This application contains sequence data provided on a computer readable diskette and as a paper version. The paper version of the sequence data is identical to the data provided on the diskette.
The present invention is related to plant molecular biology. Particularly it is related to nucleic acids and methods for conferring disease resistance in plants. It is also related to potato receptor-like kinases (PRKs) and PRK cDNA or nucleic acid sequences and their gene products as well as fragments and derivatives thereof useful in conferring enhanced resistance to pathogens and pests. The invention is further related to novel receptors and ligands and their use in detecting plant-pathogen interactions.
Potato is the 4th major food crop of the world and expanding. Potato's susceptibility to pests and diseases makes the crop the number two user of agricultural pesticides worldwide, following cotton. Erwinia carotovora is the etiological agent of soft rot disease and can attack a wide range of economically important crops including potato (Pérombelon and Kelman, 1980). The production of extracellular plant cell wall-degrading enzymes, including cellulases, pectinases and proteases is central to virulence of E. carotovora. These enzymes both produce the maceration symptoms in infected plant tissues and release nutrients for bacterial growth (Collmer and Keen, 1986; Kotoujansky 1987; Pirhonen et al., 1991). Many of the plant cell wall-degrading enzymes have been shown to trigger plant defense responses, probably by releasing cell wall fragments active as elicitors (Davis and Ausubel, 1989; Davis et al., 1984; Palva et al., 1993; Vidal et al., 1997, 1998). It has been previously demonstrated that cell-free culture filtrates (CF) containing the cell wall-degrading enzymes of E. carotovora subsp. carotovora, as well as preparations containing single enzymes, induce several pathogenesis-related genes in plants (Norman et al., 1999, Norman-Setterblad et al., 2000; Palva et al., 1993; Vidal et al., 1997, 1998). In addition, it has been shown that several of these defense-related genes are also responsive to oligogalacturonides (Norman et al., 1999).
Plant receptor-like kinases (RLKs) are proteins with a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. Plant RLKs show serine/threonine kinase specificity. Based on the structure of the putative extracellular domains, plant receptor-like kinases (RLKs) have been classified into several major classes (Braun and Walker, 1996; Walker, 1994). These include (i) the S-domain RLKs which contain extracellular domains homologous to the S-locus glycoproteins of Brassicaceae (Nasrallah et al., 1993; Walker and Zhang, 1990, Stein et al., 1991), (ii) the leucine rich repeat (LRR) RLKs such as Xa21 from rice, TMK1 and RLK5 from Arabidopsis (Chang et al., 1992; Song et al., 1995; Walker, 1993) and (iii) RLKs with the epidermal growth factor-like repeat (EGF) such as pro25 and the WAKs from Arabidopsis (He et al., 1999; Kohorn et al., 1992). Moreover, several RLKs with different types of extracellular domains have been identified recently (reviewed by Satterlee and Sussman, 1998).
The expression of plant RLK genes have shown diverse patterns, while some of them have displayed expression only in vegetative tissues (Kohorn et al., 1992), others were expressed only in reproductive tissues (Goring et al., 1992; Stein et al., 1991) and some have been shown in both vegetative and reproductive tissues (Pastuglia et al., 1997). Some of the RLK genes are responsive to pathogens and elicitors, including PvRK20-1 from Phaseolus vulgaris (Lange et al., 1999), SFR2 from Brassica olearacea (Pastuglia et al., 1997), Wak1 (He et al., 1998) and RLKs (Du and Chen, 2000) from Arabidopsis thaliana and the disease resistance gene Xa21 from rice (Song et al., 1995).
In plants very little is known about the nature of the ligands interacting with serine-threonine RLKs. Recently, it has been shown that the extracellular domain of a RLK from Arabidopsis, BRI1, perceives brassinosteroids (He et al., 2000). On the other hand, in animals it has been shown that the interleukin 2 and the epidermal growth factor receptors are up regulated by their own ligands (Clark et al., 1985; Deeper et al., 1985).
In order to fully understand the mechanisms of plant disease resistance and provide plants with enhanced disease resistance to pathogens and even to herbivores (insects pests) novel means for studying the interaction between ligand and receptor in plant-pathogen interaction are needed.
The present disclosure provides a solution to said problem. Novel potato receptor-like kinases (PRKs) as well as a new expression pattern are described: PRK is induced by the potato pathogen Erwinia carotovora as well as short oligouronides, which may be the elicitors released by Erwinia. Oligouronides may constitute the ligands for the novel receptor. Oligouronide receptor has not been described previously. The structural identity of PRKs and their induction pattern suggested that they constitute part of the early response of potato E. carotovora infection.
One embodiment of the present invention is to provide isolated nucleic acid sequences comprising polynucleotides encoding receptor-like protein kinases, which comprise preferably in the extracellular domain one or more cystein repeats, characterized in that potato receptor-like kinase (PRK)-like nucleic acid sequences are capable of encoding potato receptor-like kinases (PRKs) substantially homologous to gene products of PRK (SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 4) or fragments or derivatives thereof and having substantially the same properties or functions as SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 4.
Another embodiment of the present invention is to provide new methods for conferring resistance to pathogens and herbivores (insect pests) producing/releasing elicitors of the present invention.
Still another embodiment of the present invention is to provide new means and methods for making it possible to initiate the defense mechanisms during the early stages of the plant-pathogen interaction.
A further embodiment of the present invention is to provide means carrying out said methods in form of potato receptor-like kinase (PRK) cDNA and PRK nucleic acid sequences, fragments and derivatives thereof as well as their complementary strands and PRK gene products expressed by the PRK nucleic acid sequences of the present disclosure.
Another embodiment of the present invention is to use PRK gene products, fragments and derivatives thereof for technically modifying the expression of a gene or a modified gene/a natural variant of the gene to sensitize the plant to pathogen perception and to generate enhanced resistance.
Still another embodiment of the present invention is to use the ligand of the receptor of the present invention for spraying, inoculating, spreading, applying or by other means the crop plants to enhance disease resistance.
Another embodiment is to use PRK-like nucleic acid sequences as well as their expression products for manufacturing transgenic plant cells or plants with enhanced pathogen resistance.
Another embodiment is to use PRK-like nucleic acid sequences and PRK-like gene products and derivatives and fragments thereof as growth regulators, for induction of development, for detecting different stress conditions. Different stress conditions can be caused e.g. by pathogens and pests, mechanical, chemical or physical stress.
The present invention is related to potato receptor-like kinases (PRKs) and PRK-like nucleic acid sequences and fragments and derivatives thereof and their products useful in conferring enhanced resistance to pathogens and pests.
The present invention provides four isolated nucleic acid sequences comprising SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8.
Said nucleic acid sequences comprise genes encoding novel potato receptor-like kinases (PRKs) (PRK-1, PRK-2, PRK-3 and PRK-4), SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4. They are proposed to belong to a new class of receptor-like protein kinases. Potato PRKs are 41-55% i.e. highly distinct in the extracellular domain from other receptor-like protein kinases of the same class, PvRK20-1 from Phaseolus vulgaris (Lange et al., 1999) and genes from the genome project of Arabidopsis thaliana (Accession numbers CAB38617, CAB81062, CAA18704).
A new expression pattern is described: PRK is induced by the potato pathogen Erwinia carotovora as well as short oligouronides, which may be the elicitors released by Erwinia. Oligouronides may constitute the ligands for the receptor. Oligouronide receptor has not been described previously.
The present invention is related to isolated nucleic acid sequences comprising polynucleotides encoding receptor-like protein kinases, which comprise preferably in the extracellular domain one or more cystein repeats, characterized in that potato receptor-like kinase (PRK)-like nucleic acid sequences are capable of encoding potato receptor-like kinases (PRKs) substantially homologous to gene products of PRK (SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4) or fragments or derivatives thereof and having substantially the same properties or functions as SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4. The potato receptor-like kinase (PRK)-like nucleic acid sequences are capable of hybridizing with SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7 or SEQ ID NO:8 or complementary strands thereof under defined conditions.
The nucleic acid sequences comprise SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 4 obtainable from potato under defined conditions. The extracellular domains comprise a conserved bi-modular pattern of one or more cysteine repeats. The expression of genes encoding for gene products SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 4 is induced by Erwinia carotovora.
The expression of genes encoding for gene products SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 4 is induced by oligouronides. Potato receptor-like kinases (PRKs) function as receptors for ligands released during plant stress conditions by pathogens. Potato receptor-like kinases (PRKs) are formed by alternative splicing. Potato receptor-like kinases (PRKs) are involved in signal perception during potato defense responses against Erwinia carotovora. The expression of potato receptor-like kinases (PRKs) is incuced by response to elicitors, which can be oligouronides or oligogalacturonides.
The PRK-like gene products are polypeptides comprising in their extracellular domains a conserved bi-modular pattern of one or more cysteine repeats. The potato receptor-like kinase (PRK)-like gene products comprise polypeptides having amino acid sequences substantially homologous with SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 4. The potato receptor-like kinase (PRK)-like gene products are polypeptides substantially similar to the gene products encoded by SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8.
The present invention is related to the method for preventing plant diseases or enhancing disease resistance to pathogens or herbivores by transforming a plant with a DNA construct comprising nucleic acid sequences encoding potato-receptor like kinase (PRK)-like gene products or fragments thereof functionally combined with regulatory sequences. The present invention is also related to DNA constructs, expression vectors and host cells comprising the DNA sequences of the present invention.
The present invention is related to a method for conferring resistance to pathogens in a plant, preferably potato, so that the method comprises introducing into the plant a recombinant expression construct comprising a plant promoter operably linked to a potato receptor-like kinase (PRK)-like nucleotide sequence or derivatives or fragments thereof encoding a potato receptor-like kinase (PRK)-like gene product.
Other features, aspects and advantages of the present invention will become apparent from the following description and appended claims.
Definitions
In the present invention the terms used have the meaning they generally have in the fields of molecular biology, recombinant DNA technology, botany and plant pathology. Some terms, however, are used with a somewhat deviating or broader meaning. Accordingly, in order to avoid uncertainty caused by terms with unclear meaning some of the terms used in the specification and in the claims are defined in more detail below.
The term “ligand” means any molecule, that binds tightly and specifically to a macromolecule, usually but not necessary a protein, forming a macromolecule-ligand complex, or to a receptor forming a receptor-ligand complex.
The term “elicitor” means molecules produced by the presence or action of pathogen or pest or mechanical damage that induce a response by the host.
The term “receptor” means any protein that binds a specific extracellular signaling molecule (ligand) and then initiates a cellular response. Receptors can be located within the cell or in the plasma membrane with their ligand-binding domain exposed to the external medium.
The term “pathogen” means, but is not limited to bacteria, viruses, nematodes, fungi or insects (see e.g. Agrios, Plant Pathology, Academic Press, San Diego, Calif., 1997).
The term “PRK” means potato receptor-like kinase.
The term “Atprk” means potato receptor-like kinase from Arabidopsis.
The term “potato receptor like kinase (PRK)-like compounds” means compounds, which act as PRK-like proteins. They include polypeptides “substantially homologous” at amino acid level having a significant similarity or identity of at least 60%, more preferred embodiments include at least, 65%, 70%, 75%, 80%, most preferably more than 85% with the reference sequence.
The term “PRK-like compounds” means protein molecules or polypeptides being substantially homologous to PRK at amino acid level. Said “PRK-like molecules” are obtainable by isolation from natural sources. The PRK-like molecules are also producible by synthetic, semisynthetic, enzymatic and other biochemical or chemical methods including recombinant DNA techniques.
The term “PRK-like compounds” also comprises polypeptides having the structure, properties and functions characteristic of PRK-like proteins, including PRK-like proteins, wherein one or more amino acid residues are substituted by another amino acid residue. Also truncated, complexed or chemically substituted, forms of said PRK-like proteins are included in the term. Chemically substituted forms include for example, alkylated, esterified, etherified or amidized forms with a low substitution degree, especially using small molecules, such as methyl or ethyl, as substituents, as long as the substitution does not disturb the properties and functions of the PRK-like proteins. The truncated, complexed and/or substituted variants of said polypeptides are producible by synthetic or semisynthetic, including enzymatic and recombinant DNA techniques. The only other prerequisite is that the derivatives still are substantially homologous with and have the properties and/or express the functions characteristic of PRK-like proteins.
The term “PRK-like compounds” otherwise covers all possible splice variants of potato receptor like kinase (PRK). The PRK-like compounds can exist in different isoforms or allelic forms.
More specifically “PRK-like proteins” are substantially homologous with the amino acid sequence SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4 or SEQ ID NO:9.
The term “isoform” refers to the one of several forms of the same protein, whose amino acid sequences differ slightly but whose general activity is identical. “Isoforms” may originate from different sources, e.g. different plant species. Isoforms of PRK compounds can be generated by the cleavage. Different enzymatic and non-enzymatic reactions, including proteolytic and non-proteolytic reactions, are capable of creating truncated, derivatized, complexed forms of PRK proteins.
In the present invention the term “PRK-like compounds” includes nucleic acid sequences, which belong to the active PRK-like compounds of the present invention and which comprise isolated or purified “nucleic acid sequences” encoding PRK-like proteins or nucleic acid sequences with substantial similarity. They can be used as such or introduced into suitable transformation or expression vectors, which in turn can be introduced into suitable host organism to provide prokaryotic, eukaryotic organisms as well as transgenic plants capable of expressing altered levels of PRK-like proteins.
The term “nucleic acid sequences” refers to single of double-stranded polymer of deoxyribonucleotide or ribonucleotide bases. It includes chromosomal DNA, self-replicating plasmids, polymers of DNA or RNA. The “nucleic acid sequences” of the present invention are not in their natural state but are isolated and purified from their natural environment as transiently expressed mRNAs from a tissue. Thereafter the mRNAs are purified and multiplied in vitro in order to provide by technical means new copies, which are capable of encoding said PRK-like proteins. The nucleic acid sequences include both genomic sequences and cDNA.
The term “genomic sequence” means the corresponding sequence present in the nucleus of the plant cells and comprising introns as well as exons. In the present context the term “cDNA” means a DNA sequence obtainable by reversed translation of mRNA translated from the genomic DNA sequence including the complementary sequence.
The term “nucleic acid sequence encoding PRK or PRK-like proteins” means nucleic acid sequences encoding PRK or substantially homologous sequences. Said sequences or their complementary sequences or nucleic acid sequences containing said sequences or parts thereof, e.g. fragments truncated at the 3′-terminal or 5′-terminal end, as well as such sequences containing point mutations, are especially useful for as probes, primers and for preparing DNA constructs, plasmids and/or vectors useful for modulating the level of expression in plant tissues.
It is however clear for those skilled in the art that other nucleic acid sequences capable of encoding PRK-like proteins and useful for their production can be prepared. Said nucleic acid sequences and/or their complementary sequences should be capable of hybridizing under highly stringent condition (Sambrook and Russell, 2001) with SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7 or SEQ ID NO:8.
The nucleic acid sequences of the present invention should have a substantial similarity with the sequences encoding PRK or PRK-like proteins. “Substantial similarity” in this context means that the nucleotide sequences fulfill the prerequisites defined above and have a significant similarity, i.e. a sequence identity of at least of at least 40%, more preferred embodiments include at least 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, most preferably more than 85% with the reference sequence.
The term “nucleic acid sequences encoding PRK or PRK-like proteins” include their truncated or complexed forms as well as point mutations of said nucleic acid sequences as long as they are capable of encoding amino acid sequences having the essential structural features as well as the properties and/or functions of said PRK-like compounds.
The nucleic acid sequences are useful as such or inserted in transformation or expression vectors or host, said nucleic acid sequences being capable of encoding PRK or PRK-like proteins which are recognizable by binding substances specifically recognizing said PRK or PRK-like proteins. The nucleic acid sequences are useful in gene therapy or for preventing the genes causing the disease from expressing the gene products causing the diseases.
The PRK-like compounds include in addition to the proteins and nucleic acid sequences also binding substances.
The term “binding substances” means substances, which are capable of recognizing and specifically binding to natural PRK and/or PRK-like proteins or at least one specific portion of said molecules. Such binding substances are for example antibodies, receptors or ligands or proteins, specifically recognizing or binding to PRK or PRK-like proteins, ligands of PRK-like proteins or other binding proteins or peptides, comprising e.g. specific portions of said PRK-like compounds, but above all they mean antibodies capable of specifically recognizing one or more PRK-like compounds alone or in any combination. The antibodies include both polyclonal and/or monoclonal antibodies as well as fragments or derivatives thereof. Preferably, such binding substances, which recognize and bind to specific epitopes or active sites of the PRK-like compounds.
Said “binding substances” can be produced using specific domains of PRK-like compounds, their isomers as well as their fragments, derivatives and complexes with the prerequisite that they are capable of functioning in respective signaling pathway.
Identification of potato genes responsive to cell wall-degrading enzymes of Erwinia carotovora resulted in isolation of cDNA clones for four related receptor-like protein kinases. One of the putative serine-threonine protein kinases might have arisen through alternative splicing. These potato receptor-like kinases (PRK1-4) were highly similar (91-99%) most likely constituting a family of related receptors. All PRKs and four other plant receptor like kinases (RLKs) share in their extracellular domain a conserved bi-modular pattern of cysteine repeats distinct from that in previously characterized plant RLKs, suggesting they represent a new class of receptors. The corresponding genes were rapidly induced by E. carotovora culture filtrate (CF) both in the leaves and tubers of potato. Furthermore, the genes were transiently induced by short oligogalacturonides. The structural identity of PRKs and their induction pattern suggested that they constitute part of the early response of potato to E. carotovora infection.
The present inventors were interested in understanding potato (Solanum tuberosum) defense responses against E. carotovora. In order to isolate potato genes, which are involved in defense during the early stages of the plant-pathogen interaction, plants were inoculated with E. carotovora subsp. carotovora strain SCC3193 (Pirhonen et al., 1988) and pathogen induced cDNA clones were isolated by suppression subtractive hybridization (SSH) (see Birch et al., 1999 for methods). One of the 25 characterized cDNAs corresponding to CF-induced genes predicted a polypeptide showing similarity to protein kinases and was analyzed further. First the full-length cDNA corresponding to the original 206-bp cDNA fragment was isolated. To achieve this a cDNA library was constructed with RNA samples from CF-treated leaves using the SMART T™ RACE cDNA Amplification kit (Clonetech Laboratories, Inc). Screening of this library resulted in isolation of four cDNAs with different EcoRI-restriction patterns (data not shown) all homologous to the 206-bp cDNA fragment.
The four full-length cDNAs were designated PRK-1 (2201 nucleotides, accession number AJ306626), PRK-2 (2225 nucleotides, accession number AJ306627), PRK-3 (2115 nucleotides, accession number AJ306628), and PRK-4 (2387 nucleotides, accession number AJ306629) for potato receptor-like protein kinase (PRK). Their predicted open reading frames encoded 676 amino acid polypeptides with a calculated molecular mass of 75 kDa for PRK-1, 2 and 4 and a 651 amino acid polypeptide with a calculated molecular mass of 72 kDa for PRK-3 (
PRK-2, 3 and 4 exhibit 98-99% amino acid similarity while PRK-1 shows 91-93% similarity to PRK-2, 3 and 4 (
Based on the structure of the putative extracellular domains, plant RLKs have been classified into several major classes (Braun and Walker, 1996; Walker, 1994). These include (i) the S-domain RLKs which contain extracellular domains homologous to the S-locus glycoproteins of Brassicaceae (Nasrallah et al., 1993; Walker and Zhang, 1990, Stein et al., 1991), (ii) the leucine rich repeat (LRR) RLKs such as Xa21 from rice, TMK1 and RLK5 from Arabidopsis (Chang et al., 1992; Song et al., 1995; Walker, 1993) and (iii) RLKs with the epidermal growth factor-like repeat (EGF) such as pro25 and the WAKs from Arabidopsis (He et al., 1999; Kohorn et al., 1992). Moreover, several RLKs with different types of extracellular domains have been identified recently (reviewed by Satterlee and Sussman, 1998). Comparison of PRKs with already known plant or other eukaryotic receptors, showed relation to PvPR20-1, a RLK of a new type from Phaseoulus vulgaris (Lange et al., 1999) and three different putative Arabidopsis RLKs (
The expression of plant RLK genes have shown diverse patterns, while some of them displayed expression only in vegetative tissues (Kohorn et al., 1992), others were expressed only in reproductive tissues (Goring et al., 1992; Stein et al., 1991) and some have been shown in both vegetative and reproductive tissues (Pastuglia et al., 1997). Interestingly, some of the RLK genes are responsive to pathogens and elicitors, including PvRK20-1 from Phaseolus vulgaris (Lange et al., 1999), SFR2 from Brassica olearacea (Pastuglia et al., 1997), Wak1 (He et al., 1998) and RLKs (Du and Chen, 2000) from Arabidopsis thaliana and the disease resistance gene Xa21 from rice (Song et al., 1995). To elucidate the role of PRKs in plant response to E. carotovora we characterized the expression pattern of PRKs in different plant tissues after CF treatment of potato plants by RNA-gel blot hybridization (
In order to demonstrate the function of the PRK family (PRK 1,2,3, and 4) in potato plants a set of potato plants were transformed to over express PRK-2, while another group of plants was engineered to silence the whole family of PRKs.
In plants, very little is known about the nature of the ligands interacting with serine-threonine RLKs. Recently, it has been shown that the extracellular domain of a RLK from Arabidopsis, BRI1, perceives brassinosteroids (He et al., 2000). On the other hand, in animals it has been shown that the interleukin 2 and the epidermal growth factor receptors are up regulated by their own ligands (Clark et al., 1985; Deeper et al., 1985). In order to elucidate the nature of the inducer of potato PRKs, we characterized accumulation of the corresponding transcripts following treatment with di-oligogalacturonic acid and tri-oligogalacturonic acid (
In conclusion, the results of the expression studies demonstrate that short oligogalacturonides act as elicitors of PRK expression and indicate that E. carotovora released oligogalacturonides play an important role eliciting PRKs during the early stage of the potato-Erwinia interaction. Furthermore, the results suggest that the PRKs are involved in perception of E. carotovora by the host plant.
One full-length cDNA Atpr3mia (SEQ ID NO: 9) from the corresponding Arabidopsis gene was isolated. It differs from the corresponding sequence in the databank with accession number CAA18465. It differs especially at the region of the transmembrane domain of the protein probably due to the computer programs used. The expression pattern of the Arabidopsis gene is similar to that of PRK responding to Erwinia carotovora. Transgenic Arabidopsis plants overexpressing this gene (sense) as well as transgenic plants where the expression of this gene is silenced (antisense) (
The receptors of the present invention may also participate in other functions than conferring disease resistance for example regulation of growth in different plant species.
The following examples are intended for illustration of the present invention and should not be interpreted as limiting the present invention in any way.
Atmia prk Transgenic Arabidopsis Infected with Erwinia Carotovora Subsp. Carotovora SCC1
Arabidopsis thaliana plants were transformed using the Agrobacterium-mediated transformation method of Clough and Bent (1999, Plant Journal 16, 735-743). The Arabidopsis plants were transformed using vacuum infiltration method without plant tissue culture or regeneration. Developing floral tissues were dipped into a solution containing Agrobacterium tumefaciens, 5% sucrose and 500 microliters per litre of surfactant Silwet L-77. Plant tissue culture media, the hormone benzylamino purine and pH adjustment were unnecessary.
Arabidopsis plants were transformed with Atmia prk gene (SEQ ID NO:9) and they were subsequently infected with Erwinia carotovora subsp. carotovora SCC1. 3-week old seedlings of Arabidopsis transgenic lines where the Arabidopsis homolog of PRK (Atmia prk) is overexpressed (S 2142, S 1713) or silenced with antisense constructs (AS 1961, AS 1564) were used. The number of plants exhibiting disease symptoms over those locally inoculated with different size of inocula of the Erwinia strain SCC 1 are presented in Table 1.
nt not tested
The PDE control indicates transgenic Arabidopsis harboring the transformation vector without any PRK insert. The plants were locally inoculated without wounding and the development of disease symptoms assessed 96 hrs post inoculation.
The results demonstrate that plants overexpressing the Atmia prk show enhanced disease resistance [only 4/52 (S 2142) and 2/24 (S 1713) plants with disease symptoms] when compared to the vector PDE control (11/47 plants with disease symptoms). In contrast, plants where the gene is silenced by antisense constructs are more sensitive to the pathogen (22/54 (AS 1961) and 21/52 (AS 1564) plants with disease symptoms.
In conclusion, the results indicate, that the Atmia prk gene is required for full disease resistance in Arabidopsis. The results also indicate that overexpression of the Atmia prk gene enhances disease resistance.
The overexpression of Atmia prk gene or genes can be used to enhance disease resistance in various agricultural plants, in particular disease resistance to necrotrophic pathogens and possibly herbivores. Another application could be additional enhancement of the resistance of such transgenic lines by adding chemical preparations (e.g. by spraying fields) containing oligouronides. The above mentioned preparations might also be used to enhance resistance of normal (not transformed with prk) plants.
PRK-2 Over Expression in Potato Plants
In order to demonstrate the role of PRKs in potato plants and to assess their role in plant defense an economically important potato cultivar (Solanum tuberosum cv Bintje) was engineered to overexpress PRK-2.
The full length cDNA of prk-2 was cloned in sense orientation into plasmid pROK2, which contains 35S promoter of CaMV in the binary vector pBIN19, resulting in pPRK2sense construct. The sense orientation of prk-2 under control of 35S CaMV promoter was confirmed by sequencing. A schematic illustration of the final construct is depicted in
For genetic transformation, Agrobacterium tumefaciens strain C58C1 (rifampicin resistant) containing the disarmed nopaline Ti-plasmid pGV3850 that confers resistance to carbenicilin (Zambryski et al 1983) was transformed by standard procedures with pPRK2sense construct conferring additional resistance to kanamycin.
Agrobacterium-mediated genetic transformation of potato for over expression of PRK2 was performed essentially as described by Beaujean et al. (1998). Solanum tuberosum cv. Bintje plants were grown axenically on MS medium (Murashige and Skoog, 1962) at 22° C. under a 16 hours light period (100-150 μumol/s/m2).
Plants were excised with sharp scalpel and internodal explants (4-6 mm) were used for transformation with Agrobacterium tumefaciens containing pPRK2sense construct. Such internodal explants were wounded lengthwise with a scalpel, incubated for 30 minutes in a Petri dish with MS liquid medium containing 1:10 vol. of bacterial suspension, blotted dry on a filter paper and cultured on callus inducing medium (CIM) (Table 2 below) under the conditions described above. After three days of co-cultivation, the explants were washed for 30 minutes with MS liquid medium containing 1 g/l cefotaxime. Then, the explants were dry blotted and placed on selection medium (CIM containing 250 mg/l cefotaxime and 125 mg/l kanamycin).
After the callus is well developed the plants are subcultured on Shoot Induction Medium (SIM) (Table 2) and then transferred to jars containing selective rooting medium (RIM) (Table 2). Only plantlets with well developed roots are transferred to MS and subjected to primary molecular analysis including PCR and northern blot to confirm transformation.
Table 2. Composition of different culture media used during genetic engineering of potato.
CIM
MS salts 4.71 g/l
Sucrose 30 g/l
MES: 2-(N-morpholino) ethanesulphonic acid 0.5 g/l
Zeatine riboside (cytokinin) 0.8 mg/l
2,4-D (auxin) 2 mg/l
agar 8.5 g/l
pH a 5.7
SIM
MS salts 4.71 g/l
Sucrose 30 g/l
MES: 2-(N-morpholino) ethanesulphonic acid 0.5 g/l
Zeatine riboside (citokinin) 0.8 mg/l
GA3 3 mg/l
pH a 5.7
agar 8.5 g/l
Claforan 500 mg/l
Kanamycin 50 mg/l
RIM
MS salts 4.71 g/l
Sucrose 30 g/l
MES: 2-(N-morpholino) ethanesulphonic acid 0.5 g/l
IBA (auxin) 0.1 mg/l
pH a 5.7
agar 8.5 g/l
Claforan 500 mg/l
Kanamycin 50 mg/l
Silencing PRK Expression in Potato Plants
Constructs encoding RNA with regions of self-complementary sequences (arms), which form the stem of a hairpin structure, efficiently induce gene silencing through such hairpin-stem sequences of the RNA molecule (Smith et al., 20000; Wesley et al, 2001). This type of constructs containing DNA sequences ranging from 98 to 800 bases cloned as inverted-repeat arms, have been shown to successfully induce gene silencing in several plant species (Wesley et al., 2001).
In order to specifically silence the whole PRK family a construct called pPRKantisense (
Agrobacterium tumefaciens strain C58C 1 (rifampicin resistant) containing the disarmed nopaline Ti plasmid pGV3850 conferring carbenicillin resistance was transformed by standard procedures with pPRKantisense construct.
The potato plants (Solanum tuberosum cv Bintje) were transformed with the PRKantisense construct by Agrobacterium-mediated transformation similarly as described in Example 1.
Because the DNA fragment from prk-2 used in this construct corresponds to the region encoding the extra cellular domain of PRK-2 and not the kinase domain, which could be eventually silenced by unrelated kinases and because the sequence homology of the DNA fragment from prk-2 used in this construct is 100% identical with prk-3 and prk-4, and 96% identical with prk-1 (
Characterization of the Transgenic Potato Plants
Potato plants transformed with either prk2sense construct of prkAntisense constructs are infected with Erwinia carotovora subs. Carotovora SCC1. Disease symptoms of the locally inoculated plants are recorded from the plants and compared with untransformed control plants or plants transformed with the transformation vector without a prk2 insert or pPRKantisense insert.
This application is a Continuation in Part application of the U.S. patent application Ser. No. 10/304,946 which is incorporated herein by reference. This application claims priority of the Finnish patent application number 20012419 also incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10304946 | Nov 2002 | US |
Child | 11326946 | Jan 2006 | US |