NOVEL MONOCLONAL ANTIBODIES AGAINST SARS-COV-2 AND USES THEREOF

Information

  • Patent Application
  • 20230279079
  • Publication Number
    20230279079
  • Date Filed
    November 11, 2022
    a year ago
  • Date Published
    September 07, 2023
    10 months ago
Abstract
The present invention provides novel monoclonal antibodies or the antigen-binding fragments thereof, which bind to a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or angiotensin-converting enzyme 2 (ACE2). Also provided are a pharmaceutical composition and a kit for detecting the presence of SARS-CoV-2 in a sample comprising the novel monoclonal antibody or the antigen-binding fragments thereof. Also disclosed herein are methods for detection or prevention and/or treatment of SARS-CoV-2 or a disease mediated by a disease mediated by ACE2.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to novel monoclonal antibodies (MAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and/or antigen-binding fragments thereof, especially to novel MAbs binding to the spike (S) protein or the nucleocapsid (N) protein of SARS-COV-2. The present invention also provides a pharmaceutical composition comprising the novel MAbs or antigen-binding fragments thereof. In addition, the present invention provides a kit and method for detecting SARS-CoV-2 and a method for preventing or treating SARS-CoV-2 or a disease mediated by a disease mediated by ACE2, using the novel MAbs or antigen-binding fragments thereof as described herein.


2. Description of the Prior Art

In the end of 2019, a novel coronavirus emerged and was identified as a cause of a cluster of respiratory infection cases. It spread quickly throughout the world. It spread quickly throughout the China and the world. In March of 2020, it has been declared a pandemic by the World Health Organization, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the coronavirus disease of 2019 (COVID-19). As of 6 May 2021, there have been 154,815,600 total confirmed cases of SARS-CoV-2 infection including 3,236,104 deaths in the ongoing pandemic (World Health Organization).


Although several SARS-CoV-2 vaccines are available, the average worldwide vaccination rate is still low. Besides that, some of the SARS-CoV-2 vaccines currently available require extremely low temperature for storage, while some of the other available vaccines raise concerns about safety and/or low efficacy. As a result, the emergence of the novel coronaviruses in human population remains a continuing threat. In addition, antiviral drugs for SARS-CoV-2 are unavailable in the present (Rome 2020). Conservative treatment is still considered the mainstay of treatment for the SARS-CoV-2 infection in humans. Previous reports indicated that passive immunotherapy with convalescent plasma, serum, or hyperimmune immunoglobulin containing virus-specific polyclonal antibodies may be alternative therapeutic approach toward reduction of mortality of severe respiratory viral infections (Mair-Jenkins 2015). It is also realized for the need of monoclonal antibody (MAb) preparations for the treatment or prophylaxis of viral infectious disease, since polyclonal immunoglobulins may have limited potency and disease scope (Casadevall 2004).


SUMMARY OF THE INVENTION

The present invention provides a panel of SARS-CoV-2 spike and nucleocapsid-reactive human monoclonal antibodies, which has been produced from peripheral B cells derived from adult patients with laboratory-confirmed SARS-CoV-2 infection. The antigenic specificity of MAbs and the genetic usage in their variable domains of heavy and light chains were characterized in detail. These SARS-CoV-2-antigen-specific human MAbs offer templates for the development of diagnostic reagents and candidate prophylactic and therapeutic agents against SARS-CoV-2.


Thus, in one aspect, the present invention provides an isolated antibody against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or antigen-binding fragment thereof, comprising

    • (i) a heavy chain variable region (VH) which comprises
      • (a) a first heavy chain complementarity determining region (HCDR1) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 69, SEQ ID No: 75, SEQ ID No: 81, SEQ ID No: 87, SEQ ID No: 93, SEQ ID No: 99, SEQ ID No: 105, SEQ ID No: 111, SEQ ID No: 117, SEQ ID No: 123, SEQ ID No: 129, SEQ ID No: 135, SEQ ID No: 141, SEQ ID No: 147, SEQ ID No: 153, SEQ ID No: 159, SEQ ID No: 165, SEQ ID No: 171, SEQ ID No: 177, SEQ ID No: 183, SEQ ID No: 189, SEQ ID No: 195, SEQ ID No: 201, SEQ ID No: 207, SEQ ID No: 213, SEQ ID No: 219, SEQ ID No: 225, SEQ ID No: 231, SEQ ID No: 237, SEQ ID No: 243, SEQ ID No: 249, SEQ ID No: 255, SEQ ID No: 261, SEQ ID NO: 267, SEQ ID No: 333, SEQ ID No: 339, SEQ ID No:345, SEQ ID No: 351, SEQ ID No: 357, SEQ ID No: 363, SEQ ID No: 369, SEQ ID No: 375, SEQ ID No: 381, SEQ ID No: 387, SEQ ID No: 393, SEQ ID No: 399, SEQ ID No: 405, SEQ ID No: 411, SEQ ID No: 417, SEQ ID No: 423, SEQ ID No: 429, SEQ ID No: 435, SEQ ID No: 441, SEQ ID No: 447, SEQ ID No: 453, SEQ ID No: 459, SEQ ID No: 465, SEQ ID No: 471, SEQ ID No:477, SEQ ID No: 483, SEQ ID No: 489, SEQ ID No: 495, SEQ ID No: 501, or SEQ ID No: 507;
      • (b) a second heavy chain complementarity determining region (HCDR2) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 70, SEQ ID No: 76, SEQ ID No: 82, SEQ ID No: 88, SEQ ID No: 94, SEQ ID No: 100, SEQ ID No: 106, SEQ ID No: 112, SEQ ID No: 118, SEQ ID No: 124, SEQ ID No: 130, SEQ ID No: 136, SEQ ID No: 142, SEQ ID No: 148, SEQ ID No: 154, SEQ ID No: 160, SEQ ID No: 166, SEQ ID No: 172, SEQ ID No: 178, SEQ ID No: 184, SEQ ID No: 190, SEQ ID No: 196, SEQ ID No: 202, SEQ ID No: 208, SEQ ID No: 214, SEQ ID No: 220, SEQ ID No: 226, SEQ ID No: 232, SEQ ID No: 238, SEQ ID No: 244, SEQ ID No: 250, SEQ ID No: 256, SEQ ID No: 262, SEQ ID NO: 268, SEQ ID No: 334, SEQ ID No: 340, SEQ ID No:346, SEQ ID No: 352, SEQ ID No: 358, SEQ ID No: 364, SEQ ID No: 370, SEQ ID No: 376, SEQ ID No: 382, SEQ ID No: 388, SEQ ID No: 394, SEQ ID No: 400, SEQ ID No: 406, SEQ ID No: 412, SEQ ID No: 418, SEQ ID No: 424, SEQ ID No: 430, SEQ ID No: 436, SEQ ID No: 442, SEQ ID No: 448, SEQ ID No: 454, SEQ ID No: 460, SEQ ID No: 466, SEQ ID No: 472, SEQ ID No:478, SEQ ID No: 484, SEQ ID No: 490, SEQ ID No: 496, SEQ ID No: 502, or SEQ ID No: 508; and
      • (c) a third heavy chain complementarity determining region (HCDR3) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 71, SEQ ID No: 77, SEQ ID No: 83, SEQ ID No: 89, SEQ ID No: 95, SEQ ID No: 101, SEQ ID No: 107, SEQ ID No: 113, SEQ ID No: 119, SEQ ID No: 125, SEQ ID No: 131, SEQ ID No: 137, SEQ ID No: 143, SEQ ID No: 149, SEQ ID No: 155, SEQ ID No: 161, SEQ ID No: 167, SEQ ID No: 173, SEQ ID No: 179, SEQ ID No: 185, SEQ ID No: 191, SEQ ID No: 197, SEQ ID No: 203, SEQ ID No: 209, SEQ ID No: 215, SEQ ID No: 221, SEQ ID No: 227, SEQ ID No: 233, SEQ ID No: 239, SEQ ID No: 245, SEQ ID No: 251, SEQ ID No: 257, SEQ ID No: 263, SEQ ID NO: 269, SEQ ID No: 335, SEQ ID No: 341, SEQ ID No:347, SEQ ID No: 353, SEQ ID No: 359, SEQ ID No: 365, SEQ ID No: 371, SEQ ID No: 377, SEQ ID No: 383, SEQ ID No: 389, SEQ ID No: 395, SEQ ID No: 401, SEQ ID No: 407, SEQ ID No: 413, SEQ ID No: 419, SEQ ID No: 425, SEQ ID No: 431, SEQ ID No: 437, SEQ ID No: 443, SEQ ID No: 449, SEQ ID No: 455, SEQ ID No: 461, SEQ ID No: 467, SEQ ID No: 473, SEQ ID No:479, SEQ ID No: 485, SEQ ID No: 491, SEQ ID No: 497, SEQ ID No: 503, or SEQ ID No: 509; and
    • (ii) a light chain variable region (VL) which comprises
      • (a) a first light chain complementarity determining region (LCDR1) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 72, SEQ ID No: 78, SEQ ID No: 84, SEQ ID No: 90, SEQ ID No: 96, SEQ ID No: 102, SEQ ID No: 108, SEQ ID No: 114, SEQ ID No: 120, SEQ ID No: 126, SEQ ID No: 132, SEQ ID No: 138, SEQ ID No: 144, SEQ ID No: 150, SEQ ID No: 156, SEQ ID No: 162, SEQ ID No: 168, SEQ ID No: 174, SEQ ID No: 180, SEQ ID No: 186, SEQ ID No: 192, SEQ ID No: 198, SEQ ID No: 204, SEQ ID No: 210, SEQ ID No: 216, SEQ ID No: 222, SEQ ID No: 228, SEQ ID No: 234, SEQ ID No: 240, SEQ ID No: 246, SEQ ID No: 252, SEQ ID No: 258, SEQ ID No: 264, SEQ ID NO: 270, SEQ ID No: 336, SEQ ID No: 342, SEQ ID No:348, SEQ ID No: 354, SEQ ID No: 360, SEQ ID No: 366, SEQ ID No: 372, SEQ ID No: 378, SEQ ID No: 384, SEQ ID No: 390, SEQ ID No: 396, SEQ ID No: 402, SEQ ID No: 408, SEQ ID No: 414, SEQ ID No: 420, SEQ ID No: 426, SEQ ID No: 432, SEQ ID No: 438, SEQ ID No: 444, SEQ ID No: 450, SEQ ID No: 456, SEQ ID No: 462, SEQ ID No: 468, SEQ ID No: 474, SEQ ID No:480, SEQ ID No: 486, SEQ ID No: 492, SEQ ID No: 498, SEQ ID No: 504, or SEQ ID No: 510;
      • (b) a second light chain complementarity determining region (LCDR2) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 73, SEQ ID No: 79, SEQ ID No: 85, SEQ ID No: 91, SEQ ID No: 97, SEQ ID No: 103, SEQ ID No: 109, SEQ ID No: 115, SEQ ID No: 121, SEQ ID No: 127, SEQ ID No: 133, SEQ ID No: 139, SEQ ID No: 145, SEQ ID No: 151, SEQ ID No: 157, SEQ ID No: 163, SEQ ID No: 169, SEQ ID No: 175, SEQ ID No: 181, SEQ ID No: 187, SEQ ID No: 193, SEQ ID No: 199, SEQ ID No: 205, SEQ ID No: 211, SEQ ID No: 217, SEQ ID No: 223, SEQ ID No: 229, SEQ ID No: 235, SEQ ID No: 241, SEQ ID No: 247, SEQ ID No: 253, SEQ ID No: 259, SEQ ID No: 265, SEQ ID NO: 271, SEQ ID No: 337, SEQ ID No: 343, SEQ ID No:349, SEQ ID No: 355, SEQ ID No: 361, SEQ ID No: 367, SEQ ID No: 373, SEQ ID No: 379, SEQ ID No: 385, SEQ ID No: 391, SEQ ID No: 397, SEQ ID No: 403, SEQ ID No: 409, SEQ ID No: 415, SEQ ID No: 421, SEQ ID No: 427, SEQ ID No: 433, SEQ ID No: 439, SEQ ID No: 445, SEQ ID No: 451, SEQ ID No: 457, SEQ ID No: 463, SEQ ID No: 469, SEQ ID No: 475, SEQ ID No:481, SEQ ID No: 487, SEQ ID No: 493, SEQ ID No: 499, SEQ ID No: 505, or SEQ ID No: 511; and
      • (c) a third light chain complementarity determining region (LCDR3) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 74, SEQ ID No: 80, SEQ ID No: 86, SEQ ID No: 92, SEQ ID No: 98, SEQ ID No: 104, SEQ ID No: 110, SEQ ID No: 116, SEQ ID No: 122, SEQ ID No: 128, SEQ ID No: 134, SEQ ID No: 140, SEQ ID No: 146, SEQ ID No: 152, SEQ ID No: 158, SEQ ID No: 164, SEQ ID No: 170, SEQ ID No: 176, SEQ ID No: 182, SEQ ID No: 188, SEQ ID No: 194, SEQ ID No: 200, SEQ ID No: 206, SEQ ID No: 212, SEQ ID No: 218, SEQ ID No: 224, SEQ ID No: 230, SEQ ID No: 236, SEQ ID No: 242, SEQ ID No: 248, SEQ ID No: 254, SEQ ID No: 260, SEQ ID No: 266, SEQ ID NO: 272, SEQ ID No: 338, SEQ ID No: 344, SEQ ID No:350, SEQ ID No: 356, SEQ ID No: 362, SEQ ID No: 368, SEQ ID No: 374, SEQ ID No: 380, SEQ ID No: 386, SEQ ID No: 392, SEQ ID No: 498, SEQ ID No: 404, SEQ ID No: 410, SEQ ID No: 416, SEQ ID No: 422, SEQ ID No: 428, SEQ ID No: 434, SEQ ID No: 440, SEQ ID No: 446, SEQ ID No: 452, SEQ ID No: 458, SEQ ID No: 464, SEQ ID No: 470, SEQ ID No: 476, SEQ ID No:482, SEQ ID No: 488, SEQ ID No: 494, SEQ ID No: 500, SEQ ID No: 506, or SEQ ID No: 512.


In some embodiments, the heavy chain variable region (VH) comprises an amino acid sequence about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, or SEQ ID NO: 331.


In some embodiments, the light chain variable region (VL) comprises an amino acid sequence about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, or SEQ ID NO: 332.


In another aspect, the present invention provides a pharmaceutical composition, comprising at least one of the isolated antibodies, or antigen-binding fragments thereof, of the present invention.


In some embodiments, the pharmaceutical composition further comprises at least one pharmaceutically acceptable carrier.


In another aspect, the present invention provides a kit for detecting the presence of SARS-CoV-2 in a sample, comprising at least one of the isolated antibodies, or antigen-binding fragments thereof, of the present invention.


In some embodiments, the at least one of the isolated antibodies, or antigen-binding fragments thereof, of the present invention comprises a detectable label.


In some embodiments, the detectable label is selected from an enzymatic label, a fluorescent label, a metal label, and a radio label.


In some embodiments, the detectable label is selected from gold nanoparticles, colored latex beads, magnetic particles, carbon nanoparticles, and selenium nanoparticles.


In some embodiments, the kit is an immunoassay kit.


In some embodiments, the immunoassay kit is selected from ELISA (enzyme-linked immunosorbent assay), RIA (radioimmunoassay), FIA (fluorescence immunoassay), LIA (luminescence immunoassay), and ILMA (immunoluminometric assay).


In some embodiments, the immunoassay is a sandwich assay.


In some embodiments, the immunoassay is in a lateral flow assay format.


In yet another aspect, the present invention provides a method for detecting SARS-CoV-2 in a sample suspected of containing said SARS-CoV-2, comprising contacting the sample with at least one of the isolated antibodies, or antigen-binding fragments thereof, of the present invention, and assaying binding of the antibody with the sample.


In some embodiments, the sample is urine, stool, or taken from respiratory tract.


In some embodiments, the sample taken from the respiratory tract is a nasopharyngeal (NP) or nasal (NS) swab.


In some embodiments, the SARS-COV-2 is detected by a sandwich immunoassay or lateral flow assay.


In a further aspect, the present invention provides a method for preventing or treating a disease mediated by angiotensin-converting enzyme 2 (ACE2) in a subject, comprising a step of administering an effective amount of at least one of the isolated antibodies, or antigen-binding fragments thereof, of the present invention.


In some embodiments, the disease mediated by ACE2 is SARS-CoV-2 infection.


In still another aspect, the present invention provides a nucleic acid comprising a nucleotide sequence encoding a heavy chain variable region (VH), a light chain variable region (VL) or both, wherein the VH and VL are as described herein.


In further another aspect, the present invention provides a vector (e.g. an expression vector) comprising any of the nucleic acids described herein and a host cell comprising such a vector.


The details of one or more embodiments of the invention are set forth in the description below. Other features or advantages of the present invention will be apparent from the following detailed description of several embodiments, and also from the appending claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.


In the drawings:



FIG. 1 is a graph illustrating the production of SARS-CoV-2 spike-reactive and nucleocapsid-reactive human monoclonal antibodies.



FIG. 2 is a line graph illustrating the Kd value and binding activity of anti-SARS-CoV-2 spike MAbs with spike protein of SARS-CoV-2, measured by ELISA. The SARS-CoV-2 therapeutic antibody (CR3022), cross reacts with SARS-CoV-2 and SARS-CoV-1, was included as a control. The OD value was presented as mean±standard error of the mean. The nonlinear regression analysis was performed to obtain the Kd value.



FIG. 3A to FIG. 3J are an assembly of line graphs showing the Kd value and binding activity of anti-SARS-CoV-2 receptor-binding domain (RBD) MAbs to the SARS-CoV-2 RBD, measured by flow cytometry (FM 7B Mab in FIG. 3A, FN 12A MAb in FIG. 3B, FI 1C MAb in FIG. 3C, FI 4A MAb in FIG. 3D, EY 6A MAb in FIG. 3E, FD 11A MAb in FIG. 3F, FD 5D MAb in FIG. 3G, FI 3AMAb in FIG. 3H, FJ 10B MAb in FIG. 3I, and EZ 7A MAb in FIG. 3J). FIG. 3K shows the Kd value and binding activity of anti-influenza H3 MAb BS-1A to SARS-CoV-2 RBD as a negative control. The binding percentage was presented as mean±standard error of the mean. The nonlinear regression analysis was performed to obtain the Kd value.



FIG. 4A is a line graph showing Ct value of virus signal in the supernatant of SARS-CoV-2 infected Vero E6 cells in an E gene-based real-time reverse-transcription PCR assay. The right shift of amplification plot reflects the increase of Ct value and the decrease of viral signal induced by EY 6A MAb, hence neutralization of the SARS-CoV-2. FIG. 4B is a line graph showing Ct value of virus signal in the supernatant of SARS-CoV-2 infected Vero E6 cells in an E gene-based real-time reverse-transcription PCR assay. The right shift of amplification plot reflects the increase of Ct value and the decrease of viral signal induced by FI 3A MAb, hence neutralization of the SARS-CoV-2.



FIG. 5A shows neutralization of wild type SARS-CoV-2 by anti-SARS-CoV-2 RBD MAbs (FD 11A, FI 3A, FI 1C, FD 5D and EY 6A) (also refer to Table 10), Neutralization assays were performed on the indicated antibodies according to the fluorescent focus-forming units microneutralization method (FMNT). Data were normalized to control (no antibody) values of foci, and the grey region comprises ±1 standard deviation the mean control values. Individual points are displayed ±1 standard deviation of technical, and curves are shown only where the data for a particular antibody fitted the standard dose-response (Hill) equation (n=3). FIG. 5B shows neutralization of wild type SARS-CoV-2 by anti-SARS-CoV-2 S1-non-RBD (FJ 1C, FD 11D, FD 11C and FD 7C) (also refer to Table 10). Neutralization assays were performed on the indicated antibodies according to the fluorescent focus-forming units microneutralization method (see methods). Data were normalized to control (no antibody) values of foci, and the grey region comprises ±1 standard deviation the mean control values. Individual points are displayed ±1 standard deviation of technical, and curves are shown only where the data for a particular antibody fitted the standard dose-response (Hill) equation (n=3).



FIG. 6A shows angiotensin-converting enzyme 2 (ACE2) blocking assays with titrations of anti-SARS-CoV-2 RBD antibodies. Assays were performed with RBD anchored and on plates (also refer to Table 8). FIG. 6B shows ACE2 blocking assays with titrations of anti-SARS-CoV-2 RBD antibodies (also refer to Table 10). Assays were performed with ACE2 anchored and on plates. Anti-SARS-CoV-2 RBD nanobody VHH72 linked to the hinge and Fc region of human IgG1 and ACE2-Fc were included as positive controls. Experiments were performed in duplicate and repeated twice. IC50, 50% inhibitory concentrations.



FIG. 7A shows the prophylactic effect of a cocktail of the MAbs of the present invention against wild-type SARS-CoV-2 in Syrian hamster model. The left panel of FIG. 7A shows body weight change of the animals treated with a single dose (0.4 mg/kg, 4 mg/kg, or 40 mg/kg) of the antibody cocktail or 40 mg/kg of an isotype negative control one day prior to intranasal challenge of virus. The right panel of FIG. 7A shows infectious viral loads in the lungs measured by median tissue culture infectious dose (TCID50) assay. FIG. 7B shows the therapeutic effect of the antibody cocktail against wild-type SARS-CoV-2 in Syrian hamster model. The left panel of FIG. 7B shows body weight change of the animals treated with a single dose (0.4 mg/kg, 4 mg/kg, or 40 mg/kg) of the antibody cocktail or 40 mg/kg of an isotype negative control three hours after intranasal challenge of virus. The right panel of FIG. 7B shows infectious viral loads in the lungs measured by TCID50 assay. The data represents the mean±the standard error of the mean (SEM) (n=4 per group). Anti-influenza neuraminidase human IgG1 antibody Z2B3 was included as an isotype control. Statistical significance between groups was calculated by an unpaired two-sided t test. P values: *p<0.05; ns not significant.



FIG. 8A shows viral RNA of envelope (E) gene (copies per g RNA) detected in the lungs of hamsters challenged with SARS-CoV-2 (n=4 per group) at day 4 post challenge. FIG. 8B shows viral RNA of nucleocapsid (N) gene (copies per g RNA) detected in the lungs of hamsters challenged with SARS-CoV-2 (n=4 per group) at day 4 post challenge. Viral loads were determined by quantitative reverse transcription PCR for detection of SARS-CoV-2 E and N genes. The error bars represent standard deviations of the mean.



FIG. 9A shows histopathological findings of the lungs in the prophylactic treatment of antibody cocktail at 40 mg/kg, 4 mg/kg and 0.4 mg/kg in hamsters four days after SARS-CoV-2 infection. FIG. 9B shows histopathological findings of the lungs in the therapeutic treatment of antibody cocktail at 40 mg/kg, 4 mg/kg and 0.4 mg/kg in hamsters four days after SARS-CoV-2 infection. H&E stain. 40×, 100×, 400×.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention relates to novel MAbs that bind to the spike (S) protein or the nucleocapsid (N) protein of SARS-COV-2. The present invention provides such antibodies and antigen-binding fragments thereof, which are useful for detection or prevention and/or treatment of SARS-CoV-2 or a disease mediated by angiotensin-converting enzyme 2 (ACE2). The present invention also provides a pharmaceutical composition comprising the novel MAbs or antigen-binding fragments thereof. In addition, the present invention provides a kit and method for detecting SARS-CoV-2 and a method for preventing or treating SARS-CoV-2 or a disease mediated by a disease mediated by ACE2, using the novel MAbs or antigen-binding fragments thereof as described herein.


The following description is merely intended to illustrate various embodiments of the invention. As such, specific embodiments or modifications discussed herein are not to be construed as limitations to the scope of the invention. It will be apparent to one skilled in the art that various changes or equivalents may be made without departing from the scope of the invention.


In order to provide a clear and ready understanding of the present invention, certain terms are first defined. Additional definitions are set forth throughout the detailed description. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as is commonly understood by one of skill in the art to which this invention belongs.


As used herein, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a component” includes a plurality of such components and equivalents thereof known to those skilled in the art.


The term “comprise” or “comprising” is generally used in the sense of include/including which means permitting the presence of one or more features, ingredients or components. The term “comprise” or “comprising” encompasses the term “consists” or “consisting of.”


As used herein, the term “about,” “around,” or “approximately” refers to a degree of acceptable deviation that will be understood by persons of ordinary skill in the art, which may vary to some extent depending on the context in which it is used. In general, “about,” “around,” or “approximately” may mean a numeric value having a range of 10% around the cited value. All numbers herein may be understood as modified by “about,” “around,” or “approximately.”


The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding portion that immunospecifically binds a glycoprotein. As such, the term antibody encompasses not only whole antibody molecules, but also antibody fragments as well as variants (including derivatives) of antibodies and antibody fragments. In natural antibodies, two heavy chains are linked to each other by disulfide bonds and each heavy chain is linked to a light chain by a disulfide bond. There are two types of light chain, lambda (l) and kappa (κ). There are five main heavy chain classes (or isotypes) which determine the functional activity of an antibody molecule: IgM, IgD, IgG, IgA and IgE. Each chain contains distinct sequence domains. The light chain includes two domains, a variable domain (VL) and a constant domain (CL). The heavy chain includes four domains, a variable domain (VH) and three constant domains (CH1, CH2 and CH3, collectively referred to as CH). The variable regions of both light (VL) and heavy (VH) chains determine binding recognition and specificity to the stem cell surface glycoprotein. The light and heavy chains of an antibody each have three complementarity determining regions (CDRs), designated LCDR1, LCDR2, LCDR3 and HCDR1, HCDR2, HCDR3, respectively. An antigen-binding site, therefore, includes six CDRs, comprising the CDR set from each of a heavy and a light chain variable region. Framework Regions (FRs) refer to amino acid sequences interposed between CDRs.


Identity or homology with respect to a specified amino acid sequence of this invention is defined herein as the percentage of amino acid residues in a candidate sequence that are identical with the specified residues, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology or identity, and not considering any conservative substitutions as part of the sequence homology or identity. None of N-terminal, C-terminal or internal extensions, deletions, or insertions into the specified sequence shall be construed as affecting homology or identity. Methods of alignment of sequences for comparison are well known in the art. While such alignments may be done by hand using conventional methods, various programs and alignment algorithms are described in: Smith and Waterman, Adv. Appl. Math. 2:482, 1981; Needleman and Wunsch, J. Mol. Biol. 48:443, 1970; Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85:2444, 1988; Higgins and Sharp, Gene 73:237, 1988; Higgins and Sharp, CABIOS 5:151, 1989; Corpet et al, Nucleic Acids Research 16:10881, 1988; and Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85:2444, 1988. Altschul et al., Nature Genet. 6:119, 1994, present a detailed consideration of sequence alignment methods and homology/identity calculations. The NCBI Basic Local Alignment Search Tool (BLAST (Altschul et al, J. Mol. Biol. 215:403, 1990) is available from several sources, including the National Center for Biotechnology Information (NCBI, Bethesda, Md., USA) and on the internet, for use in connection with the sequence analysis programs blastp, blastn, blastx, tblastn and tblastx. A description of how to determine sequence identity or homology using this program is available on the NCBI website.


Antibodies of the present invention also include chimerized or humanized monoclonal antibodies generated from antibodies of the present invention. In one embodiment, humanized antibodies are antibody molecules from non-human species having one, two or all CDRs from the non-human species and one, two or all three framework regions from a human immunoglobulin molecule. A chimeric antibody is a molecule in which different portions are derived from different animal species. For example, an antibody may contain a variable region derived from a murine mAb and a human immunoglobulin constant region. Chimeric antibodies can be produced by recombinant DNA techniques. Morrison, et al., Proc Natl Acad Sci, 81:6851-6855 (1984). For example, a gene encoding a murine (or other species) antibody molecule is digested with restriction enzymes to remove the region encoding the murine Fc, and the equivalent portion of a gene encoding a human Fc constant region is then substituted into the recombinant DNA molecule. Chimeric antibodies can also be created by recombinant DNA techniques where DNA encoding murine V regions can be ligated to DNA encoding the human constant regions. Better et al., Science, 1988, 240:1041-1043. Liu et al. PNAS, 1987 84:3439-3443. Liu et al., J. Immunol., 1987, 139:3521-3526. Sun et al. PNAS, 1987, 84:214-218. Nishimura et al., Canc. Res., 1987, 47:999-1005. Wood et al. Nature, 1985, 314:446-449. Shaw et al., J. Natl. Cancer Inst., 1988, 80:1553-1559. International Patent Publication Nos. WO1987002671 and WO 86/01533. European Patent Application Nos. 184,187; 171,496; 125,023; and 173,494. U.S. Pat. No. 4,816,567.


Thus, SARS-CoV-2 antibodies of the present invention include in combination with a heavy chain or light chain variable region, a heavy chain or light chain constant region, a framework region, or any portion thereof, of non-murine origin, preferably of human origin, which can be incorporated into an antibody of the present invention.


Antibodies of the present invention are capable of modulating, decreasing, antagonizing, mitigating, alleviating, blocking, inhibiting, abrogating and/or interfering with the SARS-CoV-2 virus.


As used herein, the term “antigen-binding domain” or “antigen-binding fragment” refers to a portion or region of an intact antibody molecule that is responsible for antigen binding. An antigen-binding fragment is capable of binding to the same antigen to which the parent antibody binds. Examples of antigen-binding fragments include, but are not limited to: (i) a Fab fragment, which can be a monovalent fragment composed of a VH-CH1 chain and a VL-CL chain; (ii) a F(ab′)2 fragment which can be a bivalent fragment composed of two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fv fragment, composed of the VH and VL domains of an antibody molecule associated together by noncovalent interaction; (iv) a single chain Fv (scFv), which can be a single polypeptide chain composed of a VH domain and a VL domain through a peptide linker; and (v) a (scFv)2, which can comprise two VH domains linked by a peptide linker and two VL domains, which are associated with the two VH domains via disulfide bridges.


The antibody can be administered in a single dose treatment or in multiple dose treatments on a schedule and over a time period appropriate to the age, weight and condition of the subject, the particular composition used, and the route of administration, for prophylactic or curative purposes, etc. For example, in one embodiment, the antibody according to the invention is administered once per month, twice per month, three times per month, every other week (qow), once per week (qw), twice per week (biw), three times per week (tiw), four times per week, five times per week, six times per week, every other day (qod), daily (qd), twice a day (qid), three times a day (tid), four times a day (qid) or 6 times a day.


For ease of administration and uniformity of dosage, parenteral dosage unit form may be used. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of antibody calculated to produce the desired therapeutic effect.


An “effective amount,” as used herein, refers to a dose of the antibody that is sufficient to reduce the symptoms and signs of SARS-CoV-2, such as cough, fever shortness of breath, viral shedding, or pneumonia which is detectable, either clinically or radiologically through various imaging means. The term “effective amount” and “therapeutically effective amount” are used interchangeably.


The effective amount of the antibody or the conjugate depends on the subject and the condition to be treated. The specific dose level for any particular subject depends upon a variety of factors including the activity of the specific peptide, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease undergoing therapy and can be determined by one of ordinary skill in the art without undue experimentation.


The term “subject” may refer to a vertebrate suspected of having SARS-CoV-2 or has confirmed SARS-CoV-2 infection. Subjects include warm-blooded animals, such as mammals, such as a primate, and, more preferably, a human. Non-human primates are subjects as well. The term subject includes domesticated animals, such as cats, dogs, etc., livestock (for example, cattle, horses, pigs, sheep, goats, etc.) and laboratory animals (for example, mouse, rabbit, rat, gerbil, guinea pig, etc.).


The term “treating” as used herein refers to the application or administration of a composition including one or more active agents to a subject afflicted with a disorder, a symptom or conditions of the disorder, or a progression of the disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disorder, the symptoms or conditions of the disorder, the disabilities induced by the disorder, or the progression of the disorder or the symptom or condition thereof.


As used herein, “pharmaceutically acceptable” means that the carrier is compatible with the active ingredient in the composition, and preferably can stabilize said active ingredient and is safe to the individual receiving the treatment. Said carrier may be a diluent, vehicle, excipient, or matrix to the active ingredient. Some examples of appropriate excipients include lactose, dextrose, sucrose, sorbose, mannose, starch, Arabic gum, calcium phosphate, alginates, tragacanth gum, gelatin, calcium silicate, microcrystalline cellulose, polyvinyl pyrrolidone, cellulose, sterilized water, syrup, and methylcellulose. The composition may additionally comprise lubricants, such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preservatives, such as methyl and propyl hydroxybenzoates; sweeteners; and flavoring agents. The composition of the present invention can provide the effect of rapid, continued, or delayed release of the active ingredient after administration to the patient.


According to the present invention, the form of said pharmaceutical composition may be tablets, pills, powder, lozenges, packets, troches, elixirs, suspensions, lotions, solutions, syrups, soft and hard gelatin capsules, suppositories, sterilized injection fluid, and packaged powder.


As used herein, the term “polypeptide” refers to a polymer composed of amino acid residues linked via peptide bonds. The term “protein” typically refers to relatively large polypeptides. The term “peptide” typically refers to relatively short polypeptides (e.g., containing up to 100, 90, 70, 50, 30, or 20 amino acid residues).


As used herein, an “isolated” substance means that it has been altered by the hand of man from the natural state. In some embodiments, the polypeptide (e.g. antibody) or nucleic acids of the present invention can be said to be “isolated” or “purified” if they are substantially free of cellular material or chemical precursors or other chemicals/components that may be involved in the process of peptides/nucleic acids preparation. It is understood that the term “isolated” or “purified” does not necessarily reflect the extent to which the peptide has been “absolutely” isolated or purified e.g. by removing all other substances (e.g., impurities or cellular components). In some cases, for example, an isolated or purified polypeptide includes a preparation containing the polypeptide having less than 50%, 40%, 30%, 20% or 10% (by weight) of other proteins (e.g. cellular proteins), having less than 50%, 40%, 30%, 20% or 10% (by volume) of culture medium, or having less than 50%, 40%, 30%, 20% or 10% (by weight) of chemical precursors or other chemicals/components involved in synthesis procedures.


As used herein, the term “specific binds” or “specifically binding” refers to a non-random binding reaction between two molecules, such as the binding of the antibody to an epitope of its target antigen. An antibody that “specifically binds” to a target antigen or an epitope is a term well understood in the art, and methods to determine such specific binding are also well known in the art. A molecule is said to exhibit “specific binding” if it reacts or associates more frequently, more rapidly, with greater duration and/or with greater affinity with a particular target antigen or an epitope than it does with other targets/epitopes. An antibody “specifically binds” to a target antigen if it binds with greater affinity, avidity, more readily, and/or with greater duration than it binds to other substances. In other words, it is also understood by reading this definition that, for example, an antibody that specifically binds to a first target antigen may or may not specifically or preferentially bind to a second target antigen. As such, “specific binding” or “preferential binding” does not necessarily require (although it can include) exclusive binding. Generally, but not necessarily, reference to binding means specific/preferential binding. The affinity of the binding is defined in terms of a dissociation constant (Kd). Typically, specifically binding when used with respect to an antibody can refer to an antibody that specifically binds to (recognize) its target with an Kd value less than about 10−7 M, such as about 10−8 M or less, such as about 10−9 M or less, about 10−10 M or less, about 10−11 M or less, about 10−12 M or less, or even less, and binds to the specific target with an affinity corresponding to a Kd that is at least ten-fold lower than its affinity for binding to a non-specific antigen (such as BSA or casein), such as at least 100 fold lower, for instance at least 1,000 fold lower, such as at least 10,000 fold lower.


As used herein, the term “Coronavirus” refers to viruses belonging to the family Coronavirinae. Coronaviruses are enveloped RNA viruses that are spherical in shape and characterized by crown-like spikes on the surface under an electron microscope, hence the name. This type of virus can be further divided into four subgroups: alpha (α), beta (β), gamma (γ), and delta (δ). There are seven human coronavirus strains, including two alpha coronaviruses (HCov-229E and HCoV-NL63), two beta coronaviruses (HCov-HKU1 and HCov-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and the newly discovered SARS-CoV-2.


As used herein, the term “severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)” refers to the strain of coronavirus that causes Coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a positive-sense single-stranded RNA virus that is a member of the genus Betacoronavirus of the family Coronavirinae. The RNA sequence of SARS-CoV-2 is approximately 30,000 bases in length. Each SARS-CoV-2 virion is 50-200 nanometres in diameter. Like other coronaviruses, SARS-CoV-2 has four structural proteins, known as the S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins; the N protein holds the RNA genome, and the S, E, and M proteins together create the viral envelope.


As used herein, the term “spike protein,” “S polypeptide,” “S protein,” “SARS-CoV-2 spike,” or “SARS-CoV-2 S protein,” which can be used interchangeably, refers to a surface structure glycoprotein on SARS CoV-2 and is responsible for allowing the virus to attach to and fuse with the membrane of a host cell. Each monomer of trimeric S protein is about 180 kDa, and contains two subunits, S1 and S2, mediating attachment and membrane fusion, respectively. Spike protein mainly enters human cells by binding to the receptor angiotensin converting enzyme 2 (ACE2).


As used herein, the term “nucleocapsid protein,” “N polypeptide,” “N protein,” “SARS-CoV-2 nucleocapsid,” or “SARS-CoV-2 N protein,” which can be used interchangeably, refers to the multi-domain RNA-binding protein of SARS CoV-2 and is critical for viral genome packaging. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs; and the two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. (Cubuk 2021).


The term “nucleic acid” or “polynucleotide” can refer to a polymer composed of nucleotide units. Polynucleotides include naturally occurring nucleic acids, such as deoxyribonucleic acid (“DNA”) and ribonucleic acid (“RNA”) as well as nucleic acid analogs including those which have non-naturally occurring nucleotides. Polynucleotides can be synthesized, for example, using an automated DNA synthesizer. It will be understood that when a nucleotide sequence is represented by a DNA sequence (i.e., A, T, G, C), this also includes an RNA sequence (i.e., A, U, G, C) in which “U” replaces “T.” The term “cDNA” refers to a DNA that is complementary or identical to an mRNA, in either single stranded or double stranded form.


The term “encoding” refers to the inherent property of specific sequences of nucleotides in a polynucleotide (e.g., a gene, a cDNA, or an mRNA) to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a given sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a given sequence of amino acids and the biological properties resulting therefrom. Therefore, a gene encodes a protein if transcription and translation of mRNA produced by that gene produces the protein in a cell or other biological system. It is understood by a skilled person that numerous different polynucleotides and nucleic acids can encode the same polypeptide as a result of the degeneracy of the genetic code. It is also understood that skilled persons may, using routine techniques, make nucleotide substitutions that do not affect the polypeptide sequence encoded by the polynucleotides described there to reflect the codon usage of any particular host organism in which the polypeptides are to be expressed. Therefore, unless otherwise specified, a “nucleotide sequence encoding an amino acid sequence” encompasses all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence.


Numerous methods conventional in this art are available for obtaining monoclonal antibodies or antigen-binding fragments thereof. In some embodiments, the monoclonal antibodies provided herein may be made by the conventional hybridoma technology. In some embodiments, the monoclonal antibodies provided herein may be prepared via recombinant technology. In some embodiments, the monoclonal antibodies provided herein may be prepared by single cell expression system based on flow cytometry and PCR cloning of antigen specific B cells (Huang 2015, Huang 2017, Huang 2019).


When a full-length antibody is desired, coding sequences of any of the VH and VL chains described herein can be linked to the coding sequences of the Fc region of an immunoglobulin and the resultant gene encoding a full-length antibody heavy and light chains can be expressed and assembled in a suitable host cell, e.g., a plant cell, a mammalian cell, a yeast cell, or an insect cell.


Antigen-binding fragments can be prepared via routine methods. For example, F(ab′)2 fragments can be generated by pepsin digestion of a full-length antibody molecule, and Fab fragments that can be made by reducing the disulfide bridges of F(ab′)2 fragments. Alternatively, such fragments can also be prepared via recombinant technology by expressing the heavy and light chain fragments in suitable host cells and have them assembled to form the desired antigen-binding fragments either in vivo or in vitro. A single-chain antibody can be prepared via recombinant technology by linking a nucleotide sequence coding for a heavy chain variable region and a nucleotide sequence coding for a light chain variable region. Preferably, a flexible linker is incorporated between the two variable regions.


In general, the method of the present invention for detecting SARS-CoV-2 in a sample suspected of containing said SARS-CoV-2 comprises contacting the sample with any of the disclosed monoclonal antibodies or any combination thereof and assaying binding of the antibody with said sample.


There are various assay formats known to those of ordinary skill in the art for using antibodies to detect an antigen or pathogen in a sample. These assays that use antibodies specific to target antigens/pathogens are generally called immunoassays. Examples of immunoassays include but are not limited to ELISA (enzyme-linked immunosorbent assay), RIA (radioimmunoassay), FIA (fluorescence immunoassay), LIA (luminescence immunoassay), or immunoluminometric assay (ILMA). Such assays can be employed to detect the presence of SARS-CoV-2 in biological samples including blood, serum, plasma, saliva, cerebrospinal fluid, urine, stool, samples taken from respiratory tract, and other tissue specimens.


In some embodiments, the samples taken from the respiratory tract are nasopharyngeal (NP) or nasal (NS) swabs.


In some embodiments, the immunoassay is a sandwich assay or in a lateral flow assay format.


The following examples of specific aspects for carrying out the present invention are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.


EXAMPLES
Example 1 Preparation and Characterization of Monoclonal Antibodies Against SARS-CoV-2

1. Study Design


In this Example, SARS-CoV-2 antigen-specific human MAbs were isolated from peripheral plasmablasts in humans with natural SARS-CoV-2 infection, and then the antigenic specificity and phenotypic activities of human MAbs were characterized. The diagnosis of acute SARS-CoV-2 infection was based on positive real-time reverse transcriptase polymerase chain reaction (PCR) results of respiratory samples. The study protocol and informed consent were approved by the ethics committee at the Chang Gung Medical Foundation (Taoyuan, Taiwan) and the Taoyuan General Hospital, Ministry of Health and Welfare (Taoyuan, Taiwan). Each patient provided signed informed consent. The study and all associated methods were carried out in accordance with the approved protocol, the Declaration of Helsinki and Good Clinical Practice guidelines.


2. Staining and Sorting of Plasmablasts


Fresh peripheral blood mononuclear cells (PBMCs) were separated from whole blood by density gradient centrifugation and cryopreserved PBMCs were thawed. PBMCs were stained with a mix of fluorescent-labeled antibodies to cellular surface markers, including anti-CD3 (BD Biosciences, USA), anti-CD19 (BD Biosciences, USA), anti-CD27 (BD Biosciences, USA), anti-CD20 (BD Biosciences, USA), anti-CD38 (BD Biosciences, USA), anti-IgG (BD Biosciences, USA) and anti-IgM (BD Biosciences, USA). Plasmablasts were selected by gating on CD3 CD20CD19+CD27hiCD38hiIgG+IgM events and were isolated in chamber as single cell as previously described (Huang 2015, Huang 2017, Huang 2019).


3. Production of Human IgG 1 Monoclonal Antibodies


Sorted single cells were used to produce human IgG monoclonal antibodies as previously described (Huang 2015, Huang 2017, Huang 2019). Briefly, single cells were sorted directly to catch buffer and the variable region genes from each cell were amplified in a reverse transcriptase PCR (QIAGEN, Germany) using a cocktail of sense primers specific for the leader region and antisense primers to the Cγ constant region for heavy chain and Cκ and Cλ for light chain. The reverse transcriptase PCR products were amplified in separate PCR reactions for the individual heavy and light chain gene families using nested primers to incorporate restriction sites at the ends of the variable gene as previously described (Huang 2015, Huang 2017, Huang 2019). These variable genes were then cloned into expression vectors for the heavy and light chains. Plasmids were transfected into the 293T cell line for expression of recombinant full-length human IgG monoclonal antibodies in serum-free transfection medium (FIG. 1). A panel of monoclonal antibodies were further expanded and purified.


To determine the individual gene segments employed by VDJ and VJ rearrangements and the number of nucleotide mutations and amino acid replacements, the variable domain sequences were aligned with germline gene segments using the international ImMunoGeneTics (IMGT) alignment tool (http://www.imgt.org/IMGT_vquest/input).


4. Enzyme-Linked Immunosorbent Assay (ELISA)


The ELISA plates (Corning® 96-well Clear Polystyrene High Bind Stripwell™ Microplate, USA) were coated with SARS-CoV-2 antigen (Spike extracellular domain or spike S1 subunit or spike receptor binding domain (RBD) or spike S2 subunit or nucleocapsid, Sino Biological, China) or SARS antigen (Spike S1 subunit, Sino Biological, China) or Middle East respiratory syndrome coronavirus (MERS) antigen (Spike extracellular domain, Sino Biological, China) or human coronavirus OC43 antigen (Spike extracellular domain, Sino Biological, China) at optimal concentration in carbonate buffer and incubated at 4° C. overnight. The next day unbound antigens were removed by pipetting to avoid risk of forming aerosols. Nonspecific binding was blocked with the solution of phosphate-buffered saline (PBS) with 3% bovine serum albumin (BSA) at room temperature for 1 hour on a shaker. After removing blocking buffer, monoclonal antibody-containing cell culture supernatant or purified monoclonal antibody preparation were added and incubated at 37° C. for 1 hour. The non-transfected cell culture supernatant and anti-influenza human monoclonal antibody BS 1A (in house) were used as negative antibody controls for each experiment. The anti-SARS spike monoclonal antibody CR3022 and convalescent serum were used as positive antibody controls for each experiment. After incubation, the plate was washed and incubated with horseradish peroxidase-conjugated rabbit anti-human IgG (Rockland Immunochemicals, USA) as secondary antibody. After incubation, the plate was washed and developed with 3,3′,5,5′-Tetramethylbenzidine (TMB) substrate reagent (BD Biosciences, USA). Reaction was stopped by 0.5M Hydrochloric acid and the optical density was measured at OD450 on a microplate reader. The well that yielded an OD value four times the mean absorbance of negative controls (BS 1A) was considered positive.


5. Immunofluorescence Assay


Under biosafety level 3 (BSL-3) conditions, cells were infected with 100 TCID50 (median tissue culture infectious dose) SARS-CoV-2 (hCoV-19/Taiwan/CGMH-CGU-01/2020, EPI_ISL_411915). Infected cells were placed on coverslips and, and fixed with acetone at room temperature for 10 minutes. After blocking with 1% BSA at room temperature for 1 hour and washing, fixed cells were incubated with MAb-containing cell culture supernatant. The anti-influenza human monoclonal antibody BS 1A was used as negative antibody controls for each experiment. The anti-SARS spike glycoprotein MAb CR3022 and convalescent serum were used as positive antibody controls for each experiment. Following incubation and wash, cells were stained with FITC-conjugated anti-human IgG secondary antibody and Evans blue dye as counterstain. Antibody-bound infected cells demonstrated an apple-green fluorescence against a background of red fluorescing material stained by the Evans Blue counterstain. Images were acquired with original magnification 40×, scale bar 20 μm.


6. Flow Cytometry Assay


SARS-CoV-2 receptor-binding domain (RBD)-expressed Madin-Darby Canine Kidney (MDCK) cells (RBD cells) were prepared and resuspended. RBD Cells were probed with purified MAbs in 3% BSA. Bound primary antibodies were detected with FITC-conjugated anti-IgG secondary antibody. The binding activities were analyzed by BD FACSCanto™ II flow cytometer (BD Biosciences, USA). The nonlinear regression analysis was performed to obtain the Kd value of MAb against SARS-CoV-2 RBD.


7. Results


Peripheral blood samples were obtained from convalescent patients with laboratory-confirmed SARS-CoV-2 infections and circulating plasmablasts were identified by flow cytometry (Huang 2015, Huang 2017, Huang 2019). Sorted single cells were used to generate SARS-CoV-2 human monoclonal antibodies (FIG. 1). A total of 64 SARS-CoV-2 antigen-reactive human IgG1 monoclonal antibodies were produced, of them 34 were reactive to spike protein of SARS-CoV-2 (Table 1, FIG. 2) and 30 were reactive to nucleocapsid protein of SARS-CoV-2 (Table 5), as tested by binding of recombinant proteins in the enzyme-linked immunosorbent assay.









TABLE 1







Antigenic specificity of 34 SARS-CoV-2 spike


reactive human monoclonal antibodies.











Cross-reactive to other



Antigenic specificity
betacoronaviruses















SARS-
SARS-
SARS-
SARS-


Human



CoV-2
CoV-2
CoV-2
CoV-2
SARS spike
MERS
coronavirus


MAb
spike
S1 subunit
RBD
S2
S1 subunit
spike
OC43 spike





FM 7B
+
+
+

+




FD 8B
+








EW 9B
+








FN 12A
+
+
+

±
±
±


FG 12C
+








FI 1C
+
+
+






FI 4A
+
+
+






FD 1E
+








FD 11E
+








FN 2C
+


+


+


EY 6A
+
+
+

+




EY 6A-1*
+
+
+

+




FD 11D
+
±


±
±
±


EW 9C
+


+

±
+


EW 9C-1*
+


+

±
+


FD 1D
+


+
±
±
±


FG 7A
+


+





FM 1A
+


+





FD 11A
+
+
+






FN 8C
+








FD 5E
+








FD 5D
+
+
+






FI 3A
+
+
+






FD 10A
+


+
±
±
±


FJ 4E
+


+
±
+
+


FJ 1C
+
+


±




EW 8B
+








FD 11C
+
+







FD 7C
+
+







FD 7D
+








FJ 10B
+
+
+

+




FB 9D
+


+

+
+


FB 1E
+


+

+
+


EZ 7A
+
+
+

+
+
+





*Both EY 6A and EW 9C have an additional pair of expression vectors.


Abbreviations: Mab, monoclonal antibody; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; RBD, receptor-binding domain; SARS, severe acute respiratory syndrome coronavirus; MERS, Middle East respiratory syndrome coronavirus.






Among spike-reactive antibodies, 15 recognize the S1 subunit and 10 recognize the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (Table 1, FIGS. 3A to 3K). Thirteen (13) of these SARS-CoV-2 spike-reactive antibodies cross-react to the spike protein of other betacoronaviruses, including SARS, MERS or human coronavirus OC43 (Table 1), suggesting the presence of conserved epitopes on the spike of betacoronaviruses. Twenty-four (24) spike-reactive antibodies tested bound to viral antigens expressed on the infected cells by immunofluorescence assay, suggesting the majority of spike-reactive human antibodies may recognize complex conformational epitopes on the viral spike.


Variable domain sequences were obtained from the 34 SARS-CoV-2 spike-reactive monoclonal antibodies, each of which was unique and harbored somatic mutations (Table 2, Table 3, Table 4). Table 2 shows that SARS-CoV-2 spike-reactive monoclonal antibodies were evolved from 25 clonal groups defined by their heavy chain VDJ and light chain VJ rearrangements. Their average nucleotide somatic mutations are 6±9 in the heavy chain variable regions and 4±6 in the light chain variable regions. It was noted that 14 SARS-CoV-2 spike-reactive antibodies carry low number (less than 2) of somatic mutations in the heavy chain variable region, suggesting a de-novo B cell response to the SARS-CoV-2 virus in humans. Table 3 shows the nucleotide and amino acid sequences of the heavy chain variable regions and the light chain variable regions of the 34 SARS-CoV-2 spike-reactive monoclonal antibodies and Table 4 shows the amino acid sequences of complementarity-determining regions (CDRs) of the heavy chain variable regions and the light chain variable regions of the 34 SARS-CoV-2 spike-reactive human monoclonal antibodies.









TABLE 2







Gene usage of heavy and light chain variable domains of SARS-CoV-2


spike-reactive human monoclonal antibodies.


























VH junction
Mut
aa


VL Junction
Mut
aa


MAb
H-L
VH
JH
DH
rf
sequence
#
Sub
VL
JL
Sequence
#
Sub























FM 7B
H-λ
1-3*04 F
5*02 F
2-2*01 F
2
CARDPTYCSSTSCY
3
1
3-21*02 F
3*02 F
CQVWDSTGDHS
2
2








PFSWFDPW




WVF







FD 8B
H-κ
1-24*01 F
6*02F
2-2*01 F
2
CATAAAINCSSTSC
0
0
2-24*01 F
2*01 F
CTQATQFPYTF
2
2








YYYYYYYGMDVW












EW 9B
H-κ
1-46*01 or
6*02 F
2-2*01 F
3
CAREDGVVPAANL
2
2
3-11*01F
4*01 F
CQQRSNWPLTF
0
0




03 F



MISLEDYYYYGMDVW












FN 12A
H-λ
1-69*04 or
6*02 F
2-2*01 F
2
CARSGCSSTSCPSN
1
0
1-51*01 F
3*02 F
CGTWDSSLSALV
1
0




09 F



LYYYYYGMDVW




F







FG 12C
H-λ
3-9*01 F
4*02 F
4-17*01 F
2
CAKDMRVHDYGD
0
0
3-21*01 F
2*01 or
CQVWDSSSDHPV
1
1








YYFDYW



3*01 F
F







FI 1C
H-λ
3-11*04 F
3*02 F
6-13*01 F
1
CARRSNRFLIAFDIW
3
2
2-14*01 F
2*01 or
CSSYTSSSTLVVF
1
1












3*01 F








FI 4A
H-λ
3-21*01 F
4*02 F
2-21*02 F
2
CATYLFGDSHTYW
9
7
6-57*02 F
3*02 F
CQSYDSSNLHWV
0
0













F







FD 1E
H-λ
3-21*01 F
6*02 F
6-13*01 F
2
CASLAAAGPETYY
1
0
3-1*01 F
2*01 or
CQAWDSSVVF
0
0








YYGMDVW



3*01 F








FD 11E
H-λ
3-21*01 F
6*02 F
6-13*01 F
2
CASLAAAGPETYY
0
0
3-1*01 F
2*01 or
CQAWDSSVVF
0
0








YYGMDVW



3*01 F








FN 2C
H-λ
3-30*03 or
3*01 or
3-10*01 F
1
CAKRREIFWLGEPP
22
14
1-40*01F
3*02 F
CQSYDSSLSGSVF
8
4




18 or 3-30-
02 F


LSDAFDFW











5*01 F
















EY 6A
H-κ
3-30*03 or
4*02 F
2-21*01 F
1
CAKDGGKLWVYYF
6
5
1-39*01 F
4*01 F
CQQSYSTLALTF
0
0




18 or 3-30-



DYW


or 1D-








5*01 F






39*01 F









EY 6A-1*
H-κ
3-30*03 or
4*02 F
2-21*01 F
1
CAKDGGKLWVYYF
6
5
1-39*01 F
4*01 F
CQQSYSTLALTF
0
0




18 or 3-30-



DYW


or 1D-








5*01 F






39*01 F









FD 11D
H-κ
3-30*03 or
4*02 F
6-19*01 F
1
CAKEGAGSGWYRH
1
1
3-20*01 F
1*01 F
CQQYGSSPLTF
0
0




18 or 3-30-



HKPGYYFDYW











5*01 F
















EW 9C
H-κ
3-30*03 or
5*01 or
3-10*01 F
1
CARATSIFWFGEGR
33
15
3-11*01F
4*01 F
CQQRSNWPLTF
25
13




18 or 3-30-
02 F


NWFDPW











5*01 F
















EW 9C-1*
H-κ
3-30*03 or
5*01 or
3-10*01 F
1
CARATSIFWFGEGR
33
15
3-11*01 F
4*01 F
CQQRSNWPLTF
25
13




18 or 3-30-
02 F


NWFDPW











5*01 F
















FD 1D
H-κ
3-30*04 or 
5*02 F
3-10*01 F
2
CARAGSGSYLNWF
1
0
3-11*01 F
5*01 F
CQQRSNWPITF
0
0




3-30-3*03



DPW











F
















FG 7A
H-κ
3-30-3*01
4*02 F
1-26*01 F
3
CARSHSGSYRASLD
2
2
3-20*01 F
2*01 F
CQQYGSSPLYTF
0
0




F



YW












FM 1A
H-λ
3-33*01 or
4*02 F
1-26*01 F
1
CAREGAVGATRGF
1
0
3-21*02 F
2*01 or
CQVWDSSSDQG
2
1




06 F



DYW



3*01 F
VF







FD 11A
H-λ
3-33*01 or
6*02 F
3-9*01 F
2
CAKGPDILTGYYNY
2
2
1-40*01 F
2*01 or
CQSYDSSLSGFY
0
0




06 F



YYYGMDVW



3*01 F
VVF







FN 8C
H-λ
3-33*05 F
6*02 F
3-9*01 F
2
CARERTYYDILTGY
1
1
3-21*02 F
3*02 F
CQVWDSSSDHW
1
1








RHYYGMDVW




VF







FD 5E
H-κ
3-43D*03 F
6*02 F
3-3*01 F
1
CAKDSVRFRYYYG
0
0
3-11*01F
3*01 F
CQQRSNWPLTF
0
0








MDVW












FD 5D
H-κ
3-48*04 F
6*02 F
6-13*01 F
2
CASPGGITAAGTSV
4
2
2-28*01 or
1*01 F
CMQALQTPITWT
0
0








LFGYYGMDVW


2D-28*01 F

F







FI 3A
H-κ
3-53*01 F
3*02 F
6-6*01 F
3
CARDHVRPGMNIW
2
2
1-33*01 or
4*01 F
CQQYDNLPVTF
1
0











1D-33*01 F









FD 10A
H-κ
3-74*01 F
3*02 F


CANMAFDIW
0
0
4-1*01 F
5*01 F
CQQYYSTPITF
0
0





FJ 4E
H-κ
4-31*06 F
5*02 F
3-10*01 F
2
CARDEYDSSDSGIQ
20
15
1-39*01 F
1*01F
CQQSYSTPWTF
15
10








GHWFDPW


or 1D-















39*01 F









FJ 1C
H-λ
4-38-2*02
4*02 F
3-10*01 F
1
CARDKALLWFGEL
0
0
2-14*01 F
2*01 or
CSSYTSSSTLVF
1
1




F



FTNLFDYW



3*01 F








EW 8B
H-κ
4-39*01 F
3*02 F
3-16*01 F
2
CARQEVWGGFDIW
20
12
3-20*01 F
1*01 F
CQQYGSSPTF
4
4





FD 11C
H-λ
4-39*07 F
6*02 F
3-10*01 F
2
CAREYYYGSETKK
2
1
3-1*01 F
2*01 or
CQAWDSSTVF
0
0








YYYYYGMDVW



3*01 F








FD 7C
H-κ
4-59*01 F
5*02 F
3-10*02 F
3
CARDYRFGELFGRF
1
1
3-15*01 F
1*01 F
CQQYNNWPRAF
2
1








AWFDPW












FD 7D
H-λ
5-10-1*03
3*02 F
2-2*01 F
2
CARHSDCSSTSCYF
1
1
3-25*03 F
2*01 or
CQSADSSGTYVV
1
0




F



VDAFDIW



3*01 F
F







FJ 10B
H-κ
5-10-1*03
6*02 F
3-16*01 F
1
CARLDPRYGPDYY
2
1
1-39*01 F
4*01 F
CQQSYSTPLTF
3
2




F



GMDVW


or 1D-















39*01 F









FB 9D
H-λ
5-51*01 F
6*02 F
3-10*01 F
3
CARHWASMVRGVI
27
11
2-8*01 F
3*02 F
CSSYAFGGSDTR
20
10








RASHYYGMDVW




VF







FB 1E
H-λ
5-51*01 F
6*02 F
3-10*01 F
3
CARHWASMVRGVI
22
11
2-8*01 F
3*02 F
CSSYAFGGSDIRV
16
8








RASHYYGMDVW




F







EZ 7A
H-λ
5-51*01 F
6*02 F
5-12*01 F
3
CARGWVYRGFPYY
2
1
2-11*01 F
3*02 F
CCSYAGSYTLVF
0
0








GMDVW





*Both EY 6A and EW 9C have an additional pair of expression vectors.


Abbreviations: H, heavy; K, kappa; λ, lambda; VH, variable gene segment of the heavy chain variable domain; DH, diversity gene segment of the heavy chain variable domain; JH, joining gene segment of the heavy chain variable domain; Mut, number of nucleotide mutations; Sub, number of amino acid substitutions; VL, variable gene segment of the light chain variable domain; JL, joining gene segment of the light chain variable domain.













TABLE 3





Nucleotide and amino acid sequences of the heavy chain variable regions


(VH) and light chain variable regions (VL) of the 34 SARS-CoV-2 spike-reactive human


monoclonal antibodies.







Nucleotide sequences of VH and VL









FM 7B
VH
GAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCTTCT




GGATACACCTTCACTAGCTATGCTATGCATTGGGTGCGCCAGGCCCCCGGACAAAGGCTTGAGTGGATGGGATGGAT




CAACACTGGCAATGGTAACACAAAATATTCACAGAAGTTCCAGGGCAGAGTCACCATTACCAGGGACACATCCGCG




AGCACAGCCTACATGGAGCTGAGCAGCCTGAGATCTGAAGACACGGCTGTGTATTACTGTGCGAGAGATCCCACCT




ATTGTAGTAGTACCAGCTGCTACCCTTTTAGCTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA




(SEQ ID NO: 513)



VL
AATTTTATGCTGACTCAGCCACCCTCGGTGTCAGTGGCCCCAGGACAGACGGCCAGGATTACCTGTGGGGGAAACA




ACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCGTCTATGATGATAG




CGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGG




GTCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATAGTACTGGTGATCATTCTTGGGTGTTCGGCGG




AGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 514)





FD 8B
VH
GAGGTGCAGCTGTTGGAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGTTTCC




GGATACACCCTCACTGAATTATCCATGCACTGGGTGCGACAGGCTCCTGGAAAAGGGCTTGAGTGGATGGGAGGTTT




TGATCCTGAAGATGGTGAAACAATCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCGAGGACACATCTACA




GACACAGCCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCAACAGCTGCAGCAA




TTAATTGTAGTAGTACCAGCTGCTACTATTACTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCA




CCGTCTCCTCA (SEQ ID NO: 515)



VL
GATATTGTGATGACCCAGACTCCACTCTCCTCACCTGTCACCCTTGGACAGCCGGCCTCCATCTCCTGCAGGTCTAGT




CAAAGCCTCGTACACAGTGATGGAAACACCTACTTGAGTTGGCTTCAGCAGAGGCCAGGCCAGCCTCCAAGACTCC




TAATTTATAAGATTTCTAGCCGGTTCTCTGGGGTCCCAGACAGATTCAGTGGCAGTGGGGCAGGGACAGATTTCACA




CTGAAAATCAGCAGGGTGGAAGCTGAGGATGTCGGGGTTTATTACTGCACGCAAGCTACACAATTTCCGTACACTTT




TGGCCAGGGGACCAAAGTGGATATCAAA (SEQ ID NO: 516)





EW 9B
VH
GAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCT




GGATACACCTTCACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAAT




CAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAGGGACACGTCCAC




GAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCGAGAGAGGATGGA




GTAGTACCAGCTGCTAATTTGATGATATCGTTGGAAGACTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACC




ACGGTCACCGTCTCCTCA (SEQ ID NO: 517)



VL
GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA




GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCA




TCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCA




GCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGCCCCTCACTTTCGGCGGAGGGACC




AAAGTGGATATCAAA (SEQ ID NO: 518)





FN 12A
VH
CAGGTTCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGGCTTCTG




GAGGCACCTTCAGCAGCTATGCTATCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAAGGAT




CATCCCTATCCTTGGTATAGCAAACTACGCACAGAAGTTCCAGGGCAGAGTCACGATTACCGCGGACAAATCCACGA




GCACAGCCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCGAGATCGGGCTGTAG




TAGTACCAGCTGCCCCTCAAACCTTTACTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCG




TCTCCTCA (SEQ ID NO: 519)



VL
CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGGTCACCATCTCCTGCTCTGGAAGCA




GCTCCAACATTGGGAATAATTATGTATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTATGACA




ATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCAAGTCTGGCACGTCAGCCACCCTGGGCATCACC




GGACTCCAGACTGGGGACGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGAGTGCTTTGGTGTTCGGCG




GAGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 520)





FG 12C
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGCAGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCACCTTTGATGATTATGCCATGCACTGGGTCCGGCAAGCTCCAGGGAAGGGCCTGGAGTGGGTCTCAGGTATT




AGTTGGAATAGTGGTAGCATAGGCTATGCGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGA




ACTCCCTGTATCTGCAAATGAACAGTCTGAGAGCTGAGGACACGGCCTTGTATTACTGTGCAAAAGATATGAGGGTG




CATGACTACGGTGACTACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID NO: 521)



VL
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAAAGACGGCCAGGATTACCTGTGGGGGAAACA




ACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTATTATGATAGC




GACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGG




TCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATAGTAGTAGTGATCATCCGGTATTCGGCGGAGGG




ACCAAGCTGACCGTCCTA (SEQ ID NO: 522)





FI 1C
VH
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCAAGCCTGGAGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCACCTTCAGTGACTACTACATGAGCTGGATCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTCATACATT




AGTAGTAGTGGTAGTACCATATACTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGGGACAACGCCAAGAA




CTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGGCGCAGTAACAGG




TTTTTGATTGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID NO: 523)



VL
CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGACGATCACCATCTCCTGCACTGGAACCAG




CAGTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATG




AGGTCAGTAATCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATC




TCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGCACTCTCGTGGTATTCGG




CGGAGGGACCAAGCTGACCGTCCCA (SEQ ID NO: 524)





FI 4A
VH
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCACCTTCAGTCGCTTTAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCCTCCATT




AGTAGTAGTGGTAGTTACATATACTTCGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA




CTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTATATATTACTGTGCGACTTATTTATTTGGTGA




CTCCCATACCTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID NO: 525)



VL
CAGTCTGTGCTGACGCAGCCCCACTCTGTGTCGGAGTCTCCGGGGAAGACGGTAACCATCTCCTGCACCGGCAGCA




GTGGCAGCATTGCCAGCAACTATGTGCAGTGGTACCAGCAGCGCCCGGGCAGTGCCCCCACCACTGTGATCTATGAG




GATAACCAAAGACCCTCTGGGGTCCCTGATCGGTTCTCTGGCTCCATCGACAGCTCCTCCAACTCTGCCTCCCTCAC




CATCTCTGGACTGAAGACTGAGGACGAGGCTGACTACTACTGTCAGTCTTATGATAGCAGCAATCTCCATTGGGTGT




TCGGCGGAGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 526)





FD 1E
VH
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCACCTTCAGTAGCTATAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATT




AGTAGTAGTAGTAGTTACATATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA




CTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGCTTAGCAGCAGCTG




GCCCCGAAACCTACTATTACTACGGTATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID NO:




527)



VL
TCCTATGAGCTGACACAGCCACCCTCAGTGTCCGTGTCCCCAGGACAGACAGCCAGCATCACCTGCTCTGGAGATA




AATTGGGGGATAAATATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCATCTATCAAGATAGCA




AGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGAC




CCAGGCTATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGCGTGGTATTCGGCGGAGGGACCAAGCTG




ACCGTCCTA (SEQ ID NO: 528)





FD 11E
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCACCTTCAGTAGCTATAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATT




AGTAGTAGTAGTAGTTACATATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA




CTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGCTTAGCAGCAGCTG




GCCCCGAAACCTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID NO:




529)



VL
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAGGACAGACAGCCAGCATCACCTGCTCTGGAGATAA




ATTGGGGGATAAATATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCATCTATCAAGATAGCAA




GCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACC




CAGGCTATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGCGTGGTATTCGGCGGAGGGACCAAGCTGA




CCGTCCTA (SEQ ID NO: 530)





FN 2C
VH
GAGGTGCAGCTGTTGGAGTCCGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCAACTTCAATAACTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCTACTATT




TCATATGAAGGAAGTAAAAAATTTTATGTAGACTCCGTGAAGGGCCGATTCACCATCTCCAAAGACAATTCCAAGAA




CACGCTGTATCTGCAGATGAACAGCCTGAGAGTTGACGACACGGCTTTTTATTACTGTGCGAAACGGAGGGAAATAT




TTTGGTTGGGGGAGCCACCTCTCTCGGATGCTTTTGATTTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ




ID NO: 531)



VL
CAGTCTGTGCTGACTCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCACCATCTCCTGCACTGGGAGCG




GCTCCAACATCGGGGCAGGTTATGATGTACACTGGTACCAGTTCCTTCCAGGAACAGCCCCCCAACTCCTCATCTATG




GTAACAACAATCGTCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATC




ACTGGGCTCCAGGCTGAAGATGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGAGTGGTTCGGTGTTCGG




CGGAGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 532)





EY 6A
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




CATTCACCTTCAGTAGCTATGACATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATA




TCATATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAAC




ACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAAGATGGGGGAAAGC




TATGGGTGTACTACTTTGACTACTGGGGCCAGGGAACCACGGTCACCGTCTCCTCA (SEQ ID NO: 533)



VL
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAG




TCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATC




CAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTC




TGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCTCGCGCTCACTTTCGGCGGAGGGACC




AAAGTGGATATCAAA (SEQ ID NO: 534)





EY 6A-1*
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




CATTCACCTTCAGTAGCTATGACATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATA




TCATATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAAC




ACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAAGATGGGGGAAAGC




TATGGGTGTACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID NO: 535)



VL
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAG




TCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATC




CAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTC




TGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCTCGCGCTCACTTTCGGCGGAGGGACC




AAGGTGGAGATCAAA (SEQ ID NO: 536)





FD 11D
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATA




TCATATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAAC




ACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAAGAAGGAGCCGGCA




GTGGCTGGTACCGCCACCACAAGCCGGGCTACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTC




A (SEQ ID NO: 537)



VL
GAAATTGTGTTGACACAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA




GTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGT




GCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCA




GCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCTCTAACGTTCGGCCAAGGG




ACCAAGGTGGAAATCAAA (SEQ ID NO: 538)





EW 9C
VH
GAAGTGCAGCTGGTGGAGTCGGGGGGGGGCGTGGTCCAGCCTGGGGCGTCCCTGAGACTCTCCTGCGTAGCCTCC




GGATTCACCTTTAATAATTTTGGATTCCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGCTGGCAGTGAT




ATCATATGAGGGAAGTAAGACTTACTATGCAGAGTCGCTGAAGGGCCGCTTCACCATCTCCAGAGACACTTCCAAGA




ACACGGTGTATCTGCAGATGAACAGCCTGAGGGCTGAGGACACGGCTGTCTATTACTGTGCGCGGGCGACTTCAATT




TTTTGGTTTGGAGAGGGCCGTAACTGGTTCGACCCCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID




NO: 539)



VL
GAAATTGTGTTGACGCAGTCTCCAGGCACCGTGTCTTTGTCTGCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA




GTCAGAATGTTGGCACCGACTTAGCCTGGTATGTTCAGAGACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATACAT




CCAATAAGGCCACTGGCATCCCAGCCAGGTTTAGTGGTCGAGGGTCTGGGACAGACTTCACTCTCACCATCGACAG




CCTAGAGCCTGAAGACTTTGCAGTTTATTACTGTCAACAGCGTAGCAACTGGCCGCTCACTTTCGGCGGAGGGACCA




AGGTGGAAATCAGA (SEQ ID NO: 540)





EW 9C-1*
VH
GAGGTGCAGCTGGTGGAGTCGGGGGGGGGCGTGGTCCAGCCTGGGGCGTCCCTGAGACTCTCCTGCGTAGCCTCC




GGATTCACCTTTAATAATTTTGGATTCCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGCTGGCAGTGAT




ATCATATGAGGGAAGTAAGACTTACTATGCAGAGTCGCTGAAGGGCCGCTTCACCATCTCCAGAGACACTTCCAAGA




ACACGGTGTATCTGCAGATGAACAGCCTGAGGGCTGAGGACACGGCTGTCTATTACTGTGCGCGGGCGACTTCAATT




TTTTGGTTTGGAGAGGGCCGTAACTGGTTCGACCCCTGGGGCCAGGGAGCCCTGGTCACCGTCTCCTCA (SEQ ID




NO: 541)



VL
GAAATAGTGATGACGCAGTCTCCAGGCACCGTGTCTTTGTCTGCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA




GTCAGAATGTTGGCACCGACTTAGCCTGGTATGTTCAGAGACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATACAT




CCAATAGGGCCACTGGCATCCCAGCCAGGTTTAGTGGTCGAGGGTCTGGGACAGACTTCACTCTCACCATCGACAG




CCTAGAGCCTGAAGACTTTGCAGTTTATTACTGTCAACAGCGTAGCAACTGGCCGCTCACTTTCGGCGGAGGGACCA




AGGTGGAAATCAAA (SEQ ID NO: 542)





FD 1D
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCACCTTCAGTAGCTATGCTATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATA




TCATATGATGGAAGTAATAAATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAA




CACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAGCGGGTTCGGGG




AGCTACCTCAACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID NO: 543)



VL
GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA




GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCA




TCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCA




GCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGCCGATCACCTTCGGCCAAGGGACA




CGACTGGAGATTAAA (SEQ ID NO: 544)





FG 7A
VH
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCACCTTCAGTAGCTATGCTATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATA




TCATATGATGGAAGCAATAAATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAA




CACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGATCCCATAGTGGGA




GCTACCGAGCCTCCCTTGACTACTGGGGCCAGGGAACCACGGTCACCGTCTCCTCA (SEQ ID NO: 545)



VL
GACATCCAGTTGACCCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA




GTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGT




GCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCA




GCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCTTTGTACACTTTTGGCCAGG




GGACCAAGGTGGAAATCAAA (SEQ ID NO: 546)





FM 1A
VH
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG




GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAATGGGTGGCAGTTATA




TGGTATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAA




CACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAGGGGGCAGTG




GGAGCTACTAGGGGGTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID NO: 547)



VL
TCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGGCCCCAGGACAGACGGCCAGGATTACCTGTGGGGGAAACA




ACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCGTCTATGATGATAG




CGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGG




GTCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATAGTAGTAGTGATCAGGGGGTATTCGGCGGAG




GGACCAAGCTGACCGTCCTA (SEQ ID NO: 548)





FD 11A
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCT




GGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT




ATGGTATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGA




ACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAAAGGCCCCGATATT




TTGACTGGTTATTATAACTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA(SEQ




ID NO: 549)



VL
CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCACCATCTCCTGCACTGGGAGCA




GCTCCAACATCGGGGCAGGTTATGATGTACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT




GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCAT




CACTGGGCTCCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGAGTGGTTTCTATGTGG




TATTCGGCGGAGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 550)





FN 8C
VH
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTG




GATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATA




TCATATGATGGAAGTAATAAATACTATGCAGACACCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAA




CACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAACGGACGTAT




TACGATATTTTGACTGGTTATAGACACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA




(SEQ ID NO: 551)



VL
TCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGGCCCCAGGACAGACGGCCAGGATTACCTGTGGGGGAAACA




ACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCGTCTATGATGATAG




CGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGG




GTCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATAGTAGTAGTGATCATTGGGTGTTCGGCGGAGG




GACCAAGCTGACCGTCCTA (SEQ ID NO: 552)





FD 5E
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGTCGTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCACCTTTGATGATTATGCCATGCACTGGGTCCGTCAAGCTCCGGGGAAGGGTCTGGAGTGGGTCTCTCTTATTA




GTTGGGATGGTGGTAGCACCTACTATGCAGACTCTGTGAAGGGTCGATTCACCATCTCCAGAGACAACAGCAAAAA




CTCCCTGTATCTGCAAATGAACAGTCTGAGAGCTGAGGACACCGCCTTGTATTACTGTGCAAAAGATTCGGTACGAT




TTCGGTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA (SEQ ID NO: 553)



VL
GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA




GTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCA




TCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCA




GCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGCCTCTCACTTTCGGCCCTGGGACC




AAAGTGGATATCAAA (SEQ ID NO: 554)





FD 5D
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCACCTTCAGTAGCTATAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTCATACATT




AGTAGTAGTAGTAGTACCATATACTACGCAGACCCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAA




CTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGTCCCGGAGGGATC




ACAGCAGCTGGTACATCAGTTCTTTTTGGGTACTACGGTATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTC




TTCA (SEQ ID NO: 555)



VL
GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTAGT




CAGAGCCTCCTGCATAGTAATGGATACAACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT




GATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACAC




TGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAAACTCCCATCACGTGG




ACGTTCGGCCAAGGGACCAAAGTGGATATCAAA (SEQ ID NO: 556)





FI 3A
VH
GAGGTGCAGCTGTTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GGTTCACCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTAT




TTATAGCGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACA




CGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGCGAGAGATCACGTGCGGCC




CGGGATGAATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID NO: 557)



VL
GCCATCCGGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGAG




TCAGGACATTAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGCATC




CAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCC




TGCAGCCTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATCTTCCGGTCACTTTCGGCGGAGGGACCAAAG




TGGATATCAAA (SEQ ID NO: 558)





FD 10A
VH
GAAGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTG




GATTCACCTTCAGTAGCTACTGGATGCACTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGTGTGGGTCTCACGTATT




AATAGTGATGGGAGTAGCACAAGCTACGCGGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGA




ACACGCTGTATCTGCAAATGAACAGTCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCAAACATGGCTTTTGAT




ATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID NO: 559)



VL
GACATCGTGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCA




GCCAGAGTGTTTTATACAGCTCCAACAATAAGAACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAG




CTGCTCATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTT




CACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTACTCCGATCAC




CTTCGGCCAAGGGACACGACTGGAGATTAAA (SEQ ID NO: 560)





FJ 4E
VH
CAGGTGCAGCTGGTGGAGTCGGGCCCAGGACTGGTGAAGCCTTCAGAGACCCTGTCCCTCACCTGCAGCGTCTCTG




GTGGCTCCATCAGTAGTGGTACTTACTACTGGAGCTGGATCCGCCAGCAGCCAGGGAAGGGCCTGGAGTGGATTGG




GTACATCTATAACACTGGGAGACCCTACTACAACCCGTTTCTCAAGAGTCGAATTACCATATCAGTGGACTCGTCTAA




GAACCAGTTCTCCCTGAAGCTGACCTCTGTGACTGCCGCGGACACGGCCGTGTATTATTGTGCGAGAGATGAATATG




ATTCCTCTGATTCGGGGATTCAAGGCCACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA




(SEQ ID NO: 561)



VL
GCCATCCGGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTGGGAGACAGAGTCACCATCACTTGCCGGACAAG




TCAGAACATTAACAGTTTTTTAAATTGGTATCAGCAGAAACCAGGGAAAGGCCCTAACCTCCTGATCTATGGTGCATT




CACTTTACAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACACTCACCATCAGCAGTC




TACAACCTGAAGATTTTGCAACTTACTTCTGTCAACAGAGTTACAGTACCCCGTGGACGTTCGGCCAAGGGACCAA




GGTGGAAATCAAA (SEQ ID NO: 562)





FJ 1C
VH
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG




GTTACTCCATCAGCAGTGGTTACTACTGGGGCTGGATCCGGCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGAG




TATCTATCATAGTGGGAGCACCTACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGA




ACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCCGCAGACACGGCCGTGTATTACTGTGCGAGAGATAAGGCCTTA




CTATGGTTCGGGGAGTTATTTACCAACCTCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID




NO: 563)



VL
CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAG




CAGTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATG




AGGTCAGTAATCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATC




TCTGGGCTCCAGGCTGAGGACGAGGCTAATTATTACTGCAGCTCATATACAAGCAGCAGCACTCTGGTATTCGGCGG




AGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 564)





EW 8B
VH
GTCCAGCTGGTACAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG




GTGGCTCCATCAGCAGTAGTGGTTACTACTGGGGCTGGATCCGGCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGC




GAATTTTTATTTTACTGGGAGTGTCTACTCCAACCCGTCCCTCAAGAGTCGAGTCACCATATCCGTTGACACGTCCAA




GAACCAGCTCTCCCTGAAATTGAGCTATCTGACCGCCGCAGACACGGCTGTATATTACTGTGCGAGACAAGAGGTTT




GGGGTGGTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID NO: 565)



VL
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGTCACCCTCTCCTGCAGGGCCA




GTCAGAGTCTTGGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGT




GCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCA




GCAGACTGGAGCCTGAAGATTTTGCAGTGTATTTCTGTCAGCAGTATGGTAGCTCACCGACGTTCGGCCAAGGGACC




AAGGTGGAAATCAAA (SEQ ID NO: 566)





FD 11C
VH
GAGGTGCAGCTGTTGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG




GTGGCTCCATCAGCAGTAGTAGTTACTACTGGGGCTGGATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGG




GAGTATCTATTATAGTGGGAGCACCTACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAA




GAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCCGCGGACACGGCCGTGTATTACTGTGCGAGGGAGTATTACT




ATGGTTCGGAGACAAAAAAATACTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCC




TCA (SEQ ID NO: 567)



VL
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAGGACAGACAGCCAGCATCACCTGCTCTGGAGATAA




ATTGGGGGATAAATATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCATCTATCAAGATAGCAA




GCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACC




CAGGCTATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGCACCGTATTCGGCGGAGGGACCAAGCTGA




CCGTCCTA (SEQ ID NO: 568)





FD 7C
VH
CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTG




GTGGCTCCATCAGTAGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGACTGGAGTGGATTGGGTATATC




TATTACAGTGGGAGCACCAACTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCA




GTTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGGACACGGCCGTGTATTACTGTGCGAGAGATTATAGGTTCGGGG




AGTTATTTGGAAGGTTTGCCTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA(SEQ ID NO: 569)



VL
GACATCCAGTTGACCCAGTCTCCAGCCACCCTGTCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCA




GTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCA




TCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCA




GCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGGCCTAGGGCTTTCGGCCCTGGGACCA




AGGTGGAAATCAGA (SEQ ID NO: 570)





FD 7D
VH
GAGGTGCAGCTGGTGGAGTCCGGAGCAGAGGTGAAAAAGCCCGGGGAGTCTCTGAGGATCTCCTGTAAGGGTTCT




GGATACAGCTTTACCAGCTACTGGATCAGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGGATGGGGAGGA




TTGATCCTAGTGACTCTTATACCAACTACAGCCCGTCCTTCCAAGGCCACGTCACCATCTCAGCTGACAAGTCCATCA




GCACTGCCTACCTGCAGTGGAGCAGCCTGAAGGCCTCGGACACCGCCATGTATTACTGTGCGAGACATTCTGATTGT




AGTAGTACCAGCTGCTATTTCGTCGATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID




NO: 571)



VL
TCCTATGAGCTGACTCAGCCACCCTCGGTGTCAGTGTCCCCAGGACAGACGGCCAGGATCACCTGCTCTGGAGATG




CATTGCCAAAGCAATATGCTTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATATAAAGACAGT




GAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAGCTCAGGGACAACAGTCACGTTGACCATCAGTGGAG




TCCAGGCAGAAGACGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTACTTATGTGGTATTCGGCGGAGGG




ACCAAGCTGACCGTCCTA (SEQ ID NO: 572)





FJ 10B
VH
CAGGTTCAGCTGGTGCAGTCCGGAGCAGAGGTGAAAAAGCCCGGGGAGTCTCTGAGGATCTCCTGTAAGGGTTCTG




GATACAGCTTTACCAGCTACTGGATCAGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGGATGGGGAGGAT




TGATCCTAGTGACTCTTATACCAACTACAGCCCGTCCTTCCAAGGCCACGTCACCATCTCAGCTGACAAGTCCATCAG




CACTGCCTACCTGCAGTGGAGCAGCCTGAAGGCCTCGGACACCGCCATGTATTACTGTGCGAGACTAGACCCCCGTT




ATGGGCCCGACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA (SEQ ID NO: 573)



VL
GCCATCCGGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTGGGAGACAGAGTCACCATCACTTGCCGGGCAAG




TCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCCATGCTGCATC




CAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATGAGCAGTC




TGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCGCTCACTTTCGGCGGAGGGACCAAG




GTGGAAATCAGA (SEQ ID NO: 574)





FB 9D
VH
CAGGTGCAGCTGGTGGAGTCTGGAGCAGAAGTGAAAAAGCCCGGGGAGTCTTTGAAGATCTCCTGTCAGGGTTCT




GGATACAGGTTTAACAGTTATTGGATCGCCTGGGTGCGCCAAATGCCCGGGAAAGGCCTGGAGTGGATGGGGAGCA




TCTTTCCTACTGACTCTGATGTCAGATATAACCCGTCCTTCCAAGGCCAGGTCACCATTTCGGCCGACAAGTCCATCA




GTTTCGCCTACCTGCAGTGGAGCAGCCTGAAGGCCTCGGACACCGCCATATATTATTGTGCGAGACATTGGGCCAGT




ATGGTTCGGGGAGTAATTCGTGCCAGTCATTATTATGGCATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTC




CTCA (SEQ ID NO: 575)



VL
CAGCCTGTGCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCAGTCACCATCTCCTGCTCTGGAGCCAG




CAGTGACATTGGTAAATATAACTATGTCTCCTGGTACCAACAGCTCCCAGGCAAAGCCCCCAAACTCCTGATTTATGA




GGTCACTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCT




CTGGGCTCCAGGCTGACGATGAGGCTGATTATTACTGCAGCTCTTATGCATTTGGAGGCAGCGACACCCGGGTGTTC




GGCGGAGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 576)





FB 1E
VH
GAAGTGCAGCTGGTGGAGTCTGGAGCAGAAGTGAAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGTCAGGGTTCT




GGATACAGGTTTAATAGTTATTGGATCGCCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGGATGGGGAGCAT




CTTTCCTACTGACTCTGATATCAGATATAACCCGTCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATCAG




TATCGCCTACCTGCAGTGGAGCAGCCTGAAGGCCTCGGACACCGCCATATATTATTGTGCGAGACATTGGGCCAGTAT




GGTTCGGGGAGTAATTCGTGCCAGTCATTATTATGGCATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCT




CA (SEQ ID NO: 577)



VL
CAGTCTGTGCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCAGTCACCATCTCCTGCTCTGGAGCCAG




CAGTGACATTGGTGATTATAACTATGTCTCCTGGTACCAACAGCTCCCAGGCAAAGCCCCCAAACTCCTGATTTATGA




GGTCACTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCT




CTGGGCTCCAGGCTGACGATGAGGCTGATTACTACTGCAGCTCTTATGCATTTGGAGGCAGCGACATCCGGGTGTTC




GGCGGAGGGACCAAGCTGGCCGTCCTA (SEQ ID NO: 578)





EZ 7A
VH
GAAGTGCAGCTGGTGGAGTCTGGAGCAGAGGTGAAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGTAAGGGTTCT




GGATACAGCTTTACCAGCTACTGGATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGGATGGGGATCA




TCTATCCTGGTGACTCTGATACCAGATACAGCCCGTCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATC




AGCACCGCCTACCTGCAGTGGAGCAGCCTGAAGGCCTCGGACACCGCCATGTATTACTGTGCGAGAGGATGGGTTT




ATCGGGGCTTCCCTTACTACGGTATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID NO: 579)



VL
CAGTCTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGTCACCATCTCCTGCACTGGAACCAG




CAGTGATGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATGA




TGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCT




CTGGGCTCCAGGCTGAGGATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTACACTTTGGTGTTCGGCGGA




GGGACCAAGCTGACCGTCCTA (SEQ ID NO: 580)










Amino acid sequences of VH and VL









FM 7B
VH
EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYAMHWVRQAPGQRLEWMGWINTGNGNTKYSQKFQGRVTITRDTSAS




TAYMELSSLRSEDTAVYYCARDPTYCSSTSCYPFSWFDPWGQGTLVTVSS (SEQ ID NO: 1)



VL
NFMLTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGD




EADYYCQVWDSTGDHSWVFGGGTKLTVL (SEQ ID NO: 2)





FD 8B
VH
EVQLLESGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIYAQKFQGRVTMTEDTSTD




TAYMELSSLRSEDTAVYYCATAAAINCSSTSCYYYYYYYGMDVWGQGTTVTVSS (SEQ ID NO: 3)



VL
DIVMTQTPLSSPVTLGQPASISCRSSQSLVHSDGNTYLSWLQQRPGQPPRLLIYKISSRFSGVPDRFSGSGAGTDFTLKISRV




EAEDVGVYYCTQATQFPYTFGQGTKVDIK (SEQ ID NO: 4)





EW 9B
VH
EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTST




VYMELSSLRSEDTAVYYCAREDGVVPAANLMISLEDYYYYGMDVWGQGTTVTVSS (SEQ ID NO: 5)



VL
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDF




AVYYCQQRSNWPLTFGGGTKVDIK (SEQ ID NO: 6)





FN 12A
VH
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGRIIPILGIANYAQKFQGRVTITADKSTSTAY




MELSSLRSEDTAVYYCARSGCSSTSCPSNLYYYYYGMDVWGQGTTVTVSS (SEQ ID NO: 7)



VL
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITGLQTG




DEADYYCGTWDSSLSALVFGGGTKLTVL (SEQ ID NO: 8)





FG 12C
VH
EVOLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSIGYADSVKGRFTISRDNAKNS




LYLQMNSLRAEDTALYYCAKDMRVHDYGDYYFDYWGQGTLVTVSS (SEQ ID NO: 9)



VL
SYELTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDE




ADYYCQVWDSSSDHPVFGGGTKLTVL (SEQ ID NO: 10)





FI 1C
VH
EVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLY




LQMNSLRAEDTAVYYCARRSNRFLIAFDIWGQGTMVTVSS (SEQ ID NO: 11)



VL
QSALTQPASVSGSPGQTITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVSNRPSGVSNRFSGSKSGNTASLTISGLQ




AEDEADYYCSSYTSSSTLVVFGGGTKLTVP (SEQ ID NO: 12)





FI 4A
VH
EVOLVESGGGLVKPGGSLRLSCAASGFTFSRFSMNWVRQAPGKGLEWVSSISSSGSYIYFADSVKGRFTISRDNAKNSLY




LQMNSLRAEDTAIYYCATYLFGDSHTYWGQGTLVTVSS (SEQ ID NO: 13)



VL
QSVLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKT




EDEADYYCQSYDSSNLHWVFGGGTKLTVL (SEQ ID NO: 14)





FD 1E
VH
EVQLLESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDNAKNSLY




LQMNSLRAEDTAVYYCASLAAAGPETYYYYGMDVWGQGTMVTVSS (SEQ ID NO: 15)



VL
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIYQDSKRPSGIPERFSGSNSGNTATLTISGTQAMD




EADYYCQAWDSSVVFGGGTKLTVL (SEQ ID NO: 16)





FD 11E
VH
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDNAKNSLY




LQMNSLRAEDTAVYYCASLAAAGPETYYYYGMDVWGQGTMVTVSS (SEQ ID NO: 17)



VL
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIYQDSKRPSGIPERFSGSNSGNTATLTISGTQAMD




EADYYCQAWDSSVVFGGGTKLTVL (SEQ ID NO: 18)





FN 2C
VH
EVQLLESGGGVVQPGRSLRLSCAASGFNFNNYGMHWVRQAPGKGLEWVATISYEGSKKFYVDSVKGRFTISKDNSKNT




LYLQMNSLRVDDTAFYYCAKRREIFWLGEPPLSDAFDFWGQGTMVTVSS (SEQ ID NO: 19)



VL
QSVLTQPPSVSGAPGQRVTISCTGSGSNIGAGYDVHWYQFLPGTAPQLLIYGNNNRPSGVPDRFSGSKSGTSASLAITGLQ




AEDEADYYCQSYDSSLSGSVFGGGTKLTVL (SEQ ID NO: 20)





EY 6A
VH
EVQLVESGGGVVQPGRSLRLSCAASAFTFSSYDMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNT




LYLQMNSLRAEDTAVYYCAKDGGKLWVYYFDYWGQGTTVTVSS (SEQ ID NO: 21)



VL
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDF




ATYYCQQSYSTLALTFGGGTKVDIK (SEQ ID NO: 22)





EY 6A-1*
VH
EVQLVESGGGVVQPGRSLRLSCAASAFTFSSYDMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNT




LYLQMNSLRAEDTAVYYCAKDGGKLWVYYFDYWGQGTLVTVSS (SEQ ID NO: 23)



VL
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDF




ATYYCQQSYSTLALTFGGGTKVEIK (SEQ ID NO: 24)





FD 11D
VH
EVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNT




LYLQMNSLRAEDTAVYYCAKEGAGSGWYRHHKPGYYFDYWGQGTLVTVSS (SEQ ID NO: 25)



VL
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPED




FAVYYCQQYGSSPLTFGQGTKVEIK (SEQ ID NO: 26)





EW 9C
VH
EVOLVESGGGVVQPGASLRLSCVASGFTFNNFGFHWVRQAPGKGLEWLAVISYEGSKTYYAESLKGRFTISRDTSKNTV




YLQMNSLRAEDTAVYYCARATSIFWFGEGRNWFDPWGQGTMVTVSS (SEQ ID NO: 27)



VL
EIVLTQSPGTVSLSAGERATLSCRASQNVGTDLAWYVQRPGQAPRLLIYDTSNKATGIPARFSGRGSGTDFTLTIDSLEPED




FAVYYCQQRSNWPLTFGGGTKVEIR (SEQ ID NO: 28)





EW 9C-1*
VH
EVQLVESGGGVVQPGASLRLSCVASGFTFNNFGFHWVRQAPGKGLEWLAVISYEGSKTYYAESLKGRFTISRDTSKNTV




YLQMNSLRAEDTAVYYCARATSIFWFGEGRNWFDPWGQGALVTVSS (SEQ ID NO: 29)



VL
EIVMTQSPGTVSLSAGERATLSCRASQNVGTDLAWYVQRPGQAPRLLIYDTSNRATGIPARFSGRGSGTDFTLTIDSLEPE




DFAVYYCQQRSNWPLTFGGGTKVEIK (SEQ ID NO: 30)





FD 1D
VH
EVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNT




LYLQMNSLRAEDTAVYYCARAGSGSYLNWFDPWGQGTLVTVSS (SEQ ID NO: 31)



VL
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDF




AVYYCQQRSNWPITFGQGTRLEIK (SEQ ID NO: 32)





FG 7A
VH
EVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNT




LYLQMNSLRAEDTAVYYCARSHSGSYRASLDYWGQGTTVTVSS (SEQ ID NO: 33)



VL
DIQLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPED




FAVYYCQQYGSSPLYTFGQGTKVEIK (SEQ ID NO: 34)





FM 1A
VH
EVQLLESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNT




LYLQMNSLRAEDTAVYYCAREGAVGATRGFDYWGQGTLVTVSS (SEQ ID NO: 35)



VL
SYELTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGD




EADYYCQVWDSSSDQGVFGGGTKLTVL (SEQ ID NO: 36)





FD 11A
VH
EVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNT




LYLQMNSLRAEDTAVYYCAKGPDILTGYYNYYYYGMDVWGQGTMVTVSS (SEQ ID NO: 37)



VL
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSNRPSGVPDRFSGSKSGTSASLAITGLQ




AEDEADYYCQSYDSSLSGFYVVFGGGTKLTVL (SEQ ID NO: 38)





FN 8C
VH
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDGSNKYYADTVKGRFTISRDNSKNT




LYLQMNSLRAEDTAVYYCARERTYYDILTGYRHYYGMDVWGQGTTVTVSS (SEQ ID NO: 39)



VL
SYELTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGD




EADYYCQVWDSSSDHWVFGGGTKLTVL (SEQ ID NO: 40)





FD 5E
VH
EVQLVESGGVVVQPGGSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSLISWDGGSTYYADSVKGRFTISRDNSKNS




LYLQMNSLRAEDTALYYCAKDSVRFRYYYGMDVWGQGTTVTVSS (SEQ ID NO: 41)



VL
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDF




AVYYCQQRSNWPLTFGPGTKVDIK (SEQ ID NO: 42)





FD 5D
VH
EVOLVESGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSYISSSSSTIYYADPVKGRFTISRDNAKNSLY




LQMNSLRAEDTAVYYCASPGGITAAGTSVLFGYYGMDVWGQGTMVTVSS (SEQ ID NO: 43)



VL
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISR




VEAEDVGVYYCMQALQTPITWTFGQGTKVDIK (SEQ ID NO: 44)





FI 3A
VH
EVQLLESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDNSKNTLY




LQMNSLRAEDTAVYYCARDHVRPGMNIWGQGTMVTVSS (SEQ ID NO: 45)



VL
AIRMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPED




IATYYCQQYDNLPVTFGGGTKVDIK (SEQ ID NO: 46)





FD 10A
VH
EVOLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLVWVSRINSDGSSTSYADSVKGRFTISRDNAKNT




LYLQMNSLRAEDTAVYYCANMAFDIWGQGTMVTVSS (SEQ ID NO: 47)



VL
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTI




SSLQAEDVAVYYCQQYYSTPITFGQGTRLEIK (SEQ ID NO: 48)





FJ 4E
VH
QVQLVESGPGLVKPSETLSLTCSVSGGSISSGTYYWSWIRQQPGKGLEWIGYIYNTGRPYYNPFLKSRITISVDSSKNQFSL




KLTSVTAADTAVYYCARDEYDSSDSGIQGHWFDPWGQGTLVTVSS (SEQ ID NO: 49)



VL
AIRMTQSPSSLSASVGDRVTITCRTSQNINSFLNWYQQKPGKGPNLLIYGAFTLQSGVPSRFSGSGSGTDFTLTISSLQPED




FATYFCQQSYSTPWTFGQGTKVEIK (SEQ ID NO: 50)





FJ 1C
VH
QVQLQESGPGLVKPSETLSLTCTVSGYSISSGYYWGWIRQPPGKGLEWIGSIYHSGSTYYNPSLKSRVTISVDTSKNQFSL




KLSSVTAADTAVYYCARDKALLWFGELFTNLFDYWGQGTLVTVSS (SEQ ID NO: 51)



VL
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVSNRPSGVSNRFSGSKSGNTASLTISGLQ




AEDEANYYCSSYTSSSTLVFGGGTKLTVL (SEQ ID NO: 52)





EW 8B
VH
VQLVQESGPGLVKPSETLSLTCTVSGGSISSSGYYWGWIRQPPGKGLEWIANFYFTGSVYSNPSLKSRVTISVDTSKNQLS




LKLSYLTAADTAVYYCARQEVWGGFDIWGQGTMVTVSS (SEQ ID NO: 53)



VL
EIVLTQSPGTLSLSPGERVTLSCRASQSLGSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPED




FAVYFCQQYGSSPTFGQGTKVEIK (SEQ ID NO: 54)





FD 11C
VH
EVQLLESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTSKNQFSL




KLSSVTAADTAVYYCAREYYYGSETKKYYYYYGMDVWGQGTTVTVSS (SEQ ID NO: 55)



VL
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIYQDSKRPSGIPERFSGSNSGNTATLTISGTQAMD




EADYYCQAWDSSTVFGGGTKLTVL (SEQ ID NO: 56)





FD 7C
VH
QLQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKL




SSVTAADTAVYYCARDYRFGELFGRFAWFDPWGQGTLVTVSS (SEQ ID NO: 57)



VL
DIQLTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDF




AVYYCQQYNNWPRAFGPGTKVEIR (SEQ ID NO: 58)





FD 7D
VH
EVQLVESGAEVKKPGESLRISCKGSGYSFTSYWISWVRQMPGKGLEWMGRIDPSDSYTNYSPSFQGHVTISADKSISTAY




LQWSSLKASDTAMYYCARHSDCSSTSCYFVDAFDIWGQGTMVTVSS (SEQ ID NO: 59)



VL
SYELTQPPSVSVSPGQTARITCSGDALPKQYAYWYQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGVQAEDE




ADYYCQSADSSGTYVVFGGGTKLTVL (SEQ ID NO: 60)





FJ 10B
VH
QVQLVQSGAEVKKPGESLRISCKGSGYSFTSYWISWVRQMPGKGLEWMGRIDPSDSYTNYSPSFQGHVTISADKSISTAY




LQWSSLKASDTAMYYCARLDPRYGPDYYGMDVWGQGTTVTVSS (SEQ ID NO: 61)



VL
AIRMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIHAASSLQSGVPSRFSGSGSGTDFTLTMSSLQPED




FATYYCQQSYSTPLTFGGGTKVEIR (SEQ ID NO: 62)





FB 9D
VH
QVQLVESGAEVKKPGESLKISCQGSGYRFNSYWIAWVRQMPGKGLEWMGSIFPTDSDVRYNPSFQGQVTISADKSISFAY




LQWSSLKASDTAIYYCARHWASMVRGVIRASHYYGMDVWGQGTTVTVSS (SEQ ID NO: 63)



VL
QPVLTQPPSASGSPGQSVTISCSGASSDIGKYNYVSWYQQLPGKAPKLLIYEVTKRPSGVPDRFSGSKSGNTASLTVSGLQ




ADDEADYYCSSYAFGGSDTRVFGGGTKLTVL (SEQ ID NO: 64)





FB 1E
VH
EVQLVESGAEVKKPGESLKISCQGSGYRFNSYWIAWVRQMPGKGLEWMGSIFPTDSDIRYNPSFQGQVTISADKSISIAYL




QWSSLKASDTAIYYCARHWASMVRGVIRASHYYGMDVWGQGTTVTVSS (SEQ ID NO: 65)



VL
QSVLTQPPSASGSPGQSVTISCSGASSDIGDYNYVSWYQQLPGKAPKLLIYEVTKRPSGVPDRFSGSKSGNTASLTVSGLQ




ADDEADYYCSSYAFGGSDIRVFGGGTKLAVL (SEQ ID NO: 66)





EZ 7A
VH
EVQLVESGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKSISTAY




LQWSSLKASDTAMYYCARGWVYRGFPYYGMDVWGQGTMVTVSS (SEQ ID NO: 67)



VL
QSALTQPRSVSGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSKRPSGVPDRFSGSKSGNTASLTISGL




QAEDEADYYCCSYAGSYTLVFGGGTKLTVL (SEQ ID NO: 68)





*Both EY 6A and EW 9C have an additional pair of expression vectors.













TABLE 4







Amino acid sequences of complementarity-determining regions (CDRs) of


the heavy chain variable regions and the light chain variable regions of the SARS-COV-2


spike-reactive human monoclonal antibodies.














Heavy chain CDR1
Heavy chain CDR2
Heavy chain CDR3
Light chain CDR1
Light chain CDR2
Light chain CDR3


MAb
(HCDR1)
(HCDR2)
(HCDR3)
(LCDR1)
(LCDR2)
(LCDR3)





FM 7B
GYTFTSYA (SEQ
INTGNGNT (SEQ
ARDPTYCSSTSCY
NIGSKS (SEQ ID
DDS (SEQ ID No:
QVWDSTGDHSW



ID No: 69)
ID No: 70)
PFSWFDP (SEQ ID
No: 72)
73)
V (SEQ ID No: 74)





No: 71)








FD 8B
GYTLTELS (SEQ
FDPEDGET (SEQ
ATAAAINCSSTSC
QSLVHSDGNTY
KIS (SEQ ID No:
TQATQFPYT (SEQ



ID No: 75)
ID No: 76)
YYYYYYYGMDV
(SEQ ID No: 78)
79)
ID No: 80)





(SEQ ID No: 77)








EW 9B
GYTFTSYY (SEQ
INPSGGST (SEQ
AREDGVVPAANL
QSVSSY (SEQ ID
DAS (SEQ ID No:
QQRSNWPLT



ID No: 81)
ID No: 82)
MISLEDYYYYGM
No: 84)
85)
(SEQ ID No: 86)





DV (SEQ ID No:








83)








FN 12A
GGTFSSYA (SEQ
IIPILGIA (SEQ ID
ARSGCSSTSCPSN
SSNIGNNY (SEQ
DNN (SEQ ID No:
GTWDSSLSALV



ID No: 87)
No: 88)
LYYYYYGMDV
ID No: 90)
91)
(SEQ ID No: 92)





(SEQ ID No: 89)








FG 12C
GFTFDDYA (SEQ
ISWNSGSI (SEQ
AKDMRVHDYGD
NIGSKS (SEQ ID
YDS (SEQ ID No:
QVWDSSSDHPV



ID No: 93)
ID No: 94)
YYFDY (SEQ ID
No: 96)
97)
(SEQ ID No: 98)





No: 95)








FI 1C
GFTFSDYY (SEQ
ISSSGSTI (SEQ ID
ARRSNRFLIAFDI
SSDVGGYNY
EVS (SEQ ID No:
SSYTSSSTLVV



ID No: 99)
No: 100)
(SEQ ID No: 101)
(SEQ ID No: 102)
103)
(SEQ ID No: 104)





FI 4A
GFTFSRFS (SEQ
ISSSGSYI (SEQ ID
ATYLFGDSHTY
SGSIASNY (SEQ
EDN (SEQ ID No:
QSYDSSNLHWV



ID No: 105)
No: 106)
(SEQ ID No: 107)
ID No: 108)
109)
(SEQ ID No: 110)





FD 1E
GFTFSSYS (SEQ
ISSSSSYI (SEQ ID
ASLAAAGPETYY
KLGDKY (SEQ ID
QDS (SEQ ID No:
QAWDSSVV (SEQ



ID No: 111)
No: 112)
YYGMDV (SEQ ID
No: 114)
115)
ID No: 116)





No: 113)








FD 11E
GFTFSSYS (SEQ
ISSSSSYI (SEQ ID
ASLAAAGPETYY
KLGDKY (SEQ ID
QDS (SEQ ID No:
QAWDSSVV (SEQ



ID No: 117)
No: 118)
YYGMDV (SEQ ID
No: 120)
121)
ID No: 122)





No: 119)








FN 2C
GFNFNNYG (SEQ
ISYEGSKK (SEQ
AKRREIFWLGEPP
GSNIGAGYD
GNN (SEQ ID No:
QSYDSSLSGSV



ID No: 123)
ID No: 124)
LSDAFDF (SEQ ID
(SEQ ID No: 126)
127)
(SEQ ID No: 128)





No: 125)








EY 6A
AFTFSSYD (SEQ
ISYDGSNK (SEQ
AKDGGKLWVYY
QSISSY (SEQ ID
AAS (SEQ ID No:
QQSYSTLALT



ID No: 129)
ID No: 130)
FDY (SEQ ID No:
No: 132)
133)
(SEQ ID No: 134)





131)








EY 6A-1*
AFTFSSYD (SEQ
ISYDGSNK (SEQ
AKDGGKLWVYY
QSISSY (SEQ ID
AAS (SEQ ID No:
QQSYSTLALT



ID No: 135)
ID No: 136)
FDY (SEQ ID No:
No: 138)
139)
(SEQ ID No: 140)





137)








FD 11D
GFTFSSYG (SEQ
ISYDGSNK (SEQ
AKEGAGSGWYR
QSVSSSY (SEQ ID
GAS (SEQ ID No:
QQYGSSPLT (SEQ



ID No: 141)
ID No: 142)
HHKPGYYFDY
No:144)
145)
ID No: 146)





(SEQ ID No: 143)








EW 9C
GFTFNNFG (SEQ
ISYEGSKT (SEQ
ARATSIFWFGEGR
QNVGTD (SEQ ID
DTS (SEQ ID No:
QQRSNWPLT



ID No: 147)
ID No: 148)
NWFDP (SEQ ID
No: 150)
151)
(SEQ ID No: 152)





No: 149)








EW 9C-1*
GFTFNNFG (SEQ
ISYEGSKT (SEQ
ARATSIFWFGEGR
QNVGTD (SEQ ID
DTS (SEQ ID No:
QQRSNWPLT



ID No: 153)
ID No: 154)
NWFDP (SEQ ID
No: 156)
157)
(SEQ ID No: 158)





No: 155)








FD 1D
GFTFSSYA (SEQ
ISYDGSNK (SEQ
ARAGSGSYLNWF
QSVSSY (SEQ ID
DAS (SEQ ID No:
QQRSNWPIT (SEQ



ID No: 159)
ID No: 160)
DP (SEQ ID No:
No: 162)
163)
ID No: 164)





161)








FG 7A
GFTFSSYA (SEQ
ISYDGSNK (SEQ
ARSHSGSYRASL
QSVSSSY (SEQ ID
GAS (SEQ ID No:
QQYGSSPLYT



ID No: 165)
ID No: 166)
DY (SEQ ID No:
No: 168)
169)
(SEQ ID No: 170)





167)








FM 1A
GFTFSSYG (SEQ
IWYDGSNK (SEQ
AREGAVGATRGF
NIGSKS (SEQ ID
DDS (SEQ ID No:
QVWDSSSDQGV



ID No: 171)
ID No: 172)
DY (SEQ ID No:
No: 174)
175)
(SEQ ID No: 176)





173)








FD 11A
GFTFSSYG (SEQ
IWYDGSNK (SEQ
AKGPDILTGYYN
SSNIGAGYD (SEQ
GNS (SEQ ID No:
QSYDSSLSGFYV



ID No: 177)
ID No: 178)
YYYYGMDV
ID No: 180)
181)
V (SEQ ID No: 182)





(SEQ ID No: 179)








FN 8C
GFTFSSYG (SEQ
ISYDGSNK (SEQ
ARERTYYDILTGY
NIGSKS (SEQ ID
DDS (SEQ ID No:
QVWDSSSDHWV



ID No: 183)
ID No: 184)
RHYYGMDV (SEQ
No: 186)
187)
(SEQ ID No: 188)





ID No: 185)








FD 5E
GFTFDDYA
ISWDGGST (SEQ
AKDSVRFRYYYG
QSVSSY (SEQ ID
DAS (SEQ ID No:
QQRSNWPLT



(SEQ ID No: 189)
ID No: 190)
MDV (SEQ ID No:
No: 192)
193)
(SEQ ID No: 194)





191)








FD 5D
GFTFSSYS
ISSSSSTI (SEQ ID
ASPGGITAAGTSV
QSLLHSNGYNY
LGS (SEQ ID No:
MQALQTPITWT



(SEQ ID No: 195)
No: 196)
LFGYYGMDV
(SEQ ID No: 198)
199)
(SEQ ID No: 200)





(SEQ ID No: 197)








FI 3A
GFTVSSNY (SEQ
IYSGGST (SEQ ID
ARDHVRPGMNI
QDISNY (SEQ ID
DAS (SEQ ID No:
QQYDNLPVT



ID No: 201)
No: 202)
(SEQ ID No: 203)
No: 204)
205)
(SEQ ID No: 206)





FD 10A
GFTFSSYW (SEQ
INSDGSST (SEQ
ANMAFDI (SEQ
QSVLYSSNNKNY
WAS (SEQ ID No:
QQYYSTPIT (SEQ



ID No: 207)
ID No: 208)
ID No: 209)
(SEQ ID No: 210)
211)
ID No: 212)





FJ 4E
GGSISSGTYY
TYNTGRP (SEQ ID
ARDEYDSSDSGIQ
QNINSF (SEQ ID
GAF (SEQ ID No:
QQSYSTPWT



(SEQ ID No: 213)
No: 214)
GHWFDP (SEQ ID
No: 216)
217)
(SEQ ID No: 218)





No: 215)








FJ 1C
GYSISSGYY (SEQ
TYHSGST (SEQ ID
ARDKALLWFGEL
SSDVGGYNY
EVS (SEQ ID No:
SSYTSSSTLV



ID No: 219)
No: 220)
FTNLFDY (SEQ ID
(SEQ ID No: 222)
223)
(SEQ ID No: 224)





No: 221)








EW 8B
GGSISSSGYY
FYFTGSV (SEQ ID
ARQEVWGGFDI
QSLGSSY (SEQ ID
GAS (SEQ ID No:
QQYGSSPT (SEQ



(SEQ ID No: 225)
No: 226)
(SEQ ID No: 227)
No: 228)
229)
ID No: 230)





FD 11C
GGSISSSSYY
TYYSGST (SEQ ID
AREYYYGSETKK
KLGDKY (SEQ ID
QDS (SEQ ID No:
QAWDSSTV (SEQ



(SEQ ID No: 231)
No: 232)
YYYYYGMDV
No: 234)
235)
ID No: 236)





(SEQ ID No: 233)








FD 7C
GGSISSYY (SEQ
IYYSGST (SEQ ID
ARDYRFGELFGR
QSVSSN (SEQ ID
GAS (SEQ ID No:
QQYNNWPRA



ID No: 237)
No: 238)
FAWFDP (SEQ ID
No: 240)
241)
(SEQ ID No: 242)





No: 239)








FD 7D
GYSFTSYW (SEQ
IDPSDSYT (SEQ
ARHSDCSSTSCYF
ALPKQY (SEQ ID
KDS (SEQ ID No:
QSADSSGTYVV



ID No: 243)
ID No: 244)
VDAFDI (SEQ ID
No: 246)
247)
(SEQ ID No: 248)





No: 245)








FJ 10B
GYSFTSYW (SEQ
IDPSDSYT (SEQ
ARLDPRYGPDYY
QSISSY (SEQ ID
AAS (SEQ ID No:
QQSYSTPLT (SEQ



ID No: 249)
ID No: 250)
GMDV (SEQ ID
No: 252)
253)
ID No: 254)





No: 251)








FB 9D
GYRFNSYW (SEQ
IFPTDSDV (SEQ
ARHWASMVRGVI
SSDIGKYNY (SEQ
EVT (SEQ ID No:
SSYAFGGSDTRV



ID No: 255)
ID No: 256)
RASHYYGMDV
ID No: 258)
259)
(SEQ ID No: 260)





(SEQ ID No: 257)








FB 1E
GYRFNSYW (SEQ
IFPTDSDI (SEQ ID
ARHWASMVRGVI
SSDIGDYNY (SEQ
EVT (SEQ ID No:
SSYAFGGSDIRV



ID No: 261)
No: 262)
RASHYYGMDV
ID No: 264)
265)
(SEQ ID No: 266)





(SEQ ID No: 263)








EZ 7A
GYSFTSYW (SEQ
IYPGDSDT (SEQ
ARGWVYRGFPY
SSDVGGYNY
DVS (SEQ ID No:
CSYAGSYTLV



ID No: 267)
ID No: 268)
YGMDV (SEQ ID
(SEQ ID No: 270)
271)
(SEQ ID No: 272)





No: 269)





*Both EY 6A and EW 9C have an additional pair of expression vectors.






Tables 5 and 6 show that SARS-CoV-2 nucleocapsid-reactive monoclonal antibodies were evolved from 32 clonal groups defined by their heavy chain VDJ and light chain VJ rearrangements. Their average nucleotide somatic mutations are 22±30 in the heavy chain variable regions and 13±18 in the light chain variable regions.


Table 6 shows the nucleotide and amino acid sequences of the heavy chain variable regions and the light chain variable regions of the 32 SARS-CoV-2 nucleocapsid-reactive monoclonal antibodies. Table 7 shows the amino acid sequences of complementarity-determining regions (CDRs) of the heavy chain variable regions and the light chain variable regions of the SARS-CoV-2 nucleocapsid-reactive human monoclonal antibodies.


SARS-CoV-2 nucleocapsid-reactive antibodies EW 4C, EY 2A and EY 3B bound to paraformaldehyde-fixed and Triton X-100-permeabilised SARS-CoV-2 infected cells by immunofluorescence assay.









TABLE 5







Gene usage of heavy and light chain variable domains of SARS-COV-2


nucleocapsid-reactive human monoclonal antibodies.


























VH junction
Mut
aa


VL Junction
Mut
aa


MAb
H-L
VH
JH
DH
rf
sequence
#
Sub
VL
JL
Sequence
#
Sub





EZ 9B
H-λ
1-2*06 F
5*02 F
4-17*01 F
3
CAREGPTVT
 0
 0
3-21*02 F
3*02 F
CQVWDSSSDHPS
 0
 0








WWFDPW




WVF







EZ 11C
H-λ
1-24*01 F
5*02 F
4-17*01 F
3
CATTTVTTPT
 0
 0
1-51*02 F
2*01 or 3*01
CGTWDSSLRQVV
 3
 1








ANWFDPW



F
F







FD 9B
H-λ
3-7*01 F
2*01F
2-21*01 F
1
CVKFGRSEGL
21
17
7-46*01 F
2*01 or 3*01
CFLTYVGARRLF
 6
 4








FW



or 3*02 F








EZ 11A
H-λ
3-7*01 F
4*02 F
1-26*01 F
3
CARDDYSGS
 0
 0
4-69*01 F
3*02 F
CQTWGTGIWVF
 0
 0








YYWEFDYW












EW 10C
H-κ
3-7*03 F
4*02 F
4-23*01
1
CARGRTLGD
25
15
2-30*02 F
3*01 F
CMQGTHWPPITF
 3
 1






ORF

W












EY 12B
H-λ
3-9*01 F
3*01 F
5-12*01 F
3
CAKGRSGYG
16
 1
1-40*01 or
2*01 or 3*01
CQSYDSSLSASVF
 9
 6








HTAFDVW


02 F
F








EZ 8C
H-λ
3-21*01 F
3*02 F
5-18*01 F
3
CARELTSYGS
15
 9
2-14*01 F
2*01 or 3*01
CSSYTTTDSVVF
11
 6








HD AFDIW



F








EY 9C
H-λ
3-21*01 F
4*03 F
2-21*01 F
2
CATWGGAPF
12
 9
2-23*01 or 
2*01 or 3*01
CCSYAGGRTFNVL
12
10








DYW


02 or 03 F
F
F







EZ 8B
H-λ
3-23*04 F
5*01 or
3-16*01 F
2
CAKDLGYYG
 4
 2
3-1*01 F
3*02 F
CQAWDSSTAVF
 0
 0





02 F


SGSSW












FD 3E
H-λ
18 or 3-30- 
6*02 F
3-10*01 F
2
CAKDPHYYG
 1
 1
2-29*02 F
4*01 F
CMQGIHLP#TF
 0
 0




3-30*03 or



SGSYYNQLRG











5*01 F



YYYYGMDV















W












EW 1A
H-λ
3-33*01 or
3*01F
6-13*01 F
3
CARDGQHLA
32
17
2-14*01 F
3*02 F
CNSFVSGDSWVF
27
17




06 F



PFAMDVW












FD 5B
H-λ
3-33*01 or
4*02 F
5-24*01
3
CARDERRESY
 6
 3
2-8*01 F
1*01 F
CSSYAGSNNPFVF
 1
 1




06 F

ORF

NFVLDYW












EW 9A
H-λ
3-33*01 or
6*02 F
3-9*01 F
2
CAKDMWALY
 1
 1
3-25*03 F
3*02 F
CQSADSSGTYWV
 1
 1




06 F



DILTGYYTPY




F










YYYGMDVW












FD 8C
H-κ
3-49*05 F
4*02 F
3-3*01 F
2
CTRNDFWSG
 0
 0
2-30*02 F
4*01 F
CMQGTHWP#LTF
 0
 0








YYPDYW












EW 5A
H-λ
3-64*05 or
2*01 F
3-3*01 F
2
CVKDRGSVIR
37
23
7-43*01 F
2*01 or 3*01
CLLYCGGGQLF
 2
13




3-64D*06 F



DFDVW



or 3*02 F








EZ 9C
H-λ
3-64D*06 F
4*02 F
6-19*01 F
1
CGKGLLSASG
34
20
1-51*01 F
3*02 F
CATWDSSLSAGV
 5
 3








GLPIDDW




F







EZ 9A
H-λ
3-74*01 F
4*02 F
4-11*01
2
CARDVNRYP
29
18
2-14*01 F
3*02 F
CCSYVNNGAWVF
28
13






ORF

DYW












EY 12A
H-λ
4-30-4*01
2*01 F
3-9*01 F
2
CARGMTQDD
22
12
1-40*01 F
2*01 or 3*01
CQSFDSSLSDFVV
 8
 6




F



ILTGFNRPHW



F
F










YFDLW












FD 4E
H-λ
4-31*03 F
4*02 F
1-26*01 F
3
CARGRGSYL
 0
 0
6-57*01 F
3*02 F
CQSYDSSN#VF
 2
 2








AGGNYYFDY















W












FD 4C
H-λ
4-31*03 F
4*02 F
6-13*01 F
1
CARVRSSSSW
 2
 1
2-14*01 F
3*02 F
CSSYTSKWVF
 4
 2








YFDYW









EW 4C
H-λ
4-38-2*02
1*01F
3-16*01 F
2
CVRGTYGSGL
49
24
7-46*01 F
3*02 F
CFLSHNDAWVF
17
12




F



HW












FD 6D
H-κ
4-38-2*02
3*01 or
3-22*01 F
2
CARDRLLAVH
22
10
4-1*01 F
1*01 F
CQQYYDIPRTF
12
 6




F
02 F


YDSRGYLVD















YW












EY 5A
H-λ
4-59*01 F
4*02 F
4-23*01
3
CARGPGPATG
23
16
1-44*01 F
7*01 F
CSAWDDSLNGPV
 7
 5






ORF

GSLDYW




F







EZ 7B
H-κ
4-59*13 F
3*02 F
1-26*01 F
3 
CARRVFGPVL
 1
 1
4-1*01 F
3*01 F
CQQYYSTPLTF
 0
 0








PSKLGGSYW















GGGAFDIW












EZ 4C-1
H-κ
4-61*01 or
4*02 F
3-3*01 F
1
CARAPSAPFG
24
15
1-5*03 F
2*03 F
CQQYNGYSYSF
17
 8




03 F



GLFDWILPKG 















INNW












EZ 4C-2
H-λ
4-61*01 or
4*02F
3-3*01 F
1
CARAPSAPFG
22
13
1-41*01
3*02 F
C*IA*HSSPR#WVF
14
 8




03 F



GLFDWILPKG 


ORF

(2nd-CYS 104










IDNW




not identified)







FD 4B
H-λ
4-61*01 or
5*02 F
3-3*01 F

CARAPSAPFG
24
13
1-41*01
3*02 F
C*IA*HSSPR#WVF
14
 8




03 F


1
GLFDWILPKG 


ORF

(2nd-CYS 104










IDSW




not identified)







EY 8A
H-λ
4-61*02 F
6*02 F
5-12*01F
3
CAKGHVISGY
 1
 1
3-25*03 F
3*02 F
CQSADSSGTYWV
 0
 0








DDYYYYYGM




F










DVW












EY2A
H-κ
5-51*01 F
4*02 F
6-13*01 F
1
CVRQERGSNT
44
22
2-28*01 or
2*02 F
CMQALQTPGTF
14
 7








WYAGNSW


2D-28*01 F









EY 3B
H-κ
5-51*01 F
4*02 F
6-13*01 F
1
CVRQERGSNT
41
21
2-28*01 or
2*02 F
CMQALQTPGTF
13
 7








WYAGNSW


2D-28*01F









EZ 4A
H-κ
5-51*01F
4*02 F
6-13*01 F
2
CARSPIAADL
 0
 0
1-33*01 or
3*01 F
CQQYDNLLFTF
 0
 0








FDYW


1D-33*01 F









EZ 8B
H-κ
3-23*04 F
5*01 or
3-16*01 F
2
CAKDLGYYG
 4
 2
3-7*04
1*01 F
CQQDYNS#TF
 1
 1





02F


SGSSW


ORF





Abbreviations: H, heavy; K, kappa; A, lambda; Vh, variable gene segment of the heavy chain variable domain; Dh, diversity gene segment of the heavy chain variable domain; Jh, joining gene segment of the heavy chain variable domain; Mut, number of nucleotide mutations; Sub, number of amino acid substitutions; Vl, variable gene segment of the light chain variable domain; Jl, joining gene segment of the light chain variable domain.













TABLE 6





Nucleotide and amino acid sequences of the heavy chain variable regions


(VH) and light chain variable regions (VL) of the 30 SARS-CoV-2 nucleocapsid-reactive


human monoclonal antibodies.







Nucleotide sequences of VH and VL









EZ 9B
VH
GAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTGGA




TACACCTTCACCGGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGACGGATCAACC




CTAACAGTGGTGGCACAAACTATGCACAGAAGTTTCAGGGCAGGGTCACCATGACCAGGGACACGTCCATCAGCACAG




CCTACATGGAGCTGAGCAGGCTGAGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGAGGGGCCTACGGTGACTTG




GTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID No: 581)



VL
TCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGGCCCCAGGACAGACGGCCAGGATTACCTGTGGGGGAAACAAC




ATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCGTCTATGATGATAGCGACC




GGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGC




CGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATAGTAGTAGTGATCATCCTTCTTGGGTGTTCGGCGGAGGGACCA




AGCTGACCGTCCTA (SEQ ID No: 582)





EZ 11C
VH
GAAGTGCAGCTGGTGGAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGTTTCCGGA




TACACCCTCACTGAATTATCCATGCACTGGGTGCGACAGGCTCCTGGAAAAGGGCTTGAGTGGATGGGAGGTTTTGATCC




TGAAGATGGTGAAACAATCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCGAGGACACATCTACAGACACAGC




CTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCAACAACTACGGTGACTACCCCAACC




GCAAACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID No: 583)



VL
CAGTCTGCCCTGACTCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGGTCACCATCTCCTGCTCTGGAAGCAGCT




CCAACATTGGGAATAATTATGTATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATCTATGAAAATAATA




AGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCAAGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCA




GACTGGGGACGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGCGTCAGGTAGTGTTCGGCGGAGGGACCAAG




CTGACCGTCCTA (SEQ ID No: 584)





FD 9B
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGGCACTGGA




TTCAGCTTTAGTAGATATTGGATGAATTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATGGACC




CAGATGGAGGTGCGAAATACTATCTGGACTCTGTGAAGGGGCGATTCACCATCTCCGGAGACAACGCCAAGAACTCATT




GTATCTGCAAATGAACAGACTGAGAGCCGAGGACACGGCTGTGTATTACTGTGTCAAATTCGGGCGGTCGGAAGGCTTG




TTTTGGGGCCGTGGCACCCTGGTCACCGTCTCCTCA (SEQ ID No: 585)



VL
CAGGCTGTGGTGACCCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGACAGTCACTCTCACCTGTGGCTCCAGCACT




GGAGCTGTCACCAGTGGTCATTATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGATTTATGATAC




AAGCAACAAACACTCCTGGACACCTGCCCGATTCTCAGGCTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTCGGGT




GCGCAGCCTGAGGATGAGGCTGACTATTACTGCTTCCTCACCTATGTTGGTGCTCGGAGGTTATTCGGCGGAGGGACCAA




GCTGACCGTCCTA (SEQ ID No: 586)





EZ 11A
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGA




TTCACCTTTAGTAGCTATTGGATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAAGC




AAGATGGAAGTGAGAAATACTATGTGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACT




GTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGATGACTATAGTGGGAGCTAC




TATTGGGAATTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID No: 587)



VL
CAGCCTGTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCAAGCTCACCTGCACTCTGAGCAGTG




GGCACAGCAGCTACGCCATCGCATGGCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAACAGTGA




TGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAGGCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATC




TCCAGCCTCCAGTCTGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGGCATTTGGGTGTTCGGCGGAGGGA




CCAAGCTGACCGTCCTA (SEQ ID No: 588)





EW 10C
VH
TTCACCTTCAACAAGTACAAGATGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAAG




GAAGATGGAAGTGAGAAAAACTATGTGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAGGAACTCA




GTATATATGCACCTGAACAACTTGAGAGTCGAGGACACGGCCGTGTATTACTGTGCGAGAGGGCGGACCCTCGGCGACT




GGGGCCAGGGAACCACGGTCACCGTCTCCTCA (SEQ ID No: 589)



VL
GCCATCCGGATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCCTCCATCTCCTGCAGGTCTAGTCA




AAGCCTCGTGCACAGTGATGGAAACACCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCTAATT




TATAAGGTTTCTAACCGGGACTCTGGGGCCCCAGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAAAA




TCAGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTATTGCATGCAAGGTACACACTGGCCTCCGATTACTTTCGGCCCT




GGGACCAAAGTGGATATCAAA (SEQ ID No: 590)





EY 12B
VH
GAAGTGCAGCTGGTGGAGTCCGGGGGAGACTTGGTACAGCCTGGCAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGAT




TCACCTTTGATTATTTTGCCATGCACTGGGTCCGGCAAGTTCCAGGGAAGGGCCTGGAGTGGGTCTCAGGTATTCGTTGG




AATAGTGAAACCATAGGCTATGCGGACTCTGTGAAGGGCCGGTTCACCATCTCCAGAGACAACGCCAAGAAATCACTGT




ATCTGGAAATGAACAGTCTGAGAAGTGAGGACACGGCCTTCTATTACTGTGCAAAAGGTCGGAGTGGCTACGGCCACAC




TGCTTTTGATGTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID No: 591)



VL
CAGTCTGCCCTGACTCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCACCATCTCCTGCACTGGGAGCAGCT




CCAACATCGGGGCAAATTATGATGTACACTGGTATCAGCGGCTTCCAGGAACAGCCCCCAAACTCCTCATCTATGATAAC




AACAATCGGCCCTCGGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCGCTGGGCT




CCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGAGTGCTTCAGTATTCGGCGGAGGGACCA




AGCTGACCGTCCTA (SEQ ID No: 592)





EZ 8C
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGA




TTCACCTTCAGTTCCTATACCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCTTTATTGC




TAATAGTGATTACAAGTTCTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAGCTCACTG




TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAACTAACCAGTTATGGTTCCC




ACGATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID No: 593)



VL
CAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCA




GTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCTTGATTTATGAGGTC




ACTAATCGGCCCTCAGGGGTTTCTGATCGCTTCTCTGGCTCCAAGTCTGCCAATGTGGCGTCCCTGACCATCTCTGGGCT




CCAGGCTGAGGACGAGGCTGATTATTACTGCAGCTCATATACAACCACCGACTCCGTGGTTTTCGGCGGAGGGACCAAG




CTGACCGTCCTA (SEQ ID No: 594)





EY 9C
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGAA




TTCACCTTCAGTAGCTATACCTTGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAC




TAGTAGTGCTTACATATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAAGTCACTGT




CTCTGCAAATGAACAGCCTGACAGCCGAGGACACGGCTGTCTATTACTGTGCGACTTGGGGCGGTGCCCCCTTTGACTA




CTGGGGCCAAGGGACAATGGTCACCGTCTCA (SEQ ID No: 595)



VL
CAGTCTGTGCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACGGTCGATCACCATCTCCTGCACTGAAACCAGCA




GTGATGTTGGGACTTATAACCTTGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTTTGACGAC




AATAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCT




CCAGGCTGAGGACGAGGCTGATTATTACTGCTGCTCATATGCAGGTGGTAGGACCTTCAATGTGCTATTCGGCGGCGGGA




CCAAGCTGACCGTCCTA (SEQ ID No: 596)





EZ 8B
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGAT




TCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGG




TAGTGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTG




TATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAAGATCTGGGGTACTATGGTTCGGG




GAGTTCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID No: 597)



VL
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCCAGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATT




GGGGGATAAATATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCATCTATCAAGATAGCAAGCGGC




CCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCTAT




GGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGCACTGCGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




(SEQ ID No: 598)





FD 3E
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGA




TTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATCATA




TGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGT




ATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAAGATCCCCATTACTATGGTTCGGGG




AGTTATTATAACCAGCTGAGGGGATACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTC




A (SEQ ID No: 599)



VL
GATATTGTGATGACCCAGACTCCACTCTCTCTGTCCGTCACCCCTGGACAGCCGGCCTCCATCTCCTGCAAGTCTAGTCA




GAGCCTCCTGCATAGTGATGGAAAGACCTATTTGTATTGGTACCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCTAATCT




ATGAAGTTTCCAGCCGGTTCTCTGGAGTGCCAGATAGGTTCAGTGGCAGCGGGTCAGGGACAGATTTCACACTGAAAAT




CAGCCGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTATACACCTTCCTCACTTTCGGCGGAGGGACC




AAGTGGAGATCAAA (SEQ ID No: 600)





EW 1A
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGTCGTCCCTGAGACTCTCCTGTGAAACGTCTGGT




TTCACCTTCAGTGGACATGCCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGCTGGCACAAATCTGGT




TCGATGGAAGTGAAAAATACTATGCAGATTCCGTGAAGGGTCGATTCACCATCTCCAGAGACAATTCCAAGAAAATCCTA




TATATGCAAATGAACAGCCTGAGAGTCCAAGACACGGCTGTGTATTACTGTGCGAGAGATGGGCAACATCTGGCACCTTT




CGCTATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID No: 601)



VL
CAGTCTGTGCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCAATCACCATCTCCTGCACTGGAACCAGCA




GTGACGTTGGTGCCTCTAACCGTGTTTCCTGGTACCAACACTCCCCAGGCGAAGCCCCCAAACTCATCATTTATCAGGTC




ACTGTTCGGCCCTCAGGGGTGTCTGATCGCTTCTCTGGCTCGAAGTCCGGCAACACGGCCTCCCTGACCATCTCTGGGCT




CCGGACTGAGGACGAGGCTGAATATTACTGCAACTCATTTGTAAGCGGTGACTCTTGGGTGTTCGGCGGAGGGACCAAG




GTGACCGTCCTA (SEQ ID No: 602)





FD 5B
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGA




TTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATGGTA




TGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGT




ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTCTATTACTGTGCGAGAGATGAACGTAGAGAGTCCTACAA




TTTCGTGTTGGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID No: 603)



VL
CAGTCTGTGCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCAGTCACCATCTCCTGCACTGGAACCAGCA




GTGACGCTGGTGGTTATAACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATGAGGTC




AGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGC




TCCAGGCTGAGGATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAACAACCCCTTTGTCTTCGGAACTGGGACC




AAGGTCACCGTCCTA (SEQ ID No: 604)





EW 9A
VH
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGA




TTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATGGTA




TGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGT




ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAAAGATATGTGGGCCTTATACGATATT




TTGACTGGTTATTATACACCCTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA




(SEQ ID No: 605)



VL
TCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGACAGACGGCCAGGATCACCTGCTCTGCAGATGCAT




TGCCAAAGCAATATGCTTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATATAAAGACAGTGAGAG




GCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAGCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCA




GAAGACGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTACTTATTGGGTGTTCGGCGGAGGGACCAAGCTGA




CCGTCCTA (SEQ ID No: 606)





FD 8C
VH
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTAAAGCCAGGGCGGTCCCTGAGACTCTCCTGTACAGCTTCTGGAT




TCACCTTTGGTGATTATGCTATGAGCTGGTTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTAGGTTTCATTAGAAGC




AAAGCTTATGGTGGGACAACAGAATACGCCGCGTCTGTGAAAGGCAGATTCACCATCTCAAGAGATGATTCCAAAAGCA




TCGCCTATCTGCAAATGAACAGCCTGAAAACCGAGGACACAGCCGTGTATTACTGTACTAGGAACGATTTTTGGAGTGGT




TATTATCCAGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID No: 607)



VL
GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCCTCCATCTCCTGCAGGTCTAGTCA




AAGCCTCGTACACAGTGATGGAAACACCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCTAATT




TATAAGGTTTCTAACCGGGACTCTGGGGTCCCAGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAAAA




TCAGCAGGGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTACACACTGGCCCCGCTCACTTTCGGCGGA




GGGACCAAAGTGGATATCAAAC (SEQ ID No: 608)





EW 5A
VH
GAAGTGCAGCTGGTGGAGTCGGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGCGACTCTCCTGTTCAGTCTCTGGAT




TCCCCTTCGGAACATATGCTATGCACTGGGTCCGCCAGGCTCCCGGGAAGGGGCTAGATTATGTTTCAGCTATTAATAATG




ATGGGAGTATTACATACTACGCAGACTCAGTGAGGGGCAGATTCACCGTCTCCAGAGACAATTCCGAGAACACTCTATAT




CTTCGACTGAGCGGTCTGAGACCTGACGACACGGCTATCTATTATTGTGTGAAAGATCGGGGCTCCGTTATTCGGGACTT




CGACGTCTGGGGCCGTGGCACCCTGGTCACCGTCTCCTCA (SEQ ID No: 609)



VL
CAGACTGTGGTGACTCAGGAGCCCTCACTGACTGTCTCCCCAGGAGGGACAGTCACTCTCACCTGTGCTTCCAGTACTG




GAACAGTCACCAGTGATTACTATCCAAACTGGTTCCAGCAGAAGCCTGGACAGGCACCCAGGCCTCTGATTTTCGGTAC




AGCCTACAGACACTCCTGGACCCCTGCCCGATTCTCAGGCTCCCTCCTTGGGGGCAAAGCTGCCCTGACAGTGTCAGAT




GTGCAGCCTGAGGACGAGGCTGACTATTACTGCCTGCTCTACTGTGGTGGTGGTCAGCTTTTCGGCGGAGGGACCAAGC




TGACCGTCCTA (SEQ ID No: 610)





EZ 9C
VH
GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTTCAGCCTCTGGAT




TCACCCTCAATGGCTATGCTATGCACTGGGTCCGCCAGGCTCCAGGGAAAGGACTGGAGTATGTTTCAAGTCTTTCTAAT




CGTGGAGATAATACACGCTACGCAGAGTCCGTGAAGGGCAGATTCCTCATCTCCAGAGACATTGCCAAGGACACGCTTT




ATCTTCAGATGAGCAGTCTGAGACCTGAGGACACGGCTGTCTATTACTGTGGGAAAGGCCTTTTGTCTGCCAGTGGGGG




ATTGCCGATTGACGACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID No: 611)



VL
CAGTCTGTGCTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGGTCACCATCTCCTGCTCTGGAAGCAGCT




CCAACATTGGGAATAATTATGTATCCTGGTACCAGCAGTTCCCAGGAACAGCCCCCAAACTCCTCATTTATGACAATAATA




AGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCAAGTCTGGCACGTCAGCCACCCTGGGCATTACCGGCCTCCA




GACTGGGGACGAGGCCGCTTATTACTGCGCAACATGGGATAGCAGCCTGAGTGCTGGGGTGTTCGGCGGAGGGGCCAA




GCTGACCGTCCTA (SEQ ID No: 612)





EZ 9A
VH
GAAGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGGGAGTCACTGAGAGTCTCCTGTGCAGCCTCTGGA




TTCACCTTCAGTAACTACTGGATGCACTGGGTCCGCCAAGTCCCAGGAAAGGGGCCGGTGTGGGTCTCAATTATTAATAC




TGATGGAAGTATCACAAGATATGTGGACTCCGTGAGGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGGTG




CATCTGCAAATGAACAGCCTGACAGCCGAGGACACGGCTATATATTATTGTGCAAGAGATGTCAATAGGTACCCTGACTA




CTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID No: 613)



VL
CAGTCTGCCCTGACTCAGCCCGCCTCCGTGTCTGGGTCTCCTGGGCAGTCGATCACCATTTCCTGCACTGGAACCTACAG




TGACGTTGGTTATTATAACTATGTCTCCTGGTATCAACAACAGCCCGGCAAGGCCCCCAAAGTCATCATTCATGGGGACAT




TAATCGGCCCTTTGGAGTTTCTAATCGCTTTTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCC




AGGCCGAGGACGAGGCTGATTATTTCTGCTGCTCATATGTAAATAATGGCGCTTGGGTGTTCGGCGGAGGGACCAAGTTG




ACCGTCCTA (SEQ ID No: 614)





EY 12A
VH
GAAGTGCAGCTGGTGGAGTCGGGCCCCGGACTGGTGAAGCCTTCACAGACCCTGTCCCTCACCTGCGCTGTCTCCGGTG




GCTCCATCAGCAGTGGTGGTTACTACTGGAGTTGGATCCGCCAGCCCCCAGGAAAGGGCCTGGAGTTGATTGGGTACAC




CGATTACACTGGGAAGACCCTCTACAACCCATCCCTCAAGAGTCGACTTACCATATCAGTGGACACGTCCAAGAACCAG




TTCTCCCTGAAGTTGAGGTCTGTGACTGCCGCAGACACGGCCGTCTATTACTGTGCCAGAGGGATGACGCAAGACGATA




TTTTGACTGGTTTTAATAGGCCTCACTGGTATTTCGATCTCTGGGGCCGTGGCAGTCTGGTCACCGTCTCCTCA




(SEQ ID No: 615)



VL
CAGTCTGTGCTGACTCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCACCATCTCCTGCACTGGGAGCAGCT




CCAACATCGGGGCAGGTTATGATGTACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAAGTCGTCATCTATCGTAAC




ATGAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCT




CCAGGCTGAGGATGAGGCTGATTATTACTGCCAGTCCTTTGACAGCAGCCTGAGTGATTTTGTGGTTTTCGGCGGAGGGA




CCAAGCTGACCGTCCTA (SEQ ID No: 616)





FD 4C
VH
GAAGTGCAGCTGGTGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACAGACCCTGTCCCTCACCTGCACTGTCTCTGGTG




GCTCCATCAGCAGTGGTGGTTACTACTGGAGCTGGATCCGCCAGCACCCAGGGAAGGGCCTGGAGTGGATTGGGTACAT




CTATTACAGTGGGAGCACCTACTACAACCCGTCCCTCAAGAGCCGAGTTACCATATCAGTAGACACGTCTAAGAACCAGT




TCTCCCTGAAGCTGAGCTCTGTGACTGCCGCGGACACGGCCGTGTATTACTGTGCGAGAGTCCGGTCTAGCAGCAGCTG




GTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID No: 617)



VL
CAGTCTGTGCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCA




GTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATGATGTC




AGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCT




CCAGGCTGAGGACGAGGCTGATTATTACTGCAGCTCATATACAAGCAAATGGGTGTTCGGCGGAGGGACCAAGCTGACC




GTCCTA (SEQ ID No: 618)





EW 4C
VH
GAGGTGCAGCTGGTGGAGTCGGGCCCAGGGCTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCAGTGTCTCTGCT




GACTCCTTCAAAAAAGGTTACTATTGGGGCTGGATCCGGCAGCCCCCTGGGAAGGGATTGGAATCGATTGTCAATTCTTT




TGATTCCGGGACCACCCGCTATAATCCGTCCCTCTGGGGTCGAGCCACCGTATCAGACATGTCCAAGTGGCACTTCTCCC




TGAAGTTGACCTCTGTGACCGCCGCAGACACGGCCGTTTATTATTGTGTCCGGGGAACATATGGTTCGGGCCTTCACTGG




GGCCAGGGAATCCTGGTCACCGTCTCCTCA (SEQ ID No: 619)



VL
CAGACTGTGGTGACCCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGACAGTCACTCTCACTTGTGGCTCCAGCGTTG




GAACTGTCGCCAGTGGTCATTATCCCTACTGGGTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGATTTATGATACA




GACAACAAACAATCCTGGACCCCTGCCCGGTTCTCAGGCTCCCTCCTTGGGGGCAAGGCTGCCCTGACCCTTTCGGGTG




CGCAGCCTGAGGATGAGGCTGACTATTACTGCTTTCTCTCCCATAATGATGCTTGGGTGTTCGGCGGAGGGACCAAGTTG




ACCGTCCTT (SEQ ID No: 620)





FD 6D
VH
GAAGTGCAGCTGGTGGAGTCGGGCCCGGGACTGGTGAAGGTTTCGGAGACCCTGTTCCTCACCTGCACTGTCTCTGGGT




ACTCCATCGGCAGTGGTAACTACTGGGGCTGGATCCGGCAGCCCCCAGGGAAGGTTCTGGAGTGGATTGGGAGTACTTA




CCACAGTGGGACCACCTACTACAATCCGTCCCTCAAGAGTCGAGTCACCATATCAGTTGACTCGTCCAAGAATCAGTTCT




CCCTGAAGCTGACCTCTGTGACCGCCGCAGACACGGCCGTGTATTACTGTGCGAGAGATCGGCTATTAGCTGTCCATTAT




GACAGCCGTGGTTATTTAGTTGACTACTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID No: 621)



VL
GCCATCCGGATGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCAGCC




AGAGTATTTTTTACAGCTCCAACAATAAGAACTATTTAGCTTGGTACCAGCACAAACCGGGACAGCCTCCTAAGCTCCTC




ATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCAC




CATCAGCAGCCTGCAGGCTGAAGATGTGGCAATTTATTACTGTCAGCAATATTATGATATTCCTCGGACGTTCGGCCAAGG




GACCAAGGTGGAAATCAGA (SEQ ID No: 622)





EY 5A
VH
GAAGTGCAGCTGGTGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGGGACCCTGTTCCTCACCTGCACTGTCTCTGGTG




GCTCCATCAGTAATTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGCACTAGAGTGGATTGGGTTTATTTATTCC




AATGGGAACACTGATTACAACCCCTCCCTCCAGAGTCGAGTCACCATATCGGGAGACACGTCCAAGAACCAGTTCTCCC




TGAACCTGAGGTCTGTTACCGCTGCGGACACGGCCGTGTATTACTGTGCGAGAGGGCCGGGGCCGGCTACGGGGGGTAG




TCTTGACTACTGGGGCCAAGGGACAATGGTCACCGTCTCTTCA (SEQ ID No: 623)



VL
AATTTTATGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTC




CAACATCGGAATAAATACTGTAAACTGGTACCAGCACCTCCCAGGAACGGCCCCCAAACTCCTCATCTATGGTAATAATC




AGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAACCTCCCTGGCCATCAGTGGGCTCCA




GTCTGAGGATGAGGCTGATTATTATTGTTCAGCATGGGATGACAGCCTGAATGGTCCTGTGTTCGGAGGAGGCACCCAGC




TGACCGTCCTC (SEQ ID No: 624)





EZ 7B
VH
GAAGTGCAGCTGGTGGAGTCGAGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGT




GGCTCCATCAGTAGTTACTACTGGAGCTGGATCCGGCAGCCCCCGGGGAAGGGACTGGAGTGGATTGGGTATATCTATTA




CAGTGGGAGCACCAACTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCC




CTGAAGCTGAGCTCTGTGACCGCTGCGGACACGGCCGTGTATTACTGTGCGAGAAGGGTTTTCGGCCCCGTCCTCCCTT




(SEQ ID No: 625)



VL
GACATCCAGTTGACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGTCCAGCC




AGAGTGTTTTATACAGCTCCAACAATAAGAACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCTC




ATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCAC




CATCAGCAGCCTGCAGGCTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTACTCCCCTCACTTTCGGCCCTGG




GACCAAGGTGGAAATCAGA (SEQ ID No: 626)





EZ 4C
VH
GAAGTGCAGCTGGTGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGT


kappa

GGCTCCGTCAGTAGTGGTAATAACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGCACTGGAGTGGATTGGATATAT




CTATTACAGTGGGAGCACCAAGTACAACCCCTCCCTCAAGAGTCGAGTCACCATGTCTGTAGGCACGTCCAAGAATCAA




TTCTCTCTGAAAGTGAACTCTGTGACGGCTGCGGACACGGCCATGTATTACTGTGCCAGAGCCCCCTCGGCTCCCTTTGG




GGGACTTTTTGACTGGATATTACCTAAAGGGATTAACAACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID




No: 627)



VL
GAAATTGTGTTGACACAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGACCAGTCA




GAGTATTCGTAGCTGGTTGGCCTGGTATCAACAAAAACCAGGGAAAGCCCCTAAACTCCTGATCTTTGAGGCATCTACTT




TAGAAAGTGGGGTCCCAGAGAGGTTCAGCGGCAGTGGATCTGGGGCGGAATTCACTCTCACCATCAGCAGCCTGCAGC




CTGATGATTTTGCAACTTATTACTGTCAACAGTATAATGGTTATTCTTACAGTTTTGGCCAGGGGACCAAGGTGGAAATCA




GA (SEQ ID No: 628)





EZ 4C
VH
GTTCAGCTGGTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTG


lambda

GCTCCGTCAGTAGTGGTAATAACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGCACTGGAGTGGATTGGATATATC




TATTACAGTGGGAGCACCAAGTACAACCCCTCCCTCAAGAGTCGAGTCACCATGTCTGTAGACACGTCCAAGAATCAATT




CTCTCTGAAAGTGAACTCTGTGACGGCTGCGGACACGGCCATGTATTACTGTGCCAGAGCCCCCTCGGCTCCCTTTGGG




GGACTTTTTGACTGGATATTACCTAAAGGGATTGACAACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA




(SEQ ID No: 629)



VL
CAGTCTGCCCTGACTCAGCCGCCTTCAGTGTCTGCCGCCCCAGGACAGAAGGTCACCATCTCCTACTCTGGAAACAGCT




CCGACATGGGGACTTATGCGGTATCTTGGTAACAGCGACTCCCAGGAACAGCCCCCAAACTCTTCATCTGTGAAGAGAA




TAAGCGACCCCCAGGGATTCCTGACCGATTCTCTGGCTCCAAGTCTGGCACTTCAGCCACCCTGGGCATCACTGGCCTCT




GGCCTGAGGACGAGGCCGATTATTGCTAAATAGCATGACATAGCAGCCCGAGACTTGGGTGTTCGGCGGAGGGACCAAG




CTGACCGTCCTAG (SEQ ID No: 630)





FD 4B
VH
CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTG




GCTCCGTCAGTAGTGGTAATAACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGCACTGGAGTGGATTGGATATCT




CTATTACAGTGGGAGCACCAAGTACAACCCCTCCCTCAAGAGTCGAGTCACCATGTCTGTAGACACGTCCAAGAATCAA




TTCTCTCTGAAAGTGAACTCTGTGACGGCTGCGGACACGGCCATGTATTATTGTGCCAGAGCCCCCTCGGCTCCCTTTGG




GGGACTTTTTGACTGGATATTACCTAAAGGGATTGACAGCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID




No: 631)



VL
CAGTCTGCCCTGACTCAGCCGCCTTCAGTGTCTGCCGCCCCAGGACAGAAGGTCACCATCTCCTACTCTGGAAACAGCT




CCGACATGGGGACTTATGCGGTATCTTGGTAACAGCGACTCCCAGGAACAGCCCCCAAACTCTTCATCTGTGAAGAGAA




TAAGCGACCCCCAGGGATTCCTGACCGATTCTCTGGCTCCAAGTCTGGCACTTCAGCCACCCTGGGCATCACTGGCCTCT




GGCCTGAGGACGAGGCCGATTATTGCTAAATAGCATGACATAGCAGCCCGAGACTTGGGTGTTCGGCGGAGGGACCAAG




CTGACCGTCCTAG (SEQ ID No: 632)





EY 8A
VH
GAGGTGCAGCTGGTGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACAGACCCTGTCCCTCACCTGCACTGTCTCTGGTG




GCTCCATCAGCAGTGGTAGTTACTACTGGAGCTGGATCCGGCAGCCCGCCGGGAAGGGACTGGAGTGGATTGGGCGTAT




CTATACCAGTGGGAGCACCAACTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAG




TTCTCCCTGAAGCTGAGCTCTGTGACCGCCGCAGACACGGCCGTGTATTACTGTGCGAAAGGACATGTTATTAGTGGCTA




CGATGATTACTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA




(SEQ ID No: 633)



VL
TCCTATGAGCTGACTCAGCCACCCTCGGTGTCAGTGTCCCCAGGACAGACGGCCAGGATCACCTGCTCTGGAGATGCAT




TGCCAAAGCAATATGCTTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATATAAAGACAGTGAGAG




GCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAGCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCA




GAAGACGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTACTTATTGGGTGTTCGGCGGAGGGACCAAGCTGA




CCGTCCTA (SEQ ID No: 634)





EY 2A
VH
CAGGTGCAGCTGGTGGAGTCTGGAGCAGAGGTGACAAAGCCCGGGGACTCTCTGATAATCTCCTGTAAGGGCTCTGGAT




ATGCATTTACTCAATACTGGATCGGCTGGGTGCGCCAGAAGCCCGGGAAAGGCCTGGAGTGGATGGCCATGGTTTATCCC




GATTCCTCTGCCGTCTTTGCCGGTGGTGCCTCTGGCGTCAGATATAGGCCGCCCTTCCAAGGCCAGGTCACCATATCAGC




CGACACGTCCGTCAACACCGCCTACCTGCAGTGGGACAGCCTGAAGGCCTCGGACACCGCCATGTACTATTGTGTAAGA




CAGGAACGTGGGAGCAATACTTGGTACGCGGGAAACTCCTGGGGCCAGGGAACTCTGGTCACCGTCTCCTCA (SEQ ID




No: 635)



VL
GATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGTCAGCCCTGGAGAGCCGGCCTCCATCTCCTGTAGGTCTAGTCA




GAGCCTCCTCCATACTGATGCATACAACTATTTGGATTGGTACCTGCAAAAGCCAGGGCAGTCTCCACAACTCCTGATCT




ATTTGGGTTCTACTCGGGCCTCCGGGGTGCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGACTTTACACTGAAAAT




CAGTAGCGTGAAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAAACTCCGGGCACTTTTGGCCAGGGG




ACCAAGCTGGAGATCAAA (SEQ ID No: 636)





EY 3B
VH
GAAGTGCAGCTGGTGGAGTCTGGAGCAGAGGTGACAAAGCCCGGGGAGTCTCTGATAATCTCCTGTAAGGGGTCTGGA




TATGCATTTACTCAATACTGGATCGGCTGGGTGCGCCAGAAGCCCGGGAAAGGCCTGGAGTGGATGGCCATGGTGTATCC




CGATTCCTCTGCCGTCTTTGCCGGTGGTGCCTCTGGCGTCAGATATAGGCCGCCCTTCCAAGGCCAGGTCACCATCTCAG




CCGACACGTCCGTCAACACCGCCTACCTGCAGTGGGACAGCCTGAAGGCCTCGGACACCGCCATGTACTATTGTGTAAG




ACAGGAACGTGGGAGCAACACTTGGTACGCGGGAAACTCCTGGGGCCAGGGAACTCTGGTCACCGTCTTCTCA (SEQ ID




No: 637)



VL
GAAATTGTGTTGACGCAGTCTCCACTCTCCCTGCCCGTCAGCCCTGGAGAGCCGGCCTCCATCTCCTGTAGGTCTAGTCA




GAGCCTCCTCCATACTGATGCATACAACTATTTGGATTGGTACCTGCAAAAGCCAGGGCAGTCTCCACAGCTCCTGATCT




ATTTGGGTTCTACTCGGGCCTCCGGGGTGCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGACTTTACACTGAAAAT




CAGTAGCGTGAAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAAACTCCGGGCACTTTTGGCCAGGGG




ACCAAGGTGGAAATCAGA (SEQ ID No: 638)





EZ 4A
VH
GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTGAAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGTAAGGGTTCTGGA




TACAGCTTTACCAGCTACTGGATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGGATGGGGATCATCTATCC




TGGTGACTCTGATACCAGATACAGCCCGTCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATCAGCACCGCCT




ACCTGCAGTGGAGCAGCCTGAAGGCCTCGGACACCGCCATGTATTACTGTGCGAGATCGCCTATAGCAGCAGACCTGTTT




GACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID No: 639)



VL
GACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCA




GGACATTAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGCATCCAATTT




GGAAACAGGGGTCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGCCT




GAAGATATTGCAACATATTACTGTCAACAGTATGATAATCTCTTATTCACTTTCGGCCCTGGGACCAAGGTGGAGATCAAA




(SEQ ID No: 640)










Amino acid sequences of VH and VL









EZ 9B
VH
EVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGRINPNSGGTNYAQKFQGRVTMTRDTSISTA




YMELSRLRSDDTAVYYCAREGPTVTWWFDPWGQGTLVTVSS (SEQ ID No: 273)



VL
SYELTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEA




DYYCQVWDSSSDHPSWVFGGGTKLTVL (SEQ ID No: 274)





EZ 11C
VH
EVQLVESGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIYAQKFQGRVTMTEDTSTDTAY




MELSSLRSEDTAVYYCATTTVTTPTANWFDPWGQGTLVTVSS (SEQ ID No: 275)



VL
QSALTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYENNKRPSGIPDRFSGSKSGTSATLGITGLQTGD




EADYYCGTWDSSLRQVVFGGGTKLTVL (SEQ ID No: 276)





FD 9B
VH
EVQLVESGGGLVQPGGSLRLSCAGTGFSFSRYWMNWVRQAPGKGLEWVANMDPDGGAKYYLDSVKGRFTISGDNAKNSL




YLQMNRLRAEDTAVYYCVKFGRSEGLFWGRGTLVTVSS (SEQ ID No: 277)



VL
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGHYPYWFQQKPGQAPRTLIYDTSNKHSWTPARFSGSLLGGKAALTLSGAQPE




DEADYYCFLTYVGARRLFGGGTKLTVL (SEQ ID No: 278)





EZ 11A
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYL




QMNSLRAEDTAVYYCARDDYSGSYYWEFDYWGQGTLVTVSS (SEQ ID No: 279)



VL
QPVLTQSPSASASLGASVKLTCTLSSGHSSYAIAWHQQQPEKGPRYLMKLNSDGSHSKGDGIPDRFSGSSSGAERYLTISSLQ




SEDEADYYCQTWGTGIWVFGGGTKLTVL (SEQ ID No: 280)





EW 10C
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFNKYKMTWVRQAPGKGLEWVANIKEDGSEKNYVDSVKGRFTISRDNARNSVY




MHLNNLRVEDTAVYYCARGRTLGDWGQGTTVTVSS (SEQ ID No: 281)



VL
AIRMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGAPDRFSGSGSGTDFTLKISRV




EAEDVGVYYCMQGTHWPPITFGPGTKVDIK (SEQ ID No: 282)





EY 12B
VH
EVQLVESGGDLVQPGRSLRLSCAASGFTFDYFAMHWVRQVPGKGLEWVSGIRWNSETIGYADSVKGRFTISRDNAKKSLYLE




MNSLRSEDTAFYYCAKGRSGYGHTAFDVWGQGTMVTVSS (SEQ ID No: 283)



VL
QSALTQPPSVSGAPGQRVTISCTGSSSNIGANYDVHWYQRLPGTAPKLLIYDNNNRPSGVPDRFSGSKSGTSASLAIAGLQAE




DEADYYCQSYDSSLSASVFGGGTKLTVL (SEQ ID No: 284)





EZ 8C
VH
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYTMNWVRQAPGKGLEWVSSFIANSDYKFYADSVKGRFTISRDNAKSSLYLQ




MNSLRAEDTAVYYCARELTSYGSHDAFDIWGQGTMVTVSS (SEQ ID No: 285)



VL
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLLIYEVTNRPSGVSDRFSGSKSANVASLTISGLQAE




DEADYYCSSYTTTDSVVFGGGTKLTVL (SEQ ID No: 286)





EY 9C
VH
EVQLVESGGGLVKPGGSLRLSCAASEFTFSSYTLNWVRQAPGKGLEWVSSISTSSAYIYYADSVKGRFTISRDNAKKSLSLQM




NSLTAEDTAVYYCATWGGAPFDYWGQGTMVTVS (SEQ ID No: 287)



VL
QSVLTQPASVSGSPGRSITISCTETSSDVGTYNLVSWYQQHPGKAPKLMIFDDNKRPSGVSNRFSGSKSGNTASLTISGLQAE




DEADYYCCSYAGGRTFNVLFGGGTKLTVL (SEQ ID No: 288)





EZ 8B
VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQ




MNSLRAEDTAVYYCAKDLGYYGSGSSWGQGTLVTVSS (SEQ ID No: 289)



VL
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIYQDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEA




DYYCQAWDSSTAVFGGGTKLTVL (SEQ ID No: 290)





FD 3E
VH
EVOLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYL




QMNSLRAEDTAVYYCAKDPHYYGSGSYYNQLRGYYYYGMDVWGQGTTVTVSS (SEQ ID No: 291)



VL
DIVMTQTPLSLSVTPGQPASISCKSSQSLLHSDGKTYLYWYLQKPGQSPQLLIYEVSSRFSGVPDRFSGSGSGTDFTLKISRV




EAEDVGVYYCMQGIHLPHFRRRDQVEIK (SEQ ID No: 292)





EW 1A
VH
EVQLVESGGGVVQPGSSLRLSCETSGFTFSGHAMHWVRQAPGKGLEWLAQIWFDGSEKYYADSVKGRFTISRDNSKKILYM




QMNSLRVQDTAVYYCARDGQHLAPFAMDVWGQGTMVTVSS (SEQ ID No: 293)



VL
QSVLTQPASVSGSPGQSITISCTGTSSDVGASNRVSWYQHSPGEAPKLIIYQVTVRPSGVSDRFSGSKSGNTASLTISGLRTE




DEAEYYCNSFVSGDSWVFGGGTKVTVL (SEQ ID No: 294)





FD 5B
VH
EVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYL




QMNSLRAEDTAVYYCARDERRESYNFVLDYWGQGTLVTVSS (SEQ ID No: 295)



VL
QSVLTQPPSASGSPGQSVTISCTGTSSDAGGYNYVSWYQQHPGKAPKLMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAE




DEADYYCSSYAGSNNPFVFGTGTKVTVL (SEQ ID No: 296)





EW 9A
VH
EVQLLESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYL




QMNSLRAEDTAVYYCAKDMWALYDILTGYYTPYYYYGMDVWGQGTTVTVSS (SEQ ID No: 297)



VL
SYELTQPPSVSVSPGQTARITCSADALPKQYAYWYQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGVQAEDEA




DYYCQSADSSGTYWVFGGGTKLTVL (SEQ ID No: 298)





FD 8C
VH
EVQLVESGGGLVKPGRSLRLSCTASGFTFGDYAMSWFRQAPGKGLEWVGFIRSKAYGGTTEYAASVKGRFTISRDDSKSIAYL




QMNSLKTEDTAVYYCTRNDFWSGYYPDYWGQGTLVTVSS (SEQ ID No: 299)



VL
DIVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRFSGSGSGTDFTLKISRV




EAEDVGVYYCMQGTHWPRSLSAEGPKWISN (SEQ ID No: 300)





EW 5A
VH
EVQLVESGGGLVQPGGSLRLSCSVSGFPFGTYAMHWVRQAPGKGLDYVSAINNDGSITYYADSVRGRFTVSRDNSENTLYLR




LSGLRPDDTAIYYCVKDRGSVIRDFDVWGRGTLVTVSS (SEQ ID No: 301)



VL
QTVVTQEPSLTVSPGGTVTLTCASSTGTVTSDYYPNWFQQKPGQAPRPLIFGTAYRHSWTPARFSGSLLGGKAALTVSDVQPE




DEADYYCLLYCGGGQLFGGGTKLTVL (SEQ ID No: 302)





EZ 9C
VH
EVQLVESGGGLVQPGGSLRLSCSASGFTLNGYAMHWVRQAPGKGLEYVSSLSNRGDNTRYAESVKGRFLISRDIAKDTLYLQ




MSSLRPEDTAVYYCGKGLLSASGGLPIDDWGQGTLVTVSS (SEQ ID No: 303)



VL
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQFPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITGLQTGD




EAAYYCATWDSSLSAGVFGGGAKLTVL (SEQ ID No: 304)





EZ 9A
VH
EVQLVESGGGLVQPGESLRVSCAASGFTFSNYWMHWVRQVPGKGPVWVSIINTDGSITRYVDSVRGRFTISRDNAKNTVHL




QMNSLTAEDTAIYYCARDVNRYPDYWGQGTLVTVSS (SEQ ID No: 305)



VL
QSALTQPASVSGSPGQSITISCTGTYSDVGYYNYVSWYQQQPGKAPKVIIHGDINRPFGVSNRFSGSKSGNTASLTISGLQAE




DEADYFCCSYVNNGAWVFGGGTKLTVL (SEQ ID No: 306)





EY 12A
VH
EVQLVESGPGLVKPSQTLSLTCAVSGGSISSGGYYWSWIRQPPGKGLELIGYTDYTGKTLYNPSLKSRLTISVDTSKNQFSLK




LRSVTAADTAVYYCARGMTQDDILTGFNRPHWYFDLWGRGSLVTVSS (SEQ ID No: 307)



VL
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKVVIYRNMNRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSFDSSLSDFVVFGGGTKLTVL (SEQ ID No: 308)





FD 4C
VH
EVQLVESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLK




LSSVTAADTAVYYCARVRSSSSWYFDYWGQGTLVTVSS (SEQ ID No: 309)



VL
QSVLTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSKRPSGVSNRFSGSKSGNTASLTISGLQAE




DEADYYCSSYTSKWVFGGGTKLTVL (SEQ ID No: 310)





EW 4C
VH
EVQLVESGPGLVKPSETLSLTCSVSADSFKKGYYWGWIRQPPGKGLESIVNSFDSGTTRYNPSLWGRATVSDMSKWHFSLKL




TSVTAADTAVYYCVRGTYGSGLHWGQGILVTVSS (SEQ ID No: 311)



VL
QTVVTQEPSLTVSPGGTVTLTCGSSVGTVASGHYPYWVQQKPGQAPRTLIYDTDNKQSWTPARFSGSLLGGKAALTLSGAQP




EDEADYYCFLSHNDAWVFGGGTKLTVL (SEQ ID No: 312)





FD 6D
VH
EVQLVESGPGLVKVSETLFLTCTVSGYSIGSGNYWGWIRQPPGKVLEWIGSTYHSGTTYYNPSLKSRVTISVDSSKNQFSLKL




TSVTAADTAVYYCARDRLLAVHYDSRGYLVDYWGQGTMVTVSS (SEQ ID No: 313)



VL
AIRMTQSPDSLAVSLGERATINCKSSQSIFYSSNNKNYLAWYQHKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISS




LQAEDVAIYYCQQYYDIPRTFGQGTKVEIR (SEQ ID No: 314)





EY 5A
VH
EVQLVESGPGLVKPSGTLFLTCTVSGGSISNYYWSWIRQPPGKALEWIGFIYSNGNTDYNPSLQSRVTISGDTSKNQFSLNLR




SVTAADTAVYYCARGPGPATGGSLDYWGQGTMVTVSS (SEQ ID No: 315)



VL
NFMLTQPPSASGTPGQRVTISCSGSSSNIGINTVNWYQHLPGTAPKLLIYGNNQRPSGVPDRFSGSKSGTSTSLAISGLQSED




EADYYCSAWDDSLNGPVFGGGTQLTVL (SEQ ID No: 316)





EZ 7B
VH
EVQLVESSPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLS




SVTAADTAVYYCARRVFGPVLPSKLGGSYWGGGAFDIWGQGTMVTVSS (SEQ ID No: 317)



VL
DIQLTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISS




LQAEDVAVYYCQQYYSTPLTFGPGTKVEIR (SEQ ID No: 318)





EZ 4C
VH
EVQLVESGPGLVKPSETLSLTCTVSGGSVSSGNNYWSWIRQPPGKALEWIGYIYYSGSTKYNPSLKSRVTMSVGTSKNQFSLK


kappa

VNSVTAADTAMYYCARAPSAPFGGLFDWILPKGINNWGQGTLVTVSS (SEQ ID No: 319)



VL
EIVLTQSPSTLSASVGDRVTITCRTSQSIRSWLAWYQQKPGKAPKLLIFEASTLESGVPERFSGSGSGAEFTLTISSLQPDDF




ATYYCQQYNGYSYSFGQGTKVEIR (SEQ ID No: 320)





EZ 4C
VH
VQLVQESGPGLVKPSETLSLTCTVSGGSVSSGNNYWSWIRQPPGKALEWIGYIYYSGSTKYNPSLKSRVTMSVDTSKNQFSLK


lambda

VNSVTAADTAMYYCARAPSAPFGGLFDWILPKGIDNWGQGTLVTVSS (SEQ ID No: 321)



VL
QSALTQPPSVSAAPGQKVTISYSGNSSDMGTYAVSW-




QRLPGTAPKLFICEENKRPPGIPDRFSGSKSGTSATLGITGLWPEDEADYC-IA-HSSPRLGCSAEGPS-PS-




(SEQ ID No: 322)





FD 4B
VH
QLQLQESGPGLVKPSETLSLTCTVSGGSVSSGNNYWSWIRQPPGKALEWIGYLYYSGSTKYNPSLKSRVTMSVDTSKNQFSL




KVNSVTAADTAMYYCARAPSAPFGGLFDWILPKGIDSWGQGTLVTVSS (SEQ ID No: 323)



VL
QSALTQPPSVSAAPGQKVTISYSGNSSDMGTYAVSW-




QRLPGTAPKLFICEENKRPPGIPDRFSGSKSGTSATLGITGLWPEDEADYC-IA-HSSPRLGCSAEGPS-PS-




(SEQ ID No: 324)





EY 8A
VH
EVOLVESGPGLVKPSQTLSLTCTVSGGSISSGSYYWSWIRQPAGKGLEWIGRIYTSGSTNYNPSLKSRVTISVDTSKNQFSLK




LSSVTAADTAVYYCAKGHVISGYDDYYYYYGMDVWGQGTTVTVSS (SEQ ID No: 325)



VL
SYELTQPPSVSVSPGQTARITCSGDALPKQYAYWYQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGVQAEDEA




DYYCQSADSSGTYWVFGGGTKLTVL (SEQ ID No: 326)





EY 2A
VH
QVQLVESGAEVTKPGDSLIISCKGSGYAFTQYWIGWVRQKPGKGLEWMAMVYPDSSAVFAGGASGVRYRPPFQGQVTISAD




TSVNTAYLQWDSLKASDTAMYYCVRQERGSNTWYAGNSWGQGTLVTVSS (SEQ ID No: 327)



VL
DIVMTQSPLSLPVSPGEPASISCRSSQSLLHTDAYNYLDWYLQKPGQSPQLLIYLGSTRASGVPDRFSGSGSGTDFTLKISSV




KAEDVGVYYCMQALQTPGTFGQGTKLEIK (SEQ ID No: 328)





EY 3B
VH
EVQLVESGAEVTKPGESLIISCKGSGYAFTQYWIGWVRQKPGKGLEWMAMVYPDSSAVFAGGASGVRYRPPFQGQVTISAD




TSVNTAYLQWDSLKASDTAMYYCVRQERGSNTWYAGNSWGQGTLVTVFS (SEQ ID No: 329)



VL
EIVLTQSPLSLPVSPGEPASISCRSSQSLLHTDAYNYLDWYLQKPGQSPQLLIYLGSTRASGVPDRFSGSGSGTDFTLKISSV




KAEDVGVYYCMQALQTPGTFGQGTKVEIR (SEQ ID No: 330)





EZ 4A
VH
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYLQ




WSSLKASDTAMYYCARSPIAADLFDYWGQGTLVTVSS (SEQ ID No: 331)



VL
DIQLTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDI




ATYYCQQYDNLLFTFGPGTKVEIK (SEQ ID No: 332)
















TABLE 7







Amino acid sequences of complementarity-determining regions (CDRs) of


the heavy chain variable region and the light chain variable regions of the 32 SARS-COV-2


nucleocapsid-reactive human monoclonal antibodies.














Heavy chain CDR1
Heavy chain CDR2
Heavy chain CDR3
Light chain CDR1
Light chain CDR2
Light chain CDR3


MAb
(HCDR1)
(HCDR2)
(HCDR3)
(LCDR1)
(LCDR2)
(LCDR3)





EZ 9B
GYTFTGYY(SEQ
INPNSGGT (SEQ
AREGPTVTWWF
NIGSKS (SEQ ID
DDS (SEQ ID No:
QVWDSSSDHPSW



ID No: 333)
ID No: 334)
DP (SEQ ID No:
No: 336)
337)
V (SEQ ID No: 338)





335)








EZ 11C
GYTLTELS (SEQ
FDPEDGET (SEQ
ATTTVTTPTANW
SSNIGNNY (SEQ
ENN (SEQ ID No:
GTWDSSLRQVV



ID No: 339)
ID No: 340)
FDP (SEQ ID No:
ID No: 342)
343)
(SEQ ID No: 344)





341)








FD 9B
GFSFSRYW (SEQ
MDPDGGAK (SEQ
VKFGRSEGLF
TGAVTSGHY
DTS (SEQ ID No:
FLTYVGARRL



ID No: 345)
ID No: 346)
(SEQ ID No: 347)
(SEQ ID No: 348)
349)
(SEQ ID No: 350)





EZ 11A
GFTFSSYW (SEQ
IKQDGSEK (SEQ
ARDDYSGSYYW
SGHSSYA (SEQ ID
LNSDGSH (SEQ
QTWGTGIWV



ID No: 351)
ID No: 352)
EFDY (SEQ ID No:
No: 354)
ID No: 355)
(SEQ ID No: 356)





353)








EW 10C
GFTFNKYK (SEQ
IKEDGSEK (SEQ
ARGRTLGD (SEQ
QSLVHSDGNTY
KVS (SEQ ID No:
MQGTHWPPIT



ID No: 357)
ID No: 358)
ID No: 359)
(SEQ ID No: 360)
361)
(SEQ ID No: 362)





EY 12B
GFTFDYFA (SEQ
IRWNSETI (SEQ
AKGRSGYGHTAF
SSNIGANYD (SEQ
DNN (SEQ ID No:
QSYDSSLSASV



ID No: 363)
ID No: 364)
DV (SEQ ID No:
ID No: 366)
367)
(SEQ ID No: 368)





365)








EZ 8C
GFTFSSYT (SEQ
FIANSDYK (SEQ
ARELTSYGSHDA
SSDVGGYNY
EVT (SEQ ID No:
SSYTTTDSVV



ID No: 369)
ID No: 370)
FDI (SEQ ID No:
(SEQ ID No: 372)
373)
(SEQ ID No: 374)





371)








EY 9C
EFTFSSYT (SEQ
ISTSSAYI (SEQ ID
ATWGGAPFDY
SSDVGTYNL
DDN (SEQ ID No:
CSYAGGRTFNVL



ID No: 375)
No: 376)
(SEQ ID No: 377)
(SEQ ID No: 378)
379)
(SEQ ID No: 380)





EZ 8B
GFTFSSYA (SEQ
ISGSGGST (SEQ
AKDLGYYGSGSS
KLGDKY (SEQ ID
QDS (SEQ ID No:
QAWDSSTAV



ID No: 381)
ID No: 382)
(SEQ ID No: 383)
No: 384)
385)
(SEQ ID No: 386)





FD 3E
GFTFSSYG (SEQ
ISYDGSNK (SEQ
AKDPHYYGSGSY
QSLLHSDGKTY
EVS (SEQ ID No:
MQGIHLPH (SEQ



ID No: 387)
ID No: 388)
YNQLRGYYYYG
(SEQ ID No: 390)
391)
ID No: 392)





MDV (SEQ ID No:








389)








EW 1A
GFTFSGHA (SEQ
IWFDGSEK (SEQ
ARDGQHLAPFAM
SSDVGASNR
QVT (SEQ ID No:
NSFVSGDSWV



ID No: 393)
ID No: 394)
DV (SEQ ID No:
(SEQ ID No: 396)
397)
(SEQ ID No: 398)





395)








FD 5B
GFTFSSYG (SEQ
IWYDGSNK (SEQ
ARDERRESYNFV
SSDAGGYNY
EVS (SEQ ID No:
SSYAGSNNPFV



ID No: 399)
ID No: 400)
LDY (SEQ ID No:
(SEQ ID No: 402)
403)
(SEQ ID No: 404)





401)








EW 9A
GFTFSSYG (SEQ
IWYDGSNK (SEQ
AKDMWALYDILT
ALPKQY (SEQ ID
KDS (SEQ ID No:
QSADSSGTYWV



ID No: 405)
ID No: 406)
GYYTPYYYYGM
No: 408)
409)
(SEQ ID No: 410)





DV (SEQ ID No:








407)








FD 8C
GFTFGDYA (SEQ
IRSKAYGGTT
TRNDFWSGYYPD
QSLVHSDGNTY
KVS (SEQ ID No:
MQGTHWPRSL



ID No: 411)
(SEQ ID No: 412)
Y (SEQ ID No: 413)
(SEQ ID No: 414)
415)
(SEQ ID No: 416)





EW 5A
GFPFGTYA (SEQ
INNDGSIT (SEQ
VKDRGSVIRDFD
TGTVTSDYY
GTA (SEQ ID No:
LLYCGGGQL



ID No: 417)
ID No: 418)
V (SEQ ID No: 419)
(SEQ ID No: 420)
421)
(SEQ ID No: 422)





EZ 9C
GFTLNGYA (SEQ
LSNRGDNT (SEQ
GKGLLSASGGLPI
SSNIGNNY (SEQ
DNN (SEQ ID No:
ATWDSSLSAGV



ID No: 423)
ID No: 424)
DD (SEQ ID No: 425)
ID No: 426)
427)
(SEQ ID No: 428)





EZ 9A
GFTFSNYW (SEQ
INTDGSIT (SEQ ID
ARDVNRYPDY
YSDVGYYNY
GDI (SEQ ID No:
CSYVNNGAWV



ID No: 429)
No: 430)
(SEQ ID No: 431)
(SEQ ID No: 432)
433)
(SEQ ID No: 434)





EY 12A
GGSISSGGYY
TDYTGKT (SEQ
ARGMTQDDILTG
SSNIGAGYD (SEQ
RNM (SEQ ID No:
QSFDSSLSDFVV



(SEQ ID No: 435)
ID No: 436)
FNRPHWYFDL (SEQ
ID No: 438)
439)
(SEQ ID No: 440)





ID No: 437)








FD 4C
GGSISSGGYY
IYYSGST (SEQ ID
ARVRSSSSWYFD
SSDVGGYNY
DVS (SEQ ID No:
SSYTSKWV (SEQ



(SEQ ID No: 441)
No: 442)
Y (SEQ ID No: 443)
(SEQ ID No: 444)
445)
ID No: 446)





EW 4C
ADSFKKGYY
SFDSGTT (SEQ ID
RGTYGSGLH
VGTVASGHY
DTD (SEQ ID No:
FLSHNDAWV



(SEQ ID No: 447)
No: 448)
(SEQ ID No: 449)
(SEQ ID No: 450)
451)
(SEQ ID No: 452)





FD 6D
GYSIGSGNY (SEQ
TYHSGTT (SEQ ID
ARDRLLAVHYDS
QSIFYSSNNKNY
WAS (SEQ ID No:
QQYYDIPRT (SEQ



ID No: 453)
No: 454)
RGYLVDY (SEQ ID
(SEQ ID No: 456)
457)
ID No: 458)





No: 455)








EY 5A
GGSISNYY (SEQ
TYSNGNT (SEQ ID
ARGPGPATGGSL
SSNIGINT (SEQ ID
GNN (SEQ ID No:
SAWDDSLNGPV



ID No: 459)
No: 460)
DY (SEQ ID No:
No: 462)
463)
(SEQ ID No: 464)





461)








EZ 7B
GGSISSYY (SEQ
IYYSGST (SEQ ID
ARRVFGPVLPSKL
QSVLYSSNNKNY
WAS (SEQ ID No:
QQYYSTPLT (SEQ



ID No: 465)
No: 466)
GGSYWGGGAFDI
(SEQ ID No: 468)
469)
ID No: 470)





(SEQ ID No: 467)








EZ 4C
GGSVSSGNNY
IYYSGST (SEQ ID
ARAPSAPFGGLF
QSIRSW (SEQ ID
EAS (SEQ ID No:
QQYNGYSYS


kappa
(SEQ ID No: 471)
No: 472)
DWILPKGINN (SEQ
No: 474)
475)
(SEQ ID No: 476)





ID No: 473)








EZ 4C
GGSVSSGNNY
IYYSGST (SEQ ID
ARAPSAPFGGLF
SSDMGTYA (SEQ
EEN (SEQ ID No:
IA-HSSPRLGC


lambda
(SEQ ID No: 477)
No: 478)
DWILPKGIDN (SEQ
ID No: 480)
481)
(SEQ ID No: 482)





ID No: 479)








FD 4B
GGSVSSGNNY
LYYSGST (SEQ ID
ARAPSAPFGGLF
SSDMGTYA (SEQ
EEN (SEQ ID No:
IA-HSSPRLGC



(SEQ ID No: 483)
No: 484)
DWILPKGIDS
ID No: 486)
487)
(SEQ ID No: 488)





(SEQ ID No: 485)








EY 8A
GGSISSGSYY
IYTSGST (SEQ ID
AKGHVISGYDDY
ALPKQY (SEQ ID
KDS (SEQ ID No:
QSADSSGTYWV



(SEQ ID No: 489)
No: 490)
YYYYGMDV (SEQ ID
No: 492)
493)
(SEQ ID No: 494)





No: 491)








EY 2A
GYAFTQYW (SEQ
VYPDSSAV (SEQ
SDTAMYYCVRQE
QSLLHTDAYNY
LGS (SEQ ID No:
MQALQTPGT



ID No: 495)
ID No: 496)
RGSNTWYAGNS (SEQ
(SEQ ID No: 498)
499)
(SEQ ID No: 500)





ID No: 497)








EY 3B
GYAFTQYW (SEQ
VYPDSSAV (SEQ
SDTAMYYCVRQE
QSLLHTDAYNY
LGS (SEQ ID No:
MQALQTPGT



ID No: 501)
ID No: 502)
RGSNTWYAGNS
(SEQ ID No: 504)
505)
(SEQ ID No: 506)





(SEQ ID No: 503)








EZ 4A
GYSFTSYW (SEQ
IYPGDSDT (SEQ
ARSPIAADLFDY
QDISNY (SEQ ID
DAS (SEQ ID No:
QQYDNLLFT



ID No: 507)
ID No: 508)
(SEQ ID No: 509)
No: 510)
511)
(SEQ ID No: 512)









Example 2 Neutralization Assays of Monoclonal Antibodies Against SARS-CoV-2

1. Quantitative PCR-Based Neutralization Assay


Neutralization activity of MAb-containing supernatant was measured using a SARS-CoV-2 infection of Vero E6 cells. Briefly, Vero E6 cells were pre-seeded in a 96 well plate at a concentration of 104 cells per well. In the following day, monoclonal antibody-containing supernatant were mixed with an equal volume of 100 TCID50 virus preparation and incubated at 37° C. for 1 hour. The mixture was added into seeded Vero E6 cells and incubated at 37° C. for 5 days. The cell control, virus control, and virus back-titration were setup for each experiment. At day 5, the culture supernatant was harvested from each well and the viral RNA was extracted and determined by real-time RT-PCR targeting the E gene of SARS-CoV-2. The cycle threshold values of real-time RT-PCR were used as indicators of the copy number of SARS-CoV-2 RNA in samples with lower cycle threshold values corresponding to higher viral copy numbers.


2. Cytopathic Effect (CPE)-Based Neutralization Assay


Vero E6 cells in Dulbecco's Modified Eagle's Medium (DMEM) containing 10% FBS were added into 96-well plates and incubated at 37° C. with 5% CO2 overnight to reach confluence. After washing with virus growth medium (VGM: DMEM containing 2% FBS), two-fold serially diluted MAbs in VGM starting at 100 μg/ml were added to each duplicated well. The plates were immediately transferred to a BSL-3 laboratory and 100 TCID50 SARS-CoV-2 in VGM was added. The plates were further incubated at 37° C. with 5% CO2 for three days and the cytopathic morphology of the cells was recorded using an ImageXpress Nano Automated Cellular Imaging System.


3. Plaque Reduction Neutralization Test (PRNT)


Confluent monolayers of Vero E6 cells in 96-well plates were incubated with SARS CoV-2 and antibodies in a 2-fold dilution series (triplicates) for 3 hours at room temperature. Inoculum was then removed, and cells were overlaid with plaque assay overlay. Cells were incubated at 37° C., 5% CO2 for 24 hours prior to fixation with 4% paraformaldehyde at 4° C. for 30 minutes. Fixed cells were then permeabilised with 0.2% Triton-X-100 and stained with a horseradish peroxidase conjugated-antibody against virus protein for 1 hour at room temperature. TMB substrate was then added to visualize virus plaques as described previously for influenza virus. Convalescent serum from COVID-19 patients was used as a control.


4. Fluorescent Focus-Forming Units Microneutralization Assay (FMNT)


In brief, this rapid, high-throughput assay determines the concentration of antibody that produces a 50% reduction in infectious focus-forming units of authentic SARS-CoV-2 in Vero cells, as follows. Triplicate serial dilutions of antibody are pre-incubated with a fixed dose of SARS-CoV-2 in triplicate before incubation with Vero cells. A carboxymethyl cellulose-containing overlay is used to prevent satellite focus formation. Twenty hours post-infection, the monolayers are fixed with paraformaldehyde and stained for N antigen using MAb EY 2A. After development with a peroxidase-conjugated antibody and substrate, foci are enumerated by enzyme-linked immune absorbent spot reader. Data are analyzed using four-parameter logistic regression (Hill equation) in GraphPad Prism.


5. Competitive Binding Assays


Competitive binding assays were performed as described previously (Rijal 2019) with slight modifications for epitope mapping of the anti-RBD MAbs. Briefly, 0.5 μg/ml of RBD-virus like particles (VLPs) were coated on NUNC plates (50 μl per well) overnight at 4° C., washed and blocked with 300 μl of 5% (w/v) dried skimmed milk in PBS for 1 hour at room temperature prior to the assays. Antibody was biotinylated using EZ-Link Sulfo-NHS-LC-biotin (21237; Life Technologies) and then mixed with competing MAb (in at least 10-fold excess) and transferred to the blocked NUNC plates for 1 hour. A second layer Streptavidin-HRP (S911, Life Technologies) diluted 1:1,600 in PBS/0.1% BSA (37525; Thermo Fisher Scientific) was then added and incubated for another 1 hour. Plates were then washed, and signal was developed by adding POD substrate (11484281001, Roche) for 5 minutes before stopping the reaction with 1 M H2SO4. Absorbance (OD450) was measured using a Clariostar plate reader (BMG, Labtech). Mean and 95% confidence interval of 4 replicate measurements were calculated. Competition was measured as: (X-minimum binding/(maximum binding-minimum binding), where X is the binding of the biotinylated MAb in the presence of competing MAb. Minimum binding is the self-blocking of the biotinylated MAb or background binding. Maximum binding is binding of biotinylated MAb in the presence of non-competing MAb (anti-influenza N1 neuraminidase MAb).


6. ACE2 Blocking Assays


Two assays were used to determine the blocking of binding of ACE2 to RBD by MAbs. RBD was anchored on the plate in the first assay whereas ACE2 was anchored for the second assay.


In the first ACE2 blocking assay, RBD-VLP (Spycatcher-mi3 VLP-particles conjugated with Spytagged-RBD recombinant protein) (Bruun 2018) was coated on ELISA plates as described for the competitive binding assay. Recombinant ACE2-Fc (18-615) protein expressed in Expi293F (Life Technologies) cells was chemically biotinylated using EZ-link Sulfo-NHS-Biotin (A39256; Life Technologies) and buffer exchanged to PBS using a Zebaspin desalting column (Thermo Fischer). MAbs were titrated in duplicate or triplicate as half-log serial dilution, 8-point series starting at 1 μM in 30 μl volume with PBS/0.1% BSA buffer. Thirty (30) μl of biotinylated ACE2-Fc at approx. 0.2 nM (40 ng/ml) was added to the antibodies. Fifty (50) μl of the mixture was transferred to the PBS-washed RBD-VLP coated plates and incubated for 1 hour at room temperature. Secondary Streptavidin-HRP antibody (S911, Life Technologies) diluted to 1:1600 was then added to the PBS-washed plates and incubated for 1 hour at room temperature. Plates were then washed four times with PBS and signal was developed by adding POD substrate (11484281001, Roche) for 5 minutes before stopping with 1 M H2SO4. OD450 was measured using a Clariostar plate reader (BMG, Labtech). The control antibody (a non-blocking anti-influenza N1 MAb) or ACE2-Fc without antibody used to obtain the maximum signal and wells with PBS/BSA buffer only were used to determine the minimum signal. Graphs were plotted as % binding of biotinylated ACE2 to RBD. Binding %={(X−Min)/(Max−Min)}*100, where X=measurement of the antibody, Min=buffer only, Max=biotinylated ACE2-Fc alone. The 50% inhibitory concentrations of the antibodies against ACE2 was determined using non-linear regression curve fit using GraphPad Prism 8.


The second ACE2 blocking assay was performed as described previously (Huo 2020; Zhou 2020). Briefly, MDCK-SIAT1 cells were stably transfected to overexpress codon-optimised human ACE2 cDNA (NM_021804.1) using lentiviral vector and FACS sorted (MDCK-ACE2). Cells (3×104 per well) were seeded on a flat-bottomed 96-well plate the day before the assay. RBD-6H (340-538; NITN.GPKK) was chemically biotinylated using EZ-link Sulfo-NHS-Biotin (A39256; Life Technologies). Serial half-log dilutions (starting at 1 μM) of antibodies and controls were performed in a U-bottomed 96 well plate in 30 μl volume. Thirty (30) μl of biotinylated RBD (25 nM) were mixed and 50 μl of the mixture was then transferred to the MDCK-ACE2 cells. After 1 hour a second layer Streptavidin-HRP antibody (S911, Life Technologies) diluted 1:1,600 in PBS/0.1% BSA (37525; Thermo Fisher Scientific) was added and incubated for another 1 hour. Plates were then washed four times with PBS and signal was developed by adding POD substrate (11484281001, Roche) before stopping with 1 M H2SO4 after 5 minutes. OD450 was measured using a Clariostar plate reader (BMG, Labtech). The control antibody (a non-blocking anti-influenza N1 antibody) was used to obtain maximum signal and PBS only wells were used to determine background. Graphs were plotted as % binding of biotinylated RBD to ACE2. The 50% inhibitory concentration of the blocking antibody was determined as described above.


7. Statistics


The two-tailed Mann-Whitney test was performed to compare differences between two independent groups. The 50% effective concentration (EC50) was determined using linear regression analysis. A p value of less than 0.05 was considered significant. Graphs were presented by Microsoft Excel and GraphPad Prism software.


8. Results


A neutralization test for EW 9C, EY 6A, FD 5D, FD 11A and FI 3A MAbs based on quantitative PCR detection of SARS-CoV-2 in the supernatant bathing infected Vero E6 cells after 5 days of culture, showed a substantial reduction in virus signal (FIG. 4A, FIG. 4B, and Table 8), suggesting these MAbs are highly effective in neutralizing SARS-CoV-2. This was further corroborated by a plaque reduction neutralization test (Table 9) using SARS-CoV-2 virus and the ND50 of EW 9C and EY 6A MAbs were around 7.1 and 10.8 μg/mL, respectively (calculated according to Grist (Grist 1966)).









TABLE 8





The neutralization data of EW 9C, EY 6A, FD 5D, FD 11A and FI 3A MAbs.


Ct value of culture supernatant, after 5 days of incubation*

















Virus control supernatant without MAb
13.0



Anti-S2 EW 9C supernatant
22.7
around 832-fold reduction of virus


Anti-RBD EY 6A supernatant
22.7
around 832-fold reduction of virus


Anti-RBD FD 5D supernatant
18.8
around 56-fold reduction of virus


Anti-RBD FD 11A supernatant
23.0
around 1024-fold reduction of virus


Virus control supernatant without MAb
13.9


Anti-RBD FI 03A supernatant
27.2
around 10085-fold reduction of virus





*An increase of Ct value compared to the Ct value of virus control supernatant without Mab indicates a decrease in virus template. Each unit increase suggests a 2× reduction resulting from presence of MAb. An around 10× increase in Ct = around 1,024 fold reduction of virus.













TABLE 9







The half maximal neutralizing concentration


(NC50) of EW 9C abd EY 6A MAbs against SARS-CoV-2


in the plaque reduction neutralization test.









ID
Description
NC50 (μg/ml)





Positive control
Convalescent serum
1:784


EW 9C
MAb against SARS-CoV-2 spike
 7.1


EY 6A
MAb against SARS-CoV-2 RBD
10.8









All anti-spike glycoprotein MAbs were systematically screened by plaque reduction neutralization (PRNT) assay for neutralization of wild type SARS-CoV-2 virus (Table 10). A total of 14 neutralizing antibodies distributed between different regions of the spike glycoprotein were identified: three of 13 to S1 (non-RBD), six of nine to S2, five of 10 to RBD. The EC50 concentrations, as a measure of potency, ranged from 0.05 nM to around 133.33 nM (8 ng/ml-around 20 μg/ml). Neutralization was corroborated by a microneutralization test (FMNT), that measured a reduction in fluorescent focus-forming units, summarised in Table 10, FIG. 6A and FIG. 6B. The neutralization results showed that those anti-SARS-CoV-2 RBD MAbs (FD 11A, FI 3A, FI 1C, FD 5D and EY 6A) were most potent against wild-type SARS-CoV-2.


Five neutralizing MAbs (FD 11A, FI 3A, FI 1C, FD 5D and EY 6A) target the RBD and all of these partially or completely blocked the interaction between RBD and ACE2 in one or the other type of assay (Table 10, FIG. 7A, FIG. 7B). The most potent neutralizing antibodies were ACE2 blockers (FI 3A in cluster 2, and FD 11A in cluster 3), and bound independently of each other to the RBD (Table 11). MAb EY 6A has been shown to alter the binding kinetics of the interaction without full inhibition and it had a moderate effect on ACE2 binding here in the assay where ACE2 was expressed at the cell surface. These three MAbs bound independently of each other indicating the existence of at least three neutralization-sensitive epitopes within the RBD (Table 9). All five neutralizing MAbs to the RBD (FD 11A, FI 3A, FI 1C, FD 5D and EY 6A) had V gene sequences close to germline.


Six MAbs specific for SARS-CoV-2 S2 subunit showed moderate neutralization in the PRNT assay (Table 10). The antibodies FB 1E, FJ 4E and EW 9C, are moderately neutralizing (EC50 36-133.33 nM), cross-react on the spike glycoprotein from the common cold betacoronavirus OC43, and show sequence characteristics of memory cells with high numbers of somatic mutations. This indicates that memory B cells, likely primed by an endemic or epidemic betacoronavirus related to OC43, can give rise to antibodies that neutralize SARS-CoV-2, albeit modestly. The other three neutralizing antibodies specific for SARS-CoV-2 S2 subunit, FD 10A, FG 7A and FM 1A were close to germline in sequence and did not cross-react strongly with other betacoronaviruses (Table 1). FD 10A exhibits the most potent neutralizing activity in the PRNT assay and completely inhibits SARS-CoV-2-induced cytopathic effect at 8.33 nM.


Thirteen MAbs were defined that bound the non-RBD S1 region (Table 1) and three, close to germline in sequence, were neutralizing. FJ 1C showed strong neutralization (EC50 55.5 nM), whilst FD 11E (EC50 70 nM) and FD 1E (EC50 110 nM) were moderately neutralizing (Table 10).


SARS-CoV-2 nucleocapsid-reactive antibodies were also screened for binding to fixed and permeabilised infected cells for use in scoring wells in microneutralisation assays (FMNT). Antibody EY 2A performed well for this purpose.









TABLE 10







The function of 34 SARS-CoV-2 spike-reactive human monoclonal antibodies.
















Neutralization
Neutralization
ACE2 Blockc
ACE2 Blockc





by PRNTa
by FMNTb
RBD
ACE2


Antibody
Domain
IFA
EC50 (nM)
EC50 (nM)
Anchored
Anchored
















FD 11A
RBD
pos
0.05
 3.68
+
+++


FI 3A
RBD
pos
8.67
 0.51
++++
++++


FI 1C
RBD
pos
16.67
 2.24
++
+++


FD 5D
RBD
pos
133.33
partial
+
+++


EY 6A
RBD
pos
133.33
22.50
neg
++


EY 6A-1*
RBD
pos
133.33
22.50
neg
++


EZ 7A
RBD
pos
neg
neg
neg
neg


FI 4A
RBD
pos
neg
neg
+
neg


FJ 10B
RBD
neg
neg
neg
neg
neg


FM 7B
RBD
pos
neg
neg
neg
neg


FN 12A
RBD
pos
neg
neg
neg
neg


FJ 1C
NTD
pos
55.50
partial


FD 11E
non-RBD S1
pos
70.00
neg


FD 1E
non-RBD S1
pos
110.00
neg


EW 8B
non-RBD S1
neg
neg
neg


FD 11D
NTD
pos
neg
partial


FD 11C
non-RBD S1
pos
neg
partial


FD 7D
non-RBD S1
neg
neg
neg


FD 8B
non-RBD S1
neg
neg
neg


FD 7C
NTD
pos
neg
35.60


FG 12C
non-RBD S1
pos
neg
neg


FN 8C
non-RBD S1
neg
neg
neg


FD 5E
non-RBD S1
pos
neg
neg


EW 9B
non-RBD S1
neg
neg
neg


FD 10A
S2
pos
111.13
neg


FB 1E#
S2
pos
36.00
neg


FJ 4E#
S2
neg
75.33
neg


EW 9C#
S2
pos
133.33
neg


EW 9C-1#*
S2
pos
133.33
neg


FG 7A
S2
pos
133.33
neg


FM 1A
S2
neg
133.33
neg


FB 9D#
S2
pos
neg
neg


FD 1D
S2
pos
neg
neg


FN 2C#

pos
neg
neg


Controls


CR3022
RBD

42.00

neg
neg


BS 1A
Flu H3

neg

neg
neg






aThe plaque reduction neutralization (PRNT) assay was performed with wild type SARS-CoV-2 and the half maximal effective concentration (EC50) was determined using linear regression analysis.




bThe fluorescent focus-forming units microneutralization (FMNT) assay was performed with wild type SARS-CoV-2 and the half maximal effective concentration (EC50) was determined using logistic regression model. Partial: MAb neutralizes at least ~40% viruses at 100 nM (hightest concentration tested).




cACE2 blocking activity of anti-RBD antibody compared to ACE2-Fc: +, partial; ++, IC50 > ACE2-Fc; +++, IC50 ~= ACE2-Fc; ++++, IC50 < ACE2-Fc.



*Both EY 6A and EW 9C have an additional pair of expression vectors.


#Memory phenotype.


Abbreviations: IFA, immunofluorescence; RBD, receptor-binding domain; PRNT, plaque reduction neutralization assay; FMNT, fluorescent focus-forming units microneutralization test; ACE2, Angiotensin-Converting Enzyme 2; pos, positive; neg, negative.













TABLE 11





Competitive binding analysis of anti-SARS-CoV-2 RBD human monoclonal antibodies.a

















embedded image









embedded image








aCompetitive inhibition: values are shown for percentage inhibition and those with ≥75% blocking, 50-74% blocking, and <50% blocking are highlighted in black, gray and light gray, respectively.




bNeutralization of antibody against wild type SARS-COV-2 was analysed in the PRNT assay (+ = positive, − = negative).



*SARS and SARS-COV-2 cross-reactive anti-RBD MAb CR3022 was included as a positive control. SARS and SARS-COV-2 cross-reactive anti-RBD nanobodies VHH72 and H11-H4 linked to the hinge and Fc region of human IgG1 were included as positive controls. ACE2-Fc was included as a positive control. Anti-influenza MAb Z3B2 was included as a negative control.






Example 3 In Vivo Protection of Cocktail of Monoclonal Antibodies Against SARS-CoV-2

1. Test Aminals and Study Design


The prophylactic and therapeutic efficacies of a cocktail of the MAbs of the present invention (hereinafter referred to as antibody cocktail) against SARS-CoV-2 were evaluated in the Syrian hamster model. Briefly, 32 female Golden Syrian hamsters (National Laboratory Aminal Center, Taipei, Taiwan) of 8 weeks old were randomly divided into 8 groups (n=4), 4 groups for the prophylactic experiment, and the other 4 groups for the therapeutic experiment.


In the prophylactic experiment, one day prior to intranasal challenge with 1×105 TCID50/hamster SARS-CoV-2 (hCoV-19/Taiwan/4/2020), animals were treated with a single dose (0.4 mg/kg, 4 mg/kg, or 40 mg/kg) of the antibody cocktail or 40 mg/kg of an isotype negative control (Z3B2, anti-influenza haemagglutinin human IgG1 monoclonal antibody (Huang et al., 2019)) via intraperitoneal injection. Body weight of each animal was measured daily after challenge, and data were normalized to the initial weight of each animal. Animals were sacrificed on day 4 after viral challenge, and the right lung and trachea were collected for histopathological evaluation and viral load and titer.


In the therapeutic experiment, animals were treated with single dose (0.4 mg/kg, 4 mg/kg, or 40 mg/kg) of the antibody cocktail or 40 mg/kg of the isotype negative control via intraperitoneal injection three hours after intranasal challenge with 1×105 TCID50/hamster SARS-CoV-2 (hCoV-19/Taiwan/4/2020). Body weight of each animal was measured daily after challenge, and data were normalized to the initial weight of each animal. Animals were sacrificed on 4 dpi for histopathology, viral load and titer.


2. Viral load and virus titer (median tissue culture infectious dose (TCID50) Assays)


The right lung tissues were weighed and homogenized in 2 ml of PBS. After centrifugation at 600×g for 5 minutes, the clarified supernatant was harvested for viral load detection and live virus titration (TCID50 assay). For viral load detection, total RNAs in the tissue homogenate were extracted with RNeasy Mini kit (Qiagen). Quantitative reverse transcription PCR (qRT-PCR) for detection of SARS-CoV-2 envelope (E) and nucleocapsid (N) genes was performed to determine viral loads. For TCID50 assay, serial 10-fold dilutions of each sample were inoculated in a Vero E6 cell monolayer and cultured for 4 to 7 days for observation of cytopathic effects (CPE). Viral titer was calculated with the Reed-Munch method.


3. Histopathology


Lungs and tracheas were collected and fixed in 10% PBS buffered formaldehyde for 24 hours, then processed into paraffin-embedded tissues blocks. The tissue sections in 4 μm were stained with haematoxylin and eosin (H&E) for microscopy examination.


4. Statistics


Statistical significance between groups was calculated by an unpaired two-sided t test.


5. Results


In the prophylactic experiment, administration of antibody cocktail at 40 or 4 mg/kg prior to SARS-CoV-2 challenge resulted in complete protection from weight loss (FIG. 7A, left panel). This protection was also accompanied by a great decreased of viral load in the lungs at the end of the study (4 dpi) (FIG. 7A, right panel; FIGS. 8A and 8B). It was noted that a few treated animals with 4 mg/kg of the antibody cocktail had substantial viral level in the lungs (FIG. 7A, right panel); however, these animals did not have significant weight loss compared to those with much lower viral loads (FIG. 7A, left panel). Administration of 0.4 mg/kg of the antibody cocktail prevented a sharp decrease in body weight, but treated animals failed to gain weight at the end of study (FIG. 7A, left panel). Besides that, high viral loads were observed in the lungs of 0.4 mg/kg antibody cocktail-treated animals (FIGS. 8A and 8B).


In the therapeutic experiment, animals of all doses gradually gained weight and those treated with isotype negative control had no significant weight loss (FIG. 7B, left panel). Nevertheless, it is noted that a more obvious weight gain in animals treated with 40 or 4 mg/kg of the antibody cocktail (FIG. 7B, left panel). The viral replication data demonstrated that animals treated with 40 or 4 mg/kg of the antibody cocktail had low viral loads in the lungs; by contrast, animals treated with 0.4 mg/kg antibody of the antibody cocktail or isotype negative control had similarly high viral loads in the lungs (FIG. 7B, right panel; FIGS. 8A and 8B).


In the prophylactic experiment, there was a significantly lower amount of pulmonary inflammation or necrosis in animals treated with 40 or 4 mg/kg of the antibody cocktail when compared to those treated with 0.4 mg/kg of the antibody cocktail or isotype negative control (FIG. 9A, Tables 12 and 13). A complete recovery of pulmonary inflammation was found in animals treated with 40 mg/kg of the antibody cocktail, and the level of inflammation was significantly lower when compared to those treated with 4 mg/kg of the antibody cocktail. In addition, multifocal minimal to slight inflammation in the submucosa of the trachea was also found. There was a significantly lower level of acute tracheal inflammation in animals treated with 40 or 4 mg/kg of the antibody cocktail when compared to the 0.4 mg/kg or isotype negative control-treated group, and a complete recovery from inflammation was found in animals treated with 40 mg/kg of the antibody cocktail. Similar histopathological findings of lung and trachea were observed in the therapeutic experiment (FIG. 9B, Tables 12 and 13).









TABLE 12





Summary of pathological incidence of the lungs and trachea in the prophylactic and therapeutic


experiments of antibody cocktail treatment in hamsters 4 days after SARS-CoV-2 infection.



















Prophylactic1




Group














Isotype
Antibody
Antibody
Antibody




negative
cocktail
cocktail
cocktail


Organ
Histopathological findings
control
0.4 mg/kg
4 mg/kg
40 mg/kg





Lung
Aggregation, alveolar macrophage,

4/44

4/4
0/4
0/4


Right (3 lobes)
multifocal, minimal to slight3



Inflammation/necrosis, multifocal, minimal
4/4
4/4
3/4
0/4



to moderate/severe



Hemorrhage, multifocal, minimal to moderate
4/4
4/4
0/4
0/4


Trachea
Inflammation, submucosa, multifocal,
2/3
4/4
1/4
0/4



minimal to slight














Therapeutic2




Group














Isotype
Antibody
Antibody
Antibody




negative
cocktail
cocktail
cocktail


Organ
Histopathological findings
control
0.4 mg/kg
4 mg/kg
40 mg/kg





Lung
Aggregation, alveolar macrophage,
4/4
4/4
0/4
0/4


Right (3 lobes)
multifocal, minimal to slight3



Inflammation or necrosis, multifocal,
4/4
4/4
4/4
0/4



minimal to moderate/severe



Hemorrhage, multifocal, minimal to slight
4/4
4/4
0/4
0/4


Trachea
Inflammation, submucosa, multifocal,
4/4
4/4
3/4
0/4



minimal to moderate






1Prophylactic experiment: isotype control or antibody cocktail via intraperitoneal injection 1 day before SARS-CoV-2 infection.




2Therapeutic experiment: isotype control or antibody cocktail via intraperitoneal injection 3 hours after SARS-CoV-2 infection.




3Degree of lesions was graded from one to five depending on severity: 1 = minimal (<1%); 2 = slight (1-25%); 3 = moderate (26-50%); 4 = moderate/severe (51-75%); 5 = severe/high (76-100%).




4Incidence: Affected hamsters/Total examined hamsters (n = 3-4).














TABLE 13





Summary of inflammatory scores of the lungs and trachea in the prophylactic and therapeutic


experiments of antibody cocktail treatment in hamsters 4 days after SARS-CoV-2 infection.



















Prophylactic1




Group















Antibody
Antibody
Antibody




Isotype
cocktail
cocktail
cocktail


Organ
Inflammatory scores
control
0.4 mg/kg
4 mg/kg
40 mg/kg





Lung
Aggregation, alveolar macrophage,

1.1 ± 0.64

1.3 ± 0.7
0.0 ± 0.0  
0.0 ± 0.0  


Right (3 lobes)
multifocal3



Inflammation or necrosis, multifocal
2.8 ± 1.1
2.4 ± 1.0
0.3 ± 0.5*, a
0.0 ± 0.0*, a, b



Hemorrhage, multifocal
1.8 ± 0.9
1.7 ± 0.8
0.0 ± 0.0  
0.0 ± 0.0  



Subtotal mean score3
1.9 ± 1.1
1.8 ± 1.0
0.1 ± 0.3*, a
0.0 ± 0.0*, a, b


Trachea
Inflammation, submucosa, multifocal
1.0 ± 0.0
1.5 ± 0.5
0.3 ± 0.4*, a
0.0 ± 0.0*, a 















Therapeutic2





Group















Antibody
Antibody
Antibody




Isotype
cocktail
cocktail
cocktail


Organ
Inflammatory scores
control
0.4 mg/kg
4 mg/kg
40 mg/kg





Lung
Aggregation, alveolar macrophage,
1.4 ± 0.5
1.3 ± 0.4
0.0 ± 0.0*, a
0.0 ± 0.0  


Right (3 lobes)
multifocal



Inflammation/necrosis, multifocal
2.3 ± 0.6
2.0 ± 0.4
0.8 ± 0.7*, a
0.0 ± 0.0*, a, b



Hemorrhage, multifocal
1.8 ± 0.4
1.7 ± 0.4
0.0 ± 0.0*, a
0.0 ± 0.0  



Subtotal mean score
1.8 ± 0.6
1.7 ± 0.5
0.3 ± 0.6*, a
0.0 ± 0.0*, a, b


Trachea
Inflammation, submucosa, multifocal
2.0 ± 0.0
2.0 ± 0.7
0.8 ± 0.4*, a
0.0 ± 0.0*, a, b






1Prophylactic experiment: isotype negative control or antibody cocktail via intraperitoneal injection 1 day before SARS-CoV-2 infection.




2Therapeutic experiment: isotype control or antibody cocktail via intraperitoneal injection 3 hours after SARS-CoV-2 infection.




3The final numerical score was calculated by dividing the sum of the number per grade of affected hamsters by the total number of examined hamsters (n = 4).




4The subtotal mean score was calculated by dividing the sum of the number per grade of each lesion of affected hamsters by the total number of examined hamsters (n = 4).




*Statistically significant difference compared to the isotype control group each at p < 0.05.




aStatistically significant difference between the 0.4 mg/kg antibody cocktail-treated group and the 4 or 40 mg/kg antibody cocktail-treated groups in the prophylactic and therapeutic experiments each at p < 0.05.




bStatistically significant difference between the 4 mg/kg antibody cocktail-treated group and the 40 mg/kg antibody cocktail-treated groups in the prophylactic and therapeutic experiments each at p < 0.05.







Taken together, the Syrian hamster study shows that the prophylactic or therapeutic treatment with either 40 or 4 mg/kg of antibody cocktail could significantly reduce lung viral load and attenuate SARS-COV-2 virus-induced pulmonary inflammation according to histopathological examination.


In summary, a panel of SARS-CoV-2 spike and nucleocapsid-reactive human monoclonal antibodies was produced and characterized their antigenic specificities and genetic information in the variable domains of heavy and light chains. These human MAbs have held great potential for use as prophylactic or therapeutic molecules against SARS-CoV-2 and diagnostic reagents for detection of virus in the clinical samples.


Many changes and modifications in the above described embodiment of the invention can, of course, be carried out without departing from the scope thereof. Accordingly, to promote the progress in science and the useful arts, the invention is disclosed and is intended to be limited only by the scope of the appended claims.


REFERENCES



  • 1. Bruun T U J, Andersson A C, Draper S J, Howarth M. Engineering a Rugged Nanoscaffold To Enhance Plug-and-Display Vaccination. ACS Nano. 2018; 12:8855-8866. https://doi.org/10.1021/acsnano. 8b02805 PMID: 30028591.

  • 2. Casadevall A, Dadachova E, Pirofski L A. Passive antibody therapy for infectious diseases. Nat Rev Microbiol. 2004 September; 2(9):695-703.

  • 3. Cubuk, J., Alston, J. J., Incicco, J. J. et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat Commun 12, 1936 (2021). https://doi.org/10.1038/s41467-021-21953-3.

  • 4. Grist, N. R. Diagnostic methods in clinical virology. Philadelphia, J. B. Lippincott & Co., 129 p. (1966); ISBN-10: 0632000112.

  • 5. Huang K Y, Rijal P, Schimanski L, Powell T J, Lin T Y, McCauley J W, Daniels R S, Townsend A R. Focused antibody response to influenza linked to antigenic drift. J Clin Invest. 2015 Jul. 1; 125(7):2631-45. doi: 10.1172/JCI81104.

  • 6. Huang K Y, Chen M F, Huang Y C, Shih S R, Chiu C H, Lin J J, Wang J R, Tsao K C, Lin T Y Epitope-associated and specificity-focused features of EV71-neutralizing antibody repertoires from plasmablasts of infected children. Nat Commun. 2017 Oct. 2; 8(1):762. doi: 10.1038/s41467-017-00736-9.

  • 7. Huang K Y, Rijal P, Jiang H, Wang B, Schimanski L, Dong T, Liu Y M, Chang P, Iqbal M, Wang M C, Chen Z, Song R, Huang C C, Yang J H, Qi J, Lin T Y, Li A, Powell T J, Jan J T, Ma C, Gao G F, Shi Y, Townsend A R. Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans. Nat Microbiol. 2019 February; 4(2):306-315. doi: 10.1038/s41564-018-0303-7.

  • 8. Huo J, Le Bas A, Ruza R R, Duyvesteyn H M E, Mikolajek H, Malinauskas T, et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol. 2020; 27:846-854. https://doi.org/10.1038/s41594-020-0469-6 PMID: 32661423

  • 9. Mair-Jenkins J, Saavedra-Campos M, Baillie J K, Cleary P, Khaw F M, Lim W S, Makki S, Rooney K D, Nguyen-Van-Tam J S, Beck C R; Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015 Jan. 1; 211(1):80-90. doi:10.1093/infdis/jiu396.

  • 10. Rijal P, Elias S C, Machado S R, Xiao J, Schimanski L, O'Dowd V, et al. Therapeutic Monoclonal Anti-bodies for Ebola Virus Infection Derived from Vaccinated Humans. Cell Rep. 2019; 27:172-186.e7. https://doi.org/10.1016/j.celrep.2019.03.020 PMID: 30943399.

  • 11. Rome B N, Avorn J. Drug Evaluation during the Covid-19 Pandemic. N Engl J Med. 2020 Apr. 14. doi: 10.1056/NEJMp2009457.

  • 12. World Health Organization. WHO Coronoavirus (COVID-19) Dashboard. https://covid19.who.int

  • 13. Zhou D, Duyvesteyn H M E, Chen C P, Huang C G, Chen T H, Shih S R, et al. Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nat Struct Mol Biol. 2020; 27:950-958. https://doi.org/10.1038/s41594-020-0480-y PMID: 32737466.


Claims
  • 1. An isolated antibody against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or antigen-binding fragment thereof, comprising (iii) a heavy chain variable region (VH) which comprises (a) a first heavy chain complementarity determining region (HCDR1) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 69, SEQ ID No: 75, SEQ ID No: 81, SEQ ID No: 87, SEQ ID No: 93, SEQ ID No: 99, SEQ ID No: 105, SEQ ID No: 111, SEQ ID No: 117, SEQ ID No: 123, SEQ ID No: 129, SEQ ID No: 135, SEQ ID No: 141, SEQ ID No: 147, SEQ ID No: 153, SEQ ID No: 159, SEQ ID No: 165, SEQ ID No: 171, SEQ ID No: 177, SEQ ID No: 183, SEQ ID No: 189, SEQ ID No: 195, SEQ ID No: 201, SEQ ID No: 207, SEQ ID No: 213, SEQ ID No: 219, SEQ ID No: 225, SEQ ID No: 231, SEQ ID No: 237, SEQ ID No: 243, SEQ ID No: 249, SEQ ID No: 255, SEQ ID No: 261, SEQ ID NO: 267, SEQ ID No: 333, SEQ ID No: 339, SEQ ID No:345, SEQ ID No: 351, SEQ ID No: 357, SEQ ID No: 363, SEQ ID No: 369, SEQ ID No: 375, SEQ ID No: 381, SEQ ID No: 387, SEQ ID No: 393, SEQ ID No: 399, SEQ ID No: 405, SEQ ID No: 411, SEQ ID No: 417, SEQ ID No: 423, SEQ ID No: 429, SEQ ID No: 435, SEQ ID No: 441, SEQ ID No: 447, SEQ ID No: 453, SEQ ID No: 459, SEQ ID No: 465, SEQ ID No: 471, SEQ ID No:477, SEQ ID No: 483, SEQ ID No: 489, SEQ ID No: 495, SEQ ID No: 501, or SEQ ID No: 507;(b) a second heavy chain complementarity determining region (HCDR2) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 70, SEQ ID No: 76, SEQ ID No: 82, SEQ ID No: 88, SEQ ID No: 94, SEQ ID No: 100, SEQ ID No: 106, SEQ ID No: 112, SEQ ID No: 118, SEQ ID No: 124, SEQ ID No: 130, SEQ ID No: 136, SEQ ID No: 142, SEQ ID No: 148, SEQ ID No: 154, SEQ ID No: 160, SEQ ID No: 166, SEQ ID No: 172, SEQ ID No: 178, SEQ ID No: 184, SEQ ID No: 190, SEQ ID No: 196, SEQ ID No: 202, SEQ ID No: 208, SEQ ID No: 214, SEQ ID No: 220, SEQ ID No: 226, SEQ ID No: 232, SEQ ID No: 238, SEQ ID No: 244, SEQ ID No: 250, SEQ ID No: 256, SEQ ID No: 262, SEQ ID NO: 268, SEQ ID No: 334, SEQ ID No: 340, SEQ ID No:346, SEQ ID No: 352, SEQ ID No: 358, SEQ ID No: 364, SEQ ID No: 370, SEQ ID No: 376, SEQ ID No: 382, SEQ ID No: 388, SEQ ID No: 394, SEQ ID No: 400, SEQ ID No: 406, SEQ ID No: 412, SEQ ID No: 418, SEQ ID No: 424, SEQ ID No: 430, SEQ ID No: 436, SEQ ID No: 442, SEQ ID No: 448, SEQ ID No: 454, SEQ ID No: 460, SEQ ID No: 466, SEQ ID No: 472, SEQ ID No:478, SEQ ID No: 484, SEQ ID No: 490, SEQ ID No: 496, SEQ ID No: 502, or SEQ ID No: 508; and(c) a third heavy chain complementarity determining region (HCDR3) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 71, SEQ ID No: 77, SEQ ID No: 83, SEQ ID No: 89, SEQ ID No: 95, SEQ ID No: 101, SEQ ID No: 107, SEQ ID No: 113, SEQ ID No: 119, SEQ ID No: 125, SEQ ID No: 131, SEQ ID No: 137, SEQ ID No: 143, SEQ ID No: 149, SEQ ID No: 155, SEQ ID No: 161, SEQ ID No: 167, SEQ ID No: 173, SEQ ID No: 179, SEQ ID No: 185, SEQ ID No: 191, SEQ ID No: 197, SEQ ID No: 203, SEQ ID No: 209, SEQ ID No: 215, SEQ ID No: 221, SEQ ID No: 227, SEQ ID No: 233, SEQ ID No: 239, SEQ ID No: 245, SEQ ID No: 251, SEQ ID No: 257, SEQ ID No: 263, SEQ ID NO: 269, SEQ ID No: 335, SEQ ID No: 341, SEQ ID No:347, SEQ ID No: 353, SEQ ID No: 359, SEQ ID No: 365, SEQ ID No: 371, SEQ ID No: 377, SEQ ID No: 383, SEQ ID No: 389, SEQ ID No: 395, SEQ ID No: 401, SEQ ID No: 407, SEQ ID No: 413, SEQ ID No: 419, SEQ ID No: 425, SEQ ID No: 431, SEQ ID No: 437, SEQ ID No: 443, SEQ ID No: 449, SEQ ID No: 455, SEQ ID No: 461, SEQ ID No: 467, SEQ ID No: 473, SEQ ID No:479, SEQ ID No: 485, SEQ ID No: 491, SEQ ID No: 497, SEQ ID No: 503, or SEQ ID No: 509; and(iv) a light chain variable region (VL) which comprises (a) a first light chain complementarity determining region (LCDR1) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 72, SEQ ID No: 78, SEQ ID No: 84, SEQ ID No: 90, SEQ ID No: 96, SEQ ID No: 102, SEQ ID No: 108, SEQ ID No: 114, SEQ ID No: 120, SEQ ID No: 126, SEQ ID No: 132, SEQ ID No: 138, SEQ ID No: 144, SEQ ID No: 150, SEQ ID No: 156, SEQ ID No: 162, SEQ ID No: 168, SEQ ID No: 174, SEQ ID No: 180, SEQ ID No: 186, SEQ ID No: 192, SEQ ID No: 198, SEQ ID No: 204, SEQ ID No: 210, SEQ ID No: 216, SEQ ID No: 222, SEQ ID No: 228, SEQ ID No: 234, SEQ ID No: 240, SEQ ID No: 246, SEQ ID No: 252, SEQ ID No: 258, SEQ ID No: 264, SEQ ID NO: 270, SEQ ID No: 336, SEQ ID No: 342, SEQ ID No:348, SEQ ID No: 354, SEQ ID No: 360, SEQ ID No: 366, SEQ ID No: 372, SEQ ID No: 378, SEQ ID No: 384, SEQ ID No: 390, SEQ ID No: 396, SEQ ID No: 402, SEQ ID No: 408, SEQ ID No: 414, SEQ ID No: 420, SEQ ID No: 426, SEQ ID No: 432, SEQ ID No: 438, SEQ ID No: 444, SEQ ID No: 450, SEQ ID No: 456, SEQ ID No: 462, SEQ ID No: 468, SEQ ID No: 474, SEQ ID No:480, SEQ ID No: 486, SEQ ID No: 492, SEQ ID No: 498, SEQ ID No: 504, or SEQ ID No: 510;(b) a second light chain complementarity determining region (LCDR2) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 73, SEQ ID No: 79, SEQ ID No: 85, SEQ ID No: 91, SEQ ID No: 97, SEQ ID No: 103, SEQ ID No: 109, SEQ ID No: 115, SEQ ID No: 121, SEQ ID No: 127, SEQ ID No: 133, SEQ ID No: 139, SEQ ID No: 145, SEQ ID No: 151, SEQ ID No: 157, SEQ ID No: 163, SEQ ID No: 169, SEQ ID No: 175, SEQ ID No: 181, SEQ ID No: 187, SEQ ID No: 193, SEQ ID No: 199, SEQ ID No: 205, SEQ ID No: 211, SEQ ID No: 217, SEQ ID No: 223, SEQ ID No: 229, SEQ ID No: 235, SEQ ID No: 241, SEQ ID No: 247, SEQ ID No: 253, SEQ ID No: 259, SEQ ID No: 265, SEQ ID NO: 271, SEQ ID No: 337, SEQ ID No: 343, SEQ ID No:349, SEQ ID No: 355, SEQ ID No: 361, SEQ ID No: 367, SEQ ID No: 373, SEQ ID No: 379, SEQ ID No: 385, SEQ ID No: 391, SEQ ID No: 397, SEQ ID No: 403, SEQ ID No: 409, SEQ ID No: 415, SEQ ID No: 421, SEQ ID No: 427, SEQ ID No: 433, SEQ ID No: 439, SEQ ID No: 445, SEQ ID No: 451, SEQ ID No: 457, SEQ ID No: 463, SEQ ID No: 469, SEQ ID No: 475, SEQ ID No:481, SEQ ID No: 487, SEQ ID No: 493, SEQ ID No: 499, SEQ ID No: 505, or SEQ ID No: 511; and(c) a third light chain complementarity determining region (LCDR3) having an amino acid sequence of about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No: 74, SEQ ID No: 80, SEQ ID No: 86, SEQ ID No: 92, SEQ ID No: 98, SEQ ID No: 104, SEQ ID No: 110, SEQ ID No: 116, SEQ ID No: 122, SEQ ID No: 128, SEQ ID No: 134, SEQ ID No: 140, SEQ ID No: 146, SEQ ID No: 152, SEQ ID No: 158, SEQ ID No: 164, SEQ ID No: 170, SEQ ID No: 176, SEQ ID No: 182, SEQ ID No: 188, SEQ ID No: 194, SEQ ID No: 200, SEQ ID No: 206, SEQ ID No: 212, SEQ ID No: 218, SEQ ID No: 224, SEQ ID No: 230, SEQ ID No: 236, SEQ ID No: 242, SEQ ID No: 248, SEQ ID No: 254, SEQ ID No: 260, SEQ ID No: 266, SEQ ID NO: 272, SEQ ID No: 338, SEQ ID No: 344, SEQ ID No:350, SEQ ID No: 356, SEQ ID No: 362, SEQ ID No: 368, SEQ ID No: 374, SEQ ID No: 380, SEQ ID No: 386, SEQ ID No: 392, SEQ ID No: 498, SEQ ID No: 404, SEQ ID No: 410, SEQ ID No: 416, SEQ ID No: 422, SEQ ID No: 428, SEQ ID No: 434, SEQ ID No: 440, SEQ ID No: 446, SEQ ID No: 452, SEQ ID No: 458, SEQ ID No: 464, SEQ ID No: 470, SEQ ID No: 476, SEQ ID No:482, SEQ ID No: 488, SEQ ID No: 494, SEQ ID No: 500, SEQ ID No: 506, or SEQ ID No: 512.
  • 2. The isolated antibody or antigen-binding fragment of claim 1, wherein (i) the heavy chain variable region (VH) comprises an amino acid sequence about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, or SEQ ID NO: 331; and(ii) the light chain variable region (VL) comprises an amino acid sequence about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, or SEQ ID NO: 332.
  • 3. A pharmaceutical composition, comprising at least one of the isolated antibodies, or antigen-binding fragments thereof, of claim 1.
  • 4. The pharmaceutical composition of claim 3, further comprising at least one pharmaceutically acceptable carrier.
  • 5. A kit for detecting the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a sample, comprising at least one of the isolated antibodies, or antigen-binding fragments thereof, of claim 1.
  • 6. The kit of claim 5, wherein the at least one of the isolated antibodies, or the antigen-binding fragments thereof, comprises a detectable label.
  • 7. The kit of claim 6, wherein the detectable label is selected from the group consisting of an enzymatic label, a fluorescent label, a metal label, and a radio label.
  • 8. The kit of claim 6, wherein the detectable label is selected from the group consisting of gold nanoparticles, colored latex beads, magnetic particles, carbon nanoparticles, and selenium nanoparticles.
  • 9. The kit of claim 5, wherein the kit is an immunoassay kit selected from the group consisting of ELISA (enzyme-linked immunosorbent assay), RIA (radioimmunoassay), FIA (fluorescence immunoassay), LIA (luminescence immunoassay), and ILMA (immunoluminometric assay).
  • 10. The kit of claim 9, wherein the immunoassay is a sandwich assay or in a lateral flow assay format.
  • 11. A method for detecting severe acute respiratory syndrome coronavirus 2 in a sample suspected of containing said SARS-CoV-2, comprising contacting the sample with at least one of the isolated antibodies, or antigen-binding fragments thereof, of claim 1, and assaying binding of the antibody with the sample.
  • 12. The method of claim 11, wherein the sample is urine, stool, or taken from respiratory tract.
  • 13. The method of claim 12, wherein the sample taken from the respiratory tract is a nasopharyngeal (NP) or nasal (NS) swab.
  • 14. The method of claim 11, wherein the SARS-COV-2 is detected by a sandwich immunoassay or lateral flow assay.
  • 15. A method for preventing or treating a disease mediated by angiotensin-converting enzyme 2 (ACE2) in a subject, comprising a step of administering an effective amount of at least one of the isolated antibodies, or antigen-binding fragments thereof, of claim 1.
  • 16. The method of claim 15, wherein the disease mediated by ACE2 is severe acute respiratory syndrome coronavirus 2 infection.
  • 17. A nucleic acid comprising a nucleotide sequence encoding a heavy chain variable region (VH), a light chain variable region (VL) or both, wherein the VH and VL are as set forth in claim 1.
  • 18. An isolated host cell comprising the nucleic acid of claim 17.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of International Patent Application No. PCT/CN2021/093083, filed on May 11, 2021, which itself claims priority to U.S. Provisional Application No. 63/022,944, filed on May 11, 2020; U.S. Provisional Application No. 63/029,980, filed on May 26, 2020; and U.S. Provisional Application No. 63/070,560, filed on Aug. 26, 2020. The disclosures of the above applications are incorporated herein in their entireties by reference. The sequence information contained in the Sequence Listing XML file, with the file name “P22-0214US.xml” created on Nov. 8, 2022 and having a file size of 791,199 bytes, is incorporated by reference herein in its entirety.

Provisional Applications (3)
Number Date Country
63022844 May 2020 US
63029980 May 2020 US
63070560 Aug 2020 US
Continuations (1)
Number Date Country
Parent PCT/CN2021/093083 May 2021 US
Child 18054594 US