Novel chemical base for fuel cell engine heat exchange coolant/antifreeze

Abstract
A nontoxic fuel cell engine coolant which has an electrical resistivity of greater than 250 kohm-cm, a boiling point of greater than 90° C., a freezing point of less than −40° C., a thermal conductivity of greater than 0.4 W/m-k, a viscosity of less than 1 cPs at 80° C., a viscosity of less than 6 cPs at 0° C., a heat capacity of greater than 3 kJ/kg-K, and which is compatible with current cooling system materials.
Description
FIELD OF THE INVENTION

This invention relates to a novel technology for use in cooling systems for fuel cell powered vehicles and/or equipment. In order to remove the heat that is generated in fuel cell systems, 1,3-propane diol is used as the chemical base for the heat exchange fluid.


BACKGROUND OF THE INVENTION

It has been suggested that fuel cell technology can be used to generate electricity in sufficient volume to be applicable in the driving of electric motors for passenger vehicles, standby power generation, and other applications. A fuel cell is a device that converts chemical energy of a fuel directly into electricity and they are intrinsically more efficient than most other energy generation devices, such as internal combustion engines. In principle, a fuel cell operates somewhat like a battery. Unlike a battery, a fuel cell does not run down or require recharging. It will produce energy in the form of electricity and heat as long as fuel is supplied. The most common type of fuel cell consists of two electrodes sandwiched around an electrolyte. Oxygen passes over one electrode and hydrogen over the other, generating electricity, water, and heat.


The fact that heat is generated by the fuel cell requires the presence in the automobile or other system of a cooling system which can be similar to those used presently in internal combustion engines. Typically, such a system includes a circulating pump, plumbing that may include aluminum, brass, copper, lead-tin solder, stainless steel, plastic or rubber materials, and a heat exchanger (radiator) typically constructed of aluminum or copper/brass.


The heat exchange fluid (coolant) is obviously just as important in a fuel cell system as it is in internal combustion engines. Many of the requirements of a heat exchange fluid for internal combustion engines are also required for fuel cell engines. However, there are some additional requirements. For instance, fuel cell vehicles generate a direct current of 400 volts. The coolant, which flows around the aluminum components of the fuel cell, must be nonconductive to protect both the cell itself from shorting out and to prevent electrical hazard to humans operating or servicing the system.


The first fuel cell was built in 1839 by Sir William Grove, a Welsh judge and gentleman scientist. The “Grove cell” used a platinum electrode immersed in nitric acid and a zinc electrode in zinc sulfate to generate about 12 amps of current at about 1.8 volts. There were other developments in fuel cell technology over the years but serious interest in the fuel cell as a practical generator of electricity did not begin until the 1960's, when the U.S. Space Program chose fuel cell technology over nuclear power and solar energy. This technology, developed by Francis Thomas Bacon, used nickel gauze electrodes and operated under pressures as high as 300 psi.


SUMMARY OF THE INVENTION

A nontoxic fuel cell engine coolant which has an electrical resistivity of greater than 250 kohm-cm, a boiling point of greater than 90° C., optionally, a freezing point of less than −40° C., a thermal conductivity of greater than 0.4 W/m-k, a viscosity of less than 1 cPs at 80° C., a viscosity of less than 6 cPs at 0° C., a heat capacity of greater than 3 kJ/kg-K, and which is compatible with current cooling system materials. The coolant may contain from 1 to 100, preferably 40 to 85 and most preferably 55 to 85, volume percent PDO and most or all of the remaining balance is water.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates the aqueous solution freeze point characteristics of the 1,3-propanediol and GM 6043 inhibition chemistry (EG).



FIG. 2 is a plot of the freeze behavior of aqueous 1,3-propanediol antifreeze.




DETAILED DESCRIPTION OF THE INVENTION

As previously stated, the purpose of a fuel cell is to produce an electrical current that can be directed outside the cell to do work, such as powering an electric motor. Because of the way electricity behaves, this current returns to the fuel cell, completing an electrical circuit. The chemical reactions that produce this current are the key to how a fuel cell works. There are several kinds of fuel cells which operate somewhat differently but in general terms, hydrogen atoms enter a fuel cell at the anode where a chemical reaction strips them of their electrons. The hydrogen atoms are now “ionized” and carry a positive electrical charge. The negatively charged electrons provide the current through wires to do work.


Oxygen enters the fuel cell at the cathode and it there combines with electrons returning from the electrical circuit and hydrogen ions that have traveled through the electrolyte from the anode. In some fuel cells the oxygen picks up electrons and then travels through the electrolyte to the anode where it combines with hydrogen ions. This chemical reaction generates a significant amount of heat energy which must be removed from the fuel cell in order for it to continue to operate properly.


A number of objectives have been identified for coolants for fuel cell vehicles. First, since fuel cell vehicles generate a direct current of 400 volts, the coolant which flows around the aluminum components of the fuel cell must be nonconductive to protect the cell from shorting out and to prevent electrical hazards. Other physical property objectives for fuel cell coolants are set out in the table below:

TABLE 1Electrical Resistivity>250 kOhm-cmBoiling point>90° C.Freezing point<−40° C.Thermal Conductivity>0.4 W/m-kViscosity<1 cPs @ 80° C. < 6 cPs @ 0° C.Heat Capacity>3 kJ/kg-KDurability>5,000 hours of operation/3years total timeMaterial compatibility:Compatible with current coolingsystem materialsToxicityClassified as non-toxic fortransportation


1,3-propanediol (PDO), which is manufactured by Shell Chemical Company, is generally made as described in U.S. Pat. No. 5,304,691 and the art described therein. This is a process for making PDO and HPA (3-hydroxypropanal, a 3-hydroxyaldehyde). In this particular patent, PDO and HPA are made by intimately contacting an oxirane (ethylene oxide, hereinafter ‘EO’), a ditertiary phosphine-modified cobalt carbonyl catalyst, a ruthenium catalyst promoter, and syngas (carbon monoxide and hydrogen) in an inert reaction solvent at hydroformylation reaction conditions. A PDO yield of up to 86-87 mole % is reported, using a catalyst comprising cobalt ligated with 1,2-bis(9-phosphabicyclononyl)ethane as bidentate ligand, and either triruthenium(0) dodecarbonyl or bis[ruthenium tricarbonyl dichloride] as cocatalyst. Other methods of making PDO are known.


Inhibited with the GM 6043 chemistry, the 1,3-propanediol performed somewhat better than EG in modified ASTM-type tests. FIG. 1 illustrates the aqueous solution freeze point characteristics of the 1,3-propanediol and GM 6043 (EG). There is a slight compromise of freeze protection as determined by the ASTM D1177 test method, but the 1,3-propanediol was soft and slushy at the reported freeze point. This could be an indication that actual protection against hard, damaging freezing is actually better, approaching the effective protection point of the EG-based product. We also performed the D1177 test with 55% and 60% 1,3-propanediol in water, and found that the 55% concentrated product offered protection equivalent to 50% EG, per the test method. Freeze protection continued to improve at 60% 1,3-propanediol. We feel that the antifreeze properties of the chemistry are acceptable. Indeed a 50% solution would provide adequate protection against freezing in most geographies. TC in FIG. 1 is an internal designation for the PDO aqueous solutions at 50, 55, and 60 volume percent PDO.



FIG. 2 shows the freeze behavior of PDO/water solutions. It can be seen that formulations may be made with freeze points significantly lower than −40° C.


It may be desirable to include an effective amount of an antifoaming composition in the antifreeze/coolant composition. Such components are well known. Polyglycol-type antifoaming agents can be used.


PDO coolants in fuel cell vehicles will have an electrical resistivity of greater than 250 kOhm-cm, a boiling point of greater than 90° C., usually a freezing point of less than −40° C., a thermal conductivity of greater than 0.4 W/m-k, a viscosity of less than 1 cPs at 80° C. and less than 6 cPs at 0° C., a heat capacity of greater than 3 kJ/kg-K, a desired durability of greater than 5000 hours of operation (three years total time), material compatibility—will not corrode or erode current automotive cooling system materials, have a toxicity classified as non-toxic for transportation, and will be cost competitive with current automotive coolants.


The PDO formulations give intrinsically better protection against cavitation than EG or PG.


It is our theory that some or all of these advantages are based upon the relative chelation ability of PDO versus EO and PO. The latter are readily able to chelate the ions. The chelate with EO and PO will be a five-membered ring which is relatively easy to form. PDO cannot chelate the ions as well because it forms a six-membered ring and this is more difficult.


EXAMPLES

Two chemistries were used in the following experiments. These are 1,3-propane diol (anhydrous) and 1,3-propane diol (50 to 85 percent volume percent aqueous solution).


Example 1

At the beginning, we believed that the classical corrosion and performance testing regimen as described in ASTM literature (2001 Annual Book of ASTM Standards, Volume 15. 05) provides an accepted method to evaluate and compare the corrosive properties of coolants to the metals customarily used in vehicle coolant systems. The new variable for fuel cells is the 400 volt (Direct Current) electric field and the issues that such a field presents to the coolant. Ionic inhibitors are disqualified. The above coolants, running in the maximum resistance state with no inhibitors, were reviewed.


We believed that the following tests would accurately predict the above coolants' abilities to perform in a heat exchange system, in terms of corrosion protection, and physical and chemical properties. Since these new coolants had not been through this regimen of testing before, there was no experience or normal performance against which the tests could be compared for reasonableness. Therefore, each of the tests was controlled against 50 volume percent aqueous inhibited ethylene glycol.


The classical coolant development approach involves analyzing the fluid for physical and chemical properties. Once the properties are established, performance objectives are determined and the prototypes evaluated. These tests may be modified to better evaluate the performance of a coolant in its intended operating environment. Examples of modifications may include variations in the pressure, temperature, electric fuel environment, and duration of the tests. The data then will begin to serve to establish comparative and baseline data for the prototype new coolants. These tests will include fundamental properties, such as pH value and specific gravity, physical properties, and coolant-specific parameters including foaming tendency and reserve alkalinity. We believed that this data would direct the research towards the most appropriate coolants. The results are shown in Table 2.

TABLE 2Physical and Chemical PropertiesComparativeCurrentSpecificationTest Number & DescriptionValueCommentsASTM D-1122 Relative Density1.110-1.145The relativeAn experiment to determine the property of relativedensity of thedensity. This information isnew coolant willused later in verifying the quality ofbe differentcommercialized products produced atthan EG or PGblending facilities, and also has valueand will alsoto estimate contamination levels.depend on theconcentration ofPDO and water.ASTM D-1177 Freeze Point<−40° C.Choosing anThis experiment overcomes the softappropriate‘slushy’ freeze characteristic that makessolution candetermining the freezing point of somesatisfy thisfluids difficult. It produces a graph ofrequirement.cooling behavior from which a consistentand meaningful freeze point can bedetermined.ASTM D-1120 Boiling Point>90° C.The boilingThis is a boiling point method consistentpoint of the newwith standard methods used to determinecoolant will bethe boiling points of most fluids.different thanEG or PG andwill also dependon theconcentration ofPDO and waterASTM D-1882 Auto Finishno effectNo problemThe coolant is likely to be spilled on anexpected.auto finish. Therefore, it has alwaysbeen a requirement that the coolant hasno effect on the cars′ finish, and thistest was developed to evaluate thatproperty.ASTM D-1119 Ash Content<5.0% max.Since thisHigh levels of dissolved solids arecoolant will beassociated with premature water pump wearvery low inand other durability issues. Completelyinhibitors, thisevaporating the liquid and calculatingspecificationthe weight of the remaining dry materialmay need to bedetermines ash content.further reducedto preventconductivityproblems.ASTM D-1287 pH:7.5 toExperimentationThe H+ ion concentration is reported as a11.0will likelypH value. This value is determined fromresult in aan instrument reading. The pH value hastighter spec forto be appropriate for the inhibitorPDO than is usedtechnology in use.today for EG andPG coolants.ASTM D-1123 Water mass percent5.0% max.Applicable toWater content on non-aqueous coolants isthe PDO beforedetermined by the Karl Fischer method.blending.ASTM D-1121 Reserve AlkalinityThis property mayIn many inhibition technologies, thebe obsolete, ordurability of the coolant is related tomay have QCits ability to neutralize weak acidsvalue.formed as the base and/or inhibitorsdegrade. This titration evaluates thatproperty.ASTM D-1881 Foaming TendenciesBreak: 5 sec.The new coolantFoaming is an undesirable propertyVolume: 150 mlshould meet thisassociated with negative performance.requirement.This method creates a measurablevolume, and also the time required todissipate the foam.Electrical Conductivity mohs<50Experimental dataTest method: a calibrated laboratoryto be used inbench conductivity meter is employed todeveloping a testmeasure the conductivity of theand performancecoolant. The conductivity probe isspecification.placed into the fluid, and the digitalreading on the conductivity meter isobserved.Viscosity (cPs) ASTM D-445<1@80° C.Comparable to EG<6@0° C.coolant.Thermal Conductivity W/m-K from>0.4Comparable to EGliteraturecoolant.Heat Capacity (kJ/kg-K) from literature>3Comparable to EGcoolant.Durability by extended duration tests>5 yearsPDO promisesexcellentstability.Effect on Elastomers:<10% ΔBy Cummins Method 14292Dimension EachSilicon Seals, Viton, Bunan(Nitrile), Teflon, Neoprene, Rubber,NylonToxicity LD50 data and review of MSDSNon toxic forPDO offers lowtransportationtoxicity.ASTM D2809 Water Pump Test, repeated≧8 each timePDO has performedthree timesbetter than EG inthe series oftests. See Table3 below.ASTM D-4340 Corrosion of Aluminum Heat<1.0 mg/cm2/PDO has performedRejecting Surfacesweekat less than 10%of the allowedloss.Extended aging evaluation in D-4340 Rig<1.0 mg/cm2/PDO degraded less@ 150° C. for 60 Days sampled @ 10 dayweek < 2 pHin terms of pHintervals.unitsvalue and in theAluminum weight loss<20%formation ofΔ pH<2,000 ppmoxidation by-Oxidation products (i.e. COOHm < 1products in theanions)presence of twoOxidation trend (slope offully formulatedregression)coolantinhibitionpackages. SeeTable 4 below.ASTM D-1384 Corrosion in GlasswareMaximum WeightTest passed.(Higher PerformanceLoss, mgSpecification)Copper5Lead Solder10Brass5Steel5Cast Iron5Cast Aluminum10Aged Coolant Corrosion (ASTM D-1384Maximum Weightextended) in Glassware @ 150° C. (FluidLoss, mgfrom 2,000 Hour Aging)Copper10Lead Solder30Brass10Steel10Cast Iron10Cast Aluminum30Erosion Corrosion of Heat Exchanger,No leaks2,000 hoursRepassivation of Aluminum byEB < 2.0Galvanostatic Measurement ASTM D6208EG > −0.4.0ASTM D-2570 Simulated ServiceMaximum WeightMultiple(Higher Performance Specification)Loss, mgembodimentsCopper10passed.Lead Solder20Brass10Steel10Cast Iron10Cast Aluminum20









TABLE 3










ASTM 2809 Test Data











Inhibitor
EG
PDO















Conventional Automotive
8
9



Carboxylate Automotive
2
8



Phosphated Heavy Duty
10
10



Non Phosphated Heavy Duty
3
8



Hybrid Heavy Duty
9
10

















TABLE 4










Oxidation comparison between PDO and EG inhibited with


commercial inhibitor package @ 2.2%. Test run on D-4340 at


150° C., without corrosive water and at 50% concentration.


Time (days)















0
10
20
30
40
50
60











pH














PDO-A
11.16
9.31
8.87
8.69
8.41
8.19
7.96


EG-A
10.06
7.67
6.38
5.68
4.60
4.31
4.07


PDO-B
10.58
9.63
8.89
8.56
8.32
8.18
7.93


EG-B
10.67
9.22
8.67
8.32
8.02
7.92
7.74







Total Degradation Acids (ppm)














PDO-A
0
213
415
607
762
851
1029


EG-A
0
542
1553
1987
3498
4028
4705


PDO-B
0
231
372
587
688
833
1053


EG-B
0
342
654
922
1128
1486
1602









Example 2

In these experiments, a solution of 50 percent by volume 1,3-propane diol (PDO) and 50 percent by volume deionized water were tested for corrosion of various metals used in engine cooling systems over a period of time. The test method was modified from ASTM test method D-2570 by using the spaced interval examination procedure detailed in ASTM G-31. The following Table 5 shows the results:

TABLE 5Extended Spaced Interval Simulated Service TestModified from ASTM D2570 (using ASTM G31 spaced interval)Test MethodPDO @ 50% in DI Water190° F. (88° C.). Spaced Interval Corrosion DataWeeks246810Copper22112Lead Solder32663Brass22334Steel1112131313Cast Iron1310111140Cast Aluminum2234404040


Note how the corrosion behaves after 8-10 weeks. The fact that the aluminum corrosion does not increase after 6 weeks gives an indication that there is some flash corrosion initially but after that the oxides protect the aluminum. Generally, the absolute limit is specified by ASTM D3306 to be 60 mg of aluminum lost after 7 weeks' exposure.


Example 3

The next experiment was corrosion of aluminum services over an extended period of time. The results are set out in Table 6 below.

TABLE 6Corrosion of Heat Rejecting Aluminum SurfaceModified from ASTM D4340Temperature elevated to 300° F. (149° C.), Time extended from1 week to 30 days50% PDO 50% (volume) DI WaterBefore Test10 Days20 Days30 DaysWeight loss0.00.00.0mg/cm2/weekpH6.555.344.604.99Conductivity μmhos/cm09914CommentsNo damage toNo damage toNo damage toNo damage tospecimenspecimenspecimenspecimen


Please note that even after running this test for 30 days, there was no apparent corrosion damage to the specimen.


Example 4

This example describes experiments following the ASTM D1384 test method, modified by omitting the corrosive salts and were also made to operate at 150 degrees C. by changing the bath from water to 50% propylene glycol. The tests were done to test the corrosivity of solutions of PDO in water having amounts of PDO from 55 to 85 percent by weight. We have identified the 65 weight percent PDO solution as being the best because it offered the best overall protection for the six metals tested. However, the data in Table 7 also shows that solutions containing 55% and 60% PDO in water also achieved very good results because fuel cell systems are most likely to be manufactured primarily of aluminum and stainless steel.

TABLE 7Percent PDO in water55606570758085Copper1.22.01.61.71.71.60.6Lead Solder123.893.562.560.339.263.720.3Brass2.11.71.82.01.72.71.2Steel126.186.884.615.829.226.31.5Cast Iron247.6186.6263255.3227.1189.3−0.7Cast Aluminum8.27.07.316.617.347.526.5Conductivity Before0000000Test μmhos/cmConductivity After3022107430Test μmhos/cm


Summary of Results


We believe that the results show that these PDO-based coolants can be used for a low conductivity application in fuel cell powered systems, including fuel cell vehicles. PDO is demonstrated to be non-conductive and manifests corrosion resistant properties to the point of meriting serious consideration. The following are some of the more significant findings:

  • A coolant with high electrical resistance (low conductivity) has been developed that is appropriate for use in fuel cell powered systems, including fuel cell powered vehicles, that generate strong electrical fields. It has electrical resistivity of more than 250 kohm-cm. Ethylene glycol is too corrosive to be completely nonconductive.
  • The coolant, containing PDO, can be formulated in various concentrations to achieve freeze points of −40 (° F. or ° C.) or lower (see freeze point graphs in FIGS. 1 and 2).
  • The coolant offers more favorable boiling points in aqueous solutions than traditional glycol based coolants, as high as 471° F. (234° C.).
  • The thermal conductivity is comparable to glycol-based coolants (in water).
  • The viscosity is comparable to glycol-based coolants (in water).
  • The heat capacity is comparable to glycol-based coolants (in water).
  • The durability is better than glycol based coolants, offering the prospect of a closed, lifetime-filled low or no maintenance coolant system.
  • The coolant is compatible with system materials, including aluminum and elastomers.
  • The coolant is less toxic and less palatable than ethylene glycol and is much less likely to be involved in pet or child poisonings.
  • The cost of the coolant over the life of the system is comparable to existing premium coolants.


The physical property data for PDO and potentially competing coolants, ethylene glycol (EG) and propylene glycol (PG) are shown in Table 8:

TABLE 8Physical PropertiesPDOEGPGMol. Wt. 76.1 62.07 76.1Boiling Point, ° F. (° C.)417.9 387.7 369.3(214.4)(197.6)(187.4)Flash Point, ° F. (° C.)265 240 220(129)(116)(104)Specific Gravity, 20° C. 1.0526  1.115  1.032Freeze Point, 50% solution, ° F.−21 −36 −28(° C.)(−29)(−38)(−33)Pour Point, ° F. (° C.)<−75<−71(<−59)(<−57)Viscosity, cP 20° C. 52 17 49Specific Heat, 212° F. BTU/lb/F 0.652  0.665  0.704[kJ/(kg*K)](2.730)(2.784)(2.948)Thermal Conductivity, 25° C. 0.127  0.147  0.119BTU/hr-ft-F[W/(m*K) @ 25° C.](0.220)(0.254)(0.206)Heat of Vaporization 25° C., BTU/lb410 449 379[kJ/kg @ 25° C.](954)(1044)(882)Purity 99.7 94.5 99

Claims
  • 1. A method for cooling a fuel cell engine, comprising cooling a fuel cell engine with a coolant comprising 1,3-propanediol.
  • 2. The method of claim 1 wherein said coolant is an aqueous solution comprised of between 1% to 100% by volume of 1,3-propanediol.
  • 3. The method of claim 2 wherein the solution is comprised of from 40% to 85% by volume of 1,3-propanediol.
  • 4. The method of claim 1 wherein the coolant has a freezing point of less than −40° C.
Provisional Applications (1)
Number Date Country
60268642 Feb 2001 US
Divisions (1)
Number Date Country
Parent 10074834 Feb 2002 US
Child 11281002 Nov 2005 US