Novel Modulators of HDL Metabolism

Information

  • Research Project
  • 8487433
  • ApplicationId
    8487433
  • Core Project Number
    R44HL097438
  • Full Project Number
    5R44HL097438-03
  • Serial Number
    097438
  • FOA Number
    PA-11-096
  • Sub Project Id
  • Project Start Date
    9/1/2009 - 15 years ago
  • Project End Date
    5/31/2015 - 9 years ago
  • Program Officer Name
    HASAN, AHMED A.K.
  • Budget Start Date
    6/1/2013 - 11 years ago
  • Budget End Date
    5/31/2015 - 9 years ago
  • Fiscal Year
    2013
  • Support Year
    03
  • Suffix
  • Award Notice Date
    5/31/2013 - 11 years ago

Novel Modulators of HDL Metabolism

Project Summary/Abstract Cardiovascular disease remains the leading cause of morbidity and mortality for both men and women, accounting for nearly 40% of annual deaths. High levels of LDL-C and low levels of HDL-C are well-known risk factors for heart disease. Although lowering low-density lipoprotein cholesterol (LDL-C) levels using a number of marketed drugs, of which statins are the leading drugs, has significantly reduced coronary artery disease, substantial residual cardiovascular risk remains, even with very aggressive reductions in levels of LDL-C. Accordingly, attention is now shifting toward strategies for targeting HDL-C as adjunctive therapy to prevent and treat cardiovascular disease. Many studies have emphasized that the risk factor associated with low levels of HDL-C is independent of that of high LDL-C. Recent epidemiological data confirmed that patients with low HDL-C level are at high risk of premature cardiovascular disease no matter how low the LDL-C level. These and other patients will dramatically benefit from an aggressive treatment of low HDL-C. The long-term goal of the proposed studies is to develop novel drugs for increasing HDL-C. Our therapeutic target is endothelial lipase (EL), a member of the lipoprotein lipase gene family that hydrolyzes HDL-C phospholipids. Recent studies demonstrated that inhibition of EL in mice results in a significant increase in HDL-C levels. In Phase I, we have identified selective inhibitors of EL and developed preliminary SAR. As part of this Phase II proposal, we plan to expand and optimize our hits, and confirm the ability of selected compounds to increase the HDL-C level using in vivo animal models.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R44
  • Administering IC
    HL
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    753972
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    837
  • Ed Inst. Type
  • Funding ICs
    NHLBI:753972\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    SHIFA BIOMEDICAL CORPORATION
  • Organization Department
  • Organization DUNS
    192526221
  • Organization City
    MALVERN
  • Organization State
    PA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    193551423
  • Organization District
    UNITED STATES