Information
-
Patent Application
-
20040162376
-
Publication Number
20040162376
-
Date Filed
February 20, 200420 years ago
-
Date Published
August 19, 200420 years ago
-
Inventors
-
Original Assignees
-
CPC
-
US Classifications
-
International Classifications
Abstract
The invention relates to the selection of a natural calcium carbonate crushed to a high degree of fineness, possibly treated with one or more fatty acids or one or more of their salts or mixtures thereof, and its use as a rheology regulator for polymeric compositions.
Description
[0001] The present invention relates to the technical sector of sealants, coatings, adhesives; plastisols or rubbers.
[0002] There are known, in this field, polymeric compositions, with or without fillers, for example polyurethanes with a silane termination which are used as sealants or adhesives setting in moist conditions.
[0003] In the presence of moisture, terminal silane groups undergo, in a known manner, a hydrolysis and condensation reaction. A stable siloxane lattice (Si—O—Si) then forms.
[0004] Such products have many applications in various industrial fields such as the transport and building industries.
[0005] More and wore sophisticated formulations have therefore been sought, notably of the “single-component” type, capable of being applied to various substrates posing problems which are more and more difficult to resolve.
[0006] The composition of this type of formulation comprises one or more fillers, which can be one or more calcium carbonates normally referred to as “fine”.
[0007] It has been discovered according to the invention that, surprisingly, the selection of a natural calcium carbonate ground to a high degree of fineness, which will be described below, or this calcium carbonate treated also as described below, makes it possible to achieve an unequalled set of satisfactory properties for the final product. These include notably good adaptability to adhesion on many types of substrate, such as certain difficult plastics, including without a prior primer coating called “primer”, a reduction in the quantity of polymer required (and therefore a redaction in the cost of materials), or an appreciable reduction in the mixing time (which may reach a factor of ½ for each step, which has an obvious great economic advantage).
[0008] It is even more surprising to find that this remarkable improvement in a set of properties of the final product does not take place, as an expert would logically predict, to the detriment of the final mechanical properties, or properties such as resistance to chemical agents or UV radiation or similar properties conventionally required of such agents.
[0009] Formulations of the plastisol type based on polyvinyl chloride (PVC are also known.
[0010] It should be stated here that a plastisol designates a suspension of one or more PVC resins in a liquid plasticiser and additives such as mineral fillers, stabilisers, mineral and/or organic pigments, expansion agents, adhesion promoters, fluidifiers and others.
[0011] After thermal gelling, the plastisol takes the appearance of a more or less flexible compact mass.
[0012] One of the mineral fillers normally used consists of a synthetic calcium carbonate obtained chemically (precipitated calcium carbonate: PCC) such as for example the product Winnofil SPY Premium™ from Zeneca.
[0013] According to the invention, it is proposed to use, as a rheology regulating mineral material, a natural calcium carbonate crushed to a high degree of fineness whether or not with a dispersing agent present. This natural calcium carbonate is chosen from amongst chalk, calcite or marble, alone or in a mixture, or from amongst these same calcium carbonates treated by means of at least one fatty acid or its salt or a mixture thereof and preferentially using stearic acid or its salt, such as notably calcium, magnesium or zinc stearate and highly preferably using stearic acid or its calcium salt, the whole as described in more detail below.
[0014] The rheology regulator product according to the invention is characterised in that it is a case of a natural calcium carbonate, with a specific surface area of around 14 to 30 m2/g, preferably 16 to 24 m2/g and highly preferentially around 20 m2/g, measured according to the BET method to ISO 4652.
[0015] This carbonate is possibly treated with at least one fatty acid or its salt or a mixture thereof, an acid which is an acid containing 10 to 24 atoms of carbon, and more particularly stearic acid or its salt, such as notably calcium, magnesium or zinc stearate and highly preferentially by means of stearic acid or its calcium salt, preferably at the rate of 0-01% to 5% by weight and more preferentially 1% to 4% by weight.
[0016] It should be noted here that stearic acid means stearic acids of industrial quality composed mainly of 50% to 70% octadecanoic acid and 30% to 50% hexadecanoic acid.
[0017] An original advantage of the product according to the invention is that this product is a calcium carbonate which fulfils a rheology regulating function. This function is normally devolved to the polymers and additives contained in the polymeric formulation, such as for example viscosity depressors, and the Applicant was surprised to see it fulfilled by a product of the type consisting of a material with a natural mineral filler with a high degree of fineness.
[0018] The product selected according to the invention consists of a natural calcium carbonate crushed very finely with a dispersant present or not and possibly treated by means of at least one fatty acid or its salt or a mixture thereof.
[0019] Another of its characteristics lies in its oil absorption, which is greater than 16, measured according to ISO 787-V (Rub-out method).
[0020] A calcium carbonate with a specific surface area of 19 to 26 m2/g was described in the patent EP 0 795 588. It is known according to this document as a pigment giving brightness and opacity in the papermaking field. This field of application is totally different. In addition, such a function is completely different from that of a rheology regulating action, and nothing would suggest either the function brought to light by the invention, nor the fact that this novel application could lead to a surprising set of properties having a great economic advantage.
[0021] The invention also relates to the use, as a rheology regulator for the preparation of sealants or coatings, adhesives, plastisols or rubbers, of these natural calcium carbonates crushed to a very high degree of fineness, possibly treated by means of at least one fatty acid or its salt, notably of calcium, magnesium or zinc or a mixture thereof. This acid, which is an acid containing 10 to 24 atoms of carbon, is more particularly stearic acid or its salt, such as notably calcium, magnesium or zinc stearate and highly preferentially stearic acid or its calcium salt. The processing takes place preferably at the rate of 0.01% to 5% by weight and more preferentially 1% to 4% by weight of at least one fatty acid or its salt or a mixture thereof.
[0022] The invention also relates to the use of dispersions or suspensions, in an organic medium, of these calcium carbonates, treated or non-treated, as a rheology regulator for the preparation of sealants or coatings, adhesives, plastisols or rubbers.
[0023] The invention also relates to polymeric compositions of plastisols, sealant or coating, elastomer or rubber containing, as a rheology regulator, the said natural calcium carbonates crushed to a high degree of fineness, possibly treated by means of at least one fatty acid or its salt or a mixture thereof.
[0024] Other characteristics and advantages of the invention will be understood more clearly from a reading of the following description and examples. These examples should not be taken to represent any limitative aspect of the invention.
[0025] In the examples, the products have the following characteristics:
[0026] Product A:
[0027] A filler of the prior art, consisting of a natural calcium carbonate of the chalk type, crushed and dried, not treated, with a mean grain diameter of 0.67 micrometres measured by means of the Sedigraph 5100 from Micromeritics, with a specific surface area of 11 m2/g measured according to the BET method to ISO 4652.
[0028] Product B:
[0029] A rheology regulator according to the invention, consisting of a natural calcium carbonate of the chalk type, crushed and dried, not treated, with a mean grain diameter of 0.60 micrometres measured by means of the Sedigraph 5100 from Micromeritics, with a specific surface area of 19.5 m2/g measured according to the BET method to ISO 4652 and with an oil absorption of 18.75 measured according to ISO 787-V (Rub-out method).
[0030] Product C:
[0031] A rheology regulator according to the invention, consisting of a natural calcium carbonate of the Urgonian calcite type, crushed by the wet method and dried, not treated, with a mean grain diameter of 0.44 micrometres measured by means of the Sedigraph 5100 from Micromerifics, with a specific surface area of 16.5 m2/g measured according to the BET method to ISO 4652 and with an oil absorption of 20 measured according to ISO 787-V (Rub-out method).
[0032] Product D:
[0033] A rheology regulator according to the invention, consisting of a natural calcium carbonate of the chalk type, crushed by the wet method and dried, treated by the use of 3% by weight stearic acid, with a mean grain diameter of 059 micrometres measured by means of the Sedigraph 5100 from Micromeritics, with a specific surface area, after treatment, of 16 m2/g measured according to the BET method to ISO 4652 and with an oil absorption, after treatment, of 16.3 measured according to ISO 787-V (Rub-out method).
[0034] Product E;
[0035] A rheology regulator according to the invention, consisting of a natural calcium carbonate of the Urgonian calcite type, crushed by the wet method and dried, not treated, with a mean grain diameter of 0.58 micrometres measured by means of the Sedigraph 5100 from Micromeritics, with a specific surface area of 14.4 m2/g measured according to the BET method to ISO 4652 and with an oil absorption of 17.9 measured according to ISO 787-V ub-out method).
[0036] Product F:
[0037] A rheology regulator according to the invention, consisting of a natural calcium carbonate of the chalk type, crushed by the wet method and dried, treated by the use of 1% by weight stearic acid, with a resulting granulometry of 96%<1 micrometre and 39%<0.2 micometres measured by means of the Sedgaph 5100 from Micromeritics, with a specific surface area, after treatment, of 28 m2/g measured according to the BET method to ISO 4652 and with an oil absorption, after treatment, of 195 measured according to ISO 787-V (Rub-out method).
[0038] Product G:
[0039] A rheology regulator according to the invention, consisting of a natural calcium carbonate of the chalk type, crushed by the wet method and dried, not treated, with a specific surface area of 22 m2/g measured according to the BET method to ISO 4652 and an oil absorption of 19.4 measured according to ISO 787-V (Rub-out method).
[0040] Product H:
[0041] A filler of the prior art consisting of a precipitated calcium carbonate sold by Zeneca under the name Winnofil SPT™.
[0042] Product I:
[0043] A filler of the prior art, consisting of natural calcium carbonate of the chalk type, crushed by the wet method and dried, treated by means of 1% stearic acid, with a mean diameter of 1.4 micrometres measured by means of the Sedigraph 5100 from Micromeritics and with a specific surface area of 6 m2/g measured according to the BET method to ISO 4652.
[0044] Product J:
[0045] A filler of the prior art, consisting of a natural calcium carbonate of the chalk type, crushed by the wet method and dried, treated by the use of 1% by weight stearic acid, with a mean diameter of 1 micrometre measured by means of the Sedigraph 5100 from Micromeritics and a specific surface area of 10 rn/g measured according to the BET method to ISO 4652.
[0046] Product K:
[0047] A filler of the prior art consisting of a treated precipitated calcium carbonate sold by Solvay under the name Socal U1S2.
EXAMPLE 1
[0048] This example relates to the use of calcium carbonate as a rheology regulator for the preparation of plastisols.
[0049] In these tests, tests were carried out on the replacement of the synthetic calcium carbonate obtained by precipitation, of the prior art, or precipitated calcium carbonate (PCC), by the specific natural calcium carbonate according to the invention.
[0050] In a formulation of the plastisol type based on PVC (polyvinyl chloride) containing no calcium carbonate, it was sought to compare the effect of the replacement of 50% to 100% of the mineral filler normally used, namely a precipitated calcium carbonate, by a natural calcium carbonate crashed to a high degree of fineness according to the invention.
[0051] To do this, with 75 g of plastisol without filler, the calcium carbonate to be tested was mixed in a 7 cm diameter receptacle and the mixture was homogenised with a spatula. Then the mixture was put in dispersion for two minutes using a “Pendraulik”™ LD50 laboratory mixing appliance, the diameter of the dispersing disc being 5 cm, the speed of rotation of the disc being 2700 rev/min (manual setting at position 3).
[0052] The dispersing being terminated, the viscosity was measured by means of “Rheomat 120”™ equipment, a measuring appliance according to DIN 125, at 20° C.
[0053] Test N° 1:
[0054] This test illustrates the prior art and uses 20 g of a precipitated calcium carbonate sold by Zeneca under the name Winnofil SPT™ (product H) and 5 g of natural calcium carbonate sold under the name Juraperle™ BS by Juraweiss.
[0055] Test N° 2:
[0056] This test illustrates the prior art and uses 13 g of a precipitated calcium carbonate sold by Zeneca under the name Winnofil SPT™ (product H) and 12 g of product A according to the prior art.
[0057] Test N° 3:
[0058] This test illustrates the invention and uses 25 g of product B according to the invention.
[0059] Test N° 4:
[0060] This test illustrates the prior art and uses 20 g of a precipitated calcium carbonate sold by Zeneca under the name Winnofil Sky (product H).
[0061] Test N° 5:
[0062] This test illustrates the invention and uses 10 g of a precipitated calcium carbonate sold by Zeneca under the name Winnofil SPT™ (product H) and 15 g of product D according to the invention.
[0063] Test N° 6:
[0064] This test illustrates the invention and uses 10 g of a precipitated calcium carbonate sold by Zeneca under the name Winnofil SPT™ (product H) and 15 g of product C according to the invention.
[0065] Test N° 7:
[0066] This test illustrates the invention and uses 13 g of a precipitated calcium carbonate sold by Zeneca under the name Winnofil SPT™ (product H) and 12 g of product E according to the invention.
[0067] Test N° 8:
[0068] This test illustrates the invention and uses 10 g of a precipitated calcium carbonate sold by Zeneca under the name Winnofil SPT™ (product H), 5 g of natural calcium carbonate sold under the name Juraperle™ BS by Juraweiss and 10 g of product D according to the invention.
[0069] Test N° 9:
[0070] This test illustrates the invention and uses 10 g of a precipitated calcium carbonate sold by Zeneca under the name Winnofil SPT™ (product H), 5 g of natural calcium carbonate sold under the name Juraperle™ BS by Juraweiss and 10 g of product E according to the invention.
[0071] Test N° 10:
[0072] This test illustrates the invention and uses, for a mixture with 72 g of plastisol, 10 g of a precipitated calcium carbonate sold by Zeneca under the name Winnofil SPT™ (product H), 5 g of natural calcium carbonate sold under the name Juraperle™ BS by Juraweiss and 13 g of product E according to the invention.
[0073] The results of the viscosity measurements as a function of the speed of flow according to DIN 125 at 20° C. are set out in Tables Ia and Ib below.
1TABLE Ia
|
|
Prior artPrior artInventionPrior artInvention
TEST N°
COMPOSITION12345
|
Plastisol without filler75.0075.0075.0075.0075.00
(in g)
PCC (in g)20.0013.00—25.0010.00
Juraperle ™ BS (in g)5.00————
Product A (in g)—12.00———
Product B (in g)——25.00——
Product D (in g)————15.00
Weight of mixture (in g)100.00100.00100.00100.00100.00
|
Viscosity mPa · s
Test N°Test N°Test N°Test N°Test N°
RHEOLOGYSpeed of flow s−112345
|
201820017700152001760017100
40100409650843099009650
6072607100628072007100
8058905730517058505700
10051004880439050004800
12044904380398044504350
14041004020355039903990
16037803650331036503650
18034603400311034003380
20033203220295031903170
22031403030278031103000
24030002870262028902820
26028702760252027402700
28027602680242026102600
30026602570235024902490
|
[0074]
2
TABLE Ib
|
|
|
Invention
Invention
Invention
Invention
Invention
|
TEST N°
|
COMPOSITION
6
7
8
9
10
|
|
Plastisol without filler
75.00
75.00
75.00
75.00
72.00
|
(in g)
|
PCC (in g)
10.00
13.00
10.00
10.00
10.00
|
Juraperle ™ BS (in g)
—
—
5.00
5.00
5.00
|
Product C (in g)
15.00
—
—
—
—
|
Product D (in g)
—
—
10.00
—
—
|
Product E (in g)
—
12.00
—
10.00
13.00
|
Weight of mixture (in g)
100.00
100.00
100.00
100.00
100.00
|
|
Viscosity mPa · s
|
Test N°
Test N°
Test N°
Test N°
Test N°
|
RHEOLOGY
Speed of flow s−1
6
7
8
9
10
|
|
20
12700
17300
13100
12500
17000
|
40
7280
9450
7600
7160
9500
|
60
5360
6950
5630
5250
7030
|
80
4430
5600
4850
4330
5580
|
100
3820
4830
4040
3780
4800
|
120
3400
4230
3600
3300
4320
|
140
3110
3950
2290
3000
3790
|
160
2860
3550
3040
2770
3550
|
180
2680
3260
2850
2590
3280
|
200
2520
3110
2680
2480
3080
|
220
2400
2910
2550
2320
2950
|
240
2290
2790
2430
2200
2800
|
260
2190
2670
2340
2130
2710
|
280
2120
2580
2250
2050
2610
|
300
2040
2490
2180
1970
2490
|
|
[0075] A reading of the table shows that the use of the calcium carbonate according to the invention makes it possible to regulate the rheological behaviour of the plastisol composition, even when 100% of the precipitated calcium carbonate has been replaced by the calcium carbonate according to the invention.
Example 2
[0076] This example relates to the study of the conventional mechanical properties conferred by product F according to the invention, that is to say a natural chalk crashed so as to obtain a specific surface area of 28 m2/g, on mixtures based on plasticised PVC, in comparison with mixtures filled by means of natural calcium carbonates well known in the prior art.
[0077] For each of these tests, the following mixture was produced:
3|
|
“SOLVIC 239 D” PVC sold by Solvay100
Dioctyl phthalate (Jayflex ™ DOP from Exxon)50
Dibasic lead sulphate1
Tribasic lead sulphate2
Filler to be tested80
|
[0078] Preparation of the Composition:
[0079] The dry mites or “dry blends” were prepared in a “GUEDU”™ adiabatic mixer at 100° C. for a period of 15 minutes. The mixtures were then gelled on cylinders at 150° C. in a mixing mill. For all the mixtures, this operation was performed in 12 minutes.
[0080] Sheets of 90×90×2 mm were then moulded at 160° C. after preheating of the blank for 3 minutes and pressurising for 2 minutes before cooling, using a compression press.
[0081] The test pieces necessary for determining the mechanical properties were cut from these sheets.
[0082] The different calcium carbonates tested were:
[0083] Test N° 11:
[0084] This test illustrates the prior art and uses a natural chalk, treated with 1% stearic acid, with a specific surface area of 6 m2/g measured according to the BET method to ISO 4652 (product I).
[0085] Test N° 12:
[0086] This test illustrates the prior art and uses a natural chalk, treated with 1% stearic acid, with a specific surface area of 10 m2/g measured according to the BET method to ISO 4652 (product J).
[0087] Test N° 13:
[0088] This test illustrates the invention and uses product F according to the invention.
[0089] The mechanical properties were assessed by means of dynamometric tests (tensile strength, breaking elongation, modulus 100%) carried out using the Instron™ equipment according to ISO 37, at a temperature 23° C. and with a traction speed of 10 cm/min.
[0090] The ASTM-C tear strength was for its part determined according to the method of ISO R-34 and Shore C hardness according to the method of ISO 868.
[0091] The results of these measurements of mechanical properties are set out in Table II below.
4TABLE II
|
|
Inven-
Prior artPrior arttion
|
|
Test N°111213
Tensile strength (daN/cm2)128130136
Breaking elongation (%)300260172
Modulus 100% (daN/cm2)83106127
ASTM-C tear strength (daN/cm)475658
Shore C hardness at 15 s (in daN/cm)606474
|
[0092] It can be seen that the mechanical properties obtained are excellent and are superior to those obtained with natural calcium carbonates which are crushed but which have a specific surface area outside the scope of the invention.
[0093] The invention therefore makes it possible to optimise the formulations according to the mechanical property to be favoured.
Example 3
[0094] This example relates to the use of calcium carbonates as a rheology regulator for the preparation of elastomer based on natural or synthetic rubber.
[0095] It was sought in this example to assess the effect of the specific surface area of a crashed natural chalk according to the invention on the properties of mixtures based on natural and synthetic rubbers, in comparison with a precipitated calcium carbonate of the prior art.
[0096] To do this, for each of Tests 14 and 15, the following mixture was produced:
5|
|
Natural rubber (smoked sheet quality RSS 1)100
SBR rubber (styrene-butadiene, Cariflex ™ 1502 from Shell)40
Zinc oxide (snow quality) from Vieille Montagne5
Stearic acid2
Sulphur1.5
N-cyclohexyl 2 benzothiazyl sulphenamide (Vulcafor ™ CBS1
from Vulnax)
Tetramethyltbiuram disulphide (Vulkacit ™ DTMT from Bayer)0.5
Calcium carbonate to be tested100
|
[0097] Test N° 14:
[0098] This test illustrates the prior art and uses a precipitated calcium carbonate sold by Solvay under the name Socal U1S2 (product K).
[0099] Test N° 15:
[0100] This test illustrates the invention and uses product F according to the invention.
[0101] These two tests were carried out as follows:
[0102] A pure gum master-batch was prepared, by the successive incorporation of the various ingredients, except for calcium carbonate, according to the normal technique of experts, on a mixing mill regulated for temperature, by mixing for 10 minutes (friction I/I,4) at 60° C.
[0103] From this master-batch two samples were taken in which the calcium carbonates to be tested had been incorporated, by mixing at 60° C. for 12 minutes.
[0104] After determination of the vulcanisation optima at 155° C. using a Monsanto flow meter, sheets were moulded and vulcanised to this optimum in order to effect the measurement of the mechanical properties according to the same operating method as in the previous tests.
[0105] The results of the mechanical properties are set out in Table III below.
6TABLE III
|
|
Prior artInvention
|
|
Test N°1415
Vulcanisation optimum at 155° C.5 min. 15 s5 min.
Tensile strength daN/cm2119109
Modulus 300% daN/cm24139
Elongation %500485
Tear strength ASTM-C daN/cm2326
Shore A hardness (15 s)6161
|
[0106] It can be seen that the product according to the invention reduces the implementation time (the vulcanisation optimum) as well as the tear strength properties.
[0107] Likewise Tests 16, 17 and 18 were carried out using the following formulation:
7|
|
SBR rubber (styrene-butadiene, Cariflex ™ 150240
from Shell)
Natural rubber (smoked sheet quality RSS 1)60
Zinc oxide (snow quality) from Vieille Montagne5
Stearic acid2
Sulphur2
N-cyclohexyl 2 benzothiazyl sulphenamide0.9
(Vulcafor ™ CBS from Vulnax)
Diorthotolylguanidine accelerator0.3
(Vulkafor ™ DOTG from Vulnax)
Calcium carbonate to be tested100
|
[0108] Test N° 16:
[0109] This test illustrates the prior art and uses a precipitated calcium carbonate sold by Solvay under the name Socal U1S2 (product K).
[0110] Test N° 17:
[0111] This test illustrates the prior art and uses a calcium carbonate of the chalk type, crushed by the wet method and dried, treated, with a mean diameter of 1.4 micrometres measured by means of the Sedigraph 5100 from Micromeritics and with a specific surface area of 10 m2/g measured according to the BET method to ISO 4652 (product J).
[0112] Test N° 18:
[0113] This test illustrates the invention and uses product G according to the invention.
[0114] From this master batch manufactured with the same operating method as in the previous test, three samples were taken in which the calcium carbonates to be tested bad been incorporated, by mixing at 60° C. for 12 minutes. After determination of the vulcanisation optima, sheets were moulded and vulcanised to this optimum in order to effect a measurement of the mechanical properties according to the same operating method as for the previous tests.
[0115] The results of the mechanical properties are set out in Table IV below.
8TABLE IV
|
|
Prior artPrior artInvention
|
|
Test N°161718
Vulcanisation optimum23 min. 30 s16 min. 45 s11 min.
at 150° C
Tensile strength (daN/cm2)122132132
Modulus 300% (daN/cm2)16.52020
Elongation %695715695
ASTM-C tear strength232828
(daN/cm)
Shore A hardness515050
(15 s) in (daN/cm)
|
[0116] It can be seen that the product according to the invention improves the implementation time (the vulcanisation optimum) and the majority of the mechanical properties.
Example 4
[0117] A second series of tests (Tests 19 and 20) were carried out in a natural rubber 40 per filled with a mineral filler with the basic formula:
9|
|
Natural rubber (smoked sheet quality RSS 1)100
Coumarone resin 60/705.6
Rosin3
Zinc oxide (snow quality) from Vieille Montagne40
Stearic acid0.5
Oil4.3
Benzothiazyl disulphide accelerator1
(Vulcafor ™ MBTS from Vulnax)
Diphenylguanidine accelerator0.36
(Vulcafor ™ DPG from Vulnax)
|
[0118] The calcium carbonates to be tested were:
[0119] Test N° 19:
[0120] A precipitated calcium carbonate (product K) for this test, which illustrates the prior art.
[0121] Test N° 20:
[0122] A natural calcium carbonate according to the invention product G) for this test, which illustrates the invention,
[0123] The results of the mechanical properties, measured with the same operating method as for the following tests, are set out in Table V below.
10TABLE V
|
|
Prior artInvention
|
|
Test N°1920
Vulcanisation optimum at 150° C.7 min. 15 s8 min. 15 s
Tensile strength (daN/cm2)246246
Modulus 300% (daN/cm2)3231
Elongation %710710
Shore A hardness (15 s) in (daN/cm)4546.5
|
[0124] It can be seen that the product according to the invention makes it possible to obtain equivalent mechanical property results, even by completely replacing the precipitated calcium carbonate with a natural calcium carbonate.
Claims
- 1. A rheology regulator, characterised in that it is a case of a natural calcium carbonate, crushed to a high degree of fineness, with a specific surface area of around 14 to 30 m2/g, preferably around 16 to 24 m2/g and highly preferentially around 20 m2/g, measured according to the BET method to ISO 4652.
- 2. A rheology regulator according to claim 1, characterised in that it is a case of a natural calcium carbonate, crushed to a high degree of fineness, with a specific surface area of 14.4 m2/g, measured according to the BET method to ISO 4652.
- 3. A rheology regulator according to claim 1, characterised in that it is a case of a natural calcium carbonate, crashed to a high degree of fineness, with a specific surface area of 16 m2/g, measured according to the BET method to ISO 4652.
- 4. A rheology regulator according to claim 1, characterised in that it is a case of a natural calcium carbonate, crushed to a high degree of fineness, with a specific surface area of 16.5 m2/g, measured according to the BET method to ISO 4652.
- 5. A rheology regulator according to claim 1, characterised in that it is a case of a natural calcium carbonate, crushed to a high degree of fineness, with a specific surface area of 22 m2/g, measured according to the BET method to ISO 4652.
- 6. A rheology regulator according to claim 1, characterised in that it is a case of a natural calcium carbonate, crushed to a high degree of fineness, with a specific surface area of 28 m2/g, measured according to the BET method to ISO 4652.
- 7. A rheology regulator according to any one of claims 1 to 6, characterised in that it is a case of a natural calcium carbonate treated by means of at least one fatty acid containing 10 to 24 atoms of carbon or its salt chosen from amongst the salts of calcium, magnesium, zinc or a mixture thereof and more particularly using stearic acid or its calcium salt in a proportion of around 0.01% to 5% by weight.
- 8. A rheology regulator according to claim 7, characterised in that it is a case of a natural calcium carbonate treated by means of at least one fatty acid containing 10 to 24 atoms of carbon or its salt chosen from amongst the salts of calcium, magnesium, zinc or a mixture thereof and more particularly using stearic acid or its calcium salt in a proportion of around 1% to 4% by weight.
- 9. A rheology regulator according to any one of claims 1 to 8, characterised in that it has au oil absorption which is greater than 16 measured according to ISO 787-V (Rub-out method).
- 10. Use of a rheology regulator according to any one of claims 1 to 9 for the preparation of sealants, adhesives or plastisols.
- 11. Use of a rheology regulator according to any one of claims 1 to 9 for the preparation of rubbers.
- 12. Use as a rheology regulator, of dispersions or suspensions, in an organic medium, of a natural calcium carbonate crushed to a high degree of fineness according to any one of claims 1 to 9 for the preparation of sealants or coatings, adhesives or plastisols.
- 13. Use as a rheology regulator, of dispersions or suspensions, in an organic medium, of a natural calcium carbonate crashed to a high degree of fineness according to any one of claims 1 to 9, for the preparation of rubbers.
- 14. A plastisol, characterised in that it comprises a rheology regulator according to any one of claims 1 to 9.
- 15. A rubber, characterised in that it comprises a rheology regulator according to any one of claims 1 to 9.
- 16. A sealant or coating or adhesive characterised in that it comprises a rheology regulator according to any one of claims 1 to 9.
- 17. A sealant or coating or adhesive according to claim 16, characterised in that it comprises in addition a polyurethane with terminal silane groups and a plasticiser of the phthalate type.
- 18. A sealant or coating or adhesive according to either one of claims 16 and 17, characterised in that it comprises in addition one or more additives chosen from amongst smoked silica as a thixotropic agent, a bleaching agent such as TiO2, UV stabilisers, adhesion promoter, a catalyst such as dibutyltin dilaurate, and dehydrating agents such as a silane.
Priority Claims (1)
Number |
Date |
Country |
Kind |
98/12714 |
Oct 1998 |
FR |
|
Continuations (1)
|
Number |
Date |
Country |
Parent |
09806473 |
Jul 2002 |
US |
Child |
10781686 |
Feb 2004 |
US |