Novel fluorescent pigments

Information

  • Patent Application
  • 20010039358
  • Publication Number
    20010039358
  • Date Filed
    February 06, 2001
    23 years ago
  • Date Published
    November 08, 2001
    23 years ago
Abstract
Compounds of formula
Description


[0001] The present invention relates to novel soluble chromophores containing carbamate groups, to their preparation and to the use thereof as fluorescent pigments and as pigment precursors which can be readily converted into the corresponding pigments.


[0002] N-substituted pyrrolo[3,4-c]pyrroles are disclosed in U.S. Pat. Nos. 4,585,878 and 4,791,204. From the generic definition of all substituents it can be inferred that the N-substituents may also be, inter alia, alkoxycarbonyl groups, which are defined in U.S. Pat. No. 4,791,204 as including methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, n-butoxycarbonyl and n-hexyloxycarbonyl. U.S. Pat. No. 4,585,878 teaches that the N-substituted pyrrolo[3,4-c]-pyrroles disclosed therein exhibit high fluorescence in dissolved form in polymers.


[0003] The invention provides novel carbamate group-containing soluble chromophores which, surprisingly, exhibit a very high solid state fluorescence, especially in the UV range, and which are readily convertible into the corresponding pigments with simultaneous displacement of the absorption spectrum, and hence open the way to unexpected applications.


[0004] Accordingly, the invention relates to compounds of formula


A(B)x,  (I)


[0005] wherein x is an integer from 1 to 4,


[0006] A is the radical of a chromophore of the quinacridone, anthraquinone, perylene, indigo, quinophthalone, isoindolinone, isoindoline, dioxazine, phthalocyanine or azo series, which radical contains x N-atoms attached to B, preferably with at least one directly adjacent or conjugated carbonyl group,


[0007] B is a group of formula
2


[0008] and, if x is 2, 3 or 4, may also be one, two or three hydrogen atoms, in which formulae (II), (III) and (IV)


[0009] m, n and p are each independently of one another 0 or 1,


[0010] X is C1-C14alkylene or C2-C8alkenylene,


[0011] Y is a group —V—(CH2)q—,


[0012] Z is a group —V—(CH2)r—,


[0013] V is C3-C6cycloalkylene,


[0014] q is an integer from 1 to 6, and


[0015] r is an integer from 0 to 6,


[0016] R1 and R2 are each independently of the other hydrogen, C1-C6alkyl, C1-C4alkoxy, halogen, CN, NO2, unsubstituted phenyl or phenoxy or phenyl or phenoxy which are substituted by C1-C4alkyl, C1-C4alkoxy or halogen,


[0017] Q is hydrogen, CN, Si(R1)3, is a group C(R5)(R6)(R7),


[0018] wherein R5, R6 and R7 are each independently of one another hydrogen or halogen and at least one of R5, R6 and R7 is halogen,


[0019] a group
3


[0020] wherein R1 and R2 are as defined above, a group SO2R8 or SR8, wherein R8 is C1-C4alkyl, is a group CH(R9)2, wherein R9 is unsubstituted phenyl or phenyl which is substituted by C1-C4alkyl, C1-C4alkoxy or halogen, or


[0021] is a group of formula
4


[0022] R3 and R4 are each independently of the other hydrogen, C1-C18alkyl, a group
5


[0023] wherein X, Y, R1, R2, m and n are as defined above, or R3 and R4, together with the linking nitrogen atom, form a pyrrolidinyl, piperidinyl or morpholinyl radical.


[0024] A is the radical of a known chromophore having the basic structure


A(H)x,


[0025] for example
6


[0026] and all known derivatives thereof.


[0027] X in the significance of C1-C14alkylene is straight-chain or branched alkylene, typically methylene, dimethylene, trimethylene, 1-methylmethylene, 1,1-dimethylmethylene, 1,1-dimethyldimethylene, 1,1-dimethyltrimethylene, 1-ethyldimethylene, 1-ethyl-1-methyldimethylene, tetramethylene, 1,1-dimethyltetramethylene, 2,2-dimethyltrimethylene, hexamethylene, decamethylene, 1,1-dimethyldecamethylene, 1,1-diethyldecamethylene or tetradecamethylene.


[0028] X in the significance of C2-C8alkenylene is straight-chain or branched alkenylene, typically vinylene, allylene, methallylene, 1-methyl-2-butenylene, 1,1-dimethyl-3-butenylene, 2-butenylene, 2-hexenylene, 3-hexenylene or 2-octenylene.


[0029] Halogen substituents may be iodo, fluoro, preferably bromo and, most preferably, chloro.


[0030] C1-C6Alkyl will typically be methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-amyl, tert-amyl, hexyl, and C1-C18alkyl may additionally be heptyl, octyl, 2-ethylhexyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl or octadecyl.


[0031] C1-C4Alkoxy is typically methoxy, ethoxy, n-propoxy, isopropoxy or butoxy.


[0032] C3-C6Cycloalkylene is typically cyclopropylene, cyclopentylene and, preferably, cyclohexylene.


[0033] Particularly interesting compounds of formula I are those wherein x is 1 or 2 and B is a group of formula
7


[0034] and, if x is 2, may also be one hydrogen atom, and in formulae IV, V and VI


[0035] m is 0 or 1,


[0036] X is C1-C4alkylene or C2-C5alkenylene,


[0037] R1 and R2 are each independently of the other hydrogen, C1-C4alkyl, methoxy, chloro or NO2, and


[0038] Q is hydrogen, CN, CCl3, a group
8


[0039] SO2 CH3 or SCH3,


[0040] R3 and R4 are each independently of the other hydrogen, C1-C4alkyl or a group
9


[0041] or R3 and R4, taken together, form a piperidinyl radical, and preferably those wherein x is 2 and B may be twice a group of formula
10


[0042] Preferred compounds of formula I are


[0043] a) perylenecarboximides of formula
11


[0044] wherein D is hydrogen, C1-C6alkyl, unsubstituted or halogen- or C1-C4alkyl-substituted phenyl, benzyl or phenethyl, or is B,


[0045] b) quinacridones of formula
12


[0046] wherein R10 and R11 are each independently of the other hydrogen, halogen, C1-C18alkyl C1-C4alkoxy or phenyl,


[0047] c) dioxazines of formula
13


[0048] wherein R12 is hydrogen, halogen or C1-C18alkyl,


[0049] d) isoindolines of formulae
14


[0050] wherein R13 is a group
15


[0051] R14 is hydrogen, C1-C18alkyl, benzyl or a group
16


[0052] R15 has the same meaning as R13,


[0053] R16, R17, R18 and R19 are each independently of one another hydrogen, C1-C18alkyl, C1-C4alkoxy, halogen or trifluoromethyl,


[0054] e) indigo derivatives of formula
17


[0055] wherein R20 is hydrogen, CN, C1-C4alkyl, C1-C4alkoxy or halogen,


[0056] f) azobenzimidazolones of formula
18


[0057] wherein R21 and R22 are each independently of the other hydrogen, halogen, C1-C4alkyl or C1-C4alkoxy,


[0058] g) anthraquinoid compounds of formula
19


[0059] and


[0060] h) phthalocyanines of formula
20


[0061] wherein


[0062] X1 is H2, Zn, Cu, Ni, Fe or V,


[0063] X2 is —CH(R24)— or —SO2


[0064] R23 is hydrogen, C1-C4alkyl, —N(E)R24, —NHCOR25, —COR25 or
21


[0065] R24 is hydrogen or C1-C4alkyl, R25 is C1-C4alkyl and R26 is hydrogen, halogen, C1-C4alkyl or C1-C4alkoxy,


[0066] z is 0 or 1 and y is an integer from 1 to 4,


[0067] in each of which formulae E is hydrogen or is B, with the proviso that E in each formula is at least one group B and B is as defined above, in respect of which definition the preferred meanings cited above apply.


[0068] Among the phthalocyanines, those of formula XVI, wherein X1 is H2, Cu or Zn, X2 is —CH2— or —SO2—, R23 is hydrogen, —NHCOCH3 or benzoyl and z is 1, are preferred.


[0069] In U.S. Pat. No.4,585,878 it is said in connection with the preparation of N-unsubstituted pyrrolpyrroles that they can be obtained by reacting a N-substituted pyrrolo-3,4-c-pyrrole with a compound that carries the corresponding N-substituents as leaving groups in an organic solvent. In the sole Example describing a compound containing a N-carbonyl group (Example 9: N-benzoyl), 1,4-diketo-3,6-diphenyl-pyrrolo[3,4-c]pyrrole is reacted with benzoyl chloride. In the experiment to prepare the desired carbamates in analogous manner by reaction with a corresponding acid chloride derivative, it was unfortunately found that it was only possible to obtain said carbamates in poor yield.


[0070] Very surprisingly, however, it was observed that when using appropriate trihaloacetates, azides, carbonates, alkylidene-iminooxyformates or, in particular, appropriate dicarbonates, the desired carbamates are obtained in very good yield. An improved yield is also obtained—even if only to a lesser degree—by carrying out the reaction with an aliphatic acid chloride derivative, conveniently butyl chloroformate, in the presence of a base as catalyst.


[0071] Accordingly, the invention further relates to a process for the preparation of compounds of formula I, which comprises reacting a compound of formula


A(H)x,  (XVII)


[0072] wherein A and x are as defined above, in the desired molar ratio with a dicarbonate of formula


B—O—B  (XVIII)


[0073] or with a trihaloacetate of formula


(R27)3C—B  (XIX),


[0074] or with an azide of formula


BN3  (XX),


[0075] or with a carbonate of formula


B—OR28  (XXI),


[0076] or with an alkylidene-iminooxyformate of formula
22


[0077] wherein B is as defined above, R27 is chloro, fluoro or bromo, R28 is C1-C4alkyl or unsubstituted phenyl or phenyl which is substituted by halogen, C1-C4alkyl, C1-C4alkoxy or —CN, R29 is —CN or —COOR18, and R30 is unsubstituted phenyl or phenyl which is substituted by halogen, C1-C4alkyl, C1-C4alkoxy or —CN, in an aprotic organic solvent and in the presence of a base as catalyst, conveniently in the temperature range from 0 to 400° C., preferably from 10 to 200° C., for 2 to 80 hours.


[0078] It is preferred to react the compound of formula XVII with a dicarbonate of formula XVIII.


[0079] The compounds of formula XVII, dicarbonates of formula XVIII, trihaloacetates of formula XIX, azides of formulae XX, carbonates of formula XXI and alkylidene-imino-oxyformates of formula XXII are known substances. Any that are novel can be prepared by methods analogous to standard known ones.


[0080] The respective molar ratio of the compound of formula XVII and the compounds of formulae XVIII-XXII will depend on the meaning of x, i.e. on the number of groups B to be introduced. Preferably, however, the compounds of formulae XVIII-XXII will be used in a 2- to 10-fold excess.


[0081] Suitable solvents are typically ethers such as tetrahydrofuran or dioxane, or glycol ethers such as ethylene glycol methyl ether, ethylene glycol ethyl ether, diethylene glycol monomethyl ether or diethylene glycol monoethyl ether, and also dipolar aprotic solvents such as acetonitrile, benzonitrile, N,N-dimethylforrnamide, N,N-dimethylacetamide, nitrobenzene, N-methylpyrrolidone, halogenated aliphatic or aromatic hydrocarbons such as trichloroethane, benzene or alkyl-, alkoxy- or halogen-substituted benzene, typically including toluene, xylene, anisole or chlorobenzene, or aromatic N-heterocycles such as pyridine, picoline or quinoline. Preferred solvents are typically tetrahydrofuran, N,N-dimethylformamide and N-methylpyrrolidone. The cited solvents may also be used as mixtures. It is convenient to use 5-20 parts by weight of solvent to 1 part by weight of reactant.


[0082] Bases suitable as catalysts are typically the alkali metals themselves, conveniently lithium, sodium or potassium and the hydroxides or carbonates thereof, or alkali metal amides such as lithium, sodium or potassium amide or alkali metal hydrides such as lithium, sodium or potassium hydride, or alkaline earth metal or alkali metal alcoholates which are derived in particular from primary, secondary or tertiary aliphatic alcohols of 1 to 10 carbon atoms, for example lithium, sodium or potasssium methylate, ethylate, n-propylate, isopropylate, n-butylate, sec-butylate, tert-butylate, 2-methyl-2-butylate, 2-methyl-2-pentylate, 3-methyl-3-pentylate, 3-ethyl-3-pentylate, and also organic aliphatic aromatic or heterocyclic N-bases, typically including diazabicyclooctene, diazabicycloundecene and 4-dimethylaminopyridine and trialkylamines such as trimethylamine or triethylamine. A mixture of the cited bases may also be used.


[0083] The organic nitrogen bases are preferred, for example diazabicyclooctene, diazabicycloundecene and preferably, 4-dimethylaminopyridine.


[0084] The reaction is preferably carried out in the temperature range from 10 to 100° C., most preferably from 14 to 40° C., and under atmospheric pressure.


[0085] The novel compounds of formula I are admirably suitable for use as fluorescent pigments for the mass colouration of organic material of high molecular weight.


[0086] Illustrative examples of high molecular weight organic materials which can be coloured with the novel compounds of formula I are vinyl polymers such as polystyrene, poly-α-methylstyrene, poly-p-methylstyrene, poly-p-hydroxystyrene, poly-p-hydroxy-phenylstyrene, poly(methylacrylate) and poly(acrylamide) as well as the corresponding methacrylic compounds, poly(methylmaleate), poly(acrylonitrile), poly(methacrylonitrile), poly(vinyl chloride), poly(vinyl fluoride), poly(vinylidene chloride), poly(vinylidene fluoride), poly(vinyl acetate), poly(methyl vinyl ether) and poly(butyl vinyl ether); novolaks derived from C1-C6aldehydes, typically formaldehyde and acetaldehyde, and a binuclear, preferably mononuclear, phenol which may be substituted by one or two C1-C9alkyl groups, one or two halogen atoms or a phenyl ring, for example o-, m- or p-cresol, xylene, p-tert-butyl phenol, o-, m- or p-nonylphenol, p-chlorophenol or p-phenylphenol, or from a compound containing more than one phenolic group, e.g. resorcinol, bis(4-hydroxyphenyl)methane or 2,2-bis(4-hydroxyphenyl)propane; polymers derived from maleimide and/or maleic anhydride, e.g. copolymers of maleic anhydride and styrene; poly(vinylpyrrolidone), biopolymers and derivatives thereof such as cellulose, starch, chitine, chitosane, gelatin, zein, ethyl cellulose, nitrocellulose, cellulose acetate and cellulose butyrate; natural resins and synthetic resins such as rubber, casein, silicone and silicone resins, ABS, urea/formaldehyde and melamine/formaldehyde resins, alkyd resins, phenolic resins, polyamides, polyimides, polyamide/imides, polysulfones, polyether sulfones, polyphenylene oxides, polyurethanes, polyureas, polycarbonates, polyarylenes, polyarylene sulfides, polyepoxides, polyolefins and polyalkadienes. Preferred high molecular weight organic materials are typically cellulose ethers and esters, for example ethyl cellulose, nitrocellulose, cellulose acetate or cellulose butyrate, natural resins or synthetic resins such as polymerisation or condensation resins, for example aminoplasts, in particular urea/formaldehyde and melamine/formaldehyde resins, alkyd resins, phenolic plastics, polycarbonates, polyolefins, polystyrene, polyvinyl chloride, polyamides, polyurethanes, polyesters, ABS, polyphenylene oxide, rubber, casein, silicone and silicone resins, singly or in mixtures.


[0087] The above high molecular weight organic compounds may be singly or as mixtures in the form of plastic materials, melts or of spinning solutions, paint systems, coating materials or printing inks. Depending on the end use requirement, it is expedient to use the novel compounds of formula I as toners or in the form of preparations.


[0088] The novel compounds of formula I are particularly suitable for the mass coloration of polyesters, polyvinyl chloride and, preferably, polyolefins such as polyethylene and polypropylene, as well as paint systems, also powder coating compositions, printing inks and coating materials.


[0089] The novel compounds of formula I can be used in an amount of 0.01 to 30% by weight, preferably 0.1 to 10% by weight, based on the high molecular weight organic material to be pigmented.


[0090] The pigmenting of the high molecular weight organic materials with the novel compounds of formula I is conveniently effected by incorporating a compound of formula I by itself or in the form of a masterbatch in the substrates using roll mills, mixing or milling apparatus. The pigmented material is then brought into the desired final form by methods which are known per se, conveniently by calendering, moulding, extruding, coating, casting or by injection moulding. It is often desirable to incorporate plasticisers into the high molecular weight compounds before processing in order to produce non-brittle mouldings or to diminish their brittleness. Suitable plasticisers are typically esters of phosphoric acid, phthalic acid or sebacic acid. The plasticisers may be incorporated before or after blending the pigment salts of this invention into the polymers. To obtain different shades it is also possible to add fillers or other chromophoric components such as white, coloured or black pigments in any amount to the high molecular weight organic materials in addition to the novel compounds of this invention.


[0091] For pigmenting paint systems, coating materials and printing inks, the high molecular weight organic materials and the novel compounds of formula I, together with optional additives such as fillers, other pigments, siccatives or plasticisers, are finely dispersed or dissolved in a common organic solvent or mixture of solvents. The procedure may be such that the individual components by themselves, or also several components together, are dispersed or dissolved in the solvent and thereafter all the components are mixed.


[0092] When used for colouring, inter alia, polyvinyl chloride or polyolefins or printing inks, the novel compounds of formula I have good aground pigment properties, including good fastness to migration, light and weathering, and especially unexpectedly high fluorescence.


[0093] Of very great importance, however, is the entirely unexpected ease with which the soluble chromophores of this invention—even in the substrate in which they have already been incorporated—can be converted to the corresponding chromophore of formula A(H)x. This can be done in the simplest manner, whether by thermal treatment (heating to the temperature range from 50 to 400° C., preferably from 100 to 200° C. or laser radiation), photolytic treatment (exposure to wavelengths below e.g. 375 nm) or chemical treatment (with organic or inorganic acids or bases) of the solid materials, solutions or dispersions containing the novel chromophores in organic or aqueous media, polymer solutions or melts. These conversion methods can also be combined, thereby permitting the coloration of paint systems, printing inks, especially for ink jet printing, and plastics, also in fibre form, with unexpectedly enhanced properties such as purity, colour strength, brilliance and transparency, as well as interesting applications in the analytical field.


[0094] It has even been found that the chemical treatment of specific chromophores of formula I with an organic or inorganic acid at 50 to 180° C., preferably from 80 to 160° C., and subsequent cooling to about 70 to 100° C., or the thermal treatment of said compounds by heating to the temperature range from 180-350° C., can result in crystal modifications of the corresponding chromophores of formula XVII.


[0095] The invention therefore additionally relates to a process for the crystal modification of chromophores of formula XVII, comprising


[0096] a) the chemical treatment of a chromophore of formula I with an organic or inorganic acid at 50 to 180° C. and subsequent cooling, or


[0097] b) the thermal treatment of a chromophore of formula I in the temperature range from 180 to 350° C.






[0098] The invention is illustrated in more detail by the following Examples.


EXAMPLE 1

[0099] To a mixture of 1.8 g (0.00576 mol) of quinacridone and 0.3 g (0.00246 mol) of 4-dimethylaminopyridine in 90 ml of N,N-dimethylformamide are added 6.0 g (0.0275 mol) of di-tert-butyldicarbonate. The resultant violet suspension is stirred overnight at room temperature, with the exclusion of atmospheric moisture. The colour changes to yellowish-orange. Afterwards, the reaction mixture is poured, with stiinng, into 100 ml of distilled water. The yellow precipitate is isolated by filtration and the residue is washed with distilled water and dried, affording 2.8 g (95% of theory) of the product of formula
23


[0100] Analysis:


[0101]

1
H-NMR(CDCl3): 8.74 (s, 2H); 8.41 (d, 2H); 7.84 (d, 2H); 7.72 (t, 2H); 7.38 (t, 2H); 1.75 (s, 18H).



EXAMPLE 2

[0102] To a suspension of 10.31 g (0.0393 mol) of indigo and 2.79 g (0.0228 mol) of 4-dimethylaminopyridine in 150 ml of N,N-dimethylformamide are added, in two portions, 45.31 g (0.2076 mol) of di-tert-butyldicarbonate. The mixture is stirred for 20 hours at room temperature, during which time the colour changes from dark blue to violet. The product is isolated by filtration and the residue is washed first with 20 ml of dimethyl formamide, then with distilled water, and dried, affording 9.79 g of a brilliant red solid. An additional 5.13 g of product is obtained by diluting the filtrate with distilled water. The total yield is 14.93 g (82.1% of theory) of a product of formula
24


[0103] Analysis:


[0104]

1
H-NMR(CDCl3): 8.02 (d, 2H); 7.76 (d, 2H); 7.61 (t, 2H); 7.21 (t, 2H); 1.62 (s, 18H).



EXAMPLE 3

[0105] To a mixture of 1.5 g (0.00337 mol) of the pigment of formula
25


[0106] and 9.7 g (0.0444 mol) of di-tert-butyldicarbonate in 80 ml of N,N-dimethylacetamide is added 0.18 g (0.00147 mol) of 4-dimethylaminopyridine. The resultant suspension is stirred for 24 hours at room temperature. The reaction mixture is then poured, with stirring, into 200 ml of distilled water. The yellow precipitate is isolated by filtration and the residue is washed with distilled water and dried at room temperature under vacuum, affording 2.71 g (95% of theory) of a product of formula
26


[0107] Analysis:


[0108]

1
H-NMR(CDCl3): 8.22 (d, 2H); 7.83 (d, 2H); 7.72 (t, 2H); 7.63 (t, 2H); 7.56 (d, 2H); 7.42 (d, 2H); 1.45 (s, 36H).



EXAMPLE 4

[0109] To a mixture of 1.4 g (0.0037 mol) of a monoazopigment of formula
27


[0110] and 2.67 g (0.01221 mol) of di-tert-butyldicarbonate in 50 ml of N,N dimethylacetamide are added 0.2 g (0.00164 mol) of 4-dimethylaniinopyridine. The reaction mixture is stirred for 48 hours at room temperature, during which time an orange suspension forms. The yellow precipitate is then isolated by filtration and the residue is washed with a small amount of N,N-dimethylacetamide and afterwards with distilled water and dried at room temperature under vacuum, affording 0.67 g (31% of theory) of a product of formula
28


[0111] Analysis:


[0112]

1
H-NMR(CDCl3): 15.9 (s, br, 1H); 11.17 (s, br, 1H); 7.94 (d, 1H); 7.90 (s, 1H); 7.85 (d, 1H); 7.64 (d, 1H); 7.06-7.04 (m, 2H); 2.65 (s, 3H); 2.35 (s, 3H); 2.32 (s, 3H); 1.64 (s, 9H).



EXAMPLE 5

[0113] 0.07 g of the product of Example 1 are heated in a test tube for 10 minutes at 180° C. All analytical data obtained for the resultant violet powder are in accord with those of the pure quinacridone of formula
29


[0114] The conversion yield is 99%.



EXAMPLE 6

[0115] 0.07 g of the product of Example 3 are dissolved in 1 ml of acetone and the solution is then added all at once to 1 ml of 33% HCl. All analytical data obtained for the resultant red powder are in accord with those of the pure pigment of formula
30


[0116] The conversion yield is 99%.



EXAMPLES 7-10

[0117] In accordance with the general procedure described in Example 1, the compounds of formula
31


[0118] listed in the following Tbale can be obtained using corrersponding dicarbonates.
1Reaction-ExampleESolventtimeYieldColour732DMF30 h80%yellowish orange833DMF24 h30%yellowish orange934DMF16 h80%yellowish orange1035DMF24 h35%yellowish orangeDMF = dimethyl formamide



EXAMPLE 11

[0119] To a suspension of 1.03 g of the product of Example 1 in 30 ml of N,N′-dimethylformamide and 10 ml of water are added 4 ml of trifluoroacetic acid. The mixture is heated to 105° C., stirred for 2 hours at this temperature and then chilled on an ice-bath to 20° C. The precipitated pigment is isolated by filtration, washed with methanol and then with water and dried at 60° C. under vacuum, affording 0.59 g of red powder. The X-ray diffraction pattern is characterised by the following diffraction lines:
2Interplanar spacingTwo-fold hue angle(d values in Å)(2 Θ)Relative intensity15.05305.871007.516411.76455.563515.92274.035022.01213.753423.6993.287027.11612.998829.7752.312938.915(β-modification of quinacridone).



EXAMPLE 12

[0120] A mixture of 4.75 g of toluene-4-sulfonic acid and 100 ml of diphenyl ether is heated to 150° C. To the solution so obtained is then added a solution of 1.03 g of the product of Example 1 in 150 ml of tetrahydrofuran over 5 hours at 150° C. The tetrahydrofuran which evaporates rapidly under these reaction conditions is condensed in a Liebig condenser and collected in a receiver. The reaction mixture is stirred for a further 2 hours at 150° C. and then cooled to 60° C. The precipitated pigment is isolated by filtration, washed with methanol and afterwards with water and dried under vacuum at 60° C., affording 0.67 g of a red powder.


[0121] The The X-ray diffraction pattern is characterised by the following diffraction lines:
3Interplanar spacingTwo-fold hue angle(d-values in Å)(2 Θ)Relative intensity13.68416.451006.797213.01436.615313.37526.444013.73845.567815.9155.253616.86104.355920.37143.752623.69143.563224.97113.379626.35663.358326.52553.206527.8073.130628.4972.953430.2462.457636.5352.213540.737(γ-modification of quinacridone).


Claims
  • 1. A compound of formula
  • 2. A compound of formula I according to claim 1, wherein x is 1 or 2 and B is a group of formula
  • 3. A compound of formula I according to claim 1, wherein x is 2 and B is a group of formula
  • 4. A compound of formula I according to claim 1, which is a perylenecarboximide of formula
  • 5. A compound of formula I according to claim 1, which is a quinacridone of formula
  • 6. A compound of formula I according to claim 1, which is a dioxazine of formula
  • 7. A compound of formula I according to claim 1, which is an isoindoline of formula
  • 8. A compound of formula I according to claim 1, which is an indigo derivative of formula
  • 9. A compound of formula I according to claim 1, which is an azobenzimidazolone of formula
  • 10. A compound of formula I according to claim 1, which is an anthraquinoid compound of formula
  • 11. A compound of formula I according to claim 1, which is a phthalocyanine of formula
  • 12. A process for the preparation of a compound of formula I, which comprises reacting a compound of formula
  • 13. A process according to claim 12, wherein the compound of formula XVII is reacted with a dicarbonate of formula XVIII.
  • 14. High molecular weight organic material containing in the mass a compound of formula I as claimed in claim 1 as fluorescent pigment.
  • 15. A high molecular weight organic material containing in the mass a pigment of formula A(H)x, wherein A and x are as defined in claim 1, which is produced in situ by thermal, photolytic or chemical degradation of a soluble chromophore of formula I as claimed in claim 1.
  • 16. A heat-sensitive, photosensitive or chemosensitive recording material containing a soluble chromophore of formula I as claimed in claim 1.
  • 17. A photoluminescent and electroluminescent material containing a soluble chromophore of formula I as claimed in claim 1.
  • 18. A process for the crystal modification of a chromophore of formula XVII, comprising a) the chemical treatment of a chromophore of formula I with an organic or inorganic acid at 50 to 180° C. and subsequent cooling, or b) the thermal treatment of a chromophore of formula I in the temperature range from 180 to 350° C.
Priority Claims (2)
Number Date Country Kind
3080/93-1 Oct 1993 CH
3442/93-9 Nov 1993 CH
Divisions (2)
Number Date Country
Parent 08677285 Jul 1996 US
Child 09778324 Feb 2001 US
Parent 08319399 Oct 1994 US
Child 08677285 Jul 1996 US