NOVEL HETEROCYCLIC COMPOUNDS AND THEIR USE IN PREVENTING OR TREATING BACTERIAL INFECTIONS

Information

  • Patent Application
  • 20200017496
  • Publication Number
    20200017496
  • Date Filed
    February 06, 2018
    6 years ago
  • Date Published
    January 16, 2020
    4 years ago
Abstract
The present invention relates to compound of formula (I) and their use for treating bacterial infections.
Description

The present invention relates to heterocyclic compounds especially as prodrug compounds, their process of preparation, the pharmaceutical compositions comprising these compounds and use thereof, optionally in combination with other antibacterial agents and/or beta-lactams, for the prevention or treatment of bacterial infections. The present invention also relates to the use of these compounds as beta-lactamase inhibitors and/or antibacterial agent, preferably as beta-lactamase inhibitors.


It has been described that there is a continuous evolution of antibacterial resistance which could lead to bacterial strains against which known antibacterial compounds are inefficient. There is thus a need to provide novel compounds and composition that can overcome bacterial antibiotic resistance.


There is also a need to provide antibacterial agents and/or beta-lactamase inhibitors with oral bioavailability. The medical community urgently needs effective oral drugs for the treatment of uncomplicated UTIs.


The objective of the present invention is to provide new heterocyclic compounds, and especially new prodrugs, that can be used as antibacterial agent and/or beta-lactamase inhibitor.


An objective of the present invention is also to provide new heterocyclic compounds, and especially new prodrugs, that can be used for the prevention or treatment of bacterial infections.


Another objective of the present invention is to provide such new compounds which can overcome bacterial antibiotic resistance.


An objective of the invention is also to provide composition comprising these new heterocyclic compounds, optionally in combination with one or more other antibacterial agent, for the prevention or treatment of bacterial infections and which can overcome bacterial antibiotic resistance.


Other objectives will appear throughout the following description of the invention.


The present invention relates to compounds of formula (I)




embedded image


wherein


Y1 represents CHF or CF2;


Y2 represents H, linear or branched (C1-C16)-alkyl, (C3-C11)-cycloalkyl, (C5-C11)-cycloalkenyl, (C4-C10)-heterocycloalkyl comprising from 1 to 2 heteroatoms chosen among N, O or S, (C5-C10)-heteroaryl comprising from 1 to 4 heteroatom chosen among N, O or S, (C6-C10)-aryl, (C7-C16)-aralkyl, (C7-C16)-heteroaralkyl comprising from 1 to 4 heteroatom chosen among N, O or S, a (C1-C6)alkyl-heterocycle wherein the heterocycle comprises from 4 to 5 carbon atoms and 1 to 2 heteroatoms chosen among N, O or S, preferable N and O; a polyethylene glycol (PEG) group, a cetal group or an acetal group, wherein the alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycle, heteroaryl, aryl, aralkyl and heteroaralkyl is optionally substituted;


R1 represents CN, CH2OY5 or C(═O)NH2;


Y5 represents H, linear or branched (C1-C6)-alkyl, (C3-C11)-cycloalkyl, (C6-C10)-aryl, (C4-C10)-heterocycloalkyl comprising from 1 to 2 heteroatoms chosen among N, O or S, (C5-C10)-heteroaryl comprising from 1 to 4 heteroatom chosen among N, O or S, the alkyl, cycloalkyl, aryl, heterocycloalkyl and heteroaryl is optionally substituted by one or more (C1-C10)-alkyl, OH, O(C1-C6)-alkyl, NH2, NH(C1-C6)-alkyl, N[(C1-C6)-alkyl]2, C(═O)NH2, C(═O)NH(C1-C6)-alkyl or C(═O)N[(C1-C6)-alkyl]2;


with the conditions that when Y2 is H then R1 is CN or CH2OY5 and when R1 is C(═O)NH2 then Y2 is not H or unsubstituted (C1-C6)-alkyl,

    • any carbon atom present within a group selected from alkyl; cycloalkyl; heterocycle can be oxidized to form a C(O) group;
    • any sulphur atom present within an heterocycle can be oxidized to form a S(O) group or a S(O)2 group;
    • any nitrogen atom present within a group wherein it is trisubstituted (thus forming a tertiary amine) or within an heterocycle can be further quaternized by a methyl group;


      and a pharmaceutically acceptable salt, a zwitterion, an optical isomer, a racemate, a diastereoisomer, an enantiomer, a geometric isomer or a tautomer thereof.


The presence of at least one fluorine atom on the molecule, and specifically at the position 2 of the ester function, renders this molecule highly hydrolysable and it is thus very difficult to provide a prodrug sufficiently stable for the targeted effect.


The alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycle, heteroaryl, aryl, aralkyl and heteroaralkyl representing Y2 are optionally substituted by one or more groups chosen among: halogen, ═O, Y3, OY3, OC(═O)Y3, SY3, NY3Y4, NY3C(═O)Y4, NY3S(═O)2Y4, C(═O)Y3, C(═O)OY3, C(═O)NY3Y4, S(═O)Y3, S(═O)2Y3 or S(═O)2NY3Y4, wherein Y3 and Y4, identical or different, represent H, linear or branched (C1-C10)-alkyl, (C3-C11)-cycloalkyl, (C6-C10)-aryl, (C4-C10)-heterocycloalkyl comprising from 1 to 2 heteroatoms chosen among N, O or S, (C5-C10)-heteroaryl comprising from 1 to 4 heteroatom chosen among N, O or S, or form together with the nitrogen to which they are linked a (C4-C10)-heterocycloalkyl comprising from 1 to 2 heteroatoms chosen among N, O or S; the alkyl, cycloalkyl, aryl, heterocycloalkyl and heteroaryl is optionally substituted by one or more linear or branched (C1-C10)-alkyl, OH, O(C1-C6)-alkyl, NH2, NH(C1-C6)-alkyl, N[(C1-C6)-alkyl]2, C(═O)NH2, C(═O)NH(C1-C6)-alkyl or C(═O)N[(C1-C6)-alkyl]2.


Preferably, in the compounds of formula (I) Y2 represents H and R1 represents CN or CH2OY5, Y5 being as defined above, preferably R1 represents CN, CH2OH or CH2OMe. Preferably, in the compounds of formula (I) according to the invention Y2 is different from H and R1 represents CONH2 or CN.


Preferably, in the compounds of formula (I) Y2 represents a substituted linear or branched (C1-C16)-alkyl, (C3-C11)-cycloalkyl, (C5-C11)-cycloalkenyl, (C4-C10)-heterocycloalkyl comprising from 1 to 2 heteroatoms chosen among N, O or S, (C5-C10)-heteroaryl comprising from 1 to 4 heteroatom chosen among N, O or S, (C6-C10)-aryl, (C7-C16)-aralkyl, (C7-C16)-heteroaralkyl comprising from 1 to 4 heteroatom chosen among N, O or S, a (C1-C6)-alkyl-heterocycle wherein the heterocycle comprises from 4 to 5 carbon atoms and 1 to 2 heteroatoms chosen among N, O or S, preferable N and O, a PEG group, a cetal group or an acetal group, wherein the alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycle, heteroaryl, aryl, aralkyl and heteroaralkyl is optionally substituted, preferably substituted by one or more linear or branched (C1-C10)-alkyl and R1 is C(O)NH2.


Preferably, in the compounds of formula (I) according to the invention Y2 is linear or branched (C1-C16)-alkyl, (C3-C11)-cycloalkyl, (C5-C11)-cycloalkenyl, (C4-C10)-heterocycloalkyl comprising from 1 to 2 heteroatoms chosen among N, O or S, (C5-C10)-heteroaryl comprising from 1 to 4 heteroatom chosen among N, O or S, (C6-C10)-aryl, (C7-C16)-aralkyl, (C7-C16)-heteroaralkyl comprising from 1 to 4 heteroatom chosen among N, O or S, a (C1-C6)-alkyl-heterocycle wherein the heterocycle comprises from 4 to 5 carbon atoms and 1 to 2 heteroatoms chosen among N, O or S, preferable N and O, a PEG group, a cetal group or an acetal group, wherein the alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycle, heteroaryl, aryl, aralkyl and heteroaralkyl is optionally substituted, preferably substituted by one or more linear or branched (C1-C10)-alkyl and R1 is CN or CH2OY5, Y5 being as defined above, preferably R1 represents CN, CH2OH or CH2OMe.


Preferably, in the compounds of formula (I) according to the invention Y2 represents a linear or branched (C2-C16)-alkyl, (C3-C11)-cycloalkyl, (C5-C11)-cycloalkenyl, (C4-C10)-heterocycloalkyl comprising from 1 to 2 heteroatoms chosen among N, O or S, a PEG group, a (C7-C16)-aralkyl group, (C7-C16)-heteroaralkyl comprising from 1 to 4 heteroatom chosen among N, O or S, a (C1-C6)-alkyl-heterocycle wherein the heterocycle comprises from 4 to 5 carbon atoms and 1 to 2 heteroatoms chosen among N, O or S, preferable N and O; wherein the alkyl, cycloalkyl, cycloalkenyl, aralkyl, heteroaralkyl, heterocycle and heterocycloalkyl is optionally substituted preferably as mentioned above, preferably substituted by one or more linear or branched (C1-C10)-alkyl.


Preferably, in the compounds of formula (I) according to the invention R1 represents CONH2 and Y2 represents a linear or branched (C2-C16)-alkyl, (C3-C11)-cycloalkyl, (C5-C11)-cycloalkenyl, (C4-C10)-heterocycloalkyl comprising from 1 to 2 heteroatoms chosen among N, O or S, a PEG group, a (C7-C16)-aralkyl group, a (C1-C6)-alkyl-heterocycle wherein the heterocycle comprises from 4 to 5 carbon atoms and 1 to 2 heteroatoms chosen among N, O or S, preferable N and O; wherein the alkyl, cycloalkyl, cycloalkenyl, aralkyl, heterocycle and heterocycloalkyl is optionally substituted preferably as mentioned above, preferably substituted by one or more linear or branched (C1-C10)alkyl.


Preferably, in the compounds of formula (I) according to the invention R1 represents CONH2, Y1 represents CF2 and Y2 represents a linear or branched (C2-C8)-alkyl, (C3-C7)-cycloalkyl or (C4-C10)-heterocycloalkyl comprising from 1 to 2 O; wherein the alkyl, cycloalkyl and heterocycloalkyl is optionally substituted by one or more Y3 and OY3; wherein Y3 is H, linear or branched (C1-C8)-alkyl, (C3-C7)-cycloalkyl or (C4-C10)-heterocycloalkyl comprising from 1 to 2 O; wherein the alkyl, cycloalkyl, heterocycloalkyl representing Y3 is optionally substituted by one or more linear or branched (C1-C6)-alkyl, OH or O(C1-C6)-alkyl.


Preferably, in the compounds of formula (I) according to the invention Y2 is chosen from:




embedded image


Preferably, the compounds of formula (I) according to the invention are chosen from:

    • (2-methoxy-1,1-dimethyl-ethyl) 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate; and/or
    • (4-methyltetrahydropyran-4-yl) 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate; and/or
    • [2-methoxy-1-(methoxymethyl)ethyl] 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate; and/or
    • [2-methoxy-1-(methoxymethyl)-1-methyl-ethyl] 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate; and/or
    • [4-(methoxymethyl)tetrahydropyran-4-yl] 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate.


Preferably, in the compounds of formula (I) according to the invention R1 represents CN and Y2 represents H or a (C7-C10)-aralkyl group, preferably benzyl.


Preferably, in the compounds of formula (I) according to the invention Y2 represents a linear or branched (C3-C16)-alkyl, a (C6-C10)-cycloalkyl, (for example adamantyl or cyclohexyl), a benzyl.


Preferably, in the compounds of formula (I) according to the invention R1 represents CONH2 and Y2 represents a linear or branched (C3-C16)-alkyl, a (C6-C10)-cycloalkyl, (for example adamantyl or cyclohexyl), a benzyl.


The present invention also relates in one embodiment compounds of formula (I):




embedded image


wherein


Y1 represents CHF or CF2;


Y2 represents CY3Y4Y6;


R1 represents CN, CH2OY5 or C(═O)NH2;


Y5 represents H, linear or branched (C1-C6)-alkyl, (C3-C11)-cycloalkyl, (C6-C10)-aryl, (C4-C10)-heterocycloalkyl comprising from 1 to 2 heteroatoms chosen among N, O or S, (C5-C10)-heteroaryl comprising from 1 to 4 heteroatom chosen among N, O or S, the alkyl, cycloalkyl, aryl, heterocycloalkyl and heteroaryl is optionally substituted by one or more (C1-C10)-alkyl, OH, O(C1-C6)-alkyl, NH2, NH(C1-C6)-alkyl, N[(C1-C6)-alkyl]2, C(═O)NH2, C(═O)NH(C1-C6)-alkyl or C(═O)N[(C1-C6)-alkyl]2;


Y3, Y4 and Y6, identical or different, represent (C1-C3)-alkyl, (C3-C6)-cycloalkyl, (C4-C8)-heterocycloalkyl comprising from 1 to 2 heteroatoms chosen among N—Y7, O or S, a group CH2—O—(C1-C3)-alkyl, or a group CH2—O—(CH2)2—O—(C1-C3)-alkyl, wherein the alkyl, cycloalkyl and heterocycloalkyl is optionally substituted by one or more Y8; or Y3 and Y4 could form together with the carbon atom to which they are linked a (C3-C6)-cycloalkyl or a (C4-C8)-heterocycloalkyl comprising from 1 to 2 heteroatoms chosen among N—Y7, O or S, wherein the cycloalkyl and heterocycloalkyl is optionally substituted by one or more Y8;


Y7 represents (C1-C6)-alkyl, (C3-C6)-cycloalkyl, C(═O)(C1-C6)-alkyl or C(═O)(C3-C6)-cycloalkyl;


Y8 represents (C1-C6)-alkyl, (C3-C6)-cycloalkyl, O(C1-C6)-alkyl or O(C3-C6)-cycloalkyl.


Preferably, in this embodiment:

    • R1 is C(O)NH2, CN, CH2OH or CH2OMe, preferably C(O)NH2; and/or
    • Y2 represents CF2; and/or
    • Y2 is chosen from:




embedded image


Preferably, the compounds of formula (I) according to the invention are compounds of formula (I*)




embedded image


wherein R1, Y1 and Y2 are as defined above.


The term “alkyl”, as used herein, refers to an aliphatic-hydrocarbon group which may be linear or branched, having 1 to 16 carbon atoms in the chain, in particular 1 to 8 or 1 to 6, unless specified otherwise. Specific examples of alkyl groups, linear or branched, include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl. Preferably, the alkyl group, straight or branched, is methyl, ethyl, propyl, butyl, pentyl, heptyl, hexadecyl.


The term “cycloalkyl” refers to a saturated monocyclic, polycyclic or spirocyclic non-aromatic hydrocarbon ring of 3 to 11 carbon atoms, in particular of 3 to 7 carbon atoms. Specific examples of monocyclic, polycyclic or spirocyclic cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, decalyl, norbornyl, isopinocamphyl, norpinanyl, adamantyl, spirohexane, spiroheptane, spirooctane, spirononane, spirodecane, spiroundecane. Preferably, the cycloalkyl group is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl.


The term “cycloalkenyl” refers to a saturated monocyclic or bicyclic non-aromatic hydrocarbon ring of 5 to 11 carbon atoms and comprising at least one unsaturation. Specific examples of cycloalkenyl groups include, but are not limited to, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl. Preferably, the cycloalkenyl group is cyclohexenyl.


The term “heterocycle” or “heterocycloalkyl”, as used herein and without contrary definition specifically mentioned, either alone or in combination with another radical, refers to a monocyclic, bicyclic or spirocyclic saturated or partially unsaturated hydrocarbon radical, preferably 4 to 10-membered, comprising one or two heteroatom, such as N, O, S, in particular one or two 0, and linked to the structure of the compounds by a carbon atom of the heterocycloalkyl. Suitable heterocycloalkyl are also disclosed in the Handbook of Chemistry and Physics, 76th Edition, CRC Press, Inc., 1995-1996, pages 2-25 to 2-26. Specific examples of heterocycloalkyl groups include, but are not limited to, azetidinyl, oxetanyl, oxazolidinyl, pyrrolidinyl, tetrahydropyridinyl, piperidinyl, morpholinyl, thiomorpholinyl, dioxanyl, pyrrolidinyl, imidazolidinyl, pyranyl, tetrahydrofuranyl, dioxolanyl, tetrahydropyranyl, tetrahydroquinolinyl, dihydrobenzoxazinyl, oxepanyl, azaspirooctanyl, azaspirodecanyl, oxaspirooctanyl, oxaspirodecanyl, thiaspirooctanyl, thiaspirodecanyl. Preferably, the heterocycloalkyl group is piperidinyl, pyranyl, oxepanyl, morpholinyl, thiomorpholinyl.


The term “heteroaryl”, as used herein and without contrary definition specifically mentioned, either alone or in combination with another radical, refers to a monocyclic or bicyclic aromatic hydrocarbon radical, preferably 5 to 10-membered, comprising one, two, three or four heteroatom, such as N, O, S. Suitable heteroaryl are also disclosed in the Handbook of Chemistry and Physics, 76th Edition, CRC Press, Inc., 1995-1996, pages 2-25 to 2-26. Specific examples of heteroaryl groups include, but are not limited to, oxazolyl, oxadiazolyl, pyrrolyl, pyridyl, pyrazolyl, pyrimidinyl, pyrazinyl, tetrazolyl, triazolyl, thienyl, thiazolyl, furanyl, thiadiazolyl, isothiazolyl, isoxazolyl. Preferably, the heteroaryl group is pyridinyl, furanyl, thiazolyl, thienyl, imidazolyl.


The term “aryl”, as used herein and without contrary definition specifically mentioned, either alone or in combination with another radical, refers to a monocyclic or bicyclic aromatic hydrocarbon radical. Specific examples of aryl groups include phenyl, naphtyl.


The term “aralkyl”, as used herein and without contrary definition specifically mentioned, refers to an alkyl substituted by an aryl, the alkyl and aryl being as defined above. By (C7-C16)-aralkyl it should be understand that the aralkyl group comprises in total from 7 to 16 carbon atoms. Specific examples of aralkyl groups include, but are not limited to benzyl, phenylethyl, phenylpropyl, phenylbutyl, phenylpentyl, phenylhexyl, phenylheptyl, phenyloctyl, phenylnonyln phenyldecyl, naphtylethyl, naphtylpropyl, naphtylbutyl, naphtylpentyl, naphtylhexyl.


The term “heteroaralkyl”, as used herein and without contrary definition specifically mentioned, refers to an alkyl substituted by an heteroaryl, the alkyl and heteroaryl being as defined above. By (C7-C16)-heteroaralkyl it should be understand that the heteroaralkyl group comprises in total from 7 to 16 carbon atoms.


The term “cetal”, as used herein and without contrary definition specifically mentioned, refers to a group consisting of Y2 of formula




embedded image


and the oxygen atom to which Y2 is linked, wherein R2 represents a linear or branched (C1-C6)alkyl or C(═O)(C1-C6)alkyl. The term “acetal”, as used herein and without contrary definition specifically mentioned, refers to a group consisting of Y2 of formula




embedded image


and the oxygen atom to which Y2 is linked, wherein R2 represents a linear or branched (C1-C6)alkyl or C(═O)(C1-C6)alkyl.


The term “PEG” or “polyethylene glycol”, as used herein and without contrary definition specifically mentioned, refers to a group Y2 of formula




embedded image


wherein m is an integer from 1 to 10.


Moreover some compounds according to this invention may contain a basic amino group and thus may form an inner zwitterionic salt (or zwitterion) with the acidic group —OCHFCO2H or —OCF2CO2H where Y2 is H and such inner zwitterionic salts are also included in this invention.


The term “optionally substituted” means “non-substituted or substituted”.


The term “racemate” is employed herein to refer to an equal amount of two specific enantiomers.


The term “enantiomer” is employed herein to refer to one of the two specific stereoisomers which is a non-superimposable mirror image with one other but is related to one other by reflection.


The compounds of the invention can possess one or more asymmetric carbon atoms and are thus capable of existing in the form of optical isomers as well as in the form of racemic or non-racemic mixtures thereof. The compounds of the invention can be used in the present invention as a single isomer or as a mixture of stereochemical isomeric forms. Diastereoisomers, i.e., nonsuperimposable stereochemical isomers can be separated by conventional means such as chromatography, distillation, crystallization or sublimation. The optical isomers (enantiomers) can be obtained by using optically active starting materials, by resolution of the racemic mixtures according to conventional processes, for example by formation of diastereoisomeric salts by treatment with an optically active acid or base or by using chiral chromatography column.


The expression “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.


As used herein, the expression “pharmaceutically acceptable salts” refers to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which comprises a basic or an acidic moiety, by conventional chemical methods. Furthermore, the expression “pharmaceutically acceptable salt” refers to relatively non-toxic, inorganic and organic acid or base addition salts of the compounds of the present invention. These salts can be prepared in situ during the final isolation and purification of the compounds. In particular, the acid addition salts can be prepared by separately reacting the purified compound in its purified form with an organic or inorganic acid and by isolating the salt thus formed. Among the examples of acid addition salts are the hydrobromide, hydrochloride, hydroiodide, sulfamate, sulfate, bisulfate, phosphate, nitrate, acetate, propionate, succinate, oxalate, valerate, oleate, palmitate, stearate, laurate, borate, benzoate, lactate, tosylate, citrate, maleate, fumarate, tartrate, naphthylate, mesylate, glucoheptanate, glucoronate, glutamate, lactobionate, malonate, salicylate, methylenebis-b-hydroxynaphthoate, gentisic acid, isethionate, di-p-toluoyltartrate, ethanesulfonate, benzenesulfonate, cyclohexyl sulfamate, quinateslaurylsulfonate salts, and the like. Examples of base addition salts include ammonium salts such as tromethamine, meglumine, epolamine, etc, metal salts such as sodium, lithium, potassium, calcium, zinc or magnesium salts with organic bases such as dicyclohexylamine salts, N-methyl-D-glucamine. Lists of suitable salts may be found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418, P. H. Stahl, C. G. Wermuth, Handbook of Pharmaceutical salts—Properties, Selection and Use, Wiley-VCH, 2002 and S. M. Berge et al. “Pharmaceutical Salts” J. Pharm. Sci, 66: p. 1-19 (1977).


Compounds according to the invention also include isotopically-labeled compounds wherein one or more atoms is replaced by an atom having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes suitable for inclusion in the compounds described above and are not limited to 2H, 3H, 11C, 13C, 14C, 19F, 18F, 15N, 13N, 33S, 34S, 35S, 36S, 17O or 18O. In one embodiment, isotopically-labeled compounds are useful in drug and/or substrate tissue distribution studies. In another embodiment, substitution with heavier isotopes such as deuterium (2H) affords greater metabolic stability (for example increased in vivo half-life or reduced dosage requirements). Isotopically-labeled compounds are prepared by any suitable method or by processes using an appropriate isotopically-labeled reagent in place of the non-labeled reagent otherwise employed.


The compounds of formula (I) or (I*) according to the invention with Y2 different from H, can be used as a pro-drug of a compound of formula (I′) or (I′*)




embedded image


wherein R1 and Y1 are as defined above and Y2 represents H or a base addition salts for example chosen among ammonium salts such as tromethamine, meglumine, epolamine; metal salts such as sodium, lithium, potassium, calcium, zinc, aluminium or magnesium; salts with organic bases such as methylamine, propylamine, trimethylamine, diethylamine, triethylamine, N,N-dimethylethanolamine, tris(hydroymethyl)aminomethane, ethanolamine, pyridine, picoline, dicyclohexylamine, morpholine, benzylamine, procaine, N-methyl-D-glucamine; salts with amino acids such as arginine, lysine, ornithine and so forth; phosphonium salts such as alkylphosphonium, arylphosphonium, alkylarylphosphonium and alkenylarylphosphonium; and salts with quaternary ammonium such as tetra-n-butylammonium. List of suitable salts may be found in Remington's Pharmaceutical Sciences, 17th ed. Mack Publishing Company, Easton, Pa., 1985, p 1418, P. H. Stahl, C. G. Wermuth, Handbook of Pharmaceutical salts—Properties, Selection and Use, Wiley-VCH, 2002 and S. M. Berge et al. “Pharmaceutical Salts” J. Pharm. Sci, 66: p. 1-19 (1977).


The present invention also relates to a pharmaceutical composition comprising at least a compound of formula (I) or (I*) according to the invention.


This pharmaceutical composition can further comprise at least one pharmaceutically acceptable excipient.


The term “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” is employed for any excipient, solvent, dispersion medium, absorption retardant, diluent or adjuvant etc., such as preserving or antioxidant agents, fillers, binders, disintegrating agents, wetting agents, emulsifying agents, suspending agents, solvents, dispersion media, coatings, antibacterial agents, isotonic and absorption delaying agents and the like, that does not produce a secondary reaction, for example an allergic reaction, in humans or animals. Typical, non-limiting examples of excipients include mannitol, lactose, magnesium stearate, sodium saccharide, talcum, cellulose, sodium croscarmellose, glucose, gelatin, starch, lactose, dicalcium phosphate, sucrose, kaolin, magnesium carbonate, wetting agents, emulsifying agents, solubilizing agents, sterile water, saline, pH buffers, non-ionic surfactants, lubricants, stabilizing agents, binding agents and edible oils such as peanut oil, sesame oils and the like. In addition, various excipients commonly used in the art may be included. Pharmaceutically acceptable carriers or excipients are well known to a person skilled in the art, and include those described in Remington's Pharmaceutical Sciences (Mack Publishing Company, Easton, USA, 1985), Merck Index (Merck & Company, Rahway, N.J.), Gilman et al (Eds. The pharmacological basis of therapeutics, 8th Ed., pergamon press., 1990). Except insofar as any conventional media or adjuvant is incompatible with the active ingredient according to the invention, its use in the therapeutic compositions is contemplated.


The pharmaceutical composition according to the invention can further comprise at least one compound selected from an antibacterial compound, preferably a β-lactam compound. Thus, the pharmaceutical composition according to the invention can comprise:

    • a single compound of formula (I) or (I*) according to the invention; or
    • at least one compound of formula (I) or (I*) according to the invention and one or more antibacterial compound; or
    • at least one compound of formula (I) or (I*) according to the invention and one or more β-lactam compound; or
    • at least one compound of formula (I) or (I*) according to the invention, one or more antibacterial compound and one or more β-lactam compound.


The term “beta-lactam” or “β-lactam” refers to antibacterial compounds comprising a β-lactam unit, i.e. a group.


The expression “antibacterial agent” as used herein, refers to any substance, compound or their combination capable of inhibiting, reducing or preventing growth of bacteria, inhibiting or reducing ability of bacteria to produce infection in a subject, or inhibiting or reducing ability of bacteria to multiply or remain infective in the environment, or decreasing infectivity or virulence of bacteria.


The antibacterial agent is selected among the following families: aminoglycosides, beta-lactams, glycylcyclines, tetracyclines, quinolones, fluoroquinolones, glycopeptides, lipopeptides, macrolides, ketolides, lincosamides, streptogramins, oxazolidinones and polymyxins alone or in mixture.


Preferably, the further antibacterial agent is selected among the beta-lactam families, and more preferably among penicillin, cephalosporins, penems, carbapenems and monobactam, alone or in mixture.


Among the penicillin the antibacterial agent is preferably selected in the group consisting of amoxicillin, ampicillin, azlocillin, mezocillin, apalcillin, hetacillin, bacampicillin, carbenicillin, sulbenicillin, temocillin, ticarcillin, piperacillin, mecillinam, pivmecillinam, methicillin, ciclacillin, talampacillin, aspoxicillin, oxacillin, cloxacillin, dicloxacillin, flucloxacillin, nafcillin, and pivampicillin, alone or in mixture.


Among the cephalosporin, the antibacterial agent is preferably selected in the group consisting of cefatriazine, cefazolin, cefoxitin, cephalexin, cephradine, ceftizoxime, cephacetrile, cefbuperazone, cefprozil, ceftobiprole, ceftobiprole medocaril, ceftaroline, ceftaroline fosaminyl, cefalonium, cefminox, ceforanide, cefotetan, ceftibuten, cefcapene pivoxil, cefditoren pivoxil, cefdaloxime cefroxadine, ceftolozane and S-649266, cephalothin, cephaloridine, cefaclor, cefadroxil, cefamandole, cefazolin, cephalexin, cephradine, ceftizoxime, cephacetrile, cefotiam, cefotaxime, cefsulodin, cefoperazone, cefmenoxime, cefmetazole, cephaloglycin, cefonicid, cefodizime, cefpirome, ceftazidime, ceftriaxone, cefpiramide, cefbuperazone, cefozopran, cefepime, cefoselis, cefluprenam, cefuzonam, cefpimizole, cefclidine, cefixime, ceftibuten, cefdinir, cefpodoxime axetil, cefpodoxime proxetil, cefteram pivoxil, cefetamet pivoxil, cefcapene pivoxil, cefditoren pivoxil, cefuroxime, cefuroxime axetil, loracarbef, and latamoxef, alone or in mixture.


Among the carbapenem, the antibacterial agent is preferably selected in the group consisting of imipenem, doripenem, meropenem, biapenem, ertapenem, tebipenem, sulopenem, SPR994 and panipenem, alone or in mixture.


Among the monobactam the antibacterial agent is preferably selected in the group consisting of aztreonam, tigemonam, carumonam, BAL30072 and nocardicin A, alone or in mixture.


Preferably, in the pharmaceutical composition according to the invention:

    • the antibacterial compound is selected from aminoglycosides, β-lactams, glycylcyclines, tetracyclines, quinolones, fluoroquinolones, glycopeptides, lipopeptides, macrolides, ketolides, lincosamides, streptogramins, oxazolidinones, polymyxins and mixtures thereof; or
    • the β-lactam compound is selected from β-lactams and mixtures thereof, preferably penicillin, cephalosporins, penems, carbapenems and monobactam.


Preferably, in the pharmaceutical composition according to the invention:

    • the antibacterial compound is selected from orally bioavailable aminoglycosides, 3-lactams, glycylcyclines, tetracyclines, quinolones, fluoroquinolones, glycopeptides, lipopeptides, macrolides, ketolides, lincosamides, streptogramins, oxazolidinones, polymyxins and mixtures thereof; or
    • the β-lactam compound is selected from orally available β-lactams or prodrugs of 3-lactams, and mixtures thereof, preferably penicillin, cephalosporins, penems, carbapenems and monobactam.


Preferably, in the pharmaceutical composition according to the invention the β-lactam is chosen among amoxicillin, amoxicillin-clavulanate, sultamicillin cefuroxime axetil, cefazolin, cefaclor, cefdinir, cefpodoxime proxetil, cefprozil, cephalexin, loracarbef, cefetamet, ceftibuten, tebipenem pivoxil, sulopenem, SPR994, cefixime, preferably among cefixime and cefpodoxime proxetil.


The present invention also relates to a kit comprising:

    • a pharmaceutical composition according to the invention, and
    • at least one other composition comprising one or more antibacterial agent(s), preferably at least one of these antibacterial agent(s) is a beta-lactam, the antibacterial agent being as defined above.


The two composition can be prepared separately each with one specific pharmaceutically acceptable carrier, and can be mix especially extemporaneity.


The present invention also refer to a compound of formula (I) or (I*) according to the invention for use as a medicine.


The present invention also refer to the use of a compound of formula (I) or (I*) according to the invention or of a composition according to the invention for the preparation of a medicine.


The present invention also provides the use of the compounds of formula (I) or (I*) on the control of bacteria. The compound according to the invention is usually used in combination with pharmaceutically acceptable excipient.


The present invention also refer to a compound of formula (I) or (I*) according to the invention for use as antibacterial agent.


The present invention also refer to a compound of formula (I) or (I*) according to the invention for use as inhibitor of beta-lactamase.


The present invention also refer to the use of a compound of formula (I) or (I*) according to the invention or of a composition according to the invention for the preparation of an antibacterial agent medicine.


The present invention also refer to the use of a compound of formula (I) or (I*) according to the invention or of a composition according to the invention for the preparation of an inhibitor of beta-lactamase medicine.


The present invention also refer to the use of a compound of formula (I) or (I*) according to the invention or of a composition according to the invention for the preparation of an antibacterial agent and inhibitor of beta-lactamase medicine.


The present invention also refer to a compound of formula (I) or (I*) or a composition according to the invention or a kit according to the invention for use for the treatment or prevention of bacterial infections.


The present invention also refer to the use of a compound of formula (I) or (I*) or a composition according to the invention for the preparation of a medicine for the treatment or prevention of bacterial infections.


The terms “prevention”, “prevent” and “preventing” as used herein are intended to mean the administration of a compound or composition according to the invention in order to prevent infection by bacteria or to prevent occurrence of related infection and/or diseases. The terms “prevention”, “prevent” and “preventing” also encompass the administration of a compound or composition according to the present invention in order preventing at least one bacterial infection, by administration to a patient susceptible to be infected, or otherwise at a risk of infection by this bacteria.


The terms “treatment”, “treat” and “treating” as used herein are intended to mean in particular the administration of a treatment comprising a compound or composition according to the present invention to a patient already suffering from an infection. The terms “treatment”, “treat” and “treating” as used herein, also refer to administering a compound or composition according to the present invention, optionally with one or more antibacterial agent, in order to:

    • reduce or eliminate either a bacterial infection or one or more symptoms associated with bacterial infection, or
    • retard the progression of a bacterial infection or of one or more symptoms associated with bacterial infection, or
    • reduce the severity of a bacterial infection or of one or more symptoms associated with the bacterial infection, or
    • suppress the clinical manifestation of a bacterial infection, or
    • suppress the manifestation of adverse symptoms of the bacterial infection.


The expression “infection” or “bacterial infection” as used herein, includes the presence of bacteria, in or on a subject, which, if its growth were inhibited, would result in a benefit to the subject. As such, the term “infection” or “bacterial infection” in addition to referring to the presence of bacteria also refers to normal flora, which is not desirable. The term “infection” includes infection caused by bacteria. Exemplary of such bacterial infection are urinary tract infection (UTI), kidney infections (pyelonephritis), gynecological and obstetrical infections, respiratory tract infection (RTI), acute exacerbation of chronic bronchitis (AECB), Community-acquired pneumonia (CAP), hospital-acquired pneumonia (HAP), ventilator associated pneumonia (VAP), intra-abdominal pneumonia (IAI), acute otitis media, acute sinusitis, sepsis, catheter-related sepsis, chancroid, chlamydia, skin infections, bacteremia.


The term “growth” as used herein, refers to the growth of one or more microorganisms and includes reproduction or population expansion of the microorganism, such as bacteria. The term also includes maintenance of on-going metabolic processes of a microorganism, including processes that keep the microorganism alive.


The bacteria are chosen amongst gram-positive bacteria or gram-negative bacteria, preferably the gram-negative bacteria.


The bacteria can be also chosen among bacteria producing “beta-lactamase” or “β-lactamase”. These bacteria are well known by the skilled person.


The term “beta-lactamase” or “β-lactamase” as used herein, refers to any enzyme or protein or any other substance that is able to break down a beta-lactam ring. The term “beta-lactamase” or “β-lactamase” includes enzymes that are produced by bacteria and that have the ability to hydrolyze, either partially or completely, the beta-lactam ring present in a compound such as an antibacterial agent.


Among the gram-positive bacteria, the bacteria according to the invention is preferably chosen among Staphylococcus, Streptococcus, Staphylococcus species (including Staphylococcus aureus, Staphylococcus epidermidis), Streptococcus species (including Streptococcus pneumonia, Streptococcus agalactiae), Enterococcus species (including Enterococcus faecalis and Enterococcus faecium).


Among the gram-negative bacteria, the bacteria according to the invention is preferably chosen among Acinetobacter species (including Acinetobacter baumannii), Citrobacter species, Escherichia species (including Escherichia coli), Haemophilus influenza, Morganella morganii, Klebsiella species (including Klebsiella pneumonia), Enterobacter species (including Enterobacter cloacae), Neisseria gonorrhoeae, Burkholderia species (including Burkholderia cepacia), Proteus species (including Proteus mirabilis), Serratia species (including Serratia marcescens), Providencia species, Pseudomonas aeruginosa.


The invention thus preferably refers to a compound of formula (I) or (I*) or a composition according to the invention or a kit according to the invention for use for the treatment or prevention of bacterial infection, preferably caused by bacteria producing one or more beta-lactamase(s). Preferably, the bacteria are chosen amongst gram-positive bacteria or gram-negative bacteria, preferably gram-negative bacteria.


The present invention also refer to the use of a compound of formula (I) or (I*) or a composition according to the invention for the preparation of a medicine for the treatment or prevention of bacterial infection, preferably caused by bacteria producing one or more beta-lactamase(s). Preferably, the bacteria are chosen amongst gram-positive bacteria or gram-negative bacteria, preferably gram-negative bacteria.


The present invention also refers to the kit as defined above, for a simultaneous, separated or sequential administration to a patient in need thereof for use for the treatment or prevention of bacterial infections, preferably caused by bacteria producing one or more beta-lactamase(s). Preferably, the bacteria are chosen amongst gram-positive bacteria or gram-negative bacteria, preferably gram-negative bacteria.


The present invention also refers to compound of formula (I) or (I*) for use in combination with one or more further antibacterial agent, preferably at least one of the further antibacterial agent is a beta lactam, for the treatment or prevention of bacterial infections, preferably caused by bacteria producing one or more beta-lactamase(s). Preferably, the bacteria are chosen amongst gram-positive bacteria or gram-negative bacteria, preferably gram-negative bacteria. Wherein the compounds of formula (I) or (I*) and the further antibacterial agent are administered simultaneously, separately or sequentially.


The present invention also refers to the use of a compound of formula (I) or (I*) or a composition according to the invention or a kit according to the invention for the prevention or treatment of bacterial infections, preferably of bacterial infection, preferably caused by bacteria producing one or more beta-lactamase(s). Preferably, the bacteria are chosen amongst gram-positive bacteria or gram-negative bacteria, preferably gram-negative bacteria.


The present invention also relates to a method for the treatment or prevention of bacterial infections, preferably caused by bacteria producing one or more beta-lactamase(s) comprising the administration of a therapeutically effective amount of compound of formula (I) or (I*), a composition according to the invention or a kit according to the invention to a patient in need thereof. Preferably, the bacteria are chosen amongst gram-positive bacteria or gram-negative bacteria, preferably gram-negative bacteria.


The term “patient” means a person or an animal at risk of being infected by bacteria or, a person or an animal being infected by bacteria, preferably by gram-positive and/or by gram-negative bacteria. As used herein, the term “patient” refers to a warm-blooded animal such as a mammal, preferably a human or a human child, who is afflicted with, or has the potential to be afflicted with one or more infections and conditions described herein. The identification of those subjects who are in need of treatment of herein-described diseases and conditions is well within the ability and knowledge of one skilled in the art. A veterinarian or a physician skilled in the art can readily identify, by the use of clinical tests, physical examination, medical/family history or biological and diagnostic tests, those subjects who are in need of such treatment.


The expression “therapeutically effective amount” or “pharmaceutically effective amount” as used herein, refer to an amount of a compound according to the invention, which when administered to a patient in need thereof, is sufficient to effect treatment for disease-states, conditions, or disorders for which the compound has utility. Such an amount would be sufficient to elicit the biological or medical response of a tissue system, or patient that is sought by a researcher or a clinician. The amount of a compound according to the invention which constitutes a “therapeutically effective amount” will vary, notably depending on the compound itself and its biological activity, the composition used for administration, the time of administration, the route of administration, the rate of excretion of the compound, the duration of the treatment, the type of disease-state or disorder being treated and its severity, drugs used in combination with or coincidentally with the compounds of the invention, and the age, body weight, general health, sex and diet of the patient. Such a “therapeutically effective amount” can be determined by one of ordinary skilled in the art having regard to its own knowledge, and this disclosure. Preferably, the compounds according to the invention are administered in an amount comprised between 0.1 to 30 g per day.


The compounds according to the invention may be provided in an aqueous physiological buffer solution for parenteral administration.


The compounds of the present invention are also capable of being administered in unit dose forms, wherein the expression “unit dose” means a single dose which is capable of being administered to a patient, and which can be readily handled and packaged, remaining as a physically and chemically stable unit dose comprising either the active compound itself, or as a pharmaceutically acceptable composition, as described hereinafter. Compounds provided herein can be formulated into pharmaceutical compositions by admixture with one or more pharmaceutically acceptable excipients. Such unit dose compositions may be prepared for use by oral administration, particularly in the form of tablets, simple capsules or soft gel capsules; or intranasally, particularly in the form of powders, nasal drops, or aerosols; or dermally, for example, topically in ointments, creams, lotions, gels or sprays, or via trans-dermal patches.


The compositions may conveniently be administered in unit dosage form and may be prepared by any of the methods well-known in the pharmaceutical art, for example, as described in Remington: The Science and Practice of Pharmacy, 20th ed.; Gennaro, A. R., Ed.; Lippincott Williams & Wilkins: Philadelphia, Pa., 2000.


Preferred formulations include pharmaceutical compositions in which a compound of the present invention is formulated for oral or parenteral administration.


For oral administration, tablets, pills, powders, capsules, troches and the like can contain one or more of any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, or gum tragacanth; a diluent such as starch or lactose; a disintegrant such as starch and cellulose derivatives; a lubricant such as magnesium stearate; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, or methyl salicylate. Capsules can be in the form of a hard capsule or soft capsule, which are generally made from gelatin blends optionally blended with plasticizers, as well as a starch capsule. In addition, dosage unit forms can contain various other materials that modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or enteric agents. Other oral dosage forms syrup or elixir may contain sweetening agents, preservatives, dyes, colorings, and flavorings. In addition, the active compounds may be incorporated into fast dissolved, modified-release or sustained-release preparations and formulations, and wherein such sustained-release formulations are preferably bi-modal. Preferred tablets contain lactose, cornstarch, magnesium silicate, croscarmellose sodium, povidone, magnesium stearate, or talc in any combination. For oral administration, tablets, pills, powders, capsules, troches and the like can be coated or can comprise a compound or composition enables to neutralize the gastric acid o in order for the compounds according to the invention to pass through the stomach without any degradation.


Liquid preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. The liquid compositions may also include binders, buffers, preservatives, chelating agents, sweetening, flavoring and coloring agents, and the like. Non-aqueous solvents include alcohols, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and organic esters such as ethyl oleate. Aqueous carriers include mixtures of alcohols and water, buffered media, and saline. In particular, biocompatible, biodegradable lactide polymer, lactide/glycolide copolymer, or polyoxyethylene-polyoxypropylene copolymers may be useful excipients to control the release of the active compounds. Intravenous vehicles can include fluid and nutrient replenishers, electrolyte replenishers, such as those based on Ringer's dextrose, and the like. Other potentially useful parenteral delivery systems for these active compounds include ethylene-vinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes.


Alternative modes of administration include formulations for inhalation, which include such means as dry powder, aerosol, or drops. They may be aqueous solutions containing, for example, polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or oily solutions for administration in the form of nasal drops, or as a gel to be applied intranasally. Formulations for buccal administration include, for example, lozenges or pastilles and may also include a flavored base, such as sucrose or acacia, and other excipients such as glycocholate. Formulations suitable for rectal administration are preferably presented as unit-dose suppositories, with a solid based carrier, and may include a salicylate. Formulations for topical application to the skin preferably take the form of an ointment, cream, lotion, paste, gel, spray, aerosol, or oil. Carriers which can be used include petroleum jelly, lanolin, polyethylene glycols, alcohols, or their combinations. Formulations suitable for transdermal administration can be presented as discrete patches and can be lipophilic emulsions or buffered, aqueous solutions, dissolved and/or dispersed in a polymer or an adhesive.


The pharmaceutical composition according to the invention can also comprise any compound or excipient for sustain release of the active compounds.


The present invention also relates to process for the preparation of compounds of formula (I) and (I*) as defined above.


Preparation of the Compounds and Biological Activity:

Abbreviations or symbols used herein include:

  • ACHN: 1,1′-azobis(cyclohexanecarbonitrile)
  • ACN: acetonitrile
  • AcOH: acetic acid
  • Bn: benzyl
  • Boc: tert-butoxycarbonyl
  • Boc2O: tert-butoxycarbonyl anhydride
  • BocON: [2-(tert-butoxycarbonyloxyimino)-2-phenylacetonitrile]
  • bs: broad singlet
  • Burgess reagent: methyl N-(triethylammoniosulfonyl)carbamate
  • Cbz: carboxybenzyl
  • CbzCl: benzyl chloroformate
  • CFU: colony-forming units
  • CLSI: clinical laboratory standards institute
  • d: doublet
  • DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene
  • DCM: dichloromethane
  • DCE: 1,2-dichloroethane
  • dd: doublet of doublet
  • ddd: doublet of doublet of doublet
  • ddt: doublet of doublet of triplet
  • dq: doublet of quartet
  • dt: doublet of triplet
  • DTA: di-tert-butylazodicarboxylate
  • DEAD: diethyl azodicarboxylate
  • Dess-Martin periodinane: 1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one
  • DIAD: diisopropyl azodicarboxylate
  • DIPEA: N,N-diisopropylethylamine
  • DMAP: 4-dimethylaminopyridine
  • DMF: N,N-dimethylformamide
  • DMSO: dimethylsulfoxide
  • EtOAc: ethyl acetate
  • Et2O: diethyl ether
  • h: hours
  • HATU: 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium-3-oxid hexafluorophosphate
  • iPrOH: isopropanol
  • m: multiplet
  • min: minutes
  • MeOH: methanol
  • MeONa: sodium methoxide
  • MIC: minimum inhibitory concentration
  • MS: mass spectrometry
  • MsCl: methanesulfonyl chloride
  • NBS: N-bromosuccinimide
  • NMR: nuclear magnetic resonance spectroscopy
  • Ns: nosyl, nitrobenzenesulfonyl
  • OMs: methanesulfonate
  • OTs: toluenesulfonate
  • OTf: trifluoromethanesulfonate
  • Pd(Ph3)4: tetrakis(triphenylphosphine)palladium(0)
  • PG: protective group
  • PhSH: thiophenol
  • PMe3: trimethylphosphine
  • PPh3: triphenylphosphine
  • Ppm: parts per million
  • q: quartet
  • rt: room temperature
  • s: singlet
  • SEM: [2-(trimethylsilyl)ethoxy]methyl
  • t: triplet
  • td: triplet of doublet
  • TBAF: tetra-n-butylammonium fluoride
  • TBDMSOTf: trifluoromethanesulfonic acid tert-butyldimethylsilyl ester
  • TBDMS tert-butyldimethylsilyl
  • TBDPS tert-butyldiphenylsilyl
  • TBSOTf: trimethylsilyl trifluoromethanesulfonate
  • tBuOK: potassium tert-butoxide
  • TEA: triethylamine
  • Tf: trifluoromethanesulfonate
  • TFA: trifluoroacetic acid
  • THF: tetrahydrofuran
  • THP: tetrahydropyranyl
  • TLC: thin layer chromatography
  • TMSI: Iodotrimethylsilane
  • Tr: trityl (triphenylmethyl)


The compounds of the present invention of formula (I) and (I*) can be prepared respectively by the following reaction schemes 1 to 8.


It should be understood that the processes of schemes 1 to 8 can be adapted for preparing further compounds according to the invention. Further processes for the preparation of compounds according to the invention can be derived from the processes of schemes 1 to 8.




embedded image


Nucleophilic Substitution could be performed by reaction of the appropriate ester (II) with appropriate intermediate (III) in solvent such as DMSO, DMF, THF or ACN, preferably DMSO, in a presence of a base such as DBU, TEA, K2CO3 or Cs2CO3, preferably DBU. In some particular cases, preparation of compounds (III) where R1 is C(═O)NH2 and CN are respectively described in WO2003063864 (intermediate 33a) and in WO2013038330 (intermediate IX). The preparation of other compounds of formula (III) can be derived by the skilled person from WO2003063864 and WO2013038330.




embedded image


Compounds of formula (V) can be obtained from compounds of formula (III) by Nucleophilic Substitution with the appropriate ester (IV), wherein PG1 is a protecting group such as ethyl, allyl or benzyl, in a solvent such as DMSO, DMF, THF or ACN, preferably DMSO and DMF, and in a presence of a base such as DBU, TEA, K2CO3 or Cs2CO3, preferably DBU and K2CO3.


Compounds of formula (VI) can be obtained from compounds of formula (V) by hydrogenolysis in a solvent such as THF, MeOH, EtOH, DCM, DMF, preferably THF, in a presence of a catalytic amount of Pd/C and in a presence or not of a base such as DIPEA or TEA, or by saponification in a solvent such as THF, H2O, MeOH, dioxane, preferably THF and H2O, in a presence of a base such as NaOH, LiOH or KOH, preferably LiOH.


Compounds of formula (I) and (I*) can be obtained from compounds of formula (VI) by Nucleophilic substitution with the appropriate compounds of formula (VII), wherein X is a leaving group such as Cl, Br, I, OTf, OMs or OTs, in a solvent such as DMSO, DMF, THF or ACN, preferably DMSO and DMF, and in a presence of a base such as DBU, TEA, K2CO3 or Cs2CO3, preferably DBU and K2CO3.




embedded image


Compounds of formula (IX) can be obtained from compounds of formula (III) by Nucleophilic Substitution with the appropriate ester (VIII), wherein M is H, Li, Na or K, in a solvent such as DMSO, DMF, THF or ACN, preferably DMSO and DMF, and in a presence of a base such as DBU, TEA, K2CO3 or Cs2CO3, preferably DBU and K2CO3.


Compounds of formula (I) and (I*) can be obtained from compounds of formula (IX) by Nucleophilic substitution with the appropriate compounds of formula (VII), wherein X is a leaving group such as Cl, Br, I, OTf, OMs or OTs, in a solvent such as DMSO, DMF, THF or ACN, preferably DMSO and DMF, and in a presence or not of a base such as DBU, TEA, K2CO3 or Cs2CO3, preferably DBU and K2CO3.




embedded image


Compounds (I) and (I*) could be obtained from commercially available compound (X) by following procedure D, wherein PG1 is a protecting group such as ethyl, allyl or benzyl.




embedded image


Compounds (I) and (I*) could be obtained from commercially available compound (IV) by following procedure E, wherein PG1 is defined as above and PG2 is a protecting group such as TBDMS or TBDPS.




embedded image


Compounds (1) and (I*) where Y2═H could be obtained from compounds (1) and (I*) where Y2≠H by hydrogenolysis in a solvent such as THF, MeOH, EtOH, DCM, DMF, preferably THF, in a presence of a catalytic amount of Pd/C and in a presence or not of a base such as DIPEA or TEA, or by saponification in a solvent such as THF, H2O, MeOH, dioxane, preferably THF and H2O, in a presence of a base such as NaOH, LiOH or KOH, preferably LiOH.




embedded image


Transesterification could be performed by reaction of the appropriate ester (XI) with appropriate alcohol (XII) neat or in a solvent such as toluene or dioxane, in a presence or not of a catalytic amount of acid such as MeSO3H.




embedded image


Acylation could be performed by reaction of the appropriate acyl chloride (XIII) with appropriate alcohol (XII) in a solvent such as ACN or Et2O, in a presence of a base such as pyridine or TEA.







EXAMPLES

The following examples 1, 2, 3, 12, 13, 14 and 15 are provided.


The following examples 6, 7, 8, 9, 10, 11, 16 and 17 are specifically provided for the purpose of illustrating the present invention and by no means should be interpreted to limit the scope of the present invention.


The first part represents the preparation of the compounds (intermediates and final compounds) whereas the second part describes the evaluation of antibacterial activity and bioavailability of compounds according to the invention.


Example 1: Synthesis of cyclohexyl 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate cyclohexyl 2-bromo-2,2-difluoro-acetate (1a)

In a sealed vial, a solution of ethyl 2-bromo-2,2-difluoro-acetate (2 mL, 15.6 mmol) and cyclohexanol (1.56 g, 15.6 mmol) was heated at 120° C. for 65 h. The reaction mixture was slightly concentrated. The crude was purified by chromatography on silica gel (heptane/DCM 100/0 to 50/50) to afford intermediate (1a) (1.03 g, 5.06 mmol, 32%).



1H NMR (300 MHz, CDCl3): δ (ppm) 1.30-1.46 (m, 3H), 1.51-1.65 (m, 3H), 1.74-1.82 (m, 2H), 1.88-1.93 (m, 2H), 4.97 (tt, J=3.8/8.5 Hz, 1H).


Step 2: Preparation of Compound cyclohexyl 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate, Example 1

At rt, DBU (127 μL, 0.85 mmol) was slowly added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (150 mg, 0.81 mmol) and cyclohexyl 2-bromo-2,2-difluoro-acetate (1a) (416 mg, 1.62 mmol) in DMSO (1 mL). The mixture was stirred at rt for 20 min and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/Acetone 9/1 to 4/6) to afford Example 1 (84 mg, 0.23 mmol, 28%).


MS m/z ([M+H]+) 362.



1H NMR (300 MHz, CDCl3): δ (ppm) 1.23-1.46 (m, 3H), 1.49-1.64 (m, 4H), 1.72-2.05 (m, 5H), 2.11-2.20 (m, 1H), 2.38-2.45 (m, 1H), 2.98 (d, J=12.0 Hz, 1H), 3.25-3.31 (m, 1H), 3.95-3.98 (m, 1H), 4.06 (d, J=7.7 Hz, 1H), 4.97 (td, J=4.5/9.0 Hz, 1H), 5.49 (bs, 1H), 6.50 (bs, 1H).



19F NMR (282 MHz, CDCl3): δ(ppm) −83.64 (d, J=139 Hz, 1F), −83.57 (d, J=139 Hz, 1F).


Example 2: Synthesis of 4-heptanyl 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate 4-heptanyl 2-bromo-2,2-difluoro-acetate (2a)

In a sealed vial, a solution of ethyl 2-bromo-2,2-difluoro-acetate (1 mL, 7.8 mmol) and 4-heptanol (906 mg, 7.8 mmol) was heated at 120° C. for 60 h. The reaction mixture was slightly concentrated. The crude was purified by chromatography on silica gel (heptane/DCM 100/0 to 50/50) to afford intermediate (2a) (510 mg, 1.86 mmol, 24%).



1H NMR (300 MHz, CDCl3): δ (ppm) 0.93 (t, J=7.3 Hz, 6H), 1.28-1.47 (m, 4H), 1.54-1.75 (m, 4H), 5.07 (tt, J=4.9/7.7 Hz, 1H).


Step 2: Preparation of Compound 4-heptanyl 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate, Example 2

At rt, a solution of DBU (103 μL, 0.69 mmol) in DMSO (200 μL) was slowly added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (123 mg, 0.66 mmol) and intermediate (2a) (200 mg, 073 mmol) in DMSO (1 mL). The mixture was stirred at rt for 30 min and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 9/1 to 4/6) to afford Example 2 (120 mg, 0.32 mmol, 48%).


MS m/z ([M+H]+) 378.



1H NMR (300 MHz, CDCl3): δ (ppm) 0.85-0.90 (m, 6H), 1.20-1.34 (m, 4H), 1.55-1.93 (m, 7H), 2.04-2.14 (m, 1H), 3.05-3.11 (m, 1H), 3.15 (d, J=12.1 Hz, 1H), 3.84-3.94 (m, 2H), 5.01-5.10 (m, 1H), 7.38 (bs, 1H), 7.54 (bs, 1H).



19F NMR (282 MHz, CDCl3): δ(ppm) −82.31 (d, J=137.4, 1F), −81.93 (d, J=137.4, 1F).


Example 3: Synthesis of 2-adamantyl 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate 2-adamantyl 2-bromo-2,2-difluoro-acetate (3a)

At 0° C., Pyridine (167 μL, 2.06 mmol) was added dropwise to a suspension of 2-adamantanol (174 mg, 1.03 mmol) and 2-bromo-2,2-difluoro-acetyl chloride (230 mg, 1.13 mmol) in ACN (1 mL). The mixture was then warmed to rt, stirred for 1 h and concentrated. The residue was triturated with cyclohexane and filtered. The filtrate was concentrated to give (3a) as colorless oil (300 mg, 0.95 mmol, 94%).



1H NMR (300 MHz, CDCl3): δ (ppm) 1.58-1.67 (m, 2H), 1.73-1.84 (m, 4H), 1.85-1.96 (m, 4H), 2.01-2.17 (m, 4H), 5.12 (t, J=3.6 Hz, 1H).


Step 2: Preparation of 2-adamantyl 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate, Example 3

At rt, DBU (850 μL, 5.67 mmol) was slowly added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (1 g, 5.4 mmol) and intermediate (3a) (1.97 g, 6.37 mmol) in DMSO (6 mL). The mixture was stirred at rt for 10 min and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 10/0 to 4/6) to provide Example 3 as white solid (820 mg, 1.98 mmol, 37%). MS m/z ([M+H]+ 414).



1H NMR (300 MHz, CDCl3): δ (ppm) 1.57-1.63 (m, 2H), 1.72-2.21 (m, 13H), 2.38-2.47 (m, 1H), 2.98 (d, J=12.0 Hz, 1H), 3.25-3.31 (m, 1H), 3.96-3.99 (m, 1H), 4.06 (d, J=7.6 Hz, 1H), 5.11-5.16 (m, 1H), 5.51 (bs, 1H), 6.51 (bs, 1H).



19F NMR (282 MHz, CDCl3): δ (ppm) −83.60 (d, J=138.6 Hz, 1F), −82.98 (d, J=138.6 Hz, 1F).


Example 6: Synthesis of sodium 2-[[(2S,5R)-2-cyano-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate benzyl 2-bromo-2,2-difluoro-acetate (6a)

A solution of ethyl 2-bromo-2,2-difluoro-acetate (5.68 g, 28 mmol) and benzyl alcohol (2.88 g, 26.7 mmol) with a catalytic amount of methanesulfonic acid (10 mg) was heated at 120° C. for 16 h. The mixture was concentrated. The crude was purified by chromatography on silica gel (heptane/DCM 100/0 to 25/75) to afford intermediate (6a) (3.9 g, 14.7 mmol, 55%).



1H NMR (300 MHz, CDCl3): δ (ppm) 5.40 (s, 2H), 7.45 (s, 5H).


Step 2: Preparation of Intermediate benzyl 2-[[(2S,5R)-2-cyano-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate (6b)

At rt, DBU (65 μL, 0.44 mmol) was slowly added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carbonitrile (prepared according to the procedure described in WO2013038330 compound IX) (72 mg, 0.43 mmol) and intermediate (6a) (237 mg, 0.89 mmol) in DMSO (1 mL). The mixture was stirred at rt for 10 min and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 10/0 to 1/9) to provide intermediate (6b) as white solid (40 mg, 0.11 mmol, 26%).


MS m/z ([M+H]+ 352).



1H NMR (300 MHz, CDCl3): δ (ppm) 1.90-2.07 (m, 2H), 2.17-2.39 (m, 2H), 3.19-3.26 (m, 1H), 3.43 (d, J=12.6 Hz, 1H), 3.93 (bs, 1H), 4.46 (d, J=7.1 Hz, 1H), 5.35 (s, 2H), 7.37-7.42 (m, 5H).



19F NMR (282 MHz, CDCl3): δ (ppm) −83.20 (d, J=139.7 Hz, 1F), −82.64 (d, J=139.7 Hz, 1F).


Step 3: Preparation of Intermediate diisopropylethylammonium 2-[[(2S,5R)-2-cyano-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate (6c)

At rt, a solution of intermediate (6b) (40 mg, 0.11 mmol) and DIPEA (57 μL, 0.33 mmol) in THF (2 mL) was purged with nitrogen. The catalyst Pd—C 10% (10 mg) was added. The mixture was purged with hydrogen, stirred for 30 min, filtered and the filtrate was concentrated. The residue was diluted with toluene and concentrated twice to give intermediate (6c) which was used in the next step without further purification.


Step 4: Preparation of Sodium 2-[[(2S,5R)-2-cyano-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate, Example 6

A solution of sodium Iodide (120 mg, 0.8 mmol) in acetone (2 mL) was dropped in a solution of intermediate (6c) from step 3 in acetone (3 mL). The mixture was vigorously stirred for 16 h and then filtered off. The precipitate was washed with acetone and dried under vacuum to give Example 6 as white solid (11 mg, 0.039 mmol, 35%).


MS m/z ([M+H]+ 262).


MS m/z ([M−H]260).



1H NMR (300 MHz, DMSO-d6): δ(ppm) 1.87-2.05 (m, 4H), 3.29 (bs, 2H), 3.97 (bs, 1H), 4.67-4.69 (m, 1H).



19F NMR (282 MHz, DMSO-d6): δ (ppm) −82.04 (d, J=131.0 Hz, 1F), −81.42 (d, J=131.0 Hz, 1F).


Example 7: Synthesis of (2-methoxy-1,1-dimethyl-ethyl) 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate (2-methoxy-1,1-dimethyl-ethyl) 2-bromo-2,2-difluoro-acetate (7a)

At 0° C., pyridine (1.81 mL, 22.5 mmol) was added dropwise to a suspension of 1-methoxy-2-methyl-2-propanol (1.71 mL, 15 mmol) and 2-bromo-2,2-difluoro-acetyl chloride (3.3 g, 17 mmol) in ACN (13 mL). The mixture was then warmed to rt, stirred for 30 minutes and concentrated. The residue was triturated with heptane and filtered. The filtrate was concentrated to give (7a) as colorless oil (1.83 g, 7 mmol, 47%).


Step 2: Preparation of Compound ((2-methoxy-1,1-dimethyl-ethyl) 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate, Example 7

At rt, K2CO3 (519 mg, 3.75 mmol) was added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (632 mg, 3 mmol) and intermediate (7a) (1.7 g, 6 mmol) in DMSO (3 mL). The mixture was stirred at rt for 2 h30 and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 8/2 to 5/5) to afford Example 7 (620 mg, 1.62 mmol, 50%).


MS m/z ([M+H]+) 366.



1H NMR (300 MHz, CDCl3): δ (ppm) 1.57 (d, J=4.3 Hz, 6H), 1.77-1.91 (m, 1H), 2.01 (M, 1H), 2.15 (d, J=2.7 Hz, 1H), 2.44 (m, 1H), 3.02 (d, J=11.9 Hz, 1H), 3.28-3.33 (m, 1H), 3.43 (s, 3H), 3.59 (d, J=1.1 Hz, 2H), 4.02 (d, J=3.1 Hz, 1H), 4.10 (d, J=7.7 Hz, 1H), 5.74 (s, 1H), 6.58 (s, 1H).



19F NMR (282 MHz, CDCl3): δ(ppm) −83.60 (d, J=139.2 Hz, 1F), −83.09 (d, J=139.2 Hz, 1F).


Example 8: Synthesis of (4-methyltetrahydropyran-4-yl) 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate (4-methyltetrahydropyran-4-yl) 2-bromo-2,2-difluoro-acetate (8a)

At 0° C., pyridine (1.81 mL, 22.5 mmol) was added dropwise to a suspension of 4-methyltetrahydropyran-4-ol (1.74 g, 15 mmol) and 2-bromo-2,2-difluoro-acetyl chloride (3.3 g, 17 mmol) in ACN (13 mL). The mixture was then warmed to rt, stirred for 30 minutes and concentrated. The residue was triturated with heptane and filtered. The filtrate was concentrated to give (8a) as yellow oil (1.9 g, 7 mmol, 45%).


Step 2: Preparation of Compound (4-methyltetrahydropyran-4-yl) 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate, Example 8

At rt, K2CO3 (425 mg, 3.08 mmol) was added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (536 mg, 2.8 mmol) and intermediate (8a) (1.52 g, 5.5 mmol) in DMSO (3 mL). The mixture was stirred at rt for 1 h30 and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 9/1 to 5/5) to afford Example 8 (680 mg, 1.8 mmol, 62%).


MS m/z ([M+H]+) 378.



1H NMR (300 MHz, CDCl3): δ (ppm) 1.67 (s, 3H), 1.77-2.09 (m, 4H), 2.13-2.34 (m, 3H), 2.46 (dd, J=15.0, 7.0 Hz, 1H), 3.04 (d, J=12.0 Hz, 1H), 3.26-3.37 (m, 1H), 3.64-3.86 (m, 4H), 4.01 (d, J=3.1 Hz, 1H), 4.10 (d, J=7.5 Hz, 1H), 5.72 (s, 1H), 6.57 (s, 1H).



19F NMR (282 MHz, CDCl3): δ(ppm) −83.14 (d, J=137.2 Hz, 1F), −83.68 (d, J=137.2 Hz, 1F).


Example 9: Synthesis of [2-methoxy-1-(methoxymethyl)ethyl]2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of [2-(2-methoxyethoxy)-1,1-dimethyl-ethyl]2-bromo-2,2-difluoro-acetate (9a)

At 0° C., pyridine (1.94 mL, 24 mmol) was added dropwise to a suspension of 1-(2-methoxyethoxy)-2-methyl-propan-2-ol (2.4 g, 16 mmol) and 2-bromo-2,2-difluoro-acetyl chloride (3.60 g, 18 mmol) in Et2O (32 mL). The mixture was then warmed to rt, stirred for 1 h, diluted with Et2O, washed with citric acid (2*30 mL). Organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated to give (9a) as colorless oil (4.8 g, 16 mmol, 100%).



1H NMR (400 MHz, CDCl3): δ (ppm) 1.56 (s, 6H), 3.38 (s, 3H), 3.52-3.56 (m, 2H), 3.65-3.70 (m, 4H).


Step 2: Preparation of [2-methoxy-1-(methoxymethyl)ethyl]2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate (Example 9)

At rt, DBU (199 mg, 1.44 mmol) was slowly added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (1 g, 4.59 mmol) and intermediate (9a) (2.38 g, 7.81 mmol) in DMSO (4.6 mL). The mixture was stirred at rt for 1 h and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 100/0 to 40/60) to provide Example 9 as colourless oil (1.21 g, 2.95 mmol, 65%).


MS m/z ([M+H]+ 410



1H NMR (400 MHz, CDCl3): δ (ppm) 1.54 (s, 3H), 1.55 (s, 3H), 1.75-1.86 (m, 1H), 1.90-2.03 (m, 1H), 2.09-2.18 (m, 1H), 2.39 (dd, J=15.2, 7.1 Hz, 1H), 2.97 (d, J=12.0 Hz, 1H), 3.26 (dt, J=12.1, 3.2 Hz, 1H), 3.36 (s, 3H), 3.49-3.55 (m, 2H), 3.63-3.71 (m, 4H), 3.97 (q, J=3.0 Hz, 1H), 4.05 (d, J=7.7 Hz, 1H), 5.58-5.80 (m, 1H), 6.54 (s, 1H).



19F NMR (377 MHz, CDCl3): δ (ppm) −83.60 (d, J=138.9 Hz, 1F), −83.19 (d, J=138.9 Hz, 1F).


Example 10: Synthesis of [2-methoxy-1-(methoxymethyl)-1-methyl-ethyl]2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate [2-methoxy-1-(methoxymethyl)-1-methyl-ethyl]2-bromo-2,2-difluoro-acetate (10a)

At 0° C., pyridine (1.8 mL, 22.35 mmol) was added dropwise to a suspension of 1-methoxy-2-(methoxymethyl)propan-2-ol (2 g, 14.9 mmol) and 2-bromo-2,2-difluoro-acetyl chloride (3.28 g, 17 mmol) in Et2O (40 mL). The mixture was then warmed to rt, stirred for 30 minutes and then diluted with Et2O. The organic layer was washed 3 times with citric acid 5% (15 mL), dried over sodium sulfate, filtered and concentrated to give (10a) as colorless oil (3.89 g, 13.3 mmol, 90%).



1H NMR (300 MHz, CDCl3): δ (ppm) 1.46 (s, 3H), 3.31 (s, 6H), 3.52 (d, J=10.1 Hz, 2H), 3.67 (d, J=10.1 Hz, 2H).


Step 2: Preparation of Compound [2-methoxy-1-(methoxymethyl)-1-methyl-ethyl]2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate, Example 10

At rt, DBU (0.97 mL, 6.51 mmol) was slowly added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (1.15 g, 6.2 mmol) and intermediate (10a) (1.15 g, 6.2 mmol) in DMSO (5.5 mL). The mixture was stirred at rt for 1 h30 and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 9/1 to 5/5) to afford Example 10 (1.3 g, 3.29 mmol, 47%).


MS m/z ([M+H]+) 396



1H NMR (400 MHz, CDCl3): δ (ppm) 1.52 (s, 3H), 1.76-1.87 (m, 1H), 1.98 (m, 1H), 2.11-2.16 (m, 1H), 2.39 (m, 1H), 3.00 (d, J=11.9 Hz, 1H), 3.26 (dt, J=12.1, 3.1 Hz, 1H), 3.37 (s, 6H), 3.58 (dd, J=10.1, 7.5 Hz, 2H), 3.75 (dd, J=10.1, 3.3 Hz, 2H), 3.99 (t, J=3.1 Hz, 1H), 4.06 (d, J=7.7 Hz, 1H), 5.98 (s, 1H), 6.61 (s, 1H).



19F NMR (377 MHz, CDCl3): δ(ppm) −83.11 (s, 2F).


Example 11: Synthesis of [4-(methoxymethyl)tetrahydropyran-4-yl]2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate [4-(methoxymethyl)tetrahydropyran-4-yl]2-bromo-2,2-difluoro-acetate (11a)

At 0° C., pyridine (1.8 mL, 22.35 mmol) was added dropwise to a solution of 4-(methoxymethyl)tetrahydropyran-4-ol (2 g, 13.7 mmol) and 2-bromo-2,2-difluoro-acetyl chloride (3.04 g, 15.73 mmol) in Et2O (40 mL). The mixture was then warmed to rt, stirred for 30 minutes and then diluted with Et2O. The organic layer was washed 3 times with citric acid 5% (15 mL), dried over sodium sulfate, filtered and concentrated to give (1a) as yellow oil (3.9 g, 12.87 mmol, 94%).



1H NMR (400 MHz, CDCl3): δ (ppm) 1.79-1.87 (m, 2H), 2.21 (dd, J=2.4, 14.7 Hz, 2H), 3.34 (s, 3H), 3.67 (td, J=2.2, 11.7 Hz, 2H), 3.72 (s, 2H), 3.79-3.84 (m, 2H).



19F NMR (377 MHz, CDCl3) δ−60.66 (s, 2F).


Step 2: Preparation of Compound [4-(methoxymethyl)tetrahydropyran-4-yl]2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate, Example 11

At rt, DBU (0.85 mL, 5.67 mmol) was slowly added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (1 g, 5.4 mmol) and intermediate (11a) (2.45 g, 8.1 mmol) in DMSO (4 mL). The mixture was stirred at rt for 20 minutes and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 9/1 to 0/10) to afford Example 11 (1.2 g, 2.94 mmol, 54%) as white powder.


MS m/z ([M+H]+) 408



1H NMR (400 MHz, DMSO-d6): δ(ppm) 1.67-1.93 (m, 5H), 1.99-2.12 (m, 3H), 3.10 (d, J=12.1 Hz, 1H), 3.5 (d, J=12.1 Hz, 1H), 3.28 (s, 3H), 3.45-3.52 (m, 2H), 3.70-3.75 (m, 3H), 3.78 (d, J=10.7 Hz, 1H), 3.88 (d, J=6.5 Hz, 1H), 3.94-3.98 (m, 1H), 7.36 (bs, 1H), 7.52 (bs, 1H).



19F NMR (282 MHz, DMSO-d6): δ(ppm) −82.2 (d, J=137.8 Hz, 1F), −81.75 (d, J=137.8 Hz, 1F).


Example 12: Synthesis of tetrahydropyran-4-yl 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate tetrahydropyran-4-yl 2-bromo-2,2-difluoro-acetate (12a)

At 0° C., Pyridine (1.4 mL, 16.5 mmol) was added dropwise to a suspension of tetrahydropyran-4-ol (1.2 g, 11 mmol) and 2-bromo-2,2-difluoro-acetyl chloride (2.58 g, 15 mmol) in ACN (10 mL). The mixture was then warmed to rt, stirred for 30 minutes and concentrated. The residue was triturated with heptane and filtered. The filtrate was concentrated to give intermediate (12a) as colorless oil (1.8 g, 7 mmol, 60%).



1H NMR (300 MHz, CDCl3): δ (ppm) 1.79-1.94 (m, 2H), 1.99-2.16 (m, 2H), 3.60-3.68 (m, 2H), 3.91-4.02 (m, 2H), 5.16-5.24 (m, 1H).



19F NMR (282 MHz, CDCl3): δ(ppm) −61.05 (s, 2F).


Step 2: Preparation of Compound tetrahydropyran-4-yl 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate, Example 12

(2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (859 mg, 3.91 mmol) was added to a suspension of K2CO3 (545 mg, 3.95 mmol) and intermediate (12a) (1.8 g, 6.9 mmol) in DMSO (3 mL). The mixture was stirred at rt for 2.5 hours and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 9/1 to 7/3) to afford Example 12 (107.9 mg, 0.29 mmol, 8%).


MS m/z ([M+H]+) 364.



1H NMR (300 MHz, CDCl3): δ (ppm) 1.67-2.01 (m, 6H), 2.04-2.14 (m, 1H), 2.27-2.42 (m, 1H), 2.94 (d, J=12.0 Hz, 1H), 3.18-3.25 (m, 1H), 3.47-3.55 (m, 2H), 3.81-3.94 (m, 3H), 3.99 (d, J=7.5 Hz, 1H), 5.04-5.13 (m, 1H), 5.85 (s, 1H), 6.5 (s, 1H).



19F NMR (282 MHz, CDCl3): δ(ppm) −83.58 (d, J=141.17 Hz, 1F), −83.68 (d, J=140.29 Hz, 1F).


Example 13: Synthesis of [2-methoxy-1-(methoxymethyl)ethyl]2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate [2-methoxy-1-(methoxymethyl)ethyl]2-bromo-2,2-difluoro-acetate (13a)

At 0° C., Pyridine (0.50 mL, 6.25 mmol) was added dropwise to a suspension of 1,3-dimethoxypropan-2-ol (350 mg, 2.91 mmol) and 2-bromo-2,2-difluoro-acetyl chloride (650 mg, 3.35 mmol) in ACN (2.9 mL). The mixture was then warmed to rt, stirred for 1 h and concentrated. The residue was triturated with heptane and filtered. The filtrate was concentrated to give intermediate (13a) as colorless oil (620 mg, 2.25 mmol, 78%).



1H NMR (400 MHz, CDCl3) δ 3.38 (s, 6H), 3.61 (d, J=5.2 Hz, 4H), 5.29 (p, J=5.1 Hz, 1H).


Step 2: Preparation of [2-methoxy-1-(methoxymethyl)ethyl]2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate (Example 13)

At rt, K2CO3 (199 mg, 1.44 mmol) was slowly added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (310 mg, 1.31 mmol) and intermediate (13a) (620 mg, 2.24 mmol) in DMSO (1.3 mL). The mixture was stirred at rt for 4 h and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 100/0 to 50/50) to provide Example 13 as gum (102 mg, 0.27 mmol, 21%).


MS m/z ([M+H]+ 382



1H NMR (300 MHz, CDCl3) δ 1.72-1.88 (m, 1H), 1.88-2.05 (m, 1H), 2.06-2.24 (m, 1H), 2.40 (dd, J=15.1, 6.9 Hz, 1H), 2.97 (d, J=11.9 Hz, 1H), 3.21-3.30 (m, 1H), 3.36 (s, 3H), 3.37 (s, 3H), 3.53-3.66 (m, 4H), 3.94-4.01 (m, 1H), 4.06 (d, J=7.6 Hz, 1H), 5.31 (p, J=5.2 Hz, 1H), 5.69 (s, 1H), 6.53 (s, 1H).



19F NMR (282 MHz, CDCl3) δ (ppm) −82.84 (d, J=1.8 Hz, 2F).


Example 14: Synthesis of (4-methoxy-1,1-dimethyl-butyl) 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate (4-methoxy-1,1-dimethyl-butyl) 2-bromo-2,2-difluoro-acetate (14a)

At 0° C., pyridine (1.09 mL, 13.5 mmol) was added dropwise to a suspension of 5-methoxy-2-methyl-pentan-2-ol (1.20 g, 9 mmol) and 2-bromo-2,2-difluoro-acetyl chloride (2 g, 10 mmol) in ACN (8 mL). The mixture was then warmed to rt, stirred for 30 minutes and concentrated. The residue was triturated with heptane and filtered. The filtrate was concentrated to give intermediate (14a) as colorless oil (1.8 g, 6 mmol, 69%).



1H NMR (300 MHz, CDCl3): δ (ppm) 1.77 (s, 6H), 1.81-1.95 (m, 2H), 2.06-2.17 (m, 2H), 3.55 (s, 3H), 3.61 (t, J=6.3 Hz, 2H).



19F NMR (282 MHz, CDCl3): δ(ppm) −60.70 (s, 2F).


Step 2: Preparation of Compound (4-methoxy-1,1-dimethyl-butyl) 2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate (Example 14)

At rt, K2CO3 (483 mg, 3.5 mmol) was added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (555 mg, 3 mmol) and intermediate (14a) (1.8 g, 6 mmol) in DMSO (3 mL). The mixture was stirred at rt for 1 h30 and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 9/1 to 5/5) to afford Example 14 (410 mg, 1.04 mmol, 35%).


MS m/z ([M+H]+) 394.



1H NMR (300 MHz, CDCl3): δ (ppm) 1.59 (d, J=1.7 Hz, 6H), 1.63-1.70 (m, 2H), 1.80-1.95 (m, 3H), 1.97-2.08 (m, 1H), 2.13-2.25 (m, 1H), 2.45 (dd, J=15.1, 7.1 Hz, 1H), 3.02 (d, J=12.0 Hz, 1H), 3.29-3.33 (m, 1H), 3.36 (s, 3H), 3.43 (t, J=6.3 Hz, 2H), 3.99 (d, J=3.1 Hz, 1H), 4.10 (d, J=7.6 Hz, 1H), 5.64 (s, 1H), 6.57 (s, 1H).



19F NMR (282 MHz, CDCl3) δ (ppm) −83.96 and −83.47 (2s, 1F), −83.41 and −82.92 (2S, 1F).


Example 15: Synthesis of [4-(dipropylamino)cyclohexyl]2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate



embedded image


Step 1: Preparation of Intermediate 4-[tert-butyl(dimethyl)silyl]oxycyclohexanamine (15a)

At room temperature, a solution of trans-4-aminocyclohexanol (1 g, 8.7 mmol), imidazole (3 g, 44.5 mmol) and tert-butyldimethylsilyl chloride (3.93 g, 26.1 mmol) was stirred for 24 hours. The reaction mixture was concentrated and the crude was diluted in AcOEt. The organic extract was washed with water and brine, dried over sodium sulfate, filtered and concentrated to give intermediate (15a) as yellow liquid without further purification (2.37 g, quantitative yield).


MS m/z ([M+H]+) 230.



1H NMR (300 MHz, CDCl3): δ (ppm) 0.09 (s, 6H), 0.91 (s, 9H), 1.06-1.45 (m, 4H), 1.83 (d, J=11.3 Hz, 4H), 2.69 (tt, J=10.7, 3.6 Hz, 1H), 3.55 (tt, J=10.4, 3.9 Hz, 1H).


Step 2: Preparation of Intermediate 4-[tert-butyl(dimethyl)silyl]oxy-N, N-dipropyl-cyclohexanamine (15b)

A solution of intermediate (15a) (1.6 g, 6.97 mmol), 1-bromopropane (12.56 mL, 139 mmol), K2CO3 (2.5 g, 18.1 mmol) and sodium iodide (1.03 g, 6.92 mmol) was stirred at 85° C. for 16 hours. The reaction mixture was diluted with AcOEt and then washed with water and brine. Organic extract was dried over sodium sulfate, filtered and concentrated. The crude was purified by column chromatography on Silica gel (heptane/AcOEt 7/3 to 5/5) to give intermediate (15b) as brown liquid (680 mg, 2.17 mmol, 32%).


MS m/z ([M+H]+) 314.


Step 3: Preparation of Intermediate 4-(dipropylamino)cyclohexanol (15c)

At 0° C., a solution of HCl 4N in dioxane (2.71 mL) was added to a solution of intermediate (15b) (680 mg, 2.17 mmol) in dioxane (3 mL). The reaction mixture was stirred at RT for 30 minutes, diluted with AcOEt and then cooled to 0° C. The reaction mixture was basified with NaOH 2N until pH 7 and then extracted twice with AcOEt. Organic extracts were dried over sodium sulfate, filtered and concentrated. The crude was purified by column chromatography on Silica gel (DCM/MeOH 9/1 to 8/2) to give intermediate (15c) as brown liquid (270 mg, 1.35 mmol, 62%).


MS m/z ([M+H]+) 200.



1H NMR (300 MHz, CDCl3): δ (ppm) 0.88 (t, J=7.3 Hz, 6H), 1.28 (q, J=10.9 Hz, 9H), 1.87 (s, 2H), 2.03 (d, J=10.6 Hz, 2H), 2.47 (s, 4H), 3.57 (s, 1H).


Step 4: Preparation of Intermediate [4-(dipropylamino)cyclohexyl]2-bromo-2,2-difluoro-acetate (15d)

At 0° C., intermediate (15c) (270 mg, 1.35 mmol) was added to a solution of (2-bromo-2,2-difluoro-acetyl) 2-bromo-2,2-difluoro-acetate (511 mg, 1.54 mmol) in ACN (2 mL). The reaction mixture was stirred at room temperature for 30 minutes and then concentrated to give intermediate (15d) which was used in the next step as crude without further purification.


Step 5: Preparation of Compound [4-(dipropylamino)cyclohexyl]2-[[(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2,2-difluoro-acetate (Example 15)

At rt, K2CO3 (745 mg, 5.4 mmol) was added to a solution of (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxamide (prepared according to the procedure described in WO2003063864 compound 33a stade B) (250 mg, 1.35 mmol) and intermediate (15d) from step 4 in DMSO (2.5 mL). The mixture was stirred at rt for 2 h and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The crude was purified by chromatography on silica gel (DCM/acetone 7/3 to 0/10) to afford Example 15 (120 mg, 0.26 mmol, 20%).


MS m/z ([M+H]+) 461.



1H NMR (300 MHz, CDCl3): δ (ppm) 0.83 (t, J=7.3 Hz, 6H), 1.30-1.56 (m, 8H), 1.73-2.01 (m, 4H), 2.03-2.15 (m, 3H), 2.32-2.42 (m, 5H), 2.47-2.58 (m, 1H), 2.98 (d, J=12.0 Hz, 1H), 3.24 (d, J=12.1 Hz, 1H), 3.93 (q, J=2.9 Hz, 1H), 4.03 (d, J=7.5 Hz, 1H), 4.72-4.87 (m, 1H), 6.06 (s, 1H), 6.58 (s, 1H).



19F NMR (282 MHz, CDCl3) δ (ppm) −83.85 and −83.36 (2s, 1F), −83.32 and −82.82 (2S, 1F).


Example 16: (4-methyltetrahydropyran-4-yl) 2,2-difluoro-2-[[(2S,5R)-2-(methoxymethyl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]acetate



embedded image


Step 1: Preparation of Intermediate (2S,5R)-6-benzyloxy-2-(hydroxymethyl)-1,6-diazabicyclo[3.2.1]octan-7-one (16a)

At −78° C., isobutyl chloroformate (1.13 mL, 8.69 mmol) was slowly added to a solution of (2S,5R)-6-benzyloxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylic acid (2 g, 7.24 mmol) and N-methylmorpholine (875 μL, 7.96 mmol) in THF (50 mL). The mixture was stirred at −78° C. for 15 minutes and methanol (17 mL) was then added. Sodium borohydride (575 mg, 15.2 mmol) was added per portion at −78° C. The mixture was slowly warmed to room temperature until complete conversion to desired product. After 2 hours, DCM (100 mL) and HCl 1N (40 mL) were successively added to the mixture which was then extracted with DCM. Organic extracts were combined and successively washed with aqueous NaHCO3 sat. (50 mL) and brine. Organic extract was dried over Na2SO4, filtered and concentrated to give a crude. The crude was purified by column chromatography on SiO2 (gradient DCM/acetone 95/5 to 50/50) to give intermediate 16a (1.06 g, 4.04 mmol, 56%).


MS m/z ([M+H]+) 263.



1H-NMR (400 MHz, CDCl3) δ 1.33-1.40 (m, 1H), 1.52-1.60 (m, 1H), 1.91-2.06 (m, 3H), 2.88-2.93 (m, 1H), 3.00 (d, J=11.7 Hz, 1H), 3.33 (q, J=3.0 Hz, 1H), 3.52-3.61 (m, 2H), 3.68-3.75 (m, 1H), 4.90 (d, J=11.5 Hz, 1H), 5.05 (d, J=11.5 Hz, 1H), 7.32-7.44 (m, 5H).


Step 2: Preparation of Intermediate (2S,5R)-6-benzyloxy-2-(methoxymethyl)-1,6-diazabicyclo[3.2.1]octan-7-one (16b)

At 0° C., sodium hydride 60% (37 mg, 0.915 mmol) was added per portion to a solution of intermediate (16a) (200 mg, 0.762 mmol) and methyl iodide (325 μL, 2.29 mmol) in DMF (2 mL). The mixture was stirred at 0° C. for 15 minutes. The mixture was quenched at 0° C. with water and extracted with AcOEt. Organic extract was dried over Na2SO4, filtered and concentrated. The crude was purified by column chromatography on SiO2 (gradient DCM/acetone 10/0 to 5/5) to give intermediate (16b) (80 mg, 0.29 mmol, 38%).


MS m/z ([M+H]+) 277.



1H-NMR (400 MHz, CDCl3) δ 1.54-1.66 (m, 2H), 1.93-2.05 (m, 2H), 2.90-2.94 (m, 1H), 3.15 (d, J=11.6 Hz, 1H), 3.30 (q, J=2.7 Hz, 1H), 3.36 (s, 3H), 3.52-3.59 (m, 3H), 4.89 (d, J=11.4 Hz, 1H), 5.05 (d, J=11.4 Hz, 1H), 7.33-7.44 (m, 5H).


Step 3: Preparation of Intermediate (2S,5R)-6-hydroxy-2-(methoxymethyl)-1,6-diazabicyclo[3.2.1]octan-7-one (16c)

A solution of intermediate (16b) (80 mg, 0.29 mmol) in acetone (4 mL) was purged twice with nitrogen. The catalyst Palladium on activated charcoal 10% (16 mg) was added and the mixture was purged twice with hydrogen. The mixture was vigorously stirred under hydrogen atmosphere (1 bar) for 1 hour. The mixture was filtrated. The filtrate was concentrated to give intermediate (16c) as white solid (50 mg, 0.27 mmol, 92%) which was used without further purification.


MS m/z ([M+H]+) 187.


Step 4: Preparation of Compound (4-methyltetrahydropyran-4-yl) 2,2-difluoro-2-[[(2S,5R)-2-(methoxymethyl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]acetate (Example 16)

At rt, DBU (45 μL, 0.3 mmol) was slowly added to a solution of intermediate (16c) (50 mg, 0.3 mmol) and intermediate (8a) (147 mg, 0.5 mmol) in DMSO (1.5 mL). The mixture was stirred at rt for 10 minutes and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 100/0 to 50/50) to provide Example 16 as colorless liquid (62 mg, 0.16 mmol, 61%).


MS m/z ([M+H]+) 373.



1H NMR (400 MHz, CDCl3) δ 1.61 (s, 3H), 1.64-1.72 (m, 1H), 1.73-1.89 (m, 3H), 1.95-2.04 (m, 1H), 2.08-2.15 (m, 1H), 2.16-2.22 (m, 1H), 2.23-2.28 (m, 1H), 3.14 (dt, J=2.8, 11.9 Hz, 1H), 3.39 (s, 3H), 3.43 (d, J=12.0 Hz, 1H), 3.60 (d, J=5.5 Hz, 2H), 3.62-3.78 (m, 5H), 3.93 (q, J=2.8 Hz, 1H).



19F NMR (377 MHz, CDCl3) δ−83.56 and −83.19 (2s, 1F), −83.18 and −82.81 (2s, 1F).


Example 17: Sodium 2,2-difluoro-2-[[(2S,5R)-2-(methoxymethyl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]acetate



embedded image


Step 1: Preparation of Intermediate Ethyl 2,2-difluoro-2-[[(2S,5R)-2-(methoxymethyl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]acetate

At rt, DBU (280 μL, 1.9 mmol) was slowly added to a solution of intermediate (16c) (317 mg, 1.7 mmol) and ethyl 2-bromo-2,2-difluoroacetate (437 μL, 3.4 mmol) in DMSO (2 mL). The mixture was stirred at rt for 10 minutes and then diluted with AcOEt. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel (DCM/acetone 100/0 to 50/50) to provide intermediate (17a) as colorless liquid (120 mg, 0.39 mmol, 23%).


MS m/z ([M+H]+) 309.



1H NMR (400 MHz, CDCl3) δ 1.38 (t, J=7.1 Hz, 3H), 1.64-1.71 (m, 1H), 1.80-1.88 (m, 1H), 1.95-2.05 (m, 1H), 2.09-2.16 (m, 1H), 3.15 (dt, J=2.9, 11.9 Hz, 1H), 3.38 (s, 3H), 3.41 (d, J=11.9 Hz, 1H), 3.59 (d, J=5.6 Hz, 2H), 3.65-3.71 (m, 1H), 3.93 (q, J=3.0 Hz, 1H), 4.32-4.44 (m, 2H).



19F NMR (377 MHz, CDCl3) δ-83.52 and −83.15 (2s, 1F), −83.05 and −82.68 (2s, 1F).


Step 2: Preparation of Sodium 2,2-difluoro-2-[[(2S,5R)-2-(methoxymethyl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]acetate (Example 17)

At −15° C., tetrabutylammonium hydroxide 30-hydrate (285 g) was added to a solution of intermediate (17a) (110 mg) in acetone (2 mL). The mixture was stirred at −15° C. for 1 hour and then concentrated under vacuum (bath at 20° C.). The aqueous residue was extracted three times with DCM. No more water was added during this operation. The organic extract was dried over Na2SO4, filtered and concentrated to give a crude which was applied on a Dowex sodium form column (Dowex® 50WX8 hydrogen form stored with an aqueous solution of 2N NaOH and washed until neutral pH with H2O). Fractions of interest were combined, frozen and lyophilized to give Example 17 as sodium salt (53 mg, 0.175 mmol, 17%).


MS m/z ([M+H]+) 281.


MS m/z ([M−H]+) 279.



1H NMR (400 MHz, CDCl3) δ 1.43-1.58 (m, 1H), 1.69-1.84 (m, 3H), 2.93 (d, J=11.9 Hz, 1H), 3.23-3.28 (m, 4H), 3.37-3.40 (m, 1H), 3.45-3.49 (m, 1H), 3.54-3.58 (m, 1H), 3.83 (d, J=3.7 Hz, 1H).



19F NMR (377 MHz, CDCl3) δ−81.76 (d, J=131.7 Hz, 1F), −81.24 (d, J=131.6 Hz, 1F).


Biological Activity

Compound AF1, described as example 3 in patent WO2009133442, is the active form of prodrug compounds of formula (I) when Y2 is different from H as Examples 1, 2, 3 and 7 to 15. Compound AF2, or Example 6, is the active form of prodrug compound of formula (I) when Y2 is different from H.




embedded image


Method 1: β-Lactamase Inhibitory Activity, Determination of IC50 (Table 1)

Enzyme activity was monitored by spectrophotometric measurement of nitrocefin (NCF-TOKU-E, N005) hydrolysis at 485 nm, at room temperature and in assay buffer A: 100 mM Phosphate pH7, 2% glycerol and 0.1 mg/mL Bovine serum albumin (Sigma, B4287). Buffer A was supplemented with 100 mM NaHCO3 for several OXA-type enzymes (OXA-1, OXA-11, OXA-15 and OXA-163). Enzymes were cloned in E. coli expression vector, expressed and purified in house using classical procedures. To a transparent polystyrene plate (Corning, 3628) were added in each well 5 μL DMSO or inhibitor dilutions in DMSO and 80 μL enzyme in buffer A. Plates were immediately read at 485 nm in a microplate spectrophotometer (BioTek, Powerwave HT) to enable background subtraction. After 30 min of pre-incubation at room temperature, 155 μL of NCF (100 μM final) were finally added in each well. Final enzyme concentrations were 0.1 nM (TEM-1), 0.075 nM (SHV-1), 1.5 nM (SHV-12), 0.4 nM (CTX-M-15), 1 nM (KPC-2), 5 nM (PC1 S. aureus), 0.2 nM (P99 AmpC), 0.2 nM (CMY-37), 0.8 nM (DHA-1), 0.4 nM (AmpC P. aeruginosa), 0.2 nM (OXA-1), 1.2 nM (OXA-11), 0.4 nM (OXA-15), 0.2 nM (OXA-23), 0.4 nM (OXA-40), 0.3 nM (OXA-48), 75 nM (OXA-51), 0.5 nM (OXA-58) and 0.15 nM (OXA-163). After 20 min incubation at room temperature, plates were once again read at 485 nm. Enzyme activity was obtained by subtracting the background from the final signal, and was converted to enzyme inhibition using non inhibited wells. IC50 curves were fitted to a classical Langmuir equilibrium model with Hill slope using XLFIT (IDBS).









TABLE 1







IC50 of compounds AF1 and AF2 against bacterial beta-lactamases











beta-
IC50 (μM)












lactamase
AF1
AF2















TEM-1
0.00022
0.00096



SHV-1
0.00012
0.0014



SHV-12
0.0011
0.0011



CTX-M-15
0.00021
0.00016



KPC-2
0.040
0.012



SAU PC1
0.071
0.0031



P99 ampC
0.55
0.054



CMY-37
0.74
0.070



DHA-1
0.60
0.081



PAE ampC
0.66
0.14



OXA-1
1.1
0.011



OXA-11
1.0
0.013



OXA-15
0.071
0.0040



OXA-23
1.7
0.011



OXA-40
2.1
0.012



OXA-48
0.075
0.00070



OXA-51
1.7
0.051



OXA-58
0.40
0.0021



OXA-163
0.11
0.00032











Method 2: MIC of Compounds Alone and Combined with Antibacterials Against Bacterial Isolates.


Compounds of the present invention were assessed against genotyped bacterial strains (Table 3, 4) alone or in combination with an antibacterial (Table 2). In the assays, MICs of said compounds or combination of antibiotics with fixed concentrations of said compounds (4 or 8 μg/mL) were determined by the broth microdilution method according to the Clinical Laboratory Standards Institute (CLSI-M7-A7). Briefly, compounds alone according to the invention were prepared in DMSO and spotted (2 μL each) on sterile polystyrene plates (Corning, 3788). Combinations of compounds and antibiotics dilutions were prepared in DMSO and spotted (1 μL each) on sterile polystyrene plates (Corning, 3788). Log phase bacterial suspensions were adjusted to a final density of 5·105 CFU/mL in cation-adjusted Mueller-Hinton broth (ca-MHB; Becton-Dickinson and Company) and added to each well (98 μL). Microplates were incubated for 16-20 h at 35° C. in ambient air. The MIC of the compounds was defined as the lowest concentration of said compounds that prevented bacterial growth as read by visual inspection. The MIC of ATB at each compound concentration was defined as the lowest concentration of ATB that prevented bacterial growth as read by visual inspection.


Results are presented in Tables 4, 5 and 6. They show the advantage of combining antibiotics including Cefixime and Cefpodoxime with the active forms AF1 or AF2 of the prodrugs herein described to combat resistant isolates.









TABLE 2





Antibacterials or beta-lactamase inhibitors


used in MIC and combination studies


Abbreviations - Antibacterials


















ATB
Antibiotic



AMX
Amoxicillin



CAZ
Ceftazidime



CDR
Cefdinir



FIX
Cefixime



FUR
Cefuroxime



POD
Cefpodoxime



CLA
Clavulanic acid

















TABLE 3





Bacterial species used in MIC determination


Abbreviations -Strains


















ECO

Escherichia coli




KPN

Klebsiella pneumoniae




ECL

Enterobacter cloacae




EAE

Enterobacter aerogenes




CFR

Citrobacter freundii




CKR

Citrobacter koseri




CMU

Citrobacter murliniae




MMO

Morganella morganii




PMI

Proteus mirabilis




PRE

Providencia rettgeri




PST

Providencia stuartii




KOX

Klebsiella oxytoca




SMA

Serratia marcescens




STY

Salmonella typhimurium


















TABLE 4







List of the bacterial isolates, their resistance genotype, and the MIC of reference antibiotics or combinations.









MIC (μg/mL)











Resistance
ATB alone
CLA @ 4 μg/ml+
















Strains ID
genotype
CAZ
FIX
AMX
FUR
POD
CDR
AMX
FIX



















ECO UFR86
ompC-, ompF-
2
2
16
64
4
2
8
2


ECO 260304
CTX-M-15
16
32
>256
>256
>256
256
4
0.5


ECO 260096
CTX-M-132
128
>128
>256
>256
>256
>256
4
1


KPN 270077
TEM-1, SHV-1, CTX-M-15
128
>128
>256
>256
>256
>256
32
0.5


ECL 260508
TEM-1, CTX-M-15
64
>128
>256
>256
>256
>256
>128
32


ECO 190549
CTX-M-1
4
16
>256
>256
>256
256
8
0.5


ECO 190314
CTX-M-1
8
16
>256
>256
>256
>256
8
2


ECO 180070
TEM-1, CTX-M-15
64
128
>256
>256
>256
>256
16
2


ECO 200159
TEM-1, CTX-M-14
2
8
>256
>256
>256
256
8
<=0.25


ECO 200259
CTX-M-14
2
8
>256
>256
>256
256
8
<=0.25


ECO 200344
CTX-M-1
8
32
>256
>256
>256
>256
16
0.5


KPN 700603
SHV-18, OXA-2
64
16
>256
32
16
4
8
0.5


ECL UFR60
TEM-1, CTX-M-15, KPC-2
>128
>128
>256
>256
>256
>256
>128
128


ECO UFR61O
TEM-1, KPC-2
>128
32
>256
>256
>256
>256
>128
32


ECO UFR62
TEM-1, CTX-M-9, KPC-2
8
128
>256
>256
>256
>256
>128
32


KPN UFR65
TEM-1, SHV-11, KPC-2
128
>128
>256
>256
>256
>256
>128
128


KPN UFR66
TEM-1, SHV-11, CTX-M-15, KPC-2
>128
512
>256
>256
>256
>256
>128
64


KPN 260251
TEM-1, SHV-11, SHV-12, CTX-M-15, KPC-2
>128
>128
>256
>256
>256
>256
>128
32


KPN BAA-1898
TEM-1, SHV-11, SHV-12, KPC-2
256
>128
>1024
>512
>512
>256
>512
64


KPN 160143
TEM-1, SHV-1, CTX-M-15, KPC-2, OXA-1
64
>128
>256
>256
>256
>256
>128
2


KPN UFR67
TEM-1, SHV-11, KPC-3
>128
>128
>256
>256
>256
>256
>128
128


KPN UFR68
TEM-1, SHV-11, CTX-M-15, KPC-3
512
>128
>1024
>256
>256
>256
>128
64


KPN 140513
TEM-1, SHV-11, CTX-M-15, KPC-3
>256
>128
>256
>256
>256
>256
>128
>128


KPN 260252
TEM-1, SHV-11, KPC-3
>128
>128
>256
>256
>256
>256
>128
128


ECL 260253
TEM-1, KPC-3
>128
>128
>256
>256
>256
>256
>128
64


ECL P99
AmpC
128
>128
>1024
>512
>512
>256
>512
>128


ECL 190310
AmpC
256
>128
>256
>256
>256
>256
>128
>128


ECL 200138
AmpC
>256
>128
>256
>256
>256
>256
>128
>128


ECL 260323
AmpC
>256
>128
>256
>256
>256
256
>128
>128


ECL 260033
AmpC
512
>128
>256
>256
>256
>256
>128
>128


ECL NEM146383
AmpC
128
>128
>256
>256
>256
>256
>128
>128


EAE 200261
TEM-x, AmpC
128
>128
>256
>256
>256
>256
>128
>128


EAE 49469
AmpC
128
>128
>1024
>128
>128
>128
>128
>128


CFR UFR83
TEM-3, AmpC
>128
>128
>256
>256
>256
>256
>128
>128


ECL UFR84
TEM-1, AmpC, OXA-1
>128
>128
>256
>256
>256
>256
>128
>128


ECL UFR85
TEM-1, CTX-M-15, AmpC
128
>128
>256
>256
>256
>256
>128
>128


KPN UFR76
TEM-155, SHV-11, ACT-1, OXA-2
>128
>128
>256
>256
>256
>256
>128
>128


ECL UFR70
TEM-1, CTX-M-15, CMY-2, OXA-1, Porin loss
>128
>128
>256
>256
>256
>256
>128
>128


KPN UFR77
CMY-2
32
128
>256
64
64
64
>128
128


PMI UFR82
CMY-2
4
8
256
16
64
16
>128
4


ECO UFR74
SHV-1, DHA-1
64
>128
>256
>256
>256
>256
>128
>128


KPN UFR79
DHA-1, OXA-1
16
>128
>256
>256
32
256
>128
>128


KPN UFR80
SHV-11, DHA-1, OXA-1
0.5
<=0.25
>256
32
2
1
128
0.5


KPN UFR78
TEM-1, SHV-1, CTX-M-15, CMY-2, OXA-1,
>256
>128
>256
>256
>256
>256
>128
>128



OXA-48


KPN UFR81
TEM-1, SHV-1, DHA-1, OXA-48
128
>128
>256
>256
>256
>256
>128
>128


ECL UFR14
TEM-1, SHV-12, CTX-M-15, DHA-1, OXA-1,
>256
>128
>256
>256
>256
>256
>128
>128



OXA-48


ECO UFR17
TEM-1, CTX-M-15, CMY-2, OXA-1, OXA-181
>128
>128
>256
>256
>256
>256
>128
>128


ECO UFR19
CTX-M-15, CMY-2, OXA-1, OXA-204
128
>128
>256
>256
>256
>256
>128
>128


KPN 110376
TEM-1, SHV-1, CTX-M-15, OXA-1, OXA-48
128
>128
>256
>256
>256
>256
>128
128


CFR UFR10
OXA-48
128
>128
>256
>256
>256
>256
>128
32


CFR UFR11
TEM-1, OXA-1, OXA-48
8
32
>256
>256
>256
>256
>128
32


ECL UFR12
CTX-M-9, OXA-48
2
16
>256
>256
128
>256
>128
8


ECL UFR13
TEM-1, SHV-12, CTX-M-9, OXA-48
>256
>128
>256
>256
>256
>256
>128
128


ECO UFR15
TEM-1, OXA-48
0.5
1
>256
16
2
>256
>128
1


ECO UFR16
TEM-1, CTX-M-15, OXA-1, OXA-48
64
>128
>256
>256
>256
>256
>128
4


ECO UFR18
CTX-M-15, OXA-204
128
>128
>256
>256
>256
>256
>128
>128


ECO 131119
TEM-1, OXA-48
0.5
<=0.25
>1024
8
1
256
>512
<=0.25


ECO UFR20
SHV-1, CTX-M-15, OXA-1, OXA-232
128
512
>256
>256
>256
>256
>128
>128


KOX UFR21
TEM-1, CTX-M-15, OXA-48
128
>128
>256
>256
>256
>256
>128
>128


KPN UFR22_O
TEM-1, SHV-1, OXA-48
2
<=0.25
>256
32
1
>256
>128
<=0.25


KPN UFR23
TEM-1, SHV-1, OXA-48
0.5
<=0.25
>256
8
0.5
>256
>128
<=0.25


KPN UFR24
TEM-1, SHV-2, SHV-11, OXA-1, OXA-48, OXA-47
>128
>128
>256
128
256
>256
>128
64


KPN UFR25
TEM-1, SHV-11, CTX-M-15, OXA-162
128
>128
>256
>256
>256
>256
>128
64


KPN UFR27
TEM-1, SHV-28, CTX-M-15, OXA-204
>128
>128
>256
>256
>256
>256
>128
>128


KPN UFR28
TEM-1, SHV-1, CTX-M-15, OXA-1, OXA-232
64
256
>256
>256
>256
>256
>128
64


SMA UFR30
OXA-405
8
1
>256
>256
32
>256
>128
1


CKO ROU
TEM-1, SHV-12, CTX-M-15, OXA-1, OXA-48
1
1
>256
64
4
>256
>128
2


KPN LIB
SHV-11, OXA-48
0.25
<=0.25
>256
16
1
>256
>512
<=0.25


ECL 2185D
OXA-163
>128
>128
>256
>256
>256
>256
>128
>128


KPN ARA
TEM-1, SHV-11, CTX-M-15, OXA-1, OXA-48
128
>128
>256
>256
>256
>256
>128
128


KPN 6299
TEM-1, SHV-11, OXA-163
256
8
>1024
>512
64
256
>512
8


KPN 131119
TEM-1, SHV-11, CTX-M-15, OXA-1, OXA-48
>128
>128
>256
>256
>256
>256
>512
>128


ECO RGN238
OXA-1
0.5
<=0.25
>1024
16
2
0.5
128
<=0.25


STY S3371
OXA-1
0.5
<=0.25
>256
32
4
0.5
128
<=0.25


ECO 5302
TEM-1, OXA-1
0.5
0.5
>256
32
4
1
>128
0.5


ECO 4133
TEM-30, OXA-1
0.5
0.5
>256
16
2
0.5
>128
0.5


ECO 190457
CTX-M-15, OXA-1
16
128
>256
>256
>256
>256
>128
0.5


ECO 260508
TEM-1, CTX-M-15, OXA-1
128
>128
>256
>256
>256
>256
64
0.5


KPN 190128
TEM-1, SHV-32, CTX-M-15, OXA-1
>128
>128
>256
>256
>256
>256
128
0.5


KPN 190270
TEM-1, SHV-76, CTX-M-15, OXA-1
128
>128
>256
>256
>256
>256
128
1


KPN 200047
TEM-1, SHV-32, CTX-M-15, OXA-1
128
>128
>256
>256
>256
>256
32
<=0.25


KPN 190551
TEM-1, SHV-1, CTX-M-15, OXA-1
64
>128
>256
>256
>256
>256
128
<=0.25


KPN 190425
TEM-1, SHV-1, CTX-M-15, OXA-1
128
>128
>256
>256
>256
>256
128
<=0.25


KPN 200327
TEM-1, SHV-1, CTX-M-15, OXA-1
32
64
>256
>256
>256
>256
32
<=0.25


ECO 190317
TEM-1, SHV-12, CTX-M-15, OXA-1
128
>128
>1024
>512
>512
>256
64
0.5


ECL 190408
TEM-1, CTX-M-15, OXA-1
128
512
>256
>256
>256
>256
>128
128


ECL 200322
TEM-1, CTX-M-15, OXA-1
>128
>128
>256
>256
>256
>256
>128
64


MMO 200321
TEM-1, CTX-M-15, OXA-1
16
>128
>256
>256
>256
256
>128
32


KPN 260376
SHV-1, SHV-49, OXA-1
128
>128
>256
>256
>256
>256
>128
<=0.25


PST UFR94
CTX-M-14
1
0.5
>128
>256
32
64
128
2


PST UFR95
TEM-24
64
4
>128
128
16
32
128
8


PMI UFR120
TEM-1, SHV-11, CTX-M-14
<=0.25
0.5
>128
>256
>256
64
8
<=0.25


PMI UFR121
TEM-1, TEM-52
16
128
>128
>256
>256
>256
4
<=0.25


PMI UFR122
TEM-1, CTX-M-15
1
1
>128
>256
64
16
8
<=0.25


PMI UFR123
CTX-M-1
2
128
>128
>256
>256
>256
16
<=0.25


PMI UFR124
CTX-M-2
2
>128
>128
>256
>256
>256
128
<=0.25


PMI UFR125
CTX-M-71
2
0.5
>128
>256
>256
256
4
<=0.25


PMI UFR126
TEM-2, PER-1
>128
1024
>128
>256
>256
>256
16
<=0.25


PMI UFR127
VEB-1
>128
>128
>128
>256
128
>256
32
<=0.25


PMI UFR129
TEM-1, VEB-6
>128
>128
>128
>256
>256
>256
2
<=0.25


SMA UFR134
TEM-1, BES-1
8
>128
>128
>256
>256
256
>128
32


EAE UFR201
TEM-1, SHV-12, CTX-M-15
128
>128
>128
>256
>256
>256
16
<=0.25


EAE UFR202
TEM-24
>256
>128
>128
>256
>256
256
>128
>128


ECO UFR207
CTX-M-15
64
>128
>128
>256
>256
>256
32
1


ECO UFR208
SHV-12
128
>128
>128
>256
>256
>256
>128
>128


ECO UFR209
TEM-1, CTX-M-15
128
1024
>128
>256
>256
>256
32
1


ECO UFR210
SHV-12
32
32
>128
>256
>256
>256
8
0.5


ECO UFR211
TEM-24
>128
>128
>128
64
32
32
8
2


EAE UFR213
TEM-24
>256
>128
>128
>256
256
256
>128
>128


KPN UFR215
SHV-27, CTX-M-15
>128
>128
>128
>256
>256
>256
128
1


KPN UFR216
SHV-28, CTX-M-15
128
>128
>128
>256
>256
>256
128
<=0.25


KPN UFR217
TEM-1, SHV-1, CTX-M-15
128
>128
>128
>256
>256
>256
128
<=0.25


ECO UFR218
TEM-1, SHV-1, CTX-M-15
64
>128
>128
>256
>256
>256
32
1


KPN UFR219
SHV-12, CTX-M-15
256
>128
>128
>256
>256
>256
>128
0.5


KPN UFR227O
TEM-x, SHV-x, CTX-M-x
>128
>128
>128
>256
>256
>256
>128
>128


MMO UFR144
TEM-1, CTX-M-15
8
>128
>128
>256
>256
128
>128
32


KOX UFR173
OXY2-2
8
16
>128
>256
>256
>256
>128
4


PST UFR235
VEB-1
>128
512
>128
256
128
256
128
8


PMI UFR237
VEB-6
>128
>128
>128
>256
>256
>256
4
<=0.25


MMO UFR240
CTX-M-9
0.5
1
>128
>256
256
64
>128
8


MMO UFR241
TEM-1, CTX-M-15
8
>128
>128
>256
>256
128
>128
32


MMO UFR242
TEM-52
32
1024
>128
>256
>256
>256
>128
64


CFR UFR248
CTX-M-15
128
>128
>128
>256
>256
>256
>128
4


CFR UFR249
TEM-1, CTX-M-15
64
>128
>128
>256
>256
>256
>128
2


CFR UFR250
TEM-1, SHV-28, CTX-M-15
128
>128
>128
>256
>256
>256
128
2


ECO UFR174
TEM-1, KPC-2, OXA-1
8
8
>128
>256
>256
>256
>128
2


ECO UFR175
TEM-1, KPC-2, OXA-9
32
64
>128
>256
>256
>256
>128
16


ECO UFR176
KPC-3, OXA-9*
256
64
>128
>256
>256
>256
>128
32


SMA UFR135
TEM-1, KPC-2
32
64
>128
>256
>256
>256
>128
32


SMA UFR136
TEM-1, SHV-12, KPC-2
>256
>128
>128
>256
>256
>256
>128
>128


CFR UFR146
TEM-1, KPC-2
32
64
>128
>256
>256
256
>128
64


EAE UFR199
TEM-1b, SHV-12, KPC-2, OXA-9
>256
>1024
>128
>256
>256
>256
>128
16


ECL UFR200
TEM-1, SHV-12, KPC-2
>256
>128
>128
>256
>256
>256
>128
16


SMA UFR137
SME-1
0.5
0.5
>128
256
1
4
128
1


SMA UFR138
SME-1
<=0.25
0.5
>128
256
2
8
>128
0.5


SMA UFR139
SME-2
<=0.25
1
>128
>256
8
64
>128
2


PMI UFR130
CMY-2
4
8
>128
8
128
16
>128
8


ECO UFR212
CMY-2
128
>128
>128
>256
>256
>256
>128
>128


KPN UFR220
TEM-1, SHV-12, DHA-1
>128
>128
>128
>256
>256
>256
>128
>128


KPN UFR221
TEM-1, SHV-11, CTX-M-14, DHA-1
16
64
>128
>256
256
128
>128
128


KPN UFR222
DHA-2
>256
>128
>128
>256
>256
>256
>128
>128


SMA UFR239
ESAC
32
2
>128
256
16
128
64
2


MMO UFR243
DHA-1
1
8
>128
128
64
64
>128
32


MMO UFR244
DHA-1
0.5
4
>128
64
16
32
>128
8


MMO UFR245
DHA-1
8
32
>128
128
64
64
>128
64


MMO UFR246
DHA-1
4
32
>128
128
64
64
>128
64


MMO UFR247
DHA-1
0.5
16
>128
>256
64
128
>128
32


PRE UFR99
OXA-1, OXA-181
>256
>128
>128
>256
>256
>256
>128
>128


KOX UFR223
SHV-11, OXA-48
0.5
<=0.125
>128
8
0.5
>256
>128
<=0.25


KOX UFR224
CTX-M-15, OXA-48
64
>128
>128
>256
>256
>256
>128
8


SMA UFR141
OXA-48
1
2
>128
>256
8
>256
>128
0.5


SMA UFR142
OXA-48
0.5
2
>128
>256
8
>256
>128
2


SMA UFR143
CTX-M-15, OXA-1, OXA-48
64
512
>128
>256
>256
>256
>128
64


CKO UFR149
OXA-48
>128
0.5
>128
>256
>256
>256
>128
1


CKO UFR150
TEM-1, OXA-48
4
2
>128
64
16
>256
>128
2


ECO UFR184
CTX-M-15, CMY-4, OXA-1, OXA-204
128
>128
>128
>256
>256
>256
>128
>128


ECO UFR185
OXA-48
>256
>128
>128
>256
>256
>256
>128
>128


ECO UFR186
TEM-1, CTX-M-14, OXA-48
8
32
>128
>256
>256
>256
>128
8


ECO UFR187
CTX-M-15, OXA-48
8
32
>128
>256
>256
>256
>128
2


ECO UFR189
TEM-1, CTX-M-15, OXA-48
128
>128
>128
>256
>256
>256
>128
4


ECO UFR190
CTX-M-24, OXA-48
2
64
>128
>256
>256
>256
>128
8


ECO UFR191
TEM-1, CTX-M-24, OXA-48
4
>128
>128
>256
>256
>256
>128
4


ECL UFR194
OXA-48
1
4
>128
32
16
>256
>128
8


ECL UFR195
TEM-1, CTX-M-15, OXA-1, OXA-48
128
>128
>128
>256
>256
>256
>128
>128


ECL UFR196
TEM-1, CTX-M-15, OXA-1, OXA-48
>256
>128
>128
>256
>256
>256
>128
>128


ECL UFR197
TEM-1, CTX-M-15, OXA-1, OXA-48
128
>128
>128
>256
>256
>256
>128
128


ECL UFR198
TEM-1, SHV-12, CTX-M-15, DHA-1, OXA-1,
>256
>128
>128
>256
>256
>256
>128
>128



OXA-48


PRE UFR236
TEM-1, OXA-48
32
32
>128
64
64
>256
>128
32


CFR UFR253
TEM-1, SHV-12, OXA-48
>128
>128
>128
32
32
>256
>128
>128


CFR UFR254
VEB-1b, OXA-48, qnrA
128
32
>128
32
32
256
>128
16


SMA UFR238
OXA-48
0.5
1
>128
>256
8
>256
>128
2
















TABLE 5







MIC of AF1 alone or combined with antibacterials.









MIC ATB (μg/mL) in combination

















MIC
AF1 @
AF1 @
AF1 @
AF1 @
AF1 @
AF1 @
AF1 @
AF1 @



(μg/mL)
4 μg/mL
8 μg/mL
4 μg/mL
8 μg/mL
4 μg/mL
4 μg/mL
4 μg/mL
4 μg/mL


Strains ID
EA1
CAZ
CAZ
FIX
FIX
AMX
FUR
POD
CDR



















ECO UFR86
16
1
<=0.25
0.5
<=0.25
2
32
1
1


ECO 260304
32
<=0.25
<=0.25
<=0.25
<=0.25
<=1
4
<=0.25
<=0.25


ECO 260096
16
<=0.25
<=0.25
<=0.25
<=0.25
<=1
4
<=0.25
<=0.25


KPN 270077
>32
<=0.25
<=0.25
0.5
<=0.25
4
16
0.5
1


ECL 260508
>32
1
<=0.25
<=0.25
<=0.25
128
32
1
2


ECO 190549
16
<=0.25
<=0.25
<=0.25
<=0.25
<=1
2
<=0.25
<=0.25


ECO 190314
>32
0.5
<=0.25
<=0.25
<=0.25
<=1
4
<=0.25
<=0.25


ECO 180070
>32
<=0.25
<=0.25
<=0.25
<=0.25
<=1
4
<=0.25
<=0.25


ECO 200159
32
<=0.25
<=0.25
<=0.25
<=0.25
<=1
2
<=0.25
<=0.25


ECO 200259
16
<=0.25
<=0.25
<=0.25
<=0.25
<=1
2
<=0.25
<=0.25


ECO 200344
>32
<=0.25
<=0.25
<=0.25
<=0.25
<=1
4
<=0.25
<=0.25


KPN 700603
>32
1
<=0.25
<=0.25
<=0.25
4
16
0.5
0.5


ECL UFR60
32
16
4
4
4
512
64
1
8


ECO UFR61O
32
2
0.5
0.25
0.125
64
8
0.5
0.25


ECO UFR62
16
<=0.25
<=0.25
<=0.25
<=0.25
16
8
0.5
0.5


KPN UFR65
>32
2
<=0.25
<=0.25
<=0.25
256
16
0.5
2


KPN UFR66
>32
8
<=0.25
1
0.25
256
32
2
2


KPN 260251
>32
1
<=0.25
<=0.25
0.5
128
8
<=0.25
0.5


KPN BAA-1898
>32
1
<=0.25
<=0.25
<=0.25
256
4
0.5
0.5


KPN 160143
>32
1
<=0.25
<=0.25
<=0.25
128
4
<=0.25
<=0.25


KPN UFR67
>32
16
4
2
0.5
256
32
4
16


KPN UFR68
>32
4
1
1
0.25
256
8
1
2


KPN 140513
>32
16
2
4
0.5
>512
32
4
16


KPN 260252
>32
32
8
8
4
256
32
4
16


ECL 260253
>32
16
4
8
8
256
128
8
32


ECL P99
16
2
<=0.25
16
1
128
64
16
16


ECL 190310
32
4
2
64
32
128
>128
64
64


ECL 200138
>32
8
2
64
16
256
128
32
64


ECL 260323
>32
128
32
64
32
256
>128
32
64


ECL 260033
16
8
<0.25
>128
2
256
>128
128
>128


ECL NEM146383
32
2
2
32
16
128
128
16
32


EAE 200261
>32
2
0.5
32
4
128
64
4
8


EAE 49469
>32
8
2
32
16
128
64
8
16


CFR UFR83
>32
32
8
>128
128
>512
>128
>128
>128


ECL UFR84
>32
4
1
64
16
512
>128
32
64


ECL UFR85
>32
1
<=0.25
8
0.5
256
128
4
8


KPN UFR76
>32
16
16
>128
>128
>512
>128
>128
>128


ECL UFR70
32
2
0.5
16
2
64
32
8
4


KPN UFR77
>32
4
2
16
8
64
32
4
8


PMI UFR82
>32
<=0.25
<=0.25
<=0.25
<=0.25
8
4
1
0.5


ECO UFR74
>32
1
<=0.25
32
1
128
16
2
1


KPN UFR79
>32
2
1
16
4
>512
32
4
16


KPN UFR80
>32
<=0.25
<=0.25
<=0.25
<=0.25
128
16
0.5
1


KPN UFR78
>32
>128
32
128
32
>512
>128
128
128


KPN UFR81
>32
2
0.5
16
2
>512
32
4
16


ECL UFR14
>32
2
1
16
8
>512
>128
8
32


ECO UFR17
16
16
2
>128
16
>512
>128
>128
128


ECO UFR19
16
1
<=0.25
16
<0.25
64
16
4
2


KPN 110376
>32
<=0.25
<=0.25
0.125
0.125
128
4
<=0.25
0.5


CFR UFR10
>32
<=0.25
<=0.25
<=0.25
<=0.25
128
8
<=0.25
<=0.25


CFR UFR11
16
8
0.5
8
4
>512
>128
16
128


ECL UFR12
32
0.5
<=0.25
<=0.25
<=0.25
128
16
1
4


ECL UFR13
32
0.5
0.5
8
8
256
128
8
16


ECO UFR15
32
<=0.25
<=0.25
<=0.25
<=0.25
16
2
<=0.25
<=0.25


ECO UFR16
16
<=0.25
<=0.25
<=0.25
<=0.25
128
16
1
1


ECO UFR18
16
1
<=0.25
16
0.5
64
32
8
4


ECO 131119
32
<=0.25
<=0.25
<=0.25
<=0.25
16
4
<=0.25
<=0.25


ECO UFR20
64
1
1
1
1
512
64
4
16


KOX UFR21
>32
2
<=0.25
2
1
256
16
1
8


KPN UFR22_O
>32
<=0.25
<=0.25
<=0.25
<=0.25
64
8
<=0.25
1


KPN UFR23
>32
<=0.25
<=0.25
<=0.25
<=0.25
32
4
<=0.25
0.5


KPN UFR24
>32
1
0.5
0.5
0.5
64
16
1
4


KPN UFR25
>32
0.5
<=0.25
<=0.25
<=0.25
512
4
<=0.25
<=0.25


KPN UFR27
>32
4
0.5
16
2
128
32
4
8


KPN UFR28
>32
<=0.25
<=0.25
<=0.25
<=0.25
128
4
<=0.25
1


SMA UFR30
>32
<=0.25
<=0.25
<=0.25
<=0.25
256
64
0.5
1


CKO ROU
16
<=0.25
<=0.25
<=0.25
<=0.25
32
32
2
2


KPN LIB
>32
<=0.25
<=0.25
<=0.25
<=0.25
16
8
<=0.25
1


ECL 2185D
16
64
4
>128
64
>512
>128
>128
>128


KPN ARA
>32
<=0.25
<=0.25
<=0.25
<=0.25
256
16
<=0.25
0.5


KPN 6299
>32
0.5
<=0.25
<=0.25
<=0.25
256
16
<=0.25
<=0.25


KPN 131119
>32
0.5
<=0.25
<=0.25
<=0.25
256
8
<=0.25
1


ECO RGN238
>32
<=0.25
<=0.25
<=0.25
<=0.25
256
8
<=0.25
<=0.25


STY S3371
>32
<=0.25
<=0.25
<=0.25
<=0.25
128
4
<=0.25
<=0.25


ECO 5302
16
<=0.25
<=0.25
<=0.25
<=0.25
256
4
<=0.25
<=0.25


ECO 4133
16
<=0.25
<=0.25
<=0.25
<=0.25
128
4
<=0.25
<=0.25


ECO 190457
16
<=0.25
<=0.25
0.125
0.031
64
8
<=0.25
<=0.25


ECO 260508
16
<=0.25
<=0.25
<=0.25
<=0.25
64
2
<=0.25
<=0.25


KPN 190128
>32
0.5
<=0.25
0.5
<=0.25
128
16
0.5
1


KPN 190270
>32
0.5
<=0.25
0.5
<=0.25
16
16
0.5
1


KPN 200047
>32
<=0.25
<=0.25
<=0.25
<=0.25
16
2
<=0.25
<=0.25


KPN 190551
>32
<=0.25
<=0.25
<=0.25
<=0.25
64
4
<=0.25
<=0.25


KPN 190425
>32
<=0.25
<=0.25
<=0.25
<=0.25
128
4
<=0.25
<=0.25


KPN 200327
>32
<=0.25
<=0.25
<=0.25
<=0.25
32
2
<=0.25
<=0.25


ECO 190317
16
<=0.125
<=0.25
<=0.25
<=0.25
64
4
<=0.25
<=0.25


ECL 190408
>128
<=0.25
<0.25
0.5
0.25
8
4
<=0.25
<=0.25


ECL 200322
16
0.5
0.5
0.5
0.25
128
32
1
4


MMO 200321
>32
<=0.25
0.5
4
4
256
128
2
4


KPN 260376
>32
<=0.25
<=0.25
<=0.25
<=0.25
32
2
<=0.25
<=0.25


PST UFR94
>32
0.5
<=0.25
<=0.25
<=0.25
16
8
0.5
<=0.25


PST UFR95
>32
1
0.5
<=0.25
<=0.25
32
32
2
1


PMI UFR120
>32
<=0.25
<=0.25
<=0.25
<=0.25
<=0.25
1
<=0.25
<=0.25


PMI UFR121
>32
<=0.25
<=0.25
<=0.25
<=0.25
<=0.25
2
<=0.25
<=0.25


PMI UFR122
>32
<=0.25
<=0.25
<=0.25
<=0.25
<=0.25
1
<=0.25
<=0.25


PMI UFR123
>32
<=0.25
<=0.25
<=0.25
<=0.25
<=0.25
1
<=0.25
<=0.25


PMI UFR124
>32
<=0.25
<=0.25
<=0.25
<=0.25
<=0.25
1
<=0.25
<=0.25


PMI UFR125
>32
<=0.25
<=0.25
<=0.25
<=0.25
<=0.25
1
<=0.25
<=0.25


PMI UFR126
>32
<=0.25
<=0.25
0.031
0.016
4
1
<=0.25
<=0.25


PMI UFR127
>32
<=0.25
<=0.25
<=0.25
<=0.25
4
1
<=0.25
<=0.25


PMI UFR129
>32
<=0.25
<=0.25
<=0.25
<=0.25
8
4
<=0.25
<=0.25


SMA UFR134
>32
0.5
<=0.25
1
1
128
64
2
4


EAE UFR201
>32
0.5
<=0.25
<=0.25
<=0.25
<=1
2
<=0.25
<=0.25


EAE UFR202
>32
2
1
16
4
64
32
2
4


ECO UFR207
32
<=0.25
<=0.25
<=0.25
<=0.25
32
2
<=0.25
<=0.25


ECO UFR208
>32
4
2
64
32
256
>128
64
128


ECO UFR209
16
<=0.25
<=0.25
0.125
0.063
4
4
<=0.25
<=0.25


ECO UFR210
16
<=0.25
<=0.25
<=0.25
<=0.25
<=1
2
<=0.25
<=0.25


ECO UFR211
>32
0.5
<=0.25
<=0.25
<=0.25
<=1
8
<=0.25
<=0.25


EAE UFR213
>32
0.5
0.5
1
0.5
32
8
1
4


KPN UFR215
>32
<=0.25
<=0.25
<=0.25
<=0.25
64
16
0.5
0.5


KPN UFR216
>32
<=0.25
<=0.25
<=0.25
<=0.25
32
4
<=0.25
<=0.25


KPN UFR217
>32
<=0.25
<=0.25
<=0.25
<=0.25
64
2
<=0.25
<=0.25


ECO UFR218
16
<=0.25
<0.25
<=0.25
<=0.25
8
4
<=0.25
<=0.25


KPN UFR219
>32
0.5
<=0.25
<=0.25
<=0.25
128
8
<=0.25
<=0.25


KPN UFR227O
>32
2
1
1
0.5
512
64
4
32


MMO UFR144
>32
<=0.25
<=0.25
2
2
128
32
2
4


KOX UFR173
>32
0.5
<=0.25
<=0.25
<=0.25
4
4
0.5
0.5


PST UFR235
16
1
<=0.25
0.125
0.063
32
8
2
2


PMI UFR237
>32
0.5
<=0.25
<=0.25
<=0.25
16
4
<=0.25
<=0.25


MMO UFR240
>32
<=0.25
<=0.25
<=0.25
<=0.25
32
16
<=0.25
0.5


MMO UFR241
>32
<=0.25
<=0.25
2
<=0.25
128
32
2
4


MMO UFR242
128
2
0.25
4
2
128
32
4
4


CFR UFR248
>32
<=0.25
<=0.25
<=0.25
<=0.25
64
8
1
0.5


CFR UFR249
>32
<=0.25
<=0.25
<=0.25
<=0.25
256
8
<=0.25
<=0.25


CFR UFR250
>32
0.5
<=0.25
<=0.25
<=0.25
32
8
0.5
<=0.25


ECO UFR174
8
<=0.25
<0.25
<=0.25
<0.25
32
2
<=0.25
<=0.25


ECO UFR175
32
2
<=0.25
<=0.25
<=0.25
32
8
1
0.5


ECO UFR176
32
2
<=0.25
<=0.25
<=0.25
32
4
<=0.25
<=0.25


SMA UFR135
>32
2
1
2
2
256
>128
4
16


SMA UFR136
>32
2
1
4
2
256
>128
8
16


CFR UFR146
64
4
2
1
1
256
16
1
0.5


EAE UFR199
128
1
0.5
1
0.25
64
8
1
1


ECL UFR200
>32
0.5
<=0.25
1
0.5
256
16
1
2


SMA UFR137
>32
<=0.25
<=0.25
<=0.25
<=0.25
64
32
0.5
1


SMA UFR138
>32
<=0.25
<=0.25
<=0.25
<=0.25
64
64
0.5
4


SMA UFR139
>32
<=0.25
<=0.25
0.5
<=0.25
64
64
2
4


PMI UFR130
>32
<=0.25
<=0.25
<=0.25
<=0.25
8
4
0.5
<=0.25


ECO UFR212
16
4
<=0.25
64
<=0.25
64
128
32
32


KPN UFR220
>32
2
1
4
2
512
16
4
2


KPN UFR221
>32
0.5
<=0.25
2
<=0.25
256
4
1
2


KPN UFR222
>32
8
4
32
16
>512
64
8
16


SMA UFR239
>32
8
4
0.5
0.5
64
>128
2
16


MMO UFR243
>32
<=0.25
<=0.25
0.5
<=0.25
64
32
4
4


MMO UFR244
>32
<=0.25
<=0.25
<=0.25
<=0.25
64
16
<=0.25
2


MMO UFR245
>32
<=0.25
<=0.25
2
<=0.25
64
32
2
4


MMO UFR246
>32
<=0.25
<=0.25
2
1
64
64
4
2


MMO UFR247
64
0.125
0.125
0.5
0.25
32
16
1
1


PRE UFR99
32
>128
>128
>128
>128
>512
>128
>128
>128


KOX UFR223
>32
<=0.25
<=0.25
<=0.25
<=0.25
16
2
<=0.25
<=0.25


KOX UFR224
>32
<=0.25
<=0.25
<=0.25
<=0.25
64
2
<=0.25
<=0.25


SMA UFR141
>32
0.5
<=0.25
0.5
0.5
128
128
2
4


SMA UFR142
>32
0.5
0.5
2
1
128
64
1
8


SMA UFR143
64
0.5
0.5
0.25
0.25
256
32
1
2


CKO UFR149
16
0.5
<=0.25
0.5
<=0.25
512
128
8
32


CKO UFR150
>32
4
4
2
1
64
32
8
4


ECO UFR184
8
1
<=0.25
8
<=0.25
32
64
4
16


ECO UFR185
16
2
<0.25
4
<0.25
256
>128
32
128


ECO UFR186
>32
<=0.25
<=0.25
<=0.25
<=0.25
16
16
1
1


ECO UFR187
>32
1
<=0.25
<=0.25
<=0.25
16
8
0.5
0.5


ECO UFR189
16
<=0.25
<=0.25
<=0.25
<=0.25
4
2
<=0.25
<=0.25


ECO UFR190
16
<=0.25
<=0.25
<=0.25
<=0.25
8
8
<=0.25
0.5


ECO UFR191
32
<=0.25
<=0.25
<=0.25
<=0.25
8
8
<=0.25
1


ECL UFR194
>32
0.5
<=0.25
1
2
256
32
1
2


ECL UFR195
>32
1
0.5
4
<=0.25
256
32
1
4


ECL UFR196
>32
2
0.5
16
4
512
64
2
16


ECL UFR197
16
1
0.5
16
1
256
64
8
8


ECL UFR198
>32
4
4
64
64
>512
128
8
32


PRE UFR236
>32
1
0.5
1
0.5
512
8
1
2


CFR UFR253
32
4
2
32
16
4
4
<=0.25
<=0.25


CFR UFR254
32
0.5
<=0.25
0.5
<=0.25
4
2
<=0.25
<=0.25


SMA UFR238
>32
0.5
<=0.25
1
0.5
128
64
2
4
















TABLE 6







MIC of AF2 alone or combined with Cefixime.









MIC (μg/mL)













FIX





+AF2



FIX
AF2
@4 μg/mL
















ECO 190317
>128
>32
<=0.25



ECO 190457
128
16
<=0.25



ECO UFR16
>128
>32
<=0.25



ECO UFR20
512
>32
0.5



ECO UFR61O
32
>32
0.5



ECO UFR209
1024
32
<=0.25



EAE UFR199
>1024
>32
2



PMI UFR126
1024
>32
<=0.25



PMI UFR127
>128
>32
<=0.25



SMA UFR143
512
>32
0.5



PST UFR235
512
>32
<=0.25



CFR UFR250
>128
>32
<=0.25



KPN 110376
>128
>32
<=0.25



KPN 131119
>128
>32
0.5



KPN 190270
>128
>32
0.5



KPN UFR25
>128
>32
<=0.25



KPN UFR66
512
>32
2



KPN UFR68
>128
>32
0.5










Method 3: Rat Intraduodenal Bioavailability Determination (Table 7, 11)

Intravenous (jugular) or intraduodenal catheterized Male Sprague-Dawley (SD) rats (250-270 g) were obtained from Janvier Labs (Le Genest-Saint-Isle, France). All rats were housed in a −temperature (20±2° C.) and −humidity (55%±10%) controlled room with 12 h light/dark cycle, and were acclimatized for at least 4 days before experimentation. Water and food were available ad libitum throughout the study. All rats were handled in accordance with the institutional and national guidelines for the care and use of laboratory animals.


Rats were allocated to two groups based on the administration route: intravenous or intraduodenal administration (n=3/group).


In the intravenous administration study, drugs (10 mg/kg in phosphate buffer 10 mM, pH7.4) were administered under isoflurane anesthesia via the catheter placed in the jugular vein.


In the intraduodenal administration study, drugs (20 mg/kg in phosphate buffer 10 mM, pH5.0, 30-35% hydroxyl-propyl-beta-cyclodextrin, DMSO 0-10%) were administered under isoflurane anesthesia via the catheter placed in the duodenum.


For all groups, blood samples (100 μL) were withdrawn from the tail vein at 5, 10, 20, 30, 45, 60, 120 and 240 min after drug administration using Heparin-Lithium Microvette (Sarstedt, France) and immediately placed on ice. The collected blood was centrifuged at 2000×g and 4° C. for 5 min to obtain plasma. Plasma samples were stored at −80° C. until bioanalysis.


Method 4: Mouse Oral Bioavailability Determination (Table 8)

Oral bioavailability of a combination of CEFIXIME/Example 3 was determined in Male Swiss Mouse (25 g) obtained from Janvier Labs (Le Genest-Saint-Isle, France). Mouse were housed in a −temperature (20±2° C.) and −humidity (55%±10%) controlled room with 12 h light/dark cycle, and were acclimatized for at least 4 days before experimentation. Water and food were available ad libitum throughout the study. Mouse were handled in accordance with the institutional and national guidelines for the care and use of laboratory animals. CEFIXIME (10 mg/kg) and Example 3 (20 mg/kg) were formulated in citrate buffer 100 mM pH5.5, beta-cyclodextrin 40% (Roquette, France) diluted in commercial antacid Phosphalugel (1 vol citrate buffer/2 vol antacid) from Astellas Pharma (Levallois Perret, France). Drugs were administered by oral gavage using feeding needle. Blood samples (1.3 ml) were withdrawn by terminal cardiac puncture at 5, 10, 20, 40, 60, 120, 240, and 420 min after drug administration using Heparin-Lithium Microvette (Sarstedt, France) and immediately placed on ice. The collected blood was centrifuged at 2000×g and 4° C. for 5 min to obtain plasma. Plasma samples were stored at −80° C. until bioanalysis.


Method 5: Plasma samples bioanalysis and data analysis


The plasma samples (20 μl) were thawed at 0° C. The samples were protein precipitated using 3-25 fold volume of acetonitrile, shaken and centrifuged for 20 min at 15 000×g, diluted with a varying volume of deionized water, and pipetted to 96-well plates to wait for the LC-MS/MS analysis. Standard samples were prepared by spiking the blank plasma into concentrations 10-5 000 ng/ml and otherwise treated as the samples. Chromatographic separation was achieved with columns (T3 or C18 Cortex of Waters) and mobile phases according to the polarity of the drugs. Mass spectrometric detection involved electrospray ionization in the negative mode followed by multiple reaction monitoring of the drugs and internal standard transitions. Actual drug concentrations were deduced from interpolation of the standard curve. The pharmacokinetic parameters were calculated using XLfit (IDBS) and Excel (Microsoft) software, using standard non-compartmental methods. The intraduodenal bioavailability was calculated by dividing the AUC obtained from the intraduodenal administration by the AUC obtained from the intravenous administration.









TABLE 7







Rat intraduodenal bioavailability of AF1 and Examples 1 to 3









Animal



Rat



Compound administered













AF1
AF1
Example 1
Example 2
Example 3
















Route of
Intra-
Intra-
Intra-
Intra-
Intra-


administration
venous
duodenal
duodenal
duodenal
duodenal


Dose (mg/kg)
10
20
20
 20
20


Compound
AF1
AF1
AF1
AF1
AF1


titrated in


plasma


AUC0-∞
4129 
722
6766 
8443 
6124 


(h*ng/mL)


Bioavailability

8.7
82
102
74


(%)









As shown in Table 7, the intraduodenal administration to rats of the prodrug Examples 1, 2 and 3 leads to the effective detection in plasma of their hydrolyzed form AF1, with intraduodenal bioavailabilities always higher than 70% whereas only 8.7% is observed when AF1 itself is administered by intraduodenal route. Examples 1, 2, 3 are therefore effectively absorbed in the gastro-intestinal tract of the rats, and then effectively hydrolyzed into the active form AF1.









TABLE 8







Mouse oral bioavailability of Cefixime and Example 3









Animal



Mouse



Compound administered












FIX
FIX
AF1
Example 3















Route of
Intra-
Oral
Intra-
Oral


administration
venous

venous


Dose (mg/kg)
10
10
30
20


Compound
FIX
FIX
AF1
AF1


titrated in


plasma


AUC0-∞
37222  
16786  
11239  
5777 


(h*ng/mL)


Bioavailability

45

77


(%)









As shown in Table 8, the oral administration to mice of the prodrug Example 3 leads to the effective detection in plasma of its hydrolyzed form AF1, with a high oral bioavailability of 77%, while co-administered Cefixime shows 45% bioavailability. This set of data illustrates the possibility of treating bacterial infections by an oral combination of Cefixime with Example 3.









TABLE 9





Hydrolysis kinetics in buffers and plasmas, and bioavailability of Examples 7 to 11


















Hydrolysis at 1 mg/ml
Hydrolysis at 4 μg/ml



at different pH
at different pH



at room Temperature (NMR)
at 37° C. (LC-MS)



(10%/50% degradation times)
(50% degradation times)












Citrate
Phosphate
Phosphate
Citrate



10 mM
10 mM
10 mM
10 mM



pH 5.0
pH 6.0
pH 7.4
pH 5.0














Compound ID
T10
T50
T10
T50
T10
T50
T50






















AF1














AF1-Et
9
min
1
h






<1
min


Example 7
3.5
h
27
h
2
h
20 h
37 min
3.2
h
109
min


Example 8
6.7
h
43
h
2.7
h
21 h
40 min
4.5
h
>120
min


Example 9
3.2
h
20
h
2.3
h
17 h
21 min
2.6
h


Example 10
3.5
h
32
h
1.5
h
16 h
12 min
1
h


Example 11
6.2
h
>41
h
2
h
16 h
15 min
1.3
h















Hydrolysis at 4 μg/ml





at different pH




at 37° C. (LC-MS)




(50% degradation times)












Phosphate
Phosphate

Bioavailability



10 mM
10 mM
Hydrolysis in plasma at 37° C.
(%)














pH 6.0
pH 7.4
(half-life in min)
Rat
Rat
Mouse


















Compound ID
T50
T50
Mouse
Rat
Dog
Human
ID
PO
PO







AF1






6



AF1-Et
<1 min
<1 min



Example 7

23 min
<1
<1
4.0
7.0
76
85
141



Example 8

39 min
<1
<1
8.0
11
67



Example 9



Example 10



Example 11










As shown in Table 9, Examples 7 to 11 and especially Examples 7 and 8 are much more stable to chemical hydrolysis at pH5 to 7.4 than AF1-Et, for which the structure is provided below, this compound being mentioned in WO2009133442. Furthermore, Examples 7 and 8 (esters) are rapidly converted into the corresponding biologically active acid AF1 in rodent, dog and more importantly in human plasma. They provide excellent AF1 intraduodenal or oral bioavailabilities in rats and mice when administered in a simple buffer vehicle (Citrate 100 mM pH5.0).




embedded image


Method 6: Rat Intraduodenal and Oral Bioavailability Determination (Table 9)

The protocol is identical to Method 3 except for the following points:

    • Vehicle was the Citrate buffer 100 mM pH5.0
    • All administrations were performed at 20 mg/kg (based on the acid AF1), including the reference intravenous administration of AF1 used to calculate the bioavailabilities. For Oral administrations, male Sprague-Dawley (SD) rats (250-270 g) from Janvier Labs (Le Genest-Saint-Isle, France) were used.


Method 7 Mouse Oral Bioavailability Determination (Table 9)

The protocol is identical to Method 4 except that the vehicle was the Citrate buffer 100 mM pH5.0.


Method 8: Hydrolysis Kinetics in Buffers or Plasma Samples at 37° C., 4 μg/ml (Table 9)


Test compounds were prepared in DMSO at 0.8 mg/ml (relative to the acid AF1). To obtain a concentration of 4 μg/ml, one microliter of test compounds or AF1 was dissolved in 199 μl of buffer or blank plasma. For test compounds, plasma samples and/or buffer samples were kept at 37° C. during 2 h, and 20 μL of mixture were collected at 0 minutes (before heating to 37° C.), 5 minutes, 10 minutes, 20 minutes, 30 minutes, 45 minutes, 60 minutes and 120 minutes. For AF1, 20 μl of plasma samples and/or buffer samples were collected at 0 minutes. All plasma samples were protein precipitated using 3-25 fold volume of acetonitrile, shaken and centrifuged for 20 minutes at 15 000×g, diluted with a varying volume of deionized water. All buffer samples were diluted with a varying volume of deionized water/acetonitrile. The formation of AF1 from test compounds was quantified using LC-MS/MS.


Method 9: Hydrolysis Kinetics in Buffers at Room Temperature by 19F-NMR, 1 mg/ml (Table 9)


Samples were prepared by solubilizing the ester compound (1 mg) in 900 μL of D2O and 100 μL of adequate buffer (Citrate 100 mM pH 5, Phosphate 100 mM pH 6 and Phosphate 100 mM pH 7.4). After a short sonication to fasten solubilization, the hydrolysis curve of the esters was generated by measuring and comparing the 19F-NMR signal integrations of both species (ester compound disappearing and the acid form AF1 appearing). T10 and T50, times for respectively 10% and 50% of ester hydrolysis, were determined by interpolation of the hydrolysis curves.









TABLE 10





Hydrolysis kinetics in buffers and plasmas, and bioavailability of Examples 7 to 15


















Hydrolysis at 1 mg/ml
Hydrolysis at 4 μg/ml



at different pH
at different pH



at room Temperature (NMR)
at 37° C. (LC-MS)



(10%/50% degradation times)
(50% degradation times)












Citrate
Phosphate
Phosphate
Citrate



10 mM
10 mM
10 mM
10 mM



pH 5.0
pH 6.0
pH 7.4
pH 5.0















Promoiety
Compound ID
T10
T50
T10
T50
T10
T50
T50























Tertiary alcohol
Example 14
5
min
27
min
<25
min
<2 h
 7 min
34
min
<5
min


Secondary alcohol
Example 15
7
min
34
min






<1
min


Secondary alcohol
Example 13
8
min
56
min






<1
min


Primary alcohol
AF1-Et
9
min
1
h






<1
min


Secondary alcohol
Example 12
15
min
1.3
h






<1
min


Tertiary alcohol
Example 9
3.2
h
20
h
2.3
h
17 h
21 min
2.6
h


Tertiary alcohol
Example 7
3.5
h
27
h
2
h
20 h
37 min
3.2
h
109
min


Tertiary alcohol
Example 10
3.5
h
32
h
1.5
h
16 h
12 min
1
h


Tertiary alcohol
Example 11
6.2
h
>41
h
2
h
16 h
15 min
1.3
h


Tertiary alcohol
Example 8
6.7
h
43
h
2.7
h
21 h
40 min
4.5
h
>120
min













Hydrolysis at 4 μg/ml




at different pH



at 37° C. (LC-MS)



(50% degradation times)












Phosphate
Phosphate

Bioavailability



10 mM
10 mM
Hydrolysis in plasma at 37° C.
(%)














pH 6.0
pH 7.4
(half-life in min)
Rat
Rat
Mouse



















Promoiety
Compound ID
T50
T50
Mouse
Rat
Dog
Human
ID
PO
PO
























Tertiary alcohol
Example 14
<5 min
<5
min





11




Secondary alcohol
Example 15
<1 min
<1
min





5



Secondary alcohol
Example 13
<1 min
<1
min





11



Primary alcohol
AF1-Et
<1 min
<1
min





13



Secondary alcohol
Example 12
<1 min
<1
min




20



Tertiary alcohol
Example 9







55



Tertiary alcohol
Example 7

23
min
<1
<1
4.0
7.0
44
50
84



Tertiary alcohol
Example 10







55



Tertiary alcohol
Example 11







48



Tertiary alcohol
Example 8

39
min
<1
<1
8.0
11

52
110










As shown in Table 10, Examples 7 to 11 and especially Examples 7 and 8 are much more stable to chemical hydrolysis at pH5 to 7.4 than AF1-Et and Examples 12 to 15. The bioavailability of these compounds is low for the least stable compounds, generally around 10%, and high for the most stable ones, approximately 50% in rats (around five-fold higher) and more than 80% in mice.


Method 10: Rat Intraduodenal and Oral Bioavailability Determination (Table 10)

The protocol is identical to Method 6 except that the rats were fasted.


Method 11: Mouse Oral Bioavailability Determination (Table 10)

The protocol is identical to Method 7 except that the mice were fasted.









TABLE 11







Rat intraduodenal bioavailability of Example 1 as a


solution or as a suspension, according to Method 3.









Animal



Rat



Compound administered











AF1
Example 1
Example 1
















Route of
Intra-
Intra-
Intra-



administration
venous
duodenal
duodenal



Vehicle
Phosphate
CD40%
Citrate




pH 7.4
pH 5.0
pH 5.0



Dose (mg/kg)
20
20
15



Physical aspect
Solution
Solution
Suspension



Compound
AF1
AF1
AF1



titrated in



plasma



AUC 0-∞
12484  
6766 
1520 



(h*ng/mL)



Bioavailability

54
16



(%)










As shown in Table 11, a significant bioavailability is obtained with Example 1 if entirely dissolved in 40% hydroxyl-propyl-beta-cyclodextrin. Example 1 is poorly soluble in aqueous buffers and therefore behaves as a suspension in citrate buffer, resulting in a low bioavailability.


Method 12: Aqueous Solubility

Aqueous solubility of the compounds was determined by visual inspection at room temperature by addition of adequate amount of water until complete solubilization of 5 mg of compound.









TABLE 12







Aqueous solubility at room temperature for


AF1-Et, Examples 1, 2, 3 and 7 to 15











Aqueous Solubility




at room temperature



Example
in H2O (mg/mL)














AF1-Et
>1



1
Low solubility



2
Low solubility



3
Low solubility



7
6



8
1



9
6.9



10
4.5



11
1.3



12
0.5-1.0



13
>1.0



15
>1.0



14
5.1









Claims
  • 1-17. (canceled)
  • 18. A compound of formula (I)
  • 19. The compound according to claim 18, wherein R1 is C(O)NH2, CN, CH2OH or CH2OMe.
  • 20. The compound according to claim 18, wherein R1 is C(O)NH2.
  • 21. The compound according to claim 18, wherein Y1 represents CF2.
  • 22. The compounds according to claim 18, wherein Y2 is chosen from:
  • 23. The compound according to claim 18 of formula (I*)
  • 24. A pro-drug of a compound of formula (I′)
  • 25. A pharmaceutical composition comprising the compound of claim 18 and optionally a pharmaceutical acceptable excipient.
  • 26. The pharmaceutical composition according to claim 25 further comprising at least one compound selected from an antibacterial compound, preferably a β-lactam compound.
  • 27. The pharmaceutical composition comprising the compound of claim 18 further comprising one or more antibacterial compound, one or more β-lactam compounds, one or more antibacterial compounds and one or more β-lactam compounds.
  • 28. The pharmaceutical composition according to claim 26, wherein: the antibacterial compound is selected from aminoglycosides, β-lactams, glycylcyclines, tetracyclines, quinolones, fluoroquinolones, glycopeptides, lipopeptides, macrolides, ketolides, lincosamides, streptogramins, oxazolidinones, polymyxins and mixtures thereof; orthe μ-lactam compound is selected from β-lactams and mixtures thereof, preferably penicillin, cephalosporins, penems, carbapenems and monobactam.
  • 29. The composition according to claim 26, wherein the β-lactam is chosen among amoxicillin, amoxicillin-clavulanate, sultamicillin, cefuroxime axetil, cefazolin, cefaclor, cefdinir, cefpodoxime proxetil, cefprozil, cephalexin, loracarbef, cefetamet, ceftibuten, tebipenem pivoxil, sulopenem, SPR994, cefixime, preferably among cefixime and cefpodoxime proxetil.
  • 30. A kit comprising at least two distinct pharmaceutical compositions according to claim 25.
  • 31. A method for the treatment or prevention of a bacterial infection, the method comprising the administration of a person in need thereof of a suitable amount of a compound according claim 18.
  • 32. The method of claim 31, wherein the bacterial infection is caused by bacteria producing one or more β-lactamase.
  • 33. The method of claim 31, wherein the bacterial infection is caused by a gram-positive bacteria or by gram-negative bacteria.
  • 34. A method for the treatment or prevention of bacterial infections comprising the simultaneous, separate or sequential administration to a person in need thereof of the pharmaceutical compositions of the kit according to claim 30.
Priority Claims (2)
Number Date Country Kind
17305127.7 Feb 2017 EP regional
17305958.5 Jul 2017 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2018/052963 2/6/2018 WO 00