NOVEL HARRINGTONINES SALTS IN THE CRYSTALLINE STATE, THEIR USE FOR THE PURIFICATION OF THE CORRESPONDING DRUG SUBSTANCE AND AS CHEMOTHERAPEUTIC AGENTS GIVEN ALONE OR COMBINED WITH RADIOTHERAPY OR AS IMMUNOMODULATING AGENTS

Information

  • Patent Application
  • 20190161493
  • Publication Number
    20190161493
  • Date Filed
    November 14, 2018
    5 years ago
  • Date Published
    May 30, 2019
    5 years ago
Abstract
The present invention concerns harringtonines salts never described in the crystalline state exhibiting a protonated nitrogen seen in solid state analysis and having general formula 1,
Description

The present invention concerns crystalline salts of harringtonines, protonated on their alkaloid nitrogen, definite by their solid state analysis patterns, their process of preparation allowing their use as drug substance for blending alone or in combination in pharmaceutical composition useful as chemotherapeutic agents, given alone or combined with radiotherapy, or useful for treating parasitic and viral diseases and/or as immunomodulating agents, particularly in using oral or parenteral modes of administration.


Among harringtonines, homoharringtonine (=HHT, named omacetaxine D.C.I. as drug substance) is a natural ester of cephalotaxine (see scheme 1 and table 1), an alkaloid of Cephalotaxus harringtonia, a rare and endangered Asian conifer belonging to the Cephalotaxaceae family. HHT content in renewable parts of Cephalotaxus is about a few dozen of mg only per kilo of dry plant material. This characteristic, in despite of considerable efforts performed by the U.S. National Cancer Institute, hampered clinical development of omacetaxine for more than thirty-years. On March 1998, the discovering of a new hemi-synthetic process by the Applicant, allowed industrial production of homoharringtonine at the kilo scale (U.S. Pat. No. 6,831,180 and Robin et al. Tet. Lett. 1999. p.2931)] and divided by 70 the need of rare plant material (Nicolini et al., Leukemia Research, 2014, 38, p.11545).


Important Note:


It should be noted that chemical structure of hemi-synthetic omacetaxine is strictly identical to the natural one version: omacetaxine is not a semi-synthetic derivative as indicated in some article published in literature (see scheme 1 and table 1). All denominations of omacetaxine (OMA) or homoharringtonine (HHT) included in this document are strictly equivalent regarding molecular structure. The sentence “omacetaxine is a semi-synthetic derivative of cephalotaxine” encountered in literature, is totally devoid of scientific significance: the semi-synthetic appellation suggests that a moiety of the molecule (cephalotaxine) would natural and that the other moiety (the side chain) would be unnatural (man designed) while the latter is strictly natural. When only a portion of a molecule was produced by synthesis, the process name is hemi-synthesis and the molecule is sometimes also called hemi-synthetic.


Short History of Recent Development of Homoharringtonine.


Initially, all above esters of cephalotaxine were discovered by U.S. teams (Powel et al., J. Pharm. Sc., 1972, 61, p.1227) and a large development program was performed by the United States National Cancer Institute (Suffness et al., J. Nat. Cancer Inst., 1988, 80, p.1095). In October 2012, the United States Food and Drug Administration (FDA) granted accelerated approval for omacetaxine mepesuccinate for the treatment of adult patients with chronic or accelerated phase chronic myeloid leukemia (CML) who failed to respond to two or more tyrosine kinase inhibitors (TKIs) [ref fda]. Since this approval, hundreds of articles or reviews related to OMA/HHT were published in literature (more than 400 articles listed in SciFinder database). Definitive approval of OMA was granted in 2014 (Alvandi et al., The Oncologist, 2014, 19, p 94). This occurred after a very long and tumultuous period of clinical development (Kantarjian et al., Clin. Lymph. Myel. Leuk. 2013 p. 530), including early clinical development of HHT and, to a lesser extent, its congeners harringtonine (HA) and deoxyharringtonine (DHA) in various institution in the U.S. and in China. Finally, the successive involvement of seven pharmaceutical companies (Vivorex/American Bioscience; Oncopharm; Stragen; Chemgenex; Cephalon; TEVA) dispatched in 5 countries occurred before approval of omacetaxine! More than 50 clinical trials in USA, China and France involving more than 2000 patients.


Definition (See Scheme 1 and Table 1)


Homohamingtonine/Omacetaxine Mepesuccinate/Synribo/Myelostat


The INN (Intemational Non-proprietary Name) “omacetaxine mepesuccinate” (OMA) is a name reserved for homoharringtonine HHT drug substance dedicated for pharmaceutical and medicinal use regardless its natural, hemi-synthetic or synthetic origin [formely named homoharringtonine]. Synribo (TEVA) and Myelostat (Oncopharm corporation) are trademark (F-D-C Reports, Pharmaceutical Approvals Monthly, 2001, 6, p.35).


Cephalotaxanes Including Numbering


Cephalotaxanes are particular alkaloids to date exclusively extracted from the Cephalotaxaceae family which exhibit the structural formula 1. Several substituants may be encountered on this core structure: hydroxyl, ether, acyloxy etc. The eventual presence of some additional double bound or intramolecular bridge achieve to definite cephalotaxanes. Cephalotaxines 2 are cephalotaxanes without acyloxy side-chain.


Cephalotaxine 2a and drupacine 2b are example of cephalotaxines. Harringtonines 5 are particular cephalotaxanes formed by attachment of a branched α-hydroxyacyloxy side-chain at the 3-position of various cephalotaxines moieties. Cephalotaxines 2 and harringtonines 5, are examples of cephalotaxanes. Several dozen of cephalotaxanes have been isolated from various Cephalotaxus species. 4 is the generic formula of cephalotaxine esters (Takano et al., Phytochemistry, 1997, 44, p. 735 and cited references).


Harringtonines 5 (i. e. harringtonine=HA and homoharringtonine=HHT) are particular cephalotaxine esters. Cephalotaxine and its natural ester are gathered under the generic term of cephalotaxane.


Harringtoids are semi-synthetic derivatives of harrintonines.


Harringtonic acids are side-chain of harringtonines.









TABLE 1







NATURAL AND SEMI-SYNTHETIC ESTERS OF CEPHALOTAXINE













#
Trivial name
R2
R3
R4
Note #
Activity*





5a
harringtonine
(CH3)2COH—(CH2)2
Me
H
(1)
anticancer


5b
homoharringtonine
(CH3)2COH—(CH2)3
Me
H
(2)
anticancer


5c
norharringtonine
(CH3)2COH—CH2
Me
H
(3)
none


5d
deoxyharringtonine
(CH3)2CH—(CH2)2
Me
H
(4)
anticancer


5e
bishomoharringtonine
(CH3)2COH—(CH2)4
Me
H
(5)
none


5f
isoharringtonine
(CH3)2CH(CH2)2
Me
OH
(6)
none


5g
neoharringtonine
C6H5—CH2
Me
H
(7)
cytotoxic


5h
harringtonines
R2
Me
R4
(8)
N/A


5i
harringtoids
R2
R3
R4
(9)
cytotoxic









(1) The first cephatotaxine ester isolated from oephalotaxus harringtonia *In cancer area, for definition of term see [Suffness et al in Journal of Natural Products 1982 p 1 Current Status of the NCI Plant and Animal Product Program] CYTOTOXICITY is toxicity to tumor cells in culture; ANTITUMOR is in vivo activity in experimental systems; ANTINEOPLASTIC or ANTICANCER are the reserved terms for reported clinical trials data.


(2) “Homo” means one more carbon than harringtonine; Named omacetaxine (D.C.I.) as active pharmaceutical ingredient


(3) “nor” means one more less carbon.




embedded image


embedded image


Two haringtonines are very promising drugs in the treatment of certain leukemia such as Chronic Myelogenous Leukemia (CML). Both homoharringtonine and harringtonine were used in human chemotherapy of leukemia for 30 years (see above Suffness et al.) and a large number of semi-synthetic analogs such as 5 on scheme 1 were synthesized (see “5.2 Cephalotaxus Esters With Side Chain Analogs” in above cited reference of Dumas et al.).


Surprisingly, never crystalline salts of harringtonines have been isolated and described in literature.


However, in spite of the progress recorded in production, purification and therapeutic use of homoharringtonine, several disadvantages persist:


i) The cost of treatment for omacetaxine (Synribo) is prohibitive: $28,000 for induction, $14,000 for monthly treatments), this give about 180.000 $ per year, per patient [Kantarjian et al. Journal of Clinical Oncology, 2013, p3600; Hagop Kantarjian, personal communication]


ii) The use of the parenteral route of administration even retards the development of this drug


iii) Preparation of formulations for parenteral use is complicated by the use of lyophilization


iv) Formation of non-crystalline salts of harrintonines give not as accurately defined compound as crystalline salts


v) There is some local intolerance to this product when administered subcutaneously


vi) On the other hand, although it has been known for almost 40 years, there is still a slight doubt regarding the absolute configuration of this series of natural product.


Recent Scientific Discovering Regarding Mechanism of Activity of Harringtonines


The team of Steitz (Journal of Molecular Biology 2009, 389, p. 146) recently demonstrated that homoharringtonine when in place in its active site was protonated in a neutral media, implying that alkaloid nitrogen protonation is imperative condition for the manifestation of the activity of this ligand.


In addition, the team of Takano et al [J. Org. Chem. 1997 p. 8251) demonstrated experimentally that when the nitrogen lone pair of homoharringtonine was occupied by an oxygen atom, the cytotoxic activity was divided by a factor of at least 50. The authors conclude that “the nitrogen lone pair on the cephalotaxine skeleton appears to be essential for its activity”.


The above mentioned team of Steitz showed that the absolute configuration of homoharringtonine deposited in the Cambridge Structural Database seems to be the opposite of that commonly adopted in the literature.


The present invention relates to overcome the problems mentioned above. It also demonstrated that the absolute configuration in the deposited homoharringtonine Cambridge Structural Database seems to be the opposite of that commonly retained in the literature.


The eight example of single crystal X-ray diffraction of homoharringtonine salt exhibited in FIGS. 2.3.1, 2.4.1, 2.5.1, 2.6.1, 2.8.1, 2.9.1, 2.11.1 and 2.12.1 clearly indicates that the alkaloid moiety was efficiently protonated by the processes described in the present invention. Moreover, the shortest distance between said proton carried by the nitrogen is close to two angstroms, showing the reality of the formation of a salt and not a mere co-crystal.




embedded image


The present invention relates to overcome the problems mentioned above, namely:

    • raise doubt on the absolute configuration of harringtonines
    • provide a method of administration of harringtonines protonated on their nitrogen atom


As detailed above, the fact that the real active form of harringtonines would be their nitrogen-protonated version was recently supported by the above cited works of Seitz et al. and Takano et al.


The present invention concerns novel water soluble crystalline salts of homoharringtonine and their use as new chemical entities for the formulation of new cancer chemotherapeutic, or immunomodulating or antiparasitic agents and to implement new processes for purification including enantiomeric and determine the absolute configuration of the series.


The present invention describes the preparation of crystalline salts of harringtonines as nitrogen-protonated form, stable and soluble in water and their use for the manufacture of pharmaceutical composition useful in the treatment of cancers, leukemias, immune disease and as reversal agents.


The present invention describes an unambiguously proved method of protonation of harringtonine nitrogen.


The present invention provides salts of harringtonines in the crystalline state, protonated on their alkaloid nitrogen, definite by their solid state analysis patterns, their process of preparation from harringtonines and commercial organic acid allowing their use as drug substance for blending alone or in combination with other chemotherapeutic agents such as, but not limited to, cytarabine or interferon or imatinib mesylate or dasatinib or arsenic trioxide or all-trans-retinoic acid, in a pharmaceutical composition particularly useful for treatment of cancer, alone or combined with radiotherapy, in using oral or parental modes of administration.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1.1 is infra-red (IR) spectrum of Homoharringtonine (base alkaloid). FIG. 1.1 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.1 (ii) is IR(ATR) spectrum in the amorphous state.



FIG. 1.2 is infra-red (IR) spectrum of Homoharringtonine hydrogen (S)-malate in the solid state. FIG. 1.2 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.2 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.3 is infra-red (IR) spectrum of Homoharringtonine hydrogen (R)-malate in the solid state. FIG. 1.3 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.3 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.4 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2S, 3S)-tartrate in the solid state. FIG. 1.4 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.4 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.5 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2R, 3R)-tartrate in the solid state. FIG. 1.5 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.5 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.6 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2′″S)-citramalate in the solid state. FIG. 1.6 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.6 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.7 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2′″R)-citramalate in the solid state. FIG. 1.7 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.7 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.8 is infra-red (IR) spectrum of Homoharringtonine succinate. FIG. 1.8 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.8 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.9 is infra-red (IR) spectrum of Homoharringtonine hydrogen itaconate in the solid state. FIG. 1.9 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.9 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.10 is infra-red (IR) spectrum of salt named homoharringtonine hydrogen fumarate in the solid state. FIG. 1.10 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.10 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.11 is infra-red (IR) spectrum of Homoharringtonine hydrogen tartronate in the solid state. FIG. 1.11 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.11 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.12 is infra-red (IR) spectrum of Homoharringtonine malonate in the solid state. FIG. 1.12 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.12 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.13 is infra-red (IR) spectrum of Homoharringtonine dihydrogen citrate in the solid state. FIG. 1.13 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.13 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 1.14 is infra-red (IR) spectrum of Homoharringtonine salicyclate in the solid state. FIG. 1.14 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.14 (ii) is IR(ATR) spectrum in the amorphous state (film).



FIG. 2.2.1 is single crystal x-ray diffraction of homoharringtonine base, form A (ORTEP-3 software).



FIG. 2.2.2 is single crystal x-ray diffraction of homoharringtonine base, form B (ORTEP-3 software).



FIG. 2.2.3 is single crystal x-ray diffraction of homoharringtonine base, form B with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).



FIG. 2.3.1 is single crystal x-ray diffraction of homoharringtonine hydrogen (2S)-(−)-malate (ORTEP-3 software).



FIG. 2.3.2 is single crystal x-ray diffraction of homoharringtonine hydrogen (2S)-(−)-malate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).



FIG. 2.3.3 is x-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2S)-(−)-malate.



FIG. 2.4.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(+)-malate (created by ORTEP-3 software).



FIG. 2.4.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(+)-malate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).



FIG. 2.4.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2R)-(+)-malate.



FIG. 2.5.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2S,3S)-(−)-tartarate (created by ORTEP-3 software).



FIG. 2.5.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2S,3S)-(+)-tartarate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).



FIG. 2.5.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2S,3S)-(−)-tartarate.



FIG. 2.6.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R,3R)-(+)-tartarate (created by ORTEP-3 software).



FIG. 2.6.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R,3R)-(+)-tartarate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).



FIG. 2.6.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2R,3R)-(+)-tartarate.



FIG. 2.7.1 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2′″S)-citramalate.



FIG. 2.8.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(−)-citramalate (created by ORTEP-3 software).



FIG. 2.8.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(−)-citramalate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).



FIG. 2.8.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2R)-(−)-citramalate.



FIG. 2.9.1 is single crystal X-ray diffraction of homoharringtonine hydrogen itaconate (created by ORTEP-3 software).



FIG. 2.9.2 is single crystal X-ray diffraction of homoharringtonine hydrogen itaconate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).



FIG. 2.10.1 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen fumarate.



FIG. 2.11.1 is single crystal X-ray diffraction of homoharringtonine dihydrogen citrate (created by ORTEP-3 software).



FIG. 2.11.2 is single crystal X-ray diffraction of homoharringtonine dihydrogen citrate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).



FIG. 2.11.3 is X-ray powder diffraction (XRPD) of homoharringtonine dihydrogen citrate.



FIG. 2.12.1 is single crystal X-ray diffraction of homoharringtonine salicyclate (created by ORTEP-3 software).



FIG. 2.12.2 is single crystal X-ray diffraction of homoharringtonine salicyclate (PLUTO drawing).



FIG. 2.12.3 is single crystal X-ray diffraction of homoharringtonine salicyclate (stick drawing).



FIG. 2.12.4 is single crystal X-ray diffraction of homoharringtonine salicydate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).



FIG. 3.1 is DSC pattern of homoharringtonine base.



FIG. 3.2 is DSC pattern of homoharringtonine hydrogen (2S)-malate.



FIG. 3.3 is DSC pattern of homoharringtonine hydrogen (2R)-malate.



FIG. 3.4 is DSC pattern of homoharringtonine hydrogen (2S,3S)-tartrate.



FIG. 3.5 is DSC pattern of homoharringtonine hydrogen (2R,3R)-tartrate.



FIG. 3.6 is DSC pattern of homoharringtonine hydrogen (2S)-citramalate.



FIG. 3.7 is DSC pattern of homoharringtonine hydrogen (2R)-citramalate.



FIG. 3.8 is DSC pattern of homoharringtonine hydrogen succinate.



FIG. 3.9 is DSC pattern of homoharringtonine hydrogen itaconate.



FIG. 3.10 is DSC pattern of homoharringtonine hydrogen fumarate.



FIG. 3.11 is DSC pattern of homoharringtonine hydrogen tartronate.



FIG. 3.12 is DSC pattern of homoharringtonine hydrogen malonate.



FIG. 3.13 is DSC pattern of homoharringtonine dihydrogen citrate.



FIG. 3.14 is DSC pattern of homoharringtonine salicyclate.





DETAILED DESCRIPTION

In one embodiment, the crystalline salts of the invention are used as drug substance for blending alone or in combination with other therapeutical agents in pharmaceutical composition useful as immunomodulating agents, particularly in using oral or parenteral modes of administration.


A major embodiment of the invention is a new efficient process of purification of natural, semi-synthetic or synthetic version of harringtonines and their analogs using formation of a crystallogenic salt and its fractional crystallization in organic solvents, all the resulting purified compounds having the same level of purity.


Another aspect of the invention is a new efficient process of purification of natural homoharringtonine using formation of crystallogenic salts and their fractional crystallization in organic solvents giving the same level of purity as homoharringtonine of hemi/semi-synthetic origin.


Another aspect of the invention is a new efficient process of purification of natural harringtonine using formation of crystallogenic salts and their fractional crystallization in organic solvents giving the same level of purity as harringtonine of hemi/semi-synthetic origin.


In one embodiment, the present invention relates to a harringtonines salt in the crystalline state exhibiting a protonated nitrogen seen in solid state analysis and having formula 1,




embedded image


comprising solvate, made by reacting a cephalotaxine ester having formula 2,




embedded image


in which R1 is, but not limited to, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocycloalkyl, and R2 is, independently, but not limited to H, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocydoalkyl, with an acid having general formula AH in a crystallization solvent, wherein the said salt has a water or alkohol solubility ranged approximately from 5 mg/mL to approximately 100 mg/Ml.


In a preferred embodiment, the acid having general formula AH is an organic acid. In a preferred embodiment, the organic acid is selected among the following list: fumaric, maleic, citramalic, malic, tartaric, tartronic, succinic, itaconic, citric acid or salicylic acid.


A preferred embodiment of the invention is a crystalline homohaningtonine hydrogen 2S-malate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.2, the same single crystal X-ray diffractogram as set out in FIGS. 2.3.1 and 2.3.2, the same X-ray powder pattern as set out in FIG. 2.3.3 and the same DSC curve as set out in FIG. 3.2.


A further preferred embodiment of the invention provides a crystalline homoharringtonine hydrogen 2R-malate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.3, the same single crystal X-ray diffractogram as set out in FIGS. 2.4.1 and 2.4.2, the same X-ray powder pattern as set out in FIG. 2.4.3 and the same DSC curve as set out in FIG. 3.3.


A further preferred aspect of the invention is a crystalline homoharringtonine hydrogen (2S,3S)-tartrate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.4, the same single crystal X-ray diffractogram as set out in FIGS. 2.5.1 and 2.5.2, the same X-ray powder pattern as set out in FIG. 2.5.3 and the same DSC curve as set out in FIG. 3.4.


Yet, a further embodiment of the invention is a crystalline homoharringtonine hydrogen (2R,3R)-tartrate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.5, the same single crystal X-ray diffractogram as set out in FIGS. 2.6.1 and 2.6.2, the same X-ray powder pattern as set out in FIG. 2.6.3 and the same DSC curve as set out in FIG. 3.5.


Yet, another embodiment of the invention provides a crystalline homoharringtonine hydrogen (2S)-citramalate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.6, the same X-ray powder pattern as set out in FIG. 2.7.1 and the same DSC curve as set out in FIG. 3.6.


Yet, a preferred aspect of this invention is a crystalline homoharringtonine hydrogen (2R)-citramalate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.7, the same single crystal X-ray diffractogram as set out in FIGS. 2.8.1 and 2.8.2, the same X-ray powder pattern as set out in FIG. 2.8.3 and the same DSC curve as set out in FIG. 3.7.


Yet, another preferred aspect of this invention provides a crystalline homoharringtonine hydrogen succinate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.8, and the same DSC curve as set out in FIG. 3.8.


Yet, a further preferred aspect of this invention is a crystalline homoharringtonine hydrogen itaconate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.9, the same single crystal X-ray diffractogram as set out in FIGS. 2.9.1 and 2.9.2 and the same DSC curve as set out in FIG. 3.9.


Yet, a preferred aspect of this invention provides a crystalline homoharringtonine hydrogen fumarate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.10, the same X-ray powder pattern as set out in FIG. 2.10.1 and the same DSC curve as set out in FIG. 3.10.


Yet, an another aspect of the invention provides a crystalline homohamrngtonine hydrogen tartronate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.11 and the same DSC curve as set out in FIG. 3.11.


In addition, another embodiment provides a crystalline homoharringtonine hydrogen malonate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.12 and the same DSC curve as set out in FIG. 3.12.


Moreover, a preferred embodiment of this invention provides a crystalline homoharringtonine dihydrogen citrate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.13, the same single crystal X-ray diffractogram as set out in FIGS. 2.11.1 and 2.11.2, the same X-ray powder pattern as set out in FIG. 2.11.3 and the same DSC curve as set out in FIG. 3.13.


Also, a preferred aspect of this invention provides a crystalline homoharringtonine hydrogen salicylate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.14, the same single crystal X-ray diffractogram as set out in FIGS. 2.12.1, 2.12.2, 2.12.3 and 2.12.4 and the same DSC curve as set out in FIG. 3.14.


Yet, a preferred aspect of this invention provides a pharmaceutical composition comprising an effective amount of one of the salts of this invention, together with one or more pharmaceutical acceptable inactive components such as carriers, excipients, adjuvants or diluents.


Yet, a preferred aspect of this invention provides a pharmaceutical dosage form dedicated to an oral mode of administration selected among, for example, capsules, dragees, emulsions, granules, pills, powders, solutions, suspensions, tablets, microemulsions, elixirs, syrups, tea or powders for reconstitution.


Yet, an another aspect of this invention provides a pharmaceutical dosage form dedicated to a subcutaneous mode of administration in non-acidic condition allowing a good locale tolerance.


Another aspect of the invention is the use of at least the solid form of one salt described in the invention for preparing the above pharmaceutical composition as (i) chemotherapeutic agent, (ii) enhancer of other chemotherapeutic agents (iii) after failure of other agents (iv) for inhibiting tumors growth in animal, (v) for inhibiting mammalian parasites, (vi) as immunosuppressive agent, or (vii) as reversal agent.


A preferred embodiment of the invention describes a method for treating mammalian tumors which comprises oral administering to a mammal an antitumor effective amount of the solid form of one salt described in this invention.


A further preferred embodiment of the invention describes a method for treating mammalian tumors which comprises implantable pharmaceutical preparation administering to a mammal an antitumor effective amount of the solid form of at least one salt described in this invention.


Yet, invention is also concerned with the use of solid form of the salts of the invention as defined above, for the preparation of pharmaceutical compositions for the treatment of cancer, particularly brain cancer such as for example, but not limited to, neuroblastoma and eventually their metastasis, lung cancer such as for example non-small cells lung carcinoma eventually their metastasis, ovarian high-grade carcinoma, breast cancer including triple negative breast carcinoma and eventually their metastasis, and pancreatic cancer including ductal adenocarcinoma, this therapy being given alone or combined with at least another chemotherapeutic agent, eventually combined with radiotherapy.


Another embodiment of the present invention relates to a method of treating cancer, particularly brain cancer such as for example, but not limited to, neuroblastoma and eventually their metastasis, and lung cancer such as for example non-small cells lung carcinoma eventually their metastasis, ovarian high-grade carcinoma, breast cancer including triple negative breast carcinoma and eventually their metastasis, and pancreatic cancer including ductal adenocarcinoma, comprising administering to a patient or an animal in need thereof a pharmaceutical composition comprising solid form of the salts of the invention, said pharmaceutical composition being administered alone or combined with at least another chemotherapeutic agent, eventually combined with radiotherapy.


Furthermore, invention also deals with the use of solid form of the salts of the invention as defined above, for the preparation of pharmaceutical compositions for the treatment of autoimmune diseases, such as for example but not limited to multiple sclerosis, psoriasis, rheumatoid arthritis, dermatomyositis, Hashimoto's thyroiditis, systemic lupus erythematosus, this therapy being given alone or combined with at least another chemotherapeutic agent, said at least another chemotherapeutic agent being eventually combined with radiotherapy, or with at least another immunomodulating agent. Another embodiment of the present invention relates to a method of treating autoimmune diseases, such as for example but not limited to multiple sclerosis, psoriasis, rheumatoid arthritis, dermatomyositis, Hashimoto's thyroiditis, systemic lupus erythematosus, comprising administering to a patient or an animal in need thereof a pharmaceutical composition comprising solid form of the salts of the invention, said pharmaceutical composition being administered alone or combined with at least another chemotherapeutic agent, said at least another chemotherapeutic agent being eventually combined with radiotherapy.


Finally, the invention is also concerned with the use of solid form of the salts of the invention as defined above, for the preparation of pharmaceutical compositions for the treatment of leukemias particularly acute myelod leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative disorders including chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, myelosclerosis, and/or lymphoma such as but not limited to a multiple myeloma, a Hodgkin disease or a Burkitt lymphoma, said therapy being given alone or combined with at least another chemotherapeutic agent and/or with radiotherapy.


Another embodiment of the present invention relates to a method of treating leukemias particularly acute myelod leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative disorders including chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, myelosclerosis, and/or, said method comprising administering to a patient or an animal in need thereof a pharmaceutical composition comprising solid form of the salts of the invention, said pharmaceutical composition being administered alone or combined with at least another chemotherapeutic agent, including the targeted one, eventually combined with radiotherapy.


In a preferred embodiment, the patient in need thereof according to the present invention is a de novo patient or a patient for which other therapy as failed to treat the disease from which he suffers.


Example 1: General Procedure for Experimental Methods

1.1 General Procedures for Salts Preparation


Cation and anion components are dissolved separately in a solvent at a concentration close of saturation and at a temperature close of boiling then both solutions are mixed under stirring then slowly cooled and evaporated. After a period ranging from a few minutes up to several days, crystal salt is collected. A sample of the batch of crystals is kept suspended in its mother liquors for the subsequent X-ray diffraction analysis. The remainder of the batch was dried under vacuum for further solid characterization, comparative stability studies and drug formulation.


1.2 General Procedures for Solid State Characterization


Single Crystal X-Ray Diffractions Material and Methods


KappaCCD, Nonius diffractometer, Mo—Kα radiation (λ=0.71073 Å). The structure was solved by direct methods using the SHELXS-97 program [Sheldrick G. M., Acta Cryst. A64 (2008), 112-122], and then refined with full-matrix least-square methods based on F2 (SHELXL-2013) [Sheldrick G. M., (2013)] with the aid of the WINGX [L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854] program. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. Except nitrogen and oxygen linked hydrogen atoms that were introduced in the structural model through Fourier difference maps analysis, H atoms were finally included in their calculated positions.


Collected information: atomic positions; unit cell composition; crystal packing anisotropic displacement parameters; bond lengths, dihedral and torsion angles, hydrogen bounding.


Original files with all parameters are includes on a CD and may be visualized and handled in using ORTEP-3 software (ORTEP=Oak Ridge Thermal-Ellipsoid Plot Program) available free of charge on the Internet:


http://www.chem.gla.ac.uk/˜louis/software/ortep3/


X-Ray Diffraction Powder


Diagrams were measured on a Bruker AXS D8 Advance diffractometer, Bragg-Brentano geometry (θ-2 θ), CuK α=1.5406 Å, 600 ms/pixel, rotation: 0.25/sec. For each chart, the calculated pattern from the single crystal structure, when available, is upped mentioned.


Differential Scanning Calorimetry (DSC)


The DSC analysis was performed using a Perkin Elmer DSC 4000 apparatus. The scan rate was 5° C./min and the scanning range of of temperature 40 to 230° C. The accurately weighed quantity was ranged from 1 to 3 mg. All operations were performed under nitrogen atmosphere. The measured values were the Onset, the Peak and the value of the free enthalpy variation. The eventual product decomposition and the vaporization of solvent crystallization (methanol and/or water) were recorded. The value of the change in free energy, was given only as a guideline to assess the endothermicity or exotermicity of the transition.


Melting Point Checking


Melting points were measured manually for visual checking of the one determined with DSC. A Bücchi B-545 melting point apparatus was used and mp are uncorrected.


Infrared Spectra


All vibrational spectra were recorded on a Perkin Elmer IR FT Spectrum 2 apparatus equipped with diamond ATR accessory that is to say using Attenuated Total Reflection technique. The crystalline solids were crushed directly by in situ compression on the diamond window and the amorphous state has been demonstrated by dissolving the product in deuterated methanol then generating the film by in situ evaporation on the diamond window.


1.3 General Procedures for Liquid State and Solution Characterizations


Nuclear Magnetic Resonance


NMR spectra were recorded automatically on a Bruker Avance III spectrometer NanoBay—400 MHz (9.4 Tesla magnet) with a BBFO+probe and sampler 120 positions, allows for automatic mode NMR experiments one and two dimensions mainly for nuclei: 1H, 2H, 11B, 13C, 15N, 19F, 27Al, 31P, 119Sn or on Bruker Avance III—600 MHz spectrometer.


Dissolving salts for 13C NMR: 30 mg of compound were dissolved in 600 μL (5% m/V) of methanol D4 or deuterium oxyde (or both if specified)


Water suppression: The irradiation technique known as ‘watergate’ (Selective pulse flanked by gradient pulses) was used for proton NMR in the presence of D2O and/or MOD4 as solvents.


High Performance Liquid Chromatography


Routine experiments were performed on a Waters HPLC-MS-DAD coupled system (3100 pump, DAD 996 detector, 3100 mass detector).


Solubility Determination


Solubility in water at 25° C. was measured semi-quantitatively at a threshold of 5 g per 100 mL. All the homoharringtonine salts described in the below examples, unless otherwise stated, are soluble at this threshold. Homoharringtonine base itself is soluble at a threshold mower than 0.1 g per mL


Example 2: Analyses of Homoharringtonine Base for Comparison with its Salts



embedded image


2.1 Analysis of Homoharringtonine Base Alkaloid


Commercial homoharringtonine is provided by Sigma Aldrich.NMR spectra were performed in deuterated methanol for comparison with salt in the same solvent


By methanol recrystallisation of a commercial alkaloid from natural source, it results fine white prisms (mp 145-146°, by DSC, see FIG. 3.1) used for all experiences.



1H NMR (400 MHz, Benzene-d6) δ 6.54 (s, 1H), 6.46 (s, 1H), 6.21-6.12 (m, 1H), 5.47 (d, J=1.4 Hz, 1H), 5.33 (d, J=1.4 Hz, 1H), 4.67 (s, 1H), 3.43 (d, J=9.8 Hz, 1H), 3.34 (s, 3H), 3.28 (s, 3H), 2.83 (td, J=8.5, 4.5 Hz, 1H), 2.75 (dd, J=11.5, 4.5 Hz, 1H), 2.55 (dd, J=10.8, 7.5 Hz, 1H), 2.41 (dd, J=16.2, 6.9 Hz, 2H), 2.23-2.11 (m, 2H), 1.78 (m, 1H), 1.67-1.56 (m, 2H), 1.48 (m, 5H), 1.34-1.19 (m, 2H), 1.04 (d, J=6.7 Hz, 6H).



1H NMR (300 MHz, Chloroform-d) δ 6.62 (s, 1H), 6.54 (s, 1H), 6.00 (d, J=9.8 Hz, 1H), 5.87 (s, 2H), 5.05 (s, 1H), 3.78 (d, J=9.8 Hz, 1H), 3.68 (s, 3H), 3.57 (s, 3H), 3.52 (s, 1H), 3.20-3.04 (m, 2H), 3.01-2.88 (m, 1H), 2.60 (t, J=7.2 Hz, 1H), 2.38 (dd, J=13.7, 6.3 Hz, 1H), 2.26 (d, J=16.5 Hz, 1H), 2.10-1.97 (m, 1H), 1.91 (d, J=16.5 Hz, 1H), 1.75 (s, OH), 1.39 (dd, J=13.5, 6.4 Hz, 5H), 1.19 (s, 7H).



1H NMR (400 MHz, Methanol-d4)*δ 6.7 (s, 1H), 6.59 (s, 1H), 5.98 (dd, J=9.8, 0.8 Hz, 1H), 5.89 (d, J=1.2 Hz, 1H), 5.85 (d, J=1.2 Hz, 1H), 5.22 (d, J=0.8 Hz, 1H), 3.89 (d, J=9.8 Hz, 1H), 3.70 (s, 3H), 3.55 (s, 3H), 3.20 (ddd, J=14.1, 12.4, 7.9 Hz, 1H), 2.96 (m, 1H), 2.88 (m, 1H), 2.64 (dd, J=11.4, 7.6 Hz, 1H), 2.44 (dd, J=14.3, 6.8 Hz, 1H), 2.17 (d, J=16.1 Hz, 1H), 2.03 (m, 1H), 1.95 (m, 1H), 1.90 (d, J=16.1 Hz, 1H), 1.49-1.30 (m, 5H), 1.25 (dd, J=9.8, 5.8 Hz, 1H), 1.17 (s, 3H), 1.16 (s, 3H). *Partial presuppression of water signal using ‘watergate’ irradiation



13C NMR (101 MHz, MeOD) δ 174.68, 171.76, 159.97, 148.21, 147.32, 134.49, 129.88, 114.02, 110.86, 102.10, 100.74, 76.03, 75.52, 72.14, 71.35, 58.04, 56.48, 54.60, 52.00, 49.64, 44.89, 44.15, 43.86, 40.87, 32.08, 29.27, 29.01, 20.82, 19.19.


IR (KBr, solid), cm−1 3551.9, 3412.3, 3000.4, 2976.1, 2966.0, 2958.6, 2911.4, 2876.0, 2814.4, 2740.8, 1743.0, 1653.5, 1624.7, 1505.3, 1488.1, 1454.8, 1436.1, 1411.2, 1392.8, 1377.7, 1367.2, 1346.3, 1306.4, 1274.3, 1261.5, 1230.0, 1190.8, 1162.1, 1135.3, 1119.9, 1082.0, 1027.9, 1000.5, 932.1, 900.6, 879.3, 854.2, 827.3, 804.9, 795.2, 772.4, 762.9, 738.3, 705.7, 674.0, 661.4, 610.8, 556.7, 540.9, 522.1, 512.8, 503.3. See FIG. 1.1


A) Single Crystal X Ray Diffraction of Homoharringtonine Base (Form A).


See Corresponding FIG. 2.2.1


From a suspension in its mother liquor, a suitable single crystal of size 0.5×0.4×0.4 mm was finally selected and implemented on the diffractometer.














Structural data:


















Formula weight
545.61


Temperature
293(2)K









Wavelength
0.71073









Crystal system, space group
orthorhombic, P 21 21 21


Unit cell dimensions
a = 11.9512(2) Å, α = 90°



b = 15.2211(2) Å, β = 90°



c = 15.9670(2) Å, γ = 90°









Volume
2904.56(7)
3








Z, Calculated density
4, 1.248 (g · cm−1)









Absorption coefficient
0.092
mm−1








F(000)
1168


Crystal size
0.5 × 0.4 × 0.4 mm


Crystal color
colourless


Theta range for data collection
2.881 to 29.046°


h_min, h_max
−16, 16


k_min, k_max
−20, 20


l_min, l_max
−21, 21


Reflections collected/unique
35627/7642 [aR(int) = 0.049]


Reflections [I > 2σ]
5925


Completeness to theta_max
0.99


Absorption correction type
none


Refinement method
Full-matrix least-squares on F2


Data/restraints/parameters
7642/0/352



bGoodness-of-fit

1.034


Final R indices [I > 2σ]

cR1 = 0.0495, dwR2 = 0.1256



R indices (all data)

cR1 = 0.0719, dwR2 = 0.1411



Largest diff. peak and hole
0.284 and −0.203 e.Å−3










Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).


U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.


Atom numbering of FIG. 2.2.1 corresponds to below table.

















Atom
x
y
z
occ.
U(eq)







C1
0.9387(2)
0.25439(15)
0.89639(14)
1
0.0374(5)


H1
1.0075
0.2226
0.8823
1
0.045


C2
0.9724(2)
0.34995(16)
0.90497(14)
1
0.0390(5)


C3
1.0805(2)
0.37308(17)
0.87926(17)
1
0.0442(5)


H3
1.1276
0.3319
0.8546
1
0.053


C4
1.1150(2)
0.45761(19)
0.89130(17)
1
0.0494(6)


C5
1.2096(4)
0.5829(2)
0.8960(3)
1
0.0862(12)


H5A
1.2163
0.6192
0.8463
1
0.103


H5B
1.2695
0.5986
0.9342
1
0.103


C6
1.0469(3)
0.51945(17)
0.92762(18)
1
0.0528(6)


C7
0.9399(2)
0.49967(18)
0.95274(17)
1
0.0498(6)


H7
0.8939
0.5421
0.9765
1
0.06


C8
0.9026(2)
0.41337(17)
0.94127(15)
1
0.0434(5)


C9
0.7884(2)
0.38828(18)
0.97226(17)
1
0.0493(6)


H9A
0.7497
0.3553
0.9291
1
0.059


H9B
0.7455
0.4411
0.9836
1
0.059


C10
0.7951(3)
0.3328(2)
1.05191(18)
1
0.0569(7)


H10A
0.8046
0.3714
1.0997
1
0.068


H10B
0.7251
0.3014
1.0592
1
0.068


C11
0.8990(3)
0.2199(3)
1.12687(17)
1
0.0648(8)


H11A
0.8277
0.1965
1.1455
1
0.078


H11B
0.9302
0.256
1.1711
1
0.078


C12
0.9767(5)
0.1482(3)
1.1039(2)
1
0.1012(16)


H12A
1.0519
0.162
1.1227
1
0.121


H12B
0.9536
0.0937
1.1303
1
0.121


C13
0.9745(3)
0.1391(2)
1.0129(2)
1
0.0677(9)


H13A
0.949
0.0808
0.9975
1
0.081


H13B
1.0488
0.148
0.99
1
0.081


C14
0.8927(2)
0.20973(17)
0.97856(14)
1
0.0426(5)


C15
0.7844(2)
0.16871(17)
0.95088(16)
1
0.0457(5)


H15
0.7362
0.1387
0.9865
1
0.055


C16
0.7655(2)
0.18031(16)
0.86960(15)
1
0.0407(5)


C17
0.8541(2)
0.23162(15)
0.82622(14)
1
0.0374(5)


H17
0.8905
0.1948
0.7839
1
0.045


C18
0.8201(2)
0.31714(16)
0.70344(14)
1
0.0415(5)


C19
0.7614(2)
0.39953(17)
0.67082(15)
1
0.0470(6)


C20
0.7996(3)
0.48109(18)
0.71967(18)
1
0.0574(7)


H20A
0.7501
0.5295
0.7059
1
0.069


H20B
0.7916
0.4693
0.7791
1
0.069


C21
0.9168(4)
0.5087(2)
0.7031(2)
1
0.0712(10)


C22
1.1000(4)
0.4595(4)
0.6716(3)
1
0.1074(16)


H22A
1.1041
0.4831
0.6159
1
0.161


H22B
1.1425
0.4061
0.6745
1
0.161


H22C
1.1301
0.5014
0.7106
1
0.161


C23
0.6346(2)
0.38782(19)
0.67748(17)
1
0.0525(6)


H23A
0.6135
0.3894
0.7361
1
0.063


H23B
0.5983
0.4369
0.6499
1
0.063


C24
0.5914(3)
0.3023(2)
0.6389(2)
1
0.0590(7)


H24A
0.6233
0.2952
0.5834
1
0.071


H24B
0.6159
0.2531
0.6729
1
0.071


C25
0.4642(3)
0.3012(2)
0.6326(2)
1
0.0665(8)


H25A
0.4338
0.3092
0.6884
1
0.08


H25B
0.4411
0.3513
0.5994
1
0.08


C26
0.4115(3)
0.2193(3)
0.5950(2)
1
0.0754(10)


C27
0.2855(4)
0.2319(4)
0.5904(4)
1
0.1200(19)


H27A
0.2691
0.2858
0.5617
1
0.18


H27B
0.2553
0.2343
0.6461
1
0.18









Single Crystal X Ray Diffraction of Homoharringtonine Base (Form B)


See Corresponding FIGS. 2.2.2 and 2.2.3


From a suspension in its mother liquor, a suitable single crystal of size 0.43×0.29×0.18 mm was finally selected and implemented on the diffractometer.













Structural data








Empirical formula
C31H49N O12


Extended formula
C29H39N O9, 2(CH4O), H2O


Formula weight
627.71


Temperature
150(2)K









Wavelength
0.71073









Crystal system, space group
orthorhombic, P 21 21 21


Unit cell dimensions
a = 11.7738(10) Å, α = 90°



b = 14.3907(13) Å, β = 90°



c = 19.1368(15) Å, γ = 90°









Volume
3242.4(5)
3








Z, Calculated density
4, 1.286 (g · cm−1)









Absorption coefficient
0.098
mm−1








F(000)
1352


Crystal size
0.43 × 0.29 × 0.18 mm


Crystal color
colourless


Theta range for data collection
3.02 to 27.46°


h_min, h_max
−15, 13


k_min, k_max
−18, 18


l_min, l_max
−24, 19


Reflections collected/unique
16236/4103 [aR(int) = 0.0334]


Reflections [I > 2σ]
3764


Completeness to theta_max
0.99


Absorption correction type
multi-scan


Max. and min. transmission
0.982, 0.874


Refinement method
Full-matrix least-squares on F2


Data/restraints/parameters
4103/2/421



bGoodness-of-fit

1.031


Final R indices [I > 2σ]

cR1 = 0.0346, dwR2 = 0.0871



R indices (all data)

cR1 = 0.039, dwR2 = 0.09



Largest diff. peak and hole
0.259 and −0.2 e.Å−3









Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).


U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.


Atom numbering of FIGS. 2.2.2 and 2.2.3 corresponds to below table.

















Atom
x
Y
z
occ.
U(eq)







C1
  0.14461(16)
0.92123(13)
  0.19855(10)
1
0.0185(4)


H1
  0.1645
0.9474
  0.2424
1
0.022


C2
  0.13507(16)
0.96935(13)
  0.14015(10)
1
0.0182(4)


C3
  0.10057(15)
0.91236(13)
  0.07788(10)
1
0.0162(4)


H3
  0.0245
0.9326
  0.0604
1
0.019


C4
  0.09461(15)
0.81122(13)
  0.10658(10)
1
0.0156(4)


H4
  0.0135
0.7915
  0.1024
1
0.019


C5
  0.11993(15)
0.81891(13)
  0.18697(10)
1
0.0173(4)


C6
  0.01795(18)
0.78404(16)
  0.22996(10)
1
0.0236(4)


H6A
−0.0435
0.831
  0.2309
1
0.028


H6B
−0.0124
0.7254
  0.2103
1
0.028


C7
  0.06647(19)
0.76830(18)
  0.30351(12)
1
0.0324(5)


H7A
  0.0543
0.8236
  0.3334
1
0.039


H7B
  0.0307
0.7137
  0.326
1
0.039


C8
  0.19354(19)
0.75150(15)
  0.29115(10)
1
0.0250(4)


H8A
  0.2394
0.8
  0.3146
1
0.03


H8B
  0.2164
0.69
  0.3095
1
0.03


N9
  0.21006(14)
0.75555(11)
  0.21387(8)
1
0.0190(3)


C10
  0.32858(17)
0.78051(14)
  0.19706(11)
1
0.0214(4)


H10A
  0.3792
0.729
  0.2115
1
0.026


H10B
  0.3502
0.8363
  0.2243
1
0.026


C11
  0.34668(16)
0.80017(13)
  0.11940(10)
1
0.0185(4)


H11A
  0.3221
0.8645
  0.1092
1
0.022


H11B
  0.4288
0.7958
  0.1088
1
0.022


C12
  0.28274(15)
0.73420(12)
  0.07195(10)
1
0.0166(4)


C13
  0.16369(16)
0.74035(12)
  0.06606(9)
1
0.0158(4)


C14
  0.10458(16)
0.68001(13)
  0.02102(10)
1
0.0185(4)


H14
  0.0244
0.6838
  0.0162
1
0.022


C15
  0.16632(17)
0.61550(13)
−0.01569(11)
1
0.0214(4)


C16
  0.28285(17)
0.60909(13)
−0.00929(11)
1
0.0215(4)


C17
  0.34324(16)
0.66697(13)
  0.03421(10)
1
0.0196(4)


H17
  0.4234
0.6616
  0.0385
1
0.023


C18
  0.2238(2)
0.49213(19)
−0.07619(17)
1
0.0473(7)


H18A
  0.2304
0.4778
−0.1266
1
0.057


H18B
  0.2144
0.433
−0.0504
1
0.057


C19
  0.19032(19)
1.11428(14)
  0.18498(12)
1
0.0283(5)


H19A
  0.2613
1.0871
  0.2022
1
0.042


H19B
  0.1334
1.1137
  0.2224
1
0.042


H19C
  0.2041
1.1785
  0.1701
1
0.042


C21
  0.15776(16)
0.96435(12)
−0.03634(9)
1
0.0155(3)


C22
  0.25991(16)
0.96278(12)
−0.08591(10)
1
0.0169(4)


C23
  0.29059(16)
0.86127(13)
−0.10429(10)
1
0.0188(4)


H23A
  0.3594
0.8612
−0.134
1
0.023


H23B
  0.3091
0.8276
−0.0607
1
0.023


C24
  0.19701(16)
0.80987(13)
−0.14192(10)
1
0.0187(4)


C25
  0.1561(2)
0.68927(17)
−0.22153(14)
1
0.0361(5)


H25A
  0.1117
0.7289
−0.2529
1
0.054


H25B
  0.1053
0.6598
−0.1875
1
0.054


H25C
  0.195
0.6412
−0.2488
1
0.054


C31
  0.36248(16)
1.00778(13)
−0.04883(10)
1
0.0195(4)


H31A
  0.3848
0.9679
−0.009
1
0.023


H31B
  0.4272
1.0094
−0.0819
1
0.023


C32
  0.34172(18)
1.10662(12)
−0.02159(11)
1
0.0212(4)


H32A
  0.3272
1.149
−0.0613
1
0.025


H32B
  0.2742
1.1072
  0.0092
1
0.025


C33
  0.44570(19)
1.13955(14)
  0.01904(12)
1
0.0273(5)


H33A
  0.5137
1.1282
−0.0102
1
0.033


H33B
  0.453
1.1004
  0.0613
1
0.033


C34
  0.44740(19)
1.24164(14)
  0.04199(11)
1
0.0248(4)


C35
  0.5515(2)
1.25841(17)
  0.08801(15)
1
0.0416(6)


H35A
  0.5496
1.2159
  0.128
1
0.062


H35B
  0.5509
1.3227
  0.1048
1
0.062


H35C
  0.6206
1.2474
  0.0607
1
0.062


C36
  0.4479(2)
1.30687(14)
−0.01973(12)
1
0.0311(5)


H36A
  0.4469
1.3713
−0.0031
1
0.047


H36B
  0.3805
1.2954
−0.0486
1
0.047


H36C
  0.5164
1.2963
−0.0477
1
0.047


O1
  0.14964(13)
1.06111(9)
  0.12688(7)
1
0.0244(3)


O2
  0.12829(13)
0.55129(11)
−0.06415(9)
1
0.0329(4)


O3
  0.32361(13)
0.53951(11)
−0.05252(9)
1
0.0328(4)


O4
  0.18522(11)
0.92032(9)
  0.02297(7)
1
0.0169(3)


O5
  0.06782(11)
1.00004(10)
−0.04854(7)
1
0.0215(3)


O6
  0.23721(13)
1.01397(10)
−0.14731(7)
1
0.0221(3)


HO6
  0.170(3)
1.007(2)
−0.1577(16)
1
0.0


O7
  0.09736(13)
0.82269(11)
−0.13360(9)
1
0.0326(4)


O8
  0.23961(13)
0.74537(10)
−0.18490(8)
1
0.0289(3)


O9
  0.34591(17)
1.25612(12)
  0.08302(10)
1
0.0403(4)


HO9
  0.346(3)
1.315(2)
  0.0956(15)
1
0.0


C51
  0.1062(3)
0.5267(2)
  0.2091(2)
1
0.0688(11


H51A
  0.105
0.4613
  0.1948
1
0.103


H51B
  0.0453
0.5604
  0.1851
1
0.103


H51C
  0.0948
0.531
  0.2597
1
0.103


O52
  0.21050(17)
0.56578(12)
  0.19155(11)
1
0.0451(5)


H52
  0.204(3)
0.632(3)
  0.1905(18)
1
0.068


O61
  0.03166(17)
1.03110(13)
−0.21801(10)
1
0.0431(4)


H61
−0.026(3)
1.028(3)
−0.1858(18)
1
0.065


C62
−0.0021(2)
0.96665(19)
−0.26999(14)
1
0.0428(6)


H62A
  0.0298
0.9852
−0.3152
1
0.064


H62B
−0.0852
0.9655
−0.2731
1
0.064


H62C
  0.0257
0.9046
−0.2576
1
0.064


O71
  0.35707(17)
1.45528(12)
  0.12174(10)
1
0.0408(4)


H71A
  0.410(2)
1.489(2)
  0.0914(15)
1
0.061


H71B
  0.301(2)
1.498(2)
  0.1443(16)
1
0.061









Example 3: Preparation and Analyses of Homoharringtonine Hydrogen (2S)-Malate (Synonymous: Homoharringtonine (2S)-Bimalate)



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2S)-(−)-malic acid (natural form) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 205.4-207.7° C. from MeOH (measured by DSC, see FIG. 3.2). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).



1H NMR (400 MHz. Methanol-d4)* δ 6.79 (s, 1H), 6.74 (s, 1H), 6.09 (dd, J=9.6, 0.6 Hz, 1H), 5.96 (d, J=1.1 Hz, 1H), 5.93 (d, J=1.1 Hz, 1H), 5.33 (d, J=0.6 Hz, 1H), 4.24 (dd, J=7.4, 5.4 Hz, 1H), 4.16 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.50 (dd, J=9.5, 4.3 Hz, 1H), 3.42-3.32 (m, 1H), 3.21-3.10 (m, 1H), 2.76 (dd, J=15.9, 5.5 Hz, 1H), 2.71-2.62 (m, 1H), 2.48 (dd, J=15.8, 7.4 Hz, 1H), 2.26-2.05 (m, 4H), 1.94 (d, J=16.1 Hz, 2H), 1.47-1.29 (m, 5H), 1.29-1.17 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation



1H NMR (600 MHz, Deuterium oxide)* δ 6.84 (s, 1H), 6.76 (s, 1H), 6.01 (dd, J=9.6, 0.7 Hz, 1H), 5.95 (d, J=1.0 Hz, 1H), 5.94 (d, J=1.0 Hz, 1H), 5.34 (d, J=0.6 Hz, 1H), 4.31 (dd, J=8.2, 4.2 Hz, 1H), 4.19 (d, J=9.6 Hz, 1H), 3.76 (s, 3H), 3.52 (s, 3H), 3.52 (m, 1H), 3.42-3.32 (m, 1H), 3.30-3.23 (m, 1H), 3.22-3.15 (m, 1H), 2.76 (dd, J=16.0, 4.2 Hz, 1H), 2.74-2.68 (m, 1H), 2.57 (dd, J=16.0, 8.2 Hz, 1H), 2.36 (d, J=17.0 Hz, 1H), 2.29-2.08 (m, 2H), 1.99 s(d, J=16.9 Hz, 1H), 1.97-1.89 (m, 1H), 1.45-1.37 (m, 2H), 1.36-1.26 (m, 3H), 1.12 (s, 6H), 1.12-1.02 (m, 1H). *Partial presuppression of water signal using ‘watergate’ irradiation



13C NMR APT* (101 MHz, MeOD) δ 179.23, 176.13, 174.23, 171.61, 165.05, 149.76, 148.75, 130.92, 126.86, 114.85, 111.80, 102.86, 96.12, 78.09, 76.08, 74.35, 71.27, 69.35, 59.01, 54.21, 53.27, 52.07, 48.94, 44.76, 44.06, 41.80, 40.88, 40.52, 29.25, 29.23, 29.17, 19.95, 19.09.



13C NMR APT* (101 MHz, D2O) δ 178.97, 176.21, 174.23, 171.93, 162.88, 147.83, 146.74, 129.74, 125.22, 113.38, 111.12, 101.62, 95.52, 76.98, 75.25, 73.68, 71.34, 68.50, 58.41, 52.95, 52.24, 51.25, 47.58, 42.71, 42.54, 40.00, 39.18, 38.76, 27.69, 27.58, 27.47, 18.58, 17.68. *APT=Attached Proton Test


IR (Diamond ATR, solid) cm−1 3404, 2969, 2601, 1981, 1758, 1736, 1712, 1657, 1525, 1505, 1490, 1468, 1435, 1374, 1353, 1265, 1226, 1188, 1148, 1080, 1032, 983, 943, 925, 862, 830, 796, 770, 756, 708, 691, 674, 650, 615, 589, 565, 541, 510, 477. See FIG. 1.2


IR (Diamond ATR, film) cm−1 3422, 2964, 1742, 1656, 1596, 1506, 1490, 1440, 1373, 1266, 1224, 1168, 1084, 1033, 929, 710, 615, 566, 509, 477, 0, 983, 943, 925, 862, 830, 796, 770, 756, 708, 691, 674, 650, 615, 589, 565, 541, 510. See FIG. 1.2


Solubility in neutral water higher than 60 mg/mL


A. Single Crystal X-Ray Diffraction (See FIGS. 2.3.1 and 2.3.2)


From a suspension in its mother liquor, a suitable single crystal of size 0.58×0.46×0.29 mm was finally selected and implemented on the diffractometer.













Structural data








Empirical formula
C33H45N O14


Extended formula
C29H40N O9, C4H5O5


Formula weight
679.7


Temperature
150(2)K









Wavelength
0.71073









Crystal system, space group
orthorhombic, P 21 21 21


Unit cell dimensions
a = 11.488(2) Å, α = 90°



b = 15.399(3) Å, β = 90°



c = 18.825(4) Å, γ = 90°









Volume
3330.2(11)
3








Z, Calculated density
4, 1.356 (g · cm−1)









Absorption coefficient
0.106
mm−1








F(000)
1448


Crystal size
0.58 × 0.46 × 0.29 mm


Crystal color
white


Theta range for data collection
3.09 to 27.48°


h_min, h_max
−14, 14


k_min, k_max
−19, 13


l_min, l_max
−18, 24


Reflections collected/unique
28567/4233 [aR(int) = 0.1176]


Reflections [I > 2σ]
2414


Completeness to theta_max
0.998


Absorption correction type
multi-scan


Max. and min. transmission
0.970, 0.688


Refinement method:
Full-matrix least-squares on F2


Data/restraints/parameters
4233/0/440



bGoodness-of-fit

1.038


Final R indices [I > 2σ]:

cR1 = 0.0735, dwR2 = 0.1727



R indices (all data):

cR1 = 0.1366, dwR2 = 0.2124



Largest diff. peak and hole
0.555 and −0.27 e.Å−3










Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).


U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.


Atom numbering of FIG. 2.3.1 corresponds to below table.

















Atom
x
y
z
occ.
U(eq)







C1
0.8902(5)
  0.0603(4)
0.7067(3)
1
0.0450(15)


H1
0.8742
  0.0363
0.7521
1
0.054


C2
0.8846(5)
  0.0175(4)
0.6464(3)
1
0.0405(13)


C3
0.9163(5)
  0.0678(4)
0.5821(3)
1
0.0412(14)


H3
0.9896
  0.0445
0.5606
1
0.049


C4
0.9359(4)
  0.1614(4)
0.6109(3)
1
0.0355(13)


H4
1.0189
  0.1762
0.6007
1
0.043


C5
0.9255(5)
  0.1528(4)
0.6934(3)
1
0.0391(13)


C6
1.0363(5)
  0.1790(5)
0.7327(3)
1
0.0501(16)


H6A
1.0975
  0.1343
0.7269
1
0.06


H6B
1.0662
  0.2352
0.7148
1
0.06


C7
0.9996(6)
  0.1865(5)
0.8099(3)
1
0.0584(18)


H7A
1.0501
  0.2277
0.836
1
0.07


H7B
1.0023
  0.1293
0.8339
1
0.07


C8
0.8744(6)
  0.2204(5)
0.8049(3)
1
0.0539(17)


H8A
0.8215
  0.1843
0.834
1
0.065


H8B
0.8701
  0.2812
0.8219
1
0.065


N9
0.8411(4)
  0.2153(4)
0.7276(3)
1
0.0432(12)


H9
0.8561
  0.2696
0.7081
1
0.052


C10
0.7137(5)
  0.1984(5)
0.7172(3)
1
0.0496(16)


H10A
0.6691
  0.2495
0.7338
1
0.06


H10B
0.6904
  0.148
0.7467
1
0.06


C11
0.6826(4)
  0.1802(4)
0.6402(3)
1
0.0436(14)


H11A
0.7034
  0.1193
0.6287
1
0.052


H11B
0.5974
  0.1864
0.6341
1
0.052


C12
0.7435(4)
  0.2399(4)
0.5885(3)
1
0.0401(14)


C13
0.8622(4)
  0.2320(4)
0.5758(3)
1
0.0349(13)


C14
0.9172(4)
  0.2871(4)
0.5278(3)
1
0.0364(13)


H14
0.9984
  0.2823
0.5191
1
0.044


C15
0.8516(5)
  0.3487(4)
0.4933(3)
1
0.0441(15)


C16
0.7360(5)
  0.3568(4)
0.5058(4)
1
0.0464(15)


C17
0.6788(5)
  0.3043(4)
0.5538(3)
1
0.0437(15)


H17
0.598
  0.3115
0.563
1
0.052


C18
0.7884(6)
  0.4626(5)
0.4322(5)
1
0.076(2)


H18A
0.8017
  0.5203
0.4539
1
0.091


H18B
0.7749
  0.4707
0.3807
1
0.091


C19
0.8154(7)
−0.1118(5)
0.6969(4)
1
0.066(2)


H19A
0.8787
−0.115
0.7317
1
0.099


H19B
0.7907
−0.1707
0.6841
1
0.099


H19C
0.7496
−0.0802
0.7175
1
0.099


C21
0.8355(4)
  0.0154(4)
0.4745(3)
1
0.0382(13)


C22
0.7306(5)
  0.0234(4)
0.4248(3)
1
0.0412(14)


C23
0.7103(5)
  0.1202(4)
0.4059(3)
1
0.0379(13)


H23A
0.6413
  0.1246
0.3746
1
0.046


H23B
0.6932
  0.1527
0.4501
1
0.046


C24
0.8129(5)
  0.1618(4)
0.3693(3)
1
0.0409(14)


C25
0.8695(6)
  0.2717(5)
0.2887(4)
1
0.069(2)


H25A
0.9088
  0.31
0.3226
1
0.104


H25B
0.8353
  0.3065
0.2505
1
0.104


H25C
0.9259
  0.2308
0.2686
1
0.104


C31
0.6209(5)
−0.0103(4)
0.4625(3)
1
0.0450(14)


H31A
0.6041
  0.028
0.5035
1
0.054


H31B
0.5544
−0.006
0.4293
1
0.054


C32
0.6293(5)
−0.1031(4)
0.4889(4)
1
0.0491(16)


H32A
0.6941
−0.108
0.5233
1
0.059


H32B
0.6462
−0.1422
0.4484
1
0.059


C33
0.5166(6)
−0.1309(5)
0.5242(4)
1
0.0596(19)


H33A
0.4518
−0.1174
0.4914
1
0.072


H33B
0.5056
−0.0947
0.5672
1
0.072


C34
0.5053(7)
−0.2260(5)
0.5462(4)
1
0.069(2)


C35
0.6051(10)
−0.2507(6)
0.5911(5)
1
0.100(3)


H35A
0.5942
−0.3101
0.6086
1
0.15


H35B
0.6107
−0.2108
0.6315
1
0.15


H35C
0.6769
−0.2477
0.563
1
0.15


C36
0.3912(10)
−0.2401(7)
0.5849(6)
1
0.112(4)


H36A
0.3267
−0.2205
0.5549
1
0.168


H36B
0.3914
−0.2069
0.6293
1
0.168


H36C
0.3818
−0.302
0.5955
1
0.168


O31
0.5016(6)
−0.2752(4)
0.4798(3)
1
0.104(2)


H31
0.4952
−0.3283
0.4889
1
0.156


O1
0.8553(4)
−0.0674(3)
0.6348(2)
1
0.0543(11)


O2
0.6901(4)
  0.4222(3)
0.4640(3)
1
0.0625(13)


O3
0.8872(4)
  0.4087(3)
0.4432(2)
1
0.0560(13)


O21
0.8226(3)
  0.0660(2)
0.53083(19)
1
0.0371(9)


O22
0.9152(3)
−0.0342(3)
0.4646(2)
1
0.0507(11)


O23
0.7478(3)
−0.0256(3)
0.3627(2)
1
0.0426(10)


H23
0.8145
−0.0155
0.3464
1
0.064


O24
0.9138(3)
  0.1434(3)
0.3794(2)
1
0.0522(12)


O25
0.7785(4)
  0.2240(3)
0.3248(3)
1
0.0561(12)


C51
0.8039(5)
  0.4264(5)
0.7157(4)
1
0.0518(17)


C52
0.7548(6)
  0.5067(5)
0.6770(4)
1
0.0531(17)


H52
0.7672
  0.5593
0.7073
1
0.064


C53
0.6259(6)
  0.4973(5)
0.6614(4)
1
0.060(2)


H53A
0.606
  0.5382
0.6226
1
0.072


H53B
0.6125
  0.4379
0.6431
1
0.072


C54
0.5421(6)
  0.5127(5)
0.7216(4)
1
0.065(2)


O51
0.8885(4)
  0.3887(3)
0.6897(3)
1
0.0557(12)


O52
0.7540(6)
  0.4053(4)
0.7716(3)
1
0.095(2)


O53
0.8147(6)
  0.5173(5)
0.6130(4)
1
0.100(2)


H53
0.8805
  0.4937
0.6161
1
0.15


O54
0.5697(6)
  0.4866(5)
0.7821(3)
1
0.097(2)


H54
0.5978
  0.4363
0.7791
1
0.146


O55
0.4515(5)
  0.5523(5)
0.7122(3)
1
0.110(3)









B. X-Ray Powder Diffraction


The sample is pure and there is a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.3.3)


Example 4: Preparation and Analyses of Homoharringtonine Hydrogen (2R)-Malate (Diastereomer of Example 3)



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2R)-(+)-malic acid (unnatural form) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 205-208° C. from MeOH (measured by DSC, see FIG. 3.3). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).


DSC Analysis (See FIG. 3.3)



1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.74 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.97 (d, J=1.0 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.26 (dd, J=7.4, 5.5 Hz, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.55 (s, 3H), 3.53 (s, 1H), 3.34 (s, 2H), 3.22-3.12 (m, 1H), 2.77 (dd, J=15.9, 5.4 Hz, 1H), 2.72-2.64 (m, 1H), 2.49 (dd, J=15.9, 7.4 Hz, 1H), 2.29-2.05 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.48-1.18 (m, 6H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation



13C NMR APT* (101 MHz, Methanol-d4) δ 179.21, 176.06, 174.25, 171.63, 165.07, 149.78, 148.77, 130.94, 126.88, 114.85, 111.80, 102.88, 96.10, 78.07, 76.09, 74.36, 71.28, 69.33, 59.00, 54.22, 53.31, 52.07, 44.77, 44.06, 41.76, 40.88, 40.54, 29.27, 29.22, 19.94, 19.10. *APT=Attached Proton Test


IR (Diamond ATR, solid) cm−1 3467, 3384, 2970, 2051, 1762, 1737, 1708, 1655, 1607, 1533, 1509, 1494, 1469, 1440, 1376, 1349, 1333, 1292, 1258, 1230, 1208, 1167, 1147, 1121, 1080, 1032, 985, 942, 926, 888, 865, 820, 771, 754, 717, 690, 675, 648, 616, 563, 542, 513, 476. See FIG. 1.3


IR (Diamond ATR, film) cm−1 3422, 2964, 1742, 1656, 1598, 1506, 1490, 1440, 1373, 1266, 1224, 1169, 1084, 1033, 929, 709, 567, 511. See FIG. 1.3


A. Single Crystal X-Ray Diffraction (See FIGS. 2.4.1 and 2.4.2)


From a suspension in its mother liquor, a suitable single crystal of size 0.55×0.48×0.4 mm was finally selected and implemented on the diffractometer.













Structural data








Empirical formula
C34H49N O15


Extended formula
C29H40N O9, C4H5O5, CH4O


Formula weight
711.74


Temperature
150(2)K









Wavelength
0.71073









Crystal system, space group
orthorhombic, P 21 21 21


Unit cell dimensions:
a = 11.3958(8) Å, α = 90°



b = 15.5163(16) Å, β = 90°



c = 19.3680(16) Å, γ = 90°









Volume
3424.7(5)
3








Z, Calculated density
4, 1.38 (g · cm−1)









Absorption coefficient
0.108
mm−1








F(000)
1520


Crystal size
0.55 × 0.48 × 0.4 mm


Crystal color
colourless


Theta range for data collection
3.06 to 27.47°


h_min, h_max
−14, 14


k_min, k_max
−20, 11


l_min, l_max
−25, 14


Reflections collected/unique
14680/4317 [aR(int) = 0.0515]


Reflections [I > 2σ]
3608


Completeness to theta_max
0.989


Absorption correction
type multi-scan


Max. and min. transmission
0.958, 0.839


Refinement method:
Full-matrix least-squares on F2


Data/restraints/parameters
4317/0/474



bGoodness-of-fit

1.034


Final R indices [I > 2σ]:

cR1 = 0.0397, dwR2 = 0.0825



R indices (all data):

cR1 = 0.0531, dwR2 = 0.0878



Largest diff. peak and hole
0.26 and −0.238 e.Å−3










Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).


U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.


Atom numbering of FIG. 2.4.1 corresponds to below table.

















Atom
x
y
z
occ.
U(eq)







C1
0.8742(2)
  0.06078(16)
  0.19603(12)
1
0.0184(5)


H1
0.8565
  0.0356
  0.2395
1
0.022


C2
0.8762(2)
  0.01795(16)
  0.13644(13)
1
0.0188(5)


C3
0.9050(2)
  0.07250(16)
  0.07486(11)
1
0.0170(5)


H3
0.9806
  0.0529
  0.0538
1
0.02


C4
0.9198(2)
  0.16514(15)
  0.10526(11)
1
0.0162(5)


H4
1.0039
  0.1809
  0.098
1
0.019


C5
0.9039(2)
  0.15418(16)
  0.18536(12)
1
0.0174(5)


C6
1.0098(2)
  0.18290(17)
  0.22700(12)
1
0.0235(6)


H6A
1.037
  0.2405
  0.2119
1
0.028


H6B
1.0752
  0.1413
  0.2222
1
0.028


C7
0.9654(3)
  0.18574(18)
  0.30140(13)
1
0.0267(6)


H7A
1.0095
  0.2288
  0.3288
1
0.032


H7B
0.9732
  0.1286
  0.3237
1
0.032


C8
0.8361(3)
  0.21154(17)
  0.29473(12)
1
0.0238(6)


H8A
0.7851
  0.1693
  0.3186
1
0.029


H8B
0.8226
  0.2692
  0.3151
1
0.029


N9
0.81061(19)
  0.21246(14)
  0.21739(10)
1
0.0176(4)


H9
0.825(3)
  0.269(2)
  0.2017(17)
1
0.05


C10
0.6851(2)
  0.19196(17)
  0.20232(13)
1
0.0218(6)


H10A
0.635
  0.2391
  0.2201
1
0.026


H10B
0.6631
  0.1385
  0.227
1
0.026


C11
0.6617(2)
  0.18021(15)
  0.12509(12)
1
0.0191(5)


H11A
0.6845
  0.121
  0.1116
1
0.023


H11B
0.5764
  0.1864
  0.1166
1
0.023


C12
0.7267(2)
  0.24357(15)
  0.07984(12)
1
0.0173(5)


C13
0.8483(2)
  0.23587(15)
  0.07084(11)
1
0.0158(5)


C14
0.9095(2)
  0.29500(15)
  0.02929(12)
1
0.0183(5)


H14
0.9918
  0.2903
  0.0226
1
0.022


C15
0.8457(2)
  0.35990(16)
−0.00131(12)
1
0.0200(5)


C16
0.7266(2)
  0.36742(16)
  0.00808(13)
1
0.0208(5)


C17
0.6642(2)
  0.31099(15)
  0.04811(12)
1
0.0188(5)


H17
0.582
  0.3171
  0.0542
1
0.023


C18
0.7889(2)
  0.4844(2)
−0.04641(17)
1
0.0369(7)


H18A
0.802
  0.5311
−0.0125
1
0.044


H18B
0.7814
  0.5104
−0.0929
1
0.044


C19
0.8404(3)
−0.11951(17)
  0.18391(15)
1
0.0307(6)


H19A
0.912
−0.1207
  0.2119
1
0.046


H19B
0.8203
−0.1782
  0.1695
1
0.046


H19C
0.7759
−0.0954
  0.2113
1
0.046


C21
0.8370(2)
  0.02556(14)
−0.03526(12)
1
0.0158(5)


C22
0.7342(2)
  0.02954(15)
−0.08511(12)
1
0.0162(5)


C23
0.7016(2)
  0.12332(15)
−0.10139(12)
1
0.0187(5)


H23A
0.6336
  0.1238
−0.1332
1
0.022


H23B
0.6773
  0.1523
−0.0582
1
0.022


C24
0.8000(2)
  0.17318(15)
−0.13336(12)
1
0.0184(5)


C25
0.8506(3)
  0.2801(2)
−0.21480(17)
1
0.0398(8)


H25A
0.8814
  0.321
−0.1808
1
0.06


H25B
0.8156
  0.3119
−0.2534
1
0.06


H25C
0.9146
  0.2438
−0.232
1
0.06


C31
0.6261(2)
−0.01467(15)
−0.05365(12)
1
0.0180(5)


H31A
0.599
  0.02
−0.0139
1
0.022


H31B
0.5625
−0.0146
−0.0885
1
0.022


C32
0.6456(2)
−0.10722(15)
−0.02934(12)
1
0.0181(5)


H32A
0.7012
−0.1076
  0.0099
1
0.022


H32B
0.6803
−0.1416
−0.0673
1
0.022


C33
0.5293(2)
−0.14767(15)
−0.00701(13)
1
0.0196(5)


H33A
0.4777
−0.151
−0.048
1
0.024


H33B
0.4913
−0.1082
  0.0264
1
0.024


C34
0.5349(2)
−0.23726(16)
  0.02570(12)
1
0.0202(5)


C35
0.4125(2)
−0.26450(18)
  0.04804(15)
1
0.0280(6)


H35A
0.4172
−0.3188
  0.0737
1
0.042


H35B
0.363
−0.2724
  0.0072
1
0.042


H35C
0.3785
−0.2198
  0.0777
1
0.042


C36
0.5878(3)
−0.30546(16)
−0.02198(14)
1
0.0261(6)


H36A
0.6674
−0.2881
−0.0353
1
0.039


H36B
0.5391
−0.3111
−0.0634
1
0.039


H36C
0.591
−0.3609
  0.0022
1
0.039


O1
0.85935(16)
−0.06660(11)
  0.12358(9)
1
0.0246(4)


O2
0.88492(17)
  0.42476(12)
−0.04504(10)
1
0.0291(5)


HO2
0.832(3)
−0.035(2)
−0.1469(17)
1
0.05


O3
0.68491(16)
  0.43735(12)
−0.02943(10)
1
0.0313(5)


O4
0.81179(14)
  0.06809(10)
  0.02407(8)
1
0.0175(4)


O5
0.92726(15)
−0.01197(11)
−0.04651(9)
1
0.0229(4)


O6
0.76585(17)
−0.01235(11)
−0.14790(8)
1
0.0213(4)


O7
0.90141(17)
  0.16881(12)
−0.11593(10)
1
0.0289(4)


O8
0.76172(16)
  0.22615(12)
−0.18254(10)
1
0.0294(5)


O9
0.60916(17)
−0.22805(12)
  0.08630(9)
1
0.0220(4)


H09
0.624(3)
−0.279(2)
  0.1042(17)
1
0.05


C51
0.8226(2)
  0.44762(17)
  0.18302(13)
1
0.0236(6)


C52
0.7112(2)
  0.45571(16)
  0.22623(13)
1
0.0224(6)


H52
0.721
  0.5059
  0.2581
1
0.027


C53
0.6023(2)
  0.47238(16)
  0.18092(13)
1
0.0224(5)


H53A
0.612
  0.4418
  0.1364
1
0.027


H53B
0.5323
  0.4483
  0.2042
1
0.027


C54
0.5820(2)
  0.56740(17)
  0.16673(12)
1
0.0207(5)


O51
0.84243(18)
  0.51249(12)
  0.14213(10)
1
0.0327(5)


O52
0.88827(16)
  0.38509(12)
  0.18781(10)
1
0.0289(4)


O53
0.69947(19)
  0.38065(13)
  0.26660(10)
1
0.0341(5)


H53
0.628(3)
  0.377(2)
  0.2833(17)
1
0.05


O54
0.48847(17)
  0.60192(12)
  0.18067(9)
1
0.0274(4)


O55
0.67121(17)
  0.60868(11)
  0.14119(9)
1
0.0263(4)


H55
0.757(3)
  0.559(2)
  0.1382(16)
1
0.05


C61
0.4392(3)
  0.46918(18)
  0.34036(15)
1
0.0321(7)


H61A
0.3848
  0.4648
  0.3794
1
0.048


H61B
0.3981
  0.4932
  0.3003
1
0.048


H61C
0.5048
  0.5069
  0.3529
1
0.048


O62
0.4827(2)
  0.38596(14)
  0.32369(11)
1
0.0418(6)


H62
0.457(3)
  0.347(2)
  0.3498(17)
1
0.05









B. X-Ray Powder Diffraction


The sample was pure, there is no doubt that this is the correct phase. However there is a gap of certain diffraction lines, which would be associated with a variation of unit cell parameters. There may be a change in the rate of hydration for example, to cause such a phenomenon (for view of diagrams and experimental details, see FIG. 2.4.3).


Example 5: Preparation and Analyses of Homoharringtonine Hydrogen (2S,3S)-Tartrate



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2S,3S-(−)-tartaric acid (unnatural form) according to the general procedure, then isolated as a white prismatic solid mp 202-205° C. (uncorrected) from MeOH. (198.1-203.9, measured by DSC, see FIG. 3.4). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).


DSC Analysis (See FIG. 3.4)



1H NMR (400 MHz, Methanol-d4)*δ 6.81 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.5 Hz, 1H), 5.97 (d, J=1.1 Hz, 1H), 5.94 (d, J=1.1 Hz, 1H), 5.34 (s, 1H), 4.36 (s, 2H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 2.24 (d, J=16.2 Hz, 2H), 1.95 (d, J=16.1 Hz, 1H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation



13C NMR APT* (101 MHz, Methanol-d4) δ 176.81, 174.28, 171.67, 165.24, 149.87, 148.85, 130.83, 126.76, 114.91, 111.89, 102.93, 96.04, 78.34, 76.13, 74.38, 74.10, 71.32, 59.10, 54.28, 53.22, 52.12, 44.80, 44.09, 40.91, 40.46, 29.20, 29.19, 19.95, 19.13. *APT=Attached Proton Test


IR (Diamond ATR, solid) cm−1 3502, 3048, 2971, 2884, 2051, 1981, 1765, 1736, 1656, 1592, 1506, 1490, 1432, 1375, 1348, 1321, 1295, 1265, 1227, 1205, 1165, 1147, 1111, 1081, 1031, 984, 939, 921, 887, 866, 831, 810, 727, 691, 675, 615, 564, 510, 477. See FIG. 1.4


IR (Diamond ATR, film) cm−1 3419, 2963, 1741, 1656, 1611, 1506, 1489, 1440, 1373, 1265, 1224, 1168, 1118, 1083, 1035, 983, 928, 674, 614, 512, 477. See FIG. 1.4


X-Ray Crystallographic Studies


A. Single Crystal X-Ray Diffraction (See FIGS. 2.5.1 and 2.5.2)


From a suspension in its mother liquor, a suitable single crystal of size 0.35×0.28×0.19 mm was finally selected and implemented on the diffractometer.
















Structural data










Empirical formula

33H45N O15




Extended formula
C33H45N1 O15



Formula weight
695.7



Temperature
150(2)K











Wavelength
0.71073











Crystal system, space group
orthorhombic, P 21 21 21



Unit cell dimensions
a = 10.7962(3) Å, α = 90°




b = 16.3649(5) Å, β = 90°




c = 18.6773(5) Å, γ = 90°











Volume
3299.88(16)
3










Z, Calculated density
4, 1.4 (g · cm−1)











Absorption coefficient
0.111
mm−1










F(000)
1480



Crystal size
0.35 × 0.28 × 0.19 mm



Crystal color
colourless



Theta range for data collection
3.12 to 27.48°



h_min, h_max
−14, 14



k_min, k_max
−18, 21



l_min, l_max
−23, 24



Reflections collected/unique
53493/4200 [aR(int) = 0.0357]



Reflections [I > 2σ]
4022



Completeness to theta_max
0.997



Absorption correction type
multi-scan



Max. and min. transmission
0.979, 0.921



Refinement method
Full-matrix least-squares on F2



Data/restraints/parameters
4200/0/464




bGoodness-of-fit

1.044



Final R indices [I > 2σ]:

cR1 = 0.0289, dwR2 = 0.0766




R indices (all data):

cR1 = 0.0308, dwR2 = 0.0781




Largest diff, peak and hole:
0.245 and −0.156 e.Å−3











Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).


U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.


Atom numbering of FIG. 2.5.1 corresponds to below table.

















Atom
x
y
z
occ.
U(eq)







C1
0.60365(16)
0.56010(10)
0.77843(9)
1
0.0207(3)


H1
0.6286
0.5375
0.7338
1
0.025


C2
0.59199(16)
0.51759(10)
0.83901(9)
1
0.0204(3)


C3
0.54863(14)
0.56685(9)
0.90214(8)
1
0.0173(3)


H3
0.4655
0.5475
0.9185
1
0.021


C4
0.53958(14)
0.65545(9)
0.87170(8)
1
0.0159(3)


H4
0.4499
0.6705
0.8739
1
0.019


C5
0.57198(15)
0.64844(10)
0.79030(9)
1
0.0176(3)


C6
0.46897(15)
0.68171(10)
0.74191(8)
1
0.0209(3)


H6A
0.4358
0.7336
0.7612
1
0.025


H6B
0.4003
0.6418
0.738
1
0.025


C7
0.52972(18)
0.69568(12)
0.66864(9)
1
0.0279(4)


H7A
0.4941
0.7444
0.6449
1
0.034


H7B
0.5177
0.6476
0.6372
1
0.034


C8
0.66784(17)
0.70863(10)
0.68489(9)
1
0.0232(3)


H8A
0.7186
0.6657
0.6617
1
0.028


H8B
0.6957
0.7627
0.6674
1
0.028


N9
0.67903(13)
0.70357(8)
0.76564(7)
1
0.0175(3)


H9
0.667(3)
0.7517(18)
0.7806(16)
1
0.05


C10
0.80715(16)
0.68107(11)
0.78842(9)
1
0.0233(3)


H10A
0.8653
0.7246
0.7736
1
0.028


H10B
0.8321
0.6299
0.7641
1
0.028


C11
0.81574(15)
0.66918(10)
0.86982(9)
1
0.0211(3)


H11A
0.7888
0.613
0.8818
1
0.025


H11B
0.9033
0.6749
0.8847
1
0.025


C12
0.73790(14)
0.72935(10)
0.91171(9)
1
0.0183(3)


C13
0.60770(14)
0.72158(9)
0.91235(8)
1
0.0160(3)


C14
0.53534(15)
0.77926(9)
0.94934(8)
1
0.0177(3)


H14
0.4476
0.7753
0.9498
1
0.021


C15
0.59463(16)
0.84150(10)
0.98478(9)
1
0.0203(3)


C16
0.72235(16)
0.84894(10)
0.98391(9)
1
0.0228(3)


C17
0.79564(15)
0.79481(11)
0.94736(9)
1
0.0215(3)


H17
0.8831
0.8013
0.9461
1
0.026


C18
0.64308(19)
0.95977(12)
1.03596(11)
1
0.0325(4)


H18A
0.6364
1.0053
1.0012
1
0.039


H18B
0.6407
0.9827
1.085
1
0.039


C19
0.6668(2)
0.39314(10)
0.79407(10)
1
0.0279(4)


H19A
0.7405
0.4221
0.7771
1
0.042


H19B
0.6068
0.3884
0.7549
1
0.042


H19C
0.6903
0.3384
0.8106
1
0.042


C21
0.60705(15)
0.51652(9)
1.01819(8)
1
0.0167(3)


C22
0.72136(14)
0.50930(9)
1.06633(8)
1
0.0166(3)


C23
0.77327(15)
0.59411(9)
1.08420(9)
1
0.0192(3)


H23A
0.8471
0.5876
1.1151
1
0.023


H23B
0.8004
0.6208
1.0393
1
0.023


C24
0.68149(16)
0.64899(10)
1.12155(9)
1
0.0217(3)


C25
0.6586(2)
0.76969(15)
1.18925(17)
1
0.0533(7)


H25A
0.6067
0.7412
1.2243
1
0.08


H25B
0.6057
0.7964
1.1536
1
0.08


H25C
0.709
0.8109
1.2137
1
0.08


C31
0.82188(15)
0.46027(9)
1.02660(9)
1
0.0191(3)


H31A
0.8479
0.4917
0.9839
1
0.023


H31B
0.8949
0.4551
1.0583
1
0.023


C32
0.78268(16)
0.37451(9)
1.00245(9)
1
0.0197(3)


H32A
0.7604
0.3411
1.0447
1
0.024


H32B
0.709
0.3784
0.9711
1
0.024


C33
0.88905(17)
0.33394(10)
0.96190(10)
1
0.0233(3)


H33A
0.9647
0.3386
0.9916
1
0.028


H33B
0.9038
0.3655
0.9175
1
0.028


C34
0.87253(17)
0.24391(10)
0.94135(9)
1
0.0230(3)


C35
0.98538(19)
0.21661(13)
0.89846(13)
1
0.0370(5)


H35A
0.9902
0.2482
0.854
1
0.055


H35B
0.9779
0.1584
0.8871
1
0.055


H35C
1.0605
0.2258
0.9268
1
0.055


C36
0.8548(2)
0.18850(12)
1.00617(11)
1
0.0385(5)


H36A
0.8438
0.132
0.9901
1
0.058


H36B
0.7814
0.2059
1.0329
1
0.058


H36C
0.9279
0.192
1.0372
1
0.058


O1
0.61196(13)
0.43788(7)
0.85237(7)
1
0.0255(3)


O2
0.54324(13)
0.90276(8)
1.02592(7)
1
0.0284(3)


O3
0.75632(13)
0.91539(8)
1.02482(7)
1
0.0320(3)


O4
0.63780(10)
0.56087(7)
0.95949(6)
1
0.0183(2)


O5
0.50856(11)
0.48612(7)
1.02953(7)
1
0.0244(3)


O6
0.69079(12)
0.46715(7)
1.13040(6)
1
0.0221(2)


HO6
0.616(3)
0.4684(17)
1.1363(15)
1
0.05


O7
0.57142(13)
0.64049(9)
1.12151(10)
1
0.0408(4)


O8
0.73882(13)
0.71156(8)
1.15402(8)
1
0.0352(3)


O9
0.76355(13)
0.23916(8)
0.89708(8)
1
0.0302(3)


HO9
0.751(3)
0.1897(18)
0.8886(15)
1
0.05


C51
0.69752(17)
1.00450(11)
0.84160(9)
1
0.0240(3)


C52
0.75591(16)
0.92992(10)
0.80382(9)
1
0.0216(3)


H52
0.8202
0.9054
0.8358
1
0.026


C53
0.81501(17)
0.95062(11)
0.73116(9)
1
0.0248(3)


H53
0.7586
0.9885
0.7048
1
0.03


C54
0.94378(18)
0.99098(12)
0.73715(10)
1
0.0291(4)


O51
0.76283(13)
1.06995(8)
0.84564(8)
1
0.0331(3)


O52
0.59210(13)
0.99642(8)
0.86509(8)
1
0.0337(3)


O53
0.65877(13)
0.87221(7)
0.79311(7)
1
0.0276(3)


HO53
0.604(3)
0.8924(17)
0.8176(15)
1
0.05


O54
0.82858(17)
0.87829(10)
0.69067(9)
1
0.0424(4)


HO54
0.905(3)
0.8812(18)
0.6760(15)
1
0.05


O55
1.02589(15)
0.96663(11)
0.69804(9)
1
0.0465(4)


O56
0.95769(14)
1.05015(9)
0.78265(9)
1
0.0373(3)


HO56
0.868(3)
1.0629(17)
0.8111(14)
1
0.05









B. X-Ray Powder Diffraction


The sample was pure. There was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.5.3).


Example 6: Preparation and Analyses of Homoharringtonine Hydrogen (2R,3R)-Tartrate (Diastemomer of Example 5)



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial (+)-(2R,3R)-tartaric acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 206-208° C. (uncorrected) from MeOH. (204.6-208.5, measured by DSC, see FIG. 3.5). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).


DSC Analysis (See FIG. 3.5)



1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.7 Hz, 1H), 5.97 (d, J=1.0 Hz, 1H), 5.94 (d, J=1.1 Hz, 1H), 5.34 (s, 1H), 4.36 (s, 2H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.44-3.32 (m, 2H), 3.28-3.16 (m, 1H), 2.69 (dd, J=13.7, 5.9 Hz, 1H), 2.27-2.21 (m, 2H), 2.21-1.97 (m, 2H), 1.95 (d, J=16.1 Hz, 1H), 1.49-1.18 (m, 6H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation



13C NMR APT* (101 MHz, Methanol-d4) δ 176.80, 174.24, 171.62, 165.20, 149.84, 148.83, 130.81, 126.73, 114.86, 111.85, 102.89, 96.00, 78.29, 76.09, 74.34, 74.07, 71.28, 59.05, 54.22, 53.18, 52.07, 44.76, 44.05, 40.87, 40.43, 29.23, 29.17, 29.15, 19.91, 19.10. *APT=Attached Proton Test


IR (Diamond ATR, solid) cm−1 3491, 3044, 2969, 1762, 1737, 1654, 1587, 1506, 1489, 1464, 1431, 1375, 1320, 1295, 1259, 1229, 1210, 1172, 1149, 1107, 1082, 1028, 984, 940, 924, 866, 819, 804, 735, 690, 616, 565, 512, 476. See FIG. 1.5


IR (Diamond ATR, film) cm−1 3417, 2963, 1741, 1655, 1611, 1505, 1489, 1440, 1373, 1265, 1223, 1167, 1118, 1082, 1034, 983, 928, 769, 675, 614, 565, 510, 478, 0, 1031, 984, 939, 921, 887, 866, 831, 810, 727, 691, 675, 615, 564, 510. See FIG. 1.5


X-Ray Crystallographic Studies


A. Single Crystal X-Ray Diffraction (See FIGS. 2.6.1 and 2.6.2)


From a suspension in its mother liquor, a suitable single crystal of size 0.54×0.41×0.34 mm was finally selected and implemented on the diffractometer.












Structural data
















Empirical formula
C33H45NO15


Extended formula
C29H40NO9, C4H5O6


Formula weight
695.7


Temperature
150(2) K


Wavelength
0.71073 Å


Crystal system, space group
orthorhombic, P 21 21 21


Unit cell dimensions:
a = 10.6770(3) Å, α = 90°



b = 16.6169(6) Å, β = 90°



c = 18.7442(7) Å, γ = 90°


Volume
3325.6(2) Å3


Z, Calculated density
4, 1.39 (g · cm−1)


Absorption coefficient
0.110 mm−1


F(000)
1480


Crystal size
0.54 × 0.41 × 0.34 mm


Crystal color
colourless


Theta range for data collection
3.11 to 27.48°


h_min, h_max
−13, 10


k_min, k_max
−21, 19


l_min, l_max
−23, 15


Reflections collected/unique
15282/4165 [aR(int) = 0.0328]


Reflections [I > 2σ]
3523


Completeness to theta_max
0.979


Absorption correction type
multi-scan


Max. and min. transmission
0.963, 0.891


Refinement method
Full-matrix least-squares on F2


Data/restraints/parameters
4165/0/458



bGoodness-of-fit

1.021


Final R indices [I > 2σ]:

cR1 = 0.0368, dwR2 = 0.0759



R indices (all data):

cR1 = 0.0498, dwR2 = 0.0816



Largest diff. peak and hole
0.23 and −0.195 e · Å−3










Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).


U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.


Atom numbering of FIG. 2.6.1 corresponds to below table.

















Atom
x
y
z
occ.
U(eq)







C1
0.8908(2)
  0.06521(13)
0.73105(13)
1
0.0187(5)


H1
0.8694
  0.0434
0.7763
1
0.022


C2
0.9037(2)
  0.02207(13)
0.67131(13)
1
0.0194(5)


C3
0.9421(2)
  0.06998(13)
0.60762(12)
1
0.0170(5)


H3
1.0267
  0.0525
0.5907
1
0.02


C4
0.94749(19)
  0.15799(13)
0.63555(12)
1
0.0149(5)


H4
1.0376
  0.1742
0.6331
1
0.018


C5
0.91467(19)
  0.15286(12)
0.71688(12)
1
0.0164(5)


C6
1.0130(2)
  0.19306(14)
0.76376(13)
1
0.0210(5)


H6A
1.0399
  0.2449
0.7427
1
0.025


H6B
1.0873
  0.1579
0.7691
1
0.025


C7
0.9504(2)
  0.20687(17)
0.83590(14)
1
0.0310(6)


H7A
0.9805
  0.2574
0.858
1
0.037


H7B
0.9677
  0.1616
0.8688
1
0.037


C8
0.8100(2)
  0.21218(14)
0.81897(12)
1
0.0218(5)


H8A
0.7635
  0.1686
0.8434
1
0.026


H8B
0.7756
  0.2646
0.8345
1
0.026


N9
0.80013(17)
  0.20331(11)
0.73928(10)
1
0.0167(4)


H9
0.808(3)
  0.2532(19)
0.7212(17)
1
0.05


C10
0.6742(2)
  0.17363(14)
0.71581(13)
1
0.0212(5)


H10A
0.609
  0.2121
0.7316
1
0.025


H10B
0.6569
  0.1211
0.7386
1
0.025


C11
0.6677(2)
  0.16426(14)
0.63473(13)
1
0.0200(5)


H11A
0.6969
  0.1096
0.622
1
0.024


H11B
0.5792
  0.1689
0.6196
1
0.024


C12
0.7446(2)
  0.22516(13)
0.59340(13)
1
0.0178(5)


C13
0.87646(19)
  0.22060(12)
0.59378(12)
1
0.0142(5)


C14
0.9478(2)
  0.27752(13)
0.55633(12)
1
0.0176(5)


H14
1.0367
  0.2753
0.5567
1
0.021


C15
0.8861(2)
  0.33632(13)
0.51922(13)
1
0.0188(5)


C16
0.7568(2)
  0.34102(14)
0.51918(13)
1
0.0229(5)


C17
0.6842(2)
  0.28758(13)
0.55610(13)
1
0.0210(5)


H17
0.5955
  0.2924
0.5566
1
0.025


C18
0.8325(3)
  0.44907(16)
0.46298(16)
1
0.0358(7)


H18A
0.8347
  0.4683
0.413
1
0.043


H18B
0.8367
  0.4963
0.4951
1
0.043


C19
0.8337(2)
−0.10152(13)
0.71742(14)
1
0.0278(6)


H19A
0.8918
−0.1024
0.7579
1
0.042


H19B
0.8166
−0.1568
0.702
1
0.042


H19C
0.7552
−0.0756
0.7319
1
0.042


C21
0.8802(2)
  0.01342(12)
0.49504(13)
1
0.0172(5)


C22
0.7657(2)
  0.00350(13)
0.44714(12)
1
0.0171(5)


C23
0.7075(2)
  0.08447(12)
0.42747(13)
1
0.0185(5)


H23A
0.637
  0.0752
0.3942
1
0.022


H23B
0.6731
  0.1097
0.4711
1
0.022


C24
0.7990(2)
  0.14152(13)
0.39345(13)
1
0.0203(5)


C25
0.8218(2)
  0.26011(16)
0.32546(17)
1
0.0354(7)


H25A
0.8661
  0.2903
0.3626
1
0.053


H25B
0.7713
  0.2972
0.2968
1
0.053


H25C
0.8828
  0.2329
0.2947
1
0.053


C32
0.6115(2)
−0.17869(13)
0.54608(14)
1
0.0218(5)


H32A
0.5368
−0.179
0.5147
1
0.026


H32B
0.5885
−0.1491
0.59
1
0.026


C37
0.7146(2)
−0.13192(12)
0.50853(13)
1
0.0197(5)


H37A
0.7423
−0.1619
0.4657
1
0.024


H37B
0.7874
−0.1262
0.5409
1
0.024


C38
0.6679(2)
−0.04831(12)
0.48638(13)
1
0.0192(5)


H38A
0.6402
−0.0191
0.5296
1
0.023


H38B
0.594
−0.0549
0.455
1
0.023


C42
0.6411(2)
−0.26590(13)
0.56665(13)
1
0.0214(5)


C44
0.5296(2)
−0.30128(16)
0.60626(15)
1
0.0310(6)


H44A
0.5486
−0.3567
0.6205
1
0.047


H44B
0.456
−0.301
0.575
1
0.047


H44C
0.5122
−0.2689
0.6488
1
0.047


C45
0.6740(3)
−0.31800(14)
0.50279(15)
1
0.0351(7)


H45A
0.7474
−0.2955
0.4785
1
0.053


H45B
0.603
−0.3193
0.4697
1
0.053


H45C
0.6928
−0.3728
0.5189
1
0.053


O1
0.88885(17)
−0.05711(9)
0.65947(9)
1
0.0254(4)


O2
0.93569(16)
  0.39596(10)
0.47637(9)
1
0.0273(4)


O3
0.71970(17)
  0.40404(11)
0.47595(10)
1
0.0334(4)


O4
0.85067(13)
  0.06035(9)
0.55137(8)
1
0.0176(3)


O5
0.97892(14)
−0.01899(9)
0.48520(9)
1
0.0250(4)


O6
0.80450(16)
−0.03582(10)
0.38304(9)
1
0.0231(4)


HO6
0.878(3)
−0.0464(19)
0.3873(17)
1
0.05


O7
0.91117(15)
  0.13633(11)
0.39748(11)
1
0.0374(5)


O8
0.74109(15)
  0.20093(9)
0.35831(10)
1
0.0275(4)


O9
0.74716(17)
−0.26262(10)
0.61420(11)
1
0.0320(5)


HO9
0.755(3)
−0.307(2)
0.6285(18)
1
0.05


C51
0.5651(2)
  0.49263(15)
0.76865(15)
1
0.0299(6)


C52
0.6393(2)
  0.42749(13)
0.72898(15)
1
0.0237(5)


H52
0.6068
  0.4235
0.6791
1
0.028


C53
0.7815(2)
  0.44249(13)
0.72627(14)
1
0.022


H53
0.8101
  0.4609
0.7744
1
0.026


C54
0.8215(2)
  0.50558(14)
0.67017(14)
1
0.0241(5)


O51
0.5872(2)
  0.56776(10)
0.75398(12)
1
0.0416(5)


HO51
0.663(3)
  0.5688(18)
0.7178(18)
1
0.05


O52
0.48857(19)
  0.47183(12)
0.81317(11)
1
0.0462(6)


O53
0.61742(18)
  0.35372(10)
0.76410(12)
1
0.0383(5)


HO53
0.566(3)
  0.361(2)
0.7939(18)
1
0.05


O54
0.84448(16)
  0.36948(10)
0.70908(10)
1
0.0275(4)


HO54
0.887(3)
  0.3812(19)
0.6718(18)
1
0.05


O55
0.90625(17)
  0.48767(11)
0.62938(10)
1
0.0342(4)


O56
0.76291(16)
  0.57314(9)
0.67107(11)
1
0.0323(4)









A. X-Ray Powder Diffraction


The sample was pure and there was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.6.3).


Example 7: Preparation and Analyses of Homoharringtonine Hydrogen (2′″S)-Citramalate



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2S)-citramalic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 195.9-198.9° C. (measured by DSC, see FIG. 3.6). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).


DSC Analysis (See FIG. 3.6)



1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.74 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.45-3.31 (m, 2H), 3.19 (dd, J=10.6, 6.9 Hz, 1H), 2.70 (d, J=15.7 Hz, 2H), 2.63 (d, J=15.7 Hz, 1H), 2.26-2.12 (m, 4H), 1.94 (d, J=16.1 Hz, 2H), 1.45-1.29 (m, 9H), 1.29-1.17 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation



13C NMR (101 MHz, MeOD) δ 181.21, 176.08, 174.23, 171.62, 165.18, 149.81, 148.79, 130.84, 126.78, 114.87, 114.58, 111.53, 102.58, 95.71, 78.24, 76.08, 74.03, 73.18, 71.27, 58.75, 53.91, 52.90, 51.79, 48.63, 46.32, 44.47, 43.77, 40.59, 40.15, 28.94, 28.89, 28.87, 26.22, 19.62, 18.80.


IR (Diamond ATR, solid) cm−1 2965, 1759, 1739, 1710, 1651, 1506, 1489, 1371, 1341, 1225, 1162, 1079, 1033, 972, 944, 925, 885, 866, 830, 786, 714, 690, 643, 615, 584, 562, 511. See FIG. 1.6


IR (Diamond ATR, film) cm−1 3434, 2968, 1744, 1656, 1590, 1505, 1490, 1374, 1265, 1224, 1166, 1084, 1033, 930, 710, 565. See FIG. 1.6


X-Ray Powder Diffraction


The powder sample is well crystallised, with a peak width of 0.102° (2θ) at 17.597° (2θ) (for view of diagrams and experimental details, see FIG. 2.7.1).


Example 8: Preparation and Analyses of Homoharringtonine Hydrogen (2′″R)-Citramalate



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2R)-citramalic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 202.7-204.7° C. (measured by DSC, see FIG. 3.7). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).


DSC Analysis (See FIG. 3.7)



1H NMR (400 MHz, Methanol-d4)*δ 6.79 (s, 1H), 6.74 (s, 1H), 6.08 (d, J=9.6 Hz, 1H), 5.95 (d, J=1.0 Hz, 1H), 5.93 (d, J=1.0 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.43-3.31 (m, 2H), 3.22-3.14 (m, 1H), 2.73-2.66 (m, 2H), 2.63 (d, J=15.7 Hz, 1H), 2.23 (d, J=16.0 Hz, 2H), 2.19 (s, 1H), 1.94 (d, J=16.1 Hz, 1H), 1.44-1.29 (m, 8H), 1.29-1.17 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation



13C NMR APT* (101 MHz, Methanol-d4) δ 181.21, 176.08, 174.23, 171.62, 165.18, 149.81, 148.79, 130.84, 126.78, 114.87, 111.82, 102.87, 96.00, 78.24, 76.08, 74.33, 73.18, 71.27, 59.04, 54.21, 53.20, 52.07, 48.94, 46.62, 44.76, 44.05, 40.87, 40.45, 29.23, 29.19, 29.17, 26.50, 19.92, 19.09. *APT=Attached Proton Test


IR (Diamond ATR, solid) cm−1 3681, 3512, 2969, 2845, 1764, 1740, 1707, 1652, 1605, 1513, 1495, 1469, 1440, 1369, 1332, 1292, 1260, 1227, 1204, 1167, 1147, 1124, 1080, 1048, 1033, 1023, 991, 971, 930, 885, 869, 824, 786, 753, 718, 689, 676, 644, 614, 564, 512, 475. See FIG. 1.7


IR (Diamond ATR, film) cm−1 3434, 2968, 2845, 1742, 1655, 1582, 1506, 1490, 1458, 1374, 1265, 1224, 1166, 1084, 1047, 1033, 930, 831, 710, 565, 476. See FIG. 1.7


X-Ray Crystallographic Studies


A. Single Crystal X-Ray Diffraction (See FIGS. 2.8.1 and 2.8.2)


From a suspension in its mother liquor, a suitable single crystal of size 0.44×0.32×0.16 mm was finally selected and implemented on the diffractometer.












Structural data
















Empirical formula
C34H47NO14


Extended formula
C29H40NO9, C5H7O5


Formula weight
693.73


Temperature
150(2) K


Wavelength
0.71073 Å


Crystal system, space group
orthorhombic, P 21 21 21


Unit cell dimensions
a = 10.3550(3) Å, α = 90°



b = 17.0899(6) Å, β = 90°



c = 19.2854(7) Å, γ = 90°


Volume
3412.9(2) Å3


Z, Calculated density
4, 1.35 (g · cm−1)


Absorption coefficient
0.105 mm−1


F(000)
1480


Crystal size
0.44 × 0.32 × 0.16 mm


Crystal color
colourless


Theta range for data collection
3.09 to 27.48°


h_min, h_max
−13, 13


k_min, k_max
−22, 20


l_min, l_max
−19, 25


Reflections collected/unique
16497/7790 [aR(int) = 0.0336]


Reflections [I > 2σ]
6790


Completeness to theta_max
0.996


Absorption correction type
multi-scan


Max. and min. transmission
0.983, 0.880


Refinement method
Full-matrix least-squares on F2


Data/restraints/parameters
7790/0/462



bGoodness-of-fit

1.026


Final R indices[I > 2σ]

cR1 = 0.0413, dwR2 = 0.0899



R indices (all data)

cR1 = 0.0508, dwR2 = 0.0948



Largest diff. peak and hole
0.403 and −0.199 e · Å3










Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).


U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.


Atom numbering of FIG. 2.8.1 corresponds to below table.

















Atom
x
y
z
occ.
U(eq)







C1
  0.11571(16)
  0.05636(10)
0.26511(9)
1
0.0175(4)


H1
  0.1363
  0.0342
0.2213
1
0.021


C2
  0.09856(16)
  0.01523(10)
0.32323(9)
1
0.0171(4)


C3
  0.06120(16)
  0.06351(11)
0.38472(9)
1
0.0162(3)


H3
−0.0279
  0.0492
0.4002
1
0.019


C4
  0.06272(15)
  0.14871(10)
0.35705(9)
1
0.0143(3)


H4
−0.0287
  0.1675
0.3589
1
0.017


C5
  0.09821(15)
  0.14231(10)
0.27823(9)
1
0.0159(4)


C6
  0.00002(16)
  0.18455(11)
0.23179(9)
1
0.0195(4)


H6A
−0.0761
  0.1508
0.2234
1
0.023


H6B
−0.0293
  0.2336
0.254
1
0.023


C7
  0.06914(19)
  0.20226(14)
0.16369(10)
1
0.0282(5)


H7A
  0.0457
  0.255
0.1465
1
0.034


H7B
  0.046
  0.1632
0.1279
1
0.034


C8
  0.21369(17)
  0.19809(11)
0.18060(9)
1
0.0190(4)


H8A
  0.2545
  0.153
0.1569
1
0.023


H8B
  0.2581
  0.2467
0.166
1
0.023


N9
  0.22010(13)
  0.18836(9)
0.25825(7)
1
0.0156(3)


HN9
  0.215(2)
  0.2413(15)
0.2762(14)
1
0.05


C10
  0.34708(16)
  0.15611(11)
0.28115(9)
1
0.0187(4)


H10A
  0.4167
  0.193
0.2681
1
0.022


H10B
  0.3634
  0.1059
0.2571
1
0.022


C11
  0.35010(16)
  0.14274(11)
0.35966(9)
1
0.0182(4)


H11A
  0.313
  0.0906
0.3698
1
0.022


H11B
  0.4411
  0.1423
0.3753
1
0.022


C12
  0.27690(16)
  0.20378(10)
0.40075(9)
1
0.0161(3)


C13
  0.14095(15)
  0.20673(10)
0.39833(9)
1
0.0142(3)


C14
  0.07316(17)
  0.26533(10)
0.43397(9)
1
0.0168(4)


H14
−0.0183
  0.2688
0.4315
1
0.02


C15
  0.14387(18)
  0.31747(10)
0.47263(9)
1
0.0200(4)


C16
  0.27616(18)
  0.31308(11)
0.47618(9)
1
0.0207(4)


C17
  0.34575(17)
  0.25856(11)
0.43994(9)
1
0.0190(4)


H17
  0.4374
  0.258
0.4414
1
0.023


C18
  0.2137(2)
  0.41952(12)
0.53342(11)
1
0.0334(5)


H18A
  0.2207
  0.4679
0.5055
1
0.04


H18B
  0.2103
  0.4343
0.583
1
0.04


C19
  0.1546(2)
−0.10852(11)
0.27911(11)
1
0.0300(5)


H19A
  0.0911
−0.1088
0.2414
1
0.045


H19B
  0.1691
−0.1622
0.2952
1
0.045


H19C
  0.2361
−0.0864
0.2622
1
0.045


C21
  0.11247(16)
  0.01321(10)
0.49827(9)
1
0.0161(3)


C22
  0.22813(16)
  0.00398(10)
0.54736(9)
1
0.0178(4)


C23
  0.29449(17)
  0.08219(10)
0.56296(10)
1
0.0189(4)


H23A
  0.369
  0.0729
0.594
1
0.023


H23B
  0.3277
  0.1048
0.5192
1
0.023


C24
  0.20436(17)
  0.13941(10)
0.59644(10)
1
0.0196(4)


C25
  0.18690(19)
  0.25170(12)
0.66695(12)
1
0.0293(5)


H25A
  0.1478
  0.2853
0.6315
1
0.044


H25B
  0.2392
  0.2837
0.6984
1
0.044


H25C
  0.1187
  0.2253
0.6933
1
0.044


C31
  0.32662(17)
−0.05075(11)
0.51274(10)
1
0.0204(4)


H31A
  0.361
−0.0244
0.4709
1
0.025


H31B
  0.3997
−0.0586
0.5451
1
0.025


C32
  0.27492(18)
−0.13115(11)
0.49143(10)
1
0.0222(4)


H32A
  0.2495
−0.1609
0.5333
1
0.027


H32B
  0.1973
−0.1245
0.462
1
0.027


C33
  0.37715(18)
−0.17662(11)
0.45161(11)
1
0.0248(4)


H33A
  0.4587
−0.1741
0.4783
1
0.03


H33B
  0.3923
−0.1495
0.407
1
0.03


C34
  0.34851(18)
−0.26269(11)
0.43594(11)
1
0.0240(4)


C36
  0.4577(2)
−0.29453(13)
0.39087(14)
1
0.0423(6)


H36A
  0.4411
−0.3497
0.3801
1
0.063


H36B
  0.5397
−0.2899
0.4159
1
0.063


H36C
  0.4623
−0.2644
0.3477
1
0.063


C35
  0.3354(2)
−0.31160(13)
0.50108(12)
1
0.0363(5)


H35A
  0.2616
−0.2929
0.5283
1
0.054


H35B
  0.4144
−0.3071
0.5288
1
0.054


H35C
  0.3216
−0.3665
0.4884
1
0.054


O1
  0.10699(13)
−0.06191(7)
0.33525(7)
1
0.0244(3)


O2
  0.32223(14)
  0.37011(8)
0.52078(7)
1
0.0304(3)


O3
  0.09930(13)
  0.37738(8)
0.51464(7)
1
0.0288(3)


O4
  0.15171(11)
  0.05193(7)
0.44075(6)
1
0.0171(3)


O5
  0.00628(12)
−0.01257(8)
0.50746(7)
1
0.0222(3)


O6
  0.18733(13)
−0.03191(8)
0.60999(7)
1
0.0221(3)


HO6
  0.120(3)
−0.0138(16)
0.6222(14)
1
0.05


O7
  0.08889(13)
  0.13801(9)
0.59158(9)
1
0.0357(4)


O8
  0.26816(12)
  0.19381(8)
0.63389(7)
1
0.0243(3)


O9
  0.22961(14)
−0.26485(9)
0.39752(9)
1
0.0348(4)


HO9
  0.203(3)
−0.3138(17)
0.3982(14)
1
0.05


C51
  0.17383(18)
  0.50529(11)
0.36479(10)
1
0.0247(4)


C52
  0.31671(18)
  0.48833(12)
0.35581(12)
1
0.0299(5)


H52A
  0.3411
  0.4469
0.3892
1
0.036


H52B
  0.3654
  0.5361
0.3686
1
0.036


C53
  0.36065(18)
  0.46262(12)
0.28366(12)
1
0.0288(5)


C54
  0.2995(2)
  0.51004(15)
0.22598(13)
1
0.0470(6)


H54A
  0.3131
  0.5659
0.2348
1
0.071


H54B
  0.2067
  0.4991
0.2242
1
0.071


H54C
  0.3392
  0.4958
0.1816
1
0.071


C55
  0.33695(18)
  0.37452(11)
0.26995(10)
1
0.0243(4)


O51
  0.13621(14)
  0.56592(9)
0.39014(9)
1
0.0361(4)


O52
  0.09277(13)
  0.45011(9)
0.34618(8)
1
0.0300(3)


HO52
  0.147(2)
  0.4107(15)
0.3218(14)
1
0.05


O53
  0.49802(14)
  0.47478(10)
0.28234(10)
1
0.0438(4)


HO53
  0.530(2)
  0.4274(17)
0.2667(14)
1
0.05


O54
  0.42729(14)
  0.33586(9)
0.24647(8)
1
0.0368(4)


O55
  0.22436(12)
  0.34821(8)
0.28413(7)
1
0.0261(3)









A. X-Ray Powder Diffraction


The sample was pure and well crystallised, with a peak width of 0.107° (2θ) at 16.992° (2θ). There was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.8.3).


Example 9: Preparation and Analyses of Homoharringtonine Hydrogen Succinate



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial succinic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 158.1-160.0° C. (measured by DSC, see FIG. 3.8).


DSC Analysis (See FIG. 3.8)



1H NMR (400 MHz, Methanol-d4)*δ 6.77 (s, 1H), 6.71 (s, 1H), 6.07 (dd, J=9.6, 0.7 Hz, 1H), 5.95 (d, J=1.1 Hz, 1H), 5.92 (d, J=1.1 Hz, 1H), 5.31 (d, J=0.6 Hz, 1H), 4.12 (d, J=9.6 Hz, 1H), 3.79 (s, 3H), 3.54 (s, 3H), 2.49 (s, 4H), 2.22 (d, J=16.2 Hz, 1H), 1.93 (d, J=16.1 Hz, 2H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation



13 C NMR APT* (101 MHz, D2O) δ 179.49, 174.22, 171.93, 162.89, 147.84, 146.75, 129.74, 125.23, 113.38, 111.12, 101.62, 95.53, 76.99, 75.26, 73.68, 71.33, 58.41, 52.95, 52.23, 51.27, 48.86, 47.58, 42.72, 42.55, 39.19, 38.77, 31.20, 27.59, 18.59, 17.69. *APT=Attached Proton Test


IR (KBr, solid), cm−1 3571.1, 3375.3, 3083.4, 2964.4, 1755.4, 1736.7, 1661.8, 1575.5, 1504.8, 1489.7, 1375.0, 1346.3, 1326.1, 1267.2, 1227.1, 1188.3, 1151.7, 1083.4, 1034.7, 929.4, 859.4, 802.8, 758.1, 709.9, 658.9, 617.9, 561.2, 510.6. See FIG. 1.8


Example 10: Preparation and Analyses of (3S,4S,5R,2′R)-Homoharringtonine Hydrogen Itaconate



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial itaconic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 178.3-181.2° C. (measured by DSC, see FIG. 3.9). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).


DSC Analysis (See FIG. 3.9)



1H NMR (400 MHz, Methanol-d4)*δ 6.78 (s, 1H), 6.72 (s, 1H), 6.08 (d, J=9.6 Hz, 1H), 6.01 (d, J=1.7 Hz, 1H), 5.95 (d, J=1.1 Hz, 1H), 5.92 (d, J=1.1 Hz, 1H), 5.51 (q, J=1.2 Hz, 1H), 5.32 (s, 1H), 4.14 (d, J=9.6 Hz, 1H), 3.80 (s, 3H), 3.54 (s, 3H), 3.51-3.42 (m, 1H), 3.25-3.07 (m, 2H), 2.72-2.60 (m, 1H), 2.26-2.20 (m, 2H), 2.20-2.07 (m, 2H), 1.94 (d, J=16.1 Hz, 2H), 1.47-1.29 (m, 5H), 1.23 (d, J=10.6 Hz, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation



13C NMR (101 MHz, MeOD)** δ 125.11, 114.53, 111.47, 102.52, 96.09, 74.12, 58.66, 53.95, 53.18, 48.70, 44.48, 43.78, 41.66, 40.59, 40.44, 29.12, 28.94, 28.87, 19.70, 18.81. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)


IR (Diamond ATR, solid) cm−1 3473.2, 2968.4, 2899.8, 2564.7, 1760.7, 1733.5, 1657.6, 1569.7, 1506.4, 1488.9, 1436.1, 1374.9, 1348.9, 1264.2, 1240.7, 1226.2, 1185, 1168.8, 1149.8, 1112.1, 1082.4, 1043.1, 1032.9, 1022.2, 982, 928.1, 890, 866.7, 819.8, 772.1, 722.1, 690.1, 616.7, 543. See FIG. 1.9


IR (ATR, film) cm−1 3458.8, 2967, 1741.5, 1654.8, 1576.7, 1505.2, 1489.3, 1464.3, 1373.4, 1223.8, 1167, 1083.1, 1033.3, 933.6, 563.4. See FIG. 1.9


X-Ray Crystallographic Studies


Single Crystal X-Ray Diffraction (See FIGS. 2.9.1 and 2.9.2)


From a suspension in its mother liquor, a suitable single crystal of size 0.39×0.22×0.1 mm was finally selected and implemented on the diffractometer.












Structural data
















Empirical formula
C34H45NO13


Extended formula
C29H40NO9, C5H5O4


Formula weight
675.71


Temperature
150(2) K


Wavelength
0.71073 Å


Crystal system, space group
orthorhombic, P 21 21 21


Unit cell dimensions
a = 10.9895(4) Å, α = 90°



b = 16.1963(6) Å, β = 90°



c = 18.7277(5) Å, γ = 90°


Volume
3333.33(19) Å3


Z, Calculated density
4, 1.346 (g · cm−1)


Absorption coefficient
0.103 mm−1


F(000)
1440


Crystal size
0.39 × 0.22 × 0.1 mm


Crystal color
colourless


Theta range for data collection
3.12 to 27.48°


h_min, h_max
−11, 14


k_min, k_max
−13, 20


l_min, l_max
−16, 24


Reflections collected/unique
15962/4207 [aR(int) = 0.0449]


Reflections [I > 2σ]
3444


Completeness to theta_max
0.986


Absorption correction type
multi-scan


Max. and min. transmission
0.990, 0.844


Refinement method:
Full-matrix least-squares on F2


Data/restraints/parameters
4207/0/446



bGoodness-of-fit

1.054


Final R indices [I > 2σ]

cR1 = 0.0411, dwR2 = 0.0914



R indices (all data)

cR1 = 0.0557, dwR2 = 0.0986



Largest diff. peak and hole
0.312 and −0.249 e · Å−3










Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).


U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.


Atom numbering of FIG. 2.9.1 corresponds to below table.

















Atom
x
y
z
occ.
U(eq)







C1
  0.4085(2)
0.94954(16)
0.28454(13)
1
0.0246(6)


H1
  0.3897
0.972
0.239
1
0.029


C2
  0.4040(2)
0.99163(16)
0.34531(13)
1
0.0239(5)


C3
  0.4399(2)
0.94237(16)
0.40941(12)
1
0.0206(5)


H3
  0.5169
0.9646
0.4305
1
0.025


C4
  0.4605(2)
0.85392(16)
0.38019(11)
1
0.0187(5)


H4
  0.548
0.8406
0.3893
1
0.022


C5
  0.4471(2)
0.86236(16)
0.29702(12)
1
0.0216(5)


C6
  0.5613(2)
0.83684(18)
0.25641(12)
1
0.0244(6)


H6A
  0.5945
0.7845
0.2755
1
0.029


H6B
  0.6247
0.8801
0.2599
1
0.029


C7
  0.5195(3)
0.8261(2)
0.17935(13)
1
0.0330(7)


H7A
  0.5696
0.7843
0.1544
1
0.04


H7B
  0.5244
0.879
0.153
1
0.04


C8
  0.3878(3)
0.7973(2)
0.18586(13)
1
0.0347(7)


H8A
  0.3332
0.8339
0.1582
1
0.042


H8B
  0.3791
0.7402
0.1675
1
0.042


N9
  0.35665(19)
0.80066(14)
0.26453(10)
1
0.0225(5)


H9
  0.3728
0.749
0.284
1
0.027


C10
  0.2240(2)
0.81867(19)
0.27555(14)
1
0.0293(6)


H10A
  0.1752
0.7717
0.2576
1
0.035


H10B
  0.2013
0.8683
0.2477
1
0.035


C11
  0.1946(2)
0.83313(19)
0.35427(13)
1
0.0280(6)


H11A
  0.2153
0.8908
0.3668
1
0.034


H11B
  0.1061
0.8258
0.3617
1
0.034


C12
  0.2625(2)
0.77534(17)
0.40351(12)
1
0.0218(5)


C13
  0.3876(2)
0.78580(16)
0.41518(12)
1
0.0197(5)


C14
  0.4503(2)
0.73128(16)
0.45992(12)
1
0.0226(5)


H14
  0.5349
0.7378
0.4685
1
0.027


C15
  0.3868(2)
0.66846(18)
0.49096(13)
1
0.0281(6)


C16
  0.2644(2)
0.65757(18)
0.47829(14)
1
0.0300(6)


C17
  0.1998(2)
0.70918(17)
0.43475(13)
1
0.0274(6)


H17
  0.1156
0.7006
0.426
1
0.033


C18
  0.3315(3)
0.5504(2)
0.5409(2)
1
0.0595(10)


H18A
  0.3503
0.5025
0.5101
1
0.071


H18B
  0.3207
0.5305
0.5905
1
0.071


C19
  0.3222(3)
1.11383(18)
0.29761(14)
1
0.0333(7)


H19A
  0.2562
1.0809
0.277
1
0.05


H19B
  0.3856
1.1225
0.2616
1
0.05


H19C
  0.2902
1.1674
0.3132
1
0.05


C21
  0.3633(2)
0.98532(16)
0.52334(12)
1
0.0193(5)


C22
  0.2491(2)
0.98238(16)
0.56983(12)
1
0.0210(5)


C23
  0.2120(2)
0.89286(16)
0.58578(12)
1
0.0225(5)


H23A
  0.1406
0.8932
0.618
1
0.027


H23B
  0.1873
0.8659
0.5406
1
0.027


C24
  0.3118(2)
0.84293(17)
0.61968(12)
1
0.0228(5)


C25
  0.3602(3)
0.7333(2)
0.69781(18)
1
0.0448(8)


H25A
  0.4231
0.7681
0.7195
1
0.067


H25B
  0.3973
0.6974
0.6618
1
0.067


H25C
  0.3218
0.6994
0.7348
1
0.067


C31
  0.1446(2)
1.02575(17)
0.53105(13)
1
0.0239(5)


H31A
  0.1214
0.9918
0.4892
1
0.029


H31B
  0.0735
1.0275
0.5635
1
0.029


C32
  0.1704(2)
1.11351(17)
0.50526(13)
1
0.0272(6)


H32A
  0.1946
1.1483
0.5463
1
0.033


H32B
  0.2387
1.1127
0.4708
1
0.033


C33
  0.0585(3)
1.1503(2)
0.46982(16)
1
0.0367(7)


H33A
−0.0106
1.1443
0.5033
1
0.044


H33B
  0.0395
1.1164
0.4272
1
0.044


C34
  0.0638(3)
1.2404(2)
0.44632(14)
1
0.0348(7)


C35
−0.0534(3)
1.2636(3)
0.4090(2)
1
0.0667(12)


H35A
−0.0642
1.2289
0.3667
1
0.1


H35B
−0.0499
1.3217
0.3946
1
0.1


H35C
−0.122
1.2554
0.4417
1
0.1


C36
  0.0885(3)
1.2991(2)
0.50777(16)
1
0.0518(9)


H36A
  0.0919
1.3558
0.4897
1
0.078


H36B
  0.1664
1.2849
0.5301
1
0.078


H36C
  0.0232
1.2944
0.5432
1
0.078


O1
  0.37336(17)
1.07063(11)
0.35827(9)
1
0.0295(4)


O2
  0.2228(2)
0.58991(14)
0.51681(12)
1
0.0481(6)


O3
  0.4284(2)
0.60914(13)
0.53788(11)
1
0.0427(5)


O4
  0.34267(14)
0.94422(11)
0.46170(8)
1
0.0201(4)


O5
  0.45495(15)
1.02085(12)
0.53858(9)
1
0.0266(4)


O6
  0.27352(16)
1.02392(12)
0.63524(9)
1
0.0251(4)


HO6
  0.342(3)
1.033(2)
0.6369(17)
1
0.05


O7
  0.41851(16)
0.85198(13)
0.60753(11)
1
0.0356(5)


O8
  0.26888(16)
0.78534(13)
0.66423(11)
1
0.0366(5)


O9
  0.1644(2)
1.24749(16)
0.39741(12)
1
0.0513(6)


HO9
  0.160(3)
1.307(2)
0.3826(17)
1
0.05


C51
  0.1037(3)
0.4553(2)
0.31090(15)
1
0.0388(7)


C52
  0.1159(3)
0.5480(2)
0.3010(2)
1
0.0512(9)


H52A
  0.0462
0.5679
0.2723
1
0.061


H52B
  0.1112
0.5749
0.3484
1
0.061


C53
  0.2325(3)
0.57416(19)
0.26485(16)
1
0.0403(8)


C54
  0.3464(3)
0.57891(18)
0.30905(13)
1
0.0285(6)


C55
  0.2404(5)
0.5906(2)
0.19500(19)
1
0.0747(14)


H55A
  0.3166
0.6049
0.1745
1
0.09


H55B
  0.1697
0.5881
0.1659
1
0.09


O51
  0.00971(18)
0.41958(16)
0.29455(13)
1
0.0529(6)


O52
  0.19701(19)
0.41745(13)
0.33812(11)
1
0.0377(5)


HO52
  0.262(3)
0.454(2)
0.3511(17)
1
0.05


O53
  0.41850(17)
0.63675(12)
0.30044(10)
1
0.0344(5)


O54
  0.36137(17)
0.52002(13)
0.35372(10)
1
0.0346(5)









Example 11: Preparation and Analyses of Homoharringtonine Hydrogen Fumarate



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial fumaric acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 103.5-107.2° C. (measured by DSC, see FIG. 3.10).


DSC Analysis (See FIG. 3.10)



1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.74 (s, 1H), 6.65 (s, 2H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.43-3.32 (m, 2H), 3.24-3.10 (m, 1H), 2.75-2.61 (m, 1H), 2.30-2.08 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.47-1.30 (m, 5H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate” irradiation



13C NMR (101 MHz, MeOD)** δ 135.91, 114.59, 111.56, 102.57, 95.74, 74.03, 58.74, 53.89, 52.92, 51.79, 49.56, 48.62, 44.47, 43.77, 40.59, 40.16, 28.94, 28.90, 28.88, 19.64, 18.81. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)


IR (ATR, solid), cm−1 3607.9, 3212.6, 2955.6, 1980.4, 1777.4, 1731.4, 1708.1, 1653.6, 1584.3, 1505.9, 1488.6, 1440.0, 1372.4, 1338.6, 1292.0, 1251.1, 1221.1, 1173.3, 1150.9, 1119.3, 1088.7, 1034.0, 982.0, 934.1, 903.3, 839.6, 790.3, 761.8, 646.0, 613.5, 563.6, 510.2. See FIG. 1.10


X-Ray Powder Diffraction


The powder sample is well crystallised, with a peak width of 0.119° (2θ) at 19.564° (2θ) (for view of diagrams and experimental details, see FIG. 2.7.1).


Example 12: Preparation and Analyses of Homoharringtonine Hydrogen Tartronate



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial tartronic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 163.1-167.6° C. (measured by DSC, see FIG. 3.11).


DSC Analysis (See FIG. 3.11)



1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.75 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.94 (d, J=0.9 Hz, 1H), 5.34 (s, 1H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.54 (s, 3H), 2.69 (m, 1H), 2.22 (m, 4H), 2.04-1.91 (m, 2H), 1.47-1.29 (m, 5H), 1.23 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate” irradiation



13C NMR (101 MHz, MeOD)** δ 114.60, 111.55, 102.61, 95.67, 74.02, 58.77, 53.94, 52.86, 51.79, 48.67, 44.47, 43.77, 40.59, 40.10, 28.94, 28.88, 28.84, 19.63, 18.80. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)


IR (Diamond ATR, solid) cm−1 3451, 2969, 2898, 2051, 1763, 1730, 1657, 1507, 1490, 1467, 1437, 1376, 1352, 1316, 1294, 1266, 1228, 1208, 1186, 1148, 1126, 1083, 1032, 1002, 985, 943, 927, 891, 866, 802, 753, 720, 690, 675, 652, 614, 563, 510, 477. See FIG. 1.11


IR (Diamond ATR, film) cm−1 3429, 2965, 1744, 1655, 1505, 1489, 1440, 1374, 1266, 1224, 1165, 1084, 1033, 928, 807, 615. See FIG. 1.11


Example 13: Preparation and Analyses of Homoharringtonine Hydrogen Malonate



embedded image


This ionic compound was obtained from commercial homoharringtone mixed with commercial (2R)-citramalic acid according to the general procedure in which the solvent was methanol-d4, then isolated as a white prismatic solid mp 127.0-131.9° C. (measured by DSC, see FIG. 3.12).


DSC Analysis (See FIG. 3.12)



1H NMR (400 MHz, Methanol-d4)*δ 6.81 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.6 Hz, 1H), 5.97 (d, J=1.1 Hz, 1H), 5.94 (d, J=1.0 Hz, 1H), 5.34 (s, 1H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.24-3.17 (m, 1H), 2.74-2.64 (m, 1H), 2.30-2.09 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.48-1.30 (m, 5H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation



13C NMR APT* (101 MHz, Methanol-d4) δ 174.83, 174.22, 171.62, 165.26, 149.82, 148.81, 130.79, 126.75, 114.88, 111.83, 102.90, 95.90, 78.32, 76.09, 74.30, 71.27, 59.04, 54.21, 53.18, 52.07, 48.94, 44.75, 44.05, 40.87, 40.42, 29.22, 29.17, 29.14, 19.91, 19.09. See FIG. 1.12 *APT=Attached Proton Test


IR (Diamond ATR, solid) cm−1 3453.1, 2967.5, 2933.2, 2899.3, 1765.0, 1735.2, 1654.6, 1505.9, 1489.1, 1463.7, 1439.1, 1374.9, 1349.7, 1292.0, 1266.2, 1226.5, 1207.5, 1148.4, 1083.3, 1060.6, 1032.3, 1002.1, 985.4, 944.1, 925.5, 891.0, 858.5, 830.6, 797.6, 756.7, 721.5, 710.8, 690.8, 615.1, 565.1, 510.8, 498.3, 489.9, 478.9, 472.8. See FIG. 1.12


Example 14: Preparation and Analyses of Homoharringtonine Dihydrogen Citrate



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial citric acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 170.35-173.9° C. (measured by DSC, see FIG. 3.13). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).


DSC Analysis (See FIG. 3.13)



1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.75 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (s, 1H), 5.94 (s, 1H), 5.33 (s, 1H), 4.17 (d, J=9.7 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 2.79 (d, J=15.4 Hz, 2H), 2.71 (d, J=15.4 Hz, 2+1H), 2.23 (d, J=16.2 Hz, 1H), 1.95 (d, J=16.1 Hz, 1H), 1.49-1.17 (m, 6H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation



13C NMR APT*(101 MHz, Methanol-d4) δ 179.22, 174.90, 174.22, 171.61, 165.22, 149.83, 148.81, 130.80, 126.75, 114.89, 111.84, 102.89, 95.97, 78.30, 76.09, 74.33, 74.01, 71.29, 59.05, 54.23, 53.21, 52.07, 48.95, 44.76, 44.06, 40.88, 40.44, 29.22, 29.18, 29.16, 19.92, 19.10. *APT=Attached Proton Test


IR (Diamond ATR, solid) cm−1 2959, 1757, 1732, 1715, 1651, 1580, 1508, 1489, 1464, 1432, 1371, 1305, 1262, 1224, 1186, 1151, 1111, 1081, 1032, 985, 944, 922, 909, 864, 829, 806, 705, 690, 614, 581, 563, 510, 486. See FIG. 1.13


IR (Diamond ATR, film) cm−1 3442, 2967, 1738, 1654, 1585, 1505, 1489, 1440, 1373, 1264, 1223, 1115, 1083, 1033, 928. See FIG. 1.13


X-Ray Crystallographic Studies


Single Crystal X-Ray Diffraction (See FIGS. 2.11.1 and 2.11.2)


From a suspension in its mother liquor, a suitable single crystal of size 0.58×0.36×0.28 mm was finally selected and implemented on the diffractometer.












Structural data
















Empirical formula
C36H51NO17


Extended formula
C29H40NO9, C6H7O7, CH4O


Formula weight
769.78


Temperature
150(2) K


Wavelength
0.71073 Å


Crystal system, space group
orthorhombic, P 21 21 21


Unit cell dimensions
a = 9.9967(3) Å, α = 90°



b = 18.8971(5) Å, β = 90°



c = 19.2826(7) Å, γ = 90°


Volume
3642.6(2) Å3


Z, Calculated density
4, 1.404 (g · cm−1)


Absorption coefficient
0.112 mm−1


F(000)
1640


Crystal size
0.58 × 0.36 × 0.28 mm


Crystal color
colourless


Theta range for data collection
2.94 to 27.48°


h_min, h_max
−12, 12


k_min, k_max
−20, 24


l_min, l_max
−25, 13


Reflections collected/unique
18037/4637 [aR(int) = 0.0424]


Reflections [I > 2σ]
4165


Completeness to theta_max
0.998


Absorption correction type
multi-scan


Max. and min. transmission
0.969, 0.858


Refinement method
Full-matrix least-squares on F2


Data/restraints/parameters
4637/0/513



bGoodness-of-fit

1.032


Final R indices [I > 2σ]

cR1 = 0.0367, dwR2 = 0.0851



R indices (all data)

cR1 = 0.0427, dwR2 = 0.0884



Largest diff. peak and hole
0.289 and −0.214 e · Å−3










Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).


U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.


Atom numbering of FIG. 2.11.1 corresponds to below table.

















Atom
x
y
z
occ.
U(eq)







C1
0.3491(2)
0.92951(11)
0.25699(11)
1
0.0149(4)


H1
0.3259
0.9482
0.2129
1
0.018


C2
0.3729(2)
0.96852(11)
0.31322(11)
1
0.0152(4)


C3
0.4025(2)
0.92636(11)
0.37724(10)
1
0.0138(4)


H3
0.4934
0.9384
0.3953
1
0.017


C4
0.3993(2)
0.84827(11)
0.35162(11)
1
0.0119(4)


H4
0.4942
0.8317
0.3535
1
0.014


C5
0.3638(2)
0.85222(11)
0.27257(11)
1
0.0136(4)


C6
0.4667(2)
0.81449(12)
0.22685(11)
1
0.0176(5)


H6A
0.4901
0.7677
0.2464
1
0.021


H6B
0.5492
0.8431
0.2224
1
0.021


C7
0.3972(3)
0.80632(13)
0.15620(12)
1
0.0220(5)


H7A
0.4181
0.8469
0.1256
1
0.026


H7B
0.4258
0.7621
0.133
1
0.026


C8
0.2475(3)
0.80407(12)
0.17319(11)
1
0.0212(5)


H8A
0.2
0.8437
0.1504
1
0.025


H8B
0.2075
0.7589
0.1575
1
0.025


N9
0.2393(2)
0.81069(9)
0.25106(9)
1
0.0141(4)


HN9
0.251(4)
0.7629(18)
0.2669(17)
1
0.05


C10
0.1057(2)
0.83634(12)
0.27463(11)
1
0.0172(5)


H10A
0.0365
0.8014
0.2612
1
0.021


H10B
0.0848
0.8815
0.251
1
0.021


C11
0.1006(2)
0.84755(11)
0.35335(11)
1
0.0144(4)


H11A
0.1348
0.8955
0.364
1
0.017


H11B
0.0062
0.8455
0.3686
1
0.017


C12
0.1806(2)
0.79388(11)
0.39455(11)
1
0.0130(4)


C13
0.3209(2)
0.79563(10)
0.39455(11)
1
0.0118(4)


C14
0.3947(2)
0.74640(11)
0.43291(11)
1
0.0141(4)


H14
0.4897
0.7472
0.433
1
0.017


C15
0.3252(2)
0.69701(11)
0.47031(11)
1
0.0153(4)


C16
0.1875(2)
0.69386(11)
0.46951(11)
1
0.0153(4)


C17
0.1124(2)
0.74148(11)
0.43253(11)
1
0.0159(4)


H17
0.0174
0.7392
0.4325
1
0.019


C18
0.2626(2)
0.59964(11)
0.52687(12)
1
0.0212(5)


H18A
0.2671
0.5574
0.4966
1
0.025


H18B
0.2624
0.5837
0.5758
1
0.025


C19
0.3571(3)
1.07978(12)
0.25888(13)
1
0.0270(6)


H19A
0.2638
1.0737
0.2445
1
0.041


H19B
0.4165
1.0631
0.2219
1
0.041


H19C
0.3746
1.13
0.2679
1
0.041


C21
0.3353(2)
0.98104(10)
0.48356(11)
1
0.0126(4)


C22
0.2160(2)
0.99292(11)
0.53183(11)
1
0.0140(4)


C23
0.1479(2)
0.92348(11)
0.55222(11)
1
0.0162(4)


H23A
0.0747
0.9336
0.5854
1
0.019


H23B
0.1079
0.9015
0.5105
1
0.019


C24
0.2446(2)
0.87236(11)
0.58470(11)
1
0.0160(4)


C25
0.2645(3)
0.77137(12)
0.65633(13)
1
0.0259(5)


H25A
0.3417
0.7932
0.6792
1
0.039


H25B
0.2957
0.7397
0.6195
1
0.039


H25C
0.2129
0.7442
0.6904
1
0.039


C31
0.1157(2)
1.04230(11)
0.49544(12)
1
0.0172(5)


H31A
0.0748
1.0168
0.4559
1
0.021


H31B
0.0433
1.0545
0.5284
1
0.021


C32
0.1792(2)
1.11061(11)
0.46873(12)
1
0.0195(5)


H32A
0.2259
1.1006
0.4245
1
0.023


H32B
0.247
1.1269
0.5026
1
0.023


C33
0.0774(2)
1.16973(11)
0.45699(13)
1
0.0185(5)


33A
0.0362
1.1819
0.5021
1
0.022


H33B
0.0055
1.1515
0.4265
1
0.022


C34
0.1343(2)
1.23774(11)
0.42451(12)
1
0.0177(5)


C35
0.1490(3)
1.23004(14)
0.34612(13)
1
0.0286(6)


H35A
0.1813
1.2747
0.3264
1
0.043


H35B
0.062
1.2182
0.3257
1
0.043


H35C
0.2132
1.1923
0.3358
1
0.043


C36
0.2649(3)
1.26062(13)
0.45770(15)
1
0.0279(6)


H36A
0.2555
1.26
0.5083
1
0.042


H36B
0.2874
1.3086
0.4423
1
0.042


H36C
0.3363
1.228
0.4439
1
0.042


O1
0.38145(18)
1.03942(8)
0.32111(8)
1
0.0215(4)


O2
0.14401(17)
0.63966(8)
0.51222(8)
1
0.0216(4)


O3
0.37524(16)
0.64530(8)
0.51409(8)
1
0.0188(3)


O4
0.30170(15)
0.93996(7)
0.42992(8)
1
0.0145(3)


O5
0.44249(16)
1.00917(8)
0.49151(8)
1
0.0177(3)


O6
0.26234(18)
1.02640(8)
0.59345(8)
1
0.0185(3)


HO6
0.345(4)
1.0383(18)
0.5906(18)
1
0.05


O7
0.36240(17)
0.87121(9)
0.57473(9)
1
0.0269(4)


O8
0.18077(17)
0.82599(8)
0.62673(8)
1
0.0204(4)


O9
0.03435(17)
1.29295(8)
0.43436(9)
1
0.0194(4)


HO9
0.039(4)
1.3068(17)
0.4747(18)
1
0.047


C51
0.2081(2)
0.62031(12)
0.26814(12)
1
0.0197(5)


C52
0.2431(2)
0.55356(11)
0.31079(11)
1
0.0165(4)


C53
0.1183(2)
0.53099(11)
0.35211(12)
1
0.0196(5)


H53A
0.1
0.5667
0.3885
1
0.023


H53B
0.0402
0.5298
0.3205
1
0.023


C54
0.1343(2)
0.45913(12)
0.38583(12)
1
0.0215(5)


O51
0.2755(2)
0.67426(8)
0.28230(9)
1
0.0293(4)


O52
0.11948(19)
0.61575(9)
0.22240(10)
1
0.0300(4)


O53
0.34983(17)
0.57012(9)
0.35660(9)
1
0.0221(4)


HO53
0.358(4)
0.6160(18)
0.3535(18)
1
0.05


O54
0.2279(2)
0.44156(10)
0.42120(12)
1
0.0433(6)


O55
0.03274(18)
0.41626(9)
0.37134(8)
1
0.0204(4)


HO55
0.044(4)
0.3790(18)
0.3902(18)
1
0.05


C60
0.2959(2)
0.49411(12)
0.26327(12)
1
0.0204(5)


H60A
0.3642
0.5153
0.2324
1
0.025


H60B
0.3427
0.4594
0.2931
1
0.025


C61
0.1992(3)
0.45307(13)
0.21778(13)
1
0.0251(5)


O62
0.0989(2)
0.48721(10)
0.18875(10)
1
0.0344(5)


H062
0.104(3)
0.5364(18)
0.2012(18)
1
0.05


O63
0.2167(2)
0.39075(9)
0.20666(11)
1
0.0381(5)


O71
0.5434(2)
1.13984(10)
0.43673(10)
1
0.0321(4)


HO71
0.498(4)
1.1011(18)
0.4527(18)
1
0.05


C72
0.6645(3)
1.11097(17)
0.41010(17)
1
0.0443(8)


H72A
0.6436
1.0742
0.376
1
0.066


H72B
0.7165
1.0903
0.4481
1
0.066


H72C
0.7167
1.1485
0.3879
1
0.066









X-Ray Powder Diffraction


The powder sample is well crystallised, with a peak width of 0.127° (2θ) at 18.255° (2θ). The powder is constituted in major part by the expected sample referenced HOCIT 5776. However, the powder pattern reveals the presence of a second phase, with significant lines at 7.001° (2θ) and 12.317° (2θ) for example, not calculated from the structure determined with a single crystal (for view of diagrams and experimental details, see FIG. 2.11.3).


Example 15: Preparation and Analyses of Homoharringtonine Salicylate



embedded image


This ionic compound was obtained from commercial homoharringtonine mixed with commercial salicylic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 148.7-151.3° C. (measured by DSC, see FIG. 3.14). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).


DSC Analysis (See FIG. 3.14)



1H NMR (400 MHz, Methanol-d4)*δ 7.80 (dd, J=7.7, 1.7 Hz, 1H), 7.26 (ddd, J=8.8, 7.2, 1.8 Hz, 1H), 6.80-6.70 (m, 4H), 6.09 (d, J=9.6 Hz, 1H), 5.92 (d, J=1.0 Hz, 1H), 5.88 (d, J=1.0 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.18 (dd, J=11.0, 6.9 Hz, 1H), 2.71-2.62 (m, 1H), 2.28-2.08 (m, 4H), 1.95 (d, J=16.1 Hz, 1H), 1.47-1.30 (m, 5H), 1.30-1.18 (m, 1H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation.



13C NMR (101 MHz, MeOD)** δ 133.50, 131.36, 118.66, 116.85, 114.49, 111.46, 102.48, 95.80, 74.04, 58.71, 53.86, 52.96, 51.78, 49.56, 48.62, 44.45, 43.75, 40.58, 40.24, 28.96, 28.94, 28.86, 19.65, 18.79. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)


IR (Diamond ATR, solid) cm−1 2961.4, 2622.5, 1760.5, 1748, 1740.7, 1722.8, 1651.8, 1625.2, 1590.4, 1579.2, 1503.9, 1487.7, 1459.3, 1374, 1334.4, 1293.2, 1224.3, 1167.4, 1082.6, 1043.9, 1030.5, 995.4, 924.5, 890.7, 857.3, 832.8, 805.3, 763.6, 704.8, 666.2, 613.2, 565.6. See FIG. 1.14


IR (Diamond ATR, film) cm−1 3416.8, 2962.9, 2377.4, 2156.9, 1746.7, 1655.2, 1628.2, 1591.3, 1504.8, 1488.2, 1459.5, 1375.8, 1330.2, 1223.6, 1084.2, 1034.5, 930.1, 858.3, 807.3, 763.1, 705.4. See FIG. 1.14


X-Ray Crystallographic Studies


Single Crystal X-Ray Diffraction (See FIG. 2.12.1 to 2.12.4)


From a suspension in its mother liquor, a small single crystal of size 0.15×0.11×0.04 mm was finally selected and implemented on the diffractometer.












Structural data
















Empirical formula
C72H94N2O26


Extended formula
2(C29H40NO9), 2(C7H5O3), 2(H2O)


Formula weight
1403.5


Temperature
150(2) K


Wavelength
0.71073 Å


Crystal system, space group
monoclinic, P 21


Unit cell dimensions
a = 11.6871(3) Å, α = 90°



b = 25.8294(6) Å, β = 114.6320(10)°



c = 12.6300(3) Å, γ = 90°


Volume
3465.69(15) Å3


Z, Calculated density
2, 1.345 (g · cm−1)


Absorption coefficient
0.102 mm−1


F(000)
1496


Crystal size
0.15 × 0.11 × 0.04 mm


Crystal color
colourless


Theta range for data collection
2.96 to 27.48°


h_min, h_max
−15, 15


k_min, k_max
−33, 33


l_min, l_max
−11, 16


Reflections collected/unique
29505/8078 [aR(int) = 0.0621]


Reflections [I > 2σ]
6299


Completeness to theta_max
0.994


Absorption correction type
multi-scan


Max. and min. transmission
0.996, 0.886


Refinement method:
Full-matrix least-squares on F2


Data/restraints/parameters
8078/1/928



bGoodness-of-fit

1.076


Final R indices [I > 2σ]

cR1 = 0.0619, dwR2 = 0.121



R indices (all data)

cR1 = 0.086, dwR2 = 0.1312



Largest diff. peak and hole
0.531 and −0.3 eÅ−3









Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).


U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.


Atom numbering of FIG. 2.12.1 corresponds to below table.

















Atom
x
y
z
occ.
U(eq)







C1
−0.3818(4)
  0.00999(17)
  0.1577(4)
1
0.0196(9)


H1
−0.3779
−0.0157
  0.1054
1
0.024


C2
−0.3310(4)
  0.00487(17)
  0.2729(4)
1
0.0193(9)


C3
−0.3588(4)
  0.04946(17)
  0.3333(4)
1
0.0186(9)


H3
−0.4173
  0.038
  0.3682
1
0.022


C4
−0.4266(4)
  0.08958(17)
  0.2350(4)
1
0.0172(9)


H4
−0.5126
  0.0945
  0.2325
1
0.021


C5
−0.4453(4)
  0.06061(18)
  0.1208(4)
1
0.0183(9)


C6
−0.5832(4)
  0.0587(2)
  0.0314(4)
1
0.0298(11


H6A
−0.627
  0.0292
  0.0483
1
0.036


H6B
−0.6271
  0.091
  0.0347
1
0.036


C7
−0.5836(6)
  0.0525(3)
−0.0867(5)
1
0.0523(19


H7A
−0.6431
  0.0772
−0.1428
1
0.063


H7B
−0.6082
  0.0169
−0.1162
1
0.063


C8
−0.4507(5)
  0.0637(2)
−0.0699(4)
1
0.0287(11


H8A
−0.4066
  0.0313
−0.0719
1
0.034


H8B
−0.4502
  0.0871
−0.1318
1
0.034


N9
−0.3883(4)
  0.08909(15)
  0.0468(3)
1
0.0179(8)


HN9
−0.406(6)
  0.119(3)
  0.038(6)
1
0.0


C10
−0.2485(4)
  0.08986(18)
  0.0908(4)
1
0211(10


H10A
−0.2248
  0.1127
  0.0402
1
0.025


H10B
−0.2186
  0.0545
  0.0856
1
0.025


C11
−0.1831(4)
  0.10881(17)
  0.2165(4)
1
0.0176(9)


H11A
−0.1748
  0.0794
  0.2696
1
0.021


H11B
−0.0973
  0.1207
  0.2312
1
0.021


C12
−0.2525(4)
  0.15248(17)
  0.2444(4)
1
0.0165(9)


C13
−0.3674(4)
  0.14288(17)
  0.2526(4)
1
0.0151(9)


C14
−0.4317(4)
  0.18343(17)
  0.2773(4)
1
0.0167(9)


H14
−0.5087
  0.1775
  0.2838
1
0.0


C15
−0.3799(4)
  0.23192(17)
  0.2919(4)
1
0.0181(9)


C16
−0.2683(4)
  0.24154(17)
  0.2810(4)
1
0.0179(9)


C17
−0.2022(4)
  0.20246(17)
  0.2595(4)
1
0.0175(9)


H17
−0.1243
  0.209
  0.2551
1
0.021


C18
−0.3495(5)
  0.3174(2)
  0.2989(6)
1
0.0342(13


H18A
−0.3276
  0.3447
  0.3591
1
0.041


H18B
−0.3985
  0.3333
  0.2218
1
0.041


C19
−0.2286(5)
−0.07362(19)
  0.2749(5)
1
0.0287(11


H19A
−0.3051
−0.09
  0.218
1
0.043


H19B
−0.1753
−0.0999
  0.329
1
0.043


H19C
−0.1826
−0.0574
  0.2342
1
0.043


C21
−0.2376(4)
  0.07232(16)
  0.5324(4)
1
0.0150(9)


C22
−0.1193(4)
  0.10173(17)
  0.6134(4)
1
0.0181(9)


C23
−0.1290(4)
  0.15962(16)
  0.5815(4)
1
0.0210(10


H23A
−0.0436
  0.1748
  0.6184
1
0.025


H23B
−0.1574
  0.1625
  0.4961
1
0.025


C24
−0.2154(4)
  0.19169(17)
  0.6156(4)
1
0.0191(9)


C25
−0.4265(5)
  0.2160(2)
  0.5670(5)
1
0.0293(12


H25A
−0.4225
  0.2098
  0.645
1
0.044


H25B
−0.5115
  0.2084
  0.5085
1
0.044


H25C
−0.4059
  0.2523
  0.5602
1
0.044


C31
−0.0033(4)
  0.07965(17)
  0.6007(4)
1
0.0186(9)


H31A
−0.0119
  0.0866
  0.5206
1
0.022


H31B
  0.0725
  0.0983
  0.6551
1
0.022


C32
  0.0168(4)
  0.02207(17)
  0.6244(4)
1
0.0219(10


H32A
−0.059
  0.003
  0.5716
1
0.026


H32B
  0.0297
  0.0148
  0.7056
1
0.026


C33
  0.1312(4)
  0.00353(17)
  0.6058(4)
1
0.0203(10


H33A
  0.2055
  0.0237
  0.6578
1
0.024


H33B
  0.117
  0.0115
  0.5246
1
0.024


C34
  0.1622(4)
−0.05425(18)
  0.6277(4)
1
0.0224(10)


C35
  0.0526(5)
−0.0876(2)
  0.5504(5)
1
0.0333(12)


H35A
  0.0218
−0.0755
  0.4698
1
0.05


H35B
−0.0153
−0.0853
  0.5766
1
0.05


H35C
  0.0803
−0.1237
  0.555
1
0.05


C36
  0.2022(6)
−0.0690(2)
  0.7544(5)
1
0.0418(14)


H36A
  0.2289
−0.1053
  0.7657
1
0.063


H36B
  0.1312
−0.0643
  0.7756
1
0.063


H36C
  0.2724
−0.0469
  0.8038
1
0.063


O1
−0.2627(3)
−0.03428(12)
  0.3396(3)
1
0.0245(7)


O2
−0.4215(3)
  0.27736(13)
  0.3215(3)
1
0.0295(8)


O3
−0.2371(3)
  0.29334(12)
  0.3015(3)
1
0.0291(8)


O4
−0.2456(3)
  0.07096(12)
  0.4237(3)
1
0.0193(7)


O5
−0.3115(3)
  0.05224(13)
  0.5638(3)
1
0.0272(8)


O6
−0.1014(3)
  0.09442(13)
  0.7304(3)
1
0.0232(7)


HO6
−0.159(6)
  0.100(3)
  0.736(6)
1
0.05


O7
−0.1806(3)
  0.22291(14)
  0.6937(3)
1
0.0343(9)


O8
−0.3364(3)
  0.18247(12)
  0.5481(3)
1
0.0231(7)


O9
  0.2605(3)
−0.06667(14)
  0.5922(4)
1
0.0349(9)


HO9
  0.319(6)
−0.049(3)
  0.633(6)
1
0.05


C41
−0.4061(4)
  0.20979(18)
−0.0709(4)
1
0.0185(9)


C42
−0.4133(4)
  0.26758(17)
−0.0845(4)
1
0.0190(9)


C43
−0.4734(4)
  0.29825(18)
−0.0317(4)
1
0.0236(10)


C44
−0.4734(5)
  0.3520(2)
−0.0387(5)
1
0.0348(13)


H44
−0.5137
  0.3723
−0.0014
1
0.042


C45
−0.4139(5)
  0.3755(2)
−0.1008(5)
1
0.0361(13)


H45
−0.4138
  0.4122
−0.106
1
0.043


C46
−0.3542(5)
  0.3463(2)
−0.1557(5)
1
0.0320(12)


H46
−0.3132
  0.3627
−0.1977
1
0.038


C47
−0.3558(4)
  0.2929(2)
−0.1480(4)
1
0.0252(11)


H47
−0.3169
  0.2728
−0.1868
1
0.03


O41
−0.3392(3)
  0.18505(13)
−0.1087(3)
1
0.0267(8)


O42
−0.4676(3)
  0.18943(12)
−0.0187(3)
1
0.0218(7)


O43
−0.5327(4)
  0.27633(14)
  0.0297(4)
1
0.0331(9)


HO43
−0.525(6)
  0.249(3)
  0.031(6)
1
0.05


C51
  0.0847(4)
  0.26596(17)
−0.0909(4)
1
0.0198(10)


H51
  0.0267
  0.2505
−0.161
1
0.024


C52
  0.1215(4)
  0.31517(18)
−0.0810(4)
1
0.0200(10)


C53
  0.2190(4)
  0.32915(16)
  0.0374(4)
1
0.0164(9)


H53
  0.3014
  0.3357
  0.0333
1
0.02


C54
  0.2289(4)
  0.27955(16)
  0.1123(4)
1
0.0136(9)


H54
  0.3181
  0.2674
  0.1417
1
0.016


C55
  0.1468(4)
  0.23828(16)
  0.0226(4)
1
0.0142(8)


C56
  0.2210(4)
  0.18952(17)
  0.0199(4)
1
0.0199(9)


H56A
  0.2763
  0.1964
−0.0202
1
0.024


H56B
  0.2728
  0.1769
  0.0997
1
0.024


C57
  0.1175(4)
  0.15039(18)
−0.0484(4)
1
0.0243(10)


H57A
  0.0894
  0.1551
−0.1334
1
0.029


H57B
  0.148
  0.1144
−0.0276
1
0.029


C58
  0.0111(4)
  0.16215(17)
−0.0123(4)
1
0.0216(10)


H58A
  0.0026
  0.134
  0.0371
1
0.026


H58B
−0.0697
  0.166
−0.0817
1
0.026


N59
  0.0475(3)
  0.21301(14)
  0.0560(3)
1
0.0161(8)


HN59
  0.088(5)
  0.199(2)
  0.139(5)
1
0.05


C60
−0.0649(4)
  0.24526(18)
  0.0388(4)
1
0.0199(10)


H60A
−0.1166
  0.2267
  0.0718
1
0.024


H60B
−0.1165
  0.2495
−0.0458
1
0.024


C61
−0.0319(4)
  0.29898(18)
  0.0951(4)
1
0.0188(9)


H61A
−0.0155
  0.3225
  0.0412
1
0.023


H61B
−0.1057
  0.3126
  0.1056
1
0.023


C62
  0.0809(4)
  0.29972(16)
  0.2115(4)
1
0.0143(9)


C63
  0.2020(4)
  0.28854(16)
  0.2193(4)
1
0.0135(8)


C64
  0.3049(4)
  0.28691(17)
  0.3276(4)
1
0.0156(9)


H64
  0.3865
  0.2784
  0.3338
1
0.019


C65
  0.2853(4)
  0.29777(17)
  0.4240(4)
1
0.0179(9)


C66
  0.1677(4)
  0.31120(17)
  0.4167(4)
1
0.0197(10)


C67
  0.0638(4)
  0.31097(16)
  0.3130(4)
1
0.0188(9)


H67
−0.0174
  0.3182
  0.3094
1
0.023


C68
  0.3079(5)
  0.3226(2)
  0.6008(4)
1
0.0320(12)


H68A
  0.3372
  0.3589
  0.6181
1
0.038


H68B
  0.3258
  0.3046
  0.6753
1
0.038


C69
−0.0155(6)
  0.3400(2)
−0.2692(5)
1
0.0428(15)


H69A
  0.014
  0.314
−0.3086
1
0.064


H69B
−0.0446
  0.3707
−0.3186
1
0.064


H69C
−0.0852
  0.3256
−0.2545
1
0.064


C71
  0.2427(4)
  0.41910(16)
  0.0877(4)
1
0.0159(9)


C72
  0.2104(5)
  0.45689(17)
  0.1661(5)
1
0.0244(11)


C73
  0.2446(5)
  0.4339(2)
  0.2868(4)
1
0.0288(11)


H73A
  0.2371
  0.4613
  0.3385
1
0.035


H73B
  0.1834
  0.4063
  0.2808
1
0.035


C74
  0.3766(5)
  0.4115(2)
  0.3417(4)
1
0.0286(11)


C75
  0.5447(5)
  0.3850(3)
  0.5159(5)
1
0.0448(15)


H75A
  0.5447
  0.3514
  0.4801
1
0.067


H75B
  0.5651
  0.3802
  0.5988
1
0.067


H75C
  0.6078
  0.4076
  0.5075
1
0.067


C81
  0.0688(5)
  0.46846(19)
  0.1066(5)
1
0.0297(12)


H81A
  0.0225
  0.4358
  0.1018
1
0.036


H81B
  0.0477
  0.4926
  0.1566
1
0.036


C82
  0.0219(5)
  0.4915(2)
−0.0146(5)
1
0.0379(14)


H82A
  0.0717
  0.477
−0.0546
1
0.045


H82B
  0.0364
  0.5294
−0.0077
1
0.045


C83
−0.1172(5)
  0.4814(2)
−0.0889(5)
1
0.0378(13)


H83A
−0.1271
  0.4443
−0.111
1
0.045


H83B
−0.1636
  0.4874
−0.0399
1
0.045


C84
−0.1788(5)
  0.5126(2)
−0.1973(5)
1
0.0353(13)


C85
−0.3125(6)
  0.4957(3)
−0.2704(6)
1
0.0532(17)


H85A
−0.3601
  0.4953
−0.2222
1
0.08


H85B
−0.3123
  0.4609
−0.3012
1
0.08


H85C
−0.352
  0.52
−0.3352
1
0.08


C86
−0.1053(6)
  0.5173(3)
−0.2700(5)
1
0.0439(15)


H86A
−0.1535
  0.5378
−0.3398
1
0.066


H86B
−0.0895
  0.4828
−0.2931
1
0.066


H86C
−0.0248
  0.5345
−0.2246
1
0.066


O51
  0.0848(3)
  0.35381(13)
−0.1615(3)
1
0.0285(8)


O52
  0.3708(3)
  0.29717(14)
  0.5395(3)
1
0.0264(8)


O53
  0.1754(3)
  0.32134(13)
  0.5276(3)
1
0.0260(7)


O54
  0.1836(3)
  0.37380(11)
  0.0855(3)
1
0.0184(7)


O55
  0.3039(3)
  0.42839(12)
  0.0351(3)
1
0.0225(7)


O56
  0.2839(4)
  0.50176(14)
  0.1739(4)
1
0.0364(9)


HO56
  0.272(6)
  0.531(3)
  0.200(6)
1
0.05


O57
  0.4356(3)
  0.39631(15)
  0.2885(3)
1
0.0382(9)


O58
  0.4187(4)
  0.40908(16)
  0.4575(3)
1
0.0409(10)


O59
−0.1879(4)
  0.56408(15)
−0.1531(4)
1
0.0467(10)


H59
−0.2274
  0.5839
−0.2093
1
0.07


C91
  0.2069(5)
  0.15694(19)
  0.3512(5)
1
0.0274(11)


C92
  0.2274(4)
  0.16464(17)
  0.4767(4)
1
0.0223(10)


C93
  0.1463(3)
  0.19621(14)
  0.5016(3)
1
0.0268(11)


H93
  0.0736
  0.2099
  0.4399
1
0.032


C94
  0.1706(3)
  0.20812(14)
  0.6171(3)
1
0.0321(12)


H94
  0.1166
  0.2309
  0.6341
1
0.039


C95
  0.2751(5)
  0.1862(2)
  0.7069(5)
1
0.0376(13)


H95
  0.2916
  0.1937
  0.7856
1
0.045


C96
  0.3549(5)
  0.1536(2)
  0.6824(5)
1
0.0340(13)


H96
  0.4255
  0.1386
  0.7441
1
0.041


C97
  0.3320(5)
  0.1430(2)
  0.5688(5)
1
0.0286(11)


O91
  0.1084(3)
  0.17337(13)
  0.2713(3)
1
0.0265(8)


O92
  0.2952(4)
  0.13363(15)
  0.3347(3)
1
0.0370(9)


O93
  0.4150(3)
  0.11174(15)
  0.5479(4)
1
0.0363(9)


HO93
  0.369(6)
  0.114(3)
  0.462(6)
1
0.05


OW1
  0.4458(4)
  0.01162(15)
  0.6698(4)
1
0.0458(10)


OW2
  0.6810(3)
  0.11024(14)
  0.7538(3)
1
0.0318(8)









Example 16: Purification of Natural Homoharringtonine as Hydrogen (2R,3R)-Tartaric Salt

All operations were performed in a sterile isolator using dedicated or single-use equipment. The reagents were of pharmacopoeial quality and all the quality control and quality assurance written procedures were carried out according to the current good manufacturing practices. Commercial homoharringtonine base (100 grams) exhibiting at least 97% of purity was dried then introduced in a dedicated sterile flask equipped with a stirring and a refrigerant, and flushed by sterile argon, then 1.2 molar equivalent of (2R,3R)-(+)-tartaric acid (natural version, pharmacopoeia quality) was introduced. Then 350 mL of anhydrous methanol was added under reflux until all solid phase disappeared. A volume of dry methanol was added to move away from the point of supersaturation. The homogeneous solution was then withdrawn and directly filtered hot under vacuum on a microporous filter (0.5 micron). After 15 minutes, fine translucent prismatic crystals of homohamrngtonine hydrogen (2R, 3R) tartrate begin to form. The stirred suspension is allowed to stand for 12 hours. At this stage an in process control (CIP) to check the impurity content of the crystals and mother liquors. The suspension is drained on a filter funnel (Buchner) and the crystals are dissolved in hot methanol. The crystallization operation and the corresponding CIPs are renewed twice. After the last wringing, the crystals were dried under vacuum at a temperature of 45c, 20 hours, and then packaged. Final samples are taken to carry out an analysis report in accordance with the specifications. The impurity content is less than 0.3% and the purity (HPC) exceeds 99.7% (the current purity of semi-synthetic batches). In addition to the usual tests including microbiological testing and endotoxin detection, all batches of drug substance were subjected to a high resolution NMR analysis and a control for in vivo toxicity.

Claims
  • 1. A harringtonines salt in the crystalline state exhibiting a protonated nitrogen seen in solid state analysis and having formula 1,
  • 2. The salt of claim 1 wherein the cephalotaxine ester reactant is homoharringtonine (=omacetaxine) having formula 2 in which R2 is hydrogen and R1 have below formula 3.
  • 3. The salts of claim 1 wherein the acid is an organic acid but not limited to, selected among the following list: fumaric, maleic, citramalic, malic, tartaric, tartronic, succinic, itaconic, citric acid or salicylic acid.
  • 4. The salts of claim 1, having below formula
  • 5. The salts of claim 4, wherein the malic acid is of configuration 2R having formula
  • 6. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen (R)-malate exhibiting the below formula:
  • 7. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtone hydrogen succinate exhibiting the below formula:
  • 8. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen (2′″S,3′″S)-tartrate exhibiting the below formula:
  • 9. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen (2′″R,3′″R)-tartrate exhibiting the below formula:
  • 10. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen itaconate exhibiting the below formula:
  • 11. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen fumarate exhibiting the below formula:
  • 12. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen tartronate exhibiting the below formula:
  • 13. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen malonate exhibiting the below formula:
  • 14. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine dihydrogen citrate exhibiting the below formula:
  • 15. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine salicate exhibiting the below formula:
  • 16. The salt of claim 1 as crystalline form comprising solvate and co-crystal.
  • 17. The cation (3S,4S,5R,2′R)-homoharringtoninium as described in FIGS. 2.3.1, 2.4.1, 2.5.1, 2.6.1, 2.8.1, 2.9.1, 2.11.1, and 2.12.1, exhibiting the below formula
  • 18. The process of preparation and purification of salts of claim 1 comprising contacting a natural, hemi-synthetic or synthetic harringtonine or its semi-synthetic analog with a weak acid in suspension or in solution in a suitable non-aqueous solvent, preferably an alcohol or mixed at the solid state either at the amorphous state or at the crystalline state then recrystallized said salt in a suitable non aqueous solvent, preferably an alcohol, the said process being also when repeated a method of purification including enantiomeric (fractional crystallization).
  • 19. The process of claim 18 wherein the harringtonine is homoharringtonine having formula represented in claim 2.
  • 20. The process of claim 18 wherein the harringtonine is an harringtonine analog having general formula:
  • 21. The process of claim 18, wherein the acid is, but not limited to, selected among the following list: fumaric, maleic, citramalic, malic, tartaric, tartronic, succinic, itaconic, salicylic or citric acid.
  • 22. A pharmaceutical dosage form comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a mineral or organic salt or solvate or co-crystal of claim 1.
  • 23. A method of treatment comprising administering a therapeutically effective amount of a pharmaceutical dosage form of claim 22 to a patient or an animal suffering from cancer including their metastasis, leukemia, lymphoma, parasitic disease, ocular proliferation and/or immune disorder and/or from viral disease.
  • 24. A method of treating cancer, leukemia and/or lymphoma, comprising administering to a patient or an animal in need thereof the pharmaceutical dosage of claim 22, said pharmaceutical dosage being administered alone or in combination with at least another chemotherapeutic agents, eventually combined with radiotherapy.
  • 25. The method of claim 24, wherein the leukemia is acute myelod leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative disorders including chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, myelosclerosis, and wherein the lymphoma is a multiple myeloma, a Hodgkin disease or a Burkitt lymphoma, andwherein the cancer is a breast cancer, a brain cancer or a lung cancer.
  • 26. The method of claim 25, wherein the breast cancer is a triple negative breast cancer (TNBC).
  • 27. The method of claim 25 wherein the brain cancer is a neuroblastoma.
  • 28. The method of claim 25, wherein the lung cancer is a non small cell lung cancer (NSCLC).
  • 29. A method for treating autoimmune disorder, comprising administering to a patient or an animal in need thereof the pharmaceutical dosage of claim 22, said pharmaceutical dosage being administered alone or in combination with at least another chemotherapeutic agent.
  • 30. The method of claim 29, wherein the autoimmune disorder is a systemic lupus erythematosus (SLE), a dermatomyositis, a psoriasis or a lichen planopilaris (LPP).
  • 31. The method of claim 30, wherein the lichen planopilaris (LPP) is a frontal fibrosis alopecia (FFA).
Provisional Applications (2)
Number Date Country
61941723 Feb 2014 US
61922248 Dec 2013 US
Continuations (1)
Number Date Country
Parent 15109254 Jun 2016 US
Child 16191007 US