The present invention concerns crystalline salts of harringtonines, protonated on their alkaloid nitrogen, definite by their solid state analysis patterns, their process of preparation allowing their use as drug substance for blending alone or in combination in pharmaceutical composition useful as chemotherapeutic agents, given alone or combined with radiotherapy, or useful for treating parasitic and viral diseases and/or as immunomodulating agents, particularly in using oral or parenteral modes of administration.
Among harringtonines, homoharringtonine (=HHT, named omacetaxine D.C.I. as drug substance) is a natural ester of cephalotaxine (see scheme 1 and table 1), an alkaloid of Cephalotaxus harringtonia, a rare and endangered Asian conifer belonging to the Cephalotaxaceae family. HHT content in renewable parts of Cephalotaxus is about a few dozen of mg only per kilo of dry plant material. This characteristic, in despite of considerable efforts performed by the U.S. National Cancer Institute, hampered clinical development of omacetaxine for more than thirty-years. On March 1998, the discovering of a new hemi-synthetic process by the Applicant, allowed industrial production of homoharringtonine at the kilo scale (U.S. Pat. No. 6,831,180 and Robin et al. Tet. Lett. 1999. p.2931)] and divided by 70 the need of rare plant material (Nicolini et al., Leukemia Research, 2014, 38, p.11545).
Important Note:
It should be noted that chemical structure of hemi-synthetic omacetaxine is strictly identical to the natural one version: omacetaxine is not a semi-synthetic derivative as indicated in some article published in literature (see scheme 1 and table 1). All denominations of omacetaxine (OMA) or homoharringtonine (HHT) included in this document are strictly equivalent regarding molecular structure. The sentence “omacetaxine is a semi-synthetic derivative of cephalotaxine” encountered in literature, is totally devoid of scientific significance: the semi-synthetic appellation suggests that a moiety of the molecule (cephalotaxine) would natural and that the other moiety (the side chain) would be unnatural (man designed) while the latter is strictly natural. When only a portion of a molecule was produced by synthesis, the process name is hemi-synthesis and the molecule is sometimes also called hemi-synthetic.
Short History of Recent Development of Homoharringtonine.
Initially, all above esters of cephalotaxine were discovered by U.S. teams (Powel et al., J. Pharm. Sc., 1972, 61, p.1227) and a large development program was performed by the United States National Cancer Institute (Suffness et al., J. Nat. Cancer Inst., 1988, 80, p.1095). In October 2012, the United States Food and Drug Administration (FDA) granted accelerated approval for omacetaxine mepesuccinate for the treatment of adult patients with chronic or accelerated phase chronic myeloid leukemia (CML) who failed to respond to two or more tyrosine kinase inhibitors (TKIs) [ref fda]. Since this approval, hundreds of articles or reviews related to OMA/HHT were published in literature (more than 400 articles listed in SciFinder database). Definitive approval of OMA was granted in 2014 (Alvandi et al., The Oncologist, 2014, 19, p 94). This occurred after a very long and tumultuous period of clinical development (Kantarjian et al., Clin. Lymph. Myel. Leuk. 2013 p. 530), including early clinical development of HHT and, to a lesser extent, its congeners harringtonine (HA) and deoxyharringtonine (DHA) in various institution in the U.S. and in China. Finally, the successive involvement of seven pharmaceutical companies (Vivorex/American Bioscience; Oncopharm; Stragen; Chemgenex; Cephalon; TEVA) dispatched in 5 countries occurred before approval of omacetaxine! More than 50 clinical trials in USA, China and France involving more than 2000 patients.
Definition (See Scheme 1 and Table 1)
Homohamingtonine/Omacetaxine Mepesuccinate/Synribo/Myelostat
The INN (Intemational Non-proprietary Name) “omacetaxine mepesuccinate” (OMA) is a name reserved for homoharringtonine HHT drug substance dedicated for pharmaceutical and medicinal use regardless its natural, hemi-synthetic or synthetic origin [formely named homoharringtonine]. Synribo (TEVA) and Myelostat (Oncopharm corporation) are trademark (F-D-C Reports, Pharmaceutical Approvals Monthly, 2001, 6, p.35).
Cephalotaxanes Including Numbering
Cephalotaxanes are particular alkaloids to date exclusively extracted from the Cephalotaxaceae family which exhibit the structural formula 1. Several substituants may be encountered on this core structure: hydroxyl, ether, acyloxy etc. The eventual presence of some additional double bound or intramolecular bridge achieve to definite cephalotaxanes. Cephalotaxines 2 are cephalotaxanes without acyloxy side-chain.
Cephalotaxine 2a and drupacine 2b are example of cephalotaxines. Harringtonines 5 are particular cephalotaxanes formed by attachment of a branched α-hydroxyacyloxy side-chain at the 3-position of various cephalotaxines moieties. Cephalotaxines 2 and harringtonines 5, are examples of cephalotaxanes. Several dozen of cephalotaxanes have been isolated from various Cephalotaxus species. 4 is the generic formula of cephalotaxine esters (Takano et al., Phytochemistry, 1997, 44, p. 735 and cited references).
Harringtonines 5 (i. e. harringtonine=HA and homoharringtonine=HHT) are particular cephalotaxine esters. Cephalotaxine and its natural ester are gathered under the generic term of cephalotaxane.
Harringtoids are semi-synthetic derivatives of harrintonines.
Harringtonic acids are side-chain of harringtonines.
(1) The first cephatotaxine ester isolated from oephalotaxus harringtonia *In cancer area, for definition of term see [Suffness et al in Journal of Natural Products 1982 p 1 Current Status of the NCI Plant and Animal Product Program] CYTOTOXICITY is toxicity to tumor cells in culture; ANTITUMOR is in vivo activity in experimental systems; ANTINEOPLASTIC or ANTICANCER are the reserved terms for reported clinical trials data.
(2) “Homo” means one more carbon than harringtonine; Named omacetaxine (D.C.I.) as active pharmaceutical ingredient
(3) “nor” means one more less carbon.
Two haringtonines are very promising drugs in the treatment of certain leukemia such as Chronic Myelogenous Leukemia (CML). Both homoharringtonine and harringtonine were used in human chemotherapy of leukemia for 30 years (see above Suffness et al.) and a large number of semi-synthetic analogs such as 5 on scheme 1 were synthesized (see “5.2 Cephalotaxus Esters With Side Chain Analogs” in above cited reference of Dumas et al.).
Surprisingly, never crystalline salts of harringtonines have been isolated and described in literature.
However, in spite of the progress recorded in production, purification and therapeutic use of homoharringtonine, several disadvantages persist:
i) The cost of treatment for omacetaxine (Synribo) is prohibitive: $28,000 for induction, $14,000 for monthly treatments), this give about 180.000 $ per year, per patient [Kantarjian et al. Journal of Clinical Oncology, 2013, p3600; Hagop Kantarjian, personal communication]
ii) The use of the parenteral route of administration even retards the development of this drug
iii) Preparation of formulations for parenteral use is complicated by the use of lyophilization
iv) Formation of non-crystalline salts of harrintonines give not as accurately defined compound as crystalline salts
v) There is some local intolerance to this product when administered subcutaneously
vi) On the other hand, although it has been known for almost 40 years, there is still a slight doubt regarding the absolute configuration of this series of natural product.
Recent Scientific Discovering Regarding Mechanism of Activity of Harringtonines
The team of Steitz (Journal of Molecular Biology 2009, 389, p. 146) recently demonstrated that homoharringtonine when in place in its active site was protonated in a neutral media, implying that alkaloid nitrogen protonation is imperative condition for the manifestation of the activity of this ligand.
In addition, the team of Takano et al [J. Org. Chem. 1997 p. 8251) demonstrated experimentally that when the nitrogen lone pair of homoharringtonine was occupied by an oxygen atom, the cytotoxic activity was divided by a factor of at least 50. The authors conclude that “the nitrogen lone pair on the cephalotaxine skeleton appears to be essential for its activity”.
The above mentioned team of Steitz showed that the absolute configuration of homoharringtonine deposited in the Cambridge Structural Database seems to be the opposite of that commonly adopted in the literature.
The present invention relates to overcome the problems mentioned above. It also demonstrated that the absolute configuration in the deposited homoharringtonine Cambridge Structural Database seems to be the opposite of that commonly retained in the literature.
The eight example of single crystal X-ray diffraction of homoharringtonine salt exhibited in
The present invention relates to overcome the problems mentioned above, namely:
As detailed above, the fact that the real active form of harringtonines would be their nitrogen-protonated version was recently supported by the above cited works of Seitz et al. and Takano et al.
The present invention concerns novel water soluble crystalline salts of homoharringtonine and their use as new chemical entities for the formulation of new cancer chemotherapeutic, or immunomodulating or antiparasitic agents and to implement new processes for purification including enantiomeric and determine the absolute configuration of the series.
The present invention describes the preparation of crystalline salts of harringtonines as nitrogen-protonated form, stable and soluble in water and their use for the manufacture of pharmaceutical composition useful in the treatment of cancers, leukemias, immune disease and as reversal agents.
The present invention describes an unambiguously proved method of protonation of harringtonine nitrogen.
The present invention provides salts of harringtonines in the crystalline state, protonated on their alkaloid nitrogen, definite by their solid state analysis patterns, their process of preparation from harringtonines and commercial organic acid allowing their use as drug substance for blending alone or in combination with other chemotherapeutic agents such as, but not limited to, cytarabine or interferon or imatinib mesylate or dasatinib or arsenic trioxide or all-trans-retinoic acid, in a pharmaceutical composition particularly useful for treatment of cancer, alone or combined with radiotherapy, in using oral or parental modes of administration.
In one embodiment, the crystalline salts of the invention are used as drug substance for blending alone or in combination with other therapeutical agents in pharmaceutical composition useful as immunomodulating agents, particularly in using oral or parenteral modes of administration.
A major embodiment of the invention is a new efficient process of purification of natural, semi-synthetic or synthetic version of harringtonines and their analogs using formation of a crystallogenic salt and its fractional crystallization in organic solvents, all the resulting purified compounds having the same level of purity.
Another aspect of the invention is a new efficient process of purification of natural homoharringtonine using formation of crystallogenic salts and their fractional crystallization in organic solvents giving the same level of purity as homoharringtonine of hemi/semi-synthetic origin.
Another aspect of the invention is a new efficient process of purification of natural harringtonine using formation of crystallogenic salts and their fractional crystallization in organic solvents giving the same level of purity as harringtonine of hemi/semi-synthetic origin.
In one embodiment, the present invention relates to a harringtonines salt in the crystalline state exhibiting a protonated nitrogen seen in solid state analysis and having formula 1,
comprising solvate, made by reacting a cephalotaxine ester having formula 2,
in which R1 is, but not limited to, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocycloalkyl, and R2 is, independently, but not limited to H, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocydoalkyl, with an acid having general formula AH in a crystallization solvent, wherein the said salt has a water or alkohol solubility ranged approximately from 5 mg/mL to approximately 100 mg/Ml.
In a preferred embodiment, the acid having general formula AH is an organic acid. In a preferred embodiment, the organic acid is selected among the following list: fumaric, maleic, citramalic, malic, tartaric, tartronic, succinic, itaconic, citric acid or salicylic acid.
A preferred embodiment of the invention is a crystalline homohaningtonine hydrogen 2S-malate having substantially the same IR spectrum, in the solid state as set out in
A further preferred embodiment of the invention provides a crystalline homoharringtonine hydrogen 2R-malate having substantially the same IR spectrum, in the solid state as set out in
A further preferred aspect of the invention is a crystalline homoharringtonine hydrogen (2S,3S)-tartrate having substantially the same IR spectrum, in the solid state as set out in
Yet, a further embodiment of the invention is a crystalline homoharringtonine hydrogen (2R,3R)-tartrate having substantially the same IR spectrum, in the solid state as set out in
Yet, another embodiment of the invention provides a crystalline homoharringtonine hydrogen (2S)-citramalate having substantially the same IR spectrum, in the solid state as set out in
Yet, a preferred aspect of this invention is a crystalline homoharringtonine hydrogen (2R)-citramalate having substantially the same IR spectrum, in the solid state as set out in
Yet, another preferred aspect of this invention provides a crystalline homoharringtonine hydrogen succinate having substantially the same IR spectrum, in the solid state as set out in
Yet, a further preferred aspect of this invention is a crystalline homoharringtonine hydrogen itaconate having substantially the same IR spectrum, in the solid state as set out in
Yet, a preferred aspect of this invention provides a crystalline homoharringtonine hydrogen fumarate having substantially the same IR spectrum, in the solid state as set out in
Yet, an another aspect of the invention provides a crystalline homohamrngtonine hydrogen tartronate having substantially the same IR spectrum, in the solid state as set out in
In addition, another embodiment provides a crystalline homoharringtonine hydrogen malonate having substantially the same IR spectrum, in the solid state as set out in
Moreover, a preferred embodiment of this invention provides a crystalline homoharringtonine dihydrogen citrate having substantially the same IR spectrum, in the solid state as set out in
Also, a preferred aspect of this invention provides a crystalline homoharringtonine hydrogen salicylate having substantially the same IR spectrum, in the solid state as set out in
Yet, a preferred aspect of this invention provides a pharmaceutical composition comprising an effective amount of one of the salts of this invention, together with one or more pharmaceutical acceptable inactive components such as carriers, excipients, adjuvants or diluents.
Yet, a preferred aspect of this invention provides a pharmaceutical dosage form dedicated to an oral mode of administration selected among, for example, capsules, dragees, emulsions, granules, pills, powders, solutions, suspensions, tablets, microemulsions, elixirs, syrups, tea or powders for reconstitution.
Yet, an another aspect of this invention provides a pharmaceutical dosage form dedicated to a subcutaneous mode of administration in non-acidic condition allowing a good locale tolerance.
Another aspect of the invention is the use of at least the solid form of one salt described in the invention for preparing the above pharmaceutical composition as (i) chemotherapeutic agent, (ii) enhancer of other chemotherapeutic agents (iii) after failure of other agents (iv) for inhibiting tumors growth in animal, (v) for inhibiting mammalian parasites, (vi) as immunosuppressive agent, or (vii) as reversal agent.
A preferred embodiment of the invention describes a method for treating mammalian tumors which comprises oral administering to a mammal an antitumor effective amount of the solid form of one salt described in this invention.
A further preferred embodiment of the invention describes a method for treating mammalian tumors which comprises implantable pharmaceutical preparation administering to a mammal an antitumor effective amount of the solid form of at least one salt described in this invention.
Yet, invention is also concerned with the use of solid form of the salts of the invention as defined above, for the preparation of pharmaceutical compositions for the treatment of cancer, particularly brain cancer such as for example, but not limited to, neuroblastoma and eventually their metastasis, lung cancer such as for example non-small cells lung carcinoma eventually their metastasis, ovarian high-grade carcinoma, breast cancer including triple negative breast carcinoma and eventually their metastasis, and pancreatic cancer including ductal adenocarcinoma, this therapy being given alone or combined with at least another chemotherapeutic agent, eventually combined with radiotherapy.
Another embodiment of the present invention relates to a method of treating cancer, particularly brain cancer such as for example, but not limited to, neuroblastoma and eventually their metastasis, and lung cancer such as for example non-small cells lung carcinoma eventually their metastasis, ovarian high-grade carcinoma, breast cancer including triple negative breast carcinoma and eventually their metastasis, and pancreatic cancer including ductal adenocarcinoma, comprising administering to a patient or an animal in need thereof a pharmaceutical composition comprising solid form of the salts of the invention, said pharmaceutical composition being administered alone or combined with at least another chemotherapeutic agent, eventually combined with radiotherapy.
Furthermore, invention also deals with the use of solid form of the salts of the invention as defined above, for the preparation of pharmaceutical compositions for the treatment of autoimmune diseases, such as for example but not limited to multiple sclerosis, psoriasis, rheumatoid arthritis, dermatomyositis, Hashimoto's thyroiditis, systemic lupus erythematosus, this therapy being given alone or combined with at least another chemotherapeutic agent, said at least another chemotherapeutic agent being eventually combined with radiotherapy, or with at least another immunomodulating agent. Another embodiment of the present invention relates to a method of treating autoimmune diseases, such as for example but not limited to multiple sclerosis, psoriasis, rheumatoid arthritis, dermatomyositis, Hashimoto's thyroiditis, systemic lupus erythematosus, comprising administering to a patient or an animal in need thereof a pharmaceutical composition comprising solid form of the salts of the invention, said pharmaceutical composition being administered alone or combined with at least another chemotherapeutic agent, said at least another chemotherapeutic agent being eventually combined with radiotherapy.
Finally, the invention is also concerned with the use of solid form of the salts of the invention as defined above, for the preparation of pharmaceutical compositions for the treatment of leukemias particularly acute myelod leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative disorders including chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, myelosclerosis, and/or lymphoma such as but not limited to a multiple myeloma, a Hodgkin disease or a Burkitt lymphoma, said therapy being given alone or combined with at least another chemotherapeutic agent and/or with radiotherapy.
Another embodiment of the present invention relates to a method of treating leukemias particularly acute myelod leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative disorders including chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, myelosclerosis, and/or, said method comprising administering to a patient or an animal in need thereof a pharmaceutical composition comprising solid form of the salts of the invention, said pharmaceutical composition being administered alone or combined with at least another chemotherapeutic agent, including the targeted one, eventually combined with radiotherapy.
In a preferred embodiment, the patient in need thereof according to the present invention is a de novo patient or a patient for which other therapy as failed to treat the disease from which he suffers.
1.1 General Procedures for Salts Preparation
Cation and anion components are dissolved separately in a solvent at a concentration close of saturation and at a temperature close of boiling then both solutions are mixed under stirring then slowly cooled and evaporated. After a period ranging from a few minutes up to several days, crystal salt is collected. A sample of the batch of crystals is kept suspended in its mother liquors for the subsequent X-ray diffraction analysis. The remainder of the batch was dried under vacuum for further solid characterization, comparative stability studies and drug formulation.
1.2 General Procedures for Solid State Characterization
Single Crystal X-Ray Diffractions Material and Methods
KappaCCD, Nonius diffractometer, Mo—Kα radiation (λ=0.71073 Å). The structure was solved by direct methods using the SHELXS-97 program [Sheldrick G. M., Acta Cryst. A64 (2008), 112-122], and then refined with full-matrix least-square methods based on F2 (SHELXL-2013) [Sheldrick G. M., (2013)] with the aid of the WINGX [L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854] program. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. Except nitrogen and oxygen linked hydrogen atoms that were introduced in the structural model through Fourier difference maps analysis, H atoms were finally included in their calculated positions.
Collected information: atomic positions; unit cell composition; crystal packing anisotropic displacement parameters; bond lengths, dihedral and torsion angles, hydrogen bounding.
Original files with all parameters are includes on a CD and may be visualized and handled in using ORTEP-3 software (ORTEP=Oak Ridge Thermal-Ellipsoid Plot Program) available free of charge on the Internet:
http://www.chem.gla.ac.uk/˜louis/software/ortep3/
X-Ray Diffraction Powder
Diagrams were measured on a Bruker AXS D8 Advance diffractometer, Bragg-Brentano geometry (θ-2 θ), CuK α=1.5406 Å, 600 ms/pixel, rotation: 0.25/sec. For each chart, the calculated pattern from the single crystal structure, when available, is upped mentioned.
Differential Scanning Calorimetry (DSC)
The DSC analysis was performed using a Perkin Elmer DSC 4000 apparatus. The scan rate was 5° C./min and the scanning range of of temperature 40 to 230° C. The accurately weighed quantity was ranged from 1 to 3 mg. All operations were performed under nitrogen atmosphere. The measured values were the Onset, the Peak and the value of the free enthalpy variation. The eventual product decomposition and the vaporization of solvent crystallization (methanol and/or water) were recorded. The value of the change in free energy, was given only as a guideline to assess the endothermicity or exotermicity of the transition.
Melting Point Checking
Melting points were measured manually for visual checking of the one determined with DSC. A Bücchi B-545 melting point apparatus was used and mp are uncorrected.
Infrared Spectra
All vibrational spectra were recorded on a Perkin Elmer IR FT Spectrum 2 apparatus equipped with diamond ATR accessory that is to say using Attenuated Total Reflection technique. The crystalline solids were crushed directly by in situ compression on the diamond window and the amorphous state has been demonstrated by dissolving the product in deuterated methanol then generating the film by in situ evaporation on the diamond window.
1.3 General Procedures for Liquid State and Solution Characterizations
Nuclear Magnetic Resonance
NMR spectra were recorded automatically on a Bruker Avance III spectrometer NanoBay—400 MHz (9.4 Tesla magnet) with a BBFO+probe and sampler 120 positions, allows for automatic mode NMR experiments one and two dimensions mainly for nuclei: 1H, 2H, 11B, 13C, 15N, 19F, 27Al, 31P, 119Sn or on Bruker Avance III—600 MHz spectrometer.
Dissolving salts for 13C NMR: 30 mg of compound were dissolved in 600 μL (5% m/V) of methanol D4 or deuterium oxyde (or both if specified)
Water suppression: The irradiation technique known as ‘watergate’ (Selective pulse flanked by gradient pulses) was used for proton NMR in the presence of D2O and/or MOD4 as solvents.
High Performance Liquid Chromatography
Routine experiments were performed on a Waters HPLC-MS-DAD coupled system (3100 pump, DAD 996 detector, 3100 mass detector).
Solubility Determination
Solubility in water at 25° C. was measured semi-quantitatively at a threshold of 5 g per 100 mL. All the homoharringtonine salts described in the below examples, unless otherwise stated, are soluble at this threshold. Homoharringtonine base itself is soluble at a threshold mower than 0.1 g per mL
2.1 Analysis of Homoharringtonine Base Alkaloid
Commercial homoharringtonine is provided by Sigma Aldrich.NMR spectra were performed in deuterated methanol for comparison with salt in the same solvent
By methanol recrystallisation of a commercial alkaloid from natural source, it results fine white prisms (mp 145-146°, by DSC, see
1H NMR (400 MHz, Benzene-d6) δ 6.54 (s, 1H), 6.46 (s, 1H), 6.21-6.12 (m, 1H), 5.47 (d, J=1.4 Hz, 1H), 5.33 (d, J=1.4 Hz, 1H), 4.67 (s, 1H), 3.43 (d, J=9.8 Hz, 1H), 3.34 (s, 3H), 3.28 (s, 3H), 2.83 (td, J=8.5, 4.5 Hz, 1H), 2.75 (dd, J=11.5, 4.5 Hz, 1H), 2.55 (dd, J=10.8, 7.5 Hz, 1H), 2.41 (dd, J=16.2, 6.9 Hz, 2H), 2.23-2.11 (m, 2H), 1.78 (m, 1H), 1.67-1.56 (m, 2H), 1.48 (m, 5H), 1.34-1.19 (m, 2H), 1.04 (d, J=6.7 Hz, 6H).
1H NMR (300 MHz, Chloroform-d) δ 6.62 (s, 1H), 6.54 (s, 1H), 6.00 (d, J=9.8 Hz, 1H), 5.87 (s, 2H), 5.05 (s, 1H), 3.78 (d, J=9.8 Hz, 1H), 3.68 (s, 3H), 3.57 (s, 3H), 3.52 (s, 1H), 3.20-3.04 (m, 2H), 3.01-2.88 (m, 1H), 2.60 (t, J=7.2 Hz, 1H), 2.38 (dd, J=13.7, 6.3 Hz, 1H), 2.26 (d, J=16.5 Hz, 1H), 2.10-1.97 (m, 1H), 1.91 (d, J=16.5 Hz, 1H), 1.75 (s, OH), 1.39 (dd, J=13.5, 6.4 Hz, 5H), 1.19 (s, 7H).
1H NMR (400 MHz, Methanol-d4)*δ 6.7 (s, 1H), 6.59 (s, 1H), 5.98 (dd, J=9.8, 0.8 Hz, 1H), 5.89 (d, J=1.2 Hz, 1H), 5.85 (d, J=1.2 Hz, 1H), 5.22 (d, J=0.8 Hz, 1H), 3.89 (d, J=9.8 Hz, 1H), 3.70 (s, 3H), 3.55 (s, 3H), 3.20 (ddd, J=14.1, 12.4, 7.9 Hz, 1H), 2.96 (m, 1H), 2.88 (m, 1H), 2.64 (dd, J=11.4, 7.6 Hz, 1H), 2.44 (dd, J=14.3, 6.8 Hz, 1H), 2.17 (d, J=16.1 Hz, 1H), 2.03 (m, 1H), 1.95 (m, 1H), 1.90 (d, J=16.1 Hz, 1H), 1.49-1.30 (m, 5H), 1.25 (dd, J=9.8, 5.8 Hz, 1H), 1.17 (s, 3H), 1.16 (s, 3H). *Partial presuppression of water signal using ‘watergate’ irradiation
13C NMR (101 MHz, MeOD) δ 174.68, 171.76, 159.97, 148.21, 147.32, 134.49, 129.88, 114.02, 110.86, 102.10, 100.74, 76.03, 75.52, 72.14, 71.35, 58.04, 56.48, 54.60, 52.00, 49.64, 44.89, 44.15, 43.86, 40.87, 32.08, 29.27, 29.01, 20.82, 19.19.
IR (KBr, solid), cm−1 3551.9, 3412.3, 3000.4, 2976.1, 2966.0, 2958.6, 2911.4, 2876.0, 2814.4, 2740.8, 1743.0, 1653.5, 1624.7, 1505.3, 1488.1, 1454.8, 1436.1, 1411.2, 1392.8, 1377.7, 1367.2, 1346.3, 1306.4, 1274.3, 1261.5, 1230.0, 1190.8, 1162.1, 1135.3, 1119.9, 1082.0, 1027.9, 1000.5, 932.1, 900.6, 879.3, 854.2, 827.3, 804.9, 795.2, 772.4, 762.9, 738.3, 705.7, 674.0, 661.4, 610.8, 556.7, 540.9, 522.1, 512.8, 503.3. See
A) Single Crystal X Ray Diffraction of Homoharringtonine Base (Form A).
See Corresponding
From a suspension in its mother liquor, a suitable single crystal of size 0.5×0.4×0.4 mm was finally selected and implemented on the diffractometer.
bGoodness-of-fit
cR1 = 0.0495, dwR2 = 0.1256
cR1 = 0.0719, dwR2 = 0.1411
Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of
Single Crystal X Ray Diffraction of Homoharringtonine Base (Form B)
See Corresponding
From a suspension in its mother liquor, a suitable single crystal of size 0.43×0.29×0.18 mm was finally selected and implemented on the diffractometer.
bGoodness-of-fit
cR1 = 0.0346, dwR2 = 0.0871
cR1 = 0.039, dwR2 = 0.09
Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of
This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2S)-(−)-malic acid (natural form) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 205.4-207.7° C. from MeOH (measured by DSC, see
1H NMR (400 MHz. Methanol-d4)* δ 6.79 (s, 1H), 6.74 (s, 1H), 6.09 (dd, J=9.6, 0.6 Hz, 1H), 5.96 (d, J=1.1 Hz, 1H), 5.93 (d, J=1.1 Hz, 1H), 5.33 (d, J=0.6 Hz, 1H), 4.24 (dd, J=7.4, 5.4 Hz, 1H), 4.16 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.50 (dd, J=9.5, 4.3 Hz, 1H), 3.42-3.32 (m, 1H), 3.21-3.10 (m, 1H), 2.76 (dd, J=15.9, 5.5 Hz, 1H), 2.71-2.62 (m, 1H), 2.48 (dd, J=15.8, 7.4 Hz, 1H), 2.26-2.05 (m, 4H), 1.94 (d, J=16.1 Hz, 2H), 1.47-1.29 (m, 5H), 1.29-1.17 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation
1H NMR (600 MHz, Deuterium oxide)* δ 6.84 (s, 1H), 6.76 (s, 1H), 6.01 (dd, J=9.6, 0.7 Hz, 1H), 5.95 (d, J=1.0 Hz, 1H), 5.94 (d, J=1.0 Hz, 1H), 5.34 (d, J=0.6 Hz, 1H), 4.31 (dd, J=8.2, 4.2 Hz, 1H), 4.19 (d, J=9.6 Hz, 1H), 3.76 (s, 3H), 3.52 (s, 3H), 3.52 (m, 1H), 3.42-3.32 (m, 1H), 3.30-3.23 (m, 1H), 3.22-3.15 (m, 1H), 2.76 (dd, J=16.0, 4.2 Hz, 1H), 2.74-2.68 (m, 1H), 2.57 (dd, J=16.0, 8.2 Hz, 1H), 2.36 (d, J=17.0 Hz, 1H), 2.29-2.08 (m, 2H), 1.99 s(d, J=16.9 Hz, 1H), 1.97-1.89 (m, 1H), 1.45-1.37 (m, 2H), 1.36-1.26 (m, 3H), 1.12 (s, 6H), 1.12-1.02 (m, 1H). *Partial presuppression of water signal using ‘watergate’ irradiation
13C NMR APT* (101 MHz, MeOD) δ 179.23, 176.13, 174.23, 171.61, 165.05, 149.76, 148.75, 130.92, 126.86, 114.85, 111.80, 102.86, 96.12, 78.09, 76.08, 74.35, 71.27, 69.35, 59.01, 54.21, 53.27, 52.07, 48.94, 44.76, 44.06, 41.80, 40.88, 40.52, 29.25, 29.23, 29.17, 19.95, 19.09.
13C NMR APT* (101 MHz, D2O) δ 178.97, 176.21, 174.23, 171.93, 162.88, 147.83, 146.74, 129.74, 125.22, 113.38, 111.12, 101.62, 95.52, 76.98, 75.25, 73.68, 71.34, 68.50, 58.41, 52.95, 52.24, 51.25, 47.58, 42.71, 42.54, 40.00, 39.18, 38.76, 27.69, 27.58, 27.47, 18.58, 17.68. *APT=Attached Proton Test
IR (Diamond ATR, solid) cm−1 3404, 2969, 2601, 1981, 1758, 1736, 1712, 1657, 1525, 1505, 1490, 1468, 1435, 1374, 1353, 1265, 1226, 1188, 1148, 1080, 1032, 983, 943, 925, 862, 830, 796, 770, 756, 708, 691, 674, 650, 615, 589, 565, 541, 510, 477. See
IR (Diamond ATR, film) cm−1 3422, 2964, 1742, 1656, 1596, 1506, 1490, 1440, 1373, 1266, 1224, 1168, 1084, 1033, 929, 710, 615, 566, 509, 477, 0, 983, 943, 925, 862, 830, 796, 770, 756, 708, 691, 674, 650, 615, 589, 565, 541, 510. See
Solubility in neutral water higher than 60 mg/mL
A. Single Crystal X-Ray Diffraction (See
From a suspension in its mother liquor, a suitable single crystal of size 0.58×0.46×0.29 mm was finally selected and implemented on the diffractometer.
bGoodness-of-fit
cR1 = 0.0735, dwR2 = 0.1727
cR1 = 0.1366, dwR2 = 0.2124
Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of
B. X-Ray Powder Diffraction
The sample is pure and there is a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see
This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2R)-(+)-malic acid (unnatural form) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 205-208° C. from MeOH (measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.74 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.97 (d, J=1.0 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.26 (dd, J=7.4, 5.5 Hz, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.55 (s, 3H), 3.53 (s, 1H), 3.34 (s, 2H), 3.22-3.12 (m, 1H), 2.77 (dd, J=15.9, 5.4 Hz, 1H), 2.72-2.64 (m, 1H), 2.49 (dd, J=15.9, 7.4 Hz, 1H), 2.29-2.05 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.48-1.18 (m, 6H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation
13C NMR APT* (101 MHz, Methanol-d4) δ 179.21, 176.06, 174.25, 171.63, 165.07, 149.78, 148.77, 130.94, 126.88, 114.85, 111.80, 102.88, 96.10, 78.07, 76.09, 74.36, 71.28, 69.33, 59.00, 54.22, 53.31, 52.07, 44.77, 44.06, 41.76, 40.88, 40.54, 29.27, 29.22, 19.94, 19.10. *APT=Attached Proton Test
IR (Diamond ATR, solid) cm−1 3467, 3384, 2970, 2051, 1762, 1737, 1708, 1655, 1607, 1533, 1509, 1494, 1469, 1440, 1376, 1349, 1333, 1292, 1258, 1230, 1208, 1167, 1147, 1121, 1080, 1032, 985, 942, 926, 888, 865, 820, 771, 754, 717, 690, 675, 648, 616, 563, 542, 513, 476. See
IR (Diamond ATR, film) cm−1 3422, 2964, 1742, 1656, 1598, 1506, 1490, 1440, 1373, 1266, 1224, 1169, 1084, 1033, 929, 709, 567, 511. See
A. Single Crystal X-Ray Diffraction (See
From a suspension in its mother liquor, a suitable single crystal of size 0.55×0.48×0.4 mm was finally selected and implemented on the diffractometer.
bGoodness-of-fit
cR1 = 0.0397, dwR2 = 0.0825
cR1 = 0.0531, dwR2 = 0.0878
Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of
B. X-Ray Powder Diffraction
The sample was pure, there is no doubt that this is the correct phase. However there is a gap of certain diffraction lines, which would be associated with a variation of unit cell parameters. There may be a change in the rate of hydration for example, to cause such a phenomenon (for view of diagrams and experimental details, see
This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2S,3S-(−)-tartaric acid (unnatural form) according to the general procedure, then isolated as a white prismatic solid mp 202-205° C. (uncorrected) from MeOH. (198.1-203.9, measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 6.81 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.5 Hz, 1H), 5.97 (d, J=1.1 Hz, 1H), 5.94 (d, J=1.1 Hz, 1H), 5.34 (s, 1H), 4.36 (s, 2H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 2.24 (d, J=16.2 Hz, 2H), 1.95 (d, J=16.1 Hz, 1H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation
13C NMR APT* (101 MHz, Methanol-d4) δ 176.81, 174.28, 171.67, 165.24, 149.87, 148.85, 130.83, 126.76, 114.91, 111.89, 102.93, 96.04, 78.34, 76.13, 74.38, 74.10, 71.32, 59.10, 54.28, 53.22, 52.12, 44.80, 44.09, 40.91, 40.46, 29.20, 29.19, 19.95, 19.13. *APT=Attached Proton Test
IR (Diamond ATR, solid) cm−1 3502, 3048, 2971, 2884, 2051, 1981, 1765, 1736, 1656, 1592, 1506, 1490, 1432, 1375, 1348, 1321, 1295, 1265, 1227, 1205, 1165, 1147, 1111, 1081, 1031, 984, 939, 921, 887, 866, 831, 810, 727, 691, 675, 615, 564, 510, 477. See
IR (Diamond ATR, film) cm−1 3419, 2963, 1741, 1656, 1611, 1506, 1489, 1440, 1373, 1265, 1224, 1168, 1118, 1083, 1035, 983, 928, 674, 614, 512, 477. See
X-Ray Crystallographic Studies
A. Single Crystal X-Ray Diffraction (See
From a suspension in its mother liquor, a suitable single crystal of size 0.35×0.28×0.19 mm was finally selected and implemented on the diffractometer.
33H45N O15
bGoodness-of-fit
cR1 = 0.0289, dwR2 = 0.0766
cR1 = 0.0308, dwR2 = 0.0781
Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of
B. X-Ray Powder Diffraction
The sample was pure. There was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see
This ionic compound was obtained from commercial homoharringtonine mixed with commercial (+)-(2R,3R)-tartaric acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 206-208° C. (uncorrected) from MeOH. (204.6-208.5, measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.7 Hz, 1H), 5.97 (d, J=1.0 Hz, 1H), 5.94 (d, J=1.1 Hz, 1H), 5.34 (s, 1H), 4.36 (s, 2H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.44-3.32 (m, 2H), 3.28-3.16 (m, 1H), 2.69 (dd, J=13.7, 5.9 Hz, 1H), 2.27-2.21 (m, 2H), 2.21-1.97 (m, 2H), 1.95 (d, J=16.1 Hz, 1H), 1.49-1.18 (m, 6H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation
13C NMR APT* (101 MHz, Methanol-d4) δ 176.80, 174.24, 171.62, 165.20, 149.84, 148.83, 130.81, 126.73, 114.86, 111.85, 102.89, 96.00, 78.29, 76.09, 74.34, 74.07, 71.28, 59.05, 54.22, 53.18, 52.07, 44.76, 44.05, 40.87, 40.43, 29.23, 29.17, 29.15, 19.91, 19.10. *APT=Attached Proton Test
IR (Diamond ATR, solid) cm−1 3491, 3044, 2969, 1762, 1737, 1654, 1587, 1506, 1489, 1464, 1431, 1375, 1320, 1295, 1259, 1229, 1210, 1172, 1149, 1107, 1082, 1028, 984, 940, 924, 866, 819, 804, 735, 690, 616, 565, 512, 476. See
IR (Diamond ATR, film) cm−1 3417, 2963, 1741, 1655, 1611, 1505, 1489, 1440, 1373, 1265, 1223, 1167, 1118, 1082, 1034, 983, 928, 769, 675, 614, 565, 510, 478, 0, 1031, 984, 939, 921, 887, 866, 831, 810, 727, 691, 675, 615, 564, 510. See
X-Ray Crystallographic Studies
A. Single Crystal X-Ray Diffraction (See
From a suspension in its mother liquor, a suitable single crystal of size 0.54×0.41×0.34 mm was finally selected and implemented on the diffractometer.
bGoodness-of-fit
cR1 = 0.0368, dwR2 = 0.0759
cR1 = 0.0498, dwR2 = 0.0816
Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of
A. X-Ray Powder Diffraction
The sample was pure and there was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see
This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2S)-citramalic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 195.9-198.9° C. (measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.74 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.45-3.31 (m, 2H), 3.19 (dd, J=10.6, 6.9 Hz, 1H), 2.70 (d, J=15.7 Hz, 2H), 2.63 (d, J=15.7 Hz, 1H), 2.26-2.12 (m, 4H), 1.94 (d, J=16.1 Hz, 2H), 1.45-1.29 (m, 9H), 1.29-1.17 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation
13C NMR (101 MHz, MeOD) δ 181.21, 176.08, 174.23, 171.62, 165.18, 149.81, 148.79, 130.84, 126.78, 114.87, 114.58, 111.53, 102.58, 95.71, 78.24, 76.08, 74.03, 73.18, 71.27, 58.75, 53.91, 52.90, 51.79, 48.63, 46.32, 44.47, 43.77, 40.59, 40.15, 28.94, 28.89, 28.87, 26.22, 19.62, 18.80.
IR (Diamond ATR, solid) cm−1 2965, 1759, 1739, 1710, 1651, 1506, 1489, 1371, 1341, 1225, 1162, 1079, 1033, 972, 944, 925, 885, 866, 830, 786, 714, 690, 643, 615, 584, 562, 511. See
IR (Diamond ATR, film) cm−1 3434, 2968, 1744, 1656, 1590, 1505, 1490, 1374, 1265, 1224, 1166, 1084, 1033, 930, 710, 565. See
X-Ray Powder Diffraction
The powder sample is well crystallised, with a peak width of 0.102° (2θ) at 17.597° (2θ) (for view of diagrams and experimental details, see
This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2R)-citramalic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 202.7-204.7° C. (measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 6.79 (s, 1H), 6.74 (s, 1H), 6.08 (d, J=9.6 Hz, 1H), 5.95 (d, J=1.0 Hz, 1H), 5.93 (d, J=1.0 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.43-3.31 (m, 2H), 3.22-3.14 (m, 1H), 2.73-2.66 (m, 2H), 2.63 (d, J=15.7 Hz, 1H), 2.23 (d, J=16.0 Hz, 2H), 2.19 (s, 1H), 1.94 (d, J=16.1 Hz, 1H), 1.44-1.29 (m, 8H), 1.29-1.17 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation
13C NMR APT* (101 MHz, Methanol-d4) δ 181.21, 176.08, 174.23, 171.62, 165.18, 149.81, 148.79, 130.84, 126.78, 114.87, 111.82, 102.87, 96.00, 78.24, 76.08, 74.33, 73.18, 71.27, 59.04, 54.21, 53.20, 52.07, 48.94, 46.62, 44.76, 44.05, 40.87, 40.45, 29.23, 29.19, 29.17, 26.50, 19.92, 19.09. *APT=Attached Proton Test
IR (Diamond ATR, solid) cm−1 3681, 3512, 2969, 2845, 1764, 1740, 1707, 1652, 1605, 1513, 1495, 1469, 1440, 1369, 1332, 1292, 1260, 1227, 1204, 1167, 1147, 1124, 1080, 1048, 1033, 1023, 991, 971, 930, 885, 869, 824, 786, 753, 718, 689, 676, 644, 614, 564, 512, 475. See
IR (Diamond ATR, film) cm−1 3434, 2968, 2845, 1742, 1655, 1582, 1506, 1490, 1458, 1374, 1265, 1224, 1166, 1084, 1047, 1033, 930, 831, 710, 565, 476. See
X-Ray Crystallographic Studies
A. Single Crystal X-Ray Diffraction (See
From a suspension in its mother liquor, a suitable single crystal of size 0.44×0.32×0.16 mm was finally selected and implemented on the diffractometer.
bGoodness-of-fit
cR1 = 0.0413, dwR2 = 0.0899
cR1 = 0.0508, dwR2 = 0.0948
Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of
A. X-Ray Powder Diffraction
The sample was pure and well crystallised, with a peak width of 0.107° (2θ) at 16.992° (2θ). There was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see
This ionic compound was obtained from commercial homoharringtonine mixed with commercial succinic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 158.1-160.0° C. (measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 6.77 (s, 1H), 6.71 (s, 1H), 6.07 (dd, J=9.6, 0.7 Hz, 1H), 5.95 (d, J=1.1 Hz, 1H), 5.92 (d, J=1.1 Hz, 1H), 5.31 (d, J=0.6 Hz, 1H), 4.12 (d, J=9.6 Hz, 1H), 3.79 (s, 3H), 3.54 (s, 3H), 2.49 (s, 4H), 2.22 (d, J=16.2 Hz, 1H), 1.93 (d, J=16.1 Hz, 2H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation
13 C NMR APT* (101 MHz, D2O) δ 179.49, 174.22, 171.93, 162.89, 147.84, 146.75, 129.74, 125.23, 113.38, 111.12, 101.62, 95.53, 76.99, 75.26, 73.68, 71.33, 58.41, 52.95, 52.23, 51.27, 48.86, 47.58, 42.72, 42.55, 39.19, 38.77, 31.20, 27.59, 18.59, 17.69. *APT=Attached Proton Test
IR (KBr, solid), cm−1 3571.1, 3375.3, 3083.4, 2964.4, 1755.4, 1736.7, 1661.8, 1575.5, 1504.8, 1489.7, 1375.0, 1346.3, 1326.1, 1267.2, 1227.1, 1188.3, 1151.7, 1083.4, 1034.7, 929.4, 859.4, 802.8, 758.1, 709.9, 658.9, 617.9, 561.2, 510.6. See
This ionic compound was obtained from commercial homoharringtonine mixed with commercial itaconic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 178.3-181.2° C. (measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 6.78 (s, 1H), 6.72 (s, 1H), 6.08 (d, J=9.6 Hz, 1H), 6.01 (d, J=1.7 Hz, 1H), 5.95 (d, J=1.1 Hz, 1H), 5.92 (d, J=1.1 Hz, 1H), 5.51 (q, J=1.2 Hz, 1H), 5.32 (s, 1H), 4.14 (d, J=9.6 Hz, 1H), 3.80 (s, 3H), 3.54 (s, 3H), 3.51-3.42 (m, 1H), 3.25-3.07 (m, 2H), 2.72-2.60 (m, 1H), 2.26-2.20 (m, 2H), 2.20-2.07 (m, 2H), 1.94 (d, J=16.1 Hz, 2H), 1.47-1.29 (m, 5H), 1.23 (d, J=10.6 Hz, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation
13C NMR (101 MHz, MeOD)** δ 125.11, 114.53, 111.47, 102.52, 96.09, 74.12, 58.66, 53.95, 53.18, 48.70, 44.48, 43.78, 41.66, 40.59, 40.44, 29.12, 28.94, 28.87, 19.70, 18.81. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)
IR (Diamond ATR, solid) cm−1 3473.2, 2968.4, 2899.8, 2564.7, 1760.7, 1733.5, 1657.6, 1569.7, 1506.4, 1488.9, 1436.1, 1374.9, 1348.9, 1264.2, 1240.7, 1226.2, 1185, 1168.8, 1149.8, 1112.1, 1082.4, 1043.1, 1032.9, 1022.2, 982, 928.1, 890, 866.7, 819.8, 772.1, 722.1, 690.1, 616.7, 543. See
IR (ATR, film) cm−1 3458.8, 2967, 1741.5, 1654.8, 1576.7, 1505.2, 1489.3, 1464.3, 1373.4, 1223.8, 1167, 1083.1, 1033.3, 933.6, 563.4. See
X-Ray Crystallographic Studies
Single Crystal X-Ray Diffraction (See
From a suspension in its mother liquor, a suitable single crystal of size 0.39×0.22×0.1 mm was finally selected and implemented on the diffractometer.
bGoodness-of-fit
cR1 = 0.0411, dwR2 = 0.0914
cR1 = 0.0557, dwR2 = 0.0986
Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of
This ionic compound was obtained from commercial homoharringtonine mixed with commercial fumaric acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 103.5-107.2° C. (measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.74 (s, 1H), 6.65 (s, 2H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.43-3.32 (m, 2H), 3.24-3.10 (m, 1H), 2.75-2.61 (m, 1H), 2.30-2.08 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.47-1.30 (m, 5H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate” irradiation
13C NMR (101 MHz, MeOD)** δ 135.91, 114.59, 111.56, 102.57, 95.74, 74.03, 58.74, 53.89, 52.92, 51.79, 49.56, 48.62, 44.47, 43.77, 40.59, 40.16, 28.94, 28.90, 28.88, 19.64, 18.81. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)
IR (ATR, solid), cm−1 3607.9, 3212.6, 2955.6, 1980.4, 1777.4, 1731.4, 1708.1, 1653.6, 1584.3, 1505.9, 1488.6, 1440.0, 1372.4, 1338.6, 1292.0, 1251.1, 1221.1, 1173.3, 1150.9, 1119.3, 1088.7, 1034.0, 982.0, 934.1, 903.3, 839.6, 790.3, 761.8, 646.0, 613.5, 563.6, 510.2. See
X-Ray Powder Diffraction
The powder sample is well crystallised, with a peak width of 0.119° (2θ) at 19.564° (2θ) (for view of diagrams and experimental details, see
This ionic compound was obtained from commercial homoharringtonine mixed with commercial tartronic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 163.1-167.6° C. (measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.75 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.94 (d, J=0.9 Hz, 1H), 5.34 (s, 1H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.54 (s, 3H), 2.69 (m, 1H), 2.22 (m, 4H), 2.04-1.91 (m, 2H), 1.47-1.29 (m, 5H), 1.23 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate” irradiation
13C NMR (101 MHz, MeOD)** δ 114.60, 111.55, 102.61, 95.67, 74.02, 58.77, 53.94, 52.86, 51.79, 48.67, 44.47, 43.77, 40.59, 40.10, 28.94, 28.88, 28.84, 19.63, 18.80. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)
IR (Diamond ATR, solid) cm−1 3451, 2969, 2898, 2051, 1763, 1730, 1657, 1507, 1490, 1467, 1437, 1376, 1352, 1316, 1294, 1266, 1228, 1208, 1186, 1148, 1126, 1083, 1032, 1002, 985, 943, 927, 891, 866, 802, 753, 720, 690, 675, 652, 614, 563, 510, 477. See
IR (Diamond ATR, film) cm−1 3429, 2965, 1744, 1655, 1505, 1489, 1440, 1374, 1266, 1224, 1165, 1084, 1033, 928, 807, 615. See
This ionic compound was obtained from commercial homoharringtone mixed with commercial (2R)-citramalic acid according to the general procedure in which the solvent was methanol-d4, then isolated as a white prismatic solid mp 127.0-131.9° C. (measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 6.81 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.6 Hz, 1H), 5.97 (d, J=1.1 Hz, 1H), 5.94 (d, J=1.0 Hz, 1H), 5.34 (s, 1H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.24-3.17 (m, 1H), 2.74-2.64 (m, 1H), 2.30-2.09 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.48-1.30 (m, 5H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation
13C NMR APT* (101 MHz, Methanol-d4) δ 174.83, 174.22, 171.62, 165.26, 149.82, 148.81, 130.79, 126.75, 114.88, 111.83, 102.90, 95.90, 78.32, 76.09, 74.30, 71.27, 59.04, 54.21, 53.18, 52.07, 48.94, 44.75, 44.05, 40.87, 40.42, 29.22, 29.17, 29.14, 19.91, 19.09. See
IR (Diamond ATR, solid) cm−1 3453.1, 2967.5, 2933.2, 2899.3, 1765.0, 1735.2, 1654.6, 1505.9, 1489.1, 1463.7, 1439.1, 1374.9, 1349.7, 1292.0, 1266.2, 1226.5, 1207.5, 1148.4, 1083.3, 1060.6, 1032.3, 1002.1, 985.4, 944.1, 925.5, 891.0, 858.5, 830.6, 797.6, 756.7, 721.5, 710.8, 690.8, 615.1, 565.1, 510.8, 498.3, 489.9, 478.9, 472.8. See
This ionic compound was obtained from commercial homoharringtonine mixed with commercial citric acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 170.35-173.9° C. (measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.75 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (s, 1H), 5.94 (s, 1H), 5.33 (s, 1H), 4.17 (d, J=9.7 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 2.79 (d, J=15.4 Hz, 2H), 2.71 (d, J=15.4 Hz, 2+1H), 2.23 (d, J=16.2 Hz, 1H), 1.95 (d, J=16.1 Hz, 1H), 1.49-1.17 (m, 6H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation
13C NMR APT*(101 MHz, Methanol-d4) δ 179.22, 174.90, 174.22, 171.61, 165.22, 149.83, 148.81, 130.80, 126.75, 114.89, 111.84, 102.89, 95.97, 78.30, 76.09, 74.33, 74.01, 71.29, 59.05, 54.23, 53.21, 52.07, 48.95, 44.76, 44.06, 40.88, 40.44, 29.22, 29.18, 29.16, 19.92, 19.10. *APT=Attached Proton Test
IR (Diamond ATR, solid) cm−1 2959, 1757, 1732, 1715, 1651, 1580, 1508, 1489, 1464, 1432, 1371, 1305, 1262, 1224, 1186, 1151, 1111, 1081, 1032, 985, 944, 922, 909, 864, 829, 806, 705, 690, 614, 581, 563, 510, 486. See
IR (Diamond ATR, film) cm−1 3442, 2967, 1738, 1654, 1585, 1505, 1489, 1440, 1373, 1264, 1223, 1115, 1083, 1033, 928. See
X-Ray Crystallographic Studies
Single Crystal X-Ray Diffraction (See
From a suspension in its mother liquor, a suitable single crystal of size 0.58×0.36×0.28 mm was finally selected and implemented on the diffractometer.
bGoodness-of-fit
cR1 = 0.0367, dwR2 = 0.0851
cR1 = 0.0427, dwR2 = 0.0884
Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of
X-Ray Powder Diffraction
The powder sample is well crystallised, with a peak width of 0.127° (2θ) at 18.255° (2θ). The powder is constituted in major part by the expected sample referenced HOCIT 5776. However, the powder pattern reveals the presence of a second phase, with significant lines at 7.001° (2θ) and 12.317° (2θ) for example, not calculated from the structure determined with a single crystal (for view of diagrams and experimental details, see
This ionic compound was obtained from commercial homoharringtonine mixed with commercial salicylic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 148.7-151.3° C. (measured by DSC, see
DSC Analysis (See
1H NMR (400 MHz, Methanol-d4)*δ 7.80 (dd, J=7.7, 1.7 Hz, 1H), 7.26 (ddd, J=8.8, 7.2, 1.8 Hz, 1H), 6.80-6.70 (m, 4H), 6.09 (d, J=9.6 Hz, 1H), 5.92 (d, J=1.0 Hz, 1H), 5.88 (d, J=1.0 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.18 (dd, J=11.0, 6.9 Hz, 1H), 2.71-2.62 (m, 1H), 2.28-2.08 (m, 4H), 1.95 (d, J=16.1 Hz, 1H), 1.47-1.30 (m, 5H), 1.30-1.18 (m, 1H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation.
13C NMR (101 MHz, MeOD)** δ 133.50, 131.36, 118.66, 116.85, 114.49, 111.46, 102.48, 95.80, 74.04, 58.71, 53.86, 52.96, 51.78, 49.56, 48.62, 44.45, 43.75, 40.58, 40.24, 28.96, 28.94, 28.86, 19.65, 18.79. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)
IR (Diamond ATR, solid) cm−1 2961.4, 2622.5, 1760.5, 1748, 1740.7, 1722.8, 1651.8, 1625.2, 1590.4, 1579.2, 1503.9, 1487.7, 1459.3, 1374, 1334.4, 1293.2, 1224.3, 1167.4, 1082.6, 1043.9, 1030.5, 995.4, 924.5, 890.7, 857.3, 832.8, 805.3, 763.6, 704.8, 666.2, 613.2, 565.6. See
IR (Diamond ATR, film) cm−1 3416.8, 2962.9, 2377.4, 2156.9, 1746.7, 1655.2, 1628.2, 1591.3, 1504.8, 1488.2, 1459.5, 1375.8, 1330.2, 1223.6, 1084.2, 1034.5, 930.1, 858.3, 807.3, 763.1, 705.4. See
X-Ray Crystallographic Studies
Single Crystal X-Ray Diffraction (See
From a suspension in its mother liquor, a small single crystal of size 0.15×0.11×0.04 mm was finally selected and implemented on the diffractometer.
bGoodness-of-fit
cR1 = 0.0619, dwR2 = 0.121
cR1 = 0.086, dwR2 = 0.1312
Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of
All operations were performed in a sterile isolator using dedicated or single-use equipment. The reagents were of pharmacopoeial quality and all the quality control and quality assurance written procedures were carried out according to the current good manufacturing practices. Commercial homoharringtonine base (100 grams) exhibiting at least 97% of purity was dried then introduced in a dedicated sterile flask equipped with a stirring and a refrigerant, and flushed by sterile argon, then 1.2 molar equivalent of (2R,3R)-(+)-tartaric acid (natural version, pharmacopoeia quality) was introduced. Then 350 mL of anhydrous methanol was added under reflux until all solid phase disappeared. A volume of dry methanol was added to move away from the point of supersaturation. The homogeneous solution was then withdrawn and directly filtered hot under vacuum on a microporous filter (0.5 micron). After 15 minutes, fine translucent prismatic crystals of homohamrngtonine hydrogen (2R, 3R) tartrate begin to form. The stirred suspension is allowed to stand for 12 hours. At this stage an in process control (CIP) to check the impurity content of the crystals and mother liquors. The suspension is drained on a filter funnel (Buchner) and the crystals are dissolved in hot methanol. The crystallization operation and the corresponding CIPs are renewed twice. After the last wringing, the crystals were dried under vacuum at a temperature of 45c, 20 hours, and then packaged. Final samples are taken to carry out an analysis report in accordance with the specifications. The impurity content is less than 0.3% and the purity (HPC) exceeds 99.7% (the current purity of semi-synthetic batches). In addition to the usual tests including microbiological testing and endotoxin detection, all batches of drug substance were subjected to a high resolution NMR analysis and a control for in vivo toxicity.
Number | Date | Country | |
---|---|---|---|
61941723 | Feb 2014 | US | |
61922248 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15109254 | Jun 2016 | US |
Child | 16191007 | US |