NOVEL KINASE FOR TREATING AND PREVENTING FUNGAL INFECTIONS, AND USE THEREOF

Abstract
The present invention relates to a use of kinases for treating and preventing fungal meningoencephalitis by pathogenic fungi of the genus Cryptococcus. Specifically, the present invention relates to a method for screening an antifungal agent characterized by measuring the amount or activity of a pathogenic-regulatory kinase protein of Cryptococcus neoformans, or the expression level of a gene encoding the protein; and an antifungal pharmaceutical composition comprising an inhibitor against a pathogenic-regulatory kinase protein of Cryptococcus neoformans or a gene encoding the same. An antifungal agent for treating meningoencephalitis, etc. can be effectively screened by using the method for screening an antifungal agent according to the present invention, and meningoencephalitis, etc. can be effectively treated by using the antifungal pharmaceutical composition according to the present invention. Thus, the present invention can be widely used in related industrial fields such as pharmaceutical and biotechnology fields.
Description
TECHNICAL FIELD

The preset invention relates to novel kinases for preventing and treating pathogenic fungal infection and the use thereof. Moreover, the present invention relates to a method for screening an antifungal agent, which comprises measuring the amount or activity of a Cryptococcus neoformans pathogenicity-regulating kinase protein or the expression level of a gene encoding the protein and to an antifungal pharmaceutical composition comprising an inhibitor against a Cryptococcus neoformans pathogenicity-regulating kinase protein or a gene encoding the protein.


BACKGROUND ART


Cryptococcus neoformans is a pathogenic fungus which is ubiquitously distributed in diverse natural environments, including soil, tree and bird guano, and uses various hosts ranging from lower eukaryotes to aquatic and terrestrial animals (Lin, X. & Heitman, J. The biology of the Cryptococcus neoformans species complex. Annu. Rev. Microbiol. 60, 69-105, 2006). Cryptococcus neoformans is the leading cause of fungal meningoencephalitis deaths and is known to cause approximately one million new infections and approximately 600,000 deaths worldwide each year (Park, B. J. et al. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23, 525-530, doi:10.1097/QAD.0b013e328322ffac, 2009). However, limited therapeutic options are available for treatment of systemic cryptococcosis (Perfect, J. R. et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis 50, 291-322, doi:10.1086/649858, 2010). Meanwhile, C. neoformans is regarded as an ideal fungal model system for basidiomycetes, owing to the availability of completely sequenced and well-annotated genome databases, a classical genetic dissection method through sexual differentiation, efficient methods of reverse and forward genetics, and a variety of heterologous host model systems (Idnurm, A. et al. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat. Rev. Microbiol. 3, 753-764, 2005).


Extensive studies have been conducted over several decades to understand the mechanisms underlying the pathogenicity of C. neoformans. Besides efforts to analyze the functions of individual genes and proteins, recent large-scale functional genetic analyses have provided comprehensive insights into the overall biological circuitry of C. neoformans. However, the signaling and metabolic pathways responsible for the general biological characteristics and pathogenicity of C. neoformans have not yet been fully elucidated. This is mainly because the functions of kinases, which have a central role in signaling pathways and are responsible for the activation or expression of transcription factors (TFs), have not been fully characterized on a genome-wide scale. In general, kinases play pivotal roles in growth, cell cycle control, differentiation, development, the stress response and many other cellular functions, affecting about 30% of cellular proteins by phosphorylation (Cohen, P. The regulation of protein function by multisite phosphorylation-a 25 year update. Trends Biochem Sci 25, 596-601, 2000). Furthermore, kinases are considered to be a protein class representing a major target in drug development, as their activity is easily inhibited by small molecules such as compounds, or antibodies (Rask-Andersen, M., Masuram, S. & Schioth, H. B. The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu Rev Pharmacol Toxicol 54, 9-26, doi:10.1146/annurev-pharmtox-011613-135943, 2014). Therefore, the systematic functional profiling of fungal kinases in human fungal pathogens is in high demand to identify virulence-related kinases that could be further developed as antifungal drug targets.


Accordingly, the present inventors performed systematic functional profiling of the kinome networks in C. neoformans and Basidiomycetes by constructing a high-quality library of 226 signature-tagged gene-deletion strains through homologous recombination methods for 114 putative kinases, and examining their phenotypic traits under 30 distinct in vitro growth conditions, including growth, differentiation, stress responses, antifungal resistance and virulence-factor production (capsule, melanin and urease). Furthermore, the present inventors investigated their pathogenicity and infectivity potential in insect and murine host models.


DISCLOSURE
Technical Problem

It is an object of the present invention to provide novel kinases for prevention and treatment of pathogenic fungal infection and the use thereof. Furthermore, the present invention is intended to provide a method of screening an antifungal agent by measuring the amount or activity of a Cryptococcus neoformans pathogenicity-regulating kinase protein or the expression level of a gene encoding the protein. The present invention is also intended to provide an antifungal pharmaceutical composition comprising an inhibitor and/or activator of a Cryptococcus neoformans pathogenicity-regulating kinase protein or a gene encoding the protein. The present invention is also intended to provide a method for screening a drug candidate for treating and preventing cryptococcosis or meningoencephalitis. The present invention is also intended to provide a pharmaceutical composition for treatment and prevention of cryptococcosis or meningoencephalitis. The present invention is also intended to provide a method for diagnosing fungal infection.


Technical Solution

To achieve the above objects, the present invention provides novel pathogenicity-regulating kinase proteins. Specifically, the novel pathogenicity-regulating kinase proteins according to the present invention include, but are not limited to, Fpk1, Bck1, Ga183, Kic1, Vps15, Ipk1, Mec1, Urk1, Yak1, Pos5, Irk1, Hs1101, Irk2, Mps1, Sat4, Irk3, Cdc7, Irk4, Swe102, Vrk1, Fbp26, Psk201, Ypk101, Pan3, Ssk2, Utr1, Pho85, Bud32, Tco6, Arg5, 6, Ssn3, Irk6, Dak2, Rim15, Dak202a, Snf101, Mpk2, Cmk1, Irk7, Cbk1, Kic102, Mkk2, Cka1, and Bub1.


The present invention also provides a method for screening an antifungal agent, comprising the steps of: (a) bringing a sample to be analyzed into contact with a cell containing a pathogenicity-regulating kinase protein; (b) measuring the amount or activity of the protein; and (c) determining that the sample is an antifungal agent, when the amount or activity of the protein is measured to be down-regulated or up-regulated.


The present invention also provides a method for screening an antifungal agent, comprising the steps of: (a) bringing a sample to be analyzed into contact with a cell containing a gene encoding a pathogenicity-regulating kinase protein; (b) measuring the expression level of the gene; and (c) determining that the sample is an antifungal agent, when the expression level of the gene is measured to be down-regulated or up-regulated.


In the present invention, the cell that is used in screening of the antifungal agent may be a fungal cell, for example, a Cryptococcus neoformans cell.


In the present invention, the antifungal agent may be an agent for treating and preventing meningoencephalitis or cryptococcosis, but is not limited thereto.


In the present invention, a BLAST matrix for 60 pathogenicity-related kinases was constructed using the CFGF (Comparative Fungal Genomics Platform) (http://cfgp.riceblast.snu.ac.kr) database, and the pathogenicity-related 60 kinase protein sequence was queried. As a result, orthologue proteins were retrieved and matched from the genome database from the 35 eukaryotic species. To determine the orthologue proteins, each protein sequence was analyzed by BLAST and reverse-BLAST using genome databases (CGD; Candida genome database for C. albicans, Broad institute database for Fusarium graminearum and C. neoformans). 21 kinases were related to pathogenicity in both F. graminearum and C. neoformans. 13 kinases were related to pathogenicity of C. neoformans and C. albicans. Among them, five kinases, including Sch9, Snf1, Pka1, Hog1 and Swe1, were related to virulence of all the three fungal pathogenic strains. Genes in the pathogenicity network according to the present invention were classified by the predicted biological functions listed in the information of their Gene Ontology (GO) term. Six kinases (Arg5/6, Ipk1, Irk2, Irk4, Irk6 and vrk1) did not have any functionally related genes in CryptoNet (http://www.inetbio.org/cryptonet).


As used herein, the team “sample” means an unknown candidate that is used in screening to examine whether it influences the expression level of a gene or the amount or activity of a protein. Examples of the sample include, but are not limited to, chemical substances, nucleotides, antisense-RNA, siRNA (small interference RNA) and natural extracts.


The team “antifungal agent” as used herein is meant to include inorganic antifungal agents, organic natural extract-based antifungal agents, organic aliphatic compound-based antifungal agents, and organic aromatic compound-based antifungal agents, which serve to inhibit the propagation of bacteria and/or fungi. Examples of the inorganic antifungal agents include, but are not limited to, chlorine compounds (especially sodium hypochlorite), peroxides (especially hydrogen peroxide), boric acid compounds (especially boric acid and sodium borate), copper compounds (especially copper sulfate), zinc compounds (especially zinc sulfate and zinc chloride), sulfur-based compounds (especially sulfur, calcium sulfate, and hydrated sulfur), calcium compounds (especially calcium oxide), silver compounds (especially thiosulfite silver complexes, and silver nitrate), iodine, sodium silicon fluoride, and the like. Examples of the organic natural extract-based antifungal agents include, but are not limited to, hinokithiol, Phyllostachys pubescens extracts, creosote oil, and the like.


In the present invention, measurement of the expression level of the gene may be performed using various methods known in the art. For example, the measurement may be performed using RT-PCR (Sambrook et al, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press, 2001), Northern blotting (Peter B. Kaufma et al., Molecular and Cellular Methods in Biology and Medicine, 102-108, CRCpress), hybridization using cDNA microarray (Sambrook et al, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press, 2001) or in situ hybridization (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press, 2001). Where the measurement is performed according to RT-PCR protocol, total RNA is isolated from cells treated with a sample, and then single-stranded cDNA is synthesized using dT primer and reverse transcriptase. Subsequently, PCR is performed using the single-stranded cDNA as a template and a gene-specific primer set. The gene-specific primer sets used in the present invention are shown in Tables 2 and 3 below. Next, the PCR amplification product is amplified, and the formed band is analyzed to measure the expression level of the gene.


In the present invention, measurement of the amount or activity of the protein may be performed by various immunoassay methods known in the art. Examples of the immunoassay methods include, but are not limited to, radioimmunoassay, radio-immunoprecipitation, immunoprecipitation, ELISA (enzyme-linked immunosorbent assay), capture-ELISA, inhibition or competition assay, and sandwich assay. The immunoassay or immunostaining methods are described in various literatures (Enzyme Immunoassay, E. T. Maggio, ed., CRC Press, Boca Raton, Fla., 1980; Gaastra, W., Enzyme linked immunosorbent assay (ELISA), in Methods in Molecular Biology, Vol. 1, Walker, J. M. ed., Humana Press, NJ, 1984; and Ed Harlow and David Lane, Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1999). For example, when radioimmunoassay is used, protein-specific antibodies labeled with radioisotopes (e.g., C14, I125, P32 and S35) may be used.


When ELISA is used in one embodiment of the present invention, it comprises the steps of: (i) coating an extract of sample-treated cells on the surface of a solid substrate; (ii) incubating the cell extract with a kinase protein-specific or labeled protein-specific antibody as a primary antibody; (iii) incubating the resultant of step (ii) with an enzyme-conjugated secondary antibody; and (iv) measuring the activity of the enzyme. Suitable examples of the solid substrate include hydrocarbon polymers (e.g., polystyrene and polypropylene), glass, metals or gels. Most preferably, the solid substrate is a microtiter plate. The enzyme conjugated to the secondary antibody includes an enzyme that catalyzes a color development reaction, a fluorescent reaction, a luminescent reaction, or an infrared reaction, but is not limited. Examples of the enzyme include alkaline phosphatase, β-galactosidase, horseradish peroxidase, luciferase, and cytochrome P450. When alkaline phosphatase is used as the enzyme conjugated to the secondary antibody, bromochloroindolylphosphate (BCIP), nitro blue tetrazolium (NBT), naphthol-AS-B1-phosphate and ECF (enhanced chemifluorescence) may be used as substrates for color development reactions. When horseradish peroxidase is the enzyme, chloronaphthol, aminoethylcarbazol, diaminobenzidine, D-luciferin, lucigenin (bis-N-methylacridinium nitrate), resorufin benzyl ether, luminol, Amplex Red reagent (10-acetyl-3,7-dihydroxyphenoxazine), TMB (3,3,5,5-tetramethylbenzidine), ABTS (2,2′-azine-di[3-ethylbenzthiazoline sulfonate]) and o-phenylenediamine (OPD) may be used as substrates. The final measurement of the activity or signal of the enzyme in the ELISA assay may be performed according to various conventional methods known in the art. When biotin is used as a label, the signal can be easily detected with streptavidin, and when luciferase is used as a label, the signal can be easily detected with luciferin.


In one embodiment, the present invention provides an antifungal pharmaceutical composition comprising an agent (inhibitor or activator) for a fungal pathogenicity-regulating kinase protein. In another embodiment, the fungus is Cryptococcus neoformans.


In one embodiment, the present invention provides an antifungal pharmaceutical composition comprising an agent (inhibitor or activator) for a gene encoding a fungal pathogenicity-regulating kinase protein. In another embodiment, the fungus is Cryptococcus neoformans.


In the present invention, the pharmaceutical composition may be a composition for treating meningoencephalitis or cryptococcosis, but is not limited.


In the present invention, the agent may be an antibody. In one embodiment, the inhibitor may be an inhibitor that inhibits the activity of the protein by binding to the protein, thereby blocking signaling of the protein. For example, it may be a peptide or compound that binds to the protein. This peptide or compound may be selected by a screening method including protein structure analysis or the like and designed by a generally known method. In addition, when the inhibitor is a polyclonal antibody or monoclonal antibody against the protein, it may be produced using a generally known antibody production method.


As used herein, the team “antibody” may be a synthetic antibody, a monoclonal antibody, a polyclonal antibody, a recombinantly produced antibody, an intrabody, a multispecific antibody (including bi-specific antibody), a human antibody, a humanized antibody, a chimeric antibody, a single-chain Fv (scFv) (including bi-specific scFv), a BiTE molecule, a single-chain antibody, a Fab fragments, a F(ab′) fragment, a disulfide-linked Fv (sdFv), or an epitope-binding fragment of any of the above. The antibody in the present invention may be any of an immunoglobulin molecule or an immunologically active portion of an immunoglobulin molecule. Furthermore, the antibody may be of any isotype. In addition, the antibody in the present invention may be a full-length antibody comprising variable and constant regions, or an antigen-binding fragment thereof, such as a single-chain antibody or a Fab or Fab′2 fragment. The antibody in the present invention may also be conjugated or linked to a therapeutic agent, such as a cytotoxin or a radioactive isotope.


In the present invention, the agent for the gene may be an antisense oligonucleotide, siRNA, shRNA, miRNA, or a vector comprising the same, but is not limited thereto.


In the present invention, the inhibitor may be an inhibitor that blocks signaling by inhibiting expression of the gene, or interferes with transcription of the gene by binding to the gene, or interferes with translation of mRNA by binding to mRNA transcribed from the gene. In one embodiment, the inhibitor may be, for example, a peptide, a nucleic acid, a compound or the like, which binds to the gene, and it may be selected through a cell-based screening method and may be designed using a generally known method. For example, the inhibitor for the gene may be an antisense oligonucleotide, siRNA, shRNA, miRNA, or a vector comprising the same, which may be constructed using a generally known method.


As used herein, the team “antisense oligonucleotide” means DNA, RNA, or a derivative thereof, which has a nucleic acid sequence complementary to the sequence of specific mRNA. The antisense oligonucleotide binds to a complementary sequence in mRNA and acts to inhibit the translation of the mRNA to a protein. In one embodiment, the length of the antisense oligonucleotide is 6 to 100 nucleotides, preferably 8 to 60 nucleotides, more preferably 10 to 40 nucleotides. In one embodiment of the present invention, the antisense oligonucleotide may be modified at one or more nucleotide, sugar or backbone positions in order to enhance their effect (De Mesmaeker et al., Curr Opin Struct Biol., 5(3):343-55, 1995). The nucleic acid backbone may be modified with a phosphorothioate linkage, a phosphotriester linkage, a methyl phosphonate linkage, a short-chain alkyl intersugar linkage, a cycloalkyl intersugar linkage, a short-chain heteroatomic intersugar linkage, a heterocyclic intersugar linkage or the like. The antisense oligonucleotide may also include one or more substituted sugar moieties. The antisense oligonucleotide may include modified nucleotides. The modified nucleotides include hypoxanthine, 6-methyladenine, 5-Me pyrimidine (particularly, 5-methylcytosine, 5-hydroxymethylcytosine (HMC), glycosyl HMC, gentiobiosyl HMC, 2-aminoadenine, 2-thiouracil, 2-thiothimine, 5-bromouracil, 5-hydroxymethyluracil, 8-azaguanine, 7-deazaguanine, N6 (6-aminohexyl) adenine, 2,6-diaminopurine, and the like. In addition, the antisense oligonucleotide in the present invention may be chemically linked to one or more moieties or conjugates in order to enhance its activity or cellular uptake. In one embodiment of the present invention, the moiety may be a lipophilic moiety such as a cholesterol moiety, a cholesteryl moiety, cholic acid, thioether, thiocholesterol, an aliphatic chain, phospholipid, polyamine, a polyethylene glycol chain, adamantane acetic acid, a palmityl moiety, octadecylamine, or hexylamino-carbonyl-oxycholesterol moiety, but is not limited thereto. Oligonucleotides comprising lipophilic moieties, and methods for preparing such oligonucleotides, are well known in the field to which the present invention pertain (see U.S. Pat. Nos. 5,138,045, 5,218,105 and 5,459,255). In one embodiment of the present invention, the modified nucleic acid may increase resistance to nuclease and increase the binding affinity between antisense nucleic acid and the target mRNA. In one embodiment, the antisense oligonucleotide may generally be synthesized in vitro and administered in vivo, or synthesized in vivo. In an example of synthesizing the antisense oligonucleotide in vitro, RNA polymerase I is used. In an example of synthesizing the antisense RNA in vivo, a vector having origin of recognition region (MCS) in opposite orientation is used to induce transcription of antisense RNA. The antisense RNA preferably includes a translation stop codon for inhibiting translation to peptide.


As used herein, the team “siRNA” means is a nucleic acid molecule capable of mediating RNA interference or gene silencing (see WO 00/44895, WO 01/36646, WO 99/32619, WO 01/29058, WO 99/07409 and WO 00/44914). The siRNA can inhibit expression of a target gene, and thus provide an effective gene knock-down method or gene therapy method. In the present invention, the siRNA molecule may consist of a sense RNA strand (having a sequence corresponding to mRNA) and an antisense RNA strand (having a sequence complementary to mRNA) and foam a duplex structure. In the present invention, the siRNA molecule may have a single-strand structure comprising self-complementary sense and antisense strands. In one embodiment of the present invention, the siRNA is not restricted to a RNA duplex of which two strands are completely paired, and it may comprise non-paired portion such as mismatched portion with non-complementary bases and bulge with no opposite bases. In one embodiment of the present invention, the overall length of the siRNA may be 10-100 nucleotides, preferably 15-80 nucleotides, more preferably 20-70 nucleotides. In the present invention, the siRNA may comprise either blunt or cohesive end, as long as it can silence gene expression. The cohesive end may have a 3′-end overhanging structure or a 5′-end overhanging structure. In the present invention, the siRNA molecule may have a structure in which a short nucleotide sequence (e.g., about 5-15 nt) is inserted between self-complementary sense and antisense strands. In this case, the siRNA molecule famed by expression of the nucleotide sequence forms a hairpin structure by intramolecular hybridization, resulting in the formation of a stem-and-loop structure.


As used herein, the term “shRNA” refers to short hairpin RNA. When an oligo DNA that connects a 3-10-nucleotide linker between the sense and complementary nonsense strands of the target gene siRNA sequence is synthesized and then cloned into a plasmid vector, or when shRNA is inserted and expressed in retrovirus, lentivirus or adenovirus, a looped hairpin shRNA is produced and converted by an intracellular dicer to siRNA that exhibits the RNAi effect. The shRNA exhibits the RNAi effect over a longer period of time than the siRNA.


As used herein, the term “miRNA (microRNA)” refers to an 18-25-nt single-stranded RNA molecule which controls gene expression in eukaryotic organisms. It is known that the miRNA binds complementarily to the target mRNA, acts as a posttranscriptional gene suppressor, and functions to suppress translation and induce mRNA destabilization.


As used herein, the term “vector” refers to a gene structure comprising a foreign DNA inserted into a genome encoding a polypeptide, and includes a DNA vector, a plasmid vector, a cosmid vector, a bacteriophage vector, a yeast vector, or a virus vector.


In one embodiment of the present invention, the pharmaceutical composition may be administered in combination with at least one azole-based antifungal agent selected from the group consisting of fluconazole, itraconazole, voriconazole and ketoconazole, or may be administered in combination with at least one non-azole-based antifungal agent selected from the group consisting of amphotericin B, natamycin, rimocidin, nystatin, flucytosine and fludioxonil.


In the present invention, the antifungal pharmaceutical composition may comprise a pharmaceutically suitable and physiologically acceptable adjuvant in addition to the active ingredient. This adjuvant may be an excipient, a disintegrant, a sweetening agent, a binder, a coating agent, a swelling agent, a lubricant, a flavoring agent, a solubilizing agent or the like.


The antifungal pharmaceutical composition according to the present invention may comprise, in addition to the active ingredient, at least one pharmaceutically acceptable carrier. In one embodiment, when the pharmaceutical composition is formulated as a liquid solution, a carrier may be used, such as saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, malto-dextrin solution, glycerol, ethanol, or a mixture of two or more thereof, which is sterile and physiologically suitable. If necessary, other conventional additives may be added, including antioxidants, buffers, bacteriostatic agents or the like.


In one embodiment of the present invention, the antifungal pharmaceutical composition may be formulated as injectable formulations such as aqueous solutions, suspensions, emulsions or the like, pills, capsules, granules or tablets, by use of a diluent, a dispersing agent, a surfactant, a binder or a lubricant. Furthermore, the composition may preferably be formulated using a suitable method as disclosed in Remington's Pharmaceutical Science, Mack Publishing Company, Easton Pa., depending on each disease or components. In one embodiment of the present invention, the pharmaceutical composition may be formulated in the form of granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, drops, injectable liquid formulations, or sustained-release formulations of the active ingredient, or the like. The pharmaceutical composition of the present invention may be administered in a conventional manner by an intravenous, intra-arterial, intraperitoneal, intramuscular, intrasternal, transdermal, intranasal, inhalation, topical, intrarectal, oral, intraocular or intradermal route.


In the present invention, the effective amount of the active ingredient in the pharmaceutical composition of the present invention means an amount required to prevent or treat a disease. Thus, the effective amount may be adjusted depending on various factors, including the kind of disease, the severity of the disease, the kinds and contents of the active ingredient and other ingredients contained in the composition, the type of formulation, the patient's age, weight, general health state, sex and diet, the period of administration, the route of administration, the secretion rate of the composition, treatment time, and concurrently used drugs.


Advantageous Effects

According to the present invention, novel antifungal agent candidates can be effectively screened using kinases. In addition, using an antifungal pharmaceutical composition comprising an agent (antagonist or antagonist) for kinase according to the present invention, fungal infection can be effectively prevented, treated and/or diagnosed.





DESCRIPTION OF DRAWINGS


FIG. 1 shows the phylogenetic correlation among protein kinases in Cryptococcus neoformans, and FIG. 2 shows a comparison of major kinases in Cryptococcus neoformans, C. albicans and A. fumigatus. Regarding FIG. 1, protein sequence-based alignment was performed using ClustalX2 (University College Dublin). Using this alignment data, the phylogenetic tree was illustrated by Interactive Tree Of Life (http://itol.embl.de) (Letunic, I. & Bork, P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39, W475-478, doi:10.1093/nar/gkr201 (2011)). Among the 183 kinases found in C. neoformans, the present inventors constructed 114 gene-deletion kinases, and the kinases named based on the nomenclature rules for S. cerevisiae genes. The different colour codes represent the different classes of protein kinases predicted by Kinomer 1.0 (http://www.compbio.dundee.ac.uk/kinomer) (Martin, D. M., Miranda-Saavedra, D. & Barton, G. J. Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res 37, D244-250, doi:10.1093/nar/gkn834 (2009)). Red marked genes indicate the 60 pathogenicity-related kinases, and the distribution of these kinases for total kinases and various classes. FIG. 2 is a Pie-chart for the kinase classes predicted by Kinomer 1.0 to reveal the relative portion of protein kinase classes in human infectious fungal pathogens, C. neoformans, Candida albicans and Aspergillus fumigatus.



FIG. 3 shows phenotypic clustering of protein kinases in Cryptococcus neoformans. The phenotypes were scored by seven grades (−3: strongly sensitive/reduced, −2: moderately sensitive/reduced, −1: weakly sensitive/reduced, 0: wild-type like, +1: weakly resistant/increased, +2: moderately resistant/increased, +3: strongly resistant/increased). The excel file containing the phenotype scores of each kinase mutant was loaded by Gene-E software (http://www.broadinstitute.org/cancer/software/GENE-E/) and then the kinase phenome clustering was drawn using one minus Pearson correlation. The abbreviations used in FIG. 3 have the following meanings: [T25: 25° C., T30: 30° C., T37: 37° C., T39: 39° C., CAP: capsule production; MEL: melanin production; URE: urease production; MAT: mating filamentation, HPX: hydrogen peroxide, TBH: tert-butyl hydroperoxide, MD: menadione, DIA: diamide, MMS: methyl methanesulfonate, HU: hydroxyurea, 5FC: 5-flucytosine, AMB: amphotericin B, FCZ: fluconazole, FDX: fludioxonil, TM: tunicamycin, DTT: dithiothreitol, CDS: cadmium sulfate, SDS: sodium dodecyl sulfate, CR: Congo red, CFW: calcofluor white, KCR: YPD+KCl, NCR: YPD+NaCl, SBR: YPD+sorbitol, KCS: YP+KCl, NCS: YP+NaCl, SBS: YP+sorbitol].



FIG. 4 shows the phenotypic traits of ga183custom-character mutant and snf1Δ mutant. FIG. 4a shows the results of comparing the phenotypic traits between a wild-type strain and snf1Δ and ga183Δ mutants under various stress conditions, and indicates that in 1 μg/ml fludioxonil (FDX), the snf1Δ and ga183Δ mutants showed increased susceptibility compared to the wild-type strain, and in 0.65 mM tert-butyl hydroperoxide (tBOOH), the snf1Δ and ga183Δ mutants showed increased resistance compared to the wild-type strain. FIG. 4b shows the results of comparing carbon source utilization between a wild-type strain and snf1Δ and ga183Δ mutants. An experiment was performed under the conditions of 2% glucose, 2% galactose, 3% glycerol, 3% ethanol, 2% maltose, 2% sucrose, 2% sodium acetate, and 1% potassium acetate, and the experimental results indicated that the snf1Δ and ga183Δ mutants required ethanol, sodium acetate and potassium acetate as carbon sources.



FIG. 5 shows the results of an experiment performed to examine whether Fpk1 regulates Ypk1-dependent phenotypes in the pathogenicity of Cryptococcus neoformans. (a) A scheme for the replacement of the FPK1 promoter with histone H3 promoter to construct an FPK1-overexpressing strain. (b) The FPK1 overexpressing strain was analyzed by Southern blot analysis, and YSB3986 and YSB3981 strains were produced by overexpressing FPK1 using a ypk1Δ mutant as a parent strain. (c) Overexpression of FPK1 was verified by Northern blot analysis. rRNA was used as a loading control. (d) WT strain (H99S), ypk1Δ (YSB1736) mutant, and FPK1 overexpression strains (YSB3986 and YSB3981) were cultured in YPD liquid medium for 16 hours, spotted on YPD medium, and incubated at the indicated temperature to observe the degree of growth. (e and f) The strains were tested on YPD medium containing 1.5 M NaCl, 0.04% sodium dodecyl sulphate, 1 μg/ml fluorodioxonil, 1 μg/ml amphotericin B, 3 mM hydrogen peroxide, 3 mg/ml calcofluor white, 100 mM hydroxyurea, 2 mM diamide, 300 μg/ml flucytosine and 5 mg/ml fluconazole. Cells were further incubated at 30° C. for 3 days and photographed. (g) The regulatory model for Ypk1 and Fpk1 kinases in C. neoformans, which can be proposed based on the experimental results.



FIGS. 6, 7 and 8 show the results of identifying pathogenic kinases by insect killing assay. Each mutant was grown for 16 hours in liquid YPD medium, washed three times with PBS buffer, and then inoculated into G. mellonella larva using 4,000 mutant cells per larva (15 larvae per group). The infected larvae were incubated at 37° C. and monitored for their survival each day. Statistical analysis of the experimental results was performed using the Log-rank (Mantel-Cox) test. FIGS. 6, 7 and 8a show the survival data of two independent mutants for each kinase. FIG. 8b shows the results of two repeated experiments for kinases from which only one mutant was produced.



FIGS. 9 and 10 shows the results of a signature-tag mutagenesis (STM)-based murine model virulence test. In the STM study, ste50Δ and hx11Δ strains were used as virulent and non-virulent control strains. STM scores were measured by using qPCR analysis using the STM-specific primers listed in Table 2 below for three-independent biological replicates. (a-d) All the kinase mutants were divided into four sets. The genes of each set consisted of two-independent mutants, and when one mutant was present, two independent experiments were performed.



FIG. 11 summarizes the pathogenicity-related kinases in Cryptococcus neoformans. STM scores were calculated by the quantitative PCR method, arranged numerically and coloured in gradient scales (FIG. 11a). Red marked letters show the novel infectivity-related kinases revealed by this analysis. Gene names for the 25 kinases that were co-identified by both insect killing and STM assays were depicted below the STM zero line. The P-value between control and mutant strains was determined by one-way analysis of variance (ANOVA) employing Bonferroni correlation with three mice per each STM set. Each set was repeated twice using independent strains. For single strain mutants, two independent experiments were repeatedly performed using each single strain. In the STM study, the roles of a total of 54 kinases in the infectivity of C. neoformans were analyzed. Referring to FIGS. 5 to 8, a total of 6 kinases were not shown to be involved in pathogenicity regulation in the murine model infectivity test, but were shown to be pathogenicity-related kinases by the wax moth killing assay (FIG. 11b). For bub1 and kin4 single mutant strains, the experiment was repeated twice.



FIG. 12 shows the pleiotropic roles of Ipk1 in Cryptococcus neoformans. Using WT (wild-type) and ipk1Δ mutants (YSB2157 and YSB2158), various experiments were performed. In FIG. 12a, ipk1Δ mutants (YSB2157 and YSB2158) showed attenuated virulence in the insect-based in vivo virulence assay. In this assay, WT and PBS were used as controls. In FIG. 12b, ipk1Δ mutants showed increased capsule production. Cells, incubated overnight, were placed on a DME plate at 37° C. for 2 days. 50 μl of 1.5×108 cells were packed into each capillary tube, and the packed cell volume was monitored every day. After 3 days when the cells were precipitated by gravity, the packed cell volume in the total volume was calculated and normalized to WT. The P value of each strain was less than 0.05. (*) Error bars indicate SEM. In FIG. 12c, ipk1Δ mutants show melanin-deficient phenotypes. Melanin production was assayed on Niger seed plates containing 0.2% glucose after 3 days. In FIG. 12d, ipk1Δ deletion mutants show defects in urease production. Urease production was assayed on Christensen's agar media at 30° C. after 2 days. In FIG. 12e, ipk1Δ mutants display severe defects in mating. Mating was assayed on V8 media (pH 5, per L: V8 juice 50 ml (Campbell), KH2PO4 (Bioshop, PPM302) 0.5 g, agar (Bioshop, AGR001.500) 40 g) plate for 9 days. FIGS. 12f and 12g are micrographs obtained from 10-fold diluted spot analysis (102 to 105-fold dilution). Growth rate was measured under various growth conditions indicated on the photographs. For analysis of chemical susceptibility, YPD medium was treated with the following chemicals: HU; 100 mM hydroxyurea as DNA damage reagent, TM; 0.3 μg/ml tunicamycin as ER (endoplasmic reticulum) stress inducing reagent, CFW; 3 mg/ml calcofluor white as cell wall damage reagent, SDS; 0.03% sodium dodecyl sulfate for membrane stability testing, CDS; 30 M CdSO4 as heavy metal stress reagent, HPX; 3 mM hydrogen peroxide as oxidizing reagent, 1M NaCl for osmotic shock, and 0.9 ml/mg AmpB (amphotericin B), 14 μg/ml FCZ (fluconazole), 300 μg/ml 5-FC (flucytosine), and 1 μg/ml FDX (fludioxonil) for analysis of antifungal agent susceptibility.



FIG. 13 shows the results of experiments using cdc7d, cbk1Δ and kic1Δ mutants. (a-c) cdc7Δ mutants (YSB2911, YSB2912), met1Δ mutants (YSB3063, YSB3611) and cka1 (YSB3051, YSB3052) were grown overnight in YPD medium, diluted 10-fold serially, and spotted on solid YPD medium and a YPD medium containing 100 mM hydroxyurea (HU), 0.06% methyl methanesulphonate (MMS), 1 μg/ml amphotericin B (AmpB), 1 μg/ml fludioxonil (FDX), 3 mM hydrogen peroxide (HPX) and 300 μg/ml flucytosine (5-FC). The spotted cells were further incubated at 30° C. or the indicated temperatures for 3 days and then photographed. (d) Wild-type and kic1Δ (YSB2915, YSB2916), cbk1Δ (YSB2941, YSB2942) and cka1Δ (YSB3051, YSB3052) mutants were incubated in YPD medium for 16 hours or more, and then fixed with 10% paraformaldehyde for 15 minutes and washed twice with PBS solution. The fixed cells were stained with 10 μg/ml Hoechst solution (Hoechst 33342, Invitrogen) for 30 minutes, and then observed with a fluorescence microscope (Nikon eclipse Ti microscope).



FIG. 14 shows the results of experiments on bud32Δ mutants. (a) Wild-type and bud32Δ mutants (YSB1968, YSB1969) were incubated overnight in YPD medium, diluted 10-fold serially, and then spotted on YPD medium containing the following chemicals, and observed for their growth rate under various growth conditions: 1.5 M NaCl, 1.5 M KCl, 2 M sorbitol, 1 μg/ml amphotericin B (AmpB), 14 μg/ml fluconazole (FCZ), 1 μg/ml fludioxonil (FDX), 300 μg/ml flucytosine, 100 mM hydroxyurea (HU), 0.04% methyl methanesulphonate (MMS), 3 mM hydrogen peroxide (HPX), 0.7 mM tert-butyl hydroperoxide (tBOOH), 2 mM diamide (DIA), 0.02 mM menadione (MD), and 0.03% sodium dodecyl sulphate (SDS). The cells spotted on the YPD medium containing these chemicals were further incubated at 30° C., and then photographed. (b) Melanin production of wild-type and bud32Δ mutants was assayed on Niger seed plates containing 0.1% glucose, and urease production was assayed after incubation on Christensen's agar media at 30° C. To examine capsule production, cells incubated overnight were placed on a DME plate at 37° C. for 2 days. 50 μl of 1.5×108 cells were packed into each capillary tube, and after 3 days, the packed cell volume was monitored every day by gravity. The packed cell volume in the total volume was calculated and normalized to WT. The results were analyzed by one-way analysis of variance (ANOVA) employing Bonferroni correlation, and the analysis was repeated three times. (c) To examine the mating efficacy, wild-type and bud32Δ mutants were spotted onto V8 mating medium and then incubated at room temperature in the dark for 9 days. (d) WT and bud32Δ mutants grown at 30° C. to the logarithmic phase and then were treated with or without fluconazole (FCZ) for 90 min. Total RNA was extracted from each sample, and the expression level of ERG11 was analyzed by Northern blotting.



FIG. 15 shows the results of experiments on arg5, 6Δ mutants and met3Δ. (a, b) Wild-type (H99S), arg5, 6Δ mutants (YSB2408, YSB2409, YSB2410) and met3Δ mutants (YSB3329, YSB3330) were incubated overnight in YPD medium and then washed with PBS. The washed cells were diluted 10-fold serially and spotted on solid synthesis complete medium. [SC; yeast nitrogen base without amino acids (Difco) supplemented with the indicated concentration of the following amino acids and nucleotides: 30 mg/l L-isoleucine, 0.15 g/l L-valine, 20 mg/l adenine sulphate, 20 mg/l L-histidine-HCl, 0.1 g/l L-leucine, 30 mg/l L-lysine, 50 mg/l L-phenylalanine, 20 mg/l L-tryptophan, 30 mg/l uracil, 0.4 g/l L-serine, 0.1 g/l glutamic acid, 0.2 g/l L-threonine, 0.1 g/l L-aspartate, 20 mg/l L-arginine, 20 mg/l L-cysteine, and 20 mg/l L-methionine]. SC-arg (a), SC-met and SC-met-cys (b) media indicate the SC medium lacking arginine, methionine and/or cysteine supplements. (b) A schematic view showing methionine and cysteine biosynthesis pathways. (c) Wild-type, arg5, 6Δ mutants and met3Δ mutants were incubated overnight in YPD medium, diluted 10-fold serially, and then spotted on YPD medium containing the following chemicals, and observed for their growth rate under various growth conditions: 1 μg/ml amphotericin B (AmpB), 14 μg/ml fluconazole (FCZ), 1 μg/ml fludioxonil (FDX), and 3 mM hydrogen peroxide (HPX). The spotted cells were incubated at 30° C. or indicated temperature for 3 days, and then photographed.



FIG. 16 shows retrograde vacuole trafficking that controls the pathogenicity of Cryptococcus neoformans. Retrograde vacuole trafficking controls the pathogenicity of Cryptococcus neoformans. Various tests were performed using WT and vps15Δ mutants [YSB1500, YSB1501]. In FIG. 16a, Vps15 is required for virulence of C. neoformans. WT and PBS were used as positive and negative virulence controls, respectively. In FIG. 16b, vps15Δ mutants display enlarged vacuole morphology. Scale bars indicate 10 μm. In FIG. 16c, vps15Δ mutants show significant growth defects under ER stresses. Overnight cultured cells were spotted on the YPD medium containing 15 mM dithiothreitol (DTT) or 0.3 μg/ml tunicamycin (TM), further incubated at 30° C. for 3 days, and photographed. In FIG. 16d, vps15Δ mutants show significant growth defects at high temperature and under cell membrane/wall stresses. Overnight cultured cells were spotted on the YPD medium and further incubated at the indicated temperature or spotted on the YPD medium containing 0.03% SDS or 5 mg/ml calcofluor white (CFW) and further incubated at 30° C. Plates were photographed after 3 days. In FIG. 16e, Vps15 is not involved in the regulation of the calcineurin pathway in C. neoformans. For quantitative RT-PCR (qRT-PCR), RNA was extracted from three biological replicates with three technical replicates of WT and vps15Δ mutants. CNA1, CNB1, CRZ1, UTR2 expression levels were normalized by ACT1 expression levels as controls. Data were collected from the three replicates. Error bars represent SEM (standard error of means). In FIG. 16f, Vps15 negatively regulates the HXL1 splicing. For RT-PCR, RNA was extracted from WT and vps15Δ mutants and cDNA was synthesized. HXL1 and ACT1-specific primer pairs were used for RT-PCR (Table 3). This experiment was repeated twice and one representative experiment is presented.



FIG. 17 shows the results of experiments on vrk1Δ mutants. FIG. 17a shows the results of spotting WT and vrk1Δ strains on YPD medium and on YPD medium containing 2.5 mM hydrogen peroxide (HPX), 600 μg/ml flucytosine (5-FC) or 1 μg/ml fludioxonil (FDX). The strains were incubated at 30° C. for 3 days and photographed. FIG. 17b shows the results of relative quantification of the packed cell volume. Three independent measurements shows a significant difference between WT and vrk1Δ strains (***; 0.0004 and **; 0.0038, s.e.m). FIG. 17c shows relative quantification of Vrk1-mediated phosphorylation. Peptide samples were analyzed three times on average, and peptides were obtained from two independent experiments. The data is the mean±s.e.m of two independent experiments. Student's unpaired t-test was applied for determination of statistical significance. ***P<0.001, **P<0.01, *P<0.05. PSMs represent peptide spectrum matching.





BEST MODE

In one embodiment of the present invention, there is provided a method for screening an antifungal agent, comprising the steps of: (a) bringing a sample to be analyzed into contact with a cell containing a pathogenicity-regulating kinase protein or a gene encoding the protein; (b) measuring the amount or activity of the protein or the expression level of the gene; and (c) determining that the sample is an antifungal agent, when the amount or activity of the protein or the expression level of the gene is measured to be down-regulated or up-regulated.


In the method for screening the antifungal agent, the pathogenicity-regulating kinase protein may be one or more selected from the group consisting of BUD32, ATG1, CDC28, KIC1, MEC1, KIN4, MKK1/2, BCK1, SNF1, SSK2, PKAT, GSK3, CBK1, KIC1, SCH9, RIM15, HOG1, YAK1, IPK1, CDC7, SSN3, CKA1, MEC1, ARG5, 6P, MET3, VPS15 and VRK1.


In another embodiment of the present invention, the cell used in screening of the antifungal agent is a Cryptococcus neoformans cell, and the antifungal agent is an antifungal agent for treating meningoencephalitis or cryptococcosis.


In another embodiment of the present invention, there is provided an antifungal pharmaceutical composition comprising an antagonist or inhibitor of the Cryptococcus neoformans pathogenicity-regulating kinase protein or an antagonist or inhibitor of the gene encoding the protein. In this regard, the pathogenicity-regulating kinase protein may be one or more selected from the group consisting of BUD32, ATG1, CDC28, KIC1, MEC1, KIN4, MKK1/2, BCK1, SNF1, SSK2, PKA1, GSK3, CBK1, KIN1, SCH9, RIM15, HOG1, YAK1, IPK1, CDC7, SSN3, CKA1, MEC1, ARG5, 6P, MET3, VPS15 and VRK1.


In still another embodiment of the present invention, the antifungal pharmaceutical composition is for treating meningoencephalitis or cryptococcosis, and the antagonist or inhibitor may be a small molecule; an antibody against the protein; or an antisense oligonucleotide, siRNA, shRNA, miRNA, or a vector comprising one or more of these, against the gene.


In yet another embodiment of the present invention, the antifungal pharmaceutical composition is an antifungal pharmaceutical composition to be administered in combination with an azole-based or non-azole-based antifungal agent. The azole-based antifungal agent may be at least one selected from the group consisting of fluconazole, itraconazole, voriconazole and ketoconazole. In addition, the non-azole-based antifungal agent may be at least one selected from the group consisting of amphotericin B, natamycin, rimocidin, nystatin and fludioxonil.


Mode for Invention

Hereinafter, the present invention will be described in further detail with reference to examples. It will be obvious to those skilled in the art that these examples are for illustrative purposes and are not intended to limit the scope of the present invention.


Animal care and all experiments were conducted in accordance with the ethical guidelines of the Institutional Animal Care and Use Committee (IACUC) of Yonsei University. The Yonsei University IACUC approved all of the vertebrate studies.


EXAMPLES
Example 1
Identification of Protein Kinases in Cryptococcus neoformans

To select the putative kinase genes in the genome of C. neoformans var. grubii (H99 strain), two approaches were used. The first approach used was Kinome v. 1.0 database (www.compbio.dundee.ac.uk/kinomer/) which systematically predicts and classifies eukaryotic protein kinases based on a highly sensitive and accurate hidden Markov model (HMM)-based method (Martin, D. M., Miranda-Saavedra, D. & Barton, G. J. Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res 37, D244-250, doi:10.1093/nar/gkn834, 2009). Through the Kinome database, 97 putative kinases in the genome of serotype D C. neoformans (JEC21 strain) were predicted. The ID of each JEC21 kinase gene was mapped with the H99 strain based on the most recent genome annotation (version 7), 95 putative kinases were queried. However, it was shown that this Kinome list was incomplete, because it failed to present all histidine kinases and some known kinases such as Hog1. For this reason, the present inventors surveyed a curated annotation of kinases in the H99 genome database provided by the Broad Institute (www.broadinstitute.org/annotation/genome/cryptococcus_neoformans) and the JEC21 genome database within the database of the National Center for Biotechnology Information. For each gene that had a kinase-related annotation, the present inventors performed protein domain analyses using Pfam (http://pfam.xfam.org/) to confirm the presence of kinase domains and to exclude the genes with annotations such as phosphatases or kinase regulators. Through this analysis, 88 additional putative kinases genes were queried. As a result, 183 putative kinase genes in C. neoformans were retrieved. The phylogenetic relationship thereof is shown in FIG. 1.


Eukaryotic protein kinase superfamilies are further classified into six conventional protein kinase groups (ePKs) and three atypical groups (aPKs) (Miranda-Saavedra, D. & Barton, G. J. Classification and functional annotation of eukaryotic protein kinases. Proteins 68, 893-914, doi:10.1002/prot.21444, 2007). ePKs include the AGC group (including cyclic nucleotide and calcium-phospholipid-dependent kinases, ribosome S6-phosphoprylated kinases, G protein-linked kinases and all similar analogues of these sets), CAMKs (calmodulin-regulated kinases); the CK1 group (casein kinase 1, and similar analogues), the CMGC group (including cyclin-dependent kinases, mitogen-activated protein kinases, glycogen synthase kinases and CDK-like kinases), the RGC group (receptor guanylate cyclase), STEs (including many kinase functions in the MAP kinase cascade), TKs (tyrosine kinases) and TKLs (tyrosine kinase-like kinases) (FIGS. 1 and 2). The aPKs include the alpha-kinase group, PIKK (phosphatidylinositol 3-kinase-related kinase group), RIO and PHDK (pyruvate dehydrogenase kinase group). To classify 183 C. neoformans protein kinases based on these criteria, the present inventors queried their amino acid sequences in the Kinomer database. Some of the previously classified kinases (Martin, D. M., Miranda-Saavedra, D. & Barton, G. J. Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res 37, D244-250, doi:10.1093/nar/gkn834, 2009) were classified otherwise (14 out of 95), presumably due to sequence differences between JEC21 and H99. Most of other kinases identified by annotation did not correspond to the previous category (82 out of 88), and were classified as “others”. Therefore, it was found that the C. neoformans genome consists of 89 ePKs (18 AGC, 22 CAMK, 2 CK1, 24 CMGC, 2 PDHK, 18 STE, 3 TKL), 10 aPKs (2 PDHK, 6 PIKK, 2 RIO), and 84 “others” (FIG. 1). The others include 7 histidine kinases (FIGS. 1 and 2). Based on prediction by the HMMER sequence profiles of Superfamily (version 1.73) (Wilson, D. et al. SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37, D380-386, doi:10.1093/nar/gkn762 (2009)), it was shown that two human fungal pathogens, C. albicans and A. fumigatus, have 188 and 269 protein kinases, respectively. Among pathogenic fungal protein kinases, CMGC (12-13%), CAMK (12-18%), STE (6-10%) and AGC (6-10%) kinases appear to be the most common clades (FIGS. 1 and 2).


Given that most eukaryotic genomes are predicted to contain kinase at a ratio of about 1-2% of the genome, the protein kinase ratio of C. neoformans (˜2.6%) was higher than expected. This indicates that C. neoformans has both saprobic and parasitic life cycles in which pathogenic yeast is in contact with more diverse environmental signals and host signals. Nevertheless, it is still necessary to explain whether all these predicted kinases have biologically significant kinase activity. The phylogenetic comparison of 183 putative kinases in C. neoformans with those in other strains and higher eukaryotes suggest that kinases much more evolutionarily conserved than transcription factors (TFs) in strains and other eukaryotes. In conclusion, the kinome network appears to be evolutionarily conserved in at least sequence similarity among fungi, which is in sharp contrast to evolutionary distribution of TF networks.


Example 2
Construction of Kinase Gene-Deletion Mutant Library in C. neoformans

To gain insights into the biological functions of Cryptococcus kinome networks and the complexity thereof, the present inventors constructed gene-deletion mutants for each kinase and functionally characterized them. Among the kinases analyzed here, mutants for 22 kinases (TCO1, TCO2, TCO3, TCO4, TCO5, TCO7, SSK2, PBS2, HOG1, BCK1, MKK1/2, MPK1, STE11, STE7, CPK1, PKA1, PKA2, HRK1, PKP1, IRE1, SCH9, and YPK1) were already functionally characterized in part by the present inventor. (Bahn, Y. S., Geunes-Boyer, S. & Heitman, J. Ssk2 mitogen-activated protein kinase governs divergent patterns of the stress-activated Hog1 signaling pathway in Cryptococcus neoformans. Eukaryot. Cell 6, 2278-2289 (2007); Bahn, Y. S., Hicks, J. K., Giles, S. S., Cox, G. M. & Heitman, J. Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot. Cell 3, 1476-1491 (2004); Bahn, Y. S., Kojima, K., Cox, G. M. & Heitman, J. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol. Biol. Cell 16, 2285-2300 (2005); Bahn, Y. S., Kojima, K., Cox, G. M. & Heitman, J. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol. Biol. Cell. 17, 3122-3135 (2006); Kim, H. et al. Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans. Scientific reports 5, 8767, doi:10.1038/srep08767 (2015); Kim, M. S., Kim, S. Y., Yoon, J. K., Lee, Y. W. & Bahn, Y. S. An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers. Biochem. Biophys. Res. Commun. 390, 983-988, doi:S0006-291X(09)02080-4 [pii]10.1016/j.bbrc.2009.10.089 (2009); Kim, S. Y. et al. Hrk1 plays both Hog1-dependent and -independent roles in controlling stress response and antifungal drug resistance in Cryptococcus neoformans. PLoS One 6, e18769, doi:doi:10.1371/journal.pone.0018769 (2011); Kojima, K., Bahn, Y. S. & Heitman, J. Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans. Microbiology 152, 591-604 (2006); Maeng, S. et al. Comparative transcriptome analysis reveals novel roles of the Ras and cyclic AMP signaling pathways in environmental stress response and antifungal drug sensitivity in Cryptococcus neoformans. Eukaryot. Cell 9, 360-378, doi:EC.00309-09 [pii];10.1128/EC.00309-09 (2010); Cheon, S. A. et al. Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hxl1, for controlling pathogenicity of Cryptococcus neoformans. PLoS Pathog. 7, e1002177, doi:10.1371/journal.ppat.1002177 (2011)).


For the remaining 161 kinases, the present inventors constructed gene-deletion mutants by using large-scale homologous recombination and by analyzing their in vitro and in vivo phenotypic traits. The constructed mutant was deposited (accession number: KCCM 51297).


In order to perform a large-scale virulence test in mouse hosts, dominant nourseothricin-resistance markers (NATs) containing a series of signature tags (Table 1) were employed. Southern blot analysis was performed to verify both the accurate gene deletion and the absence of any ectopic integration of each gene-disruption cassette. Table 1 below shows 26 kinase gene-deletion strains.












TABLE 1





CNAG_Num.
GENE NAME
YSE#
GENOTYPE







CNAG_00047
PKP1
558, 608
MATα pkp1Δ::NAT-STM#224


CNAG_00106
TCO5
286, 287
MATα tco5Δ::NAT-STM#125


CNAG_00130
HRK1
270, 271
MATα hrk1Δ::NAT-STM#58


CNAG_00363
TCO6
2469, 2554
MATα tco6Δ::NAT-STM#58


CNAG_00396
PKA1
188, 189
MATα pka1Δ::NAT-STM#191


CNAG_00405
KIC1
2915, 2916
MATα kic1Δ::NAT-STM#201


CNAG_00415
CDC2801
2370, 3699
MATα cdc2801Δ::NAT-STM#191


CNAG_00636
CDC7
2911, 2912
MATα cdc7Δ::NAT-STM#213


CNAG_00745
HRK1/NPH1
1438, 1439
MATα hrk1/mph1Δ::NAT-STM#210


CNAG_00769
PBS2
123, 124
MATα pbs2Δ::NAT-STM#213


CNAG_00782
SPS1
3229, 3325
MATα sps1Δ::NAT-STM#288


CNAG_00826
DAK2
1912, 1913
MATα dak2Δ::NAT-STM#282


CNAG_01062
PSK201
1989, 1990
MATα psk201Δ::NAT-STM#191


CNAG_01155
GUT1
1241, 2761
MATα gut1Δ::NAT-STM#242


CNAG_01162
MAK322
3824, 3825
MATα mak322Δ::NAT-STM#159


CNAG_01165
LCB5
3789, 3790
MATα lcb5Δ::NAT-STM#213


CNAG_01209
FAB1
3172
MATα fab1Δ::NAT-STM#169


CNAG_01294
IPK1
2157, 2158
MATα ipk1Δ::NAT-STM#184


CNAG_01333
ALK1
1571, 1573
MATα alk1Δ::NAT-STM#122


CNAG_01523
HOG1
64, 65
MATα hog1Δ::NAT-STM#177


CNAG_01123
PSK202
3922, 3924
MATα psk202Δ::NAT-STM#208


CNAG_01704
IRK6
3830, 3831
MATα irk6Δ::NAT-STM#5


CNAG_01730
STE7
342, 343
MATα ste7Δ::NAT-STM#225


CNAG_01850
TCO1
278, 279
MATα yco1Δ::NAT-STM#102


CNAG_01905
KSP1
1807, 1808, 1809
MATα ksp1Δ::NAT-STM#159


CNAG_01938
KIN1
3930, 3931
MATα kin1Δ::NAT-STM#6


CNAG_01988
TCO3
284, 285
MATα tco3Δ::NAT-STM#119


CNAG_02233
MEC1
3063, 3611
MATα mec1Δ::NAT-STM#204


CNAG_02296
RBK1
1510, 1511
MATα rbk1Δ::NAT-STM#219


CNAG_02357
MKK2
330, 331
MATα mkk2Δ::NAT-STM#224


CNAG_02389
YKP101
1885, 1886
MATα ypk101Δ::NAT-STM#242


CNAG_02511
CPK1
127, 128
MATα cpk1Δ::NAT-STM#184


CNAG_02531
CPK2
373, 374
MATα cpk2Δ::NAT-STM#122


CNAG_02542
IRK2
1904, 1905
MATα irk2Δ::NAT-STM#232


CNAG_02551
DAK3
1940, 1941
MATα dak3Δ::NAT-STM#295


CNAG_02675
HSL101
1800, 1801
MATα hsl101Δ::NAT-STM#146


CNAG_02680
VPS15
1500, 1501
MATα vps15Δ::NAT-STM#123


CNAG_02712
BUD32
1968, 1969
MATα bud32Δ::NAT-STM#295


CNAG_02799
DAK202A
2487, 2489
MATα dak202aΔ::NAT-STM#119


CNAG_02802
ARG2
1503, 1504
MATα arg2Δ::NAT-STM#125


CNAG_02820
PKH201
1234, 1235, 1236
MATα pkh201Δ::NAT-STM#219


CNAG_02859
POS5
3714, 3715
MATα pos5Δ::NAT-STM#58


CNAG_02947
SCY1
2793, 2794
MATα scy1Δ::NAT-STM#150


CNAG_03024
RIM15
1216, 1217
MATα rim15Δ::NAT-STM#191


CNAG_03048
IRK3
1486, 1487
MATα irk3Δ::NAT-STM#273


CNAG_03167
CHK1
1825, 1828
MATα chk1Δ::NAT-STM#205


CNAG_03184
BUB1
3398
MATα bub1Δ::NAT-STM#201


CNAG_03216
SNF101
1575, 1576
MATα snf101Δ::NAT-STM#146


CNAG_03258
TPK202A
2443, 2444
MATα psk202aΔ::NAT-STM#208


CNAG_03290
KIC102
3211, 3212
MATα kic102Δ::NAT-STM#201


CNAG_03355
TCO4
417, 418
MATα tco4Δ::NAT-STM#123


CNAG_03367
URK1
1266, 1267
MATα urk1Δ::NAT-STM#43


CNAG_03369
SWE102
1564, 1565
MATα swe102Δ::NAT-STM#169


CNAG_03567
CBK1
2941, 2942
MATα cbk1Δ::NAT-STM#232


CNAG_03592
THI20
3219, 3220
MATα THI20Δ::NAT-STM#231


CNAG_03670
IRE1
552, 554
MATα ire1Δ::NAT-STM#224


CNAG_03811
IRK5
2952, 2953
MATα irk5Δ::NAT-STM#213


CNAG_03843
ARK1
1725, 1726
MATα ark1Δ::NAT-STM#43


CNAG_03946
GAL302
2852, 2853
MATα gal302Δ::NAT-STM#218


CNAG_04040
FPK1
2948, 2949
MATα fpk1Δ::NAT-STM#211


CNAG_04108
PKP2
2439, 2440
MATα pkp2Δ::NAT-STM#295


CNAG_04162
PKA2
194, 195
MATα pka2Δ::NAT-STM#205


CNAG_04197
YAK1
2040, 2096, 4139
MATα yak1Δ::NAT-STM#184


CNAG_04215
MET3
3329, 3330
MATα met3Δ::NAT-STM#205


CNAG_04221
FBP26
3669
MATα fbp26Δ::NAT-STM#146


CNAG_04230
THI6
1468, 1469
MATα thi6Δ::NAT-STM#290


CNAG_04282
MPK2
3236, 3238
MATα mpk2Δ::NAT-STM#102


CNAG_04316
UTR1
2892, 2893
MATα utr1Δ::NAT-STM#5


CNAG_04408
CKI1
1804, 1805
MATα cki1Δ::NAT-STM#218


CNAG_04433
YAK103
3736, 3737
MATα YAK103Δ::NAT-STM#231


CNAG_04514
MPK1
3814, 3816
MATα mpk1Δ::NAT-STM#240


CNAG_04631
RIK1
1579, 1580
MATα CNAG_04631Δ::NAT-STM#150


CNAG_04678
YPK1
1736, 1737
MATα ypk1Δ::NAT-STM#58


CNAG_04755
BCK1
273, 274
MATα bck1Δ::NAT-STM#43


CNAG_04821
PAN3
2809, 2810
MATα pan3Δ::NAT-STM#204


CNAG_04927
YFH702
2826, 3716
MATα yfh702Δ::NAT-STM#220


CNAG_05005
ATG1
1935, 1936
MATα atg1Δ::NAT-STM#288


CNAG_05063
SSK2
264, 265
MATα ssk2Δ::NAT-STM#210


CNAG_05097
CKY1
1245, 1246
MATα CNAG_05097Δ::NAT-STM#282


CNAG_05216
RAD53
3785, 3786
MATα rad53Δ::NAT-STM#184


CNAG_05220
TLK1
3153, 3188
MATα tlk1Δ::NAT-STM#116


CNAG_05243
XKS1
2851
MATα xks1Δ::NAT-STM#125


CNAG_05439
CMK1
1883, 1901, 2902
MATα cmk1Δ::NAT-STM#227


CNAG_05558
KIN4
2955
MATα kin4Δ::NAT-STM#225


CNAG_05590
TCO2
281, 282
MATα tco2Δ::NAT-STM#116


CNAG_05600
IGI1
1514, 1515
MATα CNAG_05600Δ::NAT-STM#230


CNAG_05694
CKA1
3051, 3052, 3053
MATα cka1Δ::NAT-STM#6


CNAG_05753
ARG5.6
2408, 2409, 2410
MATα arg5/6Δ::NAT-STM#220


CNAG_05771
TEL1
3844, 3845
MATα tel1Δ::NAT-STM#225


CNAG_05965
IRK4
2806, 2808
MATα irk4Δ::NAT-STM#211


CNAG_06033
MAK32
3240, 3241
MATα mak32Δ::NAT-STM#169


CNAG_06051
GAL1
2829, 2830
MATα gal1Δ::NAT-STM#224


CNAG_06086
SSN3
3038, 3039
MATα ssn3Δ::NAT-STM#219


CNAG_06161
VRK1
2216, 2217
MATα vrk1Δ::NAT-STM#23


CNAG_06193
CRK1
1709, 1710
MATα crk1Δ::NAT-STM#43


CNAG_06278
TCO7
 348
MATα tco7Δ::NAT-STM#209


CNAG_06301
SCH9
619, 620
MATα sch9Δ::NAT-STM#169


CNAG_06310
IRK7
2136, 2137
MATα irk7Δ::NAT-STM#208


CNAG_06366
HRR2502
2053
MATα hrr2502Δ::NAT-STM#125


CNAG_06552
SNF1
2372, 2373
MATα snf1Δ::NAT-STM#204


CNAG_06553
GAL83
2415, 2416
MATα gal83Δ::NAT-STM#288


CNAG_06568
SKS1
1410, 1411
MATα sks1Δ::NAT-STM#211


CNAG_06632
ABC1
2072, 2797
MATα CNAG_06632Δ::NAT-STM#119


CNAG_06671
YKL1
3926, 3927
MATα CNAG_06671Δ::NAT-STM#122


CNAG_06697
MPS1
3632, 3633
MATα mps1Δ::NAT-STM#116


CNAG_06730
GSK3
2038, 2039
MATα gsk3Δ::NAT-STM#123


CNAG_06809
IKS1
1310, 2119
MATα iks1Δ::NAT-STM#116


CNAG_06980
STE11
313, 314
MATα ste11Δ::NAT-STM#242


CNAG_07359
IRK1
1950, 1951
MATα irk1Δ::NAT-STM#5


CNAG_07580
TRM7
3056, 3057
MATα trm7Δ::NAT-STM#102


CNAG_07667
SAT4
3612
MATα sat4Δ::NAT-STM#212


CNAG_07744
PIK1
1493, 1494
MATα pik1Δ::NAT-STM#227


CNAG_07779
TDA10
2663, 3223
MATα tda10Δ::NAT-STM#102


CNAG_08022
PHO85
3702, 3703
MATα pho85Δ::NAT-STM#218





*CNAG: Abbreviation for Cryptococcus neoformans serotype A genome database, which is the H99 genomic database gene number provided by the Broad Institute.






For gene-deletion through homologous recombination, gene-disruption cassettes containing the nourseothricin-resistance marker (NAT; nourseothricin acetyl transferase) with indicated signature-tagged sequences were generated by using conventional overlap PCR or NAT split marker/double-joint (DJ) PCR strategies (Davidson, R. C. et al. A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148, 2607-2615 (2002); Kim, M. S., Kim, S. Y., Jung, K. W. & Bahn, Y. S. Targeted gene disruption in Cryptococcus neoformans using double-joint PCR with split dominant selectable markers. Methods Mol Biol 845, 67-84, doi:10.1007/978-1-61779-539-8_5 (2012) (Table 1). To validate a mutant phenotype and to exclude any unlinked mutational effects, more than two independent deletion strains were constructed for each kinase mutant (see Table 1). When two independent kinase mutants exhibited inconsistent phenotypes (inter-isolate inconsistency), more than three mutants were constructed. As a result, the present inventors successfully generated 220 gene deletion mutants representing 114 kinases (including those that were previously reported) (Table 1). For 106 kinases, two or more independent mutants were constructed. Some kinases that had been previously reported by others were independently deleted here with unique signature-tagged markers to perform parallel in vitro and in vivo phenotypic analysis. When two independent kinase mutants exhibited inconsistent phenotypes (known as inter-isolate inconsistency), the present inventors attempted to generate more than three mutants.


For the remaining 69 kinases, the present inventors were not able to generate mutants even after repeated attempts. In many cases, the present inventors either could not isolate a viable transformant, or observed the retention of a wild-type allele along with the disrupted allele. The success level for mutant construction of the kinases (114 out of 183 (62%)) was lower than that for transcription factors (TFs) that the present inventors previously reported (155 out of 178 (87%)) (Jung, K. W. et al. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat Comms 6, 6757, doi:10.1038/ncomms7757, 2015). This is probably because among fungi, kinases are generally much more evolutionarily conserved than TFs, and a greater number of essential or growth-related genes appeared to exist. In fact, 24 (35%) of the kinases are orthologous to kinases that are essential for the growth of Saccharomyces cerevisiae. Notably, 8 genes (RAD53, CDC28, CDC7, CBK1, UTR1, MPS1, PIK1, and TOR2) that are known to be essential in S. cerevisiae were successfully deleted in C. neoformans, suggesting the presence of functional divergence in some protein kinases between ascomycete and basidiomycete fungi.


In the first round of PCR, the 5′- and 3′-flanking regions for the targeted kinase genes were amplified with primer pairs L1/L2 and R1/R2, respectively, by using H99S genomic DNA as a template. For the overlap PCR, the whole NAT marker was amplified with the primers M13Fe (M13 forward extended) and M13Re (M13 reverse extended) by using a pNAT-STM plasmid (obtained from the Joeseph Heitman Laboratory at Duke University in USA) containing the NAT gene with each unique signature-tagged sequence. For the split marker/DJ-PCR, the split 5′- and 3′-regions of the NAT marker were amplified with primer pairs M13Fe/NSL and M13Re/NSR, respectively, with the plasmid pNAT-STM. In the second round of overlap PCR, the kinase gene-disruption cassettes were amplified with primers L1 and R2 by using the combined first round PCR products as templates. In the second round of split marker/DJ-PCR, the 5′- and 3′-regions of NAT-split gene-disruption cassettes were amplified with primer pairs L1/NSL and R2/NSR, respectively, by using combined corresponding first round PCR products as templates. For transformation, the H99S strain (obtained from the Joeseph Heitman Laboratory at Duke University in USA) was cultured overnight at 30° C. in the 50 ml yeast extract-peptone-dextrose (YPD) medium [Yeast extract (Becton, Dickison and company #212750), Peptone (Becton, Dickison and company #211677), Glucose (Duchefa,#G0802)], pelleted and re-suspended in 5 ml of distilled water. Approximately 200 μl of the cell suspension was spread on YPD solid medium containing 1M sorbitol and further incubated at 30° C. for 3hours. The PCR-amplified gene disruption cassettes were coated onto 600 μg of 0.6 μm gold microcarrier beads (PDS-100, Bio-Rad) and biolistically introduced into the cells by using particle delivery system (PDS-100, Bio-Rad). The transformed cells were further incubated at 30° C. for recovery of cell membrane integrity and were scraped after 3 hours. The scraped cells were transferred to the selection medium (YPD solid plate containing 100 μg/ml nourseothricin; YPD+NAT). Stable nourseothricin-resistant (NATr) transformants were selected through more than two passages on the YPD+NAT plates. All NATr strains were confirmed by diagnostic PCR with each screening primer listed in Table 2 below. To verify accurate gene deletion, Southern blot analysis was finally performed (Jung, K. W., Kim, S. Y., Okagaki, L. H., Nielsen, K. & Bahn, Y. S. Ste50 adaptor protein governs sexual differentiation of Cryptococcus neoformans via the pheromone-response MAPK signaling pathway. Fungal Genet. Biol. 48, 154-165, doi:S1087-1845(10)00191-X [pii] 10.1016/j.fgb.2010.10.006 (2011). Table 2 below lists primers used in the construction of the kinase mutant library.














TABLE 2






H99 locus







tag
Cn






(Broad
gene
Primer




o.
ID)
name
name
Primer description
Primer sequence (5′-3′)




















1
CNAG_00047
PKP1
L1
CNAG_00047 5′

AATGAAGTTCCTGCGACAG







flanking region







primer 1






L2
CNAG_00047 5′

GCTCACTGGCCGTCGTTTTACAA







flanking region

TGGGATGAGAACGCAC







primer 2






R1
CNAG_00047 3′

CATGGTCATAGCTGTTTCCTGAG







flanking region

CATTTTCCAGCATCAGC







primer 1






R2
CNAG_00047 3′

GGTGTGGAACATCTTTTGAG







flanking region







primer 2






SO
CNAG_00047

CCTCTGACAGCCACATACTG







diagnostic screening







primer, pairing with







B79






PO1
CNAG_00047

CTGGTTCATCTTGGGTGTC







Southern blot probe







primer 1






PO2
CNAG_00047

TCTGAGCATACCACTCCTTTAC







Southern blot probe







primer 2






STM
NAT#224 STM

AACCTTTAAATGGGTAGAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






2
CNAG_00106
TCO5
L1
CNAG_00106 5′

TACACGAGATTGGCTGGCAACC







flanking region







primer 1






L2
CNAG_00106 5′

CTGGCCGTCGTTTTACAAGTGAA







flanking region

CGCCACACCGATGAG







primer 2






R1
CNAG_00106 3′

GTCATAGCTGTTTCCTGTCTCCC







flanking region

GAGGATGTCTTAG







primer 1






R2
CNAG_00106 3′

TGCCAAAGCGTGTAAGTG







flanking region







primer 2






SO
CNAG_00106

ATGGGAAAGGTCAGTAGCACCG







diagnostic screening







primer, pairing with







B79






PO1
CNAG_00106

TCGTCTTTTCTTGGTCCAG







Southern blot probe







primer 1






PO2
CNAG_00106

TGAGGGCGTAGTTGATAATG







Southern blot probe







primer 2






STM
NAT#125 STM

CGCTACAGCCAGCGCGCGCAAG







primer

CG






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






3
CNAG_00130
HRK1
L1
CNAG_00130 5

TTCCAGTCAACCGAGTAGC







flanking region







primer 1






L2
CNAG_00130 5′

CTGGCCGTCGTTTTACCTGTATT







flanking region

CATCATTGCGGC







primer 2






R1
CNAG_00130 3′

GTCATAGCTGTTTCCTGCGTCAA







flanking region

ATCCAAGAACATCGTG







primer 1






R2
CNAG_00130 3′
GCCTTCATCGTCGTTAGAC






flanking region







primer 2






SO
CNAG_00130

AAGACGACCACATCTCAGAG







diagnostic screening







primer, pairing with







B79






PO1
CNAG_00130

AGGACTCTGCTCCATCAAG







Southern blot probe







primer 1






PO2
CNAG_00130

GAAAGAGCCTCAGAAAAGTAGG







Southern blot probe







primer 2






STM
NAT#58 STM

CGCAAAATCACTAGCCCTATAGC







primer

G






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






4
CNAG_00266

L1
CNAG_00266 5′
GGTCGTATCTCTCTFTCAAGC






flanking region







primer 1






L2
CNAG_00266 5′
TCACTGGCCGTCGTTTTACTTG






flanking region
ACGAGTTGTTCAGGGG






primer 2






R1
CNAG_00266 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
GATGTGGATGAGAAGGTAGC






primer 1






R2
CNAG_00266 3′
GTGCCGACGAGAAGATAAC






flanking region







primer 2






SO
CNAG_00266
AAGGGATAATGGATGACCAC






diagnostic screening







primer, pairing with







B79






PO
CNAG_00266
TCAGTGAGATTCAAGGATGC






Southern blot probe







primer






STM
NAT#213 STM
CTGGGGATTTTGATGTGTCTAT






primer
GT





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





5
CNAG_00363
TCO6
L1
CNAG_00363 5′

GAGAGAATAACAAAAGGGCG







flanking region







primer 1






L2
CNAG_00363 5′

TCACTGGCCGTCGTTTTACAC







flanking region

GAGGGTTAGAGTTGG







primer 2






R1
CNAG_00363 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

GCGTCTTTGTAACCCG







primer 1






R2
CNAG_00363 3′

GCAGGTATCTTACACTCCGTTG







flanking region







primer 2






SO
CNAG_00363

ATTAGACACACGACCTGGG







diagnostic screening







primer, pairing with







B79






PO
CNAG_00363

TGAGGATACTGGTTGACGC







Southern blot probe







primer






STM
NAT#58 STM

CGCAAAATCACTAGCCCTATAGC







primer

G






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






6
CNAG_00388

L1
CNAG_00388 5′
TTTTGAGCGGGGAAACAC






flanking region







primer 1






L2
CNAG_00388 5′
TCACTGGCCGTCGTTTTACGGG






flanking region
TCTCGTCTGTATTTTCG






primer 2






R1
CNAG_00388 3′
CATGGTCATAGCTGTTTTCCTGG






flanking region
ATACCCAGGATTCCACTG






primer 1






R2
CNAG_00388 3′
ACCATTATCGTCGCCTTCG






flanking region







primer 2






SO
CNAG_00388
CAATCCCAATGGCTTTCAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_00388
CGGGTCAAGATGAAAATGTTC






Southern blot probe
GTC






primer






STM
NAT#208 STM
TGGTCGCGGGAGATCGTGGTT






primer
T





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





7
CNAG_00396
PKA1
L1
CNAG_00396 5′

AAACGACTGTGTAATGCGAG







flanking region







primer 1






L2
CNAG_90396 5′

CTGGCCGTCGTTTTACGGAGCC







flanking region

AGAATAAAGGAGTTG







primer 2






R1
CNAG_00396 3′

GTCATAGCTGTTTCCTGGCACTA







flanking region

AATGGGTGAGCAC







primer 1






R2
CNAG_00396 3′

CGATTTGTCCAGTGATTCAGTGA







flanking region

C







primer 2






SO
CAT4G_00396

GTTGGAAGTAGCAGTGTCTTG







diagnostic screening







primer, pairing with







B79






PO
CNAG_00396

TGTCGGAGGAGAATGAACG







Southern blot probe







primer






STM
NAT#191 STM

ATATGGATGTTTTTAGCGAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






8
CNAG_00405
KIC1
L1
CNAG_00405 5′

AAGATGAGCGTTGCGAAG







flanking region







primer 1






L2
CNAG_00405 5′

TCACTGGCCGTCGTTTTACGCGT







flanking region

GGTGCTAAGAACAAC







primer 2






R1
CNAG_00405 3′

CATGGTCATAGCTGTTTCCTGGA







flanking region

GGTAGACTCCCAGAATGC







primer 1






R2
CNAG_00405 3′

TAATGTGTCAACTGCCGC







flanking region







primer 2






SO
CNAG_00405

TTGGTTTCAAGGGGGAAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_00405

AAAGTGGACCGTTTGGAG







Southern blot probe







primer






STM
NAT#201 STM

CACCCTCTATCTCGAGAAAGCTC







primer

C






STM
STU common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






9
CNAG_00415
CDC2801
L1
CNAG_00415 5′

CGCATTCTGGACAAAAGC







flanking region







primer 1






L2
CNAG_00415 5′

TCACTGGCCGTCGTTTTACTTTG







flanking region

CCGTATCTTCCTGG







primer 2






R1
CNAG_00415 3′

CATGGTCATAGCTGTTTCCTGTG







flanking region

ATGTATCTAATCCCTCCG







primer 1






R2
CNAG_00415 3′

AGATTCGGTGCTTTGTGTC







flanking region







primer 2






SO
CNAG_00415

TTGGTCTGGGAACCTTTAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_00415

AATGTGCTACTGCCGACAG







Southern blot probe







primer






STM
NAT#191 STM

ATATGGATGTTTTTAGCGAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






10
CNAG_00556

L1
CNAG_00556 5′
GAACCGAAAAGGGCATTC






flanking region







primer 1






L2
CNAG_00556 5′
TCACTGGCCGTCGTTTTACTGG






flanking region
AGCAGGTGGTTCTAAG






primer 2






R1
CNAG_00556 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
CAGGAGAGAGGAATGAAAC






primer 1






R2
CNAG_00556 3′
CCACCGTCCATTACTTACTG






flanking region







primer 2






SO
CNAG_00556
TGTCAACCCGCTCAAACAC






diagnostic screening







primer, pairing with







B79






PO
CNAG_00556
AGAGAAGTCCTTGCGATTG






Southern blot probe







primer






STM
NAT#290 STM
ACCGACAGCTCGAACAAGCAA






primer
GAG





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





11
CNAG_00636
CDC7
L1
CNAG_00636 5′

GCTGGAAGCGTGATGATAC







flanking region







primer 1






L2
CNAG_00636 5′

TCACTGGCCGTCGTTTTACTGTG







flanking region

TAGGAGGGGAGATGAG







primer 2






R1
CNAG_00636 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

GGACATCCACCAGAGAGG







primer 1






R2
CNAG_00636 3′

CAAATGGGTGTCTCAGAGC







flanking region







primer 2






SO
CNAG_00636

TGAGTGATGCCTTACGCTG







diagnostic screening







primer, pairing with







B79






PO
CNAG_00636

CCCTGTAGACTTACCTTCCC







Southern blot probe







primer






STM
NAT#213 STM

CTGGGGATTTTGATGTGTCTATG







primer

T






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






12
CNAG_00683

L1
CNAG_00683 5′
GAAAACGAGTCCTGGATAGTT






flanking region
C






primer 1






L2
CNAG_00683 5′
TCACTGGCCGTCGTTTTACATG






flanking region
GTTGGATGGGTAGGAG






primer 2






R1
CNAG_00683 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
CTGCCAACAGACATCAAC






primer 1






R2
CNAG_00683 3′
AGAAAAACTCGGACACCTG






flanking region







primer 2






SO
CNAG_00683
TGTAAAAAACAGAGGAGCCC






diagnostic screening







primer, pairing with







B79






PO
CNAG_00683
TTCAGAGTCATCCCACGGTG






Southern blot probe







primer






STM
NAT#273 STM
GAGATCTTTCGGGAGGTCTGG






primer
ATT





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





13
CNAG_00745
HRK11
L1
CNAG_00745 5′

GCAAAAATGGGGAAGATAGG





NPH1

flanking region







primer 1






L2
CN4G_00745 5′

TCACTGGCCGTCGTTTTACTTCC







flanking region

CCAAAATCACTCCC







primer 2






R1
CNAG_00745 3′

CATGGTCATAGCTGTTTCCTGTG







flanking region

GAGATGAGTGGGTGAAG







primer 1






R2
CNAG_00745 3′

TGTGTCAGACCTGTTATCGTTTC







flanking region







primer 2






SO
CNAG_00745

CTCAACCACTCTCTTACGGA







diagnostic screening







primer, pairing with






PO
CNAG_00745

CGAGGTTAGGAGGAAAGGTC







Southern blot probe







primer






STM
NAT#210 STM

CTAGAGCCCGCCACAACGCT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






14
CNAG_00769
PBS2
L1
CNAG_00769 5′

AGGAAGGTGGAGTGTGTG







flanking region







primer 1






L2
CNAG_00769 5′

CTGGCCGTCGTTTTACATGCGAG







flanking region

GAAGAAAGGTCG







primer 2






R1
CNAG_00769 3′

GTCATAGCTGTTTCCTGAACCGA







flanking region

CGACCGACTTATGC







primer 1






R2
CNAG_00769 3′

GTAAGGTAGTCGCAACAACG







flanking region







primer 2






SO
CNAG_00769

CGATACCCTTCTTGCCTGTAG







diagnostic screening







primer, pairing with







B79






PO1
CNAG_00769

AACACGACAGGAAATCCG







Southern blot probe







primer 1






PO2
CNAG_00769

TGGAAGGTTACAAGCCGAC







Southern blot probe







primer 2






STM
NAT#213 STM

CTGGGGATTTTGATGTGTCTATG







primer

T






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






15
CNAG_00782
SPS1
L1
CNAG_00782 5′

CCCGATGAAAGTAATGGC







flanking region







primer 1






L2
CNAG_00782 5′

TCACTGGCCGTCGTTTTACAATG







flanking region

TCCTCTCTTCTGCTCTC







primer 2






R1
CNAG_00782 3′

CATGGTCATAGCTGTTTCCTGAT







flanking region

GACTGCGAAGAAAGGC







primer 1






R2
CNAG_00782 3′

CTTACATCCAGACATCCCAC







flanking region







primer 2






SO
CNAG_00782

GGGTGAGCAACAAGAAATG







diagnostic screening







primer, pairing with







B79






PO
CNAG_00782

CTCCTCCTTTCTTTTATGCC







Southern blot probe







primer






STM
NAT#288 STM

CTATCCAACTAGACCTCTAGCTA







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






16
CNAG_00826
DAK2
L1
CNAG_00826 5′

AGTTTGAATGAAGGGGCG







flanking region







primer 1






L2
CNAG_00826 5′

TCACTGGCCGTCGTTTTACGGAA







flanking region

GATGTGTCGGTCTGTC







primer 2






R1
CNAG_00826 3′

CATGGTCATAGCTGTTTCCTGCG







flanking region

GAAGGTATTCTCAAGGC







primer 1






R2
CNAG_00826 3′

GCTGTTCAGTTTCCTCTCTATG







flanking region







primer 2






SO
CNAG_00826

ACAGCGATGTGGGGATAAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_00826

CATACTTTCCTCGGGATTTC







Southern blot probe







primer






STM
NAT#282 STM

TCTCTATAGCAAAACCAATC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






17
CNAG_00877

L1
CNAG_00877 5′
TCCACACACGAATGGTATC






flanking region







primer 1






L2
CNAG_00877 5′
TCACTGGCCGTCGTTTTACTTG






flanking region
TCAGCAAGGGAATGGGCAGTG






primer 2






R1
CNAG_00877 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
GGATGATTTGAGGGATAG






primer 1






R2
CNAG_00877 3′
ATTGAAACTACCAGTGGCACC






flanking region
CCG






primer 2






SO
CNAG_00877
CCAATACGGTGCTTATGTGAC






diagnostic screening







primer, pairing with







B79






PO
CNAG_00877
CGCAGAGTAGGTTGTGTTG






Southern blot probe







primer






STM
NAT#204 STM
GATCTCTCGCGCTTGGGGGA






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





18
CNAG_01061

L1
CNAG_01061 5′
AAAAGGGGTGGGTCAAAG






flanking region







primer 1






L2
CNAG_01061 5′
TCACTGGCCGTCGTTTTACGGG






flanking region
TATTGGGTTTCCTCTG






primer 2






R1
CNAG_01061 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
CCATTAGCATTCGGAGAG






primer 1






R2
CNAG_01061 3′
GAAGTATCAGAGGAGTCCCG






flanking region







primer 2






SO
CNAG_01061
CGTGGTCACTTATGTCCTTC






diagnostic screening







primer, pairing with







B79






PO
CNAG_01061
AAAAGTGCGAAGGGAGGTC






Southern blot probe







primer






STM
NAT#220 STM
CAGATCTCGAACGATACCCA






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





19
CNAG_01062
PSK201
L1
CNAG_01062 5′

GTCCACTTTATTTTCGGGC







flanking region







primer 1






L2
CNAG_01062 5′

TCACTGGCCGTCGTTTTACGAGG







flanking region

AGTAATGACCGTGACC







primer 2






R1
CNAG_01062 3′

CATGGTCATAGCTGTTTCCTGTG







flanking region

GTAAAAAGGGGTGGGTC







primer 1






R2
CNAG_01062 3′

GGTATTGGGTTTCCTCTGTG







flanking region







primer 2






SO
CNAG_01062

GATTAGTATTCCTGTGCCACC







diagnostic screening







primer, pairing with







B79






PO
CNAG_01062

GGAAATGTAGGGGGTAGACG







Southern blot probe







primer






STM
NAT#191 STM

ATATGGATGTTTTTAGCGAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






20
CNAG_01155
GUT1
L1
CNAG_01155 5′

AATCGTTCCCTTCCTAAGC







flanking region







primer 1






L2
CNAG_01155 5′

TCACTGGCCGTCGTTTTACAAAC







flanking region

CGAGACCTCTGAAGG







primer 2






R1
CNAG_01155 3′

CATGGTCATAGCTGTTTCCTGGG







flanking region

AGAAAGCCAGACTGAAG







primer 1






R2
CNAG_01155 3′

ATGGTAGTTTTGCGGGTG







flanking region







primer 2






SO
CNAG_01155

CAGAGAAGTTGACTGGGATG







diagnostic screening







primer, pairing with







B79






PO
CNAG_01155

GTTCATCGCTTCAACCAG







Southern blot probe







primer






STM
NAT#242 STM

GTAGCGATAGGGGTGTCGCTTT







primer

AG






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






21
CNAG_01162
MAK322
L1
CNAG_01162 5′
GACCGCAGTAGAACTTACACC






flanking region







primer 1






L2
CNAG_01162 5′

TCACTGGCCGTCGTTTTACGAGG







flanking region

AAATGTTGAAGGTGTG







primer 2






R1
CNAG_01162 3′

CATGGTCATAGCTGTTTCCTGCG







flanking region

GAAGGAAAGAGTTTAGACG







primer 1






R2
CNAG_01162 3′

ATCAGGCAACCGCATAAC







flanking region







primer 2






SO
CNAG_01162

ATGCTGCCAGAACACTTG







diagnostic screening







primer, pairing with







B79






PO
CNAG_01162

TCCTCCCAAATAAGTGCC







Southern blot probe







primer






STM
NAT#159 STM

ACGCACCAGACACACAACCAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






22
CNAG_01165
LCB5
L1
CNAG_01165 5′

CCCAAATCTCGTTCGTTG







flanking region







primer 1






L2
CNAG_01165 5′

TCACTGGCCGTCGTTTTACTTGT







flanking region

GTGGCTGTAGAGGTG







primer 2






R1
CNAG_01165 3′

CATGGTCATAGCTGTTTCCTGGC







flanking region

CATCGCACATAACTTTC







primer 1






R2
CNAG_01165 3′

ATTCTGAAGGCGTAAGTCG







flanking region







primer 2






SO
CNAG_01165

AAAAGGGTCGTAAGATGGG







diagnostic screening







primer, pairing with







B79






PO
CNAG_01165

ACGCCGAATAGGTTTGTG







Southern blot probe







primer






STM
NAT#213 STM

CTGGGGATTTTGATGTGTCTATG







primer

T






STM
STM common

GCATGCCCTGCCCGTAAGAATTC






common
primer

G









23
CNAG_01209
FAB1
L1
CNAG_01209 5′

TTTCTGATGGGAGGGAGTG







flanking region







primer 1






L2
CNAG_01209 5′

TCACTGGCCGTCGTTTTACGCGT







flanking region

GGTATGGATAGACAAG







primer 2






R1
CNAG_01209 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

AAGATTTGGGGGCTGG







primer 1






R2
CNAG_01209 3′

GCTGAAGGTGAGCGATAAG







flanking region







primer 2






SO
CNAG_01209

AGTCAGTGTCCAAACTTCTGTC







diagnostic screening







primer, pairing with







B79






PO
CNAG_01209

AAAGGGAATCCAGGAACG







Southern blot probe







primer






STM
NAT#169 STM

ACATCTATATCACTATCCCGAAC







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






24
CNAG_01250

L1
CNAG_01250 5′
GCTTTTTCGTTGGAGGTG






flanking region







primer 1






L2
CNAG_01250 5′
TCACTGGCCGTCGTTTTACTGC






flanking region
TCTGTCATCTTCCAGC






primer 2






R1
CNAG_01250 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
TAGCGTGTTACCACAGGC






primer 1






R2
CNAG_01250 3′
CGTCCTCAAAATACAACTCG






flanking region







primer 2






SO
CNAG_01250
TGGTAAATCCTCGTGCTG






diagnostic screening







primer, pairing with







B79






PO
CNAG_01250
GCGAAAGTAACCCAGATGC






Southern blot probe







primer






STM
NAT#227 STM
TCGTGGTTTAGAGGGAGCGC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





25
CNAG_01285

L1
CNAG_01285 5′
CAATAACCCATTACCACTGC






flanking region







primer 1






L2
CNAG_01285 5′
TCACTGGCCGTCGTTTTACTTG






flanking region
TTGGCAAGACCACTG






primer 2






R1
CNAG_01285 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
TTTCTCCTGAAGCCACTG






primer 1






R2
CNAG_01285 3′
TTAGAGGCGGTAGTTACGG






flanking region







primer 2






SO
CNAG_01282
TTACGATACTTGGCTGAAGC






diagnostic screening







primer, pairing with







B79






PO
CNAG_01285
AGCATTTTGGCTGTAGGC






Southern blot probe







primer






STM
NAT#240 STM
GGTGTTGGATCGGGGTGGAT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





26
CNAG_01294
IPK1
L1
CNAG_01294 5′

GGAAAAGAGAAGAGCACGG







flanking region







primer 1






L2
CNAG_01294 5′

TCACTGGCCGTCGTTTTACCATC







flanking region

AACCATAGCAAGCAAC







primer 2






R1
CNAG_01294 3′

CATGGTCATAGCTGTTTCCTGGG







flanking region

CTGGTCAAAGAATGGAC







primer 1






R2
CNAG_01294 3′

TGGTAGGATGTGTTGTGGAG







flanking region







primer 2






SO
CNAG_01294

TTTGCTCTCTTCGCCAAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_01294

CGCATTCTCATCTTATCCC







Southern blot probe







primer






STM
NAT#184 STM

ATATATGGCTCGAGCTAGATAGA







primer

G






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






27
CNAG_01333
ALK1
L1
CNAG_01333 5′

GCATTTTCATTGCTGGTCAC







flanking region







primer 1






L2
CNAG_01333 5′

TCACTGGCCGTCGTTTTACACGG







flanking region

AAGGAGGAGATAACTAAC







primer 2






R1
CNAG_01333 3′

CATGGTCATAGCTGTTTCCTGGA







flanking region

GTTGTATGGCGAGGATG







primer 1






R2
CNAG_01333 3′

GTCCTGTGAATCGGGAGAT







flanking region







primer 2






SO
CNAG_01333

TGTTTCACCAGAGTCAGCC







diagnostic screening







primer, pairing with







B79






PO
CNAG_01333

ACGGGAGTGTTGTATGAGC







Southern blot probe







primer






STM
NAT#122 STM

ACAGCTCCAAACCTCGCTAAACA







primer

G






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






28
CNAG_01364

L1
CNAG_01364 5′
TCGCTCGCCTTGATTTGAC






flanking region







primer 1






L2
CNAG_01364 5′
TCACTGGCCGTCGTTTTACAAG






flanking region
TGGCTGTTGTGGAGGTCTG






primer 2






R1
CNAG_01364 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
TGCGGTGATACCTTGCCAG






primer 1






R2
CNAG_01364 3′
TCCCCCGTTACCTTTATG






flanking region







primer 2






SO
CNAG_01364
CAGCCAATCTTTTCCCTG






diagnostic screening







primer, pairing with







B79






PO
CNAG_01364
TTTTCGCCAGCCACCTTCAG






Southern blot probe







primer






STM
NAT#5 STM
TGCTAGAGGGCGGGAGAGTT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





29
CNAG_01523
HOG1
L1
CNAG_01523 5′

TGTGGTAGGTGCGTTATCG







flanking region







primer 1






L2
CNAG_01523 5′

CTGGCCGTCGTTTACAGAAAGC







flanking region

CCATCCATCAG







primer 2






R1
CNAG_01523 3′

GTCATAGCTGTTTCCTGTCTTGG







flanking region

TAAGTCTCTGTGCC







primer 1






R2
CNAG_01523 3′

TACTCAACCCCATACTCACTCCC







flanking region

G







primer 2






SO
CNAG_01523

TGAAGACAAAAGGCGTGGG







diagnostic screening







primer, pairing with







B79






PO1
CNAG_01523

TCACAGAGCGTTGATTACG







Southern blot probe







primer 1






PO2
CNAG_01523

CAGGCTCATCGGTAGGATCA







Southern blot probe







primer 2






STM
NAT#177 STM

CACCAACTCCCCATCTCCAT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






30
CNAG_01612
PSK202
L1
CNAG_01612 5′

ACGCTTGTTTCTTCGTCC







flanking region







primer 1






L2
CNAG_01612 5′

TCACTGGCCGTCGTTTCGTCC







flanking region

GATGATAAAGTGAGG







primer 2






R1
CNAG_01612 3′

CATGGTCATAGCTGTTTCCTGTC







flanking region

TTCCCCTTTCTGATGG







primer 1






R2
CNAG_01612 3′

CCGACCAAAAACAGGTTC







flanking region







primer 2






SO
CNAG_01612

AACTGGCATTGAAGGTGTC







diagnostic screening







primer, pairing with







B79






PO
CNAG_01612

GACAAGCATTGGGAAACC







Southern blot probe







primer






STM
NAT#208 STM

TGGTCGCGGGAGATCGTGGTTT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






31
CNAG_01664

L1
CNAG_01664 5′
CCTACATCCAGGACAAACG






flanking region







primer 1






L2
CNAG_01664 5′
TCACTGGCCGTCGTTTTACCAC






flanking region
CTTCTCCGACCTTTTC






primer 2






R1
CNAG_01664 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
CCGCATAAAGAAAAGCC






primer 1






R2
CNAG_01664 3′
AAAGCGAGGTTGAAGAGGG






flanking region







primer 2






SO
CNAG_01664
CGTCGTAGTGGGTGTAGATG






diagnostic screening







primer, pairing with







B79






PO
CNAG_01664
AGGACAACAAGTCTGGGATAGC






Southern blot probe







primer






STM
NAT#218 STM
CTCCACATCCATCGCTCCAA






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





32
CNAG_01687

L1
CNAG_01687 5′
GCTCCTAAATACCTGCCACTC






flanking region







primer 1






L2
CNAG_01687 5′
TCACTGGCCGTCGTTTTACCTC






flanking region
ATCCGCAGAAATGTATC






primer 2






R1
CNAG_01687 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
GTTCGCTTATGGTCTATGG






primer 1






R2
CNAG_01687 3′
TTGCGACCTTTTTCTCGG






flanking region







primer 2






SO
CNAG_01687
TGTTAGAAAAGCCTGTGACG






diagnostic screening







primer, pairing with







B79






PO
CNAG_01687
CCCAAGATAGTCTCGTTTGC






Southern blot probe







primer






STM
NAT#290 STM
ACCGACAGCTCGAACAAGCAA






primer
GAG





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





33
CNAG_01704
IRK6
L1
CNAG_01704 5′

GGTCAACTTTCCCTTGTCG







flanking region







primer 1






L2
CNAG_01704 5′

TCACTGGCCGTCGTTTTACTTGA







flanking region

GAGAGCGTGATAAAGC







primer 2






R1
CNAG_01704 3′

CATGGTCATAGCTGTTTCCTGGC







flanking region

ACATTGACCTTCCTGTAAC







primer 1






R2
CNAG_01704 3′

GCCCTAAACAAACTAACTCTGTC







flanking region

C







primer 2






SO
CNAG_01704

AGCCTCCTCTTTCCTTACAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_01704

GCTGGTGCCTCTTTTGATTC







Southern blot probe







primer






STM
NAT#5 STM primer

TGCTAGAGGGCGGGAGAGTT






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






34
CNAG_01730
STE7
L1
CNAG_01730 5′

TTGTAAGGCTCTCATTCGC







flanking region







primer 1






L2
CNAG_01730 5′

CTGGCCGTCGTTTTACTGAAGGC







flanking region

AAAACTGGTGC







primer 2






R1
CNAG_01730 3′

GTCATAGCTGTTTCCTGCCTTAC







flanking region

CGTGCTTTTCTGC







primer 1






R2
CNAG_01730 3′

TTACTTCCGCCCAACGACAC







flanking region







primer 2






SO
CNAG_01730

TCCTCGCTCACAAAATGGGC







diagnostic screening







primer, pairing with







B79






PO1
CNAG_01730

CCAATAGACATCAAGCCGTC







Southern blot probe







primer 1






PO2
CNAG_01730

AAACAGAGAAGAGAAGGGACC







Southern blot probe







primer 2






STM
NAT#225 STM

CCATAGAACTAGCTAAAGCA







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






35
CNAG_01820

L1
CNAG_01820 5′
TCAGAAGCAGACAAGGCGTC






flanking region







primer 1






L2
CNAG_01820 5′
TCACTGGCCGTCGTTTTACTTT






flanking region
TGGGGAGGAAGTGCTGAGG






primer 2






R1
CNAG_01820 3′
CATGGTCATAGCTGTTTTCCTGG






flanking region
TTGGTCATTTGTGCGAC






primer 1






R2
CNAG_01820 3′
GGCATTATGAGCAAATCGG






flanking region







primer 2






SO
CNAG_01820
TAGCAGAAGGAGAGGACGGTT






diagnostic screening
C






primer, pairing with







B79






PO
CNAG_01820
CCTTGACGATGTTGGTCTG






Southern blot probe







primer






STM
NAT#6STM
ATAGCTACCACACGATAGCT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





36
CNAG_01845

L1
CNAG_01845 5′
GAATAATCAGCAGCGGTG






flanking region







primer 1






L2
CNAG_01845 5′
TCACTGGCCGTCGTTTTACGTT






flanking region
CGTTGTTGGTTGTCG






primer 2






R1
CNAG_01845 3′
CATGGTCATAGCTGTTTTCCTGG






flanking region
GGAGCCAATAATGTGGAG






primer 1






R2
CNAG_01845 3′
TCTTCATCCTTCCCTTGC






flanking region







primer 2






SO
CNAG_91845
TAAGGGCAAAAGGGTCAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_01845
TTTTTAGCGTCCGTCTCG






Southern blot probe







primer






STM
NAT#205 STM
TATCCCCCTCTCCGCTCTCTAG






primer
CA





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





37
CNAG_01850
TCO1
L1
CNAG_01850 5′

GTTTCTGCTTCCACCTCAC







flanking region







primer 1






L2
CNAG_01850 5′

CTGGCCGTCGTTTTACTTTACAC







flanking region

ACACGGGCGATGTCCTG







primer 2






R1
CNAG_01850 3′

GTCATAGCTGTTTCCTGACTGAG







flanking region

CAAATCGGCGTAGG







primer 1






R2
CNAG_01850 3′

AAGTGAGGGGCATTACAGG







flanking region







primer 2






SO
CNAG_01850

CGACACAATACTCTAACTGCG







diagnostic screening







primer, pairing with







B79






PO1
CNAG_01850

CTTTCGTCTTTGCCACAC







Southern blot probe







primer 1






PO2
CNAG_01850

AATCACCCTTTGCTACGG







Southern blot probe







primer 2






STM
NAT#102 STM

CCATAGCGATATCTACCCCAATC







primer

T






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






38
CNAG_01905
KSP1
L1
CNAG_01905 5′

CGATTTTGTCTGGGCTCTC







flanking region







primer 1






L2
CNAG_01905 5′

TCACTGGCCGTCGTTTTACAAGA







flanking region

TGATTCGGGCACAG







primer 2






R1
CNAG_01905 3′

CATGGTCATAGCTGTTTCCTGCC







flanking region

CTCTTTCTCAATCATCG







primer 1






R2
CNAG_01905 3′

ACAACATCTTCGCCAACG







flanking region







primer 2






SO
CNAG_01905

TACCGACTCGCAATACACC







diagnostic screening







primer, pairing with







B79






PO
CNAG_01905

ATACCTTTGTGGCTTCGC







Southern blot probe







primer






STM
NAT#159 STM

ACGCACCAGACACACAACCAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






39
CNAG_01907

L1
CNAG_01907 5′
GCATTCTCTCAACTCGCTC






flanking region







primer 1






L2
CNAG_01907 5′
TCACTGGCCGTCGTTTTACTCG






flanking region
TAGCCTCTGTCTCTATCCC






primer 2






R1
CNAG_01907 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
GTTTCAGCCAATACCAGG






primer 1






R2
CNAG_01907 3′
TGAACCCCTTTGACCCATCC






flanking region







primer 2






SO
CNAG_01907
CCTCTTCTGTATGCTGCGAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_01907
TCTGGAATGGAGGCTTTC






Southern blot probe







primer






STM
NAT#282 STM
TCTCTATAGCAAAACCAATC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





40
CNAG_01938
KIN1
L1
CNAG_01938 5′

AGAGACAAAGGTGAGGTCG







flanking region







primer 1






L2
CNAG_01938 5′

TCACTGGCCGTCGTTTTACCACG







flanking region

GGATAATGTTGACG







primer 2






R1
CNAG_01938 3′

CATGGTCATAGCTGTTTCCTGGC







flanking region

AGTATCAAATGCTGGC







primer 1






R2
CNAG_01938 3′

AGATAATAAGGGTGCGGC







flanking region







primer 2






SO
CNAG_01938

TGAGGTGGAGGCTTGTCTAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_01938

GGACTTCTTTGGTTGGGAG







Southern blot probe







primer






STM
NAT#6 STM primer

ATAGCTACCACACGATAGCT






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






41
CNAG_01988
TCO3
L1
CNAG_01988 5′

CCCAGAAAAGAAGGTTGG







flanking region







primer 1






L2
CNAG_01988 5′

CTGGCCGTCGTTTTACTTGTGGT







flanking region

TTGTGGGTAGCGTGG







primer 2






R1
CNAG_01988 3′

GTCATAGCTGTTTCCTGGGCATC







flanking region

ATTGCTCATTCTTGTG







primer 1






R2
CNAG_01988 3′

AAAAGGTGAAATAGGGGCGGCG







flanking region







primer 2






SO
CNAG_01988

TGTTTCTCAATGAAGTGTCC







diagnostic screening







primer, pairing with







B79






PO
CNAG_01988

ATGGGGAGGTCTATGCGTTAGC







Southern blot probe







primer 1






PO2
CNAG_01988

ATGGGGAGGTCTATGCGTTAGC







Southern blot probe







primer 2






STM
NAT#119 STM

CTCCCCACATAAAGAGAGCTAAA







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






42
CNAG_02007

L1
CNAG_02007 5′
GAGCAGCGAAATAACCAAG






flanking region







primer 1






L2
CNAG_02007 5′
TCACTGGCCGTCGTTTTACCAG






flanking region
TAGCGAGGTGACAGATG






primer 2






R1
CNAG_02007 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
CGATTGGACACTTACCAC






primer 1






R2
CNAG_02007 3′
AGCCCGAGTTCTTTTTAGAC






flanking region







primer 2






SO
CNAG_02007
AGAAATAGCGTTGCCACC






diagnostic screening







primer, pairing with







B79






PO
CNAG_02007
GCTTGTTTGGTAGATAGTCAG






Southern blot probe
C






primer






STM
NAT#232 STM
CTTTAAAGGTGGTTTGTG






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





43
CNAG_02028

L1
CNAG_02028 5′
AAATCCGCAGGGGAAAAC






flanking region







primer 1






L2
CNAG_02028 5′
TCACTGGCCGTCGTTTTACTGG






flanking region
GAAAAGGATGGACAGG






primer 2






R1
CNAG_02028 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
CTCCGTCCTCAAAGAAAAATA






primer 1
CC





R2
CNAG_02028 3′
TTCCGTTTCCAATCGCAAG






flanking region







primer 2






SO
CNAG_02028
TTTTGCCCTTGCCCTGTTG






diagnostic screening







primer, pairing with







B79






PO
CNAG_02028
ATCTTGCTCATACCGAACC






Southern blot probe







primer






STM
NAT#225 STM
CCATAGAACTAGCTAAAGCA






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





44
CNAG_02194

L1
CNAG_02194 5′
TTGGTCCTCTGCGAAAAC






flanking region







primer 1






L2
CNAG_02194 5′
TCACTGGCCGTCGTTTTACGCT






flanking region
GTTGCTGAGAGTTTGTG






primer 2






R1
CNAG_02194 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
CAAACCCGAAGGTGAAG






primer 1






R2
CNAG_02194 3′
ACGACTTATTCCCCATCCC






flanking region







primer 2






SO
CNAG_02194
CACCTCGTTTGATGAATGC






diagnostic screening







primer, pairing with







B79






PO
CNAG_02194
CTCTCTCCTTCTCGTATCTGG






Southern blot probe







primer






STM
NAT#273 STM
GAGATCTTTCGGGAGGTCTGG






primer
ATT





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





45
CNAG_02202

L1
CNAG_02202 5′
AACAACCGAAACCAGCGAC






flanking region







primer 1






L2
CNAG_02202 5′
TCACTGGCCGTCGTTTTACGGA






flanking region
AGGTGATGTTTGTGGC






primer 2






R1
CNAG_02202 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
GCCGACAATGGTCTTATC






primer 1






R2
CNAG_02202 3′
TCCTGGTCATCGTGCTAACC






flanking region







primer 2






SO
CNAG_02202
CTTATGCCACTCCTAACCG






diagnostic screening







primer, pairing with







B79






PO
CNAG_02202
GCCGAGATACCTGTAAAGTCC






Southern blot probe







primer






STM
NAT#6 STM
ATAGCTACCACACGATAGCT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





46
CNAG_02233
MEC1
L1
CNAG_02233 5′

TTCCTCATCCACGATACTTC







flanking region







primer 1






L2
CNAG_02233 5′

TCACTGGCCGTCGTTTTACGACA







flanking region

GAGGTTTGAGGATGC







primer 2






R1
CNAG_02233 3′

CATGGTCATAGCTGTTTCCTGTT







flanking region

TTGTCCACGACCCTCTC







primer 1






R2
CNAG_02233 3′

TCATTGCCACCTCCACCAAG







flanking region







primer 2






SO
CNAG_02233

CTGATTGAAGGAACTTACCTCG







diagnostic screening







primer, pairing with







B79






PO
CNAG_02233

GGAGAAGTTCACGAAGGTCTG







Southern blot probe







primer






STM
NAT#204 STM

GATCTCTCGCGCTTGGGGGA







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






47
CNAG_02285

L1
CNAG_02285 5′
TCCTCTGTTCTTGTCGTGG






flanking region







primer 1






L2
CNAG_02285 5′
TCACTGGCCGTCGTTTTACCTG






flanking region
CTCAGTGGTAGACATTTTG






primer 2






R1
CNAG_02285 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
TCTCAGGCTTGGCTCTAC






primer 1






R2
CNAG_02285 3′
CGCCCTGTGATGATAATAACC






flanking region
TTC






primer 2






SO
CNAG_02285
TGGACAAAGGGACACTTACC






diagnostic screening







primer, pairing with







B79






PO
CNAG_02285
TGACAACACCAACGATGG






Southern blot probe







primer






STM
NAT#150 STM
ACATACACCCCCATCCCCCC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





48
CNAG_02296
RBK1
L1
CNAG_02296 5′

TCACTCATCACCAGGTAACG







flanking region







primer 1






L2
CNAG_02296 5′

TCACTGGCCGTCGTTTTACAGAA







flanking region

ACTGGAAAGCAGACG







primer 2






R1
CNAG_02296 3′

CATGGTCATAGCTGTTTCCTGCT







flanking region

TGCTTAGGAAAATCACCC







primer 1






R2
CNAG_02296 3′

GCACAAGAAAACCAGTCCAG







flanking region







primer 2






SO
CNAG_02296

GCTCGGTATGTTTATCACCTG







diagnostic screening







primer, pairing with







B79






PO
CNAG_02296

GAGTGTGGAAGAGAGAGGAAC







Southern, blot probe







primer






STM
NAT#219 STM

CCCTAAAACCCTACAGCAAT







primer






ST41
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






49
CNAG_02357
MKK2
L1
CNAG_02357 5′

GCGTCATTTCCCAATCAC







flanking region







primer 1






L2
CNAG_02357 5′

CTGGCCGTCGTTTTACTCGGTGT







flanking region

CTTCAGTTCAGAG







primer 2






R1
CNAG_02357 3′

GTCATAGCTGTTTCCTGACCCTA







flanking region

CCCTTGGCAACTAC







primer 1






R2
CNAG_02357 3′

CCCTTTGTTTGTTGCTGAC







flanking region







primer 2






SO
CNAG_02357

TTTTGCCCACTCCCCCTTTACCA







diagnostic screening

C







primer, pairing with







B79






PO1
CNAG_02357

GCAAAGTCACATACACGGC







Southern blot probe







primer 1






PO2
CNAG_02357

GATGTCCGAGTGATAACCTG







Southern blot probe







primer 2






STM
NAT#224 STM

AACCTTTAAATGGGTAGAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






50
CNAG_02389
YPK101
L1
CNAG_02389 5′

TACCTGCCGACAAATGAC







flanking region







primer 1






L2
CNAG_02389 5′

TCACTGGCCGTCGTTTTACACAT







flanking region

AGCGGCTGCTTTTC







primer 2






R1
CNAG_02389 3′

CATGGTCATAGCTGTTTCCTGTG







flanking region

GGGGTTCTAAAAGACG







primer 1






R2
CNAG_02389 3′

ACCATCATCTCTGCGTTG







flanking region







primer 2






SO
CNAG_02389

AACCGCAAGTAGGGCATAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_02389

TGAGCAAAAAAGGCGAGC







Southern blot probe







primer






STM
NAT#242 STM

GTAGCGATAGGGGTGTCGCTTT







primer

AG






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






51
CNAG_02459

L1
CNAG_02459 5′
TCTCGGGGTCTTCAATCTC






flanking region







primer 1






L2
CNAG_02459 5′
TCACTGGCCGTCGTTTTACGTG






flanking region
CGGATTCGTTATTTGG






primer 2






R1
CNAG_02459 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
AAGAGGGTTAGGTTTGGC






primer 1






R2
CNAG_02459 3′
GCCACTTCCGTATCAAAAG






flanking region







primer 2






SO
CNAG_02459
GCACTGCTGCTTGAAATC






diagnostic screening







primer, pairing with







B79






PO
CNAG_02459
ATAGATTCTGATGCGGCG






Southern blot probe







primer






STM
NAT#122 STM
ACAGCTCCAAACCTCGCTAAA






primer
CAG





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





52
CNAG_02511
CPK1
L1
CNAG_02511 5′

CTGTAGAAGATGTGAGTTTGGG







flanking region







primer 1






L2
CNAG_02511 5′

CTGGCCGTCGTTTACTGATTGA







flanking region

TGAGAGATACGGG







primer 2






R1
CNAG_02511 3′

GTCATAGCTGTTTCCTGGGCGG







flanking region

AGAAATAGAGGTTG







primer 1






R2
CNAG_02511 3′

CGCACAAGAAGTAAGAGGTG







flanking region







primer 2






SO
CNAG_02511

GGCTATGGACCGTATTCAC







diagnostic screening







primer, pairing with







B79






PO1
CNAG_02511

TATCTCACAAGCCACTCCC







Southern blot probe







primer 1






PO2
CNAG_02511

ATGCTGCTCACCGTTAGTC







Southern blot probe







primer 2






STM
NAT#184 STM

ATATATGGCTCGAGCTAGATAGA







primer

G






STM
STM common

GCATGCCCTGCCCCTAAGAATTC







common primer

G






53
CNAG_02531
CPK2
L1
CNAG_02531 5′

ATGTGCTTGGTTTGCCCGAG







flanking region







primer 1






L2
CNAG_02531 5′

CTGGCCGTCGTTTTACAACCTGA







flanking region

CTTTGCGAGGAGC







primer 2






R1
CNAG_02531 3′

GTCATAGCTGTTTCCTGGGAAGA







flanking region

GTTGAAGAGGCTG







primer 1






R2
CNAG_02531 3′

ACTGTGGCTGTTGTTCAGGC







flanking region







primer 2






SO
CNAG_02531

CCAAGGGAAGTCTACCAATAC







diagnostic screening







primer, pairing with







B79






PO1
CNAG_02531

GGGGAAAGATTAGTGCGTC







Southern blot probe







primer 1






PO2
CNAG_02531

GTGCGTAGATGAACGAGTG







Southern blot probe







primer2






STM
NAT#122 STM

ACAGCTCCAAACCTCGCTAAACA







primer

G






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






54
CNAG_02542
IRK2
L1
CNAG_02542 5′

TGTGCTGGTATCTGATGAGC







flanking region







primer 1






L2
CN4G_02542 5′

TCACTGGCCGTCGTTTTACGTGA







flanking region

GCGGCTTTGAAAATG







primer 2






R1
CNAG_02542 3′

CATGGTCATAGCTGTTTCCTGGC







flanking region

GGCTATCTTTGTGTATGC







primer 1






R2
CNAG_02542 3′

CCCTTTGCTCACTTTCATACC







flanking region







primer 2






SO
CNAG_02542

TTTTTCGGGTCTGACGAC







diagnostic screening







primer, pairing with







G79






PO
CNAG_02542

CTGTTCACCAAGTTCCCTAATC







Southern blot probe







primer






STM
NAT#232 STM

CTTTAAAGGTGGTTTGTG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






55
CNAG_02551
DAK3
L1
CNAG_02551 5′

ATCTAATCCTCCCTGTCCAC







flanking region







primer 1






L2
CNAG_02551 5′

TCACTGGCCGTCGTTTTACGCGT







flanking region

GATTTCAGGTTCAG







primer 2






R1
CNAG_02551 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

GCGTGGTTTCCTGTAAG







primer 1






R2
CNAG_02551 3′

GGTCATAACTCAGAGGGGTC







flanking region







primer 2






SO
CNAG_02551

GAGAGCGAAGCAATAGGAAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_02551

AAGCAATCTCCAGACTCCC







Southern blot probe







primer






STM
NAT#295 STM

ACACCTACATCAAACCCTCCC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






56
CNAG_02675
HSL101
L1
CNAG_02675 5′

CAATGCCGTCATCATCAAAC







flanking region







primer 1






L2
CNAG_02675 5′

TCACTGGCCGTCGTTTTACAAGG







flanking region

GCGAACAGGATAATAC







primer 2






R1
CNAG_02675 3′

CATGGTCATAGCTGTTTCCTGCC







flanking region

TAATGTGAGAGCAGCAATAC







primer 1






R2
CNAG_02675 3′

TATGTGGCAGAAACCGTG







flanking region







primer 2






SO
CNAG_02675

GCTGTCTTGTTTGCGTTG







diagnostic screening







primer, pairing with







B79






PO
CNAG_02675

AGGAGTAGTTATCACTTCGGG







Southern blot probe







primer






STM
NAT#146 STM

ACTAGCCCCCCCTCACCACCT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






57
CNAG_02680
VPS15
L1
CNAG_02680 5′

AGGACCTTCATCAGGACGAC







flanking region







primer 1






L2
CNAG_02680 5′

TCACTGGCCGTCGTTTTACAAAC







flanking region

TACCTCCCCCGTTAC







primer 2






R1
CNAG_02680 3′

CATGGTCATAGCTGTTTCCTGCC







flanking region

AAATGTATGGATTCGCC







primer 1






R2
CNAG_02680 3′

CTGCGAATCTCGTCTAAGG







flanking region







primer 2






SO
CNAG_02680

TTGAAAGGTCCCACCAGAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_02680

GGGAGGAAGTGAGGACTATG







Southern blot probe







primer






STM
NAT#123 STM

CTATCGACCAACCAACACAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






58
CNAG_02686

L1
CNAG_02686 5′
CACACTTTGCTCTTGTCTGAG






flanking region







primer 1






L2
CNAG_02686 5′
TCACTGGCCGTCGTTTTACATG






flanking region
GAGATGCGATAAGCG






primer 2






R1
CNAG_02686 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
GAATCCTCCCTCAACGAG






primer 1






R2
CNAG_02686 3′
AAAGACGACGCCTACTCTGC






flanking region







primer 2






SO
CNAG_02686
TGTTCCTCTTCCCTGACAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_02686
CACAATCAAAGCGTTAGGG






Southern blot probe







primer






STM
NAT#191 STM
ATATGGATGTTTTTAGCGAG






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





59
CNAG_02712
BUD32
L1
CNAG_02712 5′

ATAGGGGATGACCTTGGAG







flanking region







primer 1






L2
CNAG_02712 5′

TCACTGGCCGTCGTTTTACTGAT







flanking region

GCCAAAGACCAGTG







primer 2






R1
CNAG_02712 3′

CATGGTCATAGCTGTTTCCTGGA







flanking region

GAAGAGGAAGGAAGAGAGAC







primer 1






R2
CNAG_02712 3′

GAGCGATAATAGCCACCAC







flanking region







primer 2






SO
CNAG_02712

GGGCAATCTTTCTTCGTC







diagnostic screening







primer, pairing with







B79






PO
CNAG_02712

CTCGTTCTCTGGTTCTTCTG







Southern blot probe







primer






STM
NAT#296 STM

CGCCCGCCCTCACTATCCAC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






60
CNAG_02787

L1
CNAG_02787 5′
AACCCCTTGTGTCCCCAAAC






flanking region







primer 1






L2
CNAG_02787 5′
TCACTGGCCGTCGTTTTACTGA






flanking region
GCAGGCGGATACGATAC






primer 2






R1
CNAG_02787 3′
ATGGTCATAGCTGTTTCCTTGC






flanking region
AAAAAGGACAGAAGAAGAGG






primer 1






R2
CNAG_02787 3′
TTCTCCCATTTCTCCACCC






flanking region







primer 2






SO
CNAG_02787
AGCAGAGCCAGATGGTAGAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_02787
TTCCACTTGGCAACTGTCC






Southern blot probe







primer






STM
NAT#227 STM
TCGTGGTTTAGAGGGAGCGC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





61
CNAG_02799
DAK202A
L1
CNAG_02799 5′

TTGATACTTTGGGTCTGGG







flanking region







primer 1






L2
CNAG_02799 5′

TCACTGGCCGTCGTTTTACCGG







flanking region

GAGCCATTATTGGTAAG







primer 2






R1
CNAG_02799 3′

CATGGTCATAGCTGTTTCCTGTT







flanking region

TTGGATGGCTTGCGAGGG







primer 1






R2
CNAG_02799 3′

CCATACAATGACCTGSGAC







flanking region







primer 2






SO
CNAG_02799

AACCATCAACTGCCCTCAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_02799

GGTAGTATCGGTGATTTGAGTGA







Southern blot probe

G







primer






STM
NAT#119 STM

CTCCCCACATAAAGAGAGCTAAA







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






62
CNAG_02802
ARG2
L1
CNAG_02802 5′

CCAGCAGTTAGGGATTCAG







flanking region







primer 1






L2
CNAG_02802 5′

TCACTGGCCGTCGTTTTACCATC







flanking region

GTAGAGTCGTTATTACCG







primer 2






R1
CNAG_02802 3′

CATGGTCATAGCTGTTTCCTGAT







flanking region

TTGGAGTCCTATCGCC







primer 1






R2
CNAG_02802 3′

ATGTCAATGGTAGCCCACC







flanking region







primer 2






SO
CNAG_02802

TTTGTTGTTGCCTGACCC







diagnostic screening







primer, pairing with







B79






PO
CNAG_02802

GTCGCTCAAAGTGTCTTCTC







Southern blot probe







primer






STM
NAT#125 STM

CGCTACAGCCAGCGCGCGCAAG







primer

CG






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






63
CNAG_02820
PAR201
L1
CNAG_02820 5′

CCCTCGCCAGAATCAATAC







flanking region







primer 1






L2
CNAG_02820 5′

TGACTGGCCGTCGTTTTACGAGA







flanking region

GGATGTTGAGGTTGC







primer 2






R1
CNAG_02820 3′

CATGGTCATAGCTGTTTCCGTT







flanking region

GGGATTAGGGCGTATC







primer 1






R2
CNAG_02820 3′

TCTGCCTCTACAAACCACTG







flanking region







primer 2






SO
CNAG_02820

GGAGAGACAGGGGATAAAGC







diagnostic screening







primer, pairing with







B79






PO
CNAG_02820

ATACCTCCCTTCTCCCAAC







Southern blot probe







primer






STM
NAT_190 219 STM

CCCTAAAACCCTACAGCAAT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






64
CNAG_02847

L1
CNAG_02847 5′
AGACCGATAAAAACAGGACC






flanking region







primer 1






L2
CNAG_02847 5′
TCACTGGCCGTCGTTTTACAAC






flanking region
AATGAAGGCACCTCG






primer 2






R1
CNAG_02847 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
GAACATTCAAACGGAGAC






primer 1






R2
CNAG_02847 3′
ACCAGTTGACAAAGGTATCG






flanking region







primer 2






SO
CNAG_02847
AAGAATACTCCAGAAGGGACC






diagnostic screening







primer, pairing with







B79






PO
CNAG_02847
GCTTCTGGGGATAAGGTGAG






Southern blot probe







primer






STM
NAT#296 STM
CGCCCGCCCTCACTATCCAC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





65
CNAG_02859
POS5
L1
CNAG_02859 5′

TACACGACAGTAACTCCCTCCG







flanking region







primer 1






L2
CNAG_02859 5′

TGACTGGCCGTCGTTTTAGGAAA







flanking region

TAACACACACGCTGC







primer 2






R1
CNAG_02859 3′

CATGGTCATAGCTGTTTCCTGTG







flanking region

AAAGTGGCTGGGTGAAG







primer 1






R2
CNAG_02859 3′

AAAGAACTTGAGAAGACCCG







flanking region







primer 2






SO
CNAG_02859

AGCAACGAGTCCACATACC







diagnostic screening







primer, pairing with







B79






PO
CNAG_02859

TACACACCTCCAGTTTGACCTCG







Southern blot probe

C







primer






STM
NAT#58 STM

CGCAAAATCACTAGCGCTATAGC







primer

G






STM
STM common

GCATGCGCTGCCGCTAAGAATTC






common
primer

G






66
CNAG_02866

L1
CNAG_02866 5′
GAAGATAGTCAATCCGCAAG






flanking region







primer 1






L2
CNAG_02866 5′
TCACTGGCCGTCGTTTTACATC






flanking region
TACCACTATTCTCCTGGC






primer 2






R1
CNAG_02866 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
CTGATTGTTCTTGACATTCCG






primer 1






R2
CNAG_02866 3′
AAGGAGGATGAAGGAAGGC






flanking region







primer 2






SO
CNAG_02866
ACAGGAACCTCCGTAACAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_02866
ATTGGTGAAGGTCTGGGCAGT






Southern blot probe
TCG






primer






STM
NAT#102 STM
CCATAGCGATATCTACCCCAA






primer
TCT





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





67
CNAG_02897

L1
CNAG_02897 5′
GATGTAGCGGATTGTTTGAC






flanking region







primer 1






L2
CNAG_02897 5′
TCACTGGCCGTCGTTTTACTCC






flanking region
TTCTGCCTGGGTGTTTC






primer 2






R1
CNAG_02897 5′
CATGGTCATAGCTGTTTCCTGG






flanking region
ATTTGGTGTTTGCTAACGG






primer 1






R2
CNAG_02897 3′
CTCCATCCAGCAACTCTATG






flanking region







primer 2






SO
CNAG_02897
AGGAAGCAACGCTGACTGTC






diagnostic screening







primer, pairing with







B79






PO
CNAG_02897
TGGTTGTAATGGCACCGTC






Southern blot probe







primer






STM
NAT#122 STM
ACAGCTCCAAACCTCGCTAAA






primer
CAG





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





68
CNAG_02915
PKH202
L1
CNAG_02915 5′

TGGTGGAAATGGACTGTG







flanking region







primer 1






L2
CNAG_02915 5′

TCACTGGCCGTCGTTTTACCAGC







flanking region

CTCGGGTTTTTTTG







primer 2






R1
CNAG_02915 3′

CATGGTCATAGCTGTTTCCTGAG







flanking region

CACGAAAAGCACGAAG







primer 1






R2
CNAG_02915 3′

TCCTTGGACAACTGGTAGC







flanking region







primer 2






SO
CNAG_02915

AGGTGGGATTGCTCAAAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_02915

TGAAGGCGTGCTCAAATG







Southern blot probe







primer






STM
NAT#177 STM

CACCAACTCCCCATCTCCAT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






69
CNAG_02947
SCY1
L1
CNAG_02947 5′

CGTCACCAACAAGTCACAG







flanking region







primer 1






L2
CNAG_02947 5′

TCACTGGCCGTCGTTTTACGAGA







flanking region

AGAGGTTTGAGGCTG







primer 2






R1
CNAG_02947 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

CCTGTCTGGGAGAAGAGC







primer 1






R2
CNAG_02947 3′

TTCCAAGACTTCCCCAAC







flanking region







primer 2






SO
CNAG_02947

CCATTACCTTTATGTCCCCAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_02947

TTGCCCATTCCTGTCTTAG







Southern blot probe







primer






STM
NAT#150 STM

ACATACACCCCCATCCCCCC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






70
CNAG_02962

L1
CNAG_02962 5′
CAAGGCGTTCTTCTTTGG






flanking region







primer 1






L2
CNAG_02962 5′
TCACTGGCCGTCGTTTTACGTC






flanking region
GTGATAATGGCGTTTG






primer 2






R1
CNAG_02962 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
CTAAAAGATTGACTCCGAGG






primer 1






R2
CNAG_02962 3′
GAATAGGTCGTGAATGGATGT






flanking region
C






primer 2






SO
CNAG_02962
CTGATAAAAGAGCAGAGAGG






diagnostic screening
G






primer, pairing with







B79






PO
CNAG_02962
GGTGGCTATCAAAGTTGTTAG






Southern blot probe
G






primer






STM
NAT#242 STM
GTAGCGATAGGGGTGTCGCTT






primer
TAG





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





71
CNAG_02976

L1
CNAG_02976 5′
GCAAAGTGAAGAAGGCGAG






flanking region







primer 1






L2
CNAG_02976 5′
TCACTGGCCGTCCTTTTTACTTG






flanking region
GTGACGGTCCCTTCAAG






primer 2






R1
CNAG_02976 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
AATCCTTGCTGGGGGAAGC






primer 1






R2
CNAG_02976 3′
CGATTCATCTCCATAACCAGT






flanking region
G






primer 2






SO
CNAG_02976
GGCATAATGAAACCAGGG






diagnostic screening







primer, pairing with







B79






PO
CNAG_02976
CGCAAAAACTCGTCATAGG






Southern blot probe







primer






STM
NAT#169 STM
ACATCTATATCACTATCCCGA






primer
ACC





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





72
CNAG_03024
RIM15
L1
CNAG_03024 5′

CTGAGTGCGATGATTGTTTG







flanking region







primer 1






L2
CNAG_03024 5′

GCTCACTGGCCGTCGTTTTACTT







flanking region

TCCTGACTTTGGGTGC







primer 2






R1
CNAG_03024 3′

CATGGTCATAGCTGTTTCCTGTT







flanking region

GAGGACAGATTCTATGGC







primer 1






R2
CNAG_03024 3′

CAGAGAATAAGGTCCCCTCC







flanking region







primer 2






SO
CNAG_03024

TCAAGGGATAGAAGTTCGC







diagnostic screening







primer, pairing with







B79






PO
CNAG_03024

GAGATAAACAGAGCCAAACG







Southern blot probe







primer






STM
NAT#191 STM

ATATGGATGTTTTTAGCGAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






73
CNAG_03048
IRK3
L1
CNAG_03048 5′

GATTGAGTTTCGGTTGGG







flanking region







primer 1






L2
CNAG_03048 5′

TCACTGGCCGTCGTTTTACCTAA







flanking region

AAACGGAGCGGAAG







primer 2






R1
CNAG_03048 3′

ATGGTCATAGCTGTTTCCTGCGA







flanking region

ACTTCTCAAGCAACG







primer 1






R2
CNAG_03048 3′

ATACAACCCCCATACTCCC







flanking region







primer 2






SO
CNAG_03048

AAAGGGATTCGGGCTTAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_03048

CCAGGGGTTGATGTCATAG







Southern blot probe







primer






STM
NAT#273 STM

GAGATCTTTCGGGAGGTCTGGA







primer

TT






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






74
CNAG_03137

L1
CNAG_03137 5′
CAAGGAGGTCAACCCTACAG






flanking region







primer 1






L2
CNAG_03137 5′
TCACTGGCCGTCGTTTTACAGG






flanking region
CGTCTTCTGTCCATAG






primer 2






R1
CNAG_03137 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
GTCGTCCTCTTTTTGTGC






primer 1






R2
CNAG_03137 3′
AGGACTTGTCGGTCTTCAG






flanking region







primer 2






SO
CNAG_03137
GGTAAGTTGCTTTATCCCCC






diagnostic screening







primer, pairing with







B79






PO
CNAG_03137
GCTGTGAGCAGTTGATACG






Southern blot probe







primer






STM
NAT#211 STM
GCGGTCGCTTTATAGCGATT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





75
CNAG_03167
CHK1
L1
CNAG_03167 5′

GTATCTCCATCCCACACATC







flanking region







primer 1






L2
CNAG_03167 5′

TCACTGGCCGTCGTTTTACTTGA







flanking region

CAGAGAGGGGCTTAC







primer 2






R1
CNAG_03167 3′

CATGGTCATAGCTGTTTCCTGTT







flanking region

ACATTGGAGGGCGTTG







primer 1






R2
CNAG_03167 3′

CTGACAACAAGCAGCCTATC







flanking region







primer 2






SO
CNAG_03167

ATACCACCACAAACGCCTC







diagnostic screening







primer, pairing with







B79






PO
CNAG_03167

GGACTACTTTCCGAAGGTTC







Southern blot probe







primer






STM
NAT#205 STM

TATCCCCCTCTCCGCTCTCTAGC







primer

A






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






76
CNAG_03171

L1
CNAG_03171 5′
CGTCCAACCATCAATCAC






flanking region







primer 1






L2
CNAG_03171 5′
TCACTGGCCGTCGTTTTACACC






flanking region
TTGGTAGGAGTGTGGAG






primer 2






R1
CNAG_03171 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
AGTTGCGATTCTGTGGG






primer 1






R2
CNAG_03171 3′
TAGGGACGAGTATCAGGAGCA






flanking region
G






primer 2






SO
CNAG_03171
TCCTCTGTTCTTGTCGTGG






diagnostic screening







primer, pairing with







B79






PO
CNAG_03171
TAAGCCTCGTAGAGCCAAG






Southern blot probe







primer






STM
NAT#159 STM
ACGCACCAGACACACAACCAG






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





77
CNAG_03184
BUB1
L1
CNAG_03184 5′

CAACGCCATTGAGGAAAG







flanking region







primer 1






L2
CNAG_03184 5′

TCACTGGCCGTCGTTTTACGCCT







flanking region

GATGTTCTCTTTCTGAG







primer 2






R1
CNAG_03184 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

GCGACTTTGAGGGATGGC







primer 1






R2
CNAG_03184 3′

ATCCCAGAACAGTGGCAGAC







flanking region







primer 2






SO
CNAG_03184

GGAGGATACATCAGGTGAGC







diagnostic screening







primer, pairing with







B79






PO
CNAG_03184

AACAGCACTTTGGGGTAAC







Southern blot probe







primer






STM
NAT#201 STM

CACCCTCTATCTCGAGAAAGCTC







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






78
CNAG_03216
SNF101
L1
CNAG_03216 5′

GGAGATGAAGGGAATGAGTC







flanking region







primer 1






L2
CNAG_03216 5′

TCACTGGCCGTCGTTTTACCGAC







flanking region

GCAAGAGGATAACAAC







primer 2






R1
CNAG_03216 3′

CATGGTCATAGCTGTTTCCTGTG







flanking region

GCAGGAGATGAGGGATAG







primer 1






R2
CNAG_03216 3′

CTGCTCTTGTTTAGCCACC







flanking region







primer 2






SO
CNAG_03216

TCCGACTCTGATAACGACTG







diagnostic screening







primer, pairing with







B79






PO
CNAG_03216

AAAGCCTCCTCTTCCAACC







Southern blot probe







primer






STM
NAT#146 STM

ACTAGCCCCCCCTCACCACCT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






79
CNAG_03258
TPK202A
L1
CNAG_03258 5′

AGGGACTGAATCCAAAGGG







flanking region







primer 1






L2
CNAG_03258 5′

TCACTGGCCGTCGTTTTACTTCT







flanking region

CGTCTTCGGCAAGGCAAGTG







primer 2






R1
CNAG_03258 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

GGACAAGGGCTAATGG







primer 1






R2
CNAG_03258 3′

AAGGCTGGACTTTGTTGGGGAC







flanking region







primer 2






SO
CNAG_03258

GATTGCGAAGATGTGAACTC







diagnostic screening







primer, pairing with







B79






PO
CNAG_03258

TTTCCCTGTTGCCATCTC







Southern blot probe







primer






STM
NAT#208 STM

TGGTCGCGGGAGATCGTGGTTT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






80
CNAG_03290
KIC102
L1
CNAG_03290 5′

CGCTGACTTGGAGTATGTG







flanking region







primer 1






L2
CNAG_03290 5′

TCACTGGCCGTCGTTTTACAAGT







flanking region

CTGCGGAAAGGTTC







primer 2






R1
CNAG_03290 3′

CATGGTCATAGCTGTTTCCTGTC







flanking region

ACCTCTGCTTTTGTCTTG







primer 1






R2
CNAG_03290 3′

CCGACAAGGATGAAACAAAGAT







flanking region

GG







primer 2






SO
CNAG_03290

TGGATGTCTTAGAAGGGAGC







diagnostic screening







primer, pairing with







B79






PO
CNAG_03290

GGAAGACAAGAACAAACGG







Southern blot probe







primer






STM
NAT#201 STM

CACCCTCTATCTCGAGAAAGCTC







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






81
CNAG_03355
TCO4
L1
CNAG_03355 5′

AATGCCATAGGACACCTCTGACC







flanking region

C







primer 1






L2
CNAG_03355 5′

CTGGCCGTCGTTTTACTGTGACT







flanking region

ATGGTAAGCACCG







primer 2






R1
CNAG_03355 3′

GTCATAGCTGTTTCCTGAATGCC







flanking region

ATAGGACACCTCTGACCC







primer 1






R2
CNAG_03355 3′

TGTGACTATGGTAAGCACCG







flanking region







primer 2






SO
CNAG_03355

GTTGCTTGGTTTTTCTTCGG







diagnostic screening







primer, pairing with







B79






PO1
CNAG_03355

AAACGGCAGCATTGACTAC







Southern blot probe







primer 1






PO2
CNAG_03355

TATGTAAGCAGCCTGTTCG







Southern blot probe







primer 2






STM
NAT#123 STM

CTATCGACCAACCAACACAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






82
CNAG_03358

L1
CNAG_03358 5′
GCAGAATCGTGAAACATTACC






flanking region
C






primer 1






L2
CNAG_03358 5′
TCACTGGCCGTCGTTTTACTCA






flanking region
TTGAGGAGGTAGGGAGG






primer 2






R1
CNAG_03358 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
GAAAGGTGTCGGGGATAG






primer 1






R2
CNAG_03358 3′
ACGGAGAAGCAGGAACATC






flanking region







primer 2






SO
CNAG_03358
CAGACAATCGCAGAGTGAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_03358
CTCTCGGAACTTCTTGACG






Southern blot probe







primer






STM
NAT#230 STM
ATGTAGGTAGGGTGATAGGT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





83
CNAG_03367
URK1
L1
CNAG_03367 5′

ACCCTTCTTTTTGGTCCC







flanking region







primer 1






L2
CNAG_03367 5′

TCACTGGCCGTCGTTTTACTTGG







flanking region

TTTTTGCTCTGCGGC







primer 2






R1
CNAG_03367 3′

CATGGTCATAGCTGTTTCCTGGT







flanking region

TTGCTGTTGGATTCGC







primer 1






R2
CNAG_03367 3′

ATTTCCCCGCATTTGCCAC







flanking, region







primer 2






SO
CNAG_03367

TCGCACATTCTTGTCAGAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_03367

GATGATGGAAAGAGTAGACCG







Southern blot probe







primer






STM
NAT#43 STM

CCAGCTACCAATCACGCTAC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






84
CNAG_03369
SWE102
L1
CNAG_03369 5′

TGCTACGCTAAGACTGGACTAC







flanking region







primer 1






L2
CNAG_03369 5′

TCACTGGCCGTCGTTTTACGGAG







flanking region

CGTGGTTGAAAGAAC







primer 2






R1
CNAG_03369 3′

CATGGTCATAGCTGTTTCCTGAC







flanking region

GAACTTGTGCTCTCTGC







primer 1






R2
CNAG_03369 3′

ACAGTTTCCTGACGAGAATG







flanking region







primer 2






SO
CNAG_03369

GCCGATACATTTTGGGTAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_03369

TGGATGGTGAGGAGTTGAG







Southern blot probe







primer






STM
NAT#169 STM

ACATCTATATCACTATCCCGAAC







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






85
CNAG_03567
CBK1
L1
CNAG_03567 5′

CAACCGATTTGCCAAGAG







flanking region







primer 1






L2
CNAG_03567 5′

TCACTGGCCGTCGTTTTACTTGT







flanking region

TGTCCCTGGATTGG







primer 2






R1
CNAG_03567 3′

CATGGTCATAGCTGTTTCCTGTA







flanking region

AGGAGTGCGATGGATG







primer 1






R2
CNAG_03567 3′

CGTTTTTCATCCTGCGAG







flanking region







primer 2






SO
CNAG_03567

TCATTCCCACCATTCACG







diagnostic screening







primer, pairing with







B79






PO
CNAG_03567

TCTGACTTCACCGAATGC







Southern blot probe







primer






STM
NAT#232 STM

CTTTAAAGGTGGTTTGTG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






86
CNAG_03592
THI20
L1
CNAG_03592 5′

TTGTGAGCAGGTTTCCGTG







flanking region







primer 1






L2
CNAG_03592 5′

TCACTGGCCGTCGTTTTACTACC







flanking region

TGAATACCAGCACCACCG







primer 2






R1
CNAG_03592 3′

CATGGTCATAGCTGTTTCCTGAG







flanking region

ATAGTGGCAGGACCTTGC







primer 1






R2
CNAG_03592 3′

TTACATCGCCGCTGTTTCC







flanking region







primer 2






SO
CNAG_03592

TGTCTCTGGTGTCTGGTTG







diagnostic screening







primer, pairing with







B79






PO
CNAG_03592

GAAAGCAGTAGCGATAGCAG







Southern blot probe







primer






STM
NAT#231 STM

GAGAGATCCCAACATCACGC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






87
CNAG_03670
IRE1
L1
CNAG_03670 5′

GCCCCATCATCATAATCAC







flanking region







primer 1






L2
CNAG_03670 5′

GCTCACTGGCCGTCGTTTTACAC







flanking region

TATGTGTCCATCTGAGGC







primer 2






R1
CNAG_03670 3′

CATGGTCATAGCTGTTTCCTGAG







flanking region

TGAGTTGAGGGAGGAAAG







primer 1






R2
CNAG_03670 3′

GAAGAAGAGCGTCAAGAAGG







flanking region







primer 2






SO
CNAG_03670

AGGAATACGAGGTTTATCGG







diagnostic screening







primer, pairing with







B79






PO
CNAG_03670

AGCATTAGGGGTGTAGGTG







Southern blot probe







primer






STM
NAT#224 STM

AACCTTTAAATGGGTAGAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






88
CNAG_03701

L1
CNAG_03701 5′
AGCGTATTCTTCAGGGCTC






flanking region







primer 1






L2
CNAG_03701 5′
TCACTGGCCGTCGTTTTACAAG






flanking region
AAGGGAGAGTGGTTGTGACGG






primer 2






R1
CNAG_03701 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
GAAGTGTTTTCCCGTCCC






primer 1






R2
CNAG_03701 3′
TAAAGGAGTGTTGGACCCC






flanking region







primer 2






SO
CNAG_03701
ACAAACCTCACTGTGCCTC






diagnostic screening







primer, pairing with







B79






PO
CNAG_03701
CAATACCGACTGAGACACACT






Southern blot probe
C






primer






STM
NAT#125 STM
CGCTACAGCCAGCGCGCGCAA






primer
GCG





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





89
CNAG_03791

L1
CNAG_03791 5′
GAAGCATCCTCAAAAGGG






flanking region







primer 1






L2
CNAG_03791 5′
TCACTGGCCGTCGTTTTACTGG






flanking region
CTGGAGATTTGAAAGAG






primer 2






R1
CNAG_03791 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
TTTTGGAAGTAAACGGGG






primer 1






R2
CNAG_03791 3′
GCAACTCGTCAAAGACCTG






flanking region







primer 2






SO
CNAG_03791
CGACTTCTTCAGCAATGG






diagnostic screening







primer, pairing with







B79






PO
CNAG_03791
TATTCCAGTCCGAGTAGCG






Southern blot probe







primer






STM
NAT#210 STM
CTAGAGCCCGCCACAACGCT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





90
CNAG_03796

L1
CNAG_03796 5′
AGGTCGGAAGATTTTGCG






flanking region







primer 1






L2
CNAG_03796 5′
TCACTGGCCGTCGTTTTACTAG






flanking region
GGTCGTTTGTGTTATCC






primer 2






R1
CNAG_03796 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
TTTTGGCTTTGGGTCAG






primer 1






R2
CNAG_03796 3′
TGAGCAGTAGTGTATTGGGTG






flanking region







primer 2






SO
CNAG_03796
AATCTCCTCTTGGGCTCAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_03796
ATACCACAGCACCCACAAG






Southern blot probe







primer






STM
NAT#240 STM
GGTGTTGGATCGGGGTGGAT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





91
CNAG_03811
IRK5
L1
CNAG_03811 5′

TCTTTAGCGTTTGACCCTG







flanking region







primer 1






L2
CNAG_03811 5′

TCACTGGCCGTCGTTTTACTTCC







flanking region

AACACTCCGTAGCAG







primer 2






R1
CNAG_03811 3′

CATGGTCATAGCTGTTTCCTGCT







flanking region

GATGGAAGATGTTGAAGC







primer 1






R2
CNAG_03811 3′

GTCGCATCTTTTTGCTGG







flanking region







primer 2






SO
CNAG_03811

TCACAATCATTCTGACCAGG







diagnostic screening







primer, pairing with







B79






PO
CNAG_03811

CCGCAAAGGTAAAGTTCG







Southern blot probe







primer






STM
NAT#213 STM

CTGGGGATTTTGATGTGTCTATG







primer

T






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






92
CNAG_03821

L1
CNAG_03821 5′
GGGTCATTTTCACCGAATC






flanking region







primer 1






L2
CNAG_03821 5′
TCACTGGCCGTCGTTTTACCTT






flanking region
TGTGTGCCGTTCTAAAC






primer 2






R1
CNAG_03821 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
CCAGATGGTCATTTCTTC






primer 1






R2
CNAG_03821 3′
GGAAATAGAAACAGCGGTG






flanking region







primer 2






SO
CNAG_03821
ACCAGGTCTTCCTCCATTG






diagnostic screening







primer, pairing with







B79






PO
CNAG_03821
TGAGAGATTCTTGTTCCGAG






Southern blot probe







primer






STM
NAT#177 STM
CACCAACTCCCCATCTCCAT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





93
CNAG_03843
ARK1
L1
CNAG_03843 5′

CAATAGGCGTGAACAAGC







flanking region







primer 1






L2
CNAG_03843 5′

TCACTGGCCGTCGTTTTACGGGA







flanking region

TACTGGTGTTTTTGG







primer 2






R1
CNAG_03843 3′

CATGGTCATAGCTGTTTCCTGAG







flanking region

GTCAACAATGCGTCAG







primer 1






R2
CNAG_03843 3′

GAAAGGAAGGAGCGAAAG







flanking region







primer 2






SO
CNAG_03843

ATAGAGCGGGAGGAAATG







diagnostic screening







primer, pairing with







B79






PO
CNAG_03843

TGGGTGGGAGTGATTTCTG







Southern blot probe







primer






STM
NAT#43 STM

CCAGCTACCAATCACGCTAC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






94
CNAG_03946
GAL302
L1
CNAG_03946 5′

AAAACTCACATCCGCTGC







flanking region







primer 1






L2
CNAG_03946 5′

TCACTGGCCGTCGTTTTACGCAG







flanking region

AGAGTTGAAGACGGTG







primer 2






R1
CNAG_03946 3′

CATGGTCATAGCTGTTTCCTGGC







flanking region

TGGAGGTGAGTTCTGTAATC







primer 1






R2
CNAG_03946 3′

CCCTATTCCTTTCCTTGTTC







flanking region







primer 2






SO
CNAG_03946

AGACCAATGTAGACCCTATGTG







diagnostic screening







primer, pairing with







B379






PO
CNAG_03946

ACAAGCACATCCATTCCTAC







Southern blot probe







primer






STM
NAT#218 STM

CTCCACATCCATCGCTCCAA







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






95
CNAG_04040
FPK1
L1
CNAG_04040 5′

ATCGTCTCAGCCTCAACAG







flanking region







primer 1






L2
CNAG_04040 5′

TCACTGGCCGTCGTTTTACTCTT







flanking region

CCACTTTGACGGTG







primer 2






R1
CNAG_04040 3′

CATGGTCATAGCTGTTTCCTGTC







flanking region

CGTTTGGGGAGTTTAG







primer 1






R2
CNAG_04040 3′

GGCTATCTTCTTGGCTTGC







flanking region







primer 2






SO
CNAG_04040

CCTTTGGGTTTTTGGGAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_04040

ATTAGTCTGCCCAAACGG







Southern blot probe







primer






STM
NAT#211 STM

GCGGTCGCTTTATAGCGATT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

C






OEL2
CNAG_04040 5′

CACTCGAATCCTGCATGCGGGA







flaking region for

TGTTTGTGTGACTGAG







overexpression







construction






OER1
CNAG_04040 5′

CCACAACACATCTATCACATGTC







coding region for

GTCTCTCGCGTCACC







overexpression







construction






NP1
CNAG_04040

TTCAAACTCGGGAGGACAG







Northern blot probe







primer






96
CNAG_04083

L1
CNAG_04083 5′
TTCCTCCATCTTCGCATC






flanking region







primer 1






L2
CNAG_04083 5′
TCACTGGCCGTCGTTTTACTCG






flanking region
TGCCCTTTTTGGTAG






primer 2






R1
CNAG_04083 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
AAGAAAGAACACCCCTCC






primer 1






R2
CNAG_04083 3′
AACAGGTTGCGATTGTGC






flanking region







primer 2






SO
CNAG_04083
GCCGTTATGGGTGAAAGAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_04083
GAAAGGGAGAAGAGTGAAGG






Southern blot probe







primer






STM
NAT#210 STM
CTAGAGCCCGCCACAACGCT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





97
CNAG_04108
PKP2
L1
CNAG_04108 5′

AAAAGAGGAGGGAGAAGGG







flanking region







primer 1






L2
CNAG_04108 5′

TCACTGGCCGTCGTTTTACTGAA







flanking region

GTATCCACACACCCC







primer 2






R1
CNAG_04108 3′

CATGGTCATAGCTGTTTCCTGCG







flanking region

TCTTTGAGTTAGGTGCTG







primer 1






R2
CNAG_04108 3′

TGATTGGGGAAGCGTTAG







flanking region







primer 2






SO
CNAG_04108

TGTCGGTTTTTGTGGTTCC







diagnostic screening







primer, pairing with







B79






PO
CNAG_04108

TTAGCCTCTTGCCAACTCC







Southern blot probe







primer






STM
NAT#295 STM

ACACCTACATCAAACCCTCCC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






98
CNAG_04118

L1
CNAG_04118 5′
TCAGCGAGATGATAGGTCG






flanking region







primer 1






L2
CNAG_04118 5′
TCACTGGCCGTCGTTTTACCCG






flanking region
CTATCTCTATCTCTGTCC






primer 2






R1
CNAG_04118 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
ACAAGATAAAGATTGGCGG






primer 1






R2
CNAG_04118 3′
CGCCATCTCCTTTCTATCG






flanking region







primer 2






SO
CNAG_04118
CAAAAGAGAATCCTGGAGACC






diagnostic screening







primer, pairing with







B79






PO
CNAG_04118
GGAGAATGAGTCAAATGCTG






Southern blot probe







primer






STM
NAT#212 STM
AGAGCGATCGCGTTATAGAT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





99
CNAG_04148

L1
CNAG_04148 5′
GAAGCCCTTGGTATTTTCC






flanking region







primer 1






L2
CNAG_04148 5′
TCACTGGCCGTCGTTTTACCCT






flanking region
CGTAGCCCAAGAAATG






primer 2






R1
CNAG_04148 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
CGTATTGGGTGAATGGC






primer 1






R2
CNAG_04148 3′
TGCTGATACCCTGTTTCG






flanking region







primer 2






SO
CNAG_04148
CGATGATAGGTCCGAAATC






diagnostic screening







primer, pairing with







B79






PO
CNAG_04148
AGACCAAACATCCCAAGC






Southern blot probe







primer






STM
NAT#224 STM
AACCTTTAAATGGGTAGAG






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





100
CNAG_04156

L1
CNAG_04156 5′
TTCTCCTCCTTCTTTATGCC






flanking region







primer 1






L2
CNAG_04156 5′
TCACTGGCCGTCGTTTTACAGA






flanking region
CAAGAGGGTTTACCTGC






primer 2






R1
CNAG_04156 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
TTACTGAGGCTGCGTTCC






primer 1






R2
CNAG_04156 3′
GCGGATAGAAGCACTGAAAC






flanking region







primer 2






SO
CNAG_04156
GTCCATCGGTAACAAGTCC






diagnostic screening







primer, pairing with







B79






PO
CNAG_04156
GTGGTAAGCACGGCTAATC






Southern blot probe







primer






STM
NAT#177 STM
CACCAACTCCCCATCTCCAT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





101
CNAG_04162
PKA2
L1
CNAG_04162 5′

AATAACACACCAGCCGCTCTGAC







flanking region

C







primer 1






L2
CNAG_04162 5′

CTGGCCGTCGTTTTACTGATGGT







flanking region

GATGGATGTGC







primer 2






R1
CNAG_04162 3′

GTCATAGCTGTTTCCTGCGGCAG







flanking region

TAGAGATAGCACAG







primer 1






R2
CNAG_04162 3′

GGAGTGGTGGAGAATGTTC







flanking region







primer 2






SO
CNAG_04162

TACCTGCTGCTATGACCCTACG







diagnostic screening







primer, pairing with







B79






PO
CNAG_04162

CCACTTGCTTCAACCTCAC







Southern blot probe







primer






STM
NAT#205 STM

TATCCCCCTCTCCGCTCTCTAGC







primer

A






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






102
CNAG_04191

L1
CNAG_04191 5′
CAAGTGGTGTCGCATTTC






flanking region







primer 1






L2
CNAG_04191 5′
TCACTGGCCGTCGTTTTACCGC






flanking region
AACCTGTTTAGTCAGAC






primer 2






R1
CNAG_04191 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
CAAAAGAAGAGCAAGGC






primer 1






R2
CNAG_04191 3′
GGGCTAAGAAGTTTGATGTTC






flanking region
C






primer 2






SO
CNAG_04191
ATGAGGGTTTTCAGCACC






diagnostic screening







primer, pairing with







B79






PO
CNAG_04191
GGGAAGGAGTGACAAAGATA






Southern blot probe
G






primer






STM
NAT#159 STM
ACGCACCAGACACACAACCAG






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





103
CNAG_04197
YAK1
L1
CNAG_04197 5′

GTGTGTCATTGGGTTTTGC







flanking region







primer 1






L2
CNAG_04197 5′

TCACTGGCCGTCGTTTTACAATG







flanking region

AATCTGCGGGAGTC







primer 2






R1
CNAG_04197 3′

CATGGTCATAGCTGTTTCCTGAG







flanking region

AAGTTGACTCGGCATCG







primer 1






R2
CNAG_04197 3′

GCTTCGTCATCAAACAGTTC







flanking region







primer 2






SO
CNAG_04197

GGTGATTTTTCATCGCCC







diagnostic screening







primer, pairing with






PO
CNAG_04197

CAGCGATGGCTCCTCTATC







Southern blot probe







primer






STM
NAT#184 STM

ATATATGGCTCGAGCTAGATAGA







primer

G






STM
STM common

GCATGCCCTGCCCCTAAGAATTC







common primer

G






104
CNAG_04215
MET3
L1
CNAG_04215 5′

CTCACAAATGAAAGCAGCAG







flanking region







primer 1






L2
CNAG_04215 5′

TCACTGGCCGTCGTTTTACGAGA







flanking region

AGAGAATCGTGAAGAGC







primer 2






R1
CNAG_04215 3′

CATGGTCATAGCTGTTTCCTGGC







flanking region

TTGTAGCGTTGTAGATGG







primer 1






R2
CNAG_04215 3′

GCGTTGTTTATTCACAGGAG







flanking region







primer 2






SO
CNAG_04215

CTGTTCTTTGTGTCTTTGCG







diagnostic screening







primer, pairing with







B79






PO
CNAG_04215

TCTTTCGGATAACGGCGTG







Southern blot probe







primer






STM
NAT#205 STM

TATCCCCCTCTCCGCTCTCTAGC







primer

A






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






105
CNAG_04221
FBP26
L1
CNAG_04221 5′

TGGAGGTCAGTAATCGGTCG







flanking region







primer 1






L2
CNAG_04221 5′

TCACTGGCCGTCGTTTTACGGAT







flanking region

TGGATGGATGTGAAC







primer 2






R1
CNAG_04221 3′

CATGGTCATAGCTGTTTCCTGTC







flanking region

CGATGTATGCTCTGGTC







primer 1






R2
CNAG_04221 3′

TGTTTCTCCCCTTGTCACC







flanking region







primer 2






SO
CNAG_04221

TGGAAATGAGTTCTCTTGGG







diagnostic screening







primer, pairing with







B79






PO
CNAG_04221

TCCTAAAATCCCGCTCTGC







Southern blot probe







primer






STM
NAT#146 STM

ACTAGCCCCCCCTCACCACCT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






106
CNAG_04230
THI6
L1
CNAG_04230 5′

TCATCACCAGTAACGAAAGG







flanking region







primer 1






L2
CNAG_04230 5′

TCACTGGCCGTCGTTTTACAGGC







flanking region

TCAACAAAACCGAG







primer 2






R1
CNAG_04230 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

GACTCGGACCCATTCAG







primer 1






R2
CNAG_04230 3′

TGGTGAGTCTTTGCGAAG







flanking region







primer 2






SO
CNAG_04230

TGACCCGAGGTAGAGAATC







diagnostic screening







primer, pairing with







B79






PO
CNAG_04230

ATCAAGAATCTCGCCCAC







Southern blot probe







primer






STM
NAT#290 STM

ACCGACAGCTCGAACAAGCAAG







primer

AG






STM
STM common

GCATGCCCTGCCCCTAAGAATTC







common primer

G






107
CNAG_04272

L1
CNAG_04272 5′
GCCTGAAAAGAAGGAAACC






flanking region







primer 1






L2
CNAG_04272 5′
TCACTGGCCGTCGTTTTACCCT






flanking region
TCCTAATGTCTTTCCAGTC






primer 2






R1
CNAG_04272 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
AGGAAGTGGAAGCGTTC






primer 1






R2
CNAG_04272 3′
TCGTCTTCGCCAAACTCTGC






flanking region







primer 2






SO
CNAG_04272
GAACGCCGAAACAAAACC






diagnostic screening







primer, pairing with







B79






PO
CNAG_04272
CTTGGGAGGAAAATCAGC






Southern blot probe







primer






STM
NAT#212 STM
AGAGCGATCGCGTTATAGAT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





108
CNAG_04282
MPK2
L1
CNAG_04282 5′

ATGGCAGCAAGCGTAACTC







flanking region







primer 1






L2
CNAG_04282 5′

TCACTGGCCGTCGTTTTACGTTT







flanking region

TATGCCCGTTGTGTTG







primer 2






R1
CNAG_04282 3′

CATGGTCATAGCTGTTTCCTGCC







flanking region

CAAAGTCAGTCTGGTAACC







primer 1






R2
CNAG_04282 3′

ATACATCTTCGTAGCCCCG







flanking region







primer 2






SO
CNAG_04282

TCCAAATAGACCAAGCCC







diagnostic screening







primer, pairing with







B79






PO
CNAG_04282

CGTTGAGTGTTTGGTAGCC







Southern blot probe







primer






STM
NAT#102 STM

CCATAGCGATATCTACCCCAATC







primer

T






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






109
CNAG_04314

L1
CNAG_04314 5′
CCATTCGTAGCCCTTATCTG






flanking region







primer 1






L2
CNAG_04314 5′
TCACTGGCCGTCGTTTTACACG






flanking region
GAGTCTGGTTTTCAGG






primer 2






R1
CNAG_04314 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
TTGATGGAAGGAGTCGC






primer 1






R2
CNAG_04314 3′
AAGAGGGCATCACTAAGGC






flanking region







primer 2






SO
CNAG_04314
ATTGGACTGGACCATAGCC






diagnostic screening







primer, pairing with







V79






PO
CNAG_04314
GATAAAGACAGAACTCAGCAC






Southern blot probe
C






primer






STM
NAT#231 STM
GAGAGATCCCAACATCACGC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





110
CNAG_04316
UTR1
L1
CNAG_04316 5′

GGTGATTGCCTGTTGTTG







flanking region







primer 1






L2
CNAG_04316 5′

TCACTGGCCGTCGTTTTACAGAC







flanking region

GAAGGAGGAGGAGTAG







primer 2






R1
CNAG_04316 3′

CATGGTCATAGCTGTTTCCTGGC







flanking region

AGTGGTTCAGAGGAATAAG







primer 1






R2
CNAG_04316 3′

ACTTGCCCATACTGGAGGTC







flanking region







primer 2






SO
CNAG_04316

CAGGATGTAGTGGAGACTGC







diagnostic screening







primer, pairing with







B79






PO
CNAG_04316

CCAGTAACCCATCACCTATTAG







Southern blot probe







primer






STM
NAT#5 STM primer

TGCTAGAGGGCGGGAGAGTT






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






111
CNAG_04335

L1
CNAG_04335 5′
CGATAGAGTAGTAGTTTTAGG






flanking region
GGG






primer 1






L2
CNAG_04335 5′
TCACTGGCCGTCGTTTTACCTT






flanking region
ACGAGTCCATCTTCGC






primer 2






R1
CNAG_04335 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
ACCGATTCCAGTTACAGC






primer 1






R2
CNAG_04335 3′
AGATGGACGAGGTGGTGATG






flanking region







primer 2






SO
CNAG_04335
TGATGTGCTCTACTGGAAGCC






diagnostic screening







primer, pairing with







B79






PO
CNAG_04335
TCATCAATGTCAGGCTGGG






Southern blot probe







primer






STM
NAT#146 STM
ACTAGCCCCCCCTCACCACCT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





112
CNAG_04347

L1
CNAG_04347 5′
GAGTTTGAGCGGTCATTG






flanking region







primer 1






L2
CNAG_04347 5′
TCACTGGCCGTCGTTTTACAGG






flanking region
TCCTCAAGGTATGGAGC






primer 2






R1
CNAG_04347 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
CCCTCAATGTTATCCACG






primer 1






R2
CNAG_04347 3′
GTAGCGAGAGCGATTCATC






flanking region







primer 2






SO
CNAG_04347
TCCAGGGAACAGTGAGTAAC






diagnostic screening







primer, pairing with







B79






PO
CNAG_04347
TTCAATGATGCCCGAGCAG






Southern blot probe







primer






STM
NAT#210 STM
CTAGAGCCCGCCACAACGCT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





113
CNAG_04408
CKI1
L1
CNAG_04408 5′

CGTCATTTCTGGGATAGACTG







flanking region







primer 1






L2
CNAG_04408 5′

TCACTGGCCGTCGTTTTACTCCT







flanking region

TCTATGCCTGGGTAGC







primer 2






R1
CNAG_04408 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

ACGCAAGGATGTCCCAGCAG







primer 1






R2
CNAG_04408 3′

TGCTTGTAGGCAATGGCTGG







flanking region







primer 2






SO
CNAG_04408

GATTTCATCCGCCTGTTG







diagnostic screening







primer, pairing with







B79






PO
CNAG_04408

ATCTTCCGCTGCTTCAGAC







Southern blot probe







primer






STM
NAT#218 STM

CTCCACATCCATCGCTCCAA







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






114
CNAG_04433
YAK103
L1
CNAG_04433 5′

AGCCTGTGAGTTGTGCGTTG







flanking region







primer 1






L2
CNAG_04433 5′

TCACTGGCCGTCGTTTTACGGTT







flanking region

TTCCTGCTATCACGC







primer 2






R1
CNAG_04433 3′

CATGGTCATAGCTGTTTCCTGGA







flanking region

CCTCAAAACTCAGCATTG







primer 1






R2
CNAG_04433 3′

AAGAAACCTCTCCATTCCC







flanking region







primer 2






SO
CNAG_04433

AATACCTTGTTGGCGAGAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_04433

CATCAGGAGGTTTACCACC







Southern blot probe







primer






STM
NAT#231 STM

GAGAGATCCCAACATCACGC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC







common primer

G






115
CNAG_04514
MPK1
L1
CNAG_04514 5′

TTTGCTTGCTCCTCTTCTC







flanking region







primer 1






L2
CNAG_04514 5′

TCACTGGCCGTCGTTTTACGAGA







flanking region

AGTAGAGGCAGTGACG







primer 2






R1
CNAG_04514 3′

CATGGTCATAGCTGTTTCCTGTT







flanking region

GGAGAAACAGTTGGAGAG







primer 1






R2
CNAG_04514 3′

TTCAGCAGGTCAATCAGG







flanking region







primer 2






SO
CNAG_04514

CGACTCACGATGTAACTTCC







diagnostic screening







primer, pairing with







B79






PO
CNAG_04514

ACCTCAACTCTCTCAGACACC







Southern blot probe







primer






STM
NAT#240 STM

GGTGTTGGATCGGGGTGGAT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






116
CNAG_04577

L1
CNAG_04577 5′
AGGTTTGAGCCATCTGAAC






flanking region







primer 1






L2
CNAG_04577 5′
TCACTGGCCGTCGTTTTACAAA






flanking region
GGGCATAACCAGTGAC






primer 2






R1
CNAG_04577 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
TTGGAGTATGGGAGATGC






primer 1






R2
CNAG_04577 3′
GTCTTTTCTTTCCCACTTGG






flanking region







primer 2






SO
CNAG_04577
GAGATGGGTAATGGTGATGAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_04577
GCTTGTAACCACGCTCTATC






Southern blot probe







primer






STM
NAT#282 STM
TCTCTATAGCAAAACCAATC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





117
CNAG_04631
RIK1
L1
CNAG_04631 5′

TCATCAGTTTCGTCCAGC







flanking region







primer 1






L2
CNAG_04631 5′

TCACTGGCCGTCGTTTTACATAA







flanking region

CGGGATTGGGGTTG







primer 2






R1
CNAG_04631 3′

CATGGTCATAGCTGTTTCCTGTT







flanking region

GCTGATGAGGTCAAGG







primer 1






R2
CNAG_04631 3′

ATCTCACTGCCCTATTCCC







flanking region







primer 2






SO
CNAG_04631

TTCCACTCCTTCTCCCTCTG







diagnostic screening







primer, pairing with







B79






PO
CNAG_04631

CAGGAAGGCTAAAACCACAG







Southern blot probe







primer






STM
NAT#150 STM

ACATACACCCCCATCCCCCC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






118
CNAG_04678
YPK1
L1
CNAG_04678 5′

CGACTATGGGTTCGTTACTGG







flanking region







primer 1






L2
CNAG_04678 5′

TCACTGGCCGTCGTTTTACTGTC







flanking region

TATGCGTTTTCCGAC







primer 2






R1
CNAG_04678 3′

CATGGTCATAGCTGTTTCCTGTG







flanking region

GTGTAGAATGGCAGAGC







primer 1






R2
CNAG_04678 3′

GCACCGTGGAGGTAGTAATG







flanking region







primer 2






SO
CNAG_04678

TACCCATCATTCCCTGCTC







diagnostic screening







primer, pairing with







B79






PO
CNAG_04678

ACACCGTATCAGCACAAGC







Southern blot probe







primer






STM
NAT#58 STM

CGCAAAATCACTAGCCCTATAGC







primer

G






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






119
CNAG_04755
BCK7
L1
CNAG_04755 5′

GCTGTTGGTTCTCTCTTGC







flanking region







primer 1






L2
CNAG_04755 5′

CTGGCCGTCGTTTTACGGTTTGC







flanking region

GATGAATAGTCC







primer 2






R1
CNAG_04755 3′

GTCATAGCTGTTTCCTGTTCCGA







flanking region

ACGCTCATACTCC







primer 1






R2
CNAG_04755 3′

TTCCTTCGTTTGTCCGTCG







flanking region







primer 2






SO
CNAG_04755

CAGGCTTTTTTTCTGGCTAC







diagnostic screening







primer, pairing with







B79






PO1
CNAG_04755

TACCTCCTTCATTCCTGCCGTC







Southern blot probe







primer 1






PO2
CNAG_04755

GCTTCGTTATCAGTCGTCAC







Southern blot probe







primer 2






STM
NAT#43 STM

CCAGCTACCAATCACGCTAC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






120
CNAG_04821
PAN3
L1
CNAG_04821 5′

CTCTTACAGACGGTTCTTTAGG







flanking region







primer 1






L2
CNAG_04821 5′

TCACTGGCCGTCGTTTTACTCTC







flanking region

CTTTGCCTTCTCCGAG







primer 2






R1
CNAG_04821 3′

CATGGTCATAGCTGTTTCCTGAG







flanking region

AATGCGGGCAATAACC







primer 1






R2
CNAG_04821 3′

GCCAAAAAGCAAAAAGTGGAGC







flanking region







primer 2






SO
CNAG_04821

GCAGGAAGAACAAGGTGTC







diagnostic screening







primer, pairing with







B79






PO
CNAG_04821

GGAACGAGAGAGTGATACACG







Southern blot probe







primer






STM
NAT#204 STM

GATCTCTCGCGCTTGGGGGA







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






121
CNAG_04843

Ll
CNAG_04843 5′
CAATCAAACAAGCGACCTC






flanking region







primer 1






L2
CNAG_04843 5′
TCACTGGCCGTCGTTTTACGAA






flanking region
GATTTCTCAACAAGCGG






primer 2






R1
CNAG_04843 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
ACAGCATAGAGAGGGTGTG






primer 1






R2
CNAG_04843 3′
TCCTCCACCATTTCAGACG






flanking region







primer 2






SO
CNAG_04843
GGGGAGCAAACTCTTGAAC






diagnostic screening







primer, pairing with







B79






PO
CNAG_04843
CATCTCATCCGTTCTCTGC






Southern blot probe







primer






STM
NAT#116 STM
GCACCCAAGAGCTCCATCTC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





122
CNAG_04927
YFH702
L1
CNAG_04927 5′

GGCATAACTTTCAACGGC







flanking region







primer 1






L2
CNAG_04927 5′

TCACTGGCCGTCGTTTTACAGTC







flanking region

TCCACGACATCTTCTG







primer 2






R1
CNAG_04927 3′

CATGGTCATAGCTGTTTCCTGTA







flanking region

TGCCAGTGGTCAGGTTC







primer 1






R2
CNAG_04927 3′

TCGTATTTGACTTCCCTGG







flanking region







primer 2






SO
CNAG_04927

TGTTTTGAGAGTCCTTCGG







diagnostic screening







primer, pairing with







B79






PO
CMG_04927

TGTCTTTGTGCGTTATGGG







Southern blot probe







primer






STM
NAT#220 STM

CAGATCTCGAACGATACCCA







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






123
CNAG_05005
ATG1
L1
CNAG_05005 5′

CGCAGAACAGTCCTACACAAC







flanking region







primer 1






L2
CNAG_05005 5′

TCACTGGCCGTCGTTTTACCTCC







flanking region

TTGCGAGTTTGAGTC







primer 2






R1
CNAG_05005 3′

CATGGTCATAGCTGTTTCCTGCC







flanking region

CTGAGAAAAAAGTTGGC







primer 1






R2
CNAG_05005 3′

CGGGAGGAAAACTTGTTC







flanking region







primer 2






SO
CNAG_05005

GATTCACACAAGAGAGCGG







diagnostic screening







primer, pairing with







B79






PO
CNAG_05005

TTCCCCTCCTCATTTGTC







Southern blot probe







primer






STM
NAT#288 STM

CTATCCAACTAGACCTCTAGCTA







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






124
CNAG_05063
SSK2
L1
CNAG_05063 5′

CCTATCTTATTTTTGCGGGG







flanking region







primer 1






L2
CNAG_05063 5′

CTGGCCGTCGTTTTACTCCTCTT







flanking region

TGTGCCGTATTC







primer 2






R1
CNAG_05063 5′

GTCATAGCTGTTTCCTGATGTTG







flanking region

GAGCAGATGGTG







primer 2






R2
CNAG_05063 3′

CGACTCGTCAACCAAGTTAC







flanking region







primer 2






SO
CNAG_05063

CTAAGGATAGGATGTGGAAGG







diagnostic screening







primer, pairing with







B79






PO1
CNAG_05063

AAGGACGACGAGAGTGAGTAG







Southern blot probe







primer 1






PO2
CNAG_05063

TCCAAACGAACCTTGACAG







Southern blot probe







primer 2






STM
NAT#210 STM

CTAGAGCCCGCCACAACGCT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






125
CNAG_05097
CKY1
L1
CNAG_05097 5′

TGTTCTTCCTTGATGCTCTC







flanking region







primer 1






L2
CNAG_05097 5′

TCACTGGCCGTCGTTTTACGCAG







flanking region

ATACGGAGAAGTCAGAC







primer 2






R1
CNAG_05097 3′

CATGGTCATAGCTGTTTCCTGAG







flanking region

AACATCCCTGTCCTTGC







primer 1






R2
CNAG_05097 3′

ATTATGGGAGAGGCGATG







flanking region







primer 2






SO
CNAG_05097

ATCTTTGTCGGTGTCAGCC







diagnostic screening







primer, pairing with







B79






PO
CNAG_05097

AGTCCATCACTCCTTCGG







Southern blot probe







primer






STM
NAT#282 STM

TCTCTATAGCAAAACCAATC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






126
CNAG_05104

L1
CNAG_05104 5′
GCTTTTTGACGAGACAACTG






flanking region







primer 1






L2
CNAG_05104 5′
TCACTGGCCGTCGTTTTACGAT






flanking region
AAAACCCGAGGACATTC






primer 2






R1
CNAG_05104 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
GTTGCTTCCGTATCTGTTG






primer 1






R2
CNAG_05104 3′
AGCAAGTGAAAGAAGGGC






flanking region







primer 2






SO
CNAG_05104
TATCAGGGCTTGGGTGTAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_05104
TCTGATAGGGAGCCATACG






Southern blot probe







primer






STM
NAT#208 STM
TGGTCGCGGGAGATCGTGGTT






primer
T





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





127
CNAG_05125

L1
CNAG_05125 5′
TGGTTTTGGCTGCTTCTG






flanking region







primer 1






L2
CNAG_05125 5′
TCACTGGCCGTCGTTTTACGTG






flanking region
AGCAGGTGTTAGAGTGC






primer 2






R1
CNAG_05125 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
AGGACAGTTTATTGGGG






primer 1






R2
CNAG_05125 3′
CACCCAGTAAATACCATCCTG






flanking region







primer 2






SO
CNAG_05125
AGGTTCAAGCGTGATGTG






diagnostic screening







primer, pairing with







B79






PO
CNAG_05125
CGCTGACAACACAGATAAGAG






Southern blot probe







primer






STM
NAT#219 STM
CCCTAAAACCCTACAGCAAT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





128
CNAG_05200

L1
CNAG_05200 5′
TCCGACAACGAGATTGAAC






flanking region







primer 1






L2
CNAG_05200 5′
TCACTGGCCGTCGTTTTACTCT






flanking region
CCATCTTGACACATTCC






primer 2






R1
CNAG_05200 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
GTTTACACCTTACCTCCCAC






primer 1






R2
CNAG_05200 3′
GGAATGGGCAAATGCTAC






flanking region







primer 2






SO
CNAG_05200
TATCCCCACCAAGAAGTCC






diagnostic screening







primer, pairing with







B79






PO
CNAG_05200
ACAGACCCGTTCCAATGTC






Southern blot probe







primer






STM
NAT#224 STM
AACCTTTAAATGGGTAGAG






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





129
CNAG_05216
RAD53
L1
CNAG_05216 5′

CCTTGGCTGACACTTTACC







flanking region







primer 1






L2
CNAG_05216 5′

TCACTGGCCGTCGTTTTACCTGT







flanking region

GTGTTTTGGGTTTGG







primer 2






R1
CNAG_05216 3′

CATGGTCATAGCTGTTTCCTGTC







flanking region

CATTATGAAGGAGTCGG







primer 1






R2
CNAG_05216 3′

GTAGACCCTCTTCTTCCTCG







flanking region







primer 2






SO
CNAG_05216

TAGGAGCGATTGCTGAAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_05216

ACCAATCAATCAGCCGAC







Southern blot probe







primer






STM
NAT#184 STM

ATATATGGCTCGAGCTAGATAGA







primer

G






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






130
CNAG_05220
TLK1
L1
CNAG_05220 5′

ATCGCTTCTCGTTTGACC







flanking region







primer 1






L2
CNAG_05220 5′

TCACTGGCCGTCGTTTTACATCA







flanking region

ACGACCATCTGGGAC







primer 2






R1
CNAG_05220 3′

CATGGTCATAGCTGTTTCCTGTG







flanking region

GCTACTGCTGTGTATTGC







primer 1






R2
CNAG_05220 3′

GCGGTAAAGGTGGAAAGTC







flanking region







primer 2






SO
CNAG_05220

CTTTGAAACCGACCATAGG







diagnostic screening







primer, pairing with







B79






PO
CNAG_05220

GGACCGAGACACTACTCACAAC







Southern blot probe







primer






STM
NAT#116 STM

GCACCCAAGAGCTCCATCTC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






131
CNAG_05243
XKS1
L1
CNAG_05243 5′

GCACGAATAAATGCCTGC







flanking region







primer 1






L2
CNAG_05243 5′

TCACTGGCCGTCGTTTTACCTGA







flanking region

GCAAAGGACTTACCTG







primer 2






R1
CNAG_05243 3′

CATGGTCATAGCTGTTTCCTGCG







flanking region

GATTGGAATGCCTGTAG







primer 1






R2
CNAG_05243 3′

GGAGAGTGTTGGAATACGGTAG







flanking region







primer 2






SO
CNAG_05243

AGCCGAAGCCATTTTGAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_05243

CATCATCACCAGCGATTG







Southern blot probe







primer






STM
NAT#125 STM

CGCTACAGCCAGCGCGCGCAAG







primer

CG






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






132
CNAG_05274

L1
CNAG_05274 5′
ATGCTGTTTTGTGGGGGTAGG






flanking region
C






primer 1






L2
CNAG_05274 5′
TCACTGGCCGTCGTTTTACGCT






flanking region
TCTCCGTTTGTTTCG






primer 2






R1
CNAG_05274 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
ATCACAGGGCTTGACGGACTG






primer 1
AG





R2
CNAG_05274 3′
CACTTTTCTTTCTGTCCTCCC






flanking region







primer 2






SO
CNAG_05274
CAACAACGCCAAGAAAGC






diagnostic screening







primer, pairing with







B79






PO
CNAG_05274
TTGGCGGAACGGATGAATCG






Southern blot probe







primer






STM
NAT#58 STM
CGCAAAATCACTAGCCCTATA






primer
GCG





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





133
CNAG_05386

L1
CNAG_05386 5′
TTGCGGAATAAGAAGGGG






flanking region







primer 1






L2
CNAG_05386 5′
TCACTGGCCGTCGTTTTACGTG






flanking region
CTTTATGTGGATTTGGG






primer 2






R1
CNAG_05386 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
CAATCCAAATGAGTGACG






primer 1






R2
CNAG_05386 3′
ACAGGAAGAACAGCAGGAG






flanking region







primer 2






SO
CNAG_05386
GCTATGGGAGTTTTTCCG






diagnostic screening







primer, pairing with







B79






PO
CNAG_05386
GCAAATGGGCGTTATTCC






Southern blot probe







primer






STM
NAT#177 STM
CACCAACTCCCCATCTCCAT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





134
CNAG_05439
CMK1
L1
CNAG_05439 5′

GGATTGTTAGGTAGGTAGGGG







flanking region







primer 1






L2
CNAG_05439 5′

TCACTGGCCGTCGTTTTACAAGA







flanking region

AGGCGGCTGGATAAG







primer 2






R1
CNAG_05439 3′

CATGGTCATAGCTGTTTCCTGGA







flanking region

AGCCCACAATCAAAGTC







primer 1






R2
CNAG_05439 3′

GTGTCATCGTAGGGGTTTC







flanking region







primer 2






SO
CNAG_05439

ATTGCCTATCTGCCTGTGC







diagnostic screening







primer, pairing with







B79






PO
CNAG_05439

TCAATGAAACCGCGTGTG







Southern blot probe







primer






STM
NAT#227 STM

TCGTGGTTTAGAGGGAGCGC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






135
CNAG_05484

L1
CNAG_05484 5′
CCAACACCGCCTATTTATC






flanking region







primer 1






L2
CNAG_05484 5′
TCACTGGCCGTCGTTTTACGTG






flanking region
AGTGCCGAGAAAAATG






primer 2






R1
CNAG_05484 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
CTGTGTTGTATGGGACGAG






primer 1






R2
CNAG_05484 3′
TCTCACTCATCTCAAAACGC






flanking region







primer 2






SO
CNAG_05484
TGCTGTTTTAGCCCTTGC






diagnostic screening







primer, pairing with







B79






PO
CNAG_05484
AGAGATTGGTGATGGAGCC






Southern blot probe







primer






STM
NAT#205 STM
TATCCCCCTCTCCGCTCTCTAG






primer
CA





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





136
CNAG_05549

L1
CNAG_05549 5′
GGAAGCAGAGGAAGTCTTTAG






flanking region







primer 1






L2
CNAG_05549 5′
TCACTGGCCGTCGTTTTACAGG






flanking region
GTTTTTCCAGACAGC






primer 2






R1
CNAG_05549 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
AGAGACCTCCTTCCGACAG






primer 1






R2
CNAG_05549 3′
GATTCGTCCACAACAAAGAC






flanking region







primer 2






SO
CNAG_05549
GACGGCATCAAGGAAAATG






diagnostic screening







primer, pairing with







B79






PO
CNAG_05549
GAGGTGGTGATGTAGAAATAG






Southern blot probe
G






primer






STM
NAT#230 STM
ATGTAGGTAGGGTGATAGGT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





137
CNAG_05558
KIN4
L1
CNAG_05558 5′

ATTCAATGGAGCGGGAGTG







flanking region







primer 1






L2
CNAG_05558 5′

TCACTGGCCGTCGTTTTACCGAA







flanking region

TAAGAATGATGGTGACCG







primer 2






R1
CNAG_05558 3′

CATGGTCATAGCTGTTTCCTGAT







flanking region

TGAGTAAGTTCCGCCCC







primer 1






R2
CNAG_05558 3′

AAGGCTGAGGACTGCTACTAC







flanking region







primer 2






SO
CNAG_05558

ATTCTGGTATGAAGCCTCGCAGC







diagnostic screening

C







primer, pairing with







B79






PO
CNAG_05558

TTCCAACTTCAGGTCACG







Southern blot probe







primer






STM
NAT#225 STM

CCATAGAACTAGCTAAAGCA







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






138
CNAG_05590
TCO2
L1
CNAG_05590 5′

CAAAACTGGAAGAAGCGAAG







flanking region







primer 1






L2
CNAG_05590 5′

CTGGCCGTCGTTTTACTTGCCAG







flanking region

ATGAAGAGTCACGCC







primer 2






R1
CNAG_05590 3′

GTCATAGCTGTTTCCTGTCCCAT







flanking region

CCTCTGTGATTCCC







primer 1






R2
CNAG_05590 3′

ATTGTGGAGTGGTGGAGTGGAC







flanking region







primer 2






SO
CNAG_05590

TGAGGAGGAAAGTTTTAGCG







diagnostic screening







primer, pairing with







B79






PO1
CNAG_05590

GTTACCGATTCTTGGACCTG







Southern blot probe







primer 1






PO2
CNAG_05590

TGCTTCACCCTTTCAGTCTC







Southern blot probe







primer 2






STM
NAT#116 STM

GCACCCAAGAGCTCCATCTC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






139
CNAG_05600
IGL1
L1
CNAG_05600 5′

TTCTTCTCCTCTATCCCCG







flanking region







primer 1






L2
CNAG_05600 5′

TCACTGGCCGTCGTTTTACGATG







flanking region

ATAGCGATGGTAGCC







primer 2






R1
CNAG_05600 3′

CATGGTCATAGCTGTTTCCTGGG







flanking region

AAGAAGTTTGGGTTCG







primer 1






R2
CNAG_05600 3′

TGGGGAAGAACCAGAAGTAG







flanking region







primer 2






SO
CNAG_05600

TCCCTGTAAGATTCGCCAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_05600

TTCTCCATAGGTAGCCACG







Southern blot probe







primer






STM
NAT#230 STM

ATGTAGGTAGGGTGATAGGT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






140
CNAG_05694
CKA1
L1
CNAG_05694 5′

TGTCAAAAGCACACTCAGG







flanking region







primer 1






L2
CNAG_05694 5′

TCACTGGCCGTCGTTTTACTGCG







flanking region

AATAGTTGCTGCTC







primer 2






R1
CNAG_05694 3′

CATGGTCATAGCTGTTTCCTGTT







flanking region

GACCTGCCGTGTATTTAG







primer 1






R2
CNAG_05694 3′

AAACATCACTCACCGTTCC







flanking region







primer 2






SO
CNAG_05694

CGACAAGTTGCTGAAGTTTC







diagnostic screening







primer, pairing with







B79






PO
CNAG_05694

ACATTTGGAGTCGGTTGG







Southern blot probe







primer






STM
NAT#6 STM primer

ATAGCTACCACACGATAGCT






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






141
CNAG_05753
ARG5,6
L1
CNAG_05753 5′

ATTTTCCAGTCGTCCGTC







flanking region







primer 1






L2
CNAG_05753 5′

TCACTGGCCGTCGTTTTACTAAT







flanking region

ACTGAGGGCAGAGCG







primer 2






R1
CNAG_05753 3′

CATGGTCATAGCTGTTTCCTGAT







flanking region

CCTTTGACCATCCAGGG







primer 1






R2
CNAG_05753 3′

TTGATGTTTCGCAGCACC







flanking region







primer 2






SO
CNAG_05753

ACCAGTCAGCAACGAAACG







diagnostic screening







primer, pairing with







JOHE12579






PO
CNAG_05753

CGACAGCAAGGGTTTTTG







Southern blot probe







primer






STM
NAT#220 STM

CAGATCTCGAACGATACCCA







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC







common primer

G






142
CNAG_05771
TEL1
L1
CNAG_05771 5′

ACCCTCCATACATCCTTCC







flanking region







primer 1






L2
CNAG_05771 5′

TCACTGGCCGTCGTTTTACGGCT







flanking region

ATCGTTTCGGTAAGG







primer 2






R1
CNAG_05771 3′

CATGGTCATAGCTGTTTCCTGCA







flanking region

GTATGGATGGGGAGTAATAG







primer 1






R2
CNAG_05771 3′

AACTCCCAAAGATGAGCC







flanking region







primer 2






SO
CNAG_05771

TAGCAGCAAAAGTGAGCG







diagnostic screening







primer, pairing with







B79






PO
CNAG_05771

GAAATCGTCAAACTCGTTCC







Southern blot probe







primer






STM
NAT#225 STM

CCATAGAACTAGCTAAAGCA







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






143
CNAG_05935

L1
CNAG_05935 5′
GGTCAATCCAGATGCTATCAG






flanking region







primer 1






L2
CNAG_05935 5′
TCACTGGCCGTCGTTTTACTTT






flanking region
GGGTTTGGGTTTGGGCAGC






primer 2






R1
CNAG_05935 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
CCGTGTTGTTCTTTCGTAG






primer 1






R2
CNAG_05935 3′
CAAGGGTGTTGGTATCTACG






flanking region







primer 2






SO
CNAG_05935
CGGAAGATTACTCCTGGG






diagnostic screening







primer, pairing with







B79






PO
CNAG_05935
TTACTCATACGCAGGACCC






Southern blot probe







primer






STM
NAT#220 STM
CAGATCTCGAACGATACCCA






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





144
CNAG_05965
IRK4
L1
CNAG_05965 5′

TCATAGACGATGTTGCCG







flanking region







primer 1






L2
CNAG_05965 5′

TCACTGGCCGTCGTTTTACCAAG







flanking region

ATGGAAGCCAGACTTAC







primer 2






R1
CNAG_05965 3′

CATGGTCATAGCTGTTTCCTGCC







flanking region

ATCTTCCTTCTCCGAAC







primer 1






R2
CNAG_05965 3′

TTTCGGGAGAGTTTTGCG







flanking region







primer 2






SO
CNAG_05965

GCTGTTGTTTCTCACTGTAACC







diagnostic screening







primer, pairing with







B79






PO
CNAG_05965

GATGTATCTGGCAAAGGGTC







Southern blot probe







primer






STM
NAT#211 STM

GCGGTCGCTTTATAGCGATT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






145
CNAG_05970

L1
CNAG_05970 5′
TGAAGCGTGAGTGTAAACG






flanking region







primer 1






L2
CNAG_05970 5′
TCACTGGCCGTCGTTTTACGGG






flanking region
CAAAGGAATGTGATG






primer 2






R1
CNAG_05970 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
TCATTCTTGGATTTCCCTG






primer 1






R2
CNAG_05970 3′
ACAGAAAGGGGTGAAACG






flanking region







primer 2






SO
CNAG_09570
AGACTTGCCCGATTTTGG






diagnostic screening







primer, pairing with







B79






PO
CNAG_05970
TGGCGGTTTATCCTTTCC






Southern blot probe







primer






STM
NAT#212 STM
AGAGCGATCGCGTTATAGAT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





146
CNAG_06001

L1
CNAG_06001 5′
ATCTCCACCTCTTCGCCAACTT






flanking region
CC






primer 1






L2
CNAG_06001 5′
TCACTGGCCGTCGTTTTACCGT






flanking region
CATTTTTTTGGGATACGCC






primer 2






R1
CNAG_06001 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
AGAAGAAGTTGCGGAAGTC






primer 1






R2
CNAG_06001 3′
GGAAGAAAGCGATTTACGG






flanking region







primer 2






SO
CNAG_06001
TTCCTTGCCCTTCCAATCC






diagnostic screening







primer, pairing with







B79






PO
CNAG_06001
GGATAAAAGCCTGTCAGTCG






Southern blot probe







primer






STM
NAT#119 STM
CTCCCCACATAAAGAGAGCTA






primer
AAC





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





147
CNAG_06033
MAK32
L1
CNAG_06033 5′

CAAACAACAGATTCCGCC







flanking region







primer 1






L2
CNAG_06033 5′

TCACTGGCCGTCGTTTTACTTCG







flanking region

GATGGACGGATGTAG







primer 2






R1
CNAG_06033 3′

CATGGTCATAGCTGTTTCCTGGG







flanking region

AGATTTCTCTGCCATCC







primer 1






R2
CNAG_06033 3′

AACGCTGGGAAAACTACC







flanking region







primer 2






SO
CNAG_06033

CAGCGTGAAAGTAGCATTG







diagnostic screening







primer, pairing with







B79






PO
CNAG_06033

GCTCTTGTCATTCTCGTTCC







Southern blot probe







primer






STM
NAT#169 STM

ACATCTATATCACTATCCCGAAC







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC







common primer

G






148
CNAG_06051
GAL1
L1
CNAG_06051 5′

GCGGTTGAGTGTGTTATTG







flanking region







primer 1






L2
CNAG_06051 5′

TCACTGGCCGTCGTTTTACGCTC







flanking region

CCCTAACACATTGACTC







primer 2






R1
CNAG_06051 3′

CATGGTCATAGCTGTTTCCTGGT







flanking region

CCTGACGCTCTGAMCTG







primer 1






R2
CNAG_06051 3′

GCTATGGGTATGAATCGCC







flanking region







primer 2






SO
CNAG_06051

AGAGACCAGAAGTGAGAGGAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_06051

GACGCTGACAACAAAAGC







Southern blot probe







primer






STM
NAT#224 STM

AACCTTTAAATGGGTAGAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






149
CNAG_06086
SSN3
L1
CNAG_06086 5′

CGGAGTCTACATTGCTCAGAG







flanking region







primer 1






L2
CNAG_06086 5′

TCACTGGCCGTCGTTTTACAGTA







flanking region

ATCGGTTATCCCACG







primer 2






R1
CNAG_06086 3′

CATGGTCATAGCTGTTTCCTGGA







flanking region

GGATAACGGTGATGCTAAG







primer 1






R2
CNAG_06086 3′

CCACTTGTTTTGCTTGTGC







flanking region







primer 2






SO
CNAG_06086

AGGCACGGGGATTTTTAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_06086

ATTTGAACCCACCGACACT







Southern blot probe







primer






STM
NAT#219 STM

CCCTAAAACCCTACAGCAAT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






150
CNAG_06161
VRK1
L1
CNAG_06161 5′

TATCGGCAGCGACTCTACTC







flanking region







primer 1






L2
CNAG_06161 5′

TCACTGGCCGTCGTTTTACCGCA







flanking region

ACCATCAACCTAAGC







primer 2






R1
CNAG_06161 3′

CATGGTCATAGCTGTTTCCTGAT







flanking region

AGACGCCAAACGCATC







primer 1






R2
CNAG_06161 3′

CCAACCCAACTACTACATACTGC







flanking region







primer 2






SO
CNAG_06161

GAAGAACTGGAAGCATTGG







diagnostic screening







primer, pairing with







B79






PO
CNAG_06161

CGAGAAGAGTGAGAAATGGG







Southern blot probe







primer






STM
NAT#123 STM

CTATCGACCAACCAACACAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






151
CNAG_06174

L1
CNAG_06174 5′
GCTCACATCGTAACGGTTG






flanking region







primer 1






L2
CNAG_06174 5′
TCACTGGCCGTCGTTTTACAAT






flanking region
GAGCCGAGAACTTACG






primer 2






R1
CNAG_06174 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
TGGAGGGCTTTGTTAGC






primer 1






R2
CNAG_06174 3′
GCTCAACAACAACAGCAAGAG






flanking region







primer 2






SO
CNAG_06174
TCCGATGCTCACGAATAC






diagnostic screening







primer, pairing with







B79






PO
CNAG_06174
GTCTCGCACTGTATCAATAAG






Southern blot probe
C






primer






STM
NAT#119 STM
CTCCCCACATAAAGAGAGCTA






primer
AAC





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





152
CNAG_06193
CRK1
L1
CNAG_06193 5′

TCCCCTGCTGTATTCATTG







flanking region







primer 1






L2
CNAG_06193 5′

TCACTGGCCGTCGTTTTACCTTG







flanking region

TGCTAATGTTGTCACG







primer 2






R1
CNAG_06193 3′

CATGGTCATAGCTGTTTCCTGTA







flanking region

ACCAGTCTCATCCTCCAC







primer 1






R2
CNAG_06193 3′

TATTCCAGAGGTAGCGGCGTCA







flanking region

AG







primer 2






SO
CNAG_06193

ATAAGGGGGAAAGACCGAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_06193

GGTTGCCTTCCATACACTC







Southern blot probe







primer






STM
NAT#43 STM

CCAGCTACCAATCACGCTAC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






153
CNAG_06278
TCO7
L1
CNAG_06278 5′

CCACCTTTCTCATTCGTATG







flanking region







primer 1






L2
CNAG_06278 5′

CTGGCCGTCGTTTTACTCTTCTT







flanking region

CAGATGGTTCCC







primer 2






R1
CNAG_06278 3′

GTCATAGCTGTTTCCTGCACACT







flanking region

CACTCAACGCATC







primer 1






R2
CNAG_06278 3′

CTCCATTTGTTCCATTAGCC







flanking region







primer 2






SO
CNAG_06278

TAAGCCCTCGGAAACACTC







diagnostic screening







primer, pairing with







B79






PO
CNAG_06278

CCTTTCTCATTCGTATGGTGTG







Southern blot probe







primer






STM
NAT#209 STM

AGCACAATCTCGCTCTACCCATA







primer

A






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






154
CNAG_06301
SCH9
L1
CNAG_06301 5′

TTCTTCGTGCTGAGAGGAG







flanking region







primer 1






L2
CNAG_06301 5′

GCTCACTGGCCGTCGTTTTACAG







flanking region

ATGTGGCGTAGTCAGCAC







primer 2






R1
CNAG_06301 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

TGAGAATGCGGTGGAC







primer 1






R2
CNAG_06301 3′

GGATGGATGGATGCTCAT







flanking region







primer 2






SO
CNAG_06301

TTCTTCGTGCTGAGAGGAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_06301

AACCGAAACCCTCAGAACC







Southern blot probe







primer






STM
NAT#169 STM

ACATCTATATCACTATCCCGAAC







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






155
CNAG_06310
IRK7
L1
CNAG_06310 5′

GGTGCTAAAGGATGGTATGG







flanking region







primer 1






L2
CNAG_06310 5′

TCACTGGCCGTCGTTTTACGTTG







flanking region

CTGTTGTTTCTGTAGGTC







primer 2






R1
CNAG_06310 3′

CATGGTCATAGCTGTTTCCTGTT







flanking region

GGTTATCCGCTTACGAC







primer 1






R2
CNAG_06310 3′

GTATGGCTATCAACCTGCTG







flanking region







primer 2






SO
CNAG_06310

CCGACCAAGATGAAAAGC







diagnostic screening







primer, pairing with







B79






PO
CNAG_06310

GATAGCAACTTTACCCCCC







Southern blot probe







primer






STM
NAT#208 STM

TGGTCGCGGGAGATCGTGGTTT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






156
CNAG_06366
HRR2502
L1
CNAG_06366 5′

TTCTCGTCTTCGCTTTCG







flanking region







primer 1






L2
CNAG_06366 5′

TCACTGGCCGTCGTTTTACGGAG







flanking region

AAGGCATTGCTAAAC







primer 2






R1
CNAG_06366 3′

CATGGTCATAGCTGTTTCCTGAT







flanking region

TGTGCCCTCGTAATGG







primer 1






R2
CNAG_06366 3′

TTCGCTGACTTGCTTGAG







flanking region







primer 2






SO
CNAG_06366

TTCCTCGCTTTCAACTCC







diagnostic screening







primer, pairing with







B79






PO
CNAG_06366

GTTTCCTTCTTCACCCTACC







Southern blot probe







primer






STM
NAT#125 STM

CGCTACAGCCAGCGCGCGCAAG







primer

CG






STM
STM common
GCATGCCCTGCCCCTAAGAATTC





common
primer
G





157
CNAG_06432

L1
CNAG_06432 5′
CGTCACACAACACTGCTACAG






flanking region







primer 1






L2
CNAG_06432 5′
TCACTGGCCGTCGTTTTACTTG






flanking region
ATTGACGAGGAACCG






primer 2






R1
CNAG_06432 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
GAACTTAGTGGGTCTTGACG






primer 1






R2
CNAG_06432 3′
GCGGTGATGGGTTGTTATC






flanking region







primer 2






SO
CNAG_06432
ACTTGGCGGTAGTCTGAAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_06432
ATACCTGGCGGCTAATCAG






Southern blot probe







primer






STM
NAT#224 STM
AACCTTTAAATGGGTAGAG






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





158
CNAG_06445

L1
CNAG_06445 5′
GCGATAGGTCAGTAGATTGGG






flanking region







primer 1






L2
CNAG_06445 5′
TCACTGGCCGTCGTTTTACGCT






flanking region
TACATCTGTTGGCACG






primer 2






R1
CNAG_06445 3′
CATGGTCATAGCTTGTTTCCTGC






flanking region
GCCTCACAAGAGTCAAAG






primer 1






R2
CNAG_06445 3′
CAATCAGGACAATCATACGC






flanking region







primer 2






SO
CNAG_06445
GAAGAGGAAATGTCAGGGTC






diagnostic screening







primer, pairing with







B79






PO
CNAG_06445
CAGAAAGGAACTCACAGGC






Southern blot probe







primer






STM
NAT#122 STM
ACAGCTCCAAACCTCGCTAAA






primer
CAG





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





159
CNAG_06454

L1
CNAG_06454 5′
AACAAAACCGCTGGCAACACC






flanking region
C






primer 1






L2
CNAG_06454 5′
TCACTGGCCGTCGTTTTACTCC






flanking region
AGAGTCTTCTTCAGGCG






primer 2






R1
CNAG_06454 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
ACCAAGATGCCAAAAGC






primer 1






R2
CNAG_06454 3′
AATGGTTGACAAGCGTGCC






flanking region







primer 2






SO
CNAG_06454
ACCCCTTACTGGCGAAAAC






diagnostic screening







primer, pairing with







B79






PO
CNAG_06454
GGCAAAACTTACACCTCGC






Southern blot probe







primer






STM
NAT#232 STM
CTTTAAAGGTGGTTTGTG






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





160
CNAG_06489

L1
CNAG_06489 5′
TTCTGGAGACCCATCGTCAG






flanking region







primer 1






L2
CNAG_06489 5′
TCACTGGCCGTCGTTTTACCAA






flanking region
CGCCCTGTTATTTCTTC






primer 2






R1
CNAG_06489 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
TGGTCAGATGTGTGTCGG






primer 1






R2
CNAG_06489 3′
CTACTTTGCCGAGTCTCAAG






flanking region







primer 2






SO
CNAG_06489
CAGGACTTGCGTAGCCTATC






diagnostic screening







primer, pairing with







B79






PO
CNAG_06489
TGGGTGATGACGATGAGAC






Southern blot probe







primer






STM
NAT#125 STM
CGCTACAGCCAGCGCGCGCAA






primer
GCG





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





161
CNAG_06490

L1
CNAG_06490 5′
GGAGGGTGTTTTTGAGGTC






flanking region







primer 1






L2
CNAG_06490 5′
TCACTGGCCGTCGTTTTACGGG






flanking region
GACTTTTTTGATGGC






primer 2






R1
CNAG_06490 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
AAGAGGAAGAGGAAGATGAA






primer 1
G





R2
CNAG_06490 3′
TCGTTCTGGTTGTCTGCTC






flanking region







primer 2






SO
CNAG_06490
GGTGAGAAAGTAGCCTTCG






diagnostic screening







primer, pairing with







B79






PO
CNAG_06490
CAGGACTTGCGTAGCCTATC






Southern blot probe







primer






STM
NAT#231 STM
GAGAGATCCCAACATCACGC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





162
CNAG_06500

L1
CNAG_06500 5′
GATACAGCGGGCAAAAAG






flanking region







primer 1






L2
CNAG_06500 5′
TCACTGGCCGTCGTTTTACAGA






flanking region
ATGGGATGTGGTCGTC






primer 2






R1
CNAG_06500 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
GAACGGGGTTGTGTTTG






primer 1






R2
CNAG_06500 3′
ATACAGACACTCCGATGCG






flanking region







primer 2






SO
CNAG_06500
ATAAAGAGGGTTTGGGGC






diagnostic screening







primer, pairing with







B79






PO
CNAG_06500
ATCGCATTTCAAGGGTGG






Southern blot probe







primer






STM
NAT#225 STM
CCATAGAACTAGCTAAAGCA






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





163
CNAG_06552
SNF1
L1
CNAG_06552 5′

CCATCATCCTTCGGTTTTTC







flanking region







primer 1






L2
CNAG_06552 5′

TCACTGGCCGTCGTTTTACAGTT







flanking region

GTTATTGCCAGCGG







primer 2






R1
CNAG_06552 3′

CATGGTCATAGCTGTTTCCTGCT







flanking region

TTTTGGAGATGGCTTGC







primer 1






R2
CNAG_06552 3′

ATACCACGGAAAGGCGTTC







flanking region







primer 2






SO
CNAG_06552

GGATTGTGGTGTTGAAGTCG







diagnostic screening







primer, pairing with







B79






PO
CNAG_06552

ATGCTTGCCTTTCTGGAC







Southern blot probe







primer






STM
NAT#204 STM

GATCTCTCGCGCTTGGGGGA







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






164
CNAG_06553
GAL83
L1
CNAG_06553 5′

TGAGCACTTTGAGGTATTGG







flanking region







primer 1






L2
CNAG_06553 5′

TCACTGGCCGTCGTTTTACGTGT







flanking region

GATGTATGGGTGTGTG







primer 2






R1
CNAG_06553 3′

CATGGTCATAGCTGTTTCCTGCA







flanking region

TCTGCTGTGAAACATTGG







primer 1






R2
CNAG_06553 3′

GGAAAGGGGTGAAAATGG







flanking region







primer 2






SO
CNAG_06553

ATGCTTGCCTTTCTGGAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_06553

TATTGACCAGGAGGAAGGC







Southern blot probe







primer






STM
NAT#288 STM

CTATCCAACTAGACCTCTAGCTA







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






165
CNAG_06568
SKS1
L1
CNAG_06568 5′

AATAAGGTCTCCAGCCTCG







flanking region







primer 1






L2
CNAG_06568 5′

TCACTGGCCGTCGTTTTACCCAC







flanking region

CATCAATGAACTGC







primer 2






R1
CNAG_06568 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

CGACCTGTTGATGACG







primer 1






R2
CNAG_06568 3′

CAAGTTGAATGCTGGGAG







flanking region







primer 2






SO
CNAG_06568

AGCAAGTGGGCAAAGAAGC







diagnostic screening







primer, pairing with







B79






PO
CNAG_06568

AACCGAAGTCACAGATGCG







Southern blot probe







primer






STM
NAT#211 STM

GCGGTCGCTTTATAGCGATT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






166
CNAG_06632
ABC1
L1
CNAG_06632 5′

ACGACCTGGTAAAGAGTGTG







flanking region







primer 1






L2
CNAG_06632 5′

TCACTGGCCGTCGTTTTACAGAT







flanking region

GGGCGAAATGTCTC







primer 2






R1
CNAG_06632 3′

CATGGTCATAGCTGTTTCCTGCA







flanking region

CCTCTTATCACCTCAATGAC







primer 1






R2
CNAG_06632 3′

ACCTTCACGACCAAGTGTC







flanking region







primer 2






SO
CNAG_06632

CTATCGCAGAAGAGGATGAG







diagnostic screening







primer, pairing with







B79






PO
CNAG_06632

AATACCCCTACAACCTCGTC







Southern blot probe







primer






STM
NAT#119 STM

CTCCCCACATAAAGAGAGCTAAA







primer

C






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






167
CNAG_06642

L1
CNAG_06642 5′
CCTTTTCCTTTTACCTGGC






flanking region







primer 1






L2
CNAG_06642 5′
TCACTGGCCGTCGTTTTACCGC






flanking region
TGAAAGATGTTGTCG






primer 2






R1
CNAG_06642 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
GGATTGACTGGACGAAAC






primer 1






R2
CNAG_06642 3′
CTGGTATGCGTAAAGACTTGA






flanking region
C






primer 2






SO
CNAG_06642
CCTGCTGAACGGATGATAG






diagnostic screening







primer, pairing with







B79






PO
CNAG_06642
GAAGGTTAGTTCGCAAATGG






Southern blot probe







primer






STM
NAT#43 STM
CCAGCTACCAATCACGCTAC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





168
CNAG_06671
YKL1
L1
CNAG_06671 5′

CCGACCTACTGATTCGTCTAC







flanking region







primer 1






L2
CNAG_06671 5′

TCACTGGCCGTCGTTTTACCTCG







flanking region

CCCCTTTTCATAATG







primer 2






R1
CNAG_06671 3′

CATGGTCATAGCTGTTTCCTGGT







flanking region

CCAATCAACAACAGCG







primer 1






R2
CNAG_06671 3′

TGCGGAGGAGATTACCATAC







flanking region







primer 2






SO
CNAG_06671

TTCGCCTTTGAAGTTCCC







diagnostic screening







primer, pairing with







B79






PO
CNAG_06671

GGAAAGTGTAGATTGTCGGC







Southern blot probe







primer






STM
NAT#123 STM

CTATCGACCAACCAACACAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






169
CNAG_06697
MPS1
L1
CNAG_06697 5′

GCGATAACTTTTCATCCCC







flanking region







primer 1






L2
CNAG_06697 5′

TCACGGCCGTCGTTTTACGGTT







flanking region

TTTCCTTTCTCCAGTC







primer 2






R1
CNAG_06697 3′

CATGGTCATAGCTGTTTCCTGCG







flanking region

GAACTGTCAGATGGTAATC







primer 1






R2
CNAG_06697 3′

CCTTCTTCACCCTACTCTGG







flanking region







primer 2






SO
CNAG_06697

CCAATCTCGCATTTACACC







diagnostic screening







primer, pairing with







B79






PO
CNAG_06697

TCCTTAGTTATCCTATCCCAGC







Southern blot probe







primer






STM
NAT#116 STM

GCACCCAAGAGCTCCATCTC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






170
CNAG_6730
GSK3
L1
CNAG_06730 5′

GTGAGTCTATCCTTCGTTTCTGT







flanking region

C







primer 1






L2
CNAG_06730 5′

TCACTGGCCGTCGTTTTACCGGC







flanking region

TTCCAAAAAAGTCAG







primer 2






R1
CNAG_06730 3′

CATGGTCATAGCTGTTTCCTGCT







flanking region

GAACAACTGCGTGTCAC







primer 1






R2
CNAG_06730 3′

CTTGAAAGATGACGCTCG







flanking region







primer 2






SO
CNAG_06730

ACATCCTTTGTCTCCCCCAC







diagnostic screening







primer, pairing with







B79






PO1
CNAG_06730

CGGAAGACTTTGGTGAAGG







Southern blot probe







primer 1






STM
NAT#123 STM

CTATCGACCAACCAACACAG







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






171
CNAG_06809
IKS1
L1
CNAG_06809 5′

TGGAAGAGGATGAAAGACC







flanking region







primer 1






L2
CNAG_06809 5′

TCACTGGCCGTCGTTTTACACAA







flanking region

CTAAAGGCACAAGGG







primer 2






R1
CNAG_06809 3′

CATGGTCATAGCTGTTTCCTGAT







flanking region

GAGCGAGCAATGACCTGC







primer 1






R2
CNAG_06809 3′

CAGAACGGTCTTTTGCTTC







flanking region







primer 2






SO
CNAG_06809

TACAGTATCGCTGGTTGCC







diagnostic screening







primer, pairing with







B79






PO
CNAG_06809

AGCGAGACTGGAATGTGGAG







Southern blot probe







primer






STM
NAT#116 STM

GCACCCAAGAGCTCCATCTC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






172
CNAG_06845

L1
CNAG_06845 5′
GTTATTTGGATGCCAGAGC






flanking region







primer 1






L2
CNAG_06845 5′
TCACTGGCCGTCGTTTTACATG






flanking region
CGGTTACCTCATTCG






primer 2






R1
CNAG_06845 3′
CATGGTCATAGCTGTTTCCTGA






flanking region
GGGAGAAGTAGTTTCGGG






primer 1






R2
CNAG_06845 3′
TGGAGGTTTCGGGTATCAC






flanking region







primer 2






SO
CNAG_06845
GCAAAAACCGAGACTGTG






diagnostic screening







primer, pairing with







B79






PO
CNAG_06845
TTGAGGGGTTATGCCTTC






Southern blot probe







primer






STM
NAT#201 STM
CACCCTCTATCTCGAGAAAGC






primer
TCC





STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





173
CNAG_06980
STE11
L1
CNAG_06980 5′

TCTCAGCCACATCAGTTAGC







flanking region







primer 1






L2
CNAG_06980 5′

CTGGCCGTCGTTTTACGGGTGC







flanking region

TCTAAATCTCCTTG







primer 2






R1
CNAG_06980 3′

GTCATAGCTGTTTCCTGCCATTT







flanking region

TCCGAGTCAGTAGG







primer 1






R2
CNAG_06980 3′

ATCCTGATGCCAGATTCG







flanking region







primer 2






SO
CNAG_06980

TCATCTGTCTCACCAACTGC







diagnostic screening







primer, pairing with







B79






PO1
CNAG_06980

GGACGCACAGTCTGGTTTAC







Southern blot probe







primer 1






PO2
CNAG_06980

TGGGTCAAGTTTAGGGATG







Southern blot probe







primer 2






STM
NAT#242 STM

GTAGCGATAGGGGTGTCGCTTT







primer

AG






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






174
CNAG_07359
IRK1
L1
CNAG_07359 5′

CGCATTTGGTGTATGATGAC







flanking region







primer 1






L2
CNAG_ 0359 5′

TCACTGGCCGTCGTTTTACGGAG







flanking region

GAAGAAGGAGATGAAG







primer 2






R1
CNAG_07359 3′

CATGGTCATAGCTGTTTCCTGTG







flanking region

CTTCGCCTTGATTGTC







primer 1






R2
CNAG_07359 3′

TGCTGAAGATTTCGGAGG







flanking region







primer 2






SO
CNAG_07359

TGATGGTAGAAATGGCGG







diagnostic screening







primer, pairing with







B79






PO1
CNAG_07359

GCATTCGGAGGTAGTTGAAG







Southern blot probe







primer 1






STM
NAT#5 STM primer

TGCTAGAGGGCGGGAGAGTT






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






175
CNAG_07372

L1
CNAG_07372 5′
CCAAACGGTGTGAAAAGG






flanking region







primer 1






L2
CNAG_07372 5′
TCACTGGCCGTCGTTTTACTGT






flanking region
AGTCGCCGATGGAGTAG






primer 2






R1
CNAG_07372 3′
CATGGTCATAGCTGTTTCCTGG






flanking region
GCAAGACGAGAAGTAGAGC






primer 1






R2
CNAG_07372 3′
GAACCTGAACCTGAACCAG






flanking region







primer 2






SO
CNAG_07372
TTTGTAGTTGGGTGTGGTG






diagnostic screening







primer, pairing with







B79






PO
CNAG_07372
CTTCGCCTTTTGCCTTTC






Southern blot probe







primer






STM
NAT#295 STM
ACACCTACATCAAACCCTCCC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





176
CNAG_07377

L1
CNAG_07377 5′
CGATAACGCAACTTACGG






flanking region







primer 1






L2
CNAG_07377 5′
TCACTGGCCGTCGTTTTACTTT






flanking region
GGCTTGATTCTCCGC






primer 2






R1
CNAG_07377 3′
CATGGTCATAGCTGTTTCCTGC






flanking region
TCTCAATCTCGCTCAAATG






primer 1






R2
CNAG_07377 3′
CTGAGCCGATAGAGTTCAAC






flanking region







primer 2






SO
CNAG_07377
ACCAACGCACATCTACCTC






diagnostic screening







primer, pairing with







B79






PO
CNAG_07377
TTATCTACCGAAGTTGGCTG






Southern blot probe







primer






STM
NAT#296 STM
CGCCCGCCCTCACTATCCAC






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





177
CNAG_07408

L1
CNAG_07408 5′
GCTGGCATAAAACCGTTC






flanking region







primer 1






L2
CNAG_07408 5′
TCACTGGCCGTCGTTTTACCTC






flanking region
TTACTCCACATAAATGCCC






primer 2






R1
CNAG_07408 3′
CATGGTCATAGCTGTTTCCTGT






flanking region
TGAAGTCACCCGAGAAAC






primer 1






R2
CNAG_07408 3′
ACACTGCGGATTACGAAGC






flanking region







primer 2






SO
CNAG_07408
TGTGGCTGAGATGAGGTAGG






diagnostic screening







primer, pairing with







B79






PO
CNAG_07408
TCTGGGCTGAAGTCTACTAAA






Southern blot probe
C






primer






STM
NAT#6 STM
ATAGCTACCACACGATAGCT






primer






STM
STM common
GCATGCCCTGCCCCTAAGAAT





common
primer
TCG





178
CNAG_07427
CCK2
L1
CNAG_07427 5′

AGATTCACTCGTCATCGCC







flanking region







primer 1






L2
CNAG_07427 5′

TCACTGGCCGTCGTTTTACTAAG







flanking region

ATGCGATAGGTGGGCG







primer 2






R1
CNAG_07427 3′

CATGGTCATAGCTGTTTCCTGCA







flanking region

GACTAAAGCCAGGGACAC







primer 1






R2
CNAG_07427 3′

GGAAGGTCAAGCCATTAGC







flanking region







primer 2






SO
CNAG_07427

TCAAGGCTTTCATCCCGAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_07427

CGAGACCAGTTATGTTTGAGAG







Southern blot probe







primer






STM
NAT#230 STM

ATGTAGGTAGGGTGATAGGT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






179
CNAG_07580
TRM7
L1
CNAG_07580 5′

GGTGGAGAGATGTTATGGC







flanking region







primer 1






L2
CNAG_07580 5′

TCACTGGCCGTCGTTTTACATAG







flanking region

AGGACTTGGAGGTGGG







primer 2






R1
CNAG_07580 3′

CATGGTCATAGCTGTTTCCTGGC







flanking region

AATGCTGTGAATCTTGTG







primer 1






R2
CNAG_07580 3′

AGAGTAGGGCTGAGCAAGAC







flanking region







primer 2






SO
CNAG_07580

TGGAAAGACCTGTTGCGAC







diagnostic screening







primer, pairing with







B79






PO
CNAG_07580

TCTTCGGGAAATGGACTG







Southern blot probe







primer






STM
NAT#102 STM

CCATAGCGATATCTACCCCAATC







primer

T






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






180
CNAG_07667
SAT4
L1
CNAG_07667 5′

GATTTTGTGGCTGTTGTGC







flanking region







primer 1






L2
CNAG_07667 5′

TCACTGGCCGTCGTTTTACTGCT







flanking region

TCAAAACCTGGGCTCC







primer 2






R1
CNAG_07667 3′

CATGGTCATAGCTGTTTCCTGGT







flanking region

GTAGATTGTTCAGGATGACG







primer 1






R2
CNAG_07667 3′

AGATAGGCGTGCTACCGATG







flanking region







primer 2






SO
CNAG_07667

ATCGGCTTACCATTCTGG







diagnostic screening







primer, pairing with






PO
CNAG_07667

TCGGTCCCATAATAGACGG







Southern blot probe







primer






STM
NAT#212 STM

AGAGCGATCGCGTTATAGAT







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






181
CNAG_07744
PIK1
L1
CNAG_07744 5′

TGGTAGTATGCCAAGAGGTG







flanking region







primer 1






L2
CNAG_07744 5′

TCACTGGCCGTCGTTTTACTGGG







flanking region

ATACTCTCTCTCTCTGAG







primer 2






R1
CNAG_07744 3′

CATGGTCATAGCTGTTTCCTGAA







flanking region

AGGGCAAAGGCAGAAG







primer 1






R2
CNAG_07744 3′

GGAGATGAAGTCAAGATGCG







flanking region







primer 2






SO
CNAG_07744

TCATCTTCATTGTCCTCCC







diagnostic screening







primer, pairing with







B79






PO
CNAG_07744

TAAAGAGCGGTAAGGCGAG







Southern blot probe







primer






STM
NAT#227 STM

TCGTGGTTTAGAGGGAGCGC







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






182
CNAG_07779
TDA10
L1
CNAG_07779 5′

TGGGAAGCGTTACTTATGC







flanking region







primer 1






L2
CNAG_07779 5′

TCACTGGCCGTCGTTTTACCTGT







flanking region

AGCAGTCATAATGGCTTG







primer 2






R1
CNAG_07779 3′

CATGGTCATAGCTGTTTCCTGTG







flanking region

AGCAGGTCCGACATTTC







primer 1






R2
CNAG_07779 3′

CATCGCTCTTTCCTACTCG







flanking region







primer 2






SO
CNAG_07779

TTTGGAGCCAGTTTAGGG







diagnostic screening







primer, pairing with







B79






PO
CNAG_07779

AAAACGAAGCCCTTTGCCCC







Southern blot probe







primer






STM
NAT#102 STM

CCATAGCGATATCTACCCCAATC







primer

T






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G






183
CNAG_08022
PHO85
L1
CNAG_08022 5′

CCTTGCTTTTGAGCGAG







flanking region







primer 1






L2
CNAG_08022 5′

CTGGCCGTCGTTTTACCCTTCAC







flanking region

CAAGTTTCTCAAG







primer 2






R1
CNAG_08022 3′

GTCATAGCTGTTTCCTGCAAATG







flanking region

GCTCAACAAGGG







primer 1






R2
CNAG_08022 3′

CCACAGTGCGTCTTTTTATC







flanking region







primer 2






SO
CNAG_08022

ATAGGGGTGATTATCGGGC







diagnostic screening







primer, pairing with







B79






PO
CMG_08022

TCGGCATTATCTCTTCCTC







Southern blot probe







primer






STM
NAT#218 STM

CTCCACATCCATCGCTCCAA







primer






STM
STM common

GCATGCCCTGCCCCTAAGAATTC






common
primer

G

















TABLE 3







Primers used in the construction and functional


characterization of kinase mutant library









Primer

Primer sequence


name
Primer description
(5′-3′)





B1026
M13 Forward
GTAAAACGACGGCCAGTGAGC



extended






B1027
M13 Reverse
CAGGAAACAGCTATGACCATG



extended






B1454
NAT split marker
AAGGTGTTCCCCGACGACGAA



primer (NSR)
TCG





B1455
NAT split marker
AACTCCGTCGCGAGCCCCATC



primer (NSL)
AAC





B1886
NEO split marker
TGGAAGAGATGGATGTGC



primer (GSR)






B1887
NEO split marker
ATTGTCTGTTGTGCCCAG



primer (GSL)






B4017
Primer 1 for
GCATGCAGGATTCGAGTG



overexpression




promoter with NEO




marker






B4018
Primer 2 for
GTGATAGATGTGTTGTGGTG



overexpression




promoter with NEO




marker






B678
Northern probe
TTCAGGGAACTTGGGAACAGC



primer1 for ERG11






B1598
Northern probe
CAGGAGCAGAAACAAAGC



primer2 for ERG11






B3294
Northern probe
GCACCATACCTTCTACAATGA



primer1 for ACT1
G





B3295
Northern probe
ACTTTCGGTGGACGATTG



primer2 for ACT1






B5251
RT-PCR primer for
CACTCCATTCCTTTCTGC



HXL1 of H99






B5252
RT-PCR primer for
CGTAACTCCACTGTGTCC



HXL1 of H99






B7030
qRT-PCR primer for
AGACTGTTTACAATGCCTGC



CNA1 of H99






B7031
qRT-PCR primer for
TCTGGCGACAAGCCACCATG



CNA1 of H99






B7032
qRT-PCR primer for
AAGATGGAAGTGGAACGG



CNB1 of H99






B7033
qRT-PCR primer for
TTGAAAGCGAATCTCAGCTT



CNB1 of H99






B7034
qRT-PCR primer for
ACCACGGACATTATCTTCAG



CRZ1 of H99






B7035
qRT-PCR primer for
AGCCCAGCCTTGCTGTTCGT



CRZ1 of H99






B7036
qRT-PCR primer for
TTTCTATGCCCATCTACAGC



UTR2 of H99






B7037
qRT-PCR primer for
CTTCGTGGGAGTACAGTGGC



UTR2 of H99






B679
qRT-PCR primer for
CGCCCTTGCTCCTTCTTCTAT



ACT1 of H99
G





B680
qRT-PCR primer for
GACTCGTCGTATTCGCTCTTC



ACT1 of H99
G









Example 3
Systematic Phenotypic Profiling and Clustering of Cryptococcus neoformans Kinom Network

With the kinase mutant library constructed in the above Example, the present inventors performed a series of in vitro phenotypic analyses (a total of 30 phenotypic traits) under distinct growth conditions covering six major phenotypic classes (growth, differentiation, stress responses and adaptations, antifungal drug resistance and production of virulence factors), thereby making more than 6,600 phenotype data. Such comprehensive kinase phenome data are freely accessible to the public through the Cryptococcus neoformans kinome database (http://kinase.cryptococcus.org). To gain insights into the functional and regulatory connectivity among kinases, the present inventors attempted to group kinases by phenotypic clustering through Pearson correlation analysis (see FIG. 3). The rationale behind this analysis was that a group of kinases in a given signaling pathway tended to cluster together in teams of shared phenotypic traits. For example, mutants in three-tier mitogen-activated protein kinase (MAPK) cascades should cluster together because they exhibit almost identical phenotypic traits. In fact, the present inventors found that the three-tier kinase mutants in the cell wall integrity MAPK (bck1Δ, mkk1Δ, mpk1Δ), the high osmolarity glycerol response (HOG) MAPK (ssk2Δ, pbs2Δ, hog1Δ), and the pheromone-responsive MAPK (ste11Δ, ste7Δ, cpk1Δ) pathways were clustered together based on their shared functions (FIG. 4). Therefore, groups of kinases clustered together by this analysis are highly likely to function in the same or related signaling cascades. The present inventors identified several hitherto uncharacterized kinases that are functionally correlated with these known signaling pathways. First, the present inventors identified CNAG_06553, encoding a protein orthologous to yeast Ga183 that is one of three possible β-subunits of the Snf1 kinase complex in S. cerevisiae. The yeast Snf1 kinase complex consists of Snf1, catalytic α-subunit, Snf4, regulatory γ subunit, and one of three possible β-subunits (Ga183, Sip1 and Sip2), and controls the transcriptional changes under glucose derepression (Jiang, R. & Carlson, M. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Ga183 component in the kinase complex. Mol Cell Biol 17, 2099-2106, 1997; Schuller, H. J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43, 139-160, doi:10.1007/s00294-003-0381-8, 2003). In C. neoformans, Snf1 functions have been previously characterized (Hu, G., Cheng, P. Y., Sham, A., Perfect, J. R. & Kronstad, J. W. Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Molecular microbiology 69, 1456-1475, doi:10.1111/j.1365-2958.2008.06374.x, 2008). Several lines of experimental evidence showed that Ga183 is likely to function in association with Snf1 in C. neoformans. First, the in vitro phenotypic traits of the ga183Δ mutant were almost equivalent to those of the snf1Δ mutant (FIG. 3). Both snf1Δ and ga183Δ mutants exhibited increased susceptibility to fludioxonil and increased resistance to organic peroxide (tert-butyl hydroperoxide). Second, growth defects in the snf1Δ mutant in alternative carbon sources (for example, potassium acetate, sodium acetate and ethanol) were also observed in ga183Δ mutants (FIG. 4). Therefore, Ga183 is likely to be one of the possible β-subunits of the Snf1 kinase complex in C. neoformans.


The present inventors also identified several kinases that potentially work upstream or downstream of the TOR kinase complex. Although the present inventors were not able to disrupt Tor1 kinase, which has been suggested to be essential in C. neoformans, the present inventors found three kinases (Ipk1, Ypk1 and Gsk3 found to be clustered in most eukaryotes) that are potentially related to Tor1-dependent signaling cascades clustered in C. neoformans. Recently, Lev et al. proposed that Ipk1 could be involved in the production of inositol hexaphosphate (IP6) based on its limited sequence homology to S. cerevisiae Ipk1 (Lev, S. et al. Fungal Inositol Pyrophosphate IP7 Is Crucial for Metabolic Adaptation to the Host Environment and Pathogenicity. MBio 6, e00531-00515, doi:10.1128/mBio.00531-15 (2015)). In mammals, inositol polyphosphate multikinase (IPMK), identified as Arg82 in yeast, produces IP6, a precursor of 5-IP7 that inhibits Akt activity and thereby decreases mTORC1-mediated protein translation and increases GSK3-mediated glucose homeostasis, adipogenesis, and activity (Chakraborty, A., Kim, S. & Snyder, S. H. Inositol pyrophosphates as mammalian cell signals. Sci Signal 4, rel, doi:10.1126/scisignal.2001958 (2011)). It was reported that in S. cerevisiae, Ypk1 is the direct target of TORC2 by promoting autophagy during amino acid starvation (Vlahakis, A. & Powers, T. A role for TOR complex 2 signaling in promoting autophagy. Autophagy 10, 2085-2086, doi:10.4161/auto.36262 (2014)). In C. neoformans, Ypk1, which is a potential downstream target of Tor1, is involved in sphingolipid synthesis and deletion of YPK1 resulted in a significant reduction in virulence (Lee, H., Khanal Lamichhane, A., Garraffo, H. M., Kwon-Chung, K. J. & Chang, Y. C. Involvement of PDK1, PKC and TOR signalling pathways in basal fluconazole tolerance in Cryptococcus neoformans. Mol. Microbiol. 84, 130-146, doi:10.1111/j.1365-2958.2012.08016.x (2012)). Reflecting the essential role of Tor1, all of the mutants (ipk1Δ, ypk1Δ, and gsk3Δ) exhibited growth defects, particularly at high temperature.


However, there are two major limitations in this phenotypic clustering analysis. First, kinases that are oppositely regulated in the same pathway cannot be clustered. Second, a kinase that regulates a subset of phenotypes governed by a signaling pathway may not be clustered with its upstream kinases; this is the case of the Hog1-regulated kinase 1 (CNAG_00130; Hrk1). Although the present inventors previously demonstrated that Hrk1 is regulated by Hog1, Hrk1 and Hog1 are not clustered together as Hrk1 regulates only subsets of Hog1-dependent phenotypes. Phospholipid flippase kinase 1 (Fpk1) is another example. In S. cerevisiae, the activity of Fpk1 is inhibited by direct phosphorylation by Ypk1. As expected, Fpk1 and Ypk1 were clustered together. To examine whether Fpk1 regulates Ypk1-dependent phenotypic traits in C. neoformans, the present inventors performed epistatic analyses by constructing and analyzing FPK1 overexpression strains constructed in the ypk1Δ and wild-type strain backgrounds. As expected, overexpression of FPK1 partly restored normal growth, resistance to some stresses (osmotic, oxidative, genotoxic, and cell wall/membrane stresses) and antifungal drug (amphotericin B) in ypk1Δ mutants (FIG. 5). However, azole susceptibility of ypk1Δ mutants could not be restored by FPK1 overexpression (see FIG. 5). These results suggest that Fpk1 could be one of the downstream targets of Ypk1 and may be positively regulated by Ypk1.


Example 4
Pathogenic Kinome Networks in C. neoformans

To identify pathogenicity-regulating kinases which are controlled by both infectivity and virulence, the present inventors two large-scale in vivo animal studies: a wax moth-killing virulence assay and a signature-tagged mutagenesis (STM)-based murine infectivity assay. In the two assays, two independent mutants for each of kinases, excluding kinases with single mutants, were monitored. As a result, 31 virulence-regulating kinases in the insect killing assay (FIGS. 6 and 7) and 54 infectivity-regulating kinases in the STM-based murine infectivity assay were found (FIGS. 9 and 10). Among these kinases, 25 kinases were co-identified by both assays (FIG. 11a), indicating that virulence in the insect host and infectivity in the murine host are closely related to each other as reported previously (Jung, K. W. et al. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat Comms 6, 6757, doi:10.1038/ncomms7757, 2015). Only 6 kinase mutants were identified by the insect killing assay (FIG. 11b). The present inventors discovered a total of 60 kinase mutants involved in the pathogenicity of C. neoformans.


Additionally, a large number of known virulence-regulating kinases (a total of 15 kinases) were rediscovered in the present invention (kinases indicated in black in FIG. 11a). These kinases include Mpk1 MAPK (Gerik, K. J., Bhimireddy, S. R., Ryerse, J. S., Specht, C. A. & Lodge, J. K. PKC1 is essential for protection against both oxidative and nitrosative stresses, cell integrity, and normal manifestation of virulence factors in the pathogenic fungus Cryptococcus neoformans. Eukaryot. Cell 7, 1685-1698, 2008; Kraus, P. R., Fox, D. S., Cox, G. M. & Heitman, J. The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol. Microbiol. 48, 1377-1387, 2003); Ssk2 in the high osmolarity glycerol response (HOG) pathway (Bahn, Y. S., Geunes-Boyer, S. & Heitman, J. Ssk2 mitogen-activated protein kinase governs divergent patterns of the stress-activated Hog1 signaling pathway in Cryptococcus neoformans. Eukaryot. Cell 6, 2278-2289, 2007), an essential catalytic subunit (Pka1) of protein kinase A in the cAMP pathway (D'Souza, C. A. et al. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol. Cell. Biol. 21, 3179-3191, 2001); Ire1 kinase/endoribonuclease in the unfolded protein response (UPR) pathway (Cheon, S. A. et al. Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hx11, for controlling pathogenicity of Cryptococcus neoformans. PLoS Pathog. 7, e1002177, doi:10.1371/journal.ppat.1002177, 2011); Ypk1 (Kim, H. et al. Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans. Scientific reports 5, 8767, doi:10.1038/srep08767, 2015; Lee, H., Khanal Lamichhane, A., Garraffo, H. M., Kwon-Chung, K. J. & Chang, Y. C. Involvement of PDK1, PKC and TOR signalling pathways in basal fluconazole tolerance in Cryptococcus neoformans. Mol. Microbiol. 84, 130-146, doi:10.1111/j.1365-2958.2012.08016.x, 2012); and Snf1 (Hu, G., Cheng, P. Y., Sham, A., Perfect, J. R. & Kronstad, J. W. Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Molecular microbiology 69, 1456-1475, doi:10.1111/j.1365-2958.2008.06374.x, 2008. The function of (B3501A) Gsk3 in serotype D was examined, and it was demonstrated that Gsk3 survives at low oxygen partial pressure (1%) in C. neoformans and is required for the virulence of serotype D in a murine model system (Chang, Y. C., Ingavale, S. S., Bien, C., Espenshade, P. & Kwon-Chung, K. J. Conservation of the sterol regulatory element-binding protein pathway and its pathobiological importance in Cryptococcus neoformans. Eukaryot Cell 8, 1770-1779, doi:10.1128/EC.00207-09, 2009). The present inventors found that Gsk3 is also required for the virulence of serotype A C. neoformans (H99S). Although not previously reported, deletion mutants of kinases functionally connected to these known virulence-regulating kinases were also found to be attenuated in virulence or infectivity. These include bck1Δ and mkk1/2Δ mutants (related to Mpk1) and the ga183Δ mutant (related to Snf1). Notably, among them, 44 kinases have been for the first time identified to be involved in the fungal pathogenicity of C. neoformans.


For the 60 pathogenicity-related kinases in C. neoformans, the present inventors analyzed phylogenetic relationships among orthologs, if any, in fungal species and other eukaryotic kingdoms. To inhibit a broad spectrum of fungal pathogens, it is ideal to target kinases which are not present in humans and are required in a number of fungal pathogens (broad-spectrum antifungal targets). The present inventors compared these large-scale virulence data of C. neoformans with those of other fungal pathogens. A large-scale kinome analysis was performed for the pathogenic fungus Fusarium graminearum, which causes scab in wheat plants, and 42 virulence-related protein kinases were identified (Wang, C. et al. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog 7, e1002460, doi:10.1371/journal.ppat.1002460, 2011). Among them, a total of 21 were involved in the pathogenicity of both types of fungi, and thus were regarded as broad-spectrum antifungal targets: BUD32 (Fg10037), ATG1 (Fg05547), CDC28 (Fg08468), KIC1 (Fg05734), MEC1 (Fg13318), KIN4 (Fg11812), MKK1/2 (Fg07295), BCK1 (Fb06326), SNF1 (Fg09897), SSK2 (Fg00408), PKA1 (Fg07251), GSK3 (Fg07329), CBK1 (Fg01188), KIN1 (Fg09274), SCH9 (Fg00472), RIM15 (Fg01312), HOG1 (Fg09612), and YAK1 (Fg05418). In another human fungal pathogen C. albicans, genome-wide pathogenic kinome analysis has not been performed. Based on information from the Candida genome database (http://www.candidagenome.org/), 33 kinases are known to be involved in the pathogenicity of C. albicans. Among them, 13 were involved in the pathogenicity of both C. neoformans and C. albicans. Notably, five kinases (Sch9, Snf1, Pka1, Hog1, and Swe1) appear to be core-pathogenicity kinases as they are involved in the pathogenicity of all three fungal pathogens.


On the contrary, to selectively inhibit C. neoformans, it is ideal to target pathogenicity-related kinases which are present in C. neoformans but are not present in other fungi or humans (narrow-spectrum anti-cryptococcosis targets). Among them, CNAG_01294 (named IPK1), encoding a protein similar to inositol 1,3,4,5,6-pentakisphosphate 2-kinase from plants, is either not present or distantly related to those in ascomycete fungi and humans, and is considered a potential anti-cryptococcal target. In addition to lacking virulence, the ipk1Δ mutants exhibited pleiotropic phenotypes (FIG. 12). Deletion of IPK1 increased slightly capsule production, but inhibited melanin and urease production. Its deletion also rendered cells to be defective in sexual differentiation and hypersensitive to high temperature and multiple stresses, and enhances susceptibility to multiple antifungal drugs. In particular, Ipk1 can be an useful target in combination therapy, because its deletion significantly increases susceptibility to various kinds of antifungal drugs. Therefore, the present inventors revealed narrow- and broad-spectrum anticryptococcal and antifungal drug targets by kinome analysis of C. neoformans pathogenicity.


Example 5
Biological Functions of Kinases Regulating Pathogenicity of C. neoformans

To further clarify a functional network of pathogenicity-related kinases, the present inventors employed a genome-scale co-functional network CryptoNet (www.inetbio.org/cryptonet) for C. neoformans, recently constructed by the present inventors (Kim, H. et al. Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans. Scientific reports 5, 8767, doi:10.1038/srep08767 (2015)). To search for any proteins functionally linked to the pathogenicity-related kinases, previously reported information on C. neoformans and the Gene Ontology (GO) teams of corresponding kinase orthologs and its interacting proteins in S. cerevisiae and other fungi were used. This analysis revealed that the biological functions of pathogenicity-related kinases include cell cycle regulation, metabolic process, cell wall biogenesis and organization, DNA damage repair, histone modification, transmembrane transport and vacuole trafficking, tRNA processing, cytoskeleton organization, stress response and signal transduction, protein folding, mRNA processing, and transcriptional regulation, suggesting that various biological and physiological functions affect virulence of C. neoformans. Among pathogenicity-related kinases, kinases involved in the cell cycle and growth control were identified most frequently. These include CDC7, SSN3, CKA1, and MEC1. In particular, Cdc7 is an essential catalytic subunit of the Dbf4-dependent protein kinase in S. cerevisiae, and Cdc7-Dbf4 is required for firing of the replication of origin throughout the S phase in S. cerevisiae (Diffley, J. F., Cocker, J. H., Dowell, S. J., Harwood, J. & Rowley, A. Stepwise assembly of initiation complexes at budding yeast replication origins during the cell cycle. J Cell Sci Suppl 19, 67-72, 1995). Although not essential at ambient temperature, cdc7Δ mutants exhibit serious growth effects at high temperature (FIG. 13a), indicating that they are likely to affect virulence of C. neoformans. The cdc7Δ mutants in C. neoformans are very susceptible to genotoxic agents such as methyl methanesulfonate (MMS) and hydroxyurea (HU), suggesting that Cdc7 can cause DNA replication and repair (FIG. 13a). Mec1 is required for cell cycle checkpoint, telomere maintenance and silencing and DNA damage repair in S. cerevisiae (Mills, K. D., Sinclair, D. A. & Guarente, L. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97, 609-620, 1999). Reflecting these roles, deletion of MEC1 increased cellular sensitivity to genotoxic agents in C. neoformans (FIG. 13b), indicating that the role of Mec1 in chromosome integrity can be retained. Deletion of MEC1 did not cause any lethality or growth defects in C. neoformans, as was the case in C. albicans (Legrand, M., Chan, C. L., Jauert, P. A. & Kirkpatrick, D. T. The contribution of the S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in Candida albicans. Fungal Genet Biol 48, 823-830, doi:10.1016/j.fgb.2011.04.005, 2011). Cka1 and Cka2 are catalytic α-subunits of protein kinase CK2, which have essential roles in growth and proliferation of S. cerevisiae; deletion of both kinases causes lethality (Padmanabha, R., Chen-Wu, J. L., Hanna, D. E. & Glover, C. V. Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 10, 4089-4099, 1990). Interestingly, C. neoformans appears to have a single protein (CKA1) that is orthologous to both Cka1 and Cka2. Although deletion of CKA1 is not essential, it severely affected the growth of C. neoformans (FIG. 13c). Notably, the cka1Δ mutant showed elongated, abnormal cell morphology (FIG. 13d), which is comparable to that of two kinase mutants in the RAM pathway (cbk1Δ and kic1Δ). Cbk1 and Kic1 are known to control the cellular polarity and morphology of C. neoforman, but their correlation with virulence is not yet known (Walton, F. J., Heitman, J. & Idnurm, A. Conserved Elements of the RAM Signaling Pathway Establish Cell Polarity in the Basidiomycete Cryptococcus neoformans in a Divergent Fashion from Other Fungi. Mol. Biol. Cell, 2006). The present inventors revealed that the cellular polarity and morphology of C. neoforman is related to virulence.


Bud32 is also required for growth, potentially through involvement of tRNA modification. Bud32 belongs to the piD261 family of atypical protein kinases, which are conversed in bacteria, Archaea and eukaryotes, and it recognizes acidic agents, unlike other eukaryotic protein kinases that recognize basic agents (Stocchetto, S., Marin, O., Carignani, G. & Pinna, L. A. Biochemical evidence that Saccharomyces cerevisiae YGR262c gene, required for normal growth, encodes a novel Ser/Thr-specific protein kinase. FEBS Lett 414, 171-175, 1997). In S. cerevisiae, Bud32 is a component of the highly conserved EKC (Endopetidase-like and Kinase-associated to transcribed Chromatin)/KEOPS (Kinase, putative endopetidase and other proteins of small size) complex. This complex is required for N6-threonylcarbamoyladenosine (t6A) tRNA modification, which is important in maintaining codon-anticodon interactions for all tRNAs. Therefore, damaged cells in the EKC/KEOPS complex are likely to have increased frameshift mutation rate and low growth rate (Srinivasan, M. et al. The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. EMBO J 30, 873-881, doi:10.1038/emboj.2010.343, 2011). As expected, these defects in tRNA modification had dramatic effects on various biological aspects of C. neoformans, and thus affected virulence. The bud32Δ mutants exhibited very defective growth under basal and most of the stress conditions (FIG. 12a), and also produced smaller amounts of capsule, melanin and urease (FIG. 12b). In addition, the bud32 mutant was significantly defective in mating (FIG. 14c). One exception was fluconazole resistance (FIG. 14a). Interestingly, the present inventors found that deletion of BUD32 abolished the induction of ERG11 upon sterol depletion by fluconazole treatment (FIG. 14d), suggesting a potential role of Bud32 in ergosterol gene expression and sterol biosynthesis in C. neoformans.


Kinases involved in nutrient metabolism are also involved in the pathogenicity of C. neoformans. In S. cerevisiae, Arg5, 6p is synthesized as a single protein and is subsequently processed into two separate enzymes (acetylglutamate kinase and N-acetyl-γ-glutamyl-phosphate reductase) (Boonchird, C., Messenguy, F. & Dubois, E. Determination of amino acid sequences involved in the processing of the ARG5/ARG6 precursor in Saccharomyces cerevisiae. Eur J Biochem 199, 325-335, 1991). These enzymes catalyze biosynthesis of ornithine, an arginine intermediate. Consistent with this, the present inventors found that the arg5, 6pΔ mutant was auxotrophic for arginine (FIG. 15a). In S. cerevisiae, MET3, encoding ATP sulfurylase, catalyzes the initial state of the sulfur assimilation pathway that produces hydrogen sulfide, a precursor for biosynthesis of homocysteine, cysteine and methionine (Cherest, H., Nguyen, N. T. & Surdin-Kerjan, Y. Transcriptional regulation of the MET3 gene of Saccharomyces cerevisiae. Gene 34, 269-281, 1985; Ullrich, T. C., Blaesse, M. & Huber, R. Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation. EMBO J 20, 316-329, doi:10.1093/emboj/20.3.316, 2001). In fact, the met3Δ mutant was found to be auxotrophic for both methionine and cysteine (FIG. 15b). Notably, both arg5, 6pΔ and met3Δ mutants did not exhibit growth defects in nutrient-rich media (YPD), but exhibited severe growth defects under various stress conditions (FIG. 15c), which may contribute to virulence defects observed in the arg5,6pΔ and met3Δ mutants.


Example 6
Retrograde Vacuole Trafficking Affecting Pathogenicity of C. neoformans

A notable biological function unknown as a cause of the pathogenicity of C. neoformans is retrograde vacuole trafficking. It was already reported that, in C. neoformans, the ESCRT complex-mediated vacuolar sorting process is involved in virulence, because some virulence factors such as capsule and melanin need to be secreted extracellularly (Godinho, R. M. et al. The vacuolar-sorting protein Snf7 is required for export of virulence determinants in members of the Cryptococcus neoformans complex. Scientific reports 4, 6198, doi:10.1038/srep06198, 2014; Hu, G. et al. Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. Infect Immun 81, 292-302, doi:10.1128/IAI.01037-12, 2013). However, the role of endosome-to-Golgi retrograde transport in the virulence of C. neoformans has not previously been characterized. Here the present inventors discovered that deletion of CNAG_02680, encoding a VPS15 orthologue involved in the vacuolar sorting process, significantly reduced virulence (FIG. 16a). This result is consistent with the finding that mutation of VPS15 also attenuates virulence of C. albicans (Liu, Y. et al. Role of retrograde trafficking in stress response, host cell interactions, and virulence of Candida albicans. Eukaryot Cell 13, 279-287, doi:10.1128/EC.00295-13, 2014), strongly suggesting that the role of Vps15 in fungal virulence is evolutionarily conserved. In S. cerevisiae, Vps15 constitutes the vacuolar protein sorting complex (Vps15/30/34/38) that mediates endosome-to-Golgi retrograde protein trafficking (Stack, J. H., Horazdovsky, B. & Emr, S. D. Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding proteins. Annu Rev Cell Dev Biol 11, 1-33, doi:10.1146/annurev.cb.11.110195.000245, 1995).


To examine the role of Vps15 in vacuolar sorting and retrograde protein trafficking, the vacuolar morphology of the vps15Δ mutant was examined comparatively with that of the wild-type strain. Similar to the vps15Δ null mutant in C. albicans, the C. neoformans vps15Δ mutant also exhibited highly enlarged vacuole morphology (FIG. 16b). It is known that defects in retrograde vacuole trafficking can cause extracellular secretion of an endoplasmic reticulum (ER)-resident chaperon protein, Kar2 (Liu, Y. et al. Role of retrograde trafficking in stress response, host cell interactions, and virulence of Candida albicans. Eukaryot Cell 13, 279-287, doi:10.1128/EC.00295-13 (2014)). Supporting this, the present inventors found that vps15Δ mutants were highly susceptible to ER stress agents, such as dithiothreitol (DTT) and tunicamycin (TM) (FIG. 16c). Growth defects at 37° C. strongly attenuated the virulence and infectivity of the vps15Δ mutant (FIG. 16d). This may result from increased cell wall and membrane instability by the vps15Δ mutant. In C. albicans, impaired retrograde trafficking in the vps15Δ mutant also causes cell wall stress, activating the calcineurin signaling pathway by transcriptionally up-regulating CRZ1, CHR1 and UTR2 (Liu, Y. et al. Role of retrograde trafficking in stress response, host cell interactions, and virulence of Candida albicans. Eukaryot Cell 13, 279-287, doi:10.1128/EC.00295-13, 2014). In C. neoformans, however, the present inventors did not observe such activation of signaling components in the calcineurin pathway of the vps15Δ mutant (FIG. 16e). Expression levels of CHR1, CRZ1 and UTR2 in the vps15Δ mutant were equivalent to those in the wild-type strain. In C. neoformans, cell wall integrity is also governed by the unfolded protein response (UPR) pathway (Cheon, S. A. et al. Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hx11, for controlling pathogenicity of Cryptococcus neoformans. PLoS Pathog. 7, e1002177, doi:10.1371/journal.ppat.1002177 (2011)). Previously, the present inventors demonstrated that activation of the UPR pathway through Ire1 kinase results in an unconventional splicing event in HXL1 mRNA, which subsequently controls an ER stress response (Cheon, S. A. et al. Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hx11, for controlling pathogenicity of Cryptococcus neoformans. PLoS Pathog. 7, e1002177 (2011)). Indeed, the present inventors found that cells with the VPS15 deletion were more enriched with spliced HXL1 mRNA (HXL1s) under basal conditions than the wild-type strain, indicating that the UPR pathway may be activated instead of the calcineurin pathway in C. neoformans when retrograde vacuole trafficking is perturbed.


Example 7
Novel Virulence- and Infectivity-Regulating Kinases in C. neoformans

Eight of the 60 pathogenicity-related kinases did not appear to have apparent orthologs in model yeasts, and thus were named virulence-regulating kinase (Vrk1) or infectivity-regulating kinase 1-7 (Irk1-7). Particularly, the present inventors paid attention to Vrk1 (CNAG_06161) (FIG. 17) because its deletion reduced the virulence of C. neoformans in the insect host model (FIGS. 6 to 8) and diminished infectivity in the murine host model (FIGS. 9 and 10). A yeast ortholog closest thereto is Fab1 (score: 140.9, e-value: 3.2E-34), but the closest Fab1 ortholog in C. neoformans is CNAG_01209 (score: 349.7, e-value: 0.0). Surprisingly, deletion of VRK1 increased cellular resistance to hydrogen peroxide and capsule production (FIGS. 17a and 17b). In addition, it increased cellular resistance to 5-flucytosine and increased fludioxonil susceptibility (FIG. 17a). Based on the kinase mutant phenome clustering data of the present inventors, Vrk1 was not clearly grouped with other kinases.


To gain further insight into the regulatory mechanism of Vrk1, the present inventors performed comparative phosphoproteomic analysis of the wild-type and vrk1A strains to identify Vrk1-specific phospho-target proteins. TiO2 enrichment-based phosphoproteomic analysis showed eight potential Vrk1 substrates: CNAG_04190 (TOP1, Topoisomerase I), CNAG_01744 (GPP2, a DL-glycerol-3-phosphate phosphatase), CNAG_05661 (POB3, heterodimeric FACT complex subunit), CNAG_01972, CNAG_07381, CNAG_00055, CNAG_02943 (SLRU, a phosphatidylinositol-4,5-bisphosphate binding protein), and CNAG_07878 (NOC2, a nucleolar complex associated protein). CNAG_01972, 07381 and 00055 did not have clear fungal orthologues. Although it is not clear whether candidate proteins are phosphorylated by Vrk1 directly or indirectly, it was found that five candidate proteins (TOP1, GPP2, POB3, CNAG_01972 and CNAG_07381) in the vrk1Δ mutant were damaged (FIG. 17c), suggesting that these proteins can be phosphorylated directly by Vrk1. To gain further insight into Vrk1-dependent functional networks, the present inventors used CryptoNet to search for any proteins that were functionally linked to the Vrk1-regulated target proteins and Vrk1 itself, and constructed the functional networks for those proteins. CNAG_01972 and 00055 did not have meaningful connections with any known proteins. Among a variety of potential biological functions connected to Vrk1 and its substrates, rRNA processing were mostly over-represented, suggesting that Vrk1 could be involved in the ribosome biosynthesis and trafficking, either directly or indirectly (FIG. 17d).


Example 8
Analysis of Antifungal Drug Resistance-Related Kinases in C. neoformans

Based on antifungal drug analysis using the kinas mutant library, 43, 38 and 42 kinases showed increased or reduced susceptibility to amphotericin B (a polyene), fluconazole (an azole) and flucytosine (a nucleotide analog), respectively, which are antifungal drugs used in clinical applications (Table 4). For kinases with deletions that increase susceptibility to these drugs, the present inventors discovered 39 kinases (to amphotericin B), 24 kinases (to fluconazole) and 28 kinases (to flucytosine), which can be developed as targets of drugs in combination therapy.









TABLE 4







Analysis of Antifungal Drug Resistance-Related Kinases in C. neoformans









Antifungal agents
Kinase mutant showingincreased resistance
Kinase mutants showingincreased susceptibility





Polyene(Amphotericin B)
HRK1/NPH1, SPS1,

YPK1, VPS15, CBK1, HOG1, SSK2, PBS2,





SWE102, TCO4


ARG5.6, GAL83, SNF1, MKK2, MPK1,






BUD32, CKA1, IPK1, IRE1,






CDC7, KIC1, PKA1, CRK1,






BCK1, TCO2, IRK5, IGI1,






GSK3, UTR1, MEC1, MET3, PAN3, MPS1,





PKH201, PIK1, HRK1, KIC102,




ALK1, TLK1, ARK1, IRK3, KIN1, POS5


Azole(Fluconazole)

GAL83, PAN3, ALK1, TCO1,


YPK1, VPS15, CBK1, MKK2, MPK1, IPK1, 




STE11, TCO2, SCH9, SSK2,

IRE1, BCK1, IGI1, GSK3, UTR1, PIK1,




PBS2, HOG1, BUD32, PKA1,
HRK1/NPH1, CDC7, HRK1, PSK201, MPK2,



CHK1, YAK1
RAD53, ARG5.6, KIC1, KIC102, SPS1,





IRK6, MAK322



5-flucyotosine

BCK1, PSK201, ARG5.6, GAL83,


YPK1, VPS15, GSK3, UTR1, HRK1/NPH1,




TCO2, SNF1, IRK5, PKH201,

SCH9, BUD32, CKA1, MEC1, FBP26, CBK1,





VRK1, CKI1, TCO5, STE7, IGI1,


HOG1, IPK1, IRE1, SSK2, PBS2,





URK1


MET3, CDC7, KIC1, PAN3, TCO1, PKA1,





CHK1, CRK1, MPS1, CDC2801, TCO6, BUB1





* Underlined kinases are those identified for the first time in the present invention.






Example 9
Growth and Chemical Susceptibility Test

To analyze the growth and chemical susceptibility of the kinase mutant library, C. neoformans cells grown overnight at 30° C. were serially diluted tenfold (1 to 104) and spotted on YPD media containing the indicated concentrations of chemical agents as follows: 2M sorbitol for osmotic stress and 1-1.5M NaCl and KCl for cation/salt stresses under either glucose-rich (YPD) or glucose-starved (YPD without dextrose; YP) conditions; hydrogen peroxide (H2O2), tert-butyl hydroperoxide (an organic peroxide), menadione (a superoxide anion generator), diamide (a thiol-specific oxidant) for oxidative stress; cadmium sulphate (CdSO4) for toxic heavy metal stress; methyl methanesulphonate and hydroxyurea for genotoxic stress; sodium dodecyl sulphate (SDS) for membrane destabilizing stress; calcofluor white and Congo red for cell wall destabilizing stress; tunicamycin (TM) and dithiothreitol (DTT) for ER stress and reducing stress; fludioxonil, fluconazole, amphotericin B, flucytosine for antifungal drug susceptibility. Cells were incubated at 30° C. and photographed post-treatment from day 2 to day 5. To test the growth rate of each mutant at distinct temperatures, YPD plates spotted with serially diluted cells were incubated at 25° C., 30° C., 37° C., and 39° C., and photographed after 2 to 4 days.


Example 10
Mating Assay

To examine the mating efficiency of each kinase mutant, the MATα kinase mutant in Table 1 above was co-cultured with serotype A MATα wild-type strain KN99a as a unilateral mating partner. Each kinase mutant MATα strain and MATα WT KN99a strain (obtained from the Joeseph Heitman Laboratory at Duke University in USA) was cultured in YPD medium at 30° C. for 16 hours, pelleted, washed and resuspended in distilled water. The resuspended a and a cells were mixed at equal concentrations (107 cells per ml) and 5 μl of the mixture was spotted on V8 mating media (pH 5). The mating plate was incubated at room temperature in the dark for 7 to 14 days and was observed weekly.


Example 11
In Vitro Virulence-Factor Production Assay

For virulence-factor production assay, capsule production, melanin production and urease production were examined for each kinase mutant. Capsule production was examined qualitatively by India ink staining (Bahn, Y. S., Hicks, J. K., Giles, S. S., Cox, G. M. & Heitman, J. Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot. Cell 3, 1476-1491 (2004). To measure the capsule production levels quantitatively by Cryptocrit, each kinase mutant was grown overnight in YPD medium at 30° C., spotted onto Dulbecco's Modified Eagle's (DME) solid medium, and then incubated at 37° C. for 2 days for capsule induction. The cells were scraped, washed with phosphate buffered saline (PBS), fixed with 10% of formalin solution, and washed again with PBS. The cell concentration was adjusted to 3×108 cells per ml for each mutant and 50 μl of the cell suspension was injected into microhaematocrit capillary tubes (Kimble Chase) in triplicates. All capillary tubes were placed in an upright vertical position for 3 days. The packed cell volume ratio was measured by calculating the ratio of the lengths of the packed cell phase to the total phase (cells plus liquid phases). The relative packed cell volume ratio was calculated by normalizing the packed cell volume ratio of each mutant with that of the wild-type strain. Statistical differences in relative packed cell volume ratios were determined by one-way analysis of variance tests employing the Bonferroni correction method by using the Prism 6 (GraphPad) software.


To examine melanin production, each kinase mutant was grown overnight in YPD medium at 30° C.; 5 μl of each culture was spotted on Niger seed media containing 0.1% or 0.2% glucose. The Niger seed plates were incubated at 37° C. and photographed after 3-4 days. For kinase mutants showing growth defects at 37° C., the melanin and capsule production were assessed at 30° C. To examine urease production, each kinase mutant was grown in YPD medium at 30° C. overnight, washed with distilled water, and then an equal number of cells (5×104) was spotted onto Christensen's agar media. The plates were incubated for 2-3 days at 30° C. and photographed.


Example 12
Insect-Based In Vivo Virulence Assay

For each tested C. neoformans strain, the present inventors randomly selected a group of 15 Galleria mellonella caterpillars in the final instar larval stage with a body weight of 200-300 mg, which arrived within 7 days from the day of shipment (Vanderhorst Inc. St Marys, Ohio, USA). Each C. neoformans strain was grown overnight at 30° C. in YPD liquid medium, washed three times with PBS, pelleted and resuspended in PBS at equal concentrations (106 cells per ml). A total of 4,000 C. neoformans cells in a 4-μl volume per larva was inoculated through the second to last prolegs by using a 100-μl Hamilton syringe equipped with a 10 μl-size needle and a repeating dispenser (PB600-1, Hamilton). The same volume (4 μl) of PBS was injected as a non-infectious control. Infected larvae were placed in petri dishes in a humidified chamber, incubated at 37° C., and monitored daily. Larvae were considered dead when they showed a lack of movement upon touching. Larvae that pupated during experiments were censored for statistical analysis. Survival curves were illustrated using the Prism 6 software (GraphPad). The Log-rank (Mantel-Cox) test was used for statistical analysis. The present inventors examined two independent mutant strains for each kinase mutant. For kinase mutants with single strains, the experiment was performed in duplicate.


Example 13
Signature-Tagged Mutagenesis (STM)-Based Murine Infectivity Assay

For the high-throughput murine infectivity test, a group of kinase mutant strains with the NAT selection marker containing 45 unique signature-tags (a total of four groups) was pooled. The ste50Δ and hx11Δ mutants were used as virulent and avirulent control strains, respectively (Cheon, S. A. et al. Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hx11, for controlling pathogenicity of Cryptococcus neoformans. PLoS Pathog. 7, e1002177, doi:10.1371/journal.ppat.1002177 (2011), Jung, K. W., Kim, S. Y., Okagaki, L. H., Nielsen, K. & Bahn, Y. S. Ste50 adaptor protein governs sexual differentiation of Cryptococcus neoformans via the pheromone-response MAPK signaling pathway. Fungal Genet. Biol. 48, 154-165, doi:S1087-1845(10)00191-X [pii] 10.1016/j.fgb.2010.10.006 (2011)). Each group of the kinase mutant library was grown at 30° C. in YPD medium for 16 hours separately and washed three times with PBS. The concentration of each mutant was adjusted to 107 cells per ml and 50 μl of each sample was pooled into a tube. For preparation of the input genomic DNA of each kinase mutant pool, 200 μl of the mutant pool was spread on YPD plate, incubated at 30° C. for 2 days, and then scraped. For preparation of the output genomic DNA samples, 50 μl of the mutant pool (5×105 cells per mouse) was infected into seven-week-old female A/J mice (Jackson Laboratory) through intranasal inhalation. The infected mice were sacrificed with an overdose of Avertin 15 days post-infection, their infected lungs were recovered and homogenized in 4 ml PBS, spread onto the YPD plates containing 100 μg/ml of chloramphenicol, incubated at 30° C. for 2 days, and then scraped. Total genomic DNA was extracted from scraped input and output cells by the CTAB method (Jung, K. W., Kim, S. Y., Okagaki, L. H., Nielsen, K. & Bahn, Y. S. Ste50 adaptor protein governs sexual differentiation of Cryptococcus neoformans via the pheromone-response MAPK signaling pathway. Fungal Genet. Biol. 48, 154-165, doi:S1087-1845(10)00191-X [pii]10.1016/j.fgb.2010.10.006 (2011)). Quantitative PCR was performed with the tag-specific primers listed in Tables 2 and 3 above by using MyiQ2 Real-Time PCR detection system (Bio-Rad). The STM score was calculated (Jung, K. W. et al. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat Comms 6, 6757, doi:10.1038/ncomms7757 (2015)). To determine the STM score, relative changes in genomic DNA amounts were calculated by the 2−ΔΔCT method (Choi, J. et al. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res 41, D714-719, doi:10.1093/nar/gks1163 (2013)). The mean fold changes in input verses output samples were calculated in Log score (Log2 2(Ct, Target-Ct, Actin) output-(Ct, Target-Ct, Actin) input).


Example 14
Vacuole Staining

To visualize vacuole morphology, the wild-type H99S strain and vsp15Δ strains (YSB1500 and YSB1501) (obtained from the Joeseph Heitman Laboratory at Duke University in USA) were cultured in liquid YPD medium at 30° C. for 16hours. FM4-64 dye (Life Technologies) was added to each culture at a final concentration of 10 μM and further incubated at 30° C. for 30 minutes. The cells were pelleted by centrifugation, resuspended with fresh liquid YPD medium, and further incubated at 30° C. for 30 minutes. The cells were pelleted again, washed three times with PBS, and then resuspended in 1 ml of PBS. On the glass slide, 10 ml of the cells and 10 ml of mounting solution (Biomeda) were mixed and spotted. The glass slides were observed by confocal microscope (Olympus BX51 microscope).


Example 15
TiO2 Enrichment-Based Phosphoproteomics

To identify the phosphorylated targets of Vrk1 on a genome-wide scale, the H99S and vrk1Δ mutant strains were incubated in YPD liquid medium at 30° C. for 16 hours, sub-cultured into 1 liter of fresh YPD liquid medium, and further incubated at 30° C. until it approximately reached an optical density at 600 nm (OD600) of 0.9. Each whole-cell lysate was prepared with lysis buffer (Calbiochem) containing 50 mM Tris-Cl (pH 7.5), 1% sodium deoxycholate, 5 mM sodium pyrophosphate, 0.2 mM sodium orthovanadate, 50 mM sodium fluoride (NaF), 0.1% sodium dodecyl sulphate, 1% Triton X-100, 0.5 mM phenylmethylsulfonyl fluoride (PMSF) and 2.5× protease inhibitor cocktail solution (Merck Millipore). The protein concentration of each cell lysate was measured using a Pierce BCA protein kit (Life Technologies). Sulfhydryl bonds between cysteine residues in protein lysates were reduced by incubating 10 mg of total protein lysate with 10 mM DTT at room temperature for 1 hour and then alkylated with 50 mM iodoacetamide in the dark at room temperature for 1 hour. These samples were treated again with 40 mM DTT at room temperature for 30 min and then digested using trypsin (Sequencing grade trypsin, Promega) at an enzyme: substrate ratio of 1:50 (w/w) with overnight incubation at 37° C. The trypsin-digested protein lysates were then purified with Sep-Pak C18 columns (Waters Corporation, Milford, Mass.), lyophilized and stored at −80° C. Phosphopeptides were enriched using TiO2Mag Sepharose beads (GE Healthcare) and then lyophilized for LC-MS/MS. Mass spectrometric analyses were performed using a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific, MA, USA) equipped with Dionex U 3000 RSLC nano high-performance liquid chromatography system, a nano-electrospray ionization source and fitted with a fused silica emitter tip (New Objective, Wobum, Mass.). All phosphopeptide samples were reconstituted in solution A (water/acetonitrile (98:2, v/v), 0.1% formic acid), and then injected into an LC-nano ESI-MS/MS system. Samples were first trapped on a Acclaim PepMap 100 trap column (100 μm i.d.×2 cm, nanoViper C18, 5 μm particle size, 100 Å pore size, Thermo Scientific) and washed for 6 min with 98% solution A at a flow rate of 4 μl/min, and then separated on an Acclaim PepMap 100 capillary column (75 μm i.d.×15 cm, nanoViper C18, 3 μm particle size, 100 Å pore size, Thermo Scientific) at a flow rate of 400 nl/min. Peptides were analyzed with a gradient of 2 to 35% solution B (water/acetonitrile (2:98, v/v), 0.1% formic acid) over 90 min, 35 to 90% over 10 min, followed by 90% for 5 min, and finally 5% for 15 min. The resulting peptides were electrosprayed through a coated silica tip (PicoTip emitter, New Objective, MA, USA) at an ion spray voltage of 2,000 eV. To assign peptides, MS/MS spectra were searched against the C. neoformans var. grubii H99S protein database (http://www.uniprot.org) using the SEQUEST search algorithms through the Proteome Discoverer platform (version 1.4, Thermo Scientific). The following search parameters were applied: cysteine carbamidomethylation as fixed modifications, methionine oxidation and serine/threonine/tyrosine phosphorylation as variable modifications. Two missed trypsin cleavages were allowed to identify the peptide. Peptide identification was filtered by a 1% false discovery rate cut-off. Spectral counts were used to estimate relative phosphopeptide abundance between the wild-type and mutant strains. The Student's t-test was used to assess the statistically significant difference between the samples.


Example 16
ER Stress Assay

To monitor the ER stress-mediated UPR induction, the H99S and vps15Δ mutant strains were incubated in YPD at 30° C. for 16 hours, sub-cultured with fresh YPD liquid medium, and then further incubated at 30° C. until they reached the early-logarithmic phase (OD600=0.6). The cells were treated with 0.3 μg/ml tunicamycin (TM) for 1 hour. The cell pellets were immediately frozen with liquid nitrogen and then lyophilized. Total RNAs were extracted using easy-BLUE (Total RNA Extraction Kit, Intron Biotechnology) and subsequently cDNA was synthesized using an MMLV reverse transcriptase (Invitrogen). HXL1 splicing patterns (UPR-induced spliced foam of HXL1 (HXL1S) and unspliced foam of HXL1 (HXL1U)) were analyzed by PCR using cDNA samples of each strain and primers (B5251 and B5252) (Table 3).


Example 17
Expression Analysis

To measure the expression level of ERG11, the H99S strain and bud32Δ mutants were incubated in liquid YPD medium at 30° C. for 16 hours and sub-cultured with fresh liquid YPD medium. When the cells reach the early-logarithmic phase (OD600=0.6), the culture was divided into two samples: one was treated with fluconazole (FCZ) for 90 minutes and the other was not treated. The cell pellets were immediately frozen with liquid nitrogen and then lyophilized. Total RNA was extracted and northern blot analysis was performed with the total RNA samples for each strain as previously reported (Jung, K. W., Kim, S. Y., Okagaki, L. H., Nielsen, K. & Bahn, Y. S. Ste50 adaptor protein governs sexual differentiation of Cryptococcus neoformans via the pheromone-response MAPK signaling pathway. Fungal Genet. Biol. 48, 154-165, doi:S1087-1845(10)00191-X [pii]10.1016/j.fgb.2010.10.006 (2011)). For quantitative reverse transcription-PCR (qRT-PCR) analysis of genes involved in the calcineurin pathway, the H99S strain and vps15Δ mutants were incubated in liquid YPD medium at 30° C. for 16hours and were sub-cultured in fresh liquid YPD medium until they reached to the early-logarithmic phase (OD600=0.8). The cells were then pelleted by centrifugation, immediately frozen with liquid nitrogen, and lyophilized. After total RNA was extracted, cDNA was synthesized using RTase (Thermo Scientific). CNA1, CNB1, CRZ1, UTR2 and ACT1-specific primer pairs (B7030 and B7031, B7032 and B7033, B7034 and B7035, B7036 and B7037, B679 and B680, respectively) (Table 3) were used for qRT-PCR.


Example 18
Construction of FPK1 Overexpression Strains

To construct the FPK1 overexpression strain, the native promoter of FPK1 was replaced with histone H3 promoter using an amplified homologous recombination cassette (FIG. 5a). In the first round of PCR, primer pairs L1/OEL2 and OER1/PO were used for amplification of the 5′-flaking region and 5′-coding region of FPK1, respectively. The NEO-H3 promoter region was amplified with the primer pair B4017/B4018. For second-round PCR for the 5′ or 3′ region of the PH3:FPK1 cassette, the first-round PCR product was overlap-amplified by DJ-PCR with the primer pair L1/GSL or GSR/PO (primers in Tables 2 and 3 above). Then, the PH3:FPK1 cassettes were introduced into the wild-type strain H99S (obtained from the Joeseph Heitman Laboratory at Duke University in USA) and the ypk1A mutant (YSB1736) by biolistic transformation. Stable transformants selected on YPD medium containing G418 were screened by diagnostic PCR with a primer pair (SO/B79). The correct genotype was verified by Southern blotting using a specific probe amplified by PCR with primers L1/PO. Overexpression of FPK1 was verified using a specific Northern blot probe amplified by PCR with primers NP1 and PO (FIGS. 5b and 5c).


Example 19
Kinase Phenome Clustering

In vitro phenotypic traits of each kinase mutant were scored with the following qualitative scale: −3 (strongly sensitive or defective), −2 (moderately sensitive or defective), −1 (weakly sensitive or defective), 0 (wild-type-like), +1 (weakly resistant or enhanced), +2 (moderately resistant or enhanced), and +3 (strongly resistant or enhanced). The excel file containing the phenotype scores of each kinase mutant was uploaded by Gene-E software (http://www.broadinstitute.org/cancer/software/GENE-E/) and then kinase phenome clustering was drawn using one minus Pearson correlation.


Example 20

Cryptococcus Kinome Web-Database

For public access to the phenome and genome data for the C. neoformans kinase mutant library constructed by the present inventors, the Cryptococcus Kinase Phenome Database was developed (http://kinase.cryptococcus.org/). Genome sequences of C. neoformans var. grubii H99 were downloaded from the Broad Institute (http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans/MultiHome.html), and incorporated into the standardized genome data warehouse in the Comparative Fungal Genomics Platform database (CFGP 2.0; http://cfgp.snu.ac.kr/) (Choi, J. et al. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res 41, D714-719, doi:10.1093/nar/gks1163 (2013)). Classification of protein kinases was performed by using the hidden Markov model-based sequence profiles of SUPERFAMILY (version 1.73) (Wilson, D. et al. SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37, D380-386, doi:10.1093/nar/gkn762 (2009)). A total of 64 family identifiers belonging to 38 superfamilies were used to predict putative kinases. In addition, the sequence profiles of Kinomer (version 1.0) (Martin, D. M., Miranda-Saavedra, D. & Barton, G. J. Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res 37, D244-250, doi:10.1093/nar/gkn834 (2009); Miranda-Saavedra, D. & Barton, G. J. Classification and functional annotation of eukaryotic protein kinases. Proteins 68, 893-914, doi:10.1002/prot.21444 (2007)) and the Microbial Kinome (Kannan, N., Taylor, S. S., Zhai, Y., Venter, J. C. & Manning, G. Structural and functional diversity of the microbial kinome. PLoS Biol 5, e17, doi:10.1371/journal.pbio.0050017 (2007)) were used to supplement the kinase prediction. Information from genome annotation of C. neoformans var. grubii H99 and protein domain predictions of InterProScan 62 was also adopted to capture the maximal extent of possible kinase-encoding genes. For each gene, results from the eight bioinformatics programs were also provided to suggest clues for gene annotations. In addition, results from SUPERFAMILY, Kinomer and Microbial Kinome were displayed for supporting robustness of the prediction. If a gene has an orthologue in C. neoformans var. neoformans JEC21, a link to the KEGG database was also provided. To browse genomic data in context to important biological features, the Seoul National University genome browser (SNUGB; http://genomebrowser.snu.ac.kr/) (Jung, K. et al. SNUGB: a versatile genome browser supporting comparative and functional fungal genomics. BMC Genomics 9, 586, doi:10.1186/1471-2164-9-586 (2008)) was integrated into the Cryptococcus kinase phenome database. In kinase browser, a direct link to the SNUGB module was provided for each gene. The Cryptococcus kinase phenome database was developed by using MySQL 5.0.81 (source code distribution) for database management and PHP 5.2.6 for web interfaces. The web-based user interface is served through the Apache 2.2.9 web server.


INDUSTRIAL APPLICABILITY

The present invention relates to kinases making it possible to effectively screen novel antifungal agent candidates. The use of the kinases according to the present invention makes it possible to effectively screen novel antifungal agent candidates. In addition, the use of an antifungal pharmaceutical composition comprising an agent (antagonist or inhibitor) for the kinase according to the present invention can effectively prevent, treatment and/or diagnose fungal infection.

Claims
  • 1. A method for screening an antifungal agent, comprising the steps of: (a) bringing a sample to be analyzed into contact with a cell containing a pathogenicity-regulating kinase protein or a gene encoding the protein;(b) measuring an amount or activity of the protein or an expression level of the gene; and(c) determining that the sample is an antifungal agent, when the amount or activity of the protein or the expression level of the gene is measured to be down-regulated or up-regulated.
  • 2. The method of claim 1, wherein the pathogenicity-regulating kinase protein is one or more selected from the group consisting of BUD32, ATG1, CDC28, KIC1, MEC1, KIN4, MKK1/2, BCK1, SNF1, SSK2, PKA1, GSK3, CBK1, KIN1, SCH9, RIM15, HOG1, YAK1, IPK1, CDC7, SSN3, CKA1, MEC1, ARG5, 6P, MET3, VPS15 and VRK1.
  • 3. The method of claim 1 or 2, wherein the cell is a Cryptococcus neoformans cell.
  • 4. The method of claim 1 or 2, wherein the antifungal agent is an antifungal agent for treating meningoencephalitis or cryptococcosis.
  • 5. An antifungal pharmaceutical composition, comprising an antagonist or inhibitor of a Cryptococcus neoformans pathogenicity-regulating kinase protein or an antagonist or inhibitor of the gene encoding the protein.
  • 6. The antifungal pharmaceutical composition of claim 5, wherein pathogenicity-regulating kinase protein is one or more selected from the group consisting of BUD32, ATG1, CDC28, KIC1, MEC1, KIN4, MKK1/2, BCK1, SNF1, SSK2, PKA1, GSK3, CBK1, KIN1, SCH9, RIM15, HOG1, YAK1, IPK1, CDC7, SSN3, CKA1, MEC1, ARG5, 6P, MET3, VPS15 and VRK1.
  • 7. The antifungal pharmaceutical composition of claim 5 or 6, wherein the composition is for treating meningoencephalitis or cryptococcosis.
  • 8. The antifungal pharmaceutical composition of claim 5 or 6, wherein the antagonist or inhibitor is an antibody against the protein.
  • 9. The antifungal pharmaceutical composition of claim 5 or 6, wherein the antagonist or inhibitor is an antisense oligonucleotide, siRNA, shRNA, miRNA, or a vector comprising one or more of these, against the gene.
  • 10. The antifungal pharmaceutical composition of claim 5 or 6, wherein the composition is administered in combination with an azole-based or non-azole-based antifungal agent.
  • 11. The antifungal pharmaceutical composition of claim 10, wherein the azole-based antifungal agent is one or more selected from the group consisting of fluconazole, itraconazole, voriconazole and ketoconazole.
  • 12. The antifungal pharmaceutical composition of claim 10, wherein the non-azole-based antifungal agent is one or more selected from the group consisting of amphotericin B, natamycin, rimocidin, nystatin and fludioxonil.
  • 13. A novel gene-deletion kinase mutant (accession number: KCCM 51297).
Priority Claims (1)
Number Date Country Kind
10-2015-0157021 Nov 2015 KR national
PCT Information
Filing Document Filing Date Country Kind
PCT/KR2016/012827 11/9/2016 WO 00