







445


embedded image







446


embedded image







447


embedded image







448


embedded image







449


embedded image







450


embedded image







451


embedded image







452


embedded image







453


embedded image







454


embedded image







455


embedded image







456


embedded image







457


embedded image







458


embedded image







459


embedded image







460


embedded image







461


embedded image







462


embedded image







463


embedded image







464


embedded image







465


embedded image







466


embedded image







467


embedded image







468


embedded image







469


embedded image







470


embedded image







471


embedded image







472


embedded image







473


embedded image







474


embedded image







475


embedded image







476


embedded image







477


embedded image







478


embedded image







479


embedded image







480


embedded image







481


embedded image







482


embedded image







483


embedded image







484


embedded image







485


embedded image







486


embedded image







487


embedded image







488


embedded image







489


embedded image







490


embedded image







491


embedded image







492


embedded image







493


embedded image







494


embedded image







495


embedded image







496


embedded image







497-a


embedded image







497-b


embedded image







498


embedded image







499


embedded image







500


embedded image







501


embedded image







502


embedded image







503


embedded image







504


embedded image







505


embedded image







506


embedded image







507


embedded image







508


embedded image







509


embedded image







510


embedded image







511


embedded image







512


embedded image







513


embedded image







514


embedded image







515


embedded image







516


embedded image







517


embedded image







518


embedded image







519


embedded image







520


embedded image







521


embedded image







522


embedded image







523


embedded image







524


embedded image







525


embedded image







526


embedded image







527


embedded image







528


embedded image







529


embedded image







530


embedded image







531


embedded image







532


embedded image







533


embedded image







534


embedded image







535


embedded image







536


embedded image







537


embedded image







538


embedded image







539


embedded image







540


embedded image







541


embedded image







542


embedded image







543


embedded image







544


embedded image







545


embedded image







546


embedded image







547


embedded image







548


embedded image







549


embedded image







550


embedded image







551


embedded image







552


embedded image







553


embedded image







554


embedded image







555


embedded image







556


embedded image







557


embedded image







558


embedded image







559


embedded image







560


embedded image







561


embedded image







562


embedded image







563


embedded image







564


embedded image







565


embedded image







566


embedded image







567


embedded image







568


embedded image







569


embedded image







570


embedded image







571


embedded image







572


embedded image







573


embedded image







574


embedded image







575


embedded image







576


embedded image







577


embedded image







578


embedded image







579


embedded image







580


embedded image







581


embedded image







582


embedded image







583


embedded image







584


embedded image







585


embedded image







586


embedded image







587


embedded image







588


embedded image







589


embedded image







590


embedded image







591


embedded image







592


embedded image







593


embedded image







594


embedded image







595


embedded image







596


embedded image







597


embedded image







598


embedded image







599


embedded image







600


embedded image







601


embedded image







602


embedded image







603


embedded image







604


embedded image







605


embedded image







606


embedded image







607


embedded image







608


embedded image







609


embedded image







610


embedded image







611


embedded image







612


embedded image







613


embedded image







614


embedded image







615


embedded image







616


embedded image







617


embedded image







618


embedded image







619


embedded image







620


embedded image







621


embedded image







622


embedded image







623


embedded image







624


embedded image







625


embedded image







626


embedded image







627


embedded image







628


embedded image







629


embedded image







630


embedded image







631


embedded image







632


embedded image







633


embedded image







634


embedded image







635


embedded image







636


embedded image







637


embedded image







638


embedded image







639


embedded image







640


embedded image







641


embedded image







642


embedded image







643


embedded image







644


embedded image







645


embedded image







646


embedded image







647


embedded image







648


embedded image







649


embedded image







650


embedded image







651


embedded image







652


embedded image







653


embedded image







654


embedded image







655


embedded image







656


embedded image







657


embedded image







658


embedded image







659


embedded image







660


embedded image







661


embedded image







662


embedded image







663


embedded image







664


embedded image







665


embedded image







666


embedded image







667


embedded image







668


embedded image







669


embedded image







670


embedded image







671


embedded image







672


embedded image







673


embedded image







674


embedded image







675


embedded image







676


embedded image







677


embedded image







678


embedded image







679


embedded image







680


embedded image







681


embedded image







682


embedded image







683


embedded image







684


embedded image







685


embedded image







686


embedded image







687


embedded image







688


embedded image







689


embedded image







690


embedded image







691


embedded image







692


embedded image







693


embedded image







694


embedded image







695


embedded image











It will be appreciated that the description of the present invention herein should be construed in congruity with the laws and principals of chemical bonding. In some instances it may be necessary to remove a hydrogen atom in order to accommodate a substitutent at any given location.


It is intended that the definition of any substituent or variable (e.g., R1, R2, X, u, m, etc.) at a particular location in a molecule be independent of its definitions elsewhere in that molecule. For example, when u is 2, each of the two R1 groups may be the same or different.


It will be yet appreciated that the compounds of the present invention may contain one or more asymmetric carbon atoms and may exist in racemic, diastereoisomeric, and optically active forms. It will still be appreciated that certain compounds of the present invention may exist in different tautomeric forms. All tautomers are contemplated to be within the scope of the present invention.


It should be understood that the compounds encompassed by the present invention are those that are suitably stable for use as pharmaceutical agent.


It will be further appreciated that reference herein to therapy and/or treatment includes, but is not limited to, prevention, retardation, prophylaxis, therapy and cure of the disease. It will further be appreciated that references herein to treatment or prophylaxis of HCV infection includes treatment or prophylaxis of HCV-associated disease such as liver fibrosis, cirrhosis and hepatocellular carcinoma.


A further embodiment of the present invention includes pharmaceutical compositions comprising any single compound or a combination of two or more compounds delineated herein, or a pharmaceutically acceptable salt thereof, with a pharmaceutically acceptable carrier or excipient.


Yet a further embodiment of the present invention is a pharmaceutical composition comprising any single compound or a combination of two or more compounds delineated herein, or a pharmaceutically acceptable salt thereof, in combination with one or more agents known in the art, with a pharmaceutically acceptable carrier or excipient.


It will be further appreciated that compounds of the present invention can be administered as the sole active pharmaceutical agent, or used in combination with one or more agents to treat or prevent hepatitis C infections or the symptoms associated with HCV infection. Other agents to be administered in combination with a compound or combination of compounds of the present invention include therapies for disease caused by HCV infection that suppresses HCV viral replication by direct or indirect mechanisms. These agents include, but are not limited to, host immune modulators (for example, interferon-alpha, pegylated interferon-alpha, consensus interferon, interferon-beta, interferon-gamma, CpG oligonucleo-tides and the like); antiviral compounds that inhibit host cellular functions such as inosine monophosphate dehydrogenase (for example, ribavirin and the like); cytokines that modulate immune function (for example, interleukin 2, interleukin 6, and interleukin 12); a compound that enhances the development of type 1 helper T cell response; interfering RNA; anti-sense RNA; vaccines comprising HCV antigens or antigen adjuvant combinations directed against HCV; agents that interact with host cellular components to block viral protein synthesis by inhibiting the internal ribosome entry site (IRES) initiated translation step of HCV viral replication or to block viral particle maturation and release with agents targeted toward the viroporin family of membrane proteins such as, for example, HCV P7 and the like; and any agent or combination of agents that inhibit the replication of HCV by targeting other proteins of the viral genome involved in the viral replication and/or interfere with the function of other viral targets, such as inhibitors of NS3/NS4A protease, NS3 helicase, NS5B polymerase, NS4A protein and NS5A protein.


According to yet another embodiment, the pharmaceutical compositions of the present invention may further comprise other inhibitor(s) of targets in the HCV life cycle, including, but not limited to, helicase, polymerase, metalloprotease, NS4A protein, NS5A protein, and internal ribosome entry site (IRES).


Accordingly, one embodiment of the present invention is directed to a method for treating or preventing an infection caused by an RNA-containing virus comprising co-administering to a patient in need of such treatment one or more agents selected from the group consisting of a host immune modulator and a second or more antiviral agents, or a combination thereof, with a therapeutically effective amount of a compound or combination of compounds of the present invention, or a pharmaceutically acceptable salt thereof. Examples of the host immune modulator are, but not limited to, interferon-alpha, pegylated-interferon-alpha, interferon-beta, interferon-gamma, a cytokine, a vaccine, and a vaccine comprising an antigen and an adjuvant, and said second antiviral agent inhibits replication of HCV either by inhibiting host cellular functions associated with viral replication or by targeting proteins of the viral genome. A non-limiting example of the RNA-containing virus is hepatitis C virus (HCV).


A further embodiment of the present invention is directed to a method of treating or preventing infection caused by an RNA-containing virus comprising co-administering to a patient in need of such treatment an agent or combination of agents that treat or alleviate symptoms of HCV infection including cirrhosis and inflammation of the liver, with a therapeutically effective amount of a compound or combination of compounds of the present invention, or a pharmaceutically acceptable salt thereof. A non-limiting example of the RNA-containing virus is hepatitis C virus (HCV).


Yet another embodiment of the present invention provides a method of treating or preventing infection caused by an RNA-containing virus comprising co-administering to a patient in need of such treatment one or more agents that treat patients for disease caused by hepatitis B (HBV) infection, with a therapeutically effective amount of a compound or a combination of compounds of the present invention, or a pharmaceutically acceptable salt thereof. An agent that treats patients for disease caused by hepatitis B (HBV) infection may be for example, but not limited thereto, L-deoxythymidine, adefovir, lamivudine or tenfovir, or any combination thereof. A non-limiting example of the RNA-containing virus is hepatitis C virus (HCV).


Another further embodiment of the present invention provides a method of treating or preventing infection caused by an RNA-containing virus comprising co-administering to a patient in need of such treatment one or more agents that treat patients for disease caused by human immunodeficiency virus (HIV) infection, with a therapeutically effective amount of a compound or a combination of compounds of the present invention, or a pharmaceutically acceptable salt thereof. The agent that treats patients for disease caused by human immunodeficiency virus (HIV) infection may include, but is not limited thereto, ritonavir, lopinavir, indinavir, nelfinavir, saquinavir, amprenavir, atazanavir, tipranavir, TMC-114, fosamprenavir, zidovudine, lamivudine, didanosine, stavudine, tenofovir, zalcitabine, abacavir, efavirenz, nevirapine, delavirdine, TMC-125, L-870812, S-1360, enfuvirtide (T-20) or T-1249, or any combination thereof. A non-limiting example of the RNA-containing virus is hepatitis C virus (HCV).


It can occur that a patient may be co-infected with hepatitis C virus and one or more other viruses, including but not limited to human immunodeficiency virus (HIV), hepatitis A virus (HAV) and hepatitis B virus (HBV). Thus also contemplated herein is combination therapy to treat such co-infections by co-administering a compound according to the present invention with at least one of an HIV inhibitor, an HAV inhibitor and an HBV inhibitor.


In addition, the present invention provides the use of a compound or a combination of compounds of the invention, or a therapeutically acceptable salt thereof, and one or more agents selected from the group consisting of a host immune modulator and one or more additional antiviral agents, or a combination thereof, to prepare a medicament for the treatment of an infection caused by an RNA-containing virus in a patient, particularly hepatitis C virus. Examples of the host immune modulator are, but not limited to, interferon-alpha, pegylated-interferon-alpha, interferon-beta, interferon-gamma, a cytokine, a vaccine, and a vaccine comprising an antigen and an adjuvant. Preferably said additional antiviral agent inhibits replication of HCV either by inhibiting host cellular functions associated with viral replication or by targeting proteins of the viral genome.


When used in the above or other treatments, combination of compound or compounds of the present invention, together with one or more agents as defined herein above, can be employed in pure form or, where such forms exist, or as a pharmaceutically acceptable salt thereof. Alternatively, such combination of therapeutic agents can be administered as a pharmaceutical composition containing a therapeutically effective amount of the compound or combination of compounds of interest, or their pharmaceutically acceptable salt thereof, in combination with one or more agents as defined hereinabove, and a pharmaceutically acceptable carrier. Such pharmaceutical compositions can be used for inhibiting the replication of an RNA-containing virus, particularly Hepatitis C virus (HCV), by contacting said virus with said pharmaceutical composition. In addition, such compositions are useful for the treatment or prevention of an infection caused by an RNA-containing virus, particularly Hepatitis C virus (HCV).


Hence, a still further embodiment of the invention is directed to a method of treating or preventing infection caused by an RNA-containing virus, particularly a hepatitis C virus (HCV), comprising administering to a patient in need of such treatment a pharmaceutical composition comprising a compound or combination of compounds of the invention or a pharmaceutically acceptable salt thereof, and one or more agents as defined hereinabove, with a pharmaceutically acceptable carrier.


When administered as a combination, the therapeutic agents can be formulated as separate compositions which are given at the same time or within a predetermined period of time, or the therapeutic agents can be given as a single unit dosage form.


Antiviral agents contemplated for use in such combination therapy include agents (compounds or biologicals) that are effective to inhibit the formation and/or replication of a virus in a mammal, including, but not limited to, agents that interfere with either host or viral mechanisms necessary for the formation and/or replication of a virus in a mammal. Such agents can be selected from another anti-HCV agent; an HIV inhibitor; an HAV inhibitor; and an HBV inhibitor.


Other agents that can be administered in combination with a compound of the present invention include a cytochrome P450 monooxygenase inhibitor (also referred to herein as a CYP inhibitor), which is expected to inhibit metabolism of the compounds of the invention. Therefore, the cytochrome P450 monooxygenase inhibitor would be in an amount effective to inhibit metabolism of the compounds of this invention. Accordingly, the CYP inhibitor is administered in an amount sufficient to improve one or more pharmacokinetic (PK) feautures including, but not limited to, plasma concentration, bioavailiablity, area under the plasma concentration time curve (AUC), elimination half-life, and systemic clearance, of a compound of the invention when one or more of its PK feautures of said compound is improved in comparison to that in the absence of the CYP inhibitor.


In one embodiment, the invention provides methods for improving the pharmacokinetics of compounds of the invention. The advantages of improving the pharmacokinetics of drugs are recognized in the art (see, for example, US Patent Publication No.'s. 2004/0091527; US 2004/0152625; and US 2004/0091527). Accordingly, one embodiment of this invention provides a method comprising administering an inhibitor of CYP3A4 and a compound of the invention. Another embodiment of this invention provides a method comprising administering a compound of the invention and an inhibitor of isozyme 3A4 (“CYP3A4”), isozyme 2C19 (“CYP2C19”), isozyme 2D6 (“CYP2D6”), isozyme 1A2 (“CYP1A2”), isozyme 2C9 (“CYP2C9”), or isozyme 2E1 (“CYP2E1”). In a preferred embodiment, the CYP inhibitor preferably inhibits CYP3A4. Any CYP inhibitor that improves the pharmacokinetics of the relevant compound of the invention may be used in a method of this invention. These CYP inhibitors include, but are not limited to, ritonavir (see, for example, WO 94/14436), ketoconazole, troleandomycin, 4-methylpyrazole, cyclosporin, clomethiazole, cimetidine, itraconazole, fluconazole, miconazole, fluvoxamine, fluoxetine, nefazodone, sertraline, indinavir, nelfinavir, amprenavir, fosamprenavir, saquinavir, lopinavir, delavirdine, ditiazem, erythromycin, VX-944, and VX-497. Preferred CYP inhibitors include ritonavir, ketoconazole, troleandomycin, 4-methylpyrazole, cyclosporin, and clomethiazole.


It will be understood that the administration of the combination of the invention by means of a single patient pack, or patient packs of each formulation, containing within a package insert instructing the patient to the correct use of the invention is a desirable additional feature of this invention.


According to a further aspect of the invention, is a pack comprising at least a compound of the invention and a CYP inhibitor and an information insert containing directions on the use of the combination of the invention. In an alternative embodiment of this invention, the pack further comprises one or more of additional agent as described herein. The additional agent or agents may be provided in the same pack or in separate packs.


Another aspect of this involves a packaged kit for a patient to use in the treatment of HCV infection or in the prevention of HCV infection, comprising: a single or a plurality of pharmaceutical formulation of each pharmaceutical component; a container housing the pharmaceutical formulation(s) during storage and prior to administration; and instructions for carrying out drug administration in a manner effective to treat or prevent HCV infection.


Accordingly, this invention provides kits for the simultaneous or sequential administration of a compound of the invention and a CYP inhibitor (and optionally an additional agent) or derivatives thereof are prepared in a conventional manner. Typically, such a kit will comprise, e.g. a composition of a compound of the invention and optionally the additional agent (s) in a pharmaceutically acceptable carrier (and in one or in a plurality of pharmaceutical formulations) and written instructions for the simultaneous or sequential administration.


In another embodiment, a packaged kit is provided that contains one or more dosage forms for self administration; a container means, preferably sealed, for housing the dosage forms during storage and prior to use; and instructions for a patient to carry out drug administration. The instructions will typically be written instructions on a package insert, a label, and/or on other components of the kit, and the dosage form or forms are as described herein. Each dosage form may be individually housed, as in a sheet of a metal foil-plastic laminate with each dosage form isolated from the others in individual cells or bubbles, or the dosage forms may be housed in a single container, as in a plastic bottle. The present kits will also typically include means for packaging the individual kit components, i.e., the dosage forms, the container means, and the written instructions for use. Such packaging means may take the form of a cardboard or paper box, a plastic or foil pouch, etc.


DEFINITIONS

Listed below are definitions of various terms used to describe this invention. These definitions apply to the terms as they are used throughout this specification and claims, unless otherwise limited in specific instances, either individually or as part of a larger group.


The term “aryl,” as used herein, refers to a mono- or polycyclic carbocyclic ring system comprising at least one aromatic ring, including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, idenyl. A polycyclic aryl is a polycyclic ring system that comprises at least one aromatic ring. Polycyclic aryls can comprise fused rings, covalently attached rings or a combination thereof.


The term “heteroaryl,” as used herein, refers to a mono- or polycyclic aromatic radical having one or more ring atom selected from S, O and N; and the remaining ring atoms are carbon, wherein any N or S contained within the ring may be optionally oxidized. Heteroaryl includes, but is not limited to, pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzooxazolyl, quinoxalinyl. A polycyclic heteroaryl can comprise fused rings, covalently attached rings or a combination thereof.


In accordance with the invention, aromatic groups can be substituted or unsubstituted.


The term “bicyclic aryl” or “bicyclic heteroaryl” refers to a ring system consisting of two rings wherein at least one ring is aromatic; and the two rings can be fused or covalently attached.


The terms “C1-C4 alkyl,” “C1-C6 alkyl,” “C1-C8 alkyl,” “C2-C4 alkyl,” or “C3-C6 alkyl,” as used herein, refer to saturated, straight- or branched-chain hydrocarbon radicals containing between one and four, one and six, one and eight carbon atoms, or the like, respectively. Examples of C1-C8 alkyl radicals include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl, heptyl and octyl radicals.


The terms “C2-C8 alkenyl,” “C2-C4 alkenyl,” “C3-C4 alkenyl,” or “C3-C6 alkenyl,” as used herein, refer to straight- or branched-chain hydrocarbon radicals containing from two to eight, or two to four carbon atoms, or the like, having at least one carbon-carbon double bond by the removal of a single hydrogen atom. Alkenyl groups include, but are not limited to, for example, ethenyl, propenyl, butenyl, 1-methyl-2-buten-1-yl, heptenyl, octenyl, and the like.


The terms “C2-C8 alkynyl,” “C2-C4 alkynyl,” “C3-C4 alkynyl,” or “C3-C6 alkynyl,” as used herein, refer to straight- or branched-chain hydrocarbon radicals containing from two to eight, or two to four carbon atoms, or the like, having at least one carbon-carbon triple bond by the removal of a single hydrogen atom. Representative alkynyl groups include, but are not limited to, for example, ethynyl, 1-propynyl, 1-butynyl, heptynyl, octynyl, and the like.


The term “C3-C8-cycloalkyl”, or “C5-C7-cycloalkyl,” as used herein, refers to a monocyclic or polycyclic saturated carbocyclic ring compound, and the carbon atoms may be optionally oxo-substituted. Examples of C3-C8-cycloalkyl include, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentyl and cyclooctyl; and examples of C5-C7-cycloalkyl include, but not limited to, cyclopentyl, cyclohexyl, bicyclo[2.2.1]heptyl, and the like.


The term “C3-C8 cycloalkenyl”, or “C5-C7 cycloalkenyl” as used herein, refers to monocyclic or polycyclic carbocyclic ring compound having at least one carbon-carbon double bond, and the carbon atoms may be optionally oxo-substituted. Examples of C3-C8 cycloalkenyl include, but not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, and the like; and examples of C5-C7 cycloalkenyl include, but not limited to, cyclopentenyl, cyclohexenyl, cycloheptenyl, and the like.


The term “arylalkyl”, as used herein, refers to an aryl-substituted alkyl group. More preferred arylalkyl groups are aryl-C1-C6-alkyl groups.


The term “heteroarylalkyl”, as used herein, refers to a heteroaryl-substituted alkyl group. More preferred heteroarylalkyl groups are heteroaryl-C1-C6-alkyl groups.


It is understood that any alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl moiety described herein can also be an aliphatic group or an alicyclic group.


An “aliphatic” group is a non-aromatic moiety comprised of any combination of carbon atoms, hydrogen atoms, halogen atoms, oxygen, nitrogen or other atoms, and optionally contains one or more units of unsaturation, e.g., double and/or triple bonds. Examples of aliphatic groups are functional groups, such as, 0, OH, NH, NH2, C(O), S(O)2, C(O)O, C(O)NH, OC(O)O, OC(O)NH, OC(O)NH2, S(O)2NH, S(O)2NH2, NHC(O)NH2, NHC(O)C(O)NH, NHS(O)2NH, NHS(O)2NH2, C(O)NHS(O)2, C(O)NHS(O)2NH or C(O)NHS(O)2NH2, and the like, groups comprising one or more functional groups, non-aromatic hydrocarbons (optionally substituted), and groups wherein one or more carbons of a non-aromatic hydrocarbon (optionally substituted) is replaced by a functional group. Carbon atoms of an aliphatic group can be optionally oxo-substituted. An aliphatic group may be straight chained, branched or cyclic and preferably contains between about 1 and about 24 carbon atoms, more typically between about 1 and about 12 carbon atoms. In addition to aliphatic hydrocarbon groups, as used herein, aliphatic groups expressly include, for example, alkoxyalkyls, polyalkoxyalkyls, such as polyalkylene glycols, polyamines, and polyimines, for example. Aliphatic groups may be optionally substituted. A linear aliphatic group is a non-cyclic aliphatic group. It is to be understood that when an aliphatic group or a linear aliphatic group is said to “contain” or “include” or “comprise” one or more specified functional groups, the linear aliphatic group can, for example, be selected from one or more of the specified functional groups or a combination thereof, or a group wherein one or more carbons of a non-aromatic hydrocarbon (optionally substituted) is replaced by a specified functional group. In some examples, the aliphatic group can be represented by the formula M-Y-M′, where M and M′ are each independently absent or an alkyl, alkenyl or alkynyl, each optionally substituted, and Y is a functional group. In some examples, Y is selected from the group consisting of C(O), S(O)2, C(O)O, C(O)N(R11), OC(O)O, OC(O)N(R11), S(O)2N(R11), N(R11)C(O)N(R11), N(R11)C(O)C(O)N(R11), N(R11)S(O)2N(R11), C(O)N(R11)S(O)2 or C(O)N(R11)S(O)2N(R11); wherein R11 is as previously defined. In another aspect of the invention, an exemplary linear aliphatic group is an alkyl, alkenyl or alkynyl, each optionally substituted, which is interrupted or terminated by a functional group such as described herein.


The term “alicyclic,” as used herein, denotes a monovalent group derived from a monocyclic or bicyclic saturated carbocyclic ring compound by the removal of a single hydrogen atom, and the carbon atoms may be optionally oxo-substituted. Examples include, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, bicyclo[2.2.1]heptyl, and bicyclo[2.2.2]octyl. Such alicyclic groups may be further substituted.


The terms “heterocyclic” or “heterocycloalkyl” can be used interchangeably and referred to a non-aromatic ring or a bi- or tri-cyclic group fused system, where (i) each ring system contains at least one heteroatom independently selected from oxygen, sulfur and nitrogen, (ii) each ring system can be saturated or unsaturated, (iii) the nitrogen and sulfur heteroatoms may optionally be oxidized, (iv) the nitrogen heteroatom may optionally be quaternized, (v) any of the above rings may be fused to an aromatic ring, and (vi) the remaining ring atoms are carbon atoms which may be optionally oxo-substituted. Representative heterocycloalkyl groups include, but are not limited to, 1,3-dioxolane, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, and tetrahydrofuryl. Such heterocyclic groups may be further substituted. Heteroaryl or heterocyclic groups can be C-attached or N-attached (where possible).


It is understood that any alkyl, alkenyl, alkynyl, alicyclic, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclic, aliphatic moiety or the like, described herein can also be a divalent group when used as a linkage to connect two groups or substituents, which can be at the same or different atom(s).


The term “substituted” refers to substitution by independent replacement of one, two, or three or more of the hydrogen atoms with substituents including, but not limited to, —F, —Cl, —Br, —I, —OH, protected hydroxy, —NO2, —N3, —CN, —NH2, protected amino, oxo, thioxo, —NH—C1-C12-alkyl, —NH—C2-C8-alkenyl, —NH—C2-C8-alkynyl, —NH—C3-C12-cycloalkyl, —NH-aryl, —NH-heteroaryl, —NH-heterocycloalkyl, -dialkylamino, -diarylamino, -diheteroarylamino, —O—C1-C12-alkyl, —O—C2-C8-alkenyl, —O—C2-C8-alkynyl, —O—C3-C12-cycloalkyl, —O-aryl, —O-heteroaryl, —O-heterocycloalkyl, —C(O)—C1-C12-alkyl, —C(O)—C2-C8-alkenyl, —C(O)—C2-C8-alkynyl, —C(O)—C3-C12-cycloalkyl, —C(O)-aryl, —C(O)-heteroaryl, —C(O)-heterocycloalkyl, —CONH2, —CONH—C1-C12-alkyl, —CONH—C2-C8-alkenyl, —CONH—C2-C8-alkynyl, —CONH—C3-C12-cycloalkyl, —CONH-aryl, —CONH-heteroaryl, —CONH-heterocycloalkyl, —OCO2—C1-C12-alkyl, —OCO2—C2-C8-alkenyl, —OCO2—C2-C8-alkynyl, —OCO2—C3-C12-cycloalkyl, —OCO2-aryl, —OCO2-heteroaryl, —OCO2-heterocycloalkyl, —CO2—C1-C12 alkyl, —CO2—C2-C8 alkenyl, —CO2—C2-C8 alkynyl, CO2—C3-C12-cycloalkyl, —CO2— aryl, CO2-heteroaryl, CO2-heterocyloalkyl, —OCONH2, —OCONH—C1-C12-alkyl, —OCONH—C2-C8-alkenyl, —OCONH—C2-C8-alkynyl, —OCONH—C3-C12-cycloalkyl, —OCONH-aryl, —OCONH-heteroaryl, —OCONH— heterocycloalkyl, —NHC(O)H, —NHC(O)—C1-C12-alkyl, —NHC(O)—C2-C8-alkenyl, —NHC(O)—C2-C8-alkynyl, —NHC(O)—C3-C12-cycloalkyl, —NHC(O)-aryl, —NHC(O)-heteroaryl, —NHC(O)-heterocycloalkyl, —NHCO2—C1-C12-alkyl, —NHCO2—C2-C8-alkenyl, —NHCO2—C2-C8-alkynyl, —NHCO2—C3-C12-cycloalkyl, —NHCO2-aryl, —NHCO2-heteroaryl, —NHCO2— heterocycloalkyl, —NHC(O)NH2, —NHC(O)NH—C1-C12-alkyl, —NHC(O)NH—C2-C8-alkenyl, —NHC(O)NH—C2-C8-alkynyl, —NHC(O)NH—C3-C12-cycloalkyl, —NHC(O)NH-aryl, —NHC(O)NH-heteroaryl, —NHC(O)NH-heterocycloalkyl, NHC(S)NH2, —NHC(S)NH—C1-C12-alkyl, —NHC(S)NH—C2-C8-alkenyl, —NHC(S)NH—C2-C8-alkynyl, —NHC(S)NH—C3-C12-cycloalkyl, —NHC(S)NH-aryl, —NHC(S)NH-heteroaryl, —NHC(S)NH-heterocycloalkyl, —NHC(NH)NH2, —NHC(NH)NH—C1-C12-alkyl, —NHC(NH)NH—C2-C8-alkenyl, —NHC(NH)NH—C2-C8-alkynyl, —NHC(NH)NH—C3-C12-cycloalkyl, —NHC(NH)NH-aryl, —NHC(NH)NH-heteroaryl, —NHC(NH)NH-heterocycloalkyl, —NHC(NH)—C1-C12-alkyl, —NHC(NH)—C2-C8-alkenyl, —NHC(NH)—C2-C8-alkynyl, —NHC(NH)—C3-C12-cycloalkyl, —NHC(NH)-aryl, —NHC(NH)-heteroaryl, —NHC(NH)-heterocycloalkyl, —C(NH)NH—C1-C12-alkyl, —C(NH)NH—C2-C8-alkenyl, —C(NH)NH—C2-C8-alkynyl, —C(NH)NH—C3-C12-cycloalkyl, —C(NH)NH-aryl, —C(NH)NH-heteroaryl, —C(NH)NH-heterocycloalkyl, —S(O)—C1-C12-alkyl, —S(O)—C2-C8-alkenyl, —S(O)—C2-C8-alkynyl, —S(O)—C3-C12-cycloalkyl, —S(O)-aryl, —S(O)-heteroaryl, —S(O)-heterocycloalkyl, —SO2NH2, —SO2NH—C1-C12-alkyl, —SO2NH—C2-C8-alkenyl, —SO2NH—C2-C8-alkynyl, —SO2NH—C3-C12-cycloalkyl, —SO2NH-aryl, —SO2NH-heteroaryl, —SO2NH— heterocycloalkyl, —NHSO2—C1-C12-alkyl, —NHSO2—C2-C8-alkenyl, —NHSO2—C2-C8-alkynyl, —NHSO2—C3-C12-cycloalkyl, —NHSO2-aryl, —NHSO2-heteroaryl, —NHSO2-heterocycloalkyl, —CH2NH2, —CH2SO2CH3, -aryl, -arylalkyl, -heteroaryl, -heteroarylalkyl, -heterocycloalkyl, —C3-C12-cycloalkyl, polyalkoxyalkyl, polyalkoxy, -methoxymethoxy, -methoxyethoxy, —SH, —S—C1-C12-alkyl, —S—C2-C8-alkenyl, —S—C2-C8-alkynyl, —S—C3-C12-cycloalkyl, —S-aryl, —S-heteroaryl, —S-heterocycloalkyl, or methylthiomethyl. It is understood that the aryls, heteroaryls, alkyls, and the like can be further substituted.


The term “halogen,” as used herein, refers to an atom selected from fluorine, chlorine, bromine and iodine.


The term “hydrogen” includes hydrogen and deuterium. In addition, the recitation of an atom includes other isotopes of that atom so long as the resulting compound is pharmaceutically acceptable.


The term “hydroxy activating group”, as used herein, refers to a labile chemical moiety which is known in the art to activate a hydroxyl group so that it will depart during synthetic procedures such as in a substitution or an elimination reaction. Examples of hydroxyl activating group include, but not limited to, mesylate, tosylate, triflate, p-nitrobenzoate, phosphonate and the like.


The term “activated hydroxy”, as used herein, refers to a hydroxy group activated with a hydroxyl activating group, as defined above, including mesylate, tosylate, triflate, p-nitrobenzoate, phosphonate groups, for example.


The term “hydroxy protecting group,” as used herein, refers to a labile chemical moiety which is known in the art to protect a hydroxyl group against undesired reactions during synthetic procedures. After said synthetic procedure(s) the hydroxy protecting group as described herein may be selectively removed. Hydroxy protecting groups as known in the art are described generally in T. H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 3rd edition, John Wiley & Sons, New York (1999). Examples of hydroxyl protecting groups include benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, tert-butoxycarbonyl, isopropoxycarbonyl, diphenylmethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, allyloxycarbonyl, acetyl, formyl, chloroacetyl, trifluoroacetyl, methoxyacetyl, phenoxyacetyl, benzoyl, methyl, t-butyl, 2,2,2-trichloroethyl, 2-trimethylsilyl ethyl, allyl, benzyl, triphenyl-methyl(trityl), methoxymethyl, methylthiomethyl, benzyloxymethyl, 2-(trimethylsilyl)-ethoxymethyl, methanesulfonyl, trimethylsilyl, triisopropylsilyl, and the like.


The term “protected hydroxy,” as used herein, refers to a hydroxy group protected with a hydroxy protecting group, as defined above, including benzoyl, acetyl, trimethylsilyl, triethylsilyl, methoxymethyl groups, for example.


The term “hydroxy prodrug group”, as used herein, refers to a promoiety group which is known in the art to change the physicochemical, and hence the biological properties of a parent drug in a transient manner by covering or masking the hydroxy group. After said synthetic procedure(s), the hydroxy prodrug group as described herein must be capable of reverting back to hydroxy group in vivo. Hydroxy prodrug groups as known in the art are described generally in Kenneth B. Sloan, Prodrugs, Topical and Ocular Drug Delivery, (Drugs and the Pharmaceutical Sciences; Volume 53), Marcel Dekker, Inc., New York (1992).


The term “amino protecting group,” as used herein, refers to a labile chemical moiety which is known in the art to protect an amino group against undesired reactions during synthetic procedures. After said synthetic procedure(s) the amino protecting group as described herein may be selectively removed. Amino protecting groups as known in the art are described generally in T. H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 3rd edition, John Wiley & Sons, New York (1999). Examples of amino protecting groups include, but are not limited to, methoxycarbonyl, t-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, benzyloxycarbonyl, and the like.


The term “protected amino,” as used herein, refers to an amino group protected with an amino protecting group as defined above.


The term “leaving group” means a functional group or atom which can be displaced by another functional group or atom in a substitution reaction, such as a nucleophilic substitution reaction. By way of example, representative leaving groups include chloro, bromo and iodo groups; sulfonic ester groups, such as mesylate, tosylate, brosylate, nosylate and the like; and acyloxy groups, such as acetoxy, trifluoroacetoxy and the like.


The term “aprotic solvent,” as used herein, refers to a solvent that is relatively inert to proton activity, i.e., not acting as a proton-donor. Examples include, but are not limited to, hydrocarbons, such as hexane and toluene, for example, halogenated hydrocarbons, such as, for example, methylene chloride, ethylene chloride, chloroform, and the like, heterocyclic compounds, such as, for example, tetrahydrofuran and N-methylpyrrolidinone, and ethers such as diethyl ether, bis-methoxymethyl ether. Such compounds are well known to those skilled in the art, and it will be obvious to those skilled in the art that individual solvents or mixtures thereof may be preferred for specific compounds and reaction conditions, depending upon such factors as the solubility of reagents, reactivity of reagents and preferred temperature ranges, for example. Further discussions of aprotic solvents may be found in organic chemistry textbooks or in specialized monographs, for example: Organic Solvents Physical Properties and Methods of Purification, 4th ed., edited by John A. Riddick et al., Vol. II, in the Techniques of Chemistry Series, John Wiley & Sons, NY, 1986.


The term “protic solvent’ as used herein, refers to a solvent that tends to provide protons, such as an alcohol, for example, methanol, ethanol, propanol, isopropanol, butanol, t-butanol, and the like. Such solvents are well known to those skilled in the art, and it will be obvious to those skilled in the art that individual solvents or mixtures thereof may be preferred for specific compounds and reaction conditions, depending upon such factors as the solubility of reagents, reactivity of reagents and preferred temperature ranges, for example. Further discussions of protogenic solvents may be found in organic chemistry textbooks or in specialized monographs, for example: Organic Solvents Physical Properties and Methods of Purification, 4th ed., edited by John A. Riddick et al., Vol. II, in the Techniques of Chemistry Series, John Wiley & Sons, NY, 1986.


Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds. The term “stable”, as used herein, refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject).


The synthesized compounds can be separated from a reaction mixture and further purified by a method such as column chromatography, high pressure liquid chromatography, or recrystallization. As can be appreciated by the skilled artisan, further methods of synthesizing the compounds of the Formula herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, 2nd Ed. Wiley-VCH (1999); T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 3rd Ed., John Wiley and Sons (1999); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof.


The term “subject” as used herein refers to an animal. Preferably, the animal is a mammal. More preferably, the mammal is a human. A subject also refers to, for example, dogs, cats, horses, cows, pigs, guinea pigs, fish, birds and the like.


The compounds of this invention may be modified by appending appropriate functionalities to enhance selective biological properties. Such modifications are known in the art and may include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.


The compounds described herein contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)-, or as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optical isomers may be prepared from their respective optically active precursors by the procedures described above, or by resolving the racemic mixtures. The resolution can be carried out in the presence of a resolving agent, by chromatography or by repeated crystallization or by some combination of these techniques which are known to those skilled in the art. Further details regarding resolutions can be found in Jacques, et al., Enantiomers, Racemates, and Resolutions (John Wiley & Sons, 1981). When the compounds described herein contain olefinic double bonds, other unsaturation, or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers or cis- and trans-isomers. Likewise, all tautomeric forms are also intended to be included. Tautomers may be in cyclic or acyclic. The configuration of any carbon-carbon double bond appearing herein is selected for convenience only and is not intended to designate a particular configuration unless the text so states; thus a carbon-carbon double bond or carbon-heteroatom double bond depicted arbitrarily herein as trans may be cis, trans, or a mixture of the two in any proportion.


Certain compounds of the present invention may also exist in different stable conformational forms which may be separable. Torsional asymmetry due to restricted rotation about an asymmetric single bond, for example because of steric hindrance or ring strain, may permit separation of different conformers. The present invention includes each conformational isomer of these compounds and mixtures thereof.


As used herein, the term “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977). The salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reacting the free base function with a suitable organic acid. Examples of pharmaceutically acceptable salts include, but are not limited to, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include, but are not limited to, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentane-propionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, alkyl having from 1 to 6 carbon atoms, sulfonate and aryl sulfonate.


As used herein, the term “pharmaceutically acceptable ester” refers to esters which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular esters include, but are not limited to, formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.


The term “pharmaceutically acceptable prodrugs” as used herein refers to those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the present invention. “Prodrug”, as used herein means a compound which is convertible in vivo by metabolic means (e.g. by hydrolysis) to a compound of the invention. Various forms of prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, vol. 4, Academic Press (1985); Krogsgaard-Larsen, et al., (ed.). “Design and Application of Prodrugs, Textbook of Drug Design and Development, Chapter 5, 113-191 (1991); Bundgaard, et al., Journal of Drug Deliver Reviews, 8:1-38 (1992); Bundgaard, J. of Pharmaceutical Sciences, 77:285 et seq. (1988); Higuchi and Stella (eds.) Prodrugs as Novel Drug Delivery Systems, American Chemical Society (1975); and Bernard Testa & Joachim Mayer, “Hydrolysis In Drug And Prodrug Metabolism: Chemistry, Biochemistry And Enzymology,” John Wiley and Sons, Ltd. (2002).


The present invention also relates to solvates of the compounds of Formula (I), for example hydrates.


This invention also encompasses pharmaceutical compositions containing, and methods of treating viral infections through administering, pharmaceutically acceptable prodrugs of compounds of the invention. For example, compounds of the invention having free amino, amido, hydroxy or carboxylic groups can be converted into prodrugs. Prodrugs include compounds wherein an amino acid residue, or a polypeptide chain of two or more (e.g., two, three or four) amino acid residues is covalently joined through an amide or ester bond to a free amino, hydroxy or carboxylic acid group of compounds of the invention. The amino acid residues include but are not limited to the 20 naturally occurring amino acids commonly designated by three letter symbols and also includes 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvalin, beta-alanine, gamma-aminobutyric acid, citrulline, homocysteine, homoserine, ornithine and methionine sulfone. Additional types of prodrugs are also encompassed. For instance, free carboxyl groups can be derivatized as amides or alkyl esters. Free hydroxy groups may be derivatized using groups including but not limited to hemisuccinates, phosphate esters, dimethylaminoacetates, and phosphoryloxymethyloxycarbonyls, as outlined in Advanced Drug Delivery Reviews, 1996, 19, 115. Carbamate prodrugs of hydroxy and amino groups are also included, as are carbonate prodrugs, sulfonate esters and sulfate esters of hydroxy groups. Derivatization of hydroxy groups as (acyloxy)methyl and (acyloxy)ethyl ethers wherein the acyl group may be an alkyl ester, optionally substituted with groups including but not limited to ether, amine and carboxylic acid functionalities, or where the acyl group is an amino acid ester as described above, are also encompassed. Prodrugs of this type are described in J. Med. Chem. 1996, 39, 10. Free amines can also be derivatized as amides, sulfonamides or phosphonamides. All of these prodrug moieties may incorporate groups including but not limited to ether, amine and carboxylic acid functionalities.


Pharmaceutical Compositions

The pharmaceutical compositions of the present invention comprise a therapeutically effective amount of a compound of the present invention formulated together with one or more pharmaceutically acceptable carriers or excipients.


As used herein, the term “pharmaceutically acceptable carrier or excipient” means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Some examples of materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminun hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator.


The pharmaceutical compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection. The pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.


Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.


Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions, may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.


The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.


In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions that are compatible with body tissues.


Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.


Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or: a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.


Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.


The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.


Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.


The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.


Powders and sprays can contain, in addition to the compounds of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.


Transdermal patches have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.


For pulmonary delivery, a therapeutic composition of the invention is formulated and administered to the patient in solid or liquid particulate form by direct administration e.g., inhalation into the respiratory system. Solid or liquid particulate forms of the active compound prepared for practicing the present invention include particles of respirable size: that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. Delivery of aerosolized therapeutics, particularly aerosolized antibiotics, is known in the art (see, for example U.S. Pat. No. 5,767,068 to VanDevanter et al., U.S. Pat. No. 5,508,269 to Smith et al., and WO 98/43650 by Montgomery, all of which are incorporated herein by reference). A discussion of pulmonary delivery of antibiotics is also found in U.S. Pat. No. 6,014,969, incorporated herein by reference.


Antiviral Activity

An inhibitory amount or dose of the compounds of the present invention may range from about 0.01 mg/Kg to about 500 mg/Kg, alternatively from about 1 to about 50 mg/Kg. Inhibitory amounts or doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents.


According to the methods of treatment of the present invention, viral infections, conditions are treated or prevented in a patient such as a human or another animal by administering to the patient a therapeutically effective amount of a compound of the invention, in such amounts and for such time as is necessary to achieve the desired result.


By a “therapeutically effective amount” of a compound of the invention is meant an amount of the compound which confers a therapeutic effect on the treated subject, at a reasonable benefit/risk ratio applicable to any medical treatment. The therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect). An effective amount of the compound described above may range from about 0.1 mg/Kg to about 500 mg/Kg, preferably from about 1 to about 50 mg/Kg. Effective doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or contemporaneously with the specific compound employed; and like factors well known in the medical arts.


The total daily dose of the compounds of this invention administered to a human or other animal in single or in divided doses can be in amounts, for example, from 0.01 to 50 mg/kg body weight or more usually from 0.1 to 25 mg/kg body weight. Single dose compositions may contain such amounts or submultiples thereof to make up the daily dose. In general, treatment regimens according to the present invention comprise administration to a patient in need of such treatment from about 10 mg to about 1000 mg of the compound(s) of this invention per day in single or multiple doses.


The compounds of the present invention described herein can, for example, be administered by injection, intravenously, intraarterially, subdermally, intraperitoneally, intramuscularly, or subcutaneously; or orally, buccally, nasally, transmucosally, topically, in an ophthalmic preparation, or by inhalation, with a dosage ranging from about 0.1 to about 500 mg/kg of body weight, alternatively dosages between 1 mg and 1000 mg/dose, every 4 to 120 hours, or according to the requirements of the particular drug. The methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect. Typically, the pharmaceutical compositions of this invention will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with pharmaceutically exipients or carriers to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. A typical preparation will contain from about 5% to about 95% active compound (w/w). Alternatively, such preparations may contain from about 20% to about 80% active compound.


Lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, condition or symptoms, the patient's disposition to the disease, condition or symptoms, and the judgment of the treating physician.


Upon improvement of a patient's condition, a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.


When the compositions of this invention comprise a combination of a compound of the invention and one or more additional therapeutic or prophylactic agents, both the compound and the additional agent should be present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen. The additional agents may be administered separately, as part of a multiple dose regimen, from the compounds of this invention. Alternatively, those agents may be part of a single dosage form, mixed together with the compounds of this invention in a single composition.


The said “additional therapeutic or prophylactic agents” include, but are not limited to, immune therapies (e.g. interferon), therapeutic vaccines, antifibrotic agents, anti-inflammatory agents such as corticosteroids or NSAIDs, bronchodilators such as beta-2 adrenergic agonists and xanthines (e.g. theophylline), mucolytic agents, anti-muscarinics, anti-leukotrienes, inhibitors of cell adhesion (e.g. ICAM antagonists), anti-oxidants (e.g. N-acetylcysteine), cytokine agonists, cytokine antagonists, lung surfactants and/or antimicrobial and anti-viral agents (e.g. ribavirin and amantidine). The compositions according to the invention may also be used in combination with gene replacement therapy.


Combination and Alternation Therapy for HCV

It has been recognized that drug-resistant variants of HCV can emerge after prolonged treatment with an antiviral agent. Drug resistance most typically occurs by mutation of a gene that encodes for a protein such as an enzyme used in viral replication, and most typically in the case of HCV, RNA polymerase, protease, or helicase.


Recently, it has been demonstrated that the efficacy of a drug against a viral infection, such as HIV, can be prolonged, augmented, or restored by administering the drug in combination or alternation with a second, and perhaps third, antiviral compound that induces a different mutation from that caused by the principal drug. Alternatively, the pharmacokinetics, biodistribution, or other parameter of the drug can be altered by such combination or alternation therapy. In general, combination therapy is typically preferred over alternation therapy because it induces multiple simultaneous stresses on the virus.


A compound of the present invention can also be administered in combination or alternation with antiviral agent. Examplary antiviral agents include ribavarin, interferon, interleukin or a stabilized prodrug of any of them. More broadly described, the compound can be administered in combination or alternation with any of the anti-HCV drugs listed in Table 10 below.









TABLE 10







Table of anti-Hepatitis C Compounds in Current Clinical Development









Drug name
Drug category
Pharmaceutical Company





PEGASYS
Long acting interferon
Roche


pegylated interferon


alfa-2a


INFERGEN
Long acting interferon
InterMune


interferon alfacon-1


OMNIFERON
Long acting interferon
Viragen


natural interferon


ALBUFERON
Long acting interferon
Human Genome Sciences


REBIF
Interferon
Ares-Serono


interferon beta-1a


Omega Interferon
Interferon
BioMedicine


Oral Interferon alpha
Oral Interferon
Amarillo Biosciences


Interferon gamma-1b
Anti-fibrotic
InterMune


IP-501
Anti-fibrotic
InterMune


Merimebodib VX-497
IMPDH inhibitor
Vertex



(inosine monophosphate



dehydrogenase)


AMANTADINE
Broad Antiviral Agent
Endo Labs


(Symmetrel)

Solvay


IDN-6556
Apotosis regulation
Idun Pharma.


XTL-002
Monclonal Antibody
XTL


HCV/MF59
Vaccine
Chiron


CIVACIR
Polyclonal Antibody
NABI



Therapeutic vaccine
Innogenetics


VIRAMIDINE
Nucleoside Analogue
ICN


ZADAXIN (thymosin alfa-1)
Immunomodulator
Sci Clone


CEPLENE (histamine)
Immunomodulator
Maxim


VX 950/LY 570310
Protease inhibitor
Vertex/Eli Lilly


ISIS 14803
Antisense
Isis Pharmaceutical/Elan


IDN-6556
Caspase inhibitor
Idun Pharmaceuticals


JTK 003
Polymerase Inhibitor
AKROS Pharma


Tarvacin
Anti-Phospholipid Therapy
Peregrine


HCV-796
Polymerase Inhibitor
ViroPharma/Wyeth


CH-6
Protease inhibitor
Schering


ANA971
Isatoribine
ANADYS


ANA245
Isatoribine
ANADYS


CPG 10101 (Actilon)
Immunomodulator
Coley


Rituximab (Rituxam)
Anti-CD2O
Genetech/IDEC



Monoclonal Antibody


NM283 (Valopicitabine)
Polymerase Inhibitor
Idenix Pharmaceuticals


HEPX ™-C
Monoclonal Antibody
XTL


IC41
Therapeutic Vaccine
Intercell


Medusa Interferon
Longer acting interferon
Flamel Technology


E-1
Therapeutic Vaccine
Innogenetics


Multiferon
Long Acting Interferon
Viragen


BILN 2061
Protease inhibitor
Boehringer-Ingelheim


TMC435350
Protease inhibitor
Tibotec/Medivir


Telaprevir (VX-950)
Protease inhibitor
Vertex


Boceprevir (SCH 503034)
Protease inhibitor
Schering-Plough


ACH-1625
Protease inhibitor
Achillion


ABT-450
Protease inhibitor
Abbott/Enanta


BI-201335
Protease inhibitor
Boehringer-Ingelheim


PHX-1766
Protease inhibitor
Phenomix


VX-500
Protease inhibitor
Vertex


MK-7009
protease inhibitor
Merck


R7227 (ITMN-191)
protease inhibitor
InterMune


Narlaprevir (SCH 900518)
Protease inhibitor
Schering/Merck


Alinia (nitazoxanide)
To be determined
Romark


ABT-072
Polymerase Inhibitor
Abbott


ABT-333
Polymerase Inhibitor
Abbott


Filibuvir (PF-00868554)
Polymerase Inhibitor
Pfizer


VCH-916
Polymerase Inhibitor
Vertex


R7128 (PSI6130)
Polymerase Inhibitor
Roche/Pharmasset


IDX184
Polymerase Inhibitor
Idenix


R1626
Polymerase inhibitor
Roche


MK-3281
Polymerase inhibitor
Merck


PSI-7851
Polymerase inhibitor
Pharmasset


ANA598
Polymerase inhibitor
Anadys Pharmaceuticals


BI-207127
Polymerase inhibitor
Boehringer-Ingelheim


GS-9190
Polymerase inhibitor
Gilead


VCH-759
Polymerase Inhibitor
Vertex


Clemizole
NS4B inhibitor
Eiger Biopharmaceuticals


A-832
NS5A inhibitor
ArrowTherapeutics


BMS-790052
NS5A inhibitor
Bristol-Myers-Squibb


ITX5061
Entry inhibitor
iTherx


GS-9450
Caspase inhibitor
Gilead


ANA773
TLR agonist
Anadys


CYT107
immunomodulator
Cytheris


SPC3649 (LNA-ANTIMIR ™-122)
microRNA
Santaris Pharma


Debio 025
Cyclophilin inhibitor
Debiopharm


SCY-635
Cyclophilin inhibitor
Scynexis









Unless otherwise defined, all technical and scientific terms used herein are accorded the meaning commonly known to one of ordinary skill in the art. All publications, patents, published patent applications, and other references mentioned herein are hereby incorporated by reference in their entirety.


ABBREVIATIONS

Abbreviations which may be used in the descriptions of the scheme and the examples that follow are: Ac for acetyl; AcOH for acetic acid; AIBN for azobisisobutyronitrile; BINAP for 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl; Boc2O for di-tert-butyl-dicarbonate; Boc for t-butoxycarbonyl; Bpoc for 1-methyl-1-(4-biphenylyl)ethyl carbonyl; BtOH for 1-hydroxybenzotriazole; Bz for benzoyl; Bn for benzyl; BocNHOH for tert-butyl N-hydroxycarbamate; t-BuOK for potassium tert-butoxide; Bu3SnH for tributyltin hydride; BOP for (benzotriazol-1-yloxy)tris(dimethylamino)phos-phonium Hexafluorophosphate; Brine for sodium chloride solution in water; Cbz for carbobenzyloxy; CDI for carbonyldiimidazole; CH2Cl2 for dichloromethane; CH3 for methyl; CH3CN for acetonitrile; Cs2CO3 for cesium carbonate; CuCl for copper (I) chloride; CuI for copper (I) iodide; dba for dibenzylidene acetone; dppb for diphenylphosphino butane; DBU for 1,8-diazabicyclo[5.4.0]undec-7-ene; DCC for N,N′-dicyclohexylcarbodiimide; DEAD for diethylazodicarboxylate; DIAD for diisopropyl azodicarboxylate; DIBAL-H for diisobutylaluminium hydride; DIPEA or (i-Pr)2EtN for N,N-diisopropylethyl amine; Dess-Martin periodinane for 1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one; DMAP for 4-dimethylaminopyridine; DME for 1,2-dimethoxy-ethane; DMF for N,N-dimethylformamide; DMSO for dimethyl sulfoxide; DMT for di(p-methoxyphenyl)phenylmethyl or dimethoxytrityl; DPPA for diphenylphosphoryl azide; EDC for N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide; EDC HCl for N-(3-dimethylamino-propyl)-N′-ethylcarbodiimide hydrochloride; EtOAc for ethyl acetate; EtOH for ethanol; Et2O for diethyl ether; Fmoc for 9-fluorenylmethoxycarbonyl; Grubbs-1 catalyst for benzylidene-bis(tricyclohexylphosphine)dichlororuthenium; HATU for O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate; HCl for hydrogen chloride; HOBT for 1-hydroxybenzotriazole; K2CO3 for potassium carbonate; n-BuLi for n-butyl lithium; i-BuLi for i-butyl lithium; t-BuLi for t-butyl lithium; PhLi for phenyl lithium; LDA for lithium diisopropylamide; LiTMP for lithium 2,2,6,6-tetramethylpiperidinate; MeOH for methanol; Mg for magnesium; MOM for methoxymethyl; Ms for mesyl or —SO2—CH3; Ms2O for methanesulfonic anhydride or mesyl-anhydride; NaBH4 for sodium borohydride; NaBH3CN for sodium cyanoborohydride; NaN(TMS)2 for sodium bis(trimethylsilyl)amide; NaCl for sodium chloride; NaH for sodium hydride; NaHCO3 for sodium bicarbonate or sodium hydrogen carbonate; Na2CO3 sodium carbonate; NaOH for sodium hydroxide; Na2SO4 for sodium sulfate; NaHSO3 for sodium bisulfite or sodium hydrogen sulfite; Na2S2O3 for sodium thiosulfate; NH2NH2 for hydrazine; NH4HCO3 for ammonium bicarbonate; NH4Cl for ammonium chloride; NMMO for N-methylmorpholine N-oxide; NaIO4 for sodium periodate; Ni for nickel; OH for hydroxyl; OsO4 for osmium tetroxide; Pd for palladium; Ph for phenyl; PMB for p-methoxybenzyl; POPd for dihydrogen dichlorobis(di-tert-butylphosphinito-KP)palladate(II); Pd2(dba)3 for tris(dibenzylidene-acetone)dipalladium (0); Pd(PPh3)4 for tetrakis(triphenylphosphine)palladium (0); PdCl2(PPh3)2 for trans-dichlorobis(triphenyl-phosphine)palladium (II); Pt for platinum; Rh for rhodium; rt for romm temperature; Ru for ruthenium; SEM for (trimethylsilyl)ethoxymethyl; TBAF for tetrabutylammonium fluoride; TBS for tert-butyl dimethylsilyl; TEA or Et3N for triethylamine; Teoc for 2-trimethylsilyl-ethoxy-carbonyl; TFA for trifluoroacetic acid; THF for tetrahydrofuran; TMEDA for N,N,N′,N′-tetramethylethylenediamine; TPP or PPh3 for triphenyl-phosphine; Troc for 2,2,2-trichloroethyl carbonyl; Ts for tosyl or —SO2—C6H4CH3; Ts2O for tolylsulfonic anhydride or tosyl-anhydride; TsOH for p-tolylsulfonic acid; TMS for trimethylsilyl; or TMSCl for trimethylsilyl chloride.


Synthetic Methods

The compounds and processes of the present invention will be better understood in connection with the following synthetic schemes that illustrate the methods by which the compounds of the invention may be prepared. Starting materials can be obtained from commercial sources or prepared by well-established literature methods known to those of ordinary skill in the art. It will be readily apparent to one of ordinary skill in the art that the compounds defined above can be synthesized by substitution of the appropriate reactants and agents in the syntheses shown below. It will also be readily apparent to one skilled in the art that the selective protection and deprotection steps, as well as the order of the steps themselves, can be carried out in varying order, depending on the nature of the variables to successfully complete the syntheses below. The variables are as defined above unless otherwise noted below.


The compounds of the present invention may be prepared via several different synthetic routes from a variety of benzimidazole and imidazole related intermediates. A retro-synthesis of those title compounds include direct formation of a suitably linked benzimidazole and imidazole core structure followed by attachment of a suitable R6 group, plus some functional group manipulations in between and/or after.


A general synthesis and further elaboration of some benzimidazole related intermediates are summarized in Scheme 1.


The synthesis starts from the construction of an optionally substituted benzimidazole 1-2, which may be obtained by condensation of an amino acid or its derivative 1-1.1 or 1-1.2 and an o-phenylenediamine 1-1 under the conditions to those skilled in the art. The benzimidazole ring closure may be realized either in one pot by heat, optionally in the presence of an acid and/or with a dehydration reagent such as polyphosphoric acid; or in two steps: 1) amide formation between diamine 1-1 and amino acid 1-1.1 or 1-1.2 in the presence of a condensation reagent such as EDC HCl, DCC or the like; or through mixed anhydride approach by reacting acid 1-1.1 or 1-1.2 with a chloroformate such as methyl chloroformate, isobutyl chloroformate, or the like, in the presence of a base such as TEA, DIPEA, DMAP, N-methylmorpholine, or the like, followed by treating the mixed anhydride with diamine 1-1; and 2) the heterocyclic ring closure in the presence of an acid such as acetic acid, sulfuric acid or the like or a dehydration reagent such as HATU or the like, optionally with heat.


Optionally, the NH group in the newly formed benzimidazole ring of 1-2 may be protected with an amino protecting group, such as SEM (i.e. SEM-Cl, NaH), Boc, Cbz, Teoc, Troc, or the like. The protected benzimidazole 1-2 may be subjected to lithium-halogen exchange with various (n-, s-, or t-) butyl lithium and the resulting lithiate can be trapped with a nucleophile, i.e. a halide such as various allyl halide to give the allylated 1-6 as a key intermediate. Alternatively, 1-6 may be obtained from the Stille reaction conditions to those skilled in the art (see reviews: A. Anastasia, et al, Handbook of Organopalladium Chemistry for Organic Synthesis 2002, 1, 311; F. Bellina, et al, Synthesis 2004, 2419; M. G. Organ, et al, Synthesis 2008, 2776; A. T. Lindhardt, et al, Chem.—A European J. 2008, 14, 8756; E. A. B. Kantchev, et al, Angew. Chem. Int. Ed. 2007, 46, 2768; V. Farina, et al, Advances in Metal-Organic Chem. 1996, 5, 1), using an allylstanne such as allyltributylstanne as the allyl donor. Analogously a key vinyl intermediates 1-3 may be prepared by Stille reaction from bromide 1-2 with tributylvinylstanne. Also, Sonogashira coupling between bromide 1-2 and propargyl alcohol or trimethylsilylacetylene can generate propargyl alcohol 1-4 or alkyne 1-5 after removal of TMS. Further bromination of intermediate 1-4 may form the propargyl bromide 1-9. In addition, benzimidazole bromide 1-2 may be converted to methyl ketone 1-7 by coupling with tributyl(1-ethoxyvinyl)tin under Stille coupling conditions followed by acidic hydrolysis.




embedded image


embedded image


embedded image


Further elaboration of the benzimidazole intermediates starts from the vinyl intermediate 1-3, which may be transformed to aldehyde 1-8 through ozonolysis cleavage or to alcohol 1-12 by hydroboration-oxidation sequence. Alcohol 1-12 may be converted to bromide 1-15 by the well-known bromination procedure, which can be further functionalized to amine 1-20 through azide substitution followed by reduction. Aldehyde 1-8 can then either be reduced to alcohol 1-11, or be converted to α, β-unsatuated acid 1-10 through Horner-Wadsworth-Emmons aldehyde homologation reaction followed by saponification. Alcohol 1-11 may be similarly converted to the corresponding amine intermediate 1-14 and bromide intermediate 1-13 as described previously. Bromide 1-13 can be homologated to alkyne intermediate 1-19 with a metal acetylide. In addition, bromide 1-13 may be also tranformed to thiol 1-16 through nucleophilic substitution, which can be further oxidized to sulfonic acid 1-17. Sulfonamide 1-18 may then be derived from 1-17 through the sulfonyl chloride activation process.


The compounds of the present invention may also be derived from nitrobenzimidazole 1-21, which can be prepared from the corresponding 4-nitro-1,2-diaminobenzene using the similar procedures described above. Intermediate 1-21 can be converted to amine 1-22 through NO2-reduction (i.e. H2, catalytical Pd). Diazotization of amine 1-22 with a nitrite such as sodium nitrite, isobutyl nitrite, or the like, in an aqueous acid such as acetic acid, hydrochloric aicd, sulfuric acid, or the like, optionally in the presence of a copper or copper salt, may afford hydroxy 1-23.


Analogously, benzimidazolecarboxylate 1-24, which can be prepared from the corresponding 4-methyl-1,2-diaminobenzoate using the procedures described above, may be hydrolyzed to the corresponding carboxylic acid 1-25.


It should be noted that optionally the NH group of all the benzimidazole related intermediates listed above may be protected with an amino protecting group, such as SEM (i.e. SEM-Cl, NaH), Boc, Cbz, Teoc, Troc, or the like.




embedded image


A typical synthesis of imidazole related intermediates are analogous to that of the benzimidazole intermediates. As shown in Scheme 2, bromo-imidazole 2-4 can be synthesized in a three-step sequence: 1) condensation between amino acid derived aldehyde 2-1.1 or 2-1.2 and glyoxal 2-1.3 in the presence of methanolic ammonia to generate imidazole 2-2; 2) bromination of 2-2 with excess amount of bromination reagent such as 2,4,4,6-tetrabromo-2,5-cyclohexadienone, NBS, etc. to afford dibromide 2-3; and 3) selective reduction of the dibromide 2-3 by heating in aq. Na2SO3 or aq. NaHSO3. 2-4 then may be served as a universal intermediate further elaborable to many other imidazole derivatives using the chemistry discussed in Scheme 1, some of which are listed in the table below.
















embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image











Optionally, the NH group of imidazole related intermediates listed above may be protected with an amino protecting group (shown in Scheme 2 as PG), such as SEM (i.e. SEM-Cl, NaH), Boc, Cbz, Teoc, Troc, or the like. The protected imidazole 2-5 may be deprotonated with a strong base such as LDA, BuLi, etc to generate a carbon anion, which may either undergo a nucleophilic substitution with an activated halide such as 2-5.2 to afford aryl or heteroaryl substituted imidazole 2-6 or couple with an aryl or heteroaryl halide 2-5.1 in the presence appropriate transition metal salt to generate bicyclic heteroaryl 2-7. Similarly, the protected bromo imidazole 2-8 may be subjected to lithium-halogen exchange with various (n-, s-, or t-) butyl lithium, the resulting lithiate may undergo similar reactions to afford 2-6 and 2-7. Also, when 2-8 is treated with metalated aryl or heteroaryl 2-8.1, in which M at each occurrence is independently a boron, tin, silicon, zinc, zirconium, or copper species, under Suzuki or Stille conditions to those skilled in the art (see reviews: A. Suzuki, Pure Applied Chem. 1991, 63, 419; A. Suzuki, Handbook of Organopalladium Chemistry for Organic Synthesis 2002, 1, 249; A. Anastasia, et al, Handbook of Organopalladium Chemistry for Organic Synthesis 2002, 1, 311; F. Bellina, et al, Synthesis 2004, 2419; M. G. Organ, et al, Synthesis 2008, 2776; A. T. Lindhardt, et al, Chem.—A European J. 2008, 14, 8756; E. A. B. Kantchev, et al, Angew. Chem. Int. Ed. 2007, 46, 2768; V. Farina, et al, Advances in Metal-Organic Chem. 1996, 5, 1), to provide coupling product 2-7. In addition to these direct coupling strategy, aryl or heteroaryl bromide 2-5.1 may be converted to methyl ketone 2-9 under Stille coupling conditions with tributyl(1-ethoxyvinyl)tin 2-9.1. 2-9 may be brominated under conditions to those skilled in the art to afford bromide 2-10, which may be either converted to the corresponding amine 2-11, or coupled with protected amino acid 2-10.1 or 2-10.2 in the presence of a base such as Et3N and DIPEA to afford keto-ester 2-12. Similarly, amine 2-11 may be converted to the corresponding keto-amide 2-13 via condensation with appropriate amino acid under standard amide formation conditions. 2-12 and 2-13 may be transformed to key intermediate 2-14 via heating with (NH4)Oac under thermal or microwave conditions.


With a variety of suitably substituted benzimidazoles and imidazoles in hand, such as those listed in Scheme 1, Scheme 2 and the table above, the compounds of the present invention may be prepared through various coupling strategy or a combination of strategies to connect two fragments, optionally with a suitable cyclic or acyclic linker or formation of a cyclic or acyclic linker. The said strategy includes, but not limited to, Stille coupling, Suzuki coupling, Sonogashira coupling, Heck coupling, Buchwald amidation, Buchwald amination, amide coupling, ester bond formation, William etherification, Buchwald etherification, alkylation, pericyclic reaction with different variations, or the like.


An example of the strategies that may be used to prepare the compounds of the present invention is shown in Scheme 3, wherein R2 is independently R1. Both bromides 3-1 and 3-2 can be prepared using the procedures described in Scheme 1 and Scheme 2. Bromide 3-2 can be converted to the corresponding metalated aryl 3-3 under Suzuki or Stille conditions, which may be further coupled with benzimidazole bromide 2-1 under similar conditions to generate a structural core 3-4.




embedded image


Compound 3-4 may then serve as a common intermediate for further derivatizations to 3-5 in two steps: 1) mono-deprotection of the linear or cyclic amine moiety may be accomplished, for example, treatment to hydrogenolytic conditions under Pd catalyst in the presence of a base such as potassium carbonate to remove the Cbz protection group; and 2) the released amine functionality may be acylated with an carboxylic acid under standard acylation conditions, for example a coupling reagent such as HATU in combination with an organic base such as DIPEA can be used in this regard; alternatively, the released amine may be reacted with an isocyanate, carbamoyl chloride or chloroformate to provide an urea or carbamate. Various carboxylic acids including amino acids in racemic or optical form are commercially available, and/or can be synthesized in racemic or optical form, see references cited in reviews by D. Seebach, et al, Synthesis 2009, 1; C. Cativiela and M. D. Diaz-de-Villegas, Tetrahedron: Asymmetry 2007, 18, 569; 2000, 11, 645; and 1998, 9, 3517; and experimental examples compiled in patent application WO 2008/021927A2 by C. Bachand, et al, from BMS, which is incorporated herein by reference. 3-5 may be further deprotected under hydrolytic conditions in the presence of an acid such as TFA or hydrogen chloride to remove the Boc protection group and the released amine functionality can be further derivatized to the title compounds I-1 using the conditions described above.


Other examples of some of the linkers that can be used to construct the title compounds of the present invention are compiled in the table below, in which PG and PG′ at each occurrence are each independently amino or alcohol protecting group, such as Boc, Cbz, Troc, Teoc, PMB, TMS etc. These linkers are either commercially available or may be synthesized in several steps through strategies which are known to those skilled in the art.
















embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image











Alternatively, as shown in Scheme 4, the compounds of the present invention (for example I-1) may also be derived from bromobenzimidazoles 4-1 and imidazole 4-2 using the procedures described previously. The intermediates 4-1 and 4-2 have the desired acyl groups already installed as seen in amino acid derivatives 2-10.1b and 2-10.2b, which can be prepared from protected amino acids 2-10.1a and 2-10.2a through the sequences shown in Scheme 1 and 2.




embedded image


embedded image


The compounds of the present invention containing benzimidazole linked with other five-membered heteroaryl other than imidazole may be prepared using similar procedures described above in Schemes 1-4. For example, some intermediates containing a desired, suitably substituted five-membered heteroaryl have been published in US 2008/0311075A1 by C. Bachand, et al from BMS, which is incorporated by reference. Theses intermediates are compiled in the following table.
















embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image











It will be appreciated that, with appropriate manipulation and protection of any chemical functionality, synthesis of compounds of Formula (I) is accomplished by methods analogous to those above and to those described in the Experimental section. Suitable protecting groups can be found, but are not restricted to, those found in T W Greene and P G M Wuts “Protective Groups in Organic Synthesis”, 3rd Ed (1999), J Wiley and Sons.


All references cited herein, whether in print, electronic, computer readable storage media or other form, are expressly incorporated by reference in their entirety, including but not limited to, abstracts, articles, journals, publications, texts, treatises, internet web sites, databases, patents, and patent publications.


EXAMPLES

The compounds and processes of the present invention will be better understood in connection with the following examples, which are intended as an illustration only and not limiting of the scope of the invention. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, substituents, derivatives, formulations and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims.


Although the invention has been described with respect to various preferred embodiments, it is not intended to be limited thereto, but rather those skilled in the art will recognize that variations and modifications may be made therein which are within the spirit of the invention and the scope of the appended claims.


Example 1



embedded image


Step 1a. A mixture of N-Boc-L-proline (5.754 g, 26.7 mmol) and TEA (3.73 mL, 26.7 mmol) in THF (60 mL) at −20° C. was treated with ethyl chloroformate (2.55 mL, 26.7 mmol) for 30 minutes before a slow addition of 4-bromo-1,2-diaminobenzene (5.00 g, 26.7 mmol) in THF (20 mL). It was then kept at −20° C. for 1 hour and then slowly warmed up to rt and stirred at rt overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated to give the crude desired compound as a dark brown foam (10.7 g). ESIMS m/z=384.18, 386.18 [M+H]+.


Step 1b. A solution of the crude compound from step 1a (10.7 g, 26.7 mmol at most) in glacial acetic acid (100 mL) was heated at 50° C. for 2 hours. The volatiles were evaporated off and the residue was partitioned (EtOAc-aqueous NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a brown foam (5.78 g, 59%). ESIMS m/z=366.17, 368.17 [M+H]+. 1H NMR (CDCl3) 10.96, 10.93 (2 s, 1H), 7.81, 7.30 (2s, 1H), 7.53, 7.17 (2d, J=8.5 Hz, 1H), 7.23, 7.03 (2d, J=8.5 Hz, 1H), 5.09, 5.07 (2s, 1H), 3.42-3.49 (m, 2H), 2.75-2.85 (m, 1H), 2.13-2.23 (m, 2H), 1.97-2.00 (m, 1H), 1.48 (s, 9H).


Step 1c. A mixture of 2,4′-dibromoacetophenone (5.00 g, 18.0 mmol), N-Boc-L-proline (3.87 g, 18.0 mmol) and in CH3CN (60 mL) was treated with TEA (5.40 mL, 37.8 mmol) at room temperature until the disappearence of the starting material. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow foam (6.73 g, 91%). 1H NMR (CDCl3) 7.76 (t, J=8.0 Hz, 2H), 7.63 (dd, J=5.0, 8.5 Hz, 2H), 5.51, 5.16 (2d, J=16.0 Hz, 1H), 5.32, 5.28 (2d, J=16.5 Hz, 1H), 4.48, 4.40 (dd, J=5.0, 8.5 Hz, 1H), 3.56 (m, 1H), 3.43 (m, 1H), 2.30 (m, 2H), 2.06 (m, 1H), 1.92 (m, 1H), 1.46, 1.43 (2s, 9H).


Step 1d. A solution of the compound from step 1c (6.73 g, 16.3 mmol) in toluene (100 mL) was treated with ammonium acetate (25.1 g, 0.327 mol) at 100° C. for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-aqueous NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (6.10 g, 95%). ESIMS m/z=392.24, 394.24 [M+H]+. 1H NMR (CDCl3) 7.57 (bs, 1H), 7.48 (m, 3H), 7.23 (s, 1H), 4.97 (m, 1H), 3.42 (m, 2H), 2.99 (m, 1H), 2.16 (m, 2H), 1.97 (m, 1H), 1.46 (s, 9H).


Step 1e. A mixture of the compound from step 1d (1.00 g, 2.55 mmol), bis(pinacolato)diboron (1.35 g, 5.33 mmol), Pd(PPh3)4 (0.147 g, 0.128 mmol) and potassium acetate (0.640 g, 6.53 mmol) in 1,4-dioxane (20 mL) was degassed and heated at 80° C. under N2 for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow solid (0.978 g, 87%). ESIMS m/z=440.39 [M+H]+. 1H NMR (CDCl3) 11.03, 10.55 (2s, 1H), 7.79 (m, 3H), 7.45 (m, 1H), 7.26 (m, 1H), 4.97 (m, 1H), 3.41 (m, 2H), 3.06, 2.91 (2m, 1H), 2.17 (m, 2H), 1.97 (m, 1H), 1.49 (s, 9H), 1.35 (s, 12H).


Step 1f. A mixture of compound from step 1b (0.188 g, 0.512 mmol), the compound from step 1e (0.150 g, 0.342 mmol) Pd(PPh3)4, (39.4 mg, 34.1 μmol) and NaHCO3 (0.115 g, 1.37 mmol) in DME (6 mL) and H2O (2 mL) was degassed and heated at 80° C. under N2 for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the title compound as a white needle crystal (0.106 g, 52%). ESIMS m/z=599.59 [M+H]+.


Example 2



embedded image


Step 2a. A solution of the compound of example 1 (20.0 mg, 33.4 μmol) in 1,4-dioxane (1 mL) was treated with HCl in 1,4-dioxane (4 M, 4 mL) at rt for 30 minutes. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was directly used in the next step. ESIMS m/z=399.35 [M+H]+.


Step 2b. A mixture of the crude compound from step 2a (33.4 μmol at most) and (R)-(methoxycarbonyl)amino phenyl acetic acid (prepared according to WO 2008/021927, 20.9 mg, 0.100 mmol) in DMF (3 mL) was treated with HATU (31.7 mg, 83.5 μmol) in the presence of DIPEA (83.0 μL, 0.668 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown sirup. It was purified by chromatography (silica, CH2Cl2-MeOH) to give the title compound as a yellow solid (23.8 mg, 2 steps 91%). ESIMS m/z=781.67 [M+H]+.


Example 1-1



embedded image


Step 1-1a. A mixture of the compound from step 1d (0.559 g, 1.425 mmol), trimethylsilyl-acetylene (0.60 ml, 4.275 mmol), CuI (28.5 mg, 0.150 mmol) and Pd(PPh3)2Cl2 (80.0 mg, 0.114 mmol) in Et3N (15 mL) was heated at 80° C. under N2 for 6 hours before being evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate with 1% Et3N in ethyl acetate) to give the desired compound as a yellow foam (0.484 g, 83%). ESIMS m/z=410.24 [M+H]+.


Step 1-1b. A suspension of the compound from step 1-1a (0.484 g, 1.182 mmol) and K2CO3 (0.408 g, 2.954 mmol) in methanol (12 ml) was stirred at rt for 3 hour. The volatiles were evaporated off. The residue was purified by chromatography (silica, dichloromethane-ethyl acetate) to give the desired compound as a yellow foam (0.370 g, 93%). ESIMS m/z=338.24 [M+H]+.


Step 1-1c. A mixture of the compound from step 1-1b (80.0 mg, 0.2371 mmol), the compound from step 1b (86.8 mg, 0.2371 mmol), CuI (2.2 mg, 0.01185 mmol) and Pd(PPh3)2Cl2 (16.6 mg, 0.02371 mmol) in Et3N (0.3 mL) and CH3CN (2 mL) was heated at 85° C. under H2/N2 mixed gas for 2 hours before being evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate with 1% Et3N in ethyl acetate) to give the title compound as a yellow solid (48.3 mg, 33%). ESIMS m/z=623.32 [M+H]+.


Example 2-1



embedded image


Step 2-1a. A solution of the compound of example 1-1 (48.3 mg, 0.0776 mmol) in 1,4-dioxane (1.5 mL) was treated with HCl in 1,4-dioxane (4 M, 6 mL) at rt for 30 minutes. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was used directly in the next step.


Step 2-1b. A mixture of the crude compound from step 2-1a (0.127 mmol at most) and (R)-(methoxycarbonyl)amino phenyl acetic acid (prepared according to WO 2008/021927, 40.6 mg, 0.194 mmol) in DMF (1.5 mL) was treated with HATU (67.8 mg, 0.178 mmol) in the presence of DIPEA (0.27 mL, 1.551 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown syrup. It was purified by chromatography (silica, CH2Cl2-MeOH) to give the title compound as a yellow solid (36.2 mg, 2 steps 58%). ESIMS m/z=805.29 [M+H]+.


Example 2-2



embedded image


A solution of the compound of example 2-1 (23.0 mg, 0.0286 mmol) in ethanol (2 mL) was treated with Pd(OH)2 (20 wt % on carbon, 23 mg) at rt with a hydrogen balloon for 7 hourr. The mixture was filtered through a short pad of Celite. The volatiles were evaporated off. The residue was purified by chromatography (silica, CH2Cl2-MeOH) to give the title compound as a white solid (16.0 mg, 70%). ESIMS m/z=809.40 [M+H]+.


The compounds of examples 3-356 and 358-440 may be prepared using procedures similar to those described in examples 1, 2, 1-1, 2-1, 2-2, 357 (described below), and 441-545 (described below), and/or as described in the Synthetic Methods.









TABLE 1a







Examples 3-219.




embedded image















Entry


embedded image















3


embedded image








4


embedded image








5


embedded image








6


embedded image








7


embedded image








8


embedded image








9


embedded image








10


embedded image








11


embedded image








12


embedded image








13


embedded image








14


embedded image








15


embedded image








16


embedded image








17


embedded image








18


embedded image








19


embedded image








20


embedded image








21


embedded image








22


embedded image








23


embedded image








24


embedded image








25


embedded image








26


embedded image








27


embedded image








28


embedded image








29


embedded image








30


embedded image








31


embedded image








32


embedded image








33


embedded image








34


embedded image








35


embedded image








36


embedded image








37


embedded image








38


embedded image








39


embedded image








40


embedded image








41


embedded image








42


embedded image








43


embedded image








44


embedded image








45


embedded image








46


embedded image








47


embedded image








48


embedded image








49


embedded image








50


embedded image








51


embedded image








52


embedded image








53


embedded image








54


embedded image








55


embedded image








56


embedded image








57


embedded image








58


embedded image








59


embedded image








60


embedded image








61


embedded image








62


embedded image








63


embedded image








64


embedded image








65


embedded image








66


embedded image








67


embedded image








68


embedded image








69


embedded image








70


embedded image








71


embedded image








72


embedded image








73


embedded image








74


embedded image








75


embedded image








76


embedded image








77


embedded image








78


embedded image








79


embedded image








80


embedded image








81


embedded image








82


embedded image








83


embedded image








84


embedded image








85


embedded image








86


embedded image








87


embedded image








88


embedded image








89


embedded image








90


embedded image








91


embedded image








92


embedded image








93


embedded image








94


embedded image








95


embedded image








96


embedded image








97


embedded image








98


embedded image








99


embedded image








100


embedded image








101


embedded image








102


embedded image








103


embedded image








104


embedded image








105


embedded image








106


embedded image








107


embedded image








108


embedded image








109


embedded image








110


embedded image








111


embedded image








112


embedded image








113


embedded image








114


embedded image








115


embedded image








116


embedded image








117


embedded image








118


embedded image








119


embedded image








120


embedded image








121


embedded image








122


embedded image








123


embedded image








124


embedded image








125


embedded image








126


embedded image








127


embedded image








128


embedded image








129


embedded image








130


embedded image








131


embedded image








132


embedded image








133


embedded image








134


embedded image








135


embedded image








136


embedded image








137


embedded image








138


embedded image








139


embedded image








140


embedded image








141


embedded image








142


embedded image








143


embedded image








144


embedded image








145


embedded image








146


embedded image








147


embedded image








148


embedded image








149


embedded image








150


embedded image








151


embedded image








152


embedded image








153


embedded image








154


embedded image








155


embedded image








156


embedded image








157


embedded image








158


embedded image








159


embedded image








160


embedded image








161


embedded image








162


embedded image








163


embedded image








164


embedded image








165


embedded image








166


embedded image








167


embedded image








168


embedded image








169


embedded image








170


embedded image








171


embedded image








172


embedded image








173


embedded image








174


embedded image








175


embedded image








176


embedded image








177


embedded image








178


embedded image








179


embedded image








180


embedded image








181


embedded image








182


embedded image








183


embedded image








184


embedded image








185


embedded image








186


embedded image








187


embedded image








188


embedded image








189


embedded image








190


embedded image








191


embedded image








192


embedded image








193


embedded image








194


embedded image








195


embedded image








196


embedded image








197


embedded image








198


embedded image








199


embedded image








200


embedded image








201


embedded image








202


embedded image








203


embedded image








204


embedded image








205


embedded image








206


embedded image








207


embedded image








208


embedded image








209


embedded image








210


embedded image








211


embedded image








212


embedded image








213


embedded image








214


embedded image








215


embedded image








216


embedded image








217


embedded image








218


embedded image








219


embedded image


















TABLE 2







Examples 220-229.




embedded image
















Entry
R
R′
R″
X





220
Me
H
H
CH2


221
H
H
H
CF2


222
Me
H
H
S





223
H
H
H


embedded image







224
Me
H
H
O





225
H
H
H


embedded image







226
H
Ph
H
CH2





227
H
H
H


embedded image







228
H
H
Ph
CH2





229
H
H
H


embedded image













embedded image









TABLE 3







Examples 234-243.




embedded image















Entry
R
R′
R″





234
Me
Me
H


235
H
Me
H


236
Me
H
Me


237
cyclopropyl
Me
H


238
Me
Me
Me


239
Me
cyclopropyl
H


240
Me
Allyl
H


241
Et
Me
H


242
Me
CHMe2
H


243
Me
Et
H.
















TABLE 4







Examples 244-263.




embedded image














Entry
R
R′





244


embedded image




embedded image







245


embedded image




embedded image







246


embedded image




embedded image







247


embedded image




embedded image







248


embedded image




embedded image







249


embedded image




embedded image







250


embedded image




embedded image







251


embedded image




embedded image







252


embedded image




embedded image







253


embedded image




embedded image







254


embedded image




embedded image







255


embedded image




embedded image







256


embedded image




embedded image







257


embedded image




embedded image







258


embedded image




embedded image







259


embedded image




embedded image







260


embedded image




embedded image







261


embedded image




embedded image







262


embedded image




embedded image







263


embedded image




embedded image


















TABLE 5







Examples 264-273.




embedded image
















Entry
R
R′
R″
R′″





264
F
H
H
H


265
F
F
H
H


266
Me
H
H
H


267
Me
Me
H
H


268
H
H
Me
Me


269
H
H
Et
Et


270
CF3
H
H
H


271
CF3
H
CF3
H


272
Cl
H
H
H


273
Cl
H
Cl
H.
















TABLE 6







Examples 274-299.




embedded image
















Entry
R
R′
R″
R′″





274
Me
H
H
H


275
H
CO2H
H
H


276
H
F
H
H


277
H
H
CO2H
H


278
H
H
F
H


279
H
H
H
CO2H


280
H
H
H
F


281
H
CO2Me
H
H


282
H
Cl
H
H


283
H
H
CO2Me
H


284
H
H
Cl
H


285
H
H
H
CO2Me


286
H
H
H
Cl


287
H
CONH2
H
H


288
H
Me
H
H


289
H
H
CONH2
H


290
H
H
Me
H


291
H
H
H
CONH2


292
H
H
H
Me


293
H
OMe
H
H


294
H
CF3
H
H


295
H
H
OMe
H


296
H
H
CF3
H


297
H
H
H
OMe


298
H
H
H
CF3


299
CO2Me
H
H
H.
















TABLE 7







Examples 300-434.




embedded image













Entry
Aa





300


embedded image







301


embedded image







302


embedded image







303


embedded image







304


embedded image







305


embedded image







306


embedded image







307


embedded image







308


embedded image







309


embedded image







310


embedded image







311


embedded image







312


embedded image







313


embedded image







314


embedded image







315


embedded image







316


embedded image







317


embedded image







318


embedded image







319


embedded image







320


embedded image







321


embedded image







322


embedded image







323


embedded image







324


embedded image







325


embedded image







326


embedded image







327


embedded image







328


embedded image







329


embedded image







330


embedded image







331


embedded image







332


embedded image







333


embedded image







334


embedded image







335


embedded image







336


embedded image







337


embedded image







338


embedded image







339


embedded image







340


embedded image







341


embedded image







342


embedded image







343


embedded image







344


embedded image







345


embedded image







346


embedded image







347


embedded image







348


embedded image







349


embedded image







350


embedded image







351


embedded image







352


embedded image







353


embedded image







354


embedded image







355


embedded image







356


embedded image







357


embedded image







358


embedded image







359


embedded image







360


embedded image







361


embedded image







362


embedded image







363


embedded image







364


embedded image







365


embedded image







366


embedded image







367


embedded image







368


embedded image







369


embedded image







370


embedded image







371


embedded image







372


embedded image







373


embedded image







374


embedded image







375


embedded image







376


embedded image







377


embedded image







378


embedded image







379


embedded image







380


embedded image







381


embedded image







382


embedded image







383


embedded image







384


embedded image







385


embedded image







386


embedded image







387


embedded image







388


embedded image







389


embedded image







390


embedded image







391


embedded image







392


embedded image







393


embedded image







394


embedded image







395


embedded image







396


embedded image







397


embedded image







398


embedded image







399


embedded image







400


embedded image







401


embedded image







402


embedded image







403


embedded image







404


embedded image







405


embedded image







406


embedded image







407


embedded image







408


embedded image







409


embedded image







410


embedded image







411


embedded image







412


embedded image







413


embedded image







414


embedded image







415


embedded image







416


embedded image







417


embedded image







418


embedded image







419


embedded image







420


embedded image







421


embedded image







422


embedded image







423


embedded image







424


embedded image







425


embedded image







426


embedded image







427


embedded image







428


embedded image







429


embedded image







430


embedded image







431


embedded image







432


embedded image







433


embedded image







434


embedded image


















TABLE 8







Examples 435-440.




embedded image













Entry
Bb





435


embedded image







436


embedded image







437


embedded image







438


embedded image







439


embedded image







440


embedded image











Example 357



embedded image


Step 357a. A solution of the compound of example 491 (0.122 g, 0.196 mmol) in 1,4-dioxane (2 mL) was treated with HCl in 1,4-dioxane (4 M, 8 mL) at rt for 1 hour. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was used directly in the next step.


Step 357b. A mixture of the crude compound from step 357a (0.196 mmol at most) and (R)-(methoxycarbonyl)amino phenyl acetic acid (prepared according to WO 2008/021927, 0.102 g, 0.490 mmol) in DMF (3 mL) was treated with HATU (0.171 g, 0.451 mmol) in the presence of DIPEA (0.68 mL, 3.920 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown syrup. It was patitioned (EtOAc—H2O). The organic layer was washed with brine, dried (Na2SO4), filtered and concentrated. The crude was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a yellow solid (0.144 g, 91% over 2 steps). ESIMS m/z=806.96 [M+H]+.


Example 441



embedded image


A mixture of (S)-tert-butyl 2-(3-(4-iodophenyl)-1H-1,2,4-triazol-5-yl)pyrrolidine-1-carboxylate (prepared according to US 2008/0311075, 84.9 mg, 0.193 mmol), the compound from step 515d (66.0 mg, 0.212 mmol), CuI (1.1 mg, 5.7 μmol) and Pd(PPh3)2Cl2 (6.7 mg, 9.6 mmol) in CH3CN (5 mL) and triethylamine (5 mL) was degassed and heated to 50° C. under N2 for 3 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow oil (94.0 mg, 78%). ESIMS m/z=624.34 [M+H]+.


Example 442



embedded image


Step 442a. A solution of the compound of Example 441 (90.0 mg, 0.144 mmol) in 1,4-dioxane (1 mL) was treated with HCl in 1,4-dioxane (4 M, 4 mL) at rt for 30 minutes. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was directly used in the next step. ESIMS m/z=424.11 [M+H]+.


Step 442b. A mixture of the crude compound from step 442a (0.144 mmol at most) and (R)-(methoxycarbonyl)amino phenyl acetic acid (prepared according to WO 2008/021927, 75.4 mg, 0.361 mmol) in DMF (3 mL) was treated with HATU (0.126 g, 0.332 mmol) in the presence of DIPEA (0.36 mL, 2.89 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown sirup. It was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a very light yellow solid (98.1 mg, 2 steps 80%). ESIMS m/z=806.16 [M+H]+.


Example 443



embedded image


A mixture of the title compound of example 442 (51.6 mg, 63.3 μmol) and Pd(OH)2 on carbon (20%, 50.0 mg) in ethanol (3 mL) was treated with H2 balloon overnight. The mixture was filtered through celite and the filtrate was concentrated. The residue was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a white solid (42.5 mg, 82%). ESIMS m/z=810.23 [M+H]+.


Example 444



embedded image


A mixture of (S)-tert-butyl 2-(3-(4-iodophenyl)-1H-pyrazol-5-yl)pyrrolidine-1-carboxylate (prepared according to US 2008/0311075, 85.0 mg, 0.213 mmol), the compound from step 515d (66.2 mg, 0.213 mmol), CuI (1.1 mg, 5.8 μmol) and Pd(PPh3)2Cl2 (6.7 mg, 9.6 mmol) in CH3CN (5 mL) and triethylamine (5 mL) was degassed and heated at 60° C. under N2 overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow oil (91.1 mg, 76%). ESIMS m/z=623.20 [M+H]+.


Example 445



embedded image


The title compound was synthesized from the compound of Example 444 using procedures similar to that described in Example 442. ESIMS m/z=805.36 [M+H]+.


Example 446



embedded image


The title compound was synthesized from the compound of Example 445 using procedures similar to that described in Example 443. ESIMS m/z=809.42 [M+H]+.


Example 447



embedded image


Step 447a. A mixture of the compound of step 1b (0.250 g, 0.683 mmol), allyltributyl-stannane (0.26 mL, 0.820 mmol) and Pd(PPh3)4 (39.4 mg, 34.1 μmol) in toluene (6 mL) was degassed and heated at 110° C. under N2 overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-saturated aqueous NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (0.127 g, 60%). ESIMS m/z=328.23 [M+H]+.


Step 447b. A mixture of the compound of step 1d (0.180 g, 0.459 mmol), the compound of step 447a (0.150 g, 0.459 mmol), triethylamine (0.64 mL, 4.59 mmol), tri-o-tolylphosphine (18.0 mg, 57.3 μmol) and Pd(OAc)2 (5.1 mg, 22.9 μmol) in CH3CN (8 mL) was degassed and heated to 90° C. under N2 overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-saturated aqueous NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compounds as a light yellow solid (0.165 g, 70%). The regio- and stereochemistry of the olefinic double bond was not determined. ESIMS m/z=639.36 [M+H]+.


Example 448



embedded image


Step 448a. A solution of the compound of Example 447 (0.104 g, 0.163 mmol) in 1,4-dioxane (1 mL) was treated with HCl in 1,4-dioxane (4 M, 4 mL) at rt for 30 minutes. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was directly used in the next step. ESIMS m/z=439.24 [M+H]+.


Step 448b. A mixture of the crude compound of step 448a (0.163 mmol at most) and (S)-2-(methoxycarbonylamino)-3-methylbutanoic acid (prepared according to WO 2008/021927, 71.3 mg, 0.408 mmol) in DMF (3 mL) was treated with HATU (0.142 g, 0.375 mmol) in the presence of DIPEA (0.41 mL, 3.26 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown sirup. It was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compounds as a white solid (89.5 mg, 2 steps 73%). The regio- and stereochemistry of the olefinic double bond was not determined. ESIMS m/z=753.39 [M+H]+.


Example 449



embedded image


The title compound was synthesized from the compound of Example 448 using procedures similar to that described in Example 443. ESIMS m/z=755.47 [M+H]+.


Example 450



embedded image


Step 450a. The compound of step 1e (0.200 g, 0.455 mmol) in THF (5 mL) was treated with a mixture of 30% aqueous H2O2 (0.5 mL) and 1N aqueous NaOH (1 mL) for 30 minutes. The volatiles were removed and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow oil (0.144 g, 96%). ESIMS m/z=330.15 [M+H]+.


Step 450b. The mixture of (S)-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid (5 g, 23.2 mmol) in acetonitrile (40 mL) was added 1,1′-carbonyldiimidazole (3.95 g, 24.5 mmol). The resulting mixture was stirred at room temperature for 20 min before being added methyl 3,4-diaminobenzoate (3.86 g, 23.2 mmol). The solution was stirred at room temperature for another 3 hours before being partitioned between water and EtOAc. The organic phase was separated, dried (Na2SO4) and concentrated to afford a brown slurry, which was purified by flash column chromatography (silica, hexane-EtOAc) to give the desired product as a light yellow oil (8.14 g, 98%). ESIMS m/z=364.17 [M+H]+.


Step 450c. The solution of compound from step 450b in acetic acid (150 mL) was stirred at 60° C. for three days before all volatiles were removed. The resulting residue was partitioned between aqueous NaHCO3 and EtOAc. The organic phase was separated, dried (Na2SO4) and concentrated to afford a brown oil, which was purified by flash column chromatography (silica, hexane-EtOAc) to give the desired product as a light yellow solid (2.02 g, 28%). ESIMS m/z=346.15 [M+H]+.


Step 450d. The solution of compound from step 450c (2.02 g, 5.8 mmol) in DMF (50 mL) was added sodium hydride (55% in mineral oil, 269 mg, 6.4 mmol). The reaction was stirred at room temperature for 1.5 hours before being added 2-(Trimethylsilyl)ethoxymethyl chloride (1.02 mL, 5.8 mmol). The mixture was stirred at room temperature for another 3 hours before being partitioned between water and EtOAc. The organic phase was separated, dried (Na2SO4) and concentrated to afford a brown oil, which was purified by flash column chromatography (silica, hexane-EtOAc) to give the desired product as a light yellow solid (2.6 g, 94%). ESIMS m/z=475.97 [M+H]+.


Step 450e. The solution of compound from step 450d (2.6 g, 5.47 mmol) in THF (50 mL) and water (25 mL) was added lithium hydroxide monohydrate (690 mg, 16.4 mmol). The resulting mixture was stirred at room temperature for 3 hours before being partitioned between water, AcOH (10 mL) and EtOAc. The organic phase was separated, dried (Na2SO4) and concentrated to afford a brown oil, which was directly used for the next step without further purification (2.6 g, crude, 100%). ESIMS m/z=462.02 [M+H]+.


Step 450f. The solution of compound from step 450e (2.0 g, 4.3 mmol) in THF (45 mL) was added triethylamine (1.85 mL, 12.9 mmol) and ethyl chloroformate (1.05 mL, 10.8 mmol) at 0° C. The resulting mixture stirred at 0° C. for 20 minutes before all volatiles were removed by rotavap. The residue was dissolved in THF (70 mL) before being added sodium borohydride (1 g, 26.4 mmol). The mixture was stirred at 0° C. for another 2 hours before being partitioned between water and EtOAc. The organic phase was separated, dried (Na2SO4) and concentrated to afford a brown oil, which was purified by flash column chromatography (silica, EtOAc-methanol) to give the desired product as a light yellow solid (1.57 g, 81%). ESIMS m/z=448.13 [M+H]+.


Step 450 g. The compound from step 450a (70.0 mg, 0.213 mmol) in THF (5 mL) was treated with the compound from step 450f (95.1 mg, 0.213 mmol), PPh3 (83.6 mg, 0.319 mmol) and DEAD (50.2 μL, 0.319 mmol) overnight before being evaporated to dryness. The residue was partitioned (EtOAc-water) and the organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compound as a colorless oil (22.6 mg, 14%). The regiochemistry of the SEM group was not determined. ESIMS m/z=759.39 [M+H]+.


Example 451



embedded image


The title compound was synthesized from the compound of Example 450 using procedures similar to that described in steps 497a and 448b. ESIMS m/z=743.32 [M+H]+.


Example 452



embedded image


Step 452a. A mixture of 2-bromo-1-(5-bromothiophen-2-yl)ethanone (1.00 g, 3.52 mmol) and N-Boc-L-proline (0.758 g, 3.52 mmol) in CH3CN (12 mL) was added TEA (1.06 mL, 7.40 mmol) slowly. The mixture was stirred at rt until the disappearence of the starting material. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow sticky oil (1.47 g, 100%). 1H NMR (CDCl3) 7.49 (t, J=4.0 Hz, 1H), 7.13 (dd, J=4.5, 6.0 Hz, 1H), 5.36, 5.04 (2d, J=16.0 Hz, 1H), 5.22, 5.15 (2d, J=16.5 Hz, 1H), 4.45, 4.38 (dd, J=5.5, 7.5 Hz, 1H), 3.56 (m, 1H), 3.41 (m, 1H), 2.25 (m, 2H), 2.05 (m, 1H), 1.90 (m, 1H), 1.46, 1.42 (2s, 9H).


Step 452b. A solution of the compound of step 452a (1.47 g, 3.52 mmol) in toluene (22 mL) was added ammonium acetate (5.42 g, 70.3 mmol) and the resultant mixture was heated at 100° C. for 16 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-aq. NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a brown yellow foam (0.586 g, 42%) with a recovery of the compound from step 452a (0.616 g, 42%). ESIMS m/z=398.16, 400.16 [M+H]+. 1H NMR (CDCl3) 10.55 (bs, 1H), 7.07 (s, 1H), 6.94 (m, 2H), 4.92 (m, 1H), 3.40 (m, 2H), 2.96 (m, 1H), 2.12 (m, 2H), 1.92 (m, 1H), 1.49 (s, 9H).


Step 452c. A mixture of the compound of step 452b (0.150 g, 0.377 mmol), the compound from step 491a (0.118 g, 0.377 mmol), triethylamine (0.52 mL, 3.77 mmol), tri-o-tolylphosphine (14.8 mg, 47.1 μmol) and Pd(OAc)2 (4.2 mg, 18.8 μmol) in CH3CN (6 mL) was degassed and heated to 110° C. in sealed tube for 36 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-saturated aqueous NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compound as a yellow oil (64.1 mg, 27%). ESIMS m/z=631.26 [M+H]+.


Example 453



embedded image


The title compound was synthesized from the compound from Example 452 using procedures similar to that described in Example 448. ESIMS m/z=745.43 [M+H]+.


Example 454



embedded image


The title compound was synthesized from the compound from Example 453 using procedures similar to that described in Example 443. ESIMS m/z=747.40 [M+H]+.


Example 455



embedded image


A mixture of the compound from step 452b (0.150 g, 0.377 mmol), the compound from step 447a (0.123 g, 0.377 mmol), triethylamine (0.52 mL, 3.77 mmol), tri-o-tolylphosphine (14.8 mg, 47.1 μmol) and Pd(OAc)2 (4.2 mg, 18.8 μmol) in CH3CN (6 mL) was degassed and heated to 110° C. in sealed tube for 36 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-saturated aqueous NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compounds as a yellow oil (52.7 mg, 22%). The regio- and stereochemistry of the olefinic double bond was not determined. ESIMS m/z=645.27 [M+H]+.


Example 456



embedded image


The title compound was synthesized from the compound from Example 455 using procedures similar to that described in Example 448. The regio- and stereochemistry of the olefinic double bond was not determined. ESIMS m/z=759.51 [M+H]+.


Example 457



embedded image


The title compound was synthesized from the compound from Example 456 using procedures similar to that described in Example 443. ESIMS m/z=761.41 [M+H]+.


Example 458



embedded image


Step 458a. 6-bromo-N-methoxy-N-methyl-2-naphthamide (prepared according to J. Med. Chem., 2006, 49, 4721-4736, 3.57 g, 12.1 mmol) in THF (60 mL) was treated with methyl magnesium bromide (3M in Et2O, 8.09 mL, 24.3 mmol) slowly at 0° C. for 1 hour. The solution was warmed up to rt for 2 hours before being quenched with aqueous NH4Cl. The volatiles were removed and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated to give the crude desired compound as a white solid (2.89 g, 96%).


Step 458b. The compound from step 458a (2.89 g, 11.6 mmol) in acetic acid (60 mL) was treated with bromine (0.59 mL, 11.6 mmol) dropwise for 1 hour. The volatiles were evaporated and the residue was partitioned (EtOAc-saturated aqueous NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated to give the crude desired compound as a light yellow solid (3.898 g).


Step 458c. A mixture of the compound from step 458b (at most 11.6 mmol) and N-Boc-L-proline (3.75 g, 17.4 mmol) in CH3CN (60 mL) was added DIPEA (2.89 mL, 23.2 mmol) slowly. The mixture was stirred at rt until the disappearence of the starting material. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated to give the crude desired compound as a yellow-white foam (4.762 g). ESIMS m/z=462.03, 464.02 [M+H]+.


Step 458d. A solution of the compound from step 458c (at most 11.6 mmol) in toluene (60 mL) was added ammonium acetate (13.4 g, 0.174 mol) and the resultant mixture was heated up at 100° C. for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-aq. NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow brown powder (3.14 g, 4 steps, 61%). ESIMS m/z=442.02, 444.02 [M+H]+.


Step 458e. A mixture of the compound from step 1b (1 g, 2.73 mmol), bis-(pinacolato)-diboron (763 mg, 3.0 mmol), potassium acetate (402 mg, 4.0 mmol) in 1,4-dioxane (9.1 mL) was added tetrakis(triphenylphosphine)palladium(0) (158 mg, 0.14 mmol). The resulting solution was degased and then heated at 80° C. under N2 overnight before being evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate with 1% Et3N in ethyl acetate) to give the desired compound as a yellow solid (680 mg, 60%). ESIMS m/z=414.24 [M+H]+.


Step 458f. A mixture of the compound from step 458d (0.100 g, 0.226 mmol), the compound from step 458e (93.4 mg, 0.226 mmol), Pd(PPh3)4, (13.1 mg, 11.3 μmol) and NaHCO3 (76.0 mg, 0.905 mmol) in DME (6 mL) and H2O (2 mL) was degassed and heated at 85° C. under N2 for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow solid (92.0 mg, 59%). ESIMS m/z=649.54 [M+H]+.


Example 459



embedded image


The title compound was synthesized from the compound from Example 458 using procedures similar to that described in Example 448. ESIMS m/z=763.21 [M+H]+.


Example 460



embedded image


Step 460a. A solution of the compound of example 458 (92.0 mg, 0.142 mmol) in 1,4-dioxane (1 mL) was treated with HCl in 1,4-dioxane (4 M, 4 mL) rt for 30 minutes. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was directly used in the next step. ESIMS m/z=449.39 [M+H]+.


Step 460b. A mixture of the crude compound from step 460a (0.142 mmol at most) and (2S,3R)-3-methoxy-2-(methoxycarbonylamino)butanoic acid (prepared according to WO 2008/021927, 56.9 mg, 0.298 mmol) in DMF (3 mL) was treated with HATU (0.108 g, 0.284 mmol) in the presence of DIPEA (0.35 mL, 2.84 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown sirup. It was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a yellow solid (60.3 mg, 2 steps 54%). ESIMS m/z=795.68 [M+H]+.


Example 461



embedded image


Step 461a. The desired compound was prepared from 4-bromo-1,2-diaminobenzene and N-Cbz-L-proline using procedures similar to that described in steps 1a and 1b. ESIMS m/z=400.11, 402.11 [M+H]+.


Step 461b. A mixture of the compound from step 461a (1.00 g, 2.50 mmol), bis(pinacolato)-diboron (1.27 g, 5.00 mmol) and potassium acetate (0.613 g, 6.25 mmol) in 1,4-dioxane (25 mL) was added Pd(PPh3)4 (0.144 g, 0.125 mmol). The resultant mixture were degassed and heated up at 85° C. under N2 for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow solid (0.801 g, 72%). ESIMS m/z=448.18 [M+H]+.


Step 461c. A mixture of the compound from step 458d (0.790 g, 1.79 mmol), the compound from step 461b (0.800 g, 1.79 mmol), Pd(PPh3)4, (0.103 g, 89.4 μmol) and NaHCO3 (0.601 g, 7.16 mmol) in DME (24 mL) and H2O (8 mL) was degassed and heated at 85° C. under N2 for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow solid (0.854 g, 70%). ESIMS m/z=683.14 [M+H]+.


Example 462



embedded image


The title compound was synthesized from the compound of Example 461 using procedures similar to that described in Example 460. ESIMS m/z=756.26 [M+H]+.


Example 463



embedded image


Step 463a. A mixture of the compound from example 462 (0.314 g, 0.416 mmol) and Pd(OH)2 (20 wt % on carbon, 150 mg) in methanol (6 mL) was adjusted pH to 3 with aqueous 6N HCl and then treated with hydrogen (60 psi) for 24 hours. The mixture was filtered through Celite and the filtrate was concentrated to give the crude desired compound as a light yellow solid (0.401 g). ESIMS m/z=622.13 [M+H]+.


Step 463b. The title compound was synthesized from the compound from step 463a using procedures similar to that described in Example 442. ESIMS m/z=813.32 [M+H]+.


Example 464



embedded image


The title compound was synthesized from the compound of step 463a using procedures similar to that described in Example 448. ESIMS m/z=779.33 [M+H]+.


Example 465



embedded image


A mixture of the crude compound from step 463a (0.104 mmol at most) and (2S,3R)-3-hydroxy-2-(methoxycarbonylamino)butanoic acid (prepared according to WO 2008/021927, 20.2 mg, 0.114 mmol) in DMF (3 mL) was treated with HATU (35.5 mg, 93.5 mmol) in the presence of DIPEA (0.13 mL, 1.04 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown sirup. It was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a yellow white solid (12.8 mg, 2 steps 16%). ESIMS m/z=781.30 [M+H]+.


Example 466



embedded image


A mixture of the crude compound from step 463a (0.104 mmol at most) and (2S,3S)-2-(methoxycarbonylamino)-3-methylpentanoic acid (prepared according to WO 2008/021927, 21.6 mg, 0.114 mmol) in DMF (3 mL) was treated with HATU (35.5 mg, 93.5 μmol) in the presence of DIPEA (0.13 mL, 1.04 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown sirup. It was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a light yellow solid (15.6 mg, 2 steps 19%). ESIMS m/z=793.33 [M+H]+.


Example 467



embedded image


Step 467a. (S)-tert-butyl 2-(5-bromo-1H-imidazol-2-yl)pyrrolidine-1-carboxylate (prepared according to WO 2008/021927, 0.500 g, 1.58 mmol) in CH2Cl2 (16 mL) was treated with triethyl amine (0.66 mL, 4.75 mmol), di-tert-butyl dicarbonate (0.518 g, 0.237 mmol) and DMAP (38.7 mg, 0.316 mmol) for 1 hours before being evaporated to dryness. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a white solid (0.650 g, 98%). ESIMS m/z=416.11, 418.11 [M+H]+.


Step 467b. A mixture of the compound from step 467a (0.650 g, 1.56 mmol), ethynyltrimethylsilane (2.16 mL, 15.6 mmol), CuI (8.9 mg, 46.8 μmol) and Pd(PPh3)4 (90.3 mg, 78.1 mmol) in CH3CN (5 mL) and triethylamine (10 mL) was degassed and heated at 80° C. under N2 overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow oil (0.560 g, 83%). ESIMS m/z=434.22 [M+H]+.


Step 467c. The compound from step 467b (0.560 g, 1.29 mmol) in MeOH (30 mL) was treated with potassium carbonate (0.535 g, 3.88 mmol) for 30 minutes before being evaporated to dryness. The residue was partitioned (EtOAc-water), and the organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow solid (0.312 g, 92%). ESIMS m/z=262.15 [M+H]+.


Step 467d. A mixture of the compound from step 467c (0.103 g, 0.395 mmol), 1,4-diiodo-benzene (62.0 mg, 0.188 mmol), CuI (2.1 mg, 11.2 μmol) and Pd(PPh3)4 (21.6 mg, 18.7 mmol) in CH3CN (1 mL) and triethylamine (4 mL) was degassed and heated to 60° C. under N2 for 4 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a very light yellow solid (20.0 mg, 23%). ESIMS m/z=464.06 [M+H]+.


Step 467e. A mixture of the compound from step 467d (20.0 mg, 43.1 μmol), the compound from step 458e (17.8 mg, 43.1 μmol), Pd(PPh3)4, (9.9 mg, 8.6 μmol) and NaHCO3 (14.5 mg, 0.172 mmol) in DME (3 mL) and H2O (1 mL) was degassed and heated at 90° C. under N2 for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow solid (26.1 mg, 86%). ESIMS m/z=623.28 [M+H]+.


Example 468



embedded image


The title compound was synthesized from the compound of Example 467 using procedures similar to that described in Example 448. ESIMS m/z=737.26 [M+H]+.


Example 469



embedded image


The title compound was synthesized from the compound of Example 468 using procedures similar to that described in Example 443. ESIMS m/z=741.23 [M+H]+.


Example 470



embedded image


Step 470a. A mixture of the compound of step 467c (0.150 g, 0.575 mmol), 2,6-dibromonaphthalene (98.6 mg, 0.345 mmol), CuI (3.3 mg, 17.2 μmol) and Pd(PPh3)4 (33.2 mg, 28.7 μmol) in CH3CN (1 mL) and triethylamine (4 mL) was degassed and heated to 90° C. under N2 overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a very light yellow oil (67.6 mg, 25%). ESIMS m/z=466.00, 467.99 [M+H]+.


Step 470b. A mixture of the compound from step 470a (67.6 mg, 0.145 mmol), the compound from step 458e (59.9 mg, 0.145 mmol), Pd(PPh3)4, (16.8 mg, 14.5 μmol) and NaHCO3 (48.7 mg, 0.580 mmol) in DME (6 mL) and H2O (2 mL) was degassed and heated at 90° C. under N2 for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow solid (78.8 mg, 81%). ESIMS m/z=673.14 [M+H]+.


Example 471



embedded image


The title compound was synthesized from the compound of Example 470 using procedures similar to that described in Example 448. ESIMS m/z=787.26 [M+H]+.


Example 472



embedded image


The title compound was synthesized from the compound of Example 471 using procedures similar to that described in Example 443. ESIMS m/z=791.23 [M+H]+.


Example 473



embedded image


The title compound was synthesized from the compound of Example 1-1 using procedures similar to that described in Example 460. ESIMS m/z=769.37 [M+H]+.


Example 474



embedded image


Step 474a. A mixture of the compound from step 515d (0.200 g, 0.643 mmol), 2,6-dibromonaphthalene (0.368 g, 1.29 mmol), CuI (3.6 mg, 19.2 μmol) and Pd(PPh3)4 (37.1 mg, 32.1 μmol) in CH3CN (6 mL) and triethylamine (6 mL) was degassed and heated at 90° C. under N2 overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow oil (214 mg, 65%). ESIMS m/z=516.08, 518.08 [M+H]+.


Step 474b. A mixture of the compound from step 474a (0.214 g, 0.415 mmol), bis-(pinacolato)diboron (0.211 g, 0.829 mmol) and potassium acetate (0.102 g, 1.04 mmol) in 1,4-dioxane (8 mL) was added Pd(PPh3)4 (23.9 mg, 20.7 μmol). The resultant mixture were degassed and heated up at 85° C. under N2 for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow oil (0.163 g, 60% purity). ESIMS m/z=564.17 [M+H]+.


Step 474c. A mixture of the compound from step 474b (0.163 g, 0.290 mmol), (S)-tert-butyl 2-(5-bromo-1H-imidazol-2-yl)pyrrolidine-1-carboxylate (prepared according to WO 2008/021927, 0.137 g, 0.434 mmol), Pd(PPh3)4, (33.4 mg, 28.9 μmol) and NaHCO3 (97.2 mg, 1.16 mmol) in DME (6 mL) and H2O (2 mL) was degassed and heated at 90° C. under N2 for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow solid (0.122 g, 60% purity). ESIMS m/z=673.29 [M+H]+.


Example 475



embedded image


The title compound was synthesized from the compound from Example 474 using procedures similar to that described in Example 448 after HPLC purification. ESIMS m/z=787.20 [M+H]+.


Example 476



embedded image


The title compound was obtained as an impurity in the compound of example 474. ESIMS m/z=675.30 [M+H]+.


Example 477



embedded image


The title compound was synthesized and purified as a minor product in example 475. ESIMS m/z=789.21 [M+H]+.


Example 478



embedded image


Step 478a. A mixture of 2,4′-dibromoacetophenone (1.59 g, 5.71 mmol) and N-Boc-glycine (1.00 g, 5.71 mmol) in CH3CN (20 mL) was added DIPEA (1.42 mL, 11.4 mmol) slowly. The mixture was stirred at rt until the disappearence of the starting material. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow solid (2.02 g, 95%). ESIMS m/z=394.15, 396.15 [M+Na]+.


Step 478b. A solution of the compound from step 478a (2.02 g, 5.43 mmol) in toluene (30 mL) was added ammonium acetate (8.35 g, 0.108 mol) and the resultant mixture was heated up at 100° C. for 20 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-aq. NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to the desired compound as a yellow brown solid (1.62 g, 85%). ESIMS m/z=352.14, 354.14 [M+H]+.


Step 478c. A mixture of the compound from step 478b (80.0 mg, 0.227 mmol), the compound from step 515d (77.8 mg, 0.250 mmol), CuI (1.3 mg, 6.8 μmol) and Pd(PPh3)4 (26.2 mg, 22.7 μmol) in triethylamine (6 mL) was degassed and heated at 85° C. under N2 overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow solid (50.9 mg, 39%). ESIMS m/z=583.37 [M+H]+.


Example 479



embedded image


The title compound was synthesized from the compound of Example 478 using procedures similar to that described in Example 448. ESIMS m/z=697.64 [M+H]+.


Example 480



embedded image


Step 480a. A solution of the compound of example 500 (10.0 mg, 14.7 μmol) in 1,4-dioxane (1 mL) was treated with HCl in 1,4-dioxane (4 M, 4 mL) rt for 30 min. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was directly used in the next step. ESIMS m/z=580.55 [M+H]+.


Step 480b. A mixture of the crude compound from step 480a (14.7 μmol at most) and (S)-2-(methoxycarbonyloxy)-3-methylbutanoic acid (prepared according to Chemical & Pharmaceutical Bulletin, 1985, 33, 3922-3928, 2.8 mg, 16.1 μmol) in DMF (3 mL) was treated with HATU (5.6 mg, 14.7 μmol) in the presence of DIPEA (37.0 μL, 0.294 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown sirup. It was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a yellow solid (8.3 mg, 2 steps 76%). ESIMS m/z=738.64 [M+H]+.


Example 481



embedded image


A mixture of the crude compound from step 480a (14.7 μmol at most) and (S)-2-(ethoxy-carbonylamino)-3-methylbutanoic acid (prepared according to WO 2008/021927, 3.0 mg, 16.1 μmol) in DMF (3 mL) was treated with HATU (5.6 mg, 14.7 μmol) in the presence of DIPEA (37.0 μL, 0.294 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown sirup. It was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a very yellow solid (10.2 mg, 2 steps 91%). ESIMS m/z=751.67 [M+H]+.


Example 482



embedded image


Step 482a. A mixture of N-Boc-L-proline (0.210 g, 0.976 mmol) and TEA (0.14 mL, 0.976 mmol) in THF (10 mL) at −20° C. was treated with iso-butyl chloroformate (0.13 mL, 0.976 mmol) for 30 minutes before a slow addition of 5-bromo-3-fluorobenzene-1,2-diamine (0.200 g, 0.976 mmol) in THF (2 mL). It was then kept at −20° C. for 1 hour and then slowly warmed up to rt and stirred at rt overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated to give the crude desired compound as a brown foam (0.436 g). ESIMS m/z=402.23, 404.23 [M+H]+.


Step 482b. A solution of the crude compound from step 482a (0.976 mmol at most) in glacial acetic acid (10 mL) was heated at 65° C. for 24 hours. The volatiles were evaporated off and the residue was partitioned (EtOAc-saturated aqueous NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow oil (0.327 g, 2 steps 87%). ESIMS m/z=384.16, 386.16 [M+H]+.


Step 482c. A mixture of the compound from step 482b (60.0 mg, 0.156 mmol), the compound from step 1-1b (58.0 mg, 0.172 mmol), CuI (0.9 mg, 4.6 μmol) and Pd(PPh3)4 (9.0 mg, 7.8 μmol) in triethylamine (4 mL) and CH3CN (4 mL) was degassed and heated to 90° C. under N2 overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow solid (54.2 mg, 54%). ESIMS m/z=641.22 [M+H]+.


Example 483



embedded image


The title compound was synthesized from the compound of Example 482 using procedures similar to that described in Example 448. ESIMS m/z=755.55 [M+H]+.


Example 484



embedded image


Step 484a. A mixture of 4-bromo-5-chlorobenzene-1,2-diamine (0.3 g, 1.19 mmol) and tin(II) chloride dihydrate (1.08 g, 4.77 mmol) in DMF (10 mL) was heated at 80° C. for 2 hours. The reaction was cooled and then neutralized by the addition of aqueous 2N NaOH. The resultant mixture were partitioned (EtOAc-water) and the organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow brown solid (0.256 g, 96%).


Step 484b. The compound from step 484a (0.250 g, 1.13 mmol) in DMF (10 mL) was treated with N-Boc-L-proline (0.243 g, 1.13 mmol), EDC.HCl (0.281 g, 1.47 mmol) and DMAP (27.6 mg, 0.226 mmol) for 12 hours before being partitioned (EtOAc-water). The organics were washed with aqueous 1N HCl, brine, dried (Na2SO4), filtered and evaporated to give the crude desired compound as a light red brown foam (0.401 g). ESIMS m/z=418.20, 420.20 [M+H]+.


Step 484c. A solution of the crude compound from step 484b (1.13 mmol at most) in glacial acetic acid (10 mL) was heated at 50° C. for 2 hours. The volatiles were evaporated off and the residue was partitioned (EtOAc-saturated aqueous NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow brown solid (0.326 g, 2 steps 85%). ESIMS m/z=400.21, 402.21 [M+H]+.


Step 484d. A mixture of the compound from step 484c (55.0 mg, 0.140 mmol), the compound from step 1-1b (56.5 mg, 0.168 mmol), CuI (0.8 mg, 4.1 μmol) and Pd(PPh3)4 (8.0 mg, 6.9 μmol) in triethylamine (3 mL) and CH3CN (3 mL) was degassed and heated to 95° C. under N2 overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow solid (49.7 mg, 55%). ESIMS m/z=657.40 [M+H]+.


Example 485



embedded image


The title compound was synthesized from the compound of Example 484 using procedures similar to that described in Example 448. ESIMS m/z=771.63 [M+H]+.


Example 486



embedded image


A solution the compound of example 517 (38.6 mg, 51.3 μmol) in CH2Cl2 (3 mL) was treated with camphorsulfonic acid (23.8 mg, 0.103 mmol) and Dess-Martin periodinane (0.131 mg, 0.308 mmol) for 5 hours before being quenched with satuated aqueous NsS2O3 and NaHCO3. The mixture was partitioned (EtOAc-water) and the organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, MeOH—CH2Cl2) to give the title compound as a yellow brown solid (33.2 mg, 86%). ESIMS m/z=751.54 [M+H]+.


Example 487



embedded image


Step 487a. A solution of 4′-bromoacetophenone-d7 (0.500 g, 2.43 mmol) in AcOH (10 mL) was treated with bromine (0.12 mL, 2.43 mmol) for 24 hours before being evaporated to dryness. The residue was partitioned (EtOAc-aqueous satuated NaHCO3) and the organics were washed with brine, dried (Na2SO4), filtered and evaporated to give the desired compound as a white crystal (0.672 g, 98%).


Step 487b. A mixture of the compound from step 487a (0.670 g, 2.38 mmol) and N-Boc-L-proline (0.511 g, 2.38 mmol) in CH3CN (20 mL) was added DIPEA (0.59 mL, 4.75 mmol) slowly. The mixture was stirred at rt until the disappearence of the starting material. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated to give the crude desired compound as a yellow brown oil (1.06 g). ESIMS m/z=416.32, 418.32 [M+H]+.


Step 487c. A solution of the compound from step 487b (at most 2.38 mmol) in toluene (24 mL) was added ammonium acetate (3.66 g, 47.5 mmol) and the resultant mixture was heated up at 100° C. for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc-aq. NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow brown powder (0.749 g, 2 steps, 78%). ESIMS m/z=396.20, 398.20 [M+H]+.


Step 487d. A mixture of the compound from step 487c (200 mg, 0.505 mmol), the compound from step 515d (0.188 g, 0.606 mmol), CuI (2.9 mg, 15.1 μmol) and Pd(PPh3)4 (29.1 mg, 25.2 mmol) in triethylamine (5 mL) and CH3CN (5 mL) was degassed and heated at 95° C. under N2 overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow solid (0.151 g, 48%). ESIMS m/z=627.58 [M+H]+.


Example 488



embedded image


The title compound was synthesized from the compound from Example 487 using procedures similar to that described in Example 448. ESIMS m/z=741.70 [M+H]+.


Example 489



embedded image


Step 489a. A mixture of the compound from step 458d (0.200 g, 0.452 mmol), bis(pinacolato)diboron (0.144 g, 0.565 mmol), PdCl2(dppf)2 (36.9 mg, 0.0452 mmol) and potassium acetate (88.7 mg, 0.904 mmol) in DMSO (5 mL) was degassed and heated at 80° C. under N2 for 17 hours. The reaction mixture was allowed to cool down and partitioned (EtOAc-water).


The organic layer was washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow solid (0.188 g, 85%). ESIMS m/z=490.12 [M+H]+.


Step 489b. A mixture of the compound from step 484c (50.0 mg, 0.125 mmol), the compound from step 489a (73.2 mg, 0.150 mmol), Pd(PPh3)4, (7.2 mg, 6.2 μmol) and NaHCO3 (41.9 mg, 0.499 mmol) in DME (6 mL) and H2O (2 mL) was degassed and heated at 95° C. under N2 for 14 hours. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the title compound as a white solid (21.3 mg, 25%). ESIMS m/z=683.52 [M+H]+.


Example 490



embedded image


The title compound was synthesized from the compound from Example 489 using procedures similar to that described in Example 448. ESIMS m/z=797.62 [M+H]+.


Example 491



embedded image


Step 491a. A mixture of the compound of step 1b (1.600 g, 4.369 mmol), tributyl(vinyl)tin (1.53 ml, 5.242 mmol) and Pd(PPh3)4 (5 mol %, 0.250 g, 0.218 mmol) in toluene (20 mL) was degassed and then refluxed under N2 for 18 h before being allowed to cool to rt. The mixture was directly purified by flash column chromatography (silica, hexanes-ethyl acetate with 1% Et3N in ethyl acetate) to give the desired compound as a pink foam (0.912 g, 67%). ESIMS m/z=314.18 [M+H]+.


Step 491b. A mixture of the compound from step 491a (1.251 g, 3.191 mmol), the compound of step 1d (1.000 g, 3.191 mmol), Pd(OAc)2 (5 mol %, 35.8 mg, 0.160 mmol) and P(o-tolyl)3 (0.121 g, 0.399 mmol) in Et3N (4.45 mL) and CH3CN (30 mL) was degassed and refluxed under N2 gas for 20 hours before being evaporated. The residue was taken up in dichloromethane and filtered through a short pad of Celite. The filtrate was purified by chromatography (silica, hexanes-ethyl acetate with 1% Et3N in ethyl acetate) to give the title compound as a yellow solid (1.471 g, 74%). ESIMS m/z=625.05 [M+H]+.


Example 492



embedded image


The title compound was prepared from the compound of example 491 using procedures similar to that described in example 448. ESIMS m/z=739.15 [M+H]+.


Example 493



embedded image


The title compound was obtained as a minor product (˜2%) in example 492. ESIMS m/z=739.03 [M+H]+.


Example 494



embedded image


Pd(OH)2 (20% on carbon, 10.8 mg) was added into a solution of the compound from example 492 (10.8 mg, 0.0146 mmol) in EtOH (1.5 mL). The suspension was purged with H2 3 times and stirred at rt for 6 h under H2 (60 psi) before being filtered through a short pad of Celite. The filtrate was concentrated. The crude was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a white solid (7.2 mg, 59%). ESIMS m/z=741.13 [M+H]+.


Example 495



embedded image


To a solution of the compound from example 491 (0.268 g, 0.430 mmol) in DMF (6 mL) was added NaH (60% in mineral oil, 36.0 mg, 0.902 mmol) at rt. The suspension was stirred at rt for 1 hour. SEMCl (0.154 mL, 0.868 mmol) was added dropwise at rt. After 1.5 hour at rt, the reaction was quenched with saturated NH4Cl solution and extracted with EtOAc. The organic layer was washed with saturated NaHCO3, brine, dried (Na2SO4), filtered and concentrated. The crude was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compound as a yellow foam (0.290 g, 76%). The regiochemistry of the SEM groups was not determined. ESIMS m/z=885.25 [M+H]+.


Example 496



embedded image


To a solution of the compound from example 495 (0.150 g, 0.169 mmol) in THF (1.5 mL) was added Pd(OAc)2 (3.8 mg, 0.0169 mmol) at 0° C. Excess diazomethane (solution in ether) was added with a plastic pipette until the starting material was consumed. The suspension was concentrated. The residue was taken up in dichloromethane and filtered through a short pad of celite. The filtrate was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the title compounds as a colorless oil (0.106 g, 70%). The regiochemistry of the SEM group and the stereochemistry of the cyclopropyl ring were not determined. ESIMS m/z=899.07 [M+H]+.


Example 497



embedded image


Step 497a. A solution of the compound of example 496 (0.106 g, 0.118 mmol) in 1,4-dioxane (2 mL) was treated with HCl in 1,4-dioxane (4 M, 12 mL) at 50° C. for 4 hour. The volatiles were evaporated off to give the crude desired compounds as a yellow solid which was used directly in the next step.


Step 497b. A mixture of the crude compound from step 497a (0.118 mmol at most) and (5)-2-(methoxycarbonylamino)-3-methylbutanoic acid (41.3 mg, 0.236 mmol) in DMF (3 mL) was treated with HATU (85.2 mg, 0.224 mmol) in the presence of DIPEA (0.41 mL, 2.360 mmol) for 1 hours at rt and the volatiles were evaporated off to provide a brown syrup. The residue was patitioned (EtOAc—H2O). The organic layer was washed with brine, dried (Na2SO4), filtered and concentrated. The residue was purified by RP-HPLC (NH4HCO3 buffer-MeOH) to give the title compounds: the major diastereomer (497-a, tentative) as a yellow solid (19.4 mg), ESIMS m/z=753.12 [M+H]+; and the minor diastereomer (497-b, tentative) as a yellow solid (3.1 mg), ESIMS m/z=753.12 [M+H]+. The stereochemistry of the cyclopropyl rings was not determined.


Example 498



embedded image


Step 498a. A mixture of the compound from step 458e (0.250 g, 0.605 mmol), 1-bromo-4-iodobenzene (0.257 g, 0.908 mmol), NaHCO3 (0.203 g, 2.42 mmol) and Pd(PPh3)4 (34.9 mg, 30.2 μmol) in DME (12 mL) and water (4 mL) was degassed and heated to 85° C. under N2 overnight. The volatiles were evaporated and the residue was partitioned (EtOAc-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by flash column chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a very light yellow solid (0.246 g, 92%). ESIMS m/z=442.00, 444.00 [M+H]+.


Step 498b. A mixture of the compound from step 1e (81.1 mg, 0.185 mmol), the compound from step 498a (85.8 mg, 0.194 mmol), Pd(PPh3)4, (21.4 mg, 18.5 μmol) and NaHCO3 (62.1 mg, 0.739 mmol) in DME (3 mL) and H2O (1 mL) was degassed and heated at 80° C. under N2 for 22 hours. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate with 1% Et3N in ethyl acetate) to give the title compound as a yellow solid (0.100 g, 81%). ESIMS m/z=675.17 [M+H]+.


Example 499



embedded image


The title compound was prepared from the compound of example 498 using procedures similar to that described in example 448. ESIMS m/z=789.06 [M+H]+.


Example 500



embedded image


Step 500a. A solution of the compound from step 515b (2.000 g, 4.553 mmol) in 1,4-dioxane (25 mL) was treated with HCl in 1,4-dioxane (4 M, 50 mL) at rt for 1.5 hours. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was used directly in the next step. ESIMS m/z=339.89 [M+H]+.


Step 500b. A mixture of the crude compound from step 500a (4.553 mmol at most) and (5)-2-(methoxycarbonylamino)-3-methylbutanoic acid (0.798 g, 4.553 mmol) in DMF (15 mL) was treated with HATU (1.644 g, 4.325 mmol) in the presence of DIPEA (7.93 mL, 45.53 mmol) for 1.5 hours at rt and the volatiles were evaporated off. The residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate with 1% Et3N in ethyl acetate) to give the title compound as a yellow foam (2.026 g, 90% over 2 steps). ESIMS m/z=496.90 [M+H]+.


Step 500c. A mixture of compound from step 500b (0.800 g, 1.612 mmol), the compound from step 515d (0.501 g, 1.612 mmol), Pd(PPh3)4, (5 mol %, 93.1 mg, 80.6 μmol) and CuI (3 mol %, 9.2 mg, 48.3 μmol) in Et3N (4 mL) and THF (12 mL) was degassed and stirred at 40° C. under N2 for 18 hours. The volatiles were evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate with 1% Et3N in ethyl acetate) to give the title compound as a yellow solid (0.705 g, 64%). ESIMS m/z=680.09 [M+H]+.


Example 501



embedded image


The title compound was prepared from the compound of example 500 and (S)-2-(methoxy-carbonylamino)propanoic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=709.05 [M+H]+.


Example 502



embedded image


The title compound was prepared from the compound of example 500 and (S)-2-(methoxycarbonylamino)butanoic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=723.05 [M+H]+.


Example 503



embedded image


The title compound was prepared from the compound of example 500 and (S)-2-(methoxycarbonylamino)pentanoic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=737.09 [M+H]+.


Example 504



embedded image


The title compound was prepared from the compound of example 500 and (R)-(methoxycarbonyl)amino phenyl acetic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=771.06 [M+H]+.


Example 505



embedded image


The title compound was prepared from the compound of example 500 and (2S,3R)-3-methoxy-2-(methoxycarbonylamino)butanoic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=753.05 [M+H]+.


Example 506



embedded image


The title compound was prepared from the compound of example 500 and (S)-2-acetamido-3-methylbutanoic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=721.48 [M+H]+.


Example 507



embedded image


The title compound was prepared from the compound of example 500 and (R)-3-methyl-2-phenylbutanoic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=740.50 [M+H]+.


Example 508



embedded image


The title compound was prepared from the compound of example 500 and (R)-2-(methoxy-carbonylamino)-3-methylbutanoic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=737.49 [M+H]+.


Example 509



embedded image


The title compound was prepared from the compound of example 500 and (S)-2-(methoxy-carbonylamino)-2-phenylacetic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=771.40 [M+H]+.


Example 510



embedded image


Step 510a. A solution of the compound from the compound from step 515d (1 g, 3.21 mmol) in dichloromethane (20 mL) was treated with HCl in 1,4-dioxane (4 M, 12 mL) at room temperature for 1 hour. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was used directly in the next step.


Step 510b. The mixture of compounds from step 510a (3.21 mml at most) and the compound from step 515g (562 mg, 3.21 mmol) in DMF (12 mL) was added diisopropylethylamine (4.56 mL, 32 mmol) and HATU (1.22 g, 3.21 mmol). The resulting solution was stirred at room temperature for 1 hour before all volatiles were removed to provide a brown slurry, which was partitioned between EtOAc and aqueous NaOH (0.5M). The organic phase was separated, dried (Na2SO4) and concentrated to afford a brown oil, which was purified by flash column chromatography (silica, EtOAc-methanol) to give the desired compound.


Step 510c. The title compound was prepared from the compound from step 510b and 515b using procedures similar to that described in step 500c. ESIMS m/z=680.36 [M+H]+.


Example 511



embedded image


The title compound was prepared from the compound of example 510 and (S)-2-acetamido-3-methylbutanoic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=721.49 [M+H]+.


Example 512



embedded image


The title compound was prepared from the compound of example 510 and (R)-3-methyl-2-phenylbutanoic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=740.51 [M+H]+.


Example 513



embedded image


The title compound was prepared from the compound of example 510 and (R)-2-(methoxycarbonylamino)-3-methylbutanoic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=737.50 [M+H]+.


Example 514



embedded image


The title compound was prepared from the compound of example 510 and (S)-2-(methoxycarbonylamino)-2-phenylacetic acid using procedures similar to that described in steps 500a and 500b. ESIMS m/z=771.49 [M+H]+.


Example 515



embedded image


Step 515a. Into a mixture of 2-bromo-1-(4-iodophenyl)ethanone (5 g, 15.4 mmol) and (S)-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid (3.48 g, 16.1 mmol) in acetonitrile (40 mL) was added diisopropylethylamine (2.4 mL, 17 mmol). The resulting mixture was stirred at rt for 3 hours before being partitioned between EtOAc and aqueous NaHCO3. The organic phase was separated, dried (Na2SO4) and concentrated to afford a brown oil. It was purified by flash column chromatography (silica, hexane-EtOAc) to give the desired product as light yellow oil (6.0 g, 86%). ESIMS m/z=481.94 [M+Na]+.


Step 515b. The mixture of compound from step 515a (6.0 g, 12.5 mmol) and ammonium acetate (15.1 g, 196 mmol) in toluene (80 mL) was stirred at 80° C. for 3 hours before being partitioned between water and aqueous NaHCO3. The organic phase was separated, dried (Na2SO4) and concentrated to afford a deep red oil. It was purified by flash column chromatography (silica, hexane-EtOAc) to give the desired product as light yellow solid (5.34 g, 93%). ESIMS m/z=439.83 [M+H]+.


Step 515c. A mixture of the compound from step 1b (2.010 g, 5.488 mmol), trimethylsilyl-acetylene (2.33 ml, 16.46 mmol), CuI (0.110 g, 0.576 mmol) and Pd(PPh3)2Cl2 (0.308 g, 0.439 mmol) in Et3N (50 mL) was degased and then heated at 80° C. under N2 overnight before being evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate with 1% Et3N in ethyl acetate) to give the desired compound as a yellow foam (1.140 g, 54%). ESIMS m/z=384.22 [M+H]+.


Step 515d. A suspension of the compound from step 515c (1.140 g, 2.972 mmol) and K2CO3 (1.027 g, 7.430 mmol) in methanol (30 ml) was stirred at rt for 2 hour. The volatiles were evaporated off. The residue was patitioned (EtOAc—H2O). The organic layer was washed with brine, dried (Na2SO4), filtered and concentrated. The residue was purified by chromatography (silica, hexanes-ethyl acetate with 1% Et3N in ethyl acetate) to give the desired compound as a yellow foam (0.792 g, 86%). ESIMS m/z=312.18 [M+H]+.


Step 515e. The mixture of compounds from step 515b (9.1 g, 20.7 mmol) and step 515d (6.45 g, 20.7 mmol) in THF (200 mL), triethylamine (60 mL) and acetonitrile (200 mL) was added tetrakis(triphenylphosphine)palladium(0) (1.15 g, 1 mmol) and copper(I) iodide (119 mg, 0.62 mmol). The resulting mixture was purged with nitrogen before being stirred at room temperature for 12 hours, at 50° C. for 2 hours and at 60° C. for 1 hour. After addition of aqueous NaOH (1M, 100 mL), the organic phase was separated, dried (Na2SO4) and concentrated to afford a brown slurry, which was absorbed with silica and purified by flash column chromatography (silica, EtOAc-methanol) to give the desired compound as light yellow solid (10.8 g, 84%). ESIMS m/z=623.07 [M+H]+.


Step 515f. A solution of the compound from step 515e (3 g, 4.58 mmol) in dichloromethane (50 mL) and MeOH (5 mL) was treated with HCl in 1,4-dioxane (4 M, 40 mL) at rt for 2 hours. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was used directly in the next step. ESIMS m/z=423.06 [M+H]+.


Step 515g. The mixture of L-valine (50 g, 0.427 mol) in 1,4-dioxane (140 mL) was added water (630 mL), NaOH (54.7 g, 1.4 mol) and methyl chloroformate (65.7 mL, 0.85 mol). The resulting solution was stirred at 60° C. for 22 hours before being added dichloromethane (400 mL). The aqueous phase was separated and extracted with dichloromethane (400 mL) before acidification with hydrochloric acid (37% in water, 90 mL). The cloudy suspension was extracted with EtOAc (500 mL) twice and the combined organic phases were dried (Na2SO4) and concentrated to afford a white solid, which was recrystallized with hexane and EtOAc to afford the desired product as colorless needle like crystals (54 g, 72%). 1H NMR (d6-DMSO) 12.52 (s, 1H), 7.33 (d, 1H), 3.85 (dd, 1H), 3.56 (s, 3H), 2.06 (m, 1H), 0.98 (m, 6H).


Step 515h. The mixture of compounds from step 515f (4.58 mml at most) and step 515g (1.61 g, 9.16 mmol) in acetonitrile (50 mL) was added diisopropylethylamine (5.21 mL, 39 mmol) and HATU (3.31 g, 8.7 mmol). The resulting solution was stirred at room temperature for 35 minutes before being partitioned between EtOAc (500 mL) and aqueous NaOH (0.5M, 50 mL). The organic phase was separated, dried (Na2SO4) and concentrated to afford a brown slurry, which was purified by flash column chromatography (silica, EtOAc-methanol) to give the title compound as light yellow solid (2.31 g, 65% over 2 steps). ESIMS m/z=737.12 [M+H]+.


Example 516



embedded image


The title compound was prepared from (2S,4R)-1-(tert-butoxycarbonyl)-4-hydroxypyrrolidine-2-carboxylic acid using procedures similar to that described in steps 515a to 515e. ESIMS m/z=639.36 [M+H]+.


Example 517



embedded image


The title compound was prepared from the compound of example 516 using procedures similar to that described in example 448. ESIMS m/z=753.46 [M+H]+.


Example 518



embedded image


The title compound was prepared from (2S)-1-(tert-butoxycarbonyl)-4,4-difluoropyrrolidine-2-carboxylic acid using procedures similar to that described in steps 515a to 515e. ESIMS m/z=659.35 [M+H]+.


Example 519



embedded image


The title compound was prepared from the compound of example 518 using procedures similar to that described in example 448. ESIMS m/z=773.34 [M+H]+.


Example 520



embedded image


The title compound was prepared from the compound from step 1-ib, 4-bromo-1,2-diaminobenzene and (6S)-5-[(tert-butoxy)carbonyl]-5-azaspiro[2.4]heptane-6-carboxylic acid (prepared according to WO 2009/102325) using procedures similar to that described in examples 1 and 1-1. ESIMS m/z=649.30 [M+H]+.


Example 521



embedded image


The title compound was prepared from the compound of Example 521 using procedures similar to that described in example 448. ESIMS m/z=763.30 [M+H]+.


Example 522



embedded image


The title compound was prepared from 2,4′-dibromoacetophenone, the compound from step 515d and (6S)-5-[(tert-butoxy)carbonyl]-5-azaspiro[2.4]heptane-6-carboxylic acid (prepared according to WO 2009/102325) using procedures similar to that described in examples 1 and 515. ESIMS m/z=649.35 [M+H]+.


Example 523



embedded image


The title compound was prepared from the compound of Example 522 using procedures similar to that described in example 448. ESIMS m/z=763.44 [M+H]+.


Example 524



embedded image


The title compound was prepared from 2,4′-dibromoacetophenone, 4-bromo-1,2-diaminobenzene and (6S)-5-[(tert-butoxy)carbonyl]-5-azaspiro[2.4]heptane-6-carboxylic acid (prepared according to WO 2009/102325) using procedures similar to that described in examples 1 and 515. ESIMS m/z=675.35 [M+H]+.


Example 525



embedded image


The title compound was prepared from the compound of Example 524 using procedures similar to that described in example 448. ESIMS m/z=789.47 [M+H]+.


Example 526



embedded image


A mixture of the crude compound from step 515f (0.105 mmol at most) and (2S,3S)-2-(methoxycarbonylamino)-3-methylpentanoic acid (prepared by procedure similar to that in step 515g, 35 mg, 0.21 mmol) in acetonitrile (2 mL) was treated with HATU (79 mg, 0.21 mmol) in the presence of DIPEA (0.15 mL, 1.05 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown oil. It was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a yellow solid (60 mg, 2 steps 75%). ESIMS m/z=765.14 [M+H]+.


Example 527



embedded image


A mixture of the crude compound from step 515f (0.10 mmol at most) and (2S,3R)-3-hydroxy-2-(methoxycarbonylamino)butanoic acid (prepared by procedure similar to that described in step 515g, 35 mg, 0.20 mmol) in DMF (2 mL) was treated with HATU (76 mg, 0.20 mmol) in the presence of DIPEA (0.12 mL, 0.80 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown oil. It was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a yellow solid (64 mg, 2 steps 86%). ESIMS m/z=741.07 [M+H]+.


Example 528



embedded image


A mixture of the crude compound from step 480a (0.015 mmol at most) and (S)-2-cyclopropyl-2-(methoxycarbonylamino)acetic acid (prepared by procedure similar to that described in step 515g, 2.6 mg, 0.015 mmol) in acetonitrile (2 mL) was treated with HATU (5.7 mg, 0.015 mmol) in the presence of DIPEA (0.03 mL, 0.15 mmol) for 2 hours at rt and the volatiles were evaporated off to provide a brown oil. It was purified by flash column chromatography (silica, CH2Cl2-MeOH) to give the title compound as a yellow solid (7.6 mg, 2 steps 69%). ESIMS m/z=735.22 [M+H]+.


Example 529



embedded image


The title compound as a yellow solid (7.9 mg, 2 steps 71%) was prepared from the crude compound from step 480a (0.015 mmol at most) and (S)-2-(methoxycarbonylamino)-3,3-dimethylbutanoic acid (2.8 mg, 0.015 mmol) using the procedures similar to that described in example 528. ESIMS m/z=751.55 [M+H]+.


Example 530



embedded image


The title compound as a yellow solid (7.3 mg, 2 steps 65%) was prepared from the crude compound from step 480a (0.015 mmol at most) and (S)-3-hydroxy-2-(methoxycarbonyl-amino)-3-methylbutanoic acid (2.8 mg, 0.015 mmol) using the procedures similar to that described in example 528. ESIMS m/z=753.36 [M+H]+.


Example 531



embedded image


The title compound as a yellow solid (4.0 mg, 2 steps 36%) was prepared from the crude compound from step 480a (0.015 mmol at most) and (2S,3S)-3-hydroxy-2-(methoxycarbonyl-amino)butanoic acid (2.6 mg, 0.015 mmol) using the procedures similar to that described in example 528. ESIMS m/z=739.26 [M+H]+.


Example 532



embedded image


The title compounds as a yellow solid (5.5 mg, 2 steps 46%) was prepared from the crude compound from step 480a (0.015 mmol at most) and 2-(methoxycarbonylamino)-2-phenylbutanoic acid (2.6 mg, 0.015 mmol) using the procedures similar to that described in example 528. ESIMS m/z=799.46 [M+H]+.


Example 533



embedded image


Step 533a. A mixture of (S)-tert-butyl 2-(5-(4-bromophenyl)oxazol-2-yl)pyrrolidine-1-carboxylate (prepared according to US2008/311075A1, 47.5 mg, 0.12 mmol) and the compound from step 515d (38 mg, 0.12 mg) in triethylamine (10 mL) was added tetrakis(triphenylphosphine)palladium(0) (14 mg, 0.012 mmol) and copper(I) iodide (2 mg, 0.01 mmol). The resulting mixture was purged with nitrogen before being stirred at 100° C. for 12 hours. The mixture was partitioned between water and EtOAc and the organic phase was separated, dried (Na2SO4) and concentrated to afford a brown slurry, which was purified by flash column chromatography (silica, hexane-EtOAc) to give the desired product as a light yellow solid (56 mg, 59%). ESIMS m/z=623.95 [M+H]+.


Step 533b. The desired product was prepared from the compound of step 533a using procedures similar to that described in step 2-1a. ESIMS m/z=424.02 [M+H]+.


Step 533c. The title compound was prepared from the compound of step 533b using procedures similar to that described in step 2-1b. ESIMS m/z=805.92 [M+H]+.


Example 534



embedded image


The title compound was prepared from the compound of example 533 using procedures similar to that described in example 2-2. ESIMS m/z=810.10 [M+H]+.


Example 535



embedded image


Step 535a. The desired product was prepared from (2S,4R)-1-(tert-butoxycarbonyl)-4-hydroxypyrrolidine-2-carboxylic acid using procedures similar to that described in step 515a. ESIMS m/z=476.14 [M+H]+.


Step 535b. The desired product was prepared from the compound of step 535a using procedures similar to that described in step 515b. ESIMS m/z=455.99 [M+H]+.


Step 535c. The desired product was prepared from the compound of step 535b and the compound of step 515d using procedures similar to that described in step 515e. ESIMS m/z=639.30 [M+H]+.


Step 535d. The desired product was prepared from the compound of step 535c using procedures similar to that described in step 515f. ESIMS m/z=439.26 [M+H]+.


Step 535e. The title compound was prepared from the compound of step 535d and the compound of step 515g using procedures similar to that described in step 515h. ESIMS m/z=753.40 [M+H]+.


Example 536



embedded image


Step 536a. The mixture of (R)-2-benzyl-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid (200 mg, 0.66 mmol) and 4-bromo-1,2-diaminobenzene (135 mg, 0.73 mmol) in acetonitrile (2 mL) was added EDC (138 mg, 0.73 mmol) and 4-dimethylaminopyridine (40 mg, 0.2 mmol). The resulting mixture was stirred at room temperature for 1 hour before being partitioned between water and EtOAc. The organic phase was separated, dried (Na2SO4) and concentrated to afford a brown slurry, which was purified by flash column chromatography (silica, hexane-EtOAc) to give the desired product as a light yellow solid (190 mg, 61%). ESIMS m/z=474.18 [M+H]+.


Step 536b. The desired product was prepared from the compound of step 536a using procedures similar to that described in step 1b. ESIMS m/z=456.17 [M+H]+.


Step 536c. The desired product was prepared from the compound of step 536b and the compound from step 1-1b using procedures similar to that described in step 1-1c. ESIMS m/z=713.46 [M+H]+.


Step 536d. The desired product was prepared from the compound of step 536c using procedures similar to that described in step 515f. ESIMS m/z=513.30 [M+H]+.


Step 536e. The title compound was prepared from the compound of step 536d and the compound from step 515g using procedures similar to that described in step 515h. ESIMS m/z=827.49 [M+H]+.


Example 537



embedded image


Step 537a. The desired product was prepared from (2S,4R)-1-(tert-butoxycarbonyl)-4-phenoxypyrrolidine-2-carboxylic acid using procedures similar to that described in step 536a. ESIMS m/z=476.14 [M+H]+.


Step 537b. The desired product was prepared from the compound of step 537a using procedures similar to that described in step 1b. ESIMS m/z=458.16 [M+H]+.


Step 537c. The desired product was prepared from the compound of step 537b and the compound of step 1-1b using procedures similar to that described in step 1-1c. ESIMS m/z=715.36 [M+H]+.


Step 537d. The desired product was prepared from the compound of step 537c using procedures similar to that described in step 515f. ESIMS m/z=515.19 [M+H]+.


Step 537e. The title compound was prepared from the compound from step 537d and the compound from step 515g using procedures similar to that described in step 515h. ESIMS m/z=829.35 [M+H]+.


Example 538



embedded image


The title compound was prepared from (2S,4S)-1-(tert-butoxycarbonyl)-4-phenoxypyrroli-dine-2-carboxylic acid using procedures similar procedures similar to that described in example 537. ESIMS m/z=829.42 [M+H]+.


Example 539



embedded image


The title compound was prepared from (S)-1-(tert-butoxycarbonyl)-2-methylpyrrolidine-2-carboxylic acid using procedures similar procedures similar to that described in example 536. ESIMS m/z=751.34 [M+H]+.


Example 540



embedded image


Step 540a. The desired product was prepared from (2S,4R)-1-(tert-butoxycarbonyl)-4-fluoropyrrolidine-2-carboxylic acid using procedures similar to that described in step 536a. ESIMS m/z=402.07 [M+H]+.


Step 540b. The desired product was prepared from the compound from step 540a using procedures similar to that described in step 1b. ESIMS m/z=384.09 [M+H]+.


Step 540c. The desired product was prepared from the compound from step 540b and the compound from step 1-1b using procedures similar to that described in step 1-1c. ESIMS m/z=641.32 [M+H]+.


Step 540d. The desired product was prepared from the compound from step 540c using procedures similar to that described in step 515f. ESIMS m/z=441.13 [M+H]+.


Step 540e. The title compound was prepared from the compound from step 540d and the compound from step 515g using procedures similar to that described in step 515h. ESIMS m/z=755.31 [M+H]+.


Example 541



embedded image


Step 541a. The desired product was prepared from (1R,3S,5R)-2-(tert-butoxycarbonyl)-2-azabicyclo[3.1.0]hexane-3-carboxylic acid (prepared according to WO2009/102325) using procedures similar to that described in step 536a. ESIMS m/z=396.13 [M+H]+.


Step 541b. The desired product was prepared from compound 541a using procedures similar to that described in step 1b. ESIMS m/z=378.11 [M+H]+.


Step 541c. The desired product was prepared from the compound from step 541b and the compound from step 1-1b using procedures similar to that described in step 1-1c. ESIMS m/z=635.43 [M+H]+.


Step 541d. The desired product was prepared from the compound from step 541c using procedures similar to that described in step 515f. ESIMS m/z=435.31 [M+H]+.


Step 541e. The title compound was prepared from the compound from step 541d and the compound from step 515g using procedures similar to that described in step 515h. ESIMS m/z=749.45 [M+H]+.


Example 542



embedded image


Step 542a. The desired product was prepared from (2S,5S)-1-(tert-butoxycarbonyl)-5-methylpyrrolidine-2-carboxylic acid (prepared according to Journal of Medicinal Chemistry 2009, 49, 3250) using procedures similar to that described in step 536a. ESIMS m/z=398.07 [M+H]+.


Step 542b. The desired product was prepared from the compound from step 542a using procedures similar to that described in step 1b. ESIMS m/z=380.01 [M+H]+.


Step 542c. The desired product was prepared from the compound from step 542b and the compound from step 1-1b using procedures similar to that described in step 1-1c. ESIMS m/z=637.39 [M+H]+.


Step 542d. The desired product was prepared from the compound from step 542c using procedures similar to that described in step 515f. ESIMS m/z=437.26 [M+H]+.


Step 542e. The title compound was prepared from the compound from step 542d and the compound from step 515g using procedures similar to that described in step 515h. ESIMS m/z=751.44 [M+H]+.


Example 543



embedded image


The title compound was prepared from (2S,4S)-1-(tert-butoxycarbonyl)-4-fluoropyrrolidine-2-carboxylic acid using procedures similar procedures similar to that described in example 540. ESIMS m/z=755.42 [M+H]+.


Example 544



embedded image


Step 544a. The desired product was prepared from (S)-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid and 4-bromo-5-methoxybenzene-1,2-diamine (prepared according to Journal of Medicinal Chemistry 1997, 40, 730) using procedures similar procedures similar to that described in step 536a. ESIMS m/z=414.10 [M+H]+.


Step 544b. The desired product was prepared from the compound from step 544a using procedures similar procedures similar to that described in step 1b. ESIMS m/z=396.06 [M+H]+.


Step 544c. The desired product was prepared from the compound from step 544b and the compound from step 1-1b using procedures similar procedures similar to that described in step 1-1c. ESIMS m/z=653.39 [M+H]+.


Step 544d. The desired product was prepared from the compound from step 544c using procedures similar procedures similar to that described in step 515f. ESIMS m/z=453.27 [M+H]+.


Step 544e. The title compound was prepared from the compound from step 544d and the compound from step 515g using procedures similar procedures similar to that described in step 515h. ESIMS m/z=767.47 [M+H]+.


Example 545



embedded image


Step 545a. The desired product was prepared from (1S,2S,5R)-3-(tert-butoxycarbonyl)-3-azabicyclo[3.1.0]hexane-2-carboxylic acid (prepared according to J. Org. Chem., 1999, 64, 547) using procedures similar to that described in step 536a. ESIMS m/z=396.25 [M+H]+.


Step 545b. The desired product was prepared from the compound from step 545a using procedures similar to that described in step 1b. ESIMS m/z=378.21 [M+H]+.


Step 545c. The desired product was prepared from the compound from step 545b and the compound from step 1-1b using procedures similar to that described in step 1-1c. ESIMS m/z=635.33 [M+H]+.


Step 545d. The desired product was prepared from the compound from step 545c using procedures similar to that described in step 1f. ESIMS m/z=435.28 [M+H]+.


Step 545e. The title compound was prepared from the compound from step 545d and the compound from step 515g using procedures similar to that described in step 515h. ESIMS m/z=749.44 [M+H]+.


Example 548



embedded image


Step 548a. To a solution of (6S)-5-[(tert-butoxy)carbonyl]-5-azaspiro[2.4]heptane-6-carboxylic acid (prepared according to WO 2009/102325, 3.210 g, 13.30 mmol) and 2-bromo-1-(4-iodophenyl)ethanone (5.044 g, 13.97 mmol) in acetonitrile (100 mL) was added DIPEA (5.79 mL, 33.26 mmol) dropwise. The resulting solution was stirred at rt for 3 hours before being concentrated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to afford the desired compound as a yellow foam (6.191 g, 96%). ESIMS m/z=486.26 [M+H]+.


Step 548b. To a solution of the compound from step 548a (6.191 g, 12.76 mmol) in toluene (60 mL) was added ammonium acetate (10.82 g, 0.140 mol). The resulting mixture was heated at 110° C. for 15 hours before being cooled down and concentrated. The residue was partitioned (EtOAc—H2O). The organic phase was washed with brine, dried (Na2SO4), filtered and concentrated. The crude product was purified by chromatography (silica, hexanes-ethyl acetate) to afford the desired compound as a yellow foam (5.730 g, 96%). ESIMS m/z=466.26 [M+H]+.


Step 548c. To a solution of (6S)-5-[(tert-butoxy)carbonyl]-5-azaspiro[2.4]heptane-6-carboxylic acid (prepared according to WO 2009/102325, 10.00 g, 41.45 mmol) and 4-bromo-1,2-diaminobenzene (8.527 g, 45.59 mmol) in CH3CN (250 mL) at rt was added EDC.HCl (10.33 g, 53.88 mmol), followed by DMAP (0.506 g, 4.145 mmol). The mixture was stirred at rt overnight before being concentrated. The residue was purified by chromatography (silica, EtOAc-hexanes) to give the desired compound as a yellow foam (15.04 g, 88%). ESIMS m/z=410.36, 412.36 [M+H]+.


Step 548d. A solution of the compound from step 548c (3.270 g, 7.970 mmol) in glacial acetic acid (50 mL) was heated at 50° C. for 8 hours. The volatiles were evaporated off. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (3.120 g, 100%). ESIMS m/z=392.12, 394.12 [M+H]+.


Step 548e. A mixture of the compound from step 548d (3.120 g, 7.953 mmol), trimethylsilylacetylene (16.86 ml, 0.119 mol), CuI (45.4 mg, 0.239 mmol) and Pd(PPh3)4 (0.459 g, 0.398 mmol) in Et3N (100 mL) was degassed and then heated at 90° C. under N2 overnight. More trimethylsilylacetylene (5.62 ml, 39.67 mmol) was added. The mixture was heated at 90° C. for 4 more hours before being evaporated. The residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (2.820 g, 87%). ESIMS m/z=410.41 [M+H]+.


Step 548f. A suspension of the compound from step 548e (14.20 g, 34.67 mmol) and K2CO3 (11.98 g, 86.67 mmol) in methanol (200 ml) was stirred at rt for 2.5 hours. The volatiles were evaporated off. The residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (10.818 g, 92%). ESIMS m/z=338.25 [M+H]+.


Step 548g. A mixture of the compound from step 548b (3.282 g, 7.054 mmol), the compound from step 548f (2.380 g, 7.054 mmol), Pd(PPh3)4 (0) (0.407 g, 0.353 mmol) and copper(I) iodide (40.3 mg, 0.212 mmol) in triethylamine (40 mL) and acetonitrile (40 mL) was degassed and then heated at 35° C. for 15 hours under N2. The mixture was concentrated. The residue was purified by chromatography (silica, hexanes-EtOAc, with 1% Et3N in EtOAc) to give the desired compound as a yellow solid (4.160 g, 87%). ESIMS m/z=675.58 [M+H]+.


Step 548h. A solution of the compound from step 548g (4.160 g, 6.165 mmol) in CH2Cl2/MeOH (3/1, 40 mL) was treated with HCl in 1,4-dioxane (4 M, 70 mL) for 2 hours. The volatiles were evaporated off to give the crude desired compound as a yellow solid, which was used directly in the next step.


Step 548i. A mixture of the crude compound from step 548h (6.165 mmol at most) and the compound from step 515g (2.160 g, 12.33 mmol) in DMF (40 mL) was treated with HATU (4.453 g, 11.71 mmol) in the presence of DIPEA (21.47 mL, 0.1233 mol) for 1 hour at rt. The volatiles were evaporated off. The residue was partitioned (EtOAc/CH2Cl2—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, EtOAc-MeOH) to give the title compound as a yellow solid (4.000 g, 85% over 2 steps). ESIMS m/z=789.68 [M+H]+.


Example 630



embedded image


Step 630a. To a mixture of 2-bromo-1-(4-iodophenyl)ethanone (5.00 g, 15.4 mmol) and N-Boc-L-proline (3.48 g, 16.1 mmol) in acetonitrile (40 mL) was added diisopropylethylamine (2.4 mL, 17 mmol). The resulting mixture was stirred at rt for 3 hours before being partitioned (EtOAc-aqueous NaHCO3). The organic phase was washed with brine, dried (Na2SO4) and concentrated to afford a brown oil. It was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow oil (6.00 g, 86%). ESIMS m/z=481.94 [M+Na]+.


Step 630b. A mixture of the compound from step 630a (6.00 g, 12.5 mmol) and ammonium acetate (15.1 g, 196 mmol) in toluene (80 mL) was stirred at 80° C. for 3 hours before being partitioned (EtOAc-aqueous NaHCO3). The organic phase was washed with brine, dried (Na2SO4) and concentrated to afford a deep red oil. It was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow solid (5.34 g, 93%). ESIMS m/z=439.83 [M+H]+.


Step 630c. To a solution of LiHMDS (1.0 M in THF, 5.17 mL, 5.17 mmol) in THF (20 mL) at −78° C. was added a solution of (+)-(3R,7aS)-tetrahydro-3-phenyl-3H,5H-pyrrolo[1,2-c]oxazol-5-one (0.500 g, 2.460 mmol) in THF (10 mL) under N2. The mixture was stirred at −78° C. for 30 min before C1CO2Me (0.19 mL, 2.460 mmol) was added at −78° C. After 30 minutes at −78° C., the reaction was quenched with saturated NH4Cl solution. The mixture was allowed to warm up to rt and the volatiles were evaporated. The residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (0.598 g, 93%). ESIMS m/z=262.13 [M+H]+.


Step 630d. To a solution of the compound from step 630c (0.350 g, 1.340 mmol) in THF (13 mL) at 0° C. was added NaH (60% in mineral oil, 64.3 mg, 1.607 mmol). After addition, the cooling bath was removed. The mixture was stirred at rt for 15 minutes before allyl bromide (0.13 mL, 1.474 mmol) was added. After 1 hour at rt, the reaction was quenched with saturated NH4Cl solution. The mixture was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compounds as two separated diastereomers: minor diastereomer (less polar, 56.0 mg, 14%), (3R,6R,7aS)-methyl 6-allyl-5-oxo-3-phenylhexahydropyrrolo[1,2-c]oxazole-6-carboxylate, ESIMS m/z=302.19 [M+H]+; 1H NMR (CDCl3) 7.44-7.33 (m, 5H), 6.32 (s, 1H), 5.75-5.66 (m, 1H), 5.19-5.18 (m, 1H), 5.16 (s, 1H), 4.28-4.22 (m, 2H), 3.78 (s, 3H), 3.57-3.52 (m, 1H), 2.90 (dd, J=6.7, 13.4 Hz, 1H), 2.85 (dd, J=7.9, 14.1 Hz, 1H), 2.58 (dd, J=6.7, 14.1 Hz, 1H), 1.89 (dd, J=6.6, 13.2 Hz, 1H); major diastereomer (more polar, 0.222 g, 55%), (3R,6S,7aS)-methyl 6-allyl-5-oxo-3-phenylhexahydropyrrolo[1,2-c]oxazole-6-carboxylate, ESIMS m/z=302.19 [M+H]+; 1H NMR (CDCl3) 7.46-7.33 (m, 5H), 6.33 (s, 1H), 5.82-5.73 (m, 1H), 5.23-5.18 (m, 2H), 4.28 (dd, J=6.2, 6.5 Hz, 1H), 4.08-4.02 (m, 1H), 3.82 (s, 3H), 3.67 (t, J=8.3 Hz, 1H), 2.80 (dd, J=7.5, 14.0 Hz, 1H), 2.71 (dd, J=7.1, 14.0 Hz, 1H), 2.54 (dd, J=4.9, 12.8 Hz, 1H), 2.38 (dd, J=7.9, 13.8 Hz, 1H).


Step 630e. To a solution of the major diastereomer from step 630d


(0.160 g, 0.585 mmol) in THF/H2O (1/1, 6 mL) at rt was added 0504 (4 wt % in H2O, 7.5 μL, 0.012 mmol), followed by NaIO4 (0.263 g, 1.229 mmol). The resulting mixture was stirred at rt for 2 hours before being quenched with saturated Na2S2O3 solution. The mixture was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated to afford the desired compound as a cololess oil (0.133 g), which was used directly for next step.


Step 630f. To a solution of the compound from step 630e (0.133 g, 0.438 mmol at most) in EtOH (5 mL) at 0° C. was added NaBH4 (33.2 mg, 0.877 mmol). After 20 minutes at 0° C., the resulting mixture was stirred at rt for 2.5 hours. More NaBH4 (16.6 mg, 0.438 mmol) was added. After 2 hours at rt, the reaction was quenched with saturated NH4Cl solution. The volatiles were evaporated. The residue was taken up in EtOAc (with 5% MeOH) and filtered. The filtrate was evaporated to dryness. The residue was purified by chromatography (silica, EtOAc-MeOH) to give the desired compound as a white foam (67.6 mg, 46% over 2 steps). ESIMS m/z=278.17 [M+H]+.


Step 630g. To a solution of the compound from step 630f (0.793 g, 2.860 mmol) in pyridine (28 mL) at rt was added tosyl chloride (TsC1, 0.600 g, 3.145 mmol). The resulting solution was stirred at rt for 40 hours. More TsCl (0.600 g, 3.145 mmol) was added. After 24 hours at rt, the reaction was quenched with saturated NaHCO3 solution. The mixture was evaporated to dryness. The residue was taken up in CH2Cl2 and filtered. The filtrate was directly purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (0.511 g, 69%). ESIMS m/z=260.16 [M+H]+.


Step 630h. To a solution of the compound from step 630g (0.540 g, 2.082 mmol) in THF (20 mL) at rt was added LiAlH4 (1.0 M in Et2O, 4.16 mL, 4.16 mmol). The resulting mixture was heated at 60° C. for 2 hours before being cooled down. The reaction was quenched by carefully adding H2O (0.16 mL), followed by 15% NaOH solution (0.16 mL) and then H2O (0.32 mL). The suspension was filtered through a short pad of Celite. The filtrate was evaporated to give the desired compound as a white semi-solid (0.572 g), which was used directly for the next step. ESIMS m/z=248.20 [M+H]+.


Step 630i. To a solution of the compound from step 630h (2.082 mmol at most) in MeOH (15 mL) at rt was added HOAc (0.16 mL, 2.71 mmol), followed by Pd/C (10 wt %, 0.100 g). The resulting mixture was stirred at rt under H2 (60 psi) for 2 hours before being filtered throught a short pad of Celite. The filtrate was evaporated to give the desired compound as a colorless oil, which was used directly for the next step. ESIMS m/z=158.11 [M+H]+.


Step 630j. To a solution of the compound from step 630i (2.082 mmol at most) in 1,4-dioxane/H2O (1/2, 21 mL) at rt was added NaHCO3 (1.399 g, 16.66 mmol), followed by (Boc)2O (0.545 g, 2.498 mmol). The resulting mixture was stirred at rt for 15 hours. The volatiles were evaporated. The residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (0.252 g, 45% over 3 steps). ESIMS m/z=258.18 [M+H]+.


Step 630k. To a biphasic mixture of the compound from step 630j (0.252 g, 0.979 mmol) in CCl4/CH3CN/H2O (3/4/5, 12 mL) at rt was added RuCl3.xH2O (4.1 mg, 0.020 mmol), followed by NaIO4 (0.419 g, 1.959 mmol). The resulting mixture was stirred at rt for 2 hours. The volatiles were evaporated. The residue was taken up in EtOAc and filtered. The filtrate was washed with brine, dried (Na2SO4) and filtered. The solid from the filtration was dissolved in diluted brine, acidified to pH ˜2 and extracted with EtOAc. The combined organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, EtOAc-MeOH) to give the desired compound as a colorless oil (0.260 g, 98%). ESIMS m/z=272.24 [M+H]+.


Step 630l. A mixture of the compound from step 630k (0.260 g, 0.958 mmol) and 4-bromo-1,2-diaminobenzene (0.197 g, 1.054 mmol) in CH3CN (6 mL) was treated with EDC.HCl (0.239 g, 1.246 mmol) and DMAP (11.7 mg, 0.096 mmol) at rt. The mixture was stirred at rt for 3 hours before being evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (0.277 g, 64%). ESIMS m/z=440.29, 442.29 [M+H]+.


Step 630m. A solution of the compound from step 630l (0.277 g, 0.629 mmol) in glacial acetic acid (7 mL) was heated at 50° C. for 15 hours. The volatiles were evaporated off. Et3N (5 mL) was added and the mixture was evaporated again. The residue was purified by chromatography (silica, hexanes-ethyl acetate, with 1% Et3N in ethyl acetate) to give the desired compound as a yellow foam (0.247 g, 93%). ESIMS m/z=422.15, 424.15 [M+H]+.


Step 630n. A mixture of the compound from step 630m (0.247 g, 0.585 mmol), trimethylsilyl-acetylene (1.24 mL, 8.772 mmol), CuI (3.3 mg, 0.018 mmol) and Pd(PPh3)4 (33.8 mg, 0.029 mmol) in Et3N (8 mL) was degassed and then heated at 90° C. under N2 overnight. More trimethylsilyl-acetylene (0.41 mL, 2.924 mmol) and CH3CN (3 mL) were added. The mixture was heated at 90° C. for 1.5 hours before being cooled down and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow oil (0.270 g). ESIMS m/z=440.22 [M+H]+.


Step 630o. A suspension of the compound from step 630n (0.270 g, 0.585 mmol at most) and K2CO3 (0.202 g, 1.462 mmol) in methanol (6 mL) was stirred at rt for 2 hours. The volatiles were evaporated off. The residue was taken up in CH2Cl2 and filtered through a short pad of Celite. The filtrate was directly purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (0.186 g, 87% over 2 steps). ESIMS m/z=368.21 [M+H]+.


Step 630p. The title compound was prepared from the compound from step 630b and the compound from step 630o using procedures similar to that described in steps 548g, 548h and 548i. ESIMS m/z=793.46 [M+H]+.


Example 631



embedded image


The title compound was prepared from the compound from step 548b and compound from step 630o using procedures similar to that described in steps 548g, 548h and 548i. ESIMS m/z=819.55 [M+H]+.


Example 565



embedded image


Step 565a. A mixture of compound from step 548b (1.348 g, 2.897 mmol), trimethylsilylacetylene (0.66 mL, 4.635 mmol), CuI (16.6 mg, 0.0869 mmol) and Pd(PPh3)4 (0.167 g, 0.145 mmol) in Et3N (20 mL) and CH3CN (20 mL) was degassed and then heated at 40° C. under N2 for 15 hours before being cooled down and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (1.210 g, 96%). ESIMS m/z=436.25 [M+H]+.


Step 565b. A suspension of the compound from step 565a (1.210 g, 2.778 mmol) and K2CO3 (0.960 g, 6.944 mmol) in methanol (30 mL) was stirred at rt for 2.5 hours. The volatiles were evaporated off. The residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (0.925 g, 92%). ESIMS m/z=364.18 [M+H]+.


Step 565c. A mixture of (5S,8S)-7-(tert-butoxycarbonyl)-2-oxa-7-azaspiro[4.4]nonane-8-carboxylic acid (prepared from the minor diastereomer from step 630d following the procedures similar to that described from step 630e to step 630k, 0.289 g, 1.115 mmol) and 1,2-diamino-4-iodobenzene (0.287 g, 1.226 mmol) in CH3CN (10 mL) was treated with EDC.HCl (0.278 g, 1.449 mmol) and DMAP (13.6 mg, 0.112 mmol) at rt. The mixture was stirred at rt for 2.5 hours before being evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow solid (0.377 g, 69%). ESIMS m/z=488.16 [M+H]+.


Step 565d. A solution of the compound from step 565c (0.377 g, 0.774 mmol) in glacial acetic acid (8 mL) was heated at 50° C. for 15 hours. The volatiles were evaporated off. Et3N (5 mL) was added and the mixture was evaporated again. The residue was purified by chromatography (silica, hexanes-ethyl acetate, with 1% Et3N in ethyl acetate) to give the desired compound as a yellow foam (0.324 g, 89%). ESIMS m/z=470.12 [M+H]+.


Step 565e. The title compound was prepared from the compound from step 565b and the compound from step 565d using procedures similar to that described in steps 548g, 548h and 548i. ESIMS m/z=819.41 [M+H]+.


Example: 564



embedded image


The title compound was prepared from the compound from step 630b and compound from step 565d using procedures similar to that described in example 565. ESIMS m/z=793.48 [M+H]+.


Example 571



embedded image


Step 571a. To a solution of 4′-iodoacetophenone (4.000 g, 16.26 mmol) in THF (65 mL) cooled at 0° C. was added isopentyl nitrile (4.55 mL, 32.51 mmol), followed by HCl in 1,4-dioxane (4 M, 5.28 mL, 21.13 mmol). The resulting red solution was stirred at 0° C. for 30 minutes and then at rt for 6 hours before being concentrated. The residue was partitioned (Et2O-saturated NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, CH2Cl2-ethyl acetate) to give the desired compound 2-(4-iodophenyl)-2-oxoacetaldehyde oxime as a yellow solid (1.530 g, 34%).


Step 571b. A mixture of the compound from step 571a (0.183 g, 0.666 mmol), (S)-tert-butyl 6-formyl-5-azaspiro[2.4]heptane-5-carboxylate (prepared according to WO 2011/006960, 0.150 g, 0.666 mmol) and ammonium acetate (0.257 g, 3.329 mmol) in glacial acetic acid (4 mL) was stirred at 120° C. for 1.5 hours before being cooled down and concentrated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound (S)-tert-butyl 6-(1-hydroxy-4-(4-iodophenyl)-1H-imidazol-2-yl)-5-azaspiro[2.4]heptane-5-carboxylate as a yellow sticky oil (0.106 g, 33%). ESIMS m/z=482.09 [M+H]+.


Step 571c. The title compound was prepared from the compound from step 571b and the compound from step 548f using procedures similar to that described in steps 548g, 548h and 548i. ESIMS m/z=805.55 [M+H]+.


Example 640



embedded image


The title compound was prepared from (6S)-5-[(tert-butoxy)carbonyl]-5-azaspiro[2.4]heptane-6-carboxylic acid (prepared according to WO 2009/102325) and the compound from step 515g using procedures similar to that described in examples 1-1 and 1-2. ESIMS m/z=765.49 [M+H]+.


Example 692



embedded image


Step 692a. To a mixture of the compound from step 489a (89.8 mg, 0.184 mmol), the compound from step 548d (60.0 mg, 0.153 mmol) and NaHCO3 (45.0 mg, 0.535 mmol) in DME (3 mL) and H2O (1 mL) was added Pd(PPh3)4 (17.7 mg, 15.3 μmol). The resultant mixture was degassed and then heated at 98° C. under N2 for 3 hours before being cooled down. The volatiles were evaporated off. The residue was taken up in dichloromethane and filtered. The filtrate was directly purified by chromatography (silica, hexanes-ethyl acetate, with 2% MeOH and 1% Et3N in ethyl acetate) to give the desired compound as a yellow solid (84.2 mg, 82%). ESIMS m/z=675.33 [M+H]+.


Step 692b. The title compound was prepared from the compound from step 592a using procedures similar to that described in steps 548h and 548i. ESIMS m/z=789.40 [M+H]+.


Example 574



embedded image


Step 574a. To a solution of (6S)-5-[(tert-butoxy)carbonyl]-5-azaspiro[2.4]heptane-6-carboxylic acid (91.5 g, 0.379 mol) in dichloromethane (900 mL) was added HOBt.xH2O (66.6 g, 0.493 mol), followed by EDC.HCl (87.2 g, 0.455 mol). The solution was stirred at rt for 5 minutes before being added to a solution of 1,2-diamino-4-iodobenzene (97.6 g, 0.417 mol) in dichloromethane (450 mL) at rt. The mixture was stirred at rt overnight before being quenched with saturated NaHCO3 and partitioned. The organics were washed with H2O, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light brown foam (159.6 g, 92%). ESIMS m/z=458.05 [M+H]+.


Step 574b. A solution of the compound from step 574a (159.3 g, 0.348 mol) in glacial acetic acid (1.3 L) was heated at 55° C. for 3 hours. The volatiles were evaporated off. The residue was partitioned (EtOAc-saturated NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light orange foam (128.5 g, 84%). ESIMS m/z=440.15 [M+H]+.


Step 574c. A mixture of the compound from step 574b (3.500 g, 7.967 mmol), bis(pinacolato)diboron (2.529 g, 9.959 mmol), KOAc (1.564 g, 15.93 mmol) and PdCl2(dppf) (0.291 g, 0.398 mmol) in DMSO (40 mL) was degassed and then heated at 60° C. for 4 hours and then at 70° C. for 1.5 hours under N2 before being cooled down. The mixture was partitioned (EtOAc—50% brine). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (2.370 g, 68%). ESIMS m/z=440.28 [M+H]+.


Step 574d. A mixture of the compound from step 574c (0.150 g, 0.619 mmol), 6-bromo-2-chloroquinoline (0.272 g, 0.619 mmol), NaHCO3 (0.182 g, 2.165 mmol) and Pd(PPh3)4 (71.5 mg, 61.9 μmol) in DME (4.5 mL) and H2O (1.5 mL) was degassed and then heated at 98° C. under N2 for 3 hours before being cooled down. The volatiles were evaporated. The residue was taken up in dichloromethane and filtered. The filtrate was directly purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow solid (0.307 g, 96%). ESIMS m/z=519.13, 521.12 [M+H]+.


Step 574e. A mixture of the compound from step 574d (0.200 g, 0.385 mmol), bis(pinacolato)diboron (0.147 g, 0.578 mmol), KOAc (94.5 mg, 0.963 mmol) and Pd(PPh3)4 (22.2 mg, 0.0193 mmol) in DMSO (4 mL) was degassed and then heated at 85° C. for 15 hours under N2 before being cooled down. The mixture was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (0.131 g, 60%). ESIMS m/z=567.23 [M+H]+.


Step 574f. The title compound was prepared from the compound from step 574e and (5)-tert-butyl 2-(5-bromo-1H-imidazol-2-yl)pyrrolidine-1-carboxylate (prepared according to WO 2008/021927) using procedures similar to that described in example 692. ESIMS m/z=790.44 [M+H]+.


Example 644



embedded image


Step 644a. A mixture of 6-bromo-2-chloroquinazoline (0.300 g, 1.232 mmol), tributyl (1-ethoxyvinyl)tin (0.42 mL, 1.232 mmol) and Pd(PPh3)4 (0.142 gg, 0.123 mmol) in toluene (10 mL) was degassed and then heated at 100° C. under N2 for 24 hours before being cooled down. The mixture was directly purified by chromatography (silica, hexanes-dichloromethane) to give the desired compound as a yellow-green solid (0.160 g, 55%). ESIMS m/z=235.04 [M+H]+.


Step 644b. To a solution of the compound from step 644a (0.160 g, 0.682 mmol) in THF/H2O (3/1, 4 mL) at 0° C. was added N-bromosuccinimide (0.112 g, 0.627 mmol). The mixture was stirred at 0° C. for 1 hour before being partitioned (EtOAc—H2O). The organics were washed with satureate NaHCO3, brine, dried (Na2SO4), filtered and evaporated to give the desired compound as a yellow solid, which was used directly for next step.


Step 644c. To a mixture of the compound from step 644b (0.682 mmol at most) and N-Boc-L-proline (0.145 g, 0.682 mmol) in acetonitrile (6 mL) was added diisopropylethylamine (0.24 mL, 1.364 mmol) at rt. The resulting mixture was stirred at rt for 3 hours before being concentrated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (0.178 g, 62% over 2 steps). ESIMS m/z=420.06 [M+H]+.


Step 644d. A mixture of compound from step 644c (0.178 g, 0.424 mmol) and ammonium acetate (0.359 g, 4.663 mmol) in toluene (5 mL) was stirred at 110° C. for 20 hours. More ammonium acetate (0.359 g, 4.663 mmol) was added. The mixture was stirred at 110° C. for 8 hours before being cooled down and partitioned between EtOAc and aqueous NaHCO3. The organic phase was washed with brine, dried (Na2SO4), filtered and concentrated. The residue was purified by chromatography (silica, hexanes-EtOAc) to give the desired compound as a yellow solid (0.114 g, 67%). ESIMS m/z=400.07 [M+H]+.


Step 644e. The title compound was prepared from the compound from step 644d and the compound from step 574c using procedures similar to that described in example 692. ESIMS m/z=791.42 [M+H]+.


Example 575



embedded image


The title compound was prepared from 4′-bromoacetophenone-d7 and (6S)-5-[(tert-butoxy)carbonyl]-5-azaspiro[2.4]heptane-6-carboxylic acid (prepared according to WO 2009/102325) using procedures similar to that described in Example 488. ESIMS m/z=793.42 [M+H]+.


Example 608



embedded image


Step 608a. A mixture of the compound from step 574c (0.248 g, 0.564 mmol), 6-bromo-8-fluoro-2-naphthol (0.136 g, 0.564 mmol), NaHCO3 (0.190 g, 2.257 mmol) and Pd(PPh3)4 (65.2 mg, 56.4 μmol) in DME (4.5 mL) and H2O (1.5 mL) was degassed and then heated at 98° C. under N2 for 3 hours before being cooled down. The volatiles were evaporated off. The residue was taken up in dichloromethane and filtered. The filtrate was directly purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow solid (0.230 g, 86%). ESIMS m/z=474.27 [M+H]+.


Step 608b. To a suspension of the compound from step 608a (0.352 g, 0.743 mmol) in CH2Cl2 (10 mL) cooled at −78° C. was added Et3N (0.62 mL, 4.460 mmol), followed by trifluoromethanesulfonic anhydride (Tf20, 1.0 M in CH2Cl2, 2.23 mL, 2.230 mmol). After 15 minutes at −78° C., more Tf2O (1.0 M in CH2Cl2, 0.74 mL, 0.740 mmol) was added. After 10 min at −78° C., the reaction was quenched by saturated NaHCO3 solution. The mixture was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired ditriflate compound as a yellow foam (0.529 g, 97%). ESIMS m/z=738.12 [M+H]+.


Step 608c. A mixture of the compound from step 608b (0.529 g, 0.717 mmol), bis(pinacolato)diboron (0.364 g, 1.434 mmol), KOAc (0.176 g, 1.793 mmol) and Pd(dppf)Cl2.CH2Cl2 (58.6 mg, 0.0717 mmol) in 1,4-dioxane (7 mL) was degassed and then heated at 100° C. for 2 hours under N2 before being cooled down and concentrated. The residue was taken up in dichloromethane and filtered. The filtrate was directly purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (0.505 g, 98%). ESIMS m/z=716.23 [M+H]+.


Step 608d. A mixture of the compound from step 608c (0.200 g, 0.280 mmol), (S)-tert-butyl 2-(5-bromo-1H-imidazol-2-yl)pyrrolidine-1-carboxylate (prepared according to WO 2008/021927, 88.4 mg, 0.280 mmol), NaHCO3 (93.9 mg, 1.118 mmol) and Pd(PPh3)4 (32.3 mg, 28.0 μmol) in DME (6 mL) and H2O (2 mL) was degassed and then heated at 98° C. under N2 for 12 hours before being cooled down. The volatiles were evaporated. The residue was taken up in dichloromethane and filtered. The filtrate was directly purified by chromatography (silica, hexanes-ethyl acetate, with 1% MeOH and 1% Et3N in ethyl acetate) to give the desired compound as a yellow solid (0.170 g, 88%). ESIMS m/z=693.29 [M+H]+.


Step 608e. The title compound was prepared from the compound from step 608d using procedures similar to that described in steps 548h and 548i. ESIMS m/z=807.30 [M+H]+.


Example 616



embedded image


Step 616a. A solution of the compound from step 548f (0.500 g, 1.482 mmol) in CH2Cl2 (12 mL) was treated with HCl in 1,4-dioxane (4 M, 20 mL) for 1 hour. The volatiles were evaporated off to give the crude desired compound as a yellow solid, which was used directly in the next step.


Step 616b. A mixture of the crude compound from step 616a (1.482 mmol at most) and the compound from step 515g (0.273 g, 1.556 mmol) in CH2Cl2 (15 mL) was treated with HATU (0.563 g, 1.482 mmol) in the presence of DIPEA (2.58 mL, 14.82 mmol) for 1 hour at rt. The volatiles were evaporated off. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (0.580 g, 99% over 2 steps). ESIMS m/z=395.15 [M+H]+.


Step 616c. A mixture of the compound from step 548b (0.177 g, 0.380 mmol), the compound from step 616b (0.150 g, 0.380 mmol), Pd(PPh3)4 (22.0 mg, 0.0190 mmol) and copper(I) iodide (2.2 mg, 0.0114 mmol) in triethylamine (4 mL) and acetonitrile (4 mL) was degassed and heated at 35° C. for 16 hours under N2. The mixture was concentrated. The residue was purified by chromatography (silica, hexanes-EtOAc, with 1% Et3N &10% MeOH in EtOAc) to give the desired compound as a yellow solid (0.228 g, 82%). ESIMS m/z=732.58 [M+H]+.


Step 616d. A solution of the compound from step 616c (50.0 mg, 0.0683 mmol) in CH2Cl2/MeOH (3/1, 2 mL) was treated with HCl in 1,4-dioxane (4 M, 3 mL) at rt for 2 hours. The volatiles were evaporated off to give the crude desired compound as a yellow solid, which was used directly in the next step. ESIMS m/z=632.53 [M+H]+.


Step 616e. A mixture of the crude compound from step 616d (0.0683 mmol at most) and (5)-2-(methoxycarbonylamino)-5-ureidopentanoic acid (prepared from L-citrulline according to WO 2008/021927, 23.9 mg, 0.102 mmol) in DMF (3 mL) was treated with HATU (26.0 mg, 0.0683 mmol) in the presence of DIPEA (0.12 mL, 0.683 mmol) for 1 hour at rt. The volatiles were evaporated off. The residue was purified by HPLC (H2O-MeOH) to give the title compound as a white powder (30.2 mg, 76% over 2 steps). ESIMS m/z=847.45 [M+H]+.


Example 550



embedded image


Step 550a. A mixture of the compound from step 630b (0.635 g, 1.445 mmol), the compound from step 616b (0.570 g, 1.445 mmol), Pd(PPh3)4 (83.5 mg, 72.2 μmol) and copper(I) iodide (8.3 mg, 43.3 μmol) in triethylamine (10 mL) and acetonitrile (10 mL) was degassed and then heated at 35° C. for 16 hours under N2. The mixture was concentrated. The residue was purified by chromatography (silica, hexanes-EtOAc, with 10% MeOH in EtOAc) to give the desired compound (Compound 666) as a yellow solid (0.697 g, 68%). ESIMS m/z=706.34 [M+H]+.


Step 550b. A solution of the compound from step 550a (0.100 g, 0.142 mmol) in CH2Cl2/MeOH (3/1, 4 mL) was treated with HCl in 1,4-dioxane (4 M, 6 mL) at rt for 1.5 hours. The volatiles were evaporated off to give the crude desired compound as a yellow solid, which was used directly in the next step.


Step 550c. A mixture of half of the crude compound from step 550b (0.0708 mmol at most) and (S)-2-(methoxycarbonylamino)-3-ureidopropanoic acid (prepared from 3-[(Aminocarbony)amino]-L-alanine according to WO 2008/021927) in DMF (3 mL) was treated with HATU (26.9 mg, 0.0708 mmol) in the presence of DIPEA (0.12 mL, 0.708 mmol) for 1 hour at rt. The volatiles were evaporated off. The residue was purified by HPLC (H2O-MeOH) to give the title compound as an off-white solid (33.0 mg, 59% over 2 steps). ESIMS m/z=793.51 [M+H]+.


Example 620



embedded image


The title compound was prepared from the crude compound from step 550b and (S)-2-(methoxycarbonylamino)-6-ureidohexanoic acid (prepared from L-homocitrulline according to WO 2008/021927) using the procedure similar to that described in step 550c. ESIMS m/z=835.55 [M+H]+.


Example 553



embedded image


Step 553a. To a solution of (S)-4-Amino-2-(tert-butoxycarbonylamino)butanoic acid (0.500 g, 2.291 mmol) in H2O (20 mL) was added a small amount of bromocresol purple. The resulting purple solution was heated to 50° C. Potassium cyanate (0.279 g, 3.437 mmol) was added in one portion at 50° C. 2 M HCl solution was added until the solution turned purple with a green tone. The mixture was heated at 50° C. The pH was maintained by dropwise addition of 2 M HCl solution. After 5 hours at 50° C., the mixture was cooled down to 0° C., acidified to pH ˜2 with 2 M HCl solution and evaporated off to dryness. The residual yellow solid was taken up in CH2Cl2/MeOH (2/1) and filtered through a short pad of Celite and then a short silica column. The filtrate was concentrated to afford the desired compound as a yellow foam (0.690 g). ESIMS m/z=284.15 [M+Na]+.


Step 553b. A solution of the compound from step 553a (0.690 g, 2.291 mmol at most) in CH2Cl2/MeOH (3/1, 8 mL) was treated with HCl in 1,4-dioxane (4 M, 8 mL) at rt for 1 hour. The volatiles were evaporated off to give the crude desired compound as a pink solid, which was used directly in the next step.


Step 553c. To a mixture of the compound from step 553b (2.291 mmol at most) and NaOH solution (1 M in H2O, 4.58 mL, 4.58 mmol) cooled at 0° C. was added Na2CO3 (0.126 g, 1.191 mmol), followed by ClCO2Me (0.19 mL, 2.486 mmol). The resulting solution was stirred at rt overnight. NaHCO3 (0.192 g, 2.291 mmol) was added. After 15 minutes at rt, the mixture was acidified to pH ˜2 with 3 M HCl solution and evaporated off to dryness. The residual solid was taken up in CH2Cl2/MeOH (2/1) and filtered through a short pad of Celite and then a short silica column. The filtrate was concentrated to afford the desired compound as a yellow foam (0.587 g).


Step 553d. The title compound was prepared from the compound from step 550b and the compound from step 553c using the procedure similar to that described in step 550c. ESIMS m/z=807.56 [M+H]+.


Example 621



embedded image


The title compound was prepared from the compound from step 550b and (S)-3-cyano-2-(methoxycarbonylamino)propanoic acid (prepared from β-cyano-L-alanine according to WO 2008/021927) using the procedure similar to that described in step 550c. ESIMS m/z=760.46 [M+H]+.


Example 647



embedded image


Step 647a. A solution of the compound from step 548b (1.000 g, 2.149 mmol) in CH2Cl2 (12 mL) was treated with HCl in 1,4-dioxane (4 M, 20 mL) for 2 hours. The volatiles were evaporated off to give the crude desired compound as a yellow solid, which was used directly in the next step.


Step 647b. To a mixture of the crude compound from step 647a (2.149 mmol at most) and (R)-(methoxycarbonyl)amino phenyl acetic acid (prepared according to WO 2008/021927, 0.450 g, 2.149 mmol) in CH3CN (20 mL) was added DIPEA (3.74 mL, 21.49 mmol), followed by HATU (0.817 g, 2.149 mmol). The solution was stirred at rt for 1 hour. The volatiles were evaporated off. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow foam (0.930 g, 78% over 2 steps). ESIMS m/z=557.18 [M+H]+.


Step 647c. A mixture of the compound from step 616b (40.0 mg, 0.101 mmol), the compound from step 647b (56.4 mg, 0.101 mmol), Pd(PPh3)4 (5.9 mg, 5.1 μmol) and copper(I) iodide (0.6 mg, 3.0 μmol) in triethylamine (2.5 mL) and acetonitrile (2.5 mL) was degassed and then heated at 40° C. for 15 hours under N2. The mixture was concentrated. The residue was purified by chromatography (silica, ethyl acetate-methanol) to give the title compound as a yellow solid (67.8 mg, 81%). ESIMS m/z=823.67 [M+H]+.


Example 579



embedded image


The title compound was prepared from the compound from step 630b, the compound from step 616b and (R)-(methoxycarbonyl)amino phenyl acetic acid (prepared according to WO 2008/021927) using procedures similar to that described in Example 616. ESIMS m/z=797.55 [M+H]+.


Example 577



embedded image


The title compound was prepared from a side product isolated from step 548g using procedures similar to that described in step 548h and 548i. ESIMS m/z=790.50 [M+H]+.


Example XP-21



embedded image


The title compound was prepared from the crude compound from step 616d and biotin using procedure similar to that described in step 616e. ESIMS m/z=858.42 [M+H]+.


Example XP-22



embedded image


The title compound was prepared from the Boc-D-proline, benzoic acid and biotin using procedures similar to that described in Example 647. ESIMS m/z=753.34 [M+H]+.


Example 555



embedded image


Step 555a. To a suspension of activated zinc powder (6.37 g, 95.4 mmol) in dry THF (150 mL) was added allyl bromide (8.49 mL, 97.4 mmol) dropwisely. The mixture was cooled to −30° C. before a solution of (S)-1-benzyl 2-methyl 4-oxopyrrolidine-1,2-dicarboxylate (18.0 g, 65.0 mmol) in THF (50 ml) was added dropwisely. The reaction mixture was stirred at <−10° C. for 4 hours before being quenched with HCl (1 N). The mixture was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, EtOAc-hexanes) to afford the desired compounds as a light yellow oil and distereomeric mixture (13.66 g, 66%). ESIMS m/z=320.15 [M+H]+.


Step 555b. To a solution of the compound from step 555a (0.200 g, 0.627 mmol) in CH3CN (4 mL) were added NaHCO3 (0.211 g, 2.51 mmol) and iodine (0.477 g, 1.88 mmol). The resultant mixture were heated up to 50° C. for 4 hours before the second addition of NaHCO3 (0.211 g, 2.51 mmol) and iodine (0.477 g, 1.88 mmol). The reaction was kept at 50° C. for another 3 hours before being cooled down and quenched by aqueous Na2S2O3. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, EtOAc-hexanes) to give the desired compounds as a colorless oil and diastereomeric mixture (79.8 mg, 29%). ESIMS m/z=468.23 [M+Na]+.


Step 555c. Into a solution of the compound from step 555b (12.72 g, 28.58 mmol) in toluene (250 mL) were added tris(trimethylsilyl)silane (13.2 mL, 42.9 mmol) and 2,2′-azo-bis-isobutyronitrile (235 mg, 1.43 mmol). The mixture were degassed and heated up to 90° C. under N2 for 3 hours before being cooled down and evaporated to dryness. The residue was purified by chromatography (silica, EtOAc-hexanes) to give the desired major compound as a colorless oil (3.75 g, 41%). ESIMS m/z=320.16 [M+H]+; and a minor compound as a colorless oil (162 mg, 2%). ESIMS m/z=320.16 [M+H]+.


Step 555d. Into a solution of the major compound from step 555c (0.170 g, 0.533 mmol) in MeOH (6 mL) were added palladium hydroxide (20 wt % on carbon, 50.0 mg) and Boc2O (0.174 g, 0.799 mmol). The resulting mixture was hydrogenated under 60 psi hydrogen gas at rt for 1 day before being filtered through a plug of Celite. The filtrate was concentrated and purified by chromatography (silica, EtOAc-hexanes) to give the desired compound as a colorless oil (0.127 g, 84%). ESIMS m/z=308.14 [M+Na]+.


Step 555e. Into a solution of the compound from step 555d (0.127 g, 0.447 mmol) in EtOH (4 mL) at 0° C. was added lithium hydroxide monohydrate (22.5 mg, 0.536 mmol) in H2O (2 mL). The mixture was warmed up to rt and kept at rt for 1 day before being evaporated. The residue was partitioned (Et2O—H2O) and the aqueous phase was acidified to pH ˜2 at 0° C. The mixture was then partitioned (CH2Cl2—H2O) and the organics were washed with brine, dried (Na2SO4), filtered and evaporated to give the crude desired compound as a colorless oil (0.122 g, 100%). ESIMS m/z=319.14 [M+Li+CH3CN]+.


Step 555f. Into a mixture of the crude compound from step 555e (60.5 mg, 0.223 mmol at most) and 4-bromo-1,2-diaminobenzene (46.0 mg, 0.246 mmol) in CH3CN (4 mL) were added EDCBCl (55.7 mg, 0.291 mmol) and DMAP (5.5 mg, 44.7 μmol). The mixture was stirred at rt for 14 hours before being evaporated to dryness. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow brown oil (82.0 mg, 83%). ESIMS m/z=440.11, 442.11 [M+H]+.


Step 555g. A solution of the compound from step 555f (82.0 mg, 0.186 mmol) in AcOH (8 mL) was heated at 50° C. for 16 hours before being evaporated. The residue was partitioned (EtOAc—H2O) and the organics were dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow oil (54.5 mg, 69%). ESIMS m/z=422.11, 424.14 [M+H]


Step 555h. A mixture of the compound from step 555g (1.88 g, 4.47 mmol) and ethynyltrimethylsilane (6.32 mL, 44.7 mmol) in Et3N (45 mL) were added CuI (25.5 mg, 0.134 mmol) and Pd(PPh3)4 (0.258 g, 0.223 mmol). The resultant mixture were degassed and heated to 95° C. under N2 for 20 hour. The volatiles were evaporated off and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow brown foam (1.79 g, 91%). ESIMS m/z=440.27 [M+H]


Step 555i. A solution of the compound from step 555h (1.79 g, 4.08 mmol) in MeOH (40 mL) was treated with K2CO3 (1.41 g, 10.2 mmol) for 2 hours before being evaporated. The residue was partitioned (EtOAc—H2O) and the organics were dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow solid (1.35 g, 90%). ESIMS m/z=368.23 [M+H]


Step 555j. A mixture of compounds from step 548b (55.3 mg, 0.122 mmol), compounds from step 555i (45.0 mg, 0.122 mmol), Pd(PPh3)4 (7.1 mg, 6.1 μmol) and copper(I) iodide (0.7 mg, 3.7 μmol) in triethylamine (2 mL) and acetonitrile (2 mL) was degassed and heated at 40° C. for 15 hours under N2. The mixture was evaporated. The residue was purified by chromatography (silica, hexanes-EtOAc, with 1% Et3N in EtOAc) to give the desired compound as a yellow solid (82.0 mg, 97%). ESIMS m/z=691.45 [M+H]+.


Step 555k. A solution of the compound from step 555j (0.179 g, 0.254 mmol) in CH2Cl2 (3 mL) was treated with HCl at rt in 1,4-dioxane (4 M, 6 mL) for 2 hours. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was used directly in the next step. ESIMS m/z=505.30 [M+H]+.


Step 555l. A mixture of the crude compound from step 555k (0.254 mmol at most) and the compound from step 515g, 93.4 mg, 0.534 mmol) in DMF (5 mL) was treated with HATU (0.193 g, 0.508 mmol) in the presence of DIPEA (0.63 mL, 5.08 mmol) for 1 hour at rt. The volatiles were evaporated off. The residue was purified by chromatography (silica, CH2Cl2-MeOH) to give the title compound as a light yellow solid (0.168 g, 81% over 2 steps). ESIMS m/z=819.25 [M+H]+.


Example 546



embedded image


Step 546a. To a solution of the crude compound from step 555e (60.7 mg, 0.224 mmol) in CH3CN (4 mL) were added 2-bromo-1-(4′-iodophenyl)ethanone (76.2 mg, 0.235 mmol) and DIPEA (56.0 μL, 0.447 mmol). The resultant mixture were stirred at rt for 1 hour before being evaporated. The residue was partitioned (EtOAc—H2O) and the organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, EtOAc-hexanes) to give the desired compound as a colorless oil (98.8 mg, 86%). ESIMS m/z=515.92 [M+H]+.


Step 546b. To a solution of the compound from step 546a (98.8 mg, 0.192 mmol) in toluene (8 mL) was added NH4OAc (0.296 g, 3.84 mmol). The resultant mixture were heated up to 100° C. for 12 hours before being cooled down and evaporated to dryness. The residue was partitioned (EtOAc—H2O) and the organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, EtOAc-hexanes) to give the desired compound as a light yellow oil (70.8 mg, 75%). ESIMS m/z=495.93 [M+H]+.


Step 546c. To a mixture of the compound from step 546b (38.5 mg, 77.7 μmol) and the compound from step 548f (28.8 mg, 85.4 μmol) in CH3CN (4 mL) and Et3N (4 mL) were added CuI (0.4 mg, 2.3 μmol) and Pd(PPh3)4 (4.4 mg, 3.8 μmol). The resultant mixture was degassed and heated to 40° C. under N2 for 14 hours. The volatiles were evaporated off and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the title compound as a light yellow solid (43.7 mg, 80%). ESIMS m/z=705.28 [M+H]+.


Step 546d. A solution of the compound from step 546c (43.7 mg, 62.0 μmol) in CH2Cl2 (3 mL) was treated with HCl at rt in 1,4-dioxane (4 M, 6 mL) for 1 hour. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was directly used in the next step. ESIMS m/z=505.20 [M+H]+.


Step 546e. A mixture of the crude compound from step 546d (62.0 μmol at most) and the compound from step 515g, 22.8 mg, 0.130 mmol) in DMF (3 mL) was treated with HATU (47.1 mg, 0.124 mmol) in the presence of DIPEA (0.15 mL, 1.24 mmol) for 1 hour at rt. The volatiles were evaporated off to provide a brown sirup, which was purified by chromatography (silica, CH2Cl2-MeOH) to give the title compound as a light yellow solid (42.6 mg, 2 steps 84%). ESIMS m/z=819.32 [M+H]+.


Example 615



embedded image


Step 615a. A solution of L-serine (3.0 g, 28.55 mmol) in acetonitrile (30 mL) was treated with TBSC1 (4.518 g, 29.97 mmol) in the presence of DBU (4.12 mL, 29.97 mmol) at rt overnight. The insoluble was filtered off and washed with acetonitrile to afford the desired as white solid (5.74 g, 92%).


Step 615b. The desired compound (5.1 g, 70%) was prepared from the compound of step 615a (5.74 g, 26.22 mmol) and methyl chloroformate (2.14 mL, 27.79 mmol) in the presence of NaOH (1 M, 26.2 mL) and Na2CO3 (1.445 g, 13.63 mmol) using procedures similar to that described in WO 2008/021927.


Step 615c. Into a solution of the compound from step 615b (5.1 g, 18.4 mmol) in toluene (300 mL) were added paraformaldehyde (3.26 g) and p-TsOH (0.175 g, 0.921 mmol). The mixture was slowly heated to reflux with a Dean-Stark trap for 1 hour. The cooled mixture were washed with aqueous NaHCO3, brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a white solid (3.20 g, 60%).


Step 615d. Into a solution of the compound from step 615c (1.00 g, 3.46 mmol) in CH2Cl2 (18 mL) at 0° C. were added HF-pyridine (0.69 mL, 27.7 mmol) and Deoxo-Fluor (1.28 mL, 6.92 mmol). The mixture was gradually warmed up to rt and stirred for 20 hour before being quenched slowly with cold aqueous NaHCO3. The mixture was partitioned (CH2Cl2—H2O) and the organics were washed with H2O, brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (0.387 g, 63%).


Step 615e. Into a solution of the compound from step 615d (0.387 g, 2.19 mmol) in 1,4-dioxane (11 mL) was added aqueous 2M HCl (10.9 mL, 21.9 mmol). The mixture was heated up to 60° C. for 20 hour before being evaporated to dryness. The residue was partitioned (CH2Cl2-brine) and the organics were dried (Na2SO4), filtered and evaporated to give the crude desired compound as a colorless oil (0.310 g, 86%).


Step 615f. A solution of 548b (0.160 g, 0.344 mmol) in CH2Cl2 (3 mL) was treated with HCl in 1,4-dioxane (4 M, 6 mL) for 1 hour. The volatiles were evaporated off to give the crude desired compound as a yellow solid which was directly used in the next step. ESIMS m/z=366.03 [M+H]+.


Step 615g. A mixture of the crude compound from step 615f (0.344 mmol at most) and the compound from step 615e (62.4 mg, 0.378 mmol) in CH2Cl2 (8 mL) at 0° C. was treated with HATU (0.131 g, 0.344 mmol) in the presence of DIPEA (0.21 mL, 1.72 mmol). The mixture was slowly warmed up to rt and stirred for 12 hours. The volatiles were evaporated and the residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (0.156 g, 2 steps 89%). ESIMS m/z=512.91 [M+H]+.


Step 615h. The title compound was prepared from the compound from step 615g and the compound from step 616b using procedure similar to that described in step 647c. ESIMS m/z=779.24 [M+H]+.


Example 689



embedded image


The title compound was prepared from the crude compound from step 616d and (S)-2,3-bis(methoxycarbonylamino)propanoic acid (prepared from L-2,3-diaminopropionic acid hydrochloride using procedures similar to that described in WO 2008/021927) using procedures similar to that described in step 616e. ESIMS m/z=808.53 [M+H]+.


Example 693



embedded image


The title compound was prepared from the crude compound from step 550b and (S)-2,6-bis(methoxycarbonylamino)hexanoic acid (prepared from L-lysine, according to WO 2008/021927) using procedures similar to that described in step 616e. ESIMS m/z=850.53 [M+H]+.


Example 551



embedded image


The title compound was prepared from the compound from step 630b and the compound from step 555i using procedures similar to that described in steps 555j, 555k and 555i. ESIMS m/z=793.22 [M+H]+.


Example 558



embedded image


Step 558a. Into a mixture of L-Boc-cis-Hyp-OMe (0.500 g, 2.04 mmol) and 18-crown-6 (0.323 g, 1.22 mmol) in THF (10 mL) were added MeI (1.27 mL, 20.4 mmol) and NaH (60% in mineral oil, 89.8 mg, 2.25 mmol) in portions. The resultant mixture was stirred at rt for 14 hours before being quenched with aqueous NaHCO3. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (0.442 g, 84%). ESIMS m/z=282.25 [M+Na]+.


Step 558b. The title compound was prepared from the compound from step 558a and the compound from step 555i using procedures similar to that described in Example 546. ESIMS m/z=823.47 [M+H]+.


Example 627



embedded image


The title compound was prepared from N-Boc-4,4-difluoro-L-proline and the compound from step 555i using procedures similar to that described in Example 546. ESIMS m/z=829.55 [M+H]+.


Example 629



embedded image


The title compound was prepared from N-Boc-trans-4-fluoro-L-proline and the compound from step 555i using procedures similar to that described in Example 546. ESIMS m/z=811.52 [M+H]+.


Example 561



embedded image


The title compound was prepared from Boc-cis-4-hydroxy-L-proline and the compound from step 555i using procedures similar to that described in Example 546. ESIMS m/z=809.60 [M+H]+.


Example 686



embedded image


The title compound was prepared from Boc-cis-4-fluoro-L-proline and the compound from step 555i using procedures similar to that described in Example 546. ESIMS m/z=811.56 [M+H]+.


Example 567



embedded image


Step 567a. Into a solution of N-carbobenzoxy-4-oxo-L-proline (1.00 g, 4.37 mmol) in THF (60 mL) at −78° C. was added MeMgBr (3M in Et2O, 3.20 mL, 9.61 mmol). The resultant mixture was kept at −78° C. for 1 hour before being warmed up to rt for 14 hours. The reaction was quenched with 1N aqueous HCl to pH 2, and the volatiles were evaporated off. The residue was partitioned (EtOAc—H2O) and the organics were dried (Na2SO4), filtered and evaporated to give the crude desired compound as a yellow brown oil (0.842 g) which was directly used in the next step. ESIMS m/z=246.20 [M+H]+.


Step 567b. Into a solution of the crude compound from step 567a (4.37 mmol at most) in MeOH (15 mL) and benzene (15 mL) was added TMSCHN2 (2M in hexane) until the yellow color did not fade. The volatiles were evaporated and the residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow solid (0.480 g, ˜80% purity). ESIMS m/z=260.20 [M+H]+.


Step 567c. Into a solution of the compound from step 567b (0.480 g, ˜80% purity, 1.57 mmol) in CH2Cl2 (30 mL) at 0° C. was added DAST (0.42 mL, 3.15 mmol). The reaction was kept at 0° C. for 1 hour before being quenched with aqueous NaHCO3. The residue was partitioned (CH2Cl2—H2O) and the organics were dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (0.259 g, 23% over 3 steps). ESIMS m/z=262.15 [M+H]+.


Step 567d. The crude acid compound was prepared from the compound from step 567c using procedures similar to that described in step 555e. ESIMS m/z=248.08 [M+H]+.


Step 567e. The title compound was prepared from the compound from step 567d and the compound from step 555i using procedures similar to that described in Example 546. ESIMS m/z=825.45 [M+H]+.


Example 626



embedded image


The title compound was prepared from the minor diastereomer isolated from step 555c and the compound from step 548b using procedures similar to that described in Example 555. ESIMS m/z=819.58 [M+H]+.


Example 557



embedded image


The title compound was prepared from the minor diastereomer isolated from step 555c and the compound from step 630b using procedures similar to that described in Example 555. ESIMS m/z=793.56 [M+H]+.


Example 568



embedded image


Step 568a. To a solution of (+)-(3R,7aS)-tetrahydro-3-phenyl-3H,5H-pyrrolo[1,2-c]oxazol-5-one (2.10 g, 9.85 mmol) in THF (60 mL) at −78° C. was added LiHMDS (1 M in THF, 39.4 mL, 39.4 mmol). The resultant mixture was kept at −78° C. for 30 minutes before slow addition of allyl bromide (5.0 mL, 59.1 mmol). The reaction was allowed to gradually warm up to 0° C. and quenched by aqueous NH4Cl solution. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired diallylation compound as a very light yellow oil (2.30 g, 78%). ESIMS m/z=284.16 [M+H]+.


Step 568b. Ozone, generated from an ozone generator, was bubbled through a solution of the compound from step 568a (2.30 g, 8.11 mmol) in MeOH (85 mL) at −78° C. until the appearance of blue color. The extra Ozone was removed by the oxygen flow before the addition of NaBH4 (2.46 g, 64.9 mmol) at −78° C. The mixture was gradually warmed up to rt for and kept at rt for 16 hours before being quenched by 2M aqueous HCl to pH 5. The volatiles were evaporated off and the residue was partitioned (EtOAc—H2O). The organics were dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (1.61 g, 68%). ESIMS m/z=292.15 [M+H]+.


Step 568c. Into a mixture of the compound from step 568b (1.52 g, 5.21 mmol), Ag2O (1.81 g, 7.80 mmol) and KI (0.173 g, 1.04 mmol) in CH2Cl2 (40 mL) was added TsCl (1.09 g, 5.73 mmol) in CH2Cl2 (20 mL) slowly. The resultant mixture was stirred at rt for 24 hours before being filtered through Celite. The filtrates were evaporated and the residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (1.38 g, 60%) with the recovery of the compound from step 568b (0.473 g, 31%). ESIMS m/z=446.07 [M+H]+.


Step 568d. Into a solution of the compound from step 568c (1.38 g, 3.11 mmol) in THF (62 mL) was added NaH (60% in mineral oil, 0.187 g, 4.67 mmol). The resultant mixture was stirred at rt for 24 hours before being quenched by aqueous NH4Cl. The volatiles were evaporated and the residue was partitioned (EtOAc—H2O). The organics were dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (0.726 g, 86%). ESIMS m/z=274.10 [M+H]


Step 568e. Into a solution of the compound from step 568d (0.726 g, 2.66 mmol) in THF (50 mL) was added LiAlH4 (1M in THF, 5.3 mL, 5.32 mmol). The resultant mixture was heated to 60° C. for 3 hours before being quenched by sequential addition of H2O (0.20 mL), 15% aqueous NaOH (0.20 mL) and H2O (0.60 mL) at 0° C. The mixture was passed through Celite and the filtrates were evaporated. The residue was partitioned (EtOAc—H2O) and the organics were dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (0.718 g). ESIMS m/z=262.21 [M+H]+.


Step 568f. Into a mixture of compound from step 568e (2.66 mmol at most) and AcOH (0.30 mL, 5.32 mmol) in MeOH (16 mL) was added palladium (10 wt % on carbon, 54.8 mg). The resulting mixture was hydrogenated under 60 psi H2 at rt for 4 hours before being filtered through Celite. The filtrate was concentrated to give the crude desired compound as a colorless oil (0.782 g). ESIMS m/z=172.17 [M+H]+.


Step 568g. Into a mixture of the crude compound from step 568f (2.66 mmol at most) and NaHCO3 (1.79 g, 21.3 mmol) in 1,4-dioxane (10 mL) and H2O (20 mL) was added Boc2O (0.696 g, 3.19 mmol). The resultant mixture was stirred at rt for 1 day before being evaporated to dryness. The residue was partitioned (EtOAc—H2O) and the organics were dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (0.610 g, 3 step 85%). ESIMS m/z=272.26 [M+H]+.


Step 568h. Into a solution of the compound from step 568g (0.610 g, 2.25 mmol) in carbon tetrachloride (9 mL), CH3CN (12 mL) and H2O (15 mL) were added RuCl3.XH2O (9.3 mg, 45.0 μmol) and NaIO4 (0.963 g, 4.50 mmol). The resultant mixture was stirred at rt for 4 hours before being partitioned (CH2Cl2—H2O). The aqueous phase was acidified to pH 3 and was extracted by CH2Cl2. The combined organics were dried (Na2SO4), filtered and evaporated to give the crude desired compound as a light brown foam (0.640 g). ESIMS m/z=286.24 [M+H]+.


Step 568i. The title compound was prepared from the compound from step 630b and the compound from step 568h using procedures similar to that described in Example 630. ESIMS m/z=807.71 [M+H]+.


Example 690



embedded image


The title compound was prepared from the compound from step 630b and (1S,2S,5R)-3-(tert-butoxycarbonyl)-3-azabicyclo[3.1.0]hexane-2-carboxylic acid (prepared according to WO 2009/102325) using procedures similar to that described in Example 630. ESIMS m/z=749.44 [M+H]+.


Example 588



embedded image


To a solution of the compound of Example 548 (24 mg, 0.030 mmol) in DMF (0.6 mL) was added NCS (4.8 mg, 0.036 mmol). The resulting solution was stirred at 50° C. for 16 h before being partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and concentrated. The residue was purified by preparative thin layer chromatography (EtOAc-hexanes) to afford the title compound as a yellow foam (12 mg, 48%). ESIMS m/z=823.69/825.69 [M+H]+.


Example 657



embedded image


To a solution of the compound of Example 548 (24 mg, 0.030 mmol) in DMF (0.6 mL) was added NBS (6.9 mg, 0.036 mmol). The resulting solution was stirred at rt for 16 hours before being partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and concentrated. The residue was purified by preparative thin layer chromatography (EtOAc-hexanes) to afford the title compound as a yellow foam (13.6 mg, 51%). ESIMS m/z=867.42, 869.42 [M+H]+.


Example 660



embedded image


To a solution of the compound of Example 548 (160 mg, 0.20 mmol) in DMF (2 mL) was added Accufluor (45-50% on alumina, 100 mg, 0.33 mmol). The resulting solution was stirred at 60° C. for 4 hours before being cooled to rt and partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and concentrated. The residue was purified by preparative thin layer chromatography (EtOAc-hexanes) to afford the title compound as a yellow foam (10 mg, 6.5%). ESIMS m/z=807.55 [M+H]+.


Example 591



embedded image


A mixture of the compound from step 657 (45 mg, 0.05 mmol), cyclopropylboronic acid pinacol ester (84 mg, 0.5 mmol), dichloro[1,1′-bis(di-t-butylphosphino)ferrocene]palladium(II) (5.0 mg, 0.0076 mmol) in THF (1 mL) and saturated aqueous NaHCO3 solution (0.2 mL) was degassed and then heated at 100° C. in a sealed tube for 2 hours. The residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the title compound as a yellow foam (17.5 mg, 42%). ESIMS m/z=829.69 [M+H]+.


Example 661



embedded image


The title compound was prepared from the compound from step 657 and phenylboronic acid pinacol ester using procedures similar to that described in Example 591. ESIMS m/z=865.43 [M+H]+.


Example 593



embedded image


The title compound was prepared from the compound from step 657 and 4-pyridineboronic acid pinacol ester using procedures similar to that described in Example 591. ESIMS m/z=865.43 [M+H]+.


Example 662



embedded image


The title compound was prepared from the compound from step 657 and 3-pyridinelboronic acid pinacol ester using procedures similar to that described in Example 591. ESIMS m/z=865.43 [M+H]+.


Example 687



embedded image


Step 687a. A solution of (S)-1-benzyl 2-methyl 4-methylenepyrrolidine-1,2-dicarboxylate (1 g, 3.63 mmol) in diglyme (20 mL) was heated to 175° C. A cloudy solution of sodium chlorodifluoroacetate (16.6 g, 108.9 mmol) in diglyme was added via a syring pump over 2.5 hours. The mixture was cooled down and partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give two diastereomers, both as colorless oils.


(3S,6S)-5-benzyl 6-methyl 1,1-difluoro-5-azaspiro[2.4]heptane-5,6-dicarboxylate (572 mg, 48%). 1H NMR (CDCl3): 7.36 (m, 5H), 5.02-5.21 (m, 2H), 4.45 (dm, 1H)m 3.81 (m, 1H), 3.76, 3.59 (2s, 3H), 3.57 (m, 1H), 2.58 (m, 1H), 1.99 (dd, 1H), 1.37 (m, 2H).


(3R,6S)-5-benzyl 6-methyl 1,1-difluoro-5-azaspiro[2.4]heptane-5,6-dicarboxylate (375 mg, 32%). 1H NMR (CDCl3): 7.35 (m, 5H), 5.20 (dd, 1H), 5.10 (dd, 1H), 4.56 (dd, 1H), 3.76 (m, 1H), 3.74, 3.63 (2s, 3H), 3.55 (m, 1H), 2.45 (m, 1H), 2.12 (dd, 1H), 1.38 (m, 2H).


Step 687b. A solution of (3R,6S)-5-benzyl 6-methyl 1,1-difluoro-5-azaspiro[2.4]-heptane-5,6-dicarboxylate from step 687a (350 mg, 1.07 mmol) and di-tert-butyl dicarbonate (281 mg, 1.3 mmol) in MeOH (10 mL) was treated with Pd/C (10 wt %, 50 mg) under hydrogen (60 psi) for 4.5 hours before being filtered through Celite and concentrated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (284 mg, 90%). 1H NMR (CDCl3): 4.44 (dd, 1H), 3.76 (s, 3H), 3.71 (dd, 1H), 3.44 (m, 1H), 2.20 (m, 1H), 2.08 (d, 1H), 1.47, 1.42 (2s, 9H), 1.38 (m, 2H).


Step 687c. To a solution of the compound from step 687b (284 mg, 0.97 mmol) in EtOH (2 mL) and water (1 mL) was added LiOH.H2O (55 mg, 1.3 mmol). The mixture was stirred at rt overnight before being concentrated. The residue was dissolved in H2O (5 mL) and acidified to pH ˜2 by HCl (1 N). The mixture was extracted with EtOAc and CH2Cl2. The organics were dried (Na2SO4), filtered and evaporated to give the crude desired compound as a white foam (283 mg). H NMR (CDCl3): 4.48 (dd, 1H), 3.76 (s, 3H), 3.68 (dd, 1H), 3.45 (m, 1H), 2.38 (m, 1.5H), 2.19 (d, 0.5H), 1.47, 1.42 (2s, 9H), 1.40 (m, 2H).


Step 687d. To a solution of the crude compound from step 687c (135 mg, 0.487 mmol) and 2-bromo-1-(4-iodophenyl)ethanone (166 mg, 0.51 mmol) in acetonitrile (3 mL) was added DIPEA (0.21 mL, 1.22 mmol). The resulting mixture was stirred at rt for 3 hours before being partitioned between EtOAc and aqueous NaHCO3. The organic phase was separated, dried (Na2SO4) and concentrated to afford a brown oil. The residue was purified by chromatography (silica, hexane-EtOAc) to give the desired product as a light yellow foam (210 mg, 82%). ESIMS m/z=543.92 [M+Na]+.


Step 687e. A mixture of the compound from step 687d (210 mg, 0.40 mmol) and NH4OAc (341 mg, 4.43 mmol) in toluene (5 mL) was heated at 105° C. overnight before being partitioned (EtOAc—H2O). The organic phase was separated, dried (Na2SO4) and concentrated. The residue was purified by chromatography (silica, hexane-EtOAc) to give the desired product as a yellow foam (173 mg, 82%). ESIMS m/z=502.50 [M+H]+.


Step 687f. The title compound was prepared from the compounds from step 687e and 548f using procedures similar to that described in example 548. ESIMS m/z=825.30 [M+H]+.


Example 614



embedded image


The title compound was prepared from (3S,6S)-5-benzyl 6-methyl 1,1-difluoro-5-azaspiro[2.4]heptane-5,6-dicarboxylate from step 687a using procedures similar to that described in example 687. ESIMS m/z=825.30 [M+H]+.


Example 547



embedded image


Step 547. A solution of N-Boc-L-threonine (65.8 g, 0.30 mol) in DMF (500 mL) was treated with NaH (26.4 g, 0.66 mmol) portionwisely under −15° C. with mechanical stirring for 2 hours. Allyl bromimde (40 g, 0.33 mol) was added. The mixture was stirred at rt overnight before being quenched with ice-water and extracted with methyl tert-butyl ether (MTBE). The aqueous phase was acidified to pH 4 to 5 by adding aqueous citric acid (10%). This mixture was extracted with EtOAc. The combined organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by a short silica column (EtOAc) to give the desired compound as a colorless syrup (69.3 g). ESIMS m/z=282.18 [M+Na]+.


Step 547b. A solution of the compound from step 547547a (22.7 g, 87.5 mmol), benzyl alcohol (10.8 mL, 105 mmol) and HATU (40 g, 105 mmol) in CH2Cl2 (250 mL) was treated with DIPEA (36.5 ml, 210 mmol) at 0° C. and stirred at rt for three days. After the mixturte was washed with water and brine, the organics were dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (19.6 g, 64%). ESIMS m/z=372.09 [M+Na]+.


Step 547c. A solution of the compound from step 547547b (625 mg, 1.79 mmol) in CH2Cl2 (10 mL) and MeOH (10 mL) was treated with a stream of ozone at 0° C. for 15 minutes before being purged with oxygen. NaBH4 (79 mg, 2.1 mmol) was added. The mixture was stirred for 30 minutes before being quenched with aqueous NH4Cl and partitioned (CH2Cl2-water). The organics were dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (230 mg, 36%). ESIMS m/z=376.18 [M+Na]+.


Step 547d. A solution of the compound from step 547c (280 mg, 0.793 mmol) in CH2Cl2 (5 mL) was treated with DAST (256 mg, 1.59 mmol) at −78° C. for 1 h before a second portion of diethylaminosulfur trifluoride (DAST, 250 mg, 1.50 mmol) was added. The mixture was stirred for another 1 hour and warmed up to −30° C. before the volatiles were evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (71 mg, 25%). ESIMS m/z=378.16 [M+Na]+.


Step 547e. A solution of the compound from step 547d (193 mg, 1.79 mmol) in CH2Cl2 (3 mL) was treated with HCl (4 M in 1,4-dioxane, 2 mL) at rt for 3 hours. The mixture was concentrated to give a light yellow syrup. This syrup was dissolved in CH2Cl2 (3 mL) and DIPEA (0.4 mL). Methyl chloroformate (46 μl, 0.6 mmol) was added. The mixture was stirred at rt for 1 hour before being partitioned (CH2Cl2-aq NaHCO3). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a brown foam (126 mg, 74%). ESIMS m/z=336.16 [M+Na]+.


Step 547f. A solution of the compound from step 547e (38 mg, 0.118 mmol) in MeOH (2 mL) was treated with a hydrogen balloon and Pd/C (10 wt %, 3 mg) at rt for 4 hours before being filtered through Celite. The filtrate was concentrated to give the desired compound as a colorless oil (28 mg, 100%). ESIMS m/z=246.15 [M+Na]+.


Step 547g. The title compound was prepared from the compound from step 547f and the compound from step 616d using the procedure similar to that described in step 616e. ESIMS m/z=837.47 [M+H]+.


Example 617



embedded image


Step 617a. To a suspension of AD-mix α (2.9 g) in t-BuOH/H2O (10 mL/10 mL) cooled with ice/water was added a solution of tert-butyl 2-methyl 4-methylenepyrroli-dine-1,2-dicarboxylate (505 mg, 2.1 mmol) in t-BuOH (1 mL). The mixture was gradually warmed up to rt and stirred overnight before Na2SO3 (3 g) was added. After another hour, the mixture was partitioned (CH2Cl2-water). The aqueous was extracted with CH2Cl2. The combined organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (mixture of diastereomers, 515 mg, 85%). ESIMS m/z=176.17 [M-Boc+2H]+.


Step 617b. A solution of the compound from step 617a (512 mg, 1.86 mmol) in CH2Cl2 (5 mL) was treated with DIPEA (0.45 mL, 2.58 mmol) and MsCl (0.16 mL, 2.07 mmol) for 2 hours at 0° C. before being partitioned (CH2Cl2-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated to give the crude desired compound as a colorless oil (725 mg), which was used directly in the next step. ESIMS m/z=254.20 [M-Boc+2H]+.


Step 617c. A solution of the compound from step 617b (1.86 mmol at most) in DMF (6 mL) was treated with 15-crown-5 (0.15 mL, 0.75 mmol) and NaN3 (664 mg, 10.18 mmol) in the presence of K2CO3 (1.12 g, 8.12 mmol). The mixture was stirred at 85° C. for 8 hours before being cooled down and partitioned (EtOAc-water). The organics were washed with water, brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (481 mg, 79% two steps). ESIMS m/z=201.12 [M-Boc+2H]+.


Step 617d. The desired compound was prepared from the compound from step 617c using procedures similar to that described in step 687c.


Step 617e. The desired compound was prepared from the compound from step 617d using procedures similar to that described in step 687d. ESIMS m/z=553.03 [M+Na]+.


Step 617f. The desired compounds (2R,4S)-tert-butyl 4-(azidomethyl)-4-hydroxy-2-(5-(4-iodophenyl)-1H-imidazol-2-yl)pyrrolidine-1-carboxylate (minor product, ESIMS m/z=511.05 [M+Na]+) and (2R,4R)-tert-butyl 4-(azidomethyl)-4-hydroxy-2-(5-(4-iodophenyl)-1H-imidazol-2-yl)pyrrolidine-1-carboxylate (major product, ESIMS m/z=511.03 [M+Na]+) were prepared from the compound from step 617e using procedures similar to that described in step 687e and separated by chromatography (silica, hexanes-ethyl acetate).


Step 617g. A solution of the major compound from step 617f (113 mg, 0.22 mmol) in THF (1.5 mL) and H2O (0.2 mL) was treated with trimethylphosphine (PMe3, 1 M in THF, 1 mL) at 50° C. overnight before being cooled down and concentrated to give the crude desired compound as a yellow syrup, which was used diredctly in the next step. ESIMS m/z=485.1 [M+H]+.


Step 617h. A solution of the crude compound from step 617g (0.22 mmol at most) in THF (2 mL) was treated with CDI (72 mg, 0.42 mmoL) at 50° C. for 4 hours. More CDI (70 mg, 0.41 mmol) was added. The mixture was stirred for 2 more hours before being cooled down and partitioned (CH2Cl2-water). The organics were washed with water, brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a pale yellow oil (55 mg, 50% over two steps). ESIMS m/z=510.98 [M+H]+.


Step 617i. The title compound was prepared from compounds from step 617h and 548f using procedures similar to that described in steps 548g to 548i. ESIMS m/z=834.56 [M+H]+.


Example 549



embedded image


The title compound was prepared from the minor compound from step 617f and 548f using procedures similar to that described in Example 617. ESIMS m/z=834.59 [M+H]+.


Example 619



embedded image


The title compound was prepared from the compound from step 550b and (S)-4-amino-2-(methoxycarbonylamino)-4-oxobutanoic acid (prepared according to WO 2008/021927, 2.160 g, 12.33 mmol) using the procedure similar to that described in step 550c. ESIMS m/z=778.46 [M+H]+.


Example
Compound 552



embedded image


Step 552a. A solution of L-serine (5.25 g, 50 mmol), Na2CO3 (3.07 g, 29 mmol) in water (25 mL) and NaOH (1 M, 52 mL) was treated with methyl chloroformate (4.23 mL, 55 mmoL) at rt overnight. The mixture was extracted with MTBE. The aqueous was acidified to pH ˜2 with HCl (4 M), extracted with EtOAc/MeOH. The organics were dried (Na2SO4), filtered and evaporated to give the desired compound as a colorless oil (6.12 g, 78%).


Step 552b. A solution of the crude compound from step 552a (1.5 g, 9.2 mmol) in benzene (24 mL) in a flask equipped with a Dean-Stark trap was treated with benzyl alcohol (1.99 g, 18.42 mmoL) in the presence of TsOH (171 mg, 0.9 mmol). The mixture was refluxed for 6 hours before being cooled down and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (1.17 g, 50%).


Step 552c. A solution of the compound from step 552b (450 mg, 1.77 mmol) in toluene (5 mL) was treated with phosgene (1.84 M in toluene, 5.7 mL, 10.6 mmol) at 0° C. for 1 hour before being concentrated. The residual was treated with concentrated NH4OH (6 mL) for 30 minutes before being partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by crystallization (EtOAc/Hexane) to give the desired compound as a crystal (85 mg, 15%). 1H NMR (CDCl3): 7.36 (m, 5H), 5.58 (d, 1H), 1.21 (s, 2H), 4.68-4.35 (m, 5H), 3.72 (s, 3H).


Step 552d. A solution of the compound from step 552c (83 mg, 0.278 mmol) in MeOH (10 mL) was treated with Pd/C (10 wt %, 5 mg) under hydrogen balloon at rt for 4.5 hours. The mixture was filtered through Celite and concentrated to give the desired compound as a colorless oil (60 mg, 100%). 1H NMR (D2O): 4.43 (br, 1H), 4.38-4.25 (m, 2H), 3.67 (s, 3H).


Step 552e. The title compound was prepared from the compound from step 552d and 550b using procedures similar to that described in step 550c. ESIMS m/z=794.58 [M+H]+.


Example 554



embedded image


Step 554a. A solution of (S)-1-(tert-butoxycarbonyl)-4-methylenepyrrolidine-2-carboxylic acid (0.98 g, 4.4 mmol) in MeOH (14 mL) and benzene (14 mL) was treated with (trimethylsilyl)diazomethane (TMSCHN2, 2 M in hexanes) dropwisely at rt until the yellow color persisted and no more gas evolved. The solution was concentrated to give the desired compound as a light yellow oil, which was directly used in the next step.


Step 554b. A solution of the compound from step 554a (4.4 mmol at most) and nitroethane (368 mg, 4.9 mmol) in benzene (20 mL) and TEA (2 drops) was treated with phenyl isocyanate (PhNCO, 1.15 g, 9.7 mmol) at rt overnight before being filtered and partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compounds of ˜3;1 inseparable isomeric mixture as a pale yellow oil (0.97 g, 74% over two steps). 1H NMR (CDCl3): 4.52-4.25 (m, 1H), 3.82 (dd, 1H), 3.77 (m, 3H), 3.62-3.50 (m, 1H), 2.99 (t, 1H), 2.85 (d, 1H), 2.62, 2.49 (m, m total 1H), 2.30, 2.08 (m, m, total 1H), 2.01 (s, 3H), 1.50-1.40 (m, 9H).


Step 554c. The two desired compounds (5S,8R)-tert-butyl 8-(5-bromo-1H-benzo[d]imidazol-2-yl)-3-methyl-1-oxa-2,7-diazaspiro[4.4]non-2-ene-7-carboxylate (major isomer, ESIMS m/z=435.10, 437.10 [M+H]+) and (5R,8R)-tert-butyl 8-(5-bromo-1H-benzo[d]imidazol-2-yl)-3-methyl-1-oxa-2,7-diazaspiro[4.4]non-2-ene-7-carboxylate (minor isomer, ESIMS m/z=435.14, 437.14 [M+H]+) were prepared from the compound from step 554b using procedures similar to that described in steps 687c, 548c and 548d and separated by chromatography (silica, hexanes-ethyl acetate).


Step 554d. The desired compound (5S,8R)-tert-butyl 8-(5-ethynyl-1H-benzo[d]imidazol-2-yl)-3-methyl-1-oxa-2,7-diazaspiro[4.4]non-2-ene-7-carboxylate was prepared from the major isomer from step 554c using procedures similar to that described in 548e and 548f. ESIMS m/z=381.10 [M+H]+.


Step 554e. The title compound was prepared from the compound from step 554d and the compound from step 630b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=806.43 [M+H]+.


Example 623



embedded image


Step 623a. The desired compound (5R,8R)-tert-butyl 8-(5-ethynyl-1H-benzo[d]imidazol-2-yl)-3-methyl-1-oxa-2,7-diazaspiro[4.4]non-2-ene-7-carboxylate was prepared from the minor isomer from step 554c using procedures similar to that described in 548e and 548f. ESIMS m/z=381.08 [M+H]+.


Step 623b. The title compound was prepared from the compound from step 623a and the compound from step 630b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=806.57 [M+H]+.


Example 624



embedded image


Step 624a. The desire compound was prepared from the compound from step 548b and (S)-2-(tert-butoxycarbonylamino)-3-methylbutanoic acid using procedure similar to that described in steps 616a and 616b. ESIMS m/z=565.29 [M+H]+.


Step 624b. The title compound was prepared from the compound from step 624a and 616b using procedures similar to that described in steps 616c and 616d and purified by chromatography (silica, MeOH—CH2Cl2-ammonia). ESIMS m/z=731.51 [M+H]+.


Example 556



embedded image


Step 556a. The desire compound was prepared from the compound from step 548f and (S)-2-(tert-butoxycarbonylamino)-3-methylbutanoic acid using procedure similar to that described in steps 616a and 616b. ESIMS m/z=437.20 [M+H]+.


Step 556b. The title compound was prepared from the compound from step 556a and the compound from step 688a using procedures similar to that described in steps 616c and 616d and purified by chromatography (silica, MeOH—CH2Cl2-ammonia). ESIMS m/z=731.66 [M+H]+.


Example 625



embedded image


The title compound was prepared from the compound from step 555i and the compound from step 546b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=849.63 [M+H]+.


Example 559



embedded image


Step 559a. The desired compounds was prepared from the compound from (S)-1-benzyl 2-methyl 4-methylenepyrrolidine-1,2-dicarboxylate using procedures similar to that described in step 687b. 1H NMR (CDCl3): 4.38, 4.25, 4.18 (m, m, m, totally 1H), 3.76, 3.74 (s, s, totally 3H), 3.75, 3.67 (m, m, totally 1H), 2.40 (m, 1H), 2.23, 2.08 (m, m, totally 1H), 1.83, 1.55 (m, m, totally 1H), 1.48, 1.41 (s, s, totally 3H), 1.05 (M, 3H).


Step 559b. The desired compounds, (2S,4S)-tert-butyl 2-(4-(4-iodophenyl)-1H-imidazol-2-yl)-4-methylpyrrolidine-1-carboxylate (major isomer, ESIMS m/z=454.11 [M+H]+) and (2S,4R)-tert-butyl 2-(4-(4-iodophenyl)-1H-imidazol-2-yl)-4-methylpyrrolidine-1-carboxylate (minor isomer, ESIMS m/z=454.16 [M+H]+) were prepared from the compound from step 559a using procedures similar to that described in steps 687c to 687e and separated by chromatography (silica, hexanes-ethyl acetate).


Step 559c. The title compound was prepared from the major isomer from step 559b and the compound from step 555i using procedures similar to that described in steps 548g to 548i. ESIMS m/z=807.61 [M+H]+.


Example 628



embedded image


The title compound was prepared from the minor isomer from step 559b and the compound from step 555i using procedures similar to that described in steps 548g to 548i. ESIMS m/z=807.61 [M+H]+.


Example 560



embedded image


Step 560a. To a solution of (+)-(3R,7aS)-tetrahydro-3-phenyl-3H,5H-pyrrolo[1,2-c]oxazol-5-one (1.51 g, 7.49 mmol) in THF (15 mL) was added a solution of LiHMDS (1.0 M in THF, 34 mL, 34 mmol) at −78° C. under N2. The mixture was stirred at −78° C. for 30 minutes before MeI (2.78 mL, 44.4 mmol) was added at −78° C. The mixture was slowly warmed up to ˜−10° C. before being quenched with saturated NH4Cl solution and evaporated. The residue was partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, EtOAc-hexanes) to give the desired compound as a light yellow solid (1.29 g, 75.4%). ESIMS m/z=232.06 [M+H]+.


Step 560b. The desired compound was prepared from the compound from step 560a using procedures similar to that described in steps 630h to 630k and steps 548a to 548b. ESIMS m/z=468.19 [M+H]+.


Step 560c. The title compound was prepared from the compound from step 560b and 555i using procedures similar to that described in steps 548g to 548i. ESIMS m/z=821.53 [M+H]+.


Example 563



embedded image


Step 563a. A mixture of the compound from step 555a (596 mg, 2 mmol, ˜8:1 diastereomeric mixture), allyl tert-butyl carbonate (1.26 g, 8 mmol), Pd2(dba)3 (46 mg, 0.05 mmol) and 1,4-bis(diphenylphosphino)butane (dppb, 43 mg, 0.1 mmol) in THF (10 mL) was degassed and then heated at 75° C. under N2 for 1.5 hours. After being cooled down, it was concentrated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a yellow oil containing an isomeric impurity (605 mg, 93%). ESIMS m/z=326.26 [M+H]+.


Step 563b. A mixture of the compound from step 563a (677 mg, 2.08 mmol) and 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene[2-(iso-propoxy)-5-(N,N-dimethylaminosulfonyl)phenyl]methylene ruthenium(II)dichloride (Zhan-1B catalyst, 76.4 mg, 0.104 mmol) in toluene (650 mL) was degassed and then heated at 75° C. under N2 for 15 hours. After being cooled down, it was concentrated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a light yellow oil containing an isomeric impurity (585 mg, 94%). ESIMS m/z=298.19 [M+H]+.


Step 563c. To a solution of the compound from step 563b (160 mg, 0.538 mmol) in EtOH (2 mL) and H2O (2 mL) was added LiOH.H2O (27.1 mg, 0.646 mmol). The resulting mixture was stirred at rt for 3 hours before the volatiles were evaporated off. The residue was dissolved in H2O (10 mL) and acidified to pH ˜3 by HCl (4 N). The resulted cloudy mixture was extracted with EtOAc. The organic phase was dried (Na2SO4) and concentrated to afford the desired compound as a colorless oil (142 mg) which was used directly in the next step. ESIMS m/z=284.15 [M+H]+.


Step 563d. To a solution of the compound from step 563c (142 mg, 0.501 mmol), 4-bromo-1,2-diaminobenzene (93.7 mg 0.501 mmol) and EDC.HCl (115 mg, 0.6 mmol) in acetonitrile (4 mL) was added DMAP (6.1 mg, 0.05 mmol). The resulting solution was stirred at rt overnight (16 h) before being concentrated. The residue was purified by chromatography (silica, EtOAc-hexanes) to afford the desired compounds as a brownish solid (196 mg, 80% over two steps). ESIMS m/z=452.01, 454.09[M+H]+.


Step 563e. A solution of the compounds from step 563d (0.196 g, 0.434 mmol) in AcOH (4 mL) was heated at 50° C. for 6 hours before being cooled down. The volatiles were evaporated. The crude oil was partitioned (aq. NaHCO3— EtOAc). The organic phase was dried (Na2SO4) and concentrated to afford a brown oil, which was purified by chromatography (silica, EtOAc-hexanes) to afford the desired compound as a yellow foam (116 mg, 62%) as a single isomer. ESIMS m/z=434.13, 436.13[M+H]+.


Step 563f. To a solution of the compound from step 563e (116 mg, 0.267 mmol), trimethylsilyl acetylene (0.75 mL, 5.34 mmol) in acetonitrile (3 mL) and triethylamine (2 mL) were added Pd(PPh3)4 (31 mg, 0.027 mmol) and CuI (2.5 mg, 0.014 mmol). The resultant mixture was degassed and heated at 90° C. under N2 for 15 hours. After being cooled down, the solution was concentrated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as an orange oil (104 mg, 78%). ESIMS m/z=452.27 [M+H]+.


Step 563g. To a solution of the compound from step 563f (104 mg, 0.230 mmol) in methanol (3 mL) was added potassium carbonate (70 mg 0.5 mmol). The resultant mixture was stirred at rt for 3 hours. The volatiles were evaporated. The residue was partitioned (aq. NaHCO3-EtOAc). The organic phase was dried (Na2SO4) and concentrated to afford a brown oil, which was purified by chromatography (silica, EtOAc-hexanes) to afford the desired compound as a yellow foam (76 mg, 94%). ESIMS m/z=380.20 [M+H]+.


Step 563h. The title compound was prepared from the compound from step 563g and the compound from step 630b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=805.59 [M+H]+.


Example 632



embedded image


Step 632a. A solution of the compound from step 563b (152 mg, 0.51 mmol) in MeOH (5 mL) was treated with Pd/C(10 wt %, 10 mg) and hydrogen (60 psi) for 3 hours at rt before being filtered through Celite. The filtrate was concentrated to give the desired compound as a light yellow syrup, which was used directly in the next step. ESIMS m/z=300.17 [M+H]+.


Step 632b. The desired compound was prepared from the compound from step 632a using procedures similar to that described in steps 563c to 563g. ESIMS m/z=380.22 [M+H]+.


Step 632c. The title compound was prepared from the compound from step 632b and the compound from step 630b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=807.48 [M+H]+.


Example 633



embedded image


The title compound was prepared from the compound from step 632b and compound 548b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=833.63 [M+H]+.


Example 634



embedded image


Step 634a. A solution of (5)-1-benzyl 2-methyl 4-methylenepyrrolidine-1,2-dicarboxylate (666 mg, 2.42 mmol) in THF (8 mL) was treated with 9-borabicyclo-[3,3,1]nonane (9-BBN, 0.5 M in THF, 7 mL, 0.42 mmoL) at rt for 4 hours before NaOH (2.5 N, 2 mL) was added followed by hydrogen peroxide (H2O2, 30% in water, 1 mL) slowly. The mixture was stirred at rt overnight before being concentrated. The residue was dissolved in water, acidified to pH ˜2 by HCl (4 M) and extracted with EtOAc. The organics were dried (Na2SO4), filtered and evaporated. The residue was dissolved in MeOH (14 mL) and benzene (14 mL) and treated with TMSCHN2 (2 M in hexanes) dropwise until the yellow color persisted. The solution was concentrated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compounds as a colorless oil and isomeric mixture (401 mg, 51%). ESIMS m/z=294.2 [M+H]+.


Step 634b. A solution of compound from 634a (248 mg, 0.845 mmol) in CH2Cl2 (3 mL) was treated at rt with Deoxo-Fluor (376 mg, 1.7 mmol) for two hours before a second portion of Deoxo-Fluor (376 mg, 1.7 mmol) was added. The mixture was stirred at rt overnight before being queched dropwisely with aqueous NaHCO3 at 0° C. and partitioned (CH2Cl2—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compounds as a colorless oil and isomeric mixture (130 mg, 85%). ESIMS m/z=296.11 [M+H]+.


Step 634c. A solution of the crude compound from step 634b (130 mg, 0.44 mmol) in EtOH (2 mL) and water (2 mL) was treated with LiOH.H2O (18.5 mg, 0.44 mmol) at rt for 4 hours before being concentrated. The residue was dissolved in H2O (5 mL) and acidified to pH ˜2 by HCl (4 N). The mixture was extracted with EtOAc and CH2Cl2. The organics were dried (Na2SO4), filtered and evaporated to give the crude desired compounds as a colorless oil and isomeric mixture (140 mg, 113%). ESIMS m/z=282.10 [M+H]+.


Step 634d. A solution of compound from step 634c (0.44 mmol at most) and di-tert-butyl dicarbonate (96 mg, 0.44 mmol) in MeOH (10 mL) was treated with Pd/C (10 wt %, 50 mg) under hydrogen (60 psi) overnight at rt before being filtered through Celite. The filtrate was concentrated to give the crude desired compound as a colorless oil and isomeric mixture, which was used directly in the next steps. ESIMS m/z=148.2 [M-Boc+2H]+.


Step 634e. The desired compounds, (2S,4R)-tert-butyl 4-(fluoromethyl)-2-(5-(4-iodophenyl)-1H-imidazol-2-yl)pyrrolidine-1-carboxylate (major, ESIMS m/z=472.17 [M+H]+) and (2S,4S)-tert-butyl 4-(fluoromethyl)-2-(5-(4-iodophenyl)-1H-imidazol-2-yl)pyrrolidine-1-carboxylate (mior, ESIMS m/z=472.21 [M+H]+) were prepared from the compound from step 634d using procedures similar to that described in step 687d to 687e and separated by chromatography (silica, hexanes-ethyl acetate).


Step 634f. The title compound was prepared from the major compound from step 634e and the compound from step 555i using procedures similar to that described in steps 548g to 548i. ESIMS m/z=825.49 [M+H]+.


Example 566



embedded image


The title compound was prepared from the minor compound from step 634e and the compound from step 555i using procedures similar to that described in steps 548g to 548i. ESIMS m/z=825.38 [M+H]+.


Example 635



embedded image


Step 635a. A solution of (S)-1-(tert-butoxycarbonyl)-4-oxopyrrolidine-2-carboxylic acid (2.0 g, 8.73 mmol) in THF (20 mL) was treated with benzyl bromide (1.14 mL, 9.6 mmol) in the presence of DIPEA (1.67 mL, 9.6 mmol) at rt overnight before being partitioned (EtOAc—H2O). The organic phase was washed with brine, dried (Na2SO4) and concentrated. The residue was purified by chromatography (silica, hexanes-EtOAc) to give the desired product as a colorless oil (1.49 g, 53%). 1H NMR (CDCl3): 7.38 (m, 5H), 5.29-5.10 (m, 2H), 4.81 (dd, 1H), 3.90 (m, 2H), 2.92 (m, 1H), 2.58 (m, 1H), 1.45, 1.38 (2s, total 1H).


Step 635b. To a solution of fleshly prepared samarium iodide (SmI2, 10 mmol) in THF (100 mL) was added hexamethylphosphoramide (HMPA, 1.6 mL), followed by a solution of the compound from step 635a (500 mg, 1.56 mmol), methyl acrylate (0.28 mL, 3.13 mmol) and 2-propanol (0.23 mL, 3 mmol) in THF (5 mL) dropwisely. The mixture was stirred at rt for 1.5 hours before being quenched with HCl (1 N) and partitioned (EtOAc—H2O). The organic phase was washed with brine, dried (Na2SO4) and concentrated. The residue was purified by chromatography (silica, hexanes-EtOAc) to give the desired product as a colorless oil (189 mg, 32%). ESIMS m/z=376.18 [M+H]+.


Step 635c. A solution of the compound from step 635b (189 mg, 0.50 mmol) in MeOH (5 mL) was treated with Pd/C(10 wt %, 15 mg) and H2 (60 psi) at rt for 4 hours before being filtered through a pad of Celite. The filtrate was concentrated to give the desired compound as a colorless syrup, which was used directly in the next step.


Step 635d. The desired compound was prepared from the compound from step 635c using procedures similar to that described in steps 574a to 574b. ESIMS m/z=483.94 [M+H]+.


Step 635e. The title compound was prepared from the compound from step 635d and the compound from step 1-1b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=807.64 [M+H]+.


Example 636



embedded image


Step 636a. A solution of the compound from step 617b (1.82 mmol at most) in DMF (5 mL) was treated with 15-crown-5 (80 mg, 0.36 mmol) and NaI (1.36 g, 9.1 mmol) in the presence of K2CO3 (1.12 g, 8.12 mmol) at 90° C. overnight before being cooled down and partitioned (EtOAc-water). The organics were washed with water, brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (396 mg, 56%) containing an isomeric impurity. ESIMS m/z=386.10 [M+H]+.


Step 636b. A solution of the compound from step 636a (516 mg, 1.34 mmol) in toluene (10 mL) was treated with totally 4 portions of Bu4SnH (0.36 mL, 1.34 mmol) and AIBN (22 mg, 0.134 mmol) for 12 hours at 110° C. before being cooled down and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (177 mg, 51%) as a single isomer. ESIMS m/z=260.10 [M+H]+.


Step 636c. A solution of the compound from step 636b (170 mg, 0.655 mmol) in CH2Cl2 (3 mL) was treated with DAST (0.18 mL, 1.32 mmol) at 0° C. for 1 hours before being quenched with aqueous NaHCO3 dropwisely and partitioned (CH2Cl2-water). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (177 mg, 51%). ESIMS m/z=260.10 [M+H]+.


Step 636d. The desired compound was prepared from the compound from step 636c using procedures similar to that described in steps 687c to-687e. ESIMS m/z=472.11 [M+H]+.


Step 636e. The title compound was prepared from the compound from step 636d and the compound from step 555i using procedures similar to that described in steps 548g to 548i. ESIMS m/z=825.65 [M+H]+.


Example 637



embedded image


Step 637a. The desired compound was prepared from (1R,3S,5R)-2-(tert-butoxycarbonyl)-2-azabicyclo[3.1.0]hexane-3-carboxylic acid (prepared according to WO 2009/102325) using procedures similar to that described in steps 548a and 548b. ESIMS m/z=452.04 [M+H]+.


Step 637b. The title compound was prepared from the compound from step 637a and the compound from step 548f using procedures similar to that described in steps 548g to 548i. ESIMS m/z=775.46 [M+H]+.


Example 569



embedded image


The title compound was prepared from (3S,5S)-tert-butyl 3-(5-iodo-1H-benzo[d]imidazol2-yl)-7-oxa-2-azaspiro[4.5]decane-2-carboxylate (prepared according to WO 2011/081918A1) and the compound from step 1-1b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=807.58 [M+H]+.


Example 638



embedded image


The title compound was prepared from (3S,5S)-tert-butyl 3-(5-iodo-1H-benzo[d]imidazol2-yl)-7-oxa-2-azaspiro[4.5]decane-2-carboxylate (prepared according to WO 2011/081918A1) and the compound from step 565b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=833.50 [M+H]+.


Example 570



embedded image


The title compound was prepared from (3S,5R)-tert-butyl 3-(5-iodo-1H-benzo[d]imidazol2-yl)-7-oxa-2-azaspiro[4.5]decane-2-carboxylate ((prepared according to WO 2011/081918A1) and the compound from step 1-1b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=807.58 [M+H]+.


Example 639



embedded image


The title compound was prepared from (3S,5R)-tert-butyl 3-(5-iodo-1H-benzo[d]imidazol2-yl)-7-oxa-2-azaspiro[4.5]decane-2-carboxylate (prepared according to WO2011081918A1) and the compound from step 565b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=833.40 [M+H]+.


Example 572



embedded image


Step 572a. A solution of (S)-1-tert-butyl 2-methyl 4-methylenepyrrolidine-1,2-dicarboxylate (1.98 mg, 7.2 mmol) in THF (20 mL) was treated with 9-BBN (0.5 M in THF, 21.6 mL, 10.80 mmol) at rt for 6 hours before H2O (20 mL) was added at 0° C. followed by sodium perborate tetrahydrate (NaBO3.4H2O, 3.38 g, 22 mmol). The mixture was stirred at rt overnight before being filtered through Celite. The filtrate was extracted with EtOAc. The organics were dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compounds as a colorless oil and isomeric mixture (1.15 g, 61%). ESIMS m/z=260.16 [M+H]+.


Step 572b. A solution of DMSO (1.11 mL, 15.6 mmol) in CH2Cl2 (20 mL) was treated with oxalyl chloride (1.02 mL, 11.7 mmol) at −78° C. for 0.5 hour before a solution of the compounds from step 572a (1.15 g, 3.9 mmol) in CH2Cl2 (5 mL) was added. After 1 hour at −78° C., the mixture was warmed up to −30° C. before TEA (3 mL) was added. After 1 hour, H2O (20 mL) was added at 0° C. The mixture was partitioned (CH2Cl2—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compounds as a colorless oil and isomeric mixture (0.98 g, 85%).


Step 572c. A solution of the compounds from 572b (840 mg, 3.26 mmol) in THF (5 mL) was added into a suspension of methyltriphenylphosphonium bromide (Ph3PCH3Br, 2.33 g, 6.53 mmol) and potassium t-butoxide (t-BuOK, 660 mg, 5.88 mmol) in THF (10 mL) (pre-mixed for 1 hour) at 0° C. The mixture was stirred at 0° C. for 3 hours before being quenched with H2O (20 mL) and partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compounds as a colorless oil and isomeric mixture (0.55 g, 70%).


Step 572d. A solution of compounds from 572c (342 mg, 1.34 mmol) in CH2Cl2 (5 mL) was treated with TFA (0.31 mL, 4.02 mmol) at rt for 3 hours before being concentrated. The residue was dissolved in CH2Cl2 (5 mL) and treated with benzyl chloroformate (0.39 mL, 2.7 mol) in the presence of the DIPEA (1 mL) overnight before being partitioned (EtOAc—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compounds as a colorless oil and isomeric mixture (410 mg, 105%, contaminated with a small amount of benzyl alcohol). ESIMS m/z=290.12 [M+H]+.


Step 572e. To a solution of diethylzinc (ZnEt2, 2.75 mL) in CH2Cl2 (30 mL) was added TFA (2.06 mL, 26.8 mmol) very slowly at 0° C. over 30 minutes under N2. After 30 minutes, a solution of diiodomethane (CH2I2, 2.16 mL, 26.8 mmol) in CH2Cl2 (10 mL) was added slowly. The mixture was stirred at 0° C. for 30 minutes before a solution of the compounds from step 572d (1.34 mmol at most) in CH2Cl2 (10 mL) was added. The resulting mixture was stirred for 3 days at rt before being quenched with aqueous NH4Cl and partitioned (CH2Cl2—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compounds as a colorless oil and isomeric mixture (289 mg, 70%). ESIMS m/z=304.16 [M+H]+.


Step 572f. A solution of the compounds from step 572e (286 mg, 0.94 mmol) and di-tert-butyl dicarbonate (281 mg, 1.3 mmol) in MeOH (10 mL) was treated with palladium hydroxide (Pd(OH)2 on carbon, 20 wt %, 25 mg) under hydrogen (60 psi) at rt for 4.5 hours before being filtered through Celite. The filtrate was evaporated to give the desired compounds as a colorless oil and isomeric mixture (350 mg) which was used directly in the next step. ESIMS m/z=270.16 [M+H]+.


Step 572g. The desired compounds, (2S,4S)-tert-butyl 4-cyclopropyl-2-(6-iodo-1H-benzo[d]imidazol-2-yl)pyrrolidine-1-carboxylate (major, less polar, ESIMS m/z=454.12 [M+H]+) and (2S,4R)-tert-butyl 4-cyclopropyl-2-(6-iodo-1H-benzo[d]imidazol-2-yl)pyrrolidine-1-carboxylate (mior, more polar, ESIMS m/z=454.16 [M+H]+) were prepared from the compound from step 572f using procedures similar to that described in steps 687c, 548c and 548d and separated by chromatography (silica, hexanes-ethyl acetate).


Step 572h. The title compound was prepared from the major compound from step 572g and the compound from step 1-1b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=777.53 [M+H]+.


Example 641



embedded image


The title compound was prepared from the minor compound from step 572g and the compound from step 1-1b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=777.53 [M+H]+.


Example 612



embedded image


The title compound was prepared from the major compound from step 572g and the compound from step 565b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=803.38 [M+H]+.


Example 691



embedded image


The title compound was prepared from the minor compound from step 572g and the compound from step 565b using procedures similar to that described in steps 548g to 548i. ESIMS m/z=803.31 [M+H]+.


Example 642



embedded image


The title compound was prepared from the minor compound from step 572g and the compound from step 489a using procedures similar to that described in Examples 692. ESIMS m/z=803.60 [M+H]+.


Example 643



embedded image


Step 643a. The desire compound was prepared from 6-bromo-2-chloroquinoxaline (prepared according to WO 2011/004276) and the compound from step 574c using procedures similar to that described in step 574d. ESIMS m/z=520.10 [M+H]+.


Step 643b. The desire compound was prepared from the compound from step 643a using procedure similar to that described in step 574e. ESIMS m/z=568.27 [M+H]+.


Step 643c. The title compound was prepared from compound from step 643b (S)-tert-butyl 2-(5-bromo-1H-imidazol-2-yl)pyrrolidine-1-carboxylate (prepared according to WO 2008/021927) using procedures similar to that described in Example 692. ESIMS m/z=791.37 [M+H]+.


Example 576



embedded image


Step 576a. To a solution of cyclobutyl alcohol (250 mg, 3.47 mmol) and DIPEA (1.21 mL, 6.94 mmol) in CH2Cl2 (8 mL) was added phosgene (20% in toluene, 2.6 mL, 5.2 mmol) very slowly at 0° C. over 30 minutes under N2. The mixture was stirred at 0° C. for 1 hour. A solution of (S)-valine methyl ester hydrochloride (872 mg, 5.2 mmol) in CH2Cl2 (5 mL) and DIPEA (1.8 mL) was added. The mixture was stirred for 4 hours at rt before being quenched with ammonia (2 M in MeOH) and partitioned (CH2Cl2—H2O). The organics were washed with brine, dried (Na2SO4), filtered and evaporated. The residue was purified by chromatography (silica, hexanes-ethyl acetate) to give the desired compound as a colorless oil (360 mg, 52%). 1H NMR (CDCl3): 5.21 (d, 1H), 4.87 (m, 1H), 4.20 (m, 1H), 3.68 (s, 3H), 2.25 (m, 2H), 2.09 (m, 1H), 2.00 (m, 2H), 1.71 (m, 1H), 1.53 (m, 1H), 0.91 (d, 3H), 0.85 (d, 3H).


Step 576b. A solution of the compound from step 576a (355 mg, 1.55 mmol) in EtOH (23 mL) and water (3 mL) was treated with LiOH.H2O (78 mg, 1.86 mmol) and stirred overnight before being concentrated. The residue was dissolved in H2O (5 mL) and acidified to pH ˜2 by HCl (1 N). The mixture was extracted with EtOAc and CH2Cl2. The organics were dried (Na2SO4), filtered and evaporated to give the crude desired compound as a white foam (323 mg). 1H NMR (CDCl3): 5.14 (m, 1H), 4.97 (m, 1H), 4.31 (m, 1H), 2.36 (m, 1H), 2.22 (m, 1H), 2.05 (m, 1H), 1.78 (m, 1H), 1.60 (m, 1H), 1.01 (d, 3H), 0.95 (d, 3H).


Step 576c. The title compound was prepared from the compounds from step 576b and the compound from step 548h using the procedure similar to that described in step 548i. ESIMS m/z=869.48 [M+H]+.


Example 645



embedded image


The title compound was prepared from the compounds from step 548h and (R)-(methoxycarbonyl)amino phenyl acetic acid (prepared according to WO 2008/021927) using procedures similar to that described in step 548i. ESIMS m/z=857.65 [M+H]+.


Example 688



embedded image


Step 688a. The desired compound was prepared from the compound from step 572f using procedures similar to that described in steps 687c, 548a and 548b. ESIMS m/z=480.40 [M+H]+.


Step 688b. The title compound was prepared from the compounds from step 688a and the compound from step 548f using procedure similar to that described in steps 548g to 548i. ESIMS m/z=803.60 [M+H]+.


Example 646



embedded image


Step 646a. The desired compound was prepared from the compounds from step 630b and the compound from step 515g using procedures similar to that described in steps 616a and 616b. ESIMS m/z=497.05 [M+H]+.


Step 646b. The desired compound was prepared from the compound from step 616a and (R)-(methoxycarbonyl)amino phenyl acetic acid (prepared according to WO 2008/021927) using the procedure similar to that described in step 616b. ESIMS m/z=429.26 [M+H]+.


Step 646c. The title compound was prepared from the compounds from step 646a and the compound from step 646b using procedure similar to that described in step 548g. ESIMS m/z=797.71 [M+H]+.


Example 578



embedded image


Step 578a. The desired compound was prepared from the compounds from step 548b and the compound from step 515g using procedure similar to that described in steps 616a and 616b. ESIMS m/z=523.11 [M+H]+.


Step 578b. The title compound was prepared from compounds from step 578a and 646b using procedure similar to that described in step 548g. ESIMS m/z=823.69 [M+H]+.


Example 648



embedded image


Step 648a. The desired compound was prepared from the compounds from step 637a and the compound from step 515g using procedure similar to that described in steps 616a and 616b. ESIMS m/z=509.15[M+H]+.


Step 648b. The title compound was prepared from the compounds from step 648a and the compound from step 646b using procedure similar to that described in step 548g. ESIMS m/z=809.08 [M+H]+.


Example 583



embedded image


The title compound was prepared from (S)-2-(methoxycarbonylamino)-2-(tetrahydro-2H-pyran-4-yl)acetic acid (prepared according to WO 2011/059887) and the compound from step 548h using procedure similar to that described in step 548i. ESIMS m/z=873.64 [M+H]+.


Example 655



embedded image


The title compound was prepared from (S)-2-(methoxycarbonylamino)butanoic acid (prepared according to WO 2008/021927) and the compound from step 548h using procedure similar to that described in step 548i. ESIMS m/z=761.54 [M+H]+.


Example 586



embedded image


Step 586a. The desired compound was prepared from (1R,3S,5R)-2-(tert-butoxycarbonyl)-2-azabicyclo[3.1.0]hexane-3-carboxylic acid (prepared according to WO 2009/102325) and (R)-(methoxycarbonyl)amino phenyl acetic acid (prepared according to WO 2008/021927) using procedures similar to that described in steps 548c to 548f, 616a and 616b. ESIMS m/z=415.17[M+H]+.


Step 586b. The title compound was prepared from the compounds from step 586a and step 578a using procedure similar to that described in step 548g. ESIMS m/z=809.39 [M+H]+.


Example 658



embedded image


Step 658a. The desired compound was prepared from the compound from step 548b and (5)-2-(methoxycarbonylamino)-2-(tetrahydro-2H-pyran-4-yl)acetic acid (prepared according to WO 2011/059887) using procedures similar to that described in steps 616a and 616b. ESIMS m/z=523.11 [M+H]+.


Step 658b. The title compound was prepared from the compounds from step 658a and step 616b using procedures similar to that described in step 548g. ESIMS m/z=831.51 [M+H]+.


Example 590



embedded image


Step 590a. The desired compound was prepared from the compound from step 548f and (5)-2-(methoxycarbonylamino)-2-(tetrahydro-2H-pyran-4-yl)acetic acid (prepared according to WO 2011/059887) using procedures similar to that described in steps 616a and 616b. ESIMS m/z=437.25 [M+H]+.


Step 590b. The title compound was prepared from the compounds from step 590a and step 578a using the procedure similar to that described in step 548g. ESIMS m/z=831.51 [M+H]+.


Example 659



embedded image


Step 659a. The desired compound was prepared from the compound from step 637a and (R)-(methoxycarbonyl)amino phenyl acetic acid (prepared according to WO 2008/021927) using procedures similar to that described in steps 616a and 616b. ESIMS m/z=543.03 [M+H]+.


Step 659b. The title compound was prepared from the compounds from step 659a and step 616b using the procedure similar to that described in step 548g. ESIMS m/z=809.26 [M+H]+.


Example 671



embedded image


Step 671a. The desired compound was prepared from the minor compound from step 559b and the compound from step 616b using the procedures similar to that described in step 548g. ESIMS m/z=720.80 [M+H]+.


Step 671b. The title compound was prepared from the compound from step 671a and (R)-(methoxycarbonyl)amino phenyl acetic acid (prepared according to WO 2008/021927) using procedures similar to that described in steps 548h and 548i. ESIMS m/z=811.45 [M+H]+.


Example 603



embedded image


The title compound was prepared from the compound from step 671a and (S)-2-(methoxycarbonylamino)-2-(tetrahydro-2H-pyran-4-yl)acetic acid (prepared according to WO 2011/059887) using procedures similar to that described in steps step 548h and 548i. ESIMS m/z=819.48 [M+H]+.


Example 649



embedded image


Step 649a. A solution of the compound from step 548b (10 g, 21.49 mmol) in CH2Cl2 (119 ml) was treated with HCl (4 M in dioxane, 118 mL, 473 mmol) at rt overnight before being concentrated. The residue was dried under vacuum to afford the desired compound as a yellow solid. ESIMS m/z=366.00 (M+H)+.


Step 649b. DIPEA (35.8 mL, 205 mmol) was added into a mixture of the compound from step 649a (7.85 g, 21.49 mmol), the compound from step 515g (3.59 g, 20.47 mmol), and HATU (8.17 g, 21.49 mmol) in acetonitrile (205 mL). It was stirred at rt for 1 hour before being concentrated. The residue was purified by chromatography (silica, EtOAc—Hexanes) to give the desired product as light brown oil (10.85 g, 100%). ESIMS m/z=523.03 (M+H)+.


Step 649c. A mixture of the compound from step 548f (1.68 g, 4.98 mmol), the compound from step 649b (2.65 g, 5.08 mmol), copper(I) iodide (0.028 g, 0.15 mmol) and Pd(PPh3)4 (0.288 g, 0.25 mmol) in acetonitrile (8.30 mL) and TEA (6.30 mL, 44.8 mmol) was degassed and then stirred at 40° C. overnight under N2 before being concentrated. The residue was purified by chromatography (silica, MeOH—CH2Cl2) to give the title compound as a yellow solid (3 g, 82%). ESIMS m/z=732.45 (M+H)+.


Example 581



embedded image


Step 581a. A solution of the compound of example 649 (0.749 g, 1.02 mmol) in CH2Cl2 (19.2 mL) and MeOH (6.40 mL) at rt was treated with HCl (4 M in 1,4-dioxane, 25.6 mL, 102 mmol) at rt for 3 hours before being concentrated and dried under vacuum to afford the crude desired compound (0.856 g) as a yellow solid, which was used directly for next step. ESIMS m/z=632.43 (M+H)+.


Step 581b. To a mixture of the compound from step 581a (0.082 g, 0.11 mmol), (R)-2-(methoxycarbonylamino)-2-(thiophen-3-yl)acetic acid (prepared according to WO2009/102325, 0.029 g, 0.14 mmol) and HATU (0.055 g, 0.14 mmol) in acetonitrile (1.1 mL) was added DIPEA (0.19 mL, 1.11 mmol). It was stirred at rt for 1 hour. After evaporation, the residue was purified by chromatography (silica, hexanes-EtOAc, then MeOH-TEA-EtOAc) to give the title compound as a yellow solid (0.046 g, 50% over 2 steps). ESIMS m/z=829.44 (M+H)+.


Example 601



embedded image


Step 601a. A solution of N-Boc-erythro-D-β-methylphenylalanine (0.260 g, 0.93 mmol) in CH2Cl2 (11.6 mL) at 0° C. was treated with HCl (4 M in 1,4-dioxane, 2.33 mL, 9.31 mmol) at rt for 5 hours before being concentrated and dried under vacuum to afford the crude desired compound as a white solid, which was used directly for next step. ESIMS m/z=180.05 (M+H)+.


Step 601b. Into a solution of the compound from step 601a (0.93 mmol at most) in aqueous NaOH (1 M, 2.79 mL, 2.79 mmol) at rt were added sodium carbonate (0.217 g, 2.05 mmol) and methyl chloroformate (0.16 mL, 2.05 mmol). It was stirred at rt overnight before being diluted with water and extracted with MTBE. The aqueous layer was acidified with concentrated HCl to pH ˜1. It was diluted with water and extracted with CH2Cl2. The combined extracts were dried (Na2SO4), filtered and concentrated. The residue was co-evaporated with toluene, dried under vacuum to afford the desired compound as a crude colorless oil (0.180 g).


Step 601c. A mixture of the compounds from step 581a (0.072 g, 0.097 mmol) and step 601b (0.030 g, 0.13 mmol) in acetonitrile (1.6 mL) was treated with HATU (0.037 g, 0.097 mmol) and DIPEA (0.170 ml, 0.971 mmol) at rt overnight before evaporation. The residue was purified by chromatography (silica, hexane-EtOAc then MeOH-TEA-EtOAc) to give the title compound as a white solid (0.029 g, 35%). ESIMS m/z=851.34 (M+H)+.


Example 669



embedded image


The title compound was isolated as a minor product from step 601c. ESIMS m/z=893.34 (M+H)+.


Example 670



embedded image


Step 670a. A solution of methyl 2-(tert-butoxycarbonylamino)-2-(dimethoxyphos-phoryl)acetate (2.52 g, 8.47 mmol) in THF (5 mL) was treated with 1,1,3,3-tetramethyl-guanidine (1.06 ml, 8.47 mmol) at rt for 10 minutes before a solution of 1,3-dimethoxy-propan-2-one (0.5 g, 4.23 mmol) in THF (5 ml) was charged. It was stirred at rt for 48 hours before being concentrated. The residue was dissolved in EtOAc, washed with 1 N HCl, saturated sodium bicarbonate and brine. The organics were dried (Na2SO4), filtered and concentrated. The residue was purified by chromatography (silica, EtOAc-hexanes) to give the desired compound (1.04 g, 85%). ESIMS m/z=312.16 [M+Na]+.


Step 670b. A mixture of the compound from step 670a (0.948 g, 3.28 mmol) and (−)-1,2-bis((2S,5S)-2,5-dimethylphos-pholano)ethane(1,5-cyclooctadiene)rhodium(I)tetrafluoroborate (0.018 g, 0.033 mmol) in MeOH (10 mL) was hydrogenated at rt under hydrogen (60 psi) for 60 hours before being filtered through Celite. The filtrate was concentrated to give the crude desired compound (0.95 g), which was used directly in next step. ESIMS m/z=314.18 [M+Na]+.


Step 670c. A solution of the crude compound from step 670b (3.28 mmol at most) in THF (16.4 mL) and MeOH (4.1 ml) at 0° C. was treated with LiOH (1 M, 8.20 mL, 8.20 mmol) at 0° C. for 2 hours and then at rt for 2 hours before being diluted with water, acidified to pH ˜2 at 0° C., and extracted with CH2Cl2. The organics were washed with water, brine, dried (Na2SO4), filtered and concentrated to give the crude desired compound as a yellow oil (0.765 g, 84%). ESIMS m/z=300.10 [M+Na]+.


Step 670d. The title compound was prepared from the compound from step 670c and the compound from step 581a using procedures similar to that described in Example 601. ESIMS m/z=849.40 [M+H]+.


Example 610



embedded image


Step 610a. A solution of (25)-2-amino-2-(3-pyridyl)acetic acid hydrochloride salt (0.028 g, 0.15 mmol) in NaOH (1 M, 0.45 mL, 0.45 mmol) was treated with methyl chloroformate (0.012 mL, 0.15 mmol) at rt for 1 hour before being acidified with 1 M HCl to pH ˜3 and lyophilized to give the crude desired compound. ESIMS m/z=211.06 (M+H)+.


Step 610b. To a mixture of the compound from step 581a (0.082 g, 0.11 mmol), the crude compound from step 610a (0.029 g) and HATU (0.041 g, 0.108 mmol) in DMF (1.1 mL) was added DIPEA (0.19 mL, 1.08 mmol). It was stirred at rt overnight. The volatiles were evaporated off. The residue was purified by chromatography (silica, EtOAc then MeOH-TEA-EtOAc) to give the title compound as a white solid (0.005 g, 5.62% yield). ESIMS m/z=824.35 [M+H]+.


The following title compounds were prepared using procedures similar to that described above.














Example
Structure
ESIMS m/z [M + H]+

















580


embedded image


841.31





650


embedded image


857.52





582


embedded image


829.48





651


embedded image


857.51





652


embedded image


841.51





584


embedded image


857.39





653


embedded image


841.61





585


embedded image


853.65





654


embedded image


853.68





587


embedded image


803.66





656


embedded image


803.57





589


embedded image


805.53





592


embedded image


823.53





667


embedded image


829.43





599


embedded image


815.40





668


embedded image


541.42





602


embedded image


787.16





675


embedded image


829.51





676


embedded image


801.54





679


embedded image


815.26





600


embedded image


815.29





594


embedded image


815.33





663


embedded image


803.28





595


embedded image


797.42





664


embedded image


815.42





596


embedded image


803.32





665


embedded image


831.33





597


embedded image


827.38





598


embedded image


779.36





673


embedded image


777.34





605


embedded image


777.34





607


embedded image


803.50





678


embedded image


833.46





604


embedded image


825.36





694


embedded image


867.41





672


embedded image


825.36





686


embedded image


867.40





674


embedded image


803.40





606


embedded image


803.40





609


embedded image


857.55





677


embedded image


893.54





611


embedded image


925.50





680


embedded image


869.44





682


embedded image


787.44





681


embedded image


787.45





683


embedded image


845.42





684


embedded image


827.49









Biological Activity
1. HCV Replicon Cell Lines

HCV replicon cell lines (kindly provided by R. Bartenschlager) isolated from colonies as described by Lohman et. al. (Lohman et al. (1999) Science 285: 110-113, expressly incorporated by reference in its entirety) and used for all experiments. The HCV replicon has the nucleic acid sequence set forth in EMBL Accession No.: AJ242651, the coding sequence of which is from nucleotides 1801 to 8406.


The coding sequence of the published HCV replicon was synthesized and subsequently assembled in a modified plasmid pBR322 (Promega, Madison, Wis.) using standard molecular biology techniques. One replicon cell line (“SGR 11-7”) stably expresses HCV replicon RNA which consists of (i) the HCV 5′UTR fused to the first 12 amino acids of the capsid protein, (ii) the neomycin phosphotransferase gene (neo), (iii) the IRES from encephalomyocarditis virus (EMCV), and (iv) HCV NS2 to NSSB genes and the HCV 3′UTR. Another replicon cell line (“Huh-luc/neo-ET”) described by Vrolijk et. al. (Vrolijk et. al. (2003) Journal of Virological Methods 110:201-209, expressly incorporated by reference in its entirety) stably expresses HCV replicon RNA which consists of (i) the HCV 5′UTR fused to the first 12 amino acids of the capsid protein, (ii) the firefly luciferase reporter gene, (iii) the ubiquitin gene, (iv) the neomycin phosphotransferase gene (neo), (v) the IRES from encephalomyocarditis virus (EMCV), and (vi) HCV NS3 to NS5B genes that harbor cell culture adaptive mutations (E1202G, T1280I, K1846T) and the HCV 3′UTR.


These cell lines were maintained at 37° C., 5% CO2, 100% relative humidity in DMEM (Cat#11965-084, Invitrogen), with 10% fetal calf serum (“FCS”, Invitrogen), 1% non-essential amino acids (Invitrogen), 1% of Glutamax (Invitrogen), 1% of 100× penicillin/streptomycin (Cat#15140-122, Invitrogen) and Geneticin (Cat#10131-027, Invitrogen) at 0.75 mg/ml or 0.5 mg/ml for 11-7 and Huh-luc/neo-ET cells, respectively.


2. HCV Replicon Assay—qRT-PCR


EC50 values of single agent compounds and combinations were determined by HCV RNA detection using quantitative RT-PCR, according to the manufacturer's instructions, with a TAQMAN® One-Step RT-PCR Master Mix Reagents Kit (Cat#AB 4309169, Applied Biosystems) on an ABI Model 7500 thermocycler. The TaqMan primers used for detecting and quantifying HCV RNA were obtained from Integrated DNA Technologies. HCV RNA was normalized to GAPDH RNA levels in drug-treated cells, which is detected and quantified using the Human GAPDH Endogenous Control Mix (Applied Biosystems, AB 4310884E). Total cellular RNA is purified from 96-well plates using the RNAqueous 96 kit (Ambion, Cat#AM1812). Chemical agent cytotoxicity is evaluated using an MTS assay according to the manufacturer's directions (Promega).


3. HCV Replicon Assay—Luciferase

Since clinical drug resistance often develops in viral infections following single agent therapies, there is a need to assess the additive, antagonistic, or synergistic properties of combination therapies. We used the HCV replicon system to assess the potential use of the compound of the present invention or in combination therapies with Interferon alpha, cyclosporine analogs and inhibitors targeting other HCV proteins. The acute effects of a single or combinations of drugs are studied in the “Huh-luc/neo-ET” replicon with each chemical agent titrated in an X or Y direction in a 6 point two-fold dilution curve centered around the EC50 of each drug. Briefly, replicon cells are seeded at 7,000 cells per well in 90 ul DMEM (without phenol red, Invitrogen Cat.#31053-036) per well with 10% FCS, 1% non-essential amino acids, 1% of Glutamax and 1% of 1 OOX penicillin/streptomycin and incubated overnight at 37° C., 5% CO2, 100% relative humidity. 16-20 h after seeding cells, test compounds previously solubilized and titrated in dimethyl sulfoxide (“DMSO”) from each X plate and Y plate are diluted 1:100 in DMEM (without phenol red, Invitrogen Cat.#31053-036) with 10% FCS, 1% non-essential amino acids, 1% of Glutamax and 1% of 100× penicillin/streptomycin and added directly to the 96-well plate containing cells and growth medium at a 1:10 dilution for a final dilution of compound and DMSO of 1:1000 (0.2% DMSO final concentration). Drug treated cells are incubated at 37° C., 5% CO2, 100% relative humidity for 72 hours before performing a luciferase assay using 100 ul per well BriteLite Plus (Perkin Elmer) according to the manufacturer's instructions. Data analysis utilizes the method published by Prichard and Shipman (Antiviral Research, 1990. 14:181-205). Using this method, the combination data are analyzed for antagonistic, additive, or synergistic combination effects across the entire combination surface created by the diluted compounds in combination.


The compounds of the present invention may inhibit HCV by mechanisms in addition to or other than NS5A inhibition. In one embodiment, the compounds of the present invention inhibit HCV replicon and in another embodiment the compounds of the present invention inhibit NS5A.


The compounds of the present invention can be effective against the HCV 1b genotype. It should also be understood that the compounds of the present invention can inhibit multiple genotypes of HCV. In one embodiment compound of the present invention are active against the 1a, 1b, 2a, 2b, 3a, 4a, and 5a genotypes. Tables 11 and 12 shows the EC50 values of representative compounds of the present invention against the HCV 1b and 1a genotype from the above described qRT-PCR or luciferase assay. EC50 ranges against HCV 1b and 1a are as follows: A>10 nM; B1-10 nM; C<1 nM.









TABLE 11







Genotype-1b replicon EC50












Example
Range
Example
Range
Example
Range





2
C
2-1
C
2-2
C


357
C
442
C
443
C


445
C
446
C
448
C


449
C
451
C
453
C


454
C
456
C
457
C


459
C
460
C
463
C


464
C
465
C
466
C


468
C
469
C
471
C


472
C
473
C
475
C


477
C
479
C
480
C


481
C
483
C
485
C


486
C
488
C
490
C


492
C
493
C
494
C


497-a
C
497-b
C
499
C


500
B
501
C
502
C


503
C
504
C
505
C


506
C
507
C
508
C


509
C
510
C
511
C


512
C
513
C
514
C


515
C
517
C
519
C


521
C
523
C
525
C


526
C
527
C
528
C


529
C
530
C
531
C


532
C
533
C
534
C


535
C
536
C
537
C


538
C
539
C
540
C


541
C
542
C
















TABLE 12







Genotype-1b or 1a replicon EC50













1b EC50
1a EC50

1b EC50
1a EC50



Range or
Range or

Range or
Range or


Example
(pM)
(pM)
Example
(pM)
(pM)















548
4
C
630
11
C


631
8
C
565
11
C


564
8
C
571
13


640
30
B
692
11
C


574
36
127
644
45
C


575
C
C
608

C


616
495
C
550

B


620

C
553

B


621
C
207
647
8
C


579
C
C
577
160


555
7
C
546
12
C


615
5
C
689
C
198


693
C
C
551
13
C


558
C
C
627
10
C


629
17
180
561
24
C


686
C
C
567
15
C


626

1337
557

B


568
9
C
690

B


588

C
657

C


660

C
591

C


661

369
593

C


662

C
687
10
C


614
4
C
547
18
C


617

B
548

A


619

699
552
C
C


554
28

623
C


624

A
556

A


625
C
C
559
14


628
9

560
C


563
12

632
13


633
C
35
634

C


566

C
635
C
C


636
20

637
4
C


569
9
C
638
7
C


570
8

639
8
C


572

C
641
7
C


612
C
C
691
C
C


642
7

643
54
C


576

A
645
5
C


88
C
C
646
5
C


578
6

648
C


583
C
C
655

34


586

C
658

C


590

17
659

C


671

C
603

C


649
304

581

C


601

A
669

A


670

C
610

C


580
7
C
650

79


582

C
651

C


652

C
584

C


653

C
585

B


654

185
587

C


656

C
589

C


592

C
667

B


599

B
668

C


602

C
675

C


679

C
600

C


594

C
663

295


595

C
664

C


596

C
665

C


597

227
598

C


673

C
605

C


607

C
678

C


604

A
672

C


674

C
606

C


609

B
677

B


611

A
680

A


682

C
681

202


683

C
684

C


666

A









While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims
  • 1. A compound represented by Formula (I):
  • 2. A compound selected from Table A or a pharmaceutically acceptable salt or ester thereof:
  • 3. A pharmaceutical composition comprising a compound or a combination of compounds according to claim 1 or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier or excipient.
  • 4. A method of inhibiting the replication of an RNA-containing virus comprising contacting said virus with a therapeutically effective amount of a compound or combination of compounds of claim 1, or a pharmaceutically acceptable salt thereof.
  • 5. A method of treating or preventing infection caused by an RNA-containing virus comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound or combination of compounds of claim 1, or a pharmaceutically acceptable salt thereof.
  • 6. The method of claim 5, wherein the RNA-containing virus is hepatitis C virus.
  • 7. The method of claim 5, further comprising the step of co-administering one or more agents selected from the group consisting of a host immune modulator and an antiviral agent, or a combination thereof.
  • 8. The method of claim 7, wherein the host immune modulator is selected from the group consisting of interferon-alpha, pegylated-interferon-alpha, interferon-beta, interferon-gamma, consensus interferon, a cytokine, and a vaccine.
  • 9. The method of claim 7, wherein the antiviral agents inhibit replication of HCV by inhibiting host cellular functions associated with viral replication.
  • 10. The method of claim 7, wherein the antiviral agents inhibit the replication of HCV by targeting proteins of the viral genome.
  • 11. The method of claim 7, wherein said antiviral agent is an inhibitor of a HCV viral protein, a replication process or a combination thereof, wherein said targeting protein or replication process is selected from the group consisting of helicase, protease, polymerase, metalloprotease, NS4A, NS4B, NS5A, assembly, entry, and IRES.
  • 12. The method of claim 5, further comprising the step of co-administering an agent or combination of agents that treat or alleviate symptoms of HCV infection selected from cirrhosis and inflammation of the liver.
  • 13. The method of claim 5, further comprising the step of co-administering one or more agents that treat patients for disease caused by hepatitis B (HBV) infection.
  • 14. The method of claim 5, further comprising the step of co-administering one or more agents that treat patients for disease caused by human immunodeficiency virus (HIV) infection.
  • 15. The pharmaceutical composition of claim 3, further comprising an agent selected from interferon, pegylated interferon, ribavirin, amantadine, an HCV protease inhibitor, an HCV polymerase inhibitor, an HCV helicase inhibitor, or an internal ribosome entry site inhibitor.
  • 16. The composition of claim 3, further comprising a cytochrome P450 monooxygenase inhibitor or a pharmaceutically acceptable salt thereof.
  • 17. The composition of claim 16, wherein the cytochrome P450 mooxygenase inhibitor is ritonavir.
  • 18. A method of treating hepatitis C infection in a subject in need thereof comprising co-administering to said subject a cytochrome P450 monooxygenase inhibitor or a pharmaceutically acceptable salt thereof, and a compound of claim 1 or a pharmaceutically acceptable salt thereof.
  • 19. A compound represented by Formula (I):
RELATED APPLICATIONS

This is a continuation of International Application No. PCT/US2012/057834, which designated the United States and was filed on Sep. 28, 2012, published in English, which is a continuation-in-part of U.S. application Ser. No. 13/252,924 filed Oct. 4, 2011, now U.S. Pat. No. 8,673,954, issued on Mar. 18, 2012, which is a continuation-in-part of U.S. application Ser. No. 12/714,583, filed Mar. 1, 2010, now U.S. Pat. No. 8,101,643, issued on Jan. 24, 2012, which claims the benefit of U.S. Provisional Application No. 61/156,131 filed Feb. 27, 2009. The entire teachings of the above applications are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61156131 Feb 2009 US
Continuations (1)
Number Date Country
Parent PCT/US2012/057834 Sep 2012 US
Child 14245001 US
Continuation in Parts (2)
Number Date Country
Parent 13252924 Oct 2011 US
Child PCT/US2012/057834 US
Parent 12714583 Mar 2010 US
Child 13252924 US