Novel Solar Panel String Converter Topology

Abstract
The inventive technology, in certain embodiments, may be generally described as a solar power generation system with a converter, which may potentially include two or more sub-converters, established intermediately of one or more strings of solar panels. Particular embodiments may involve sweet spot operation in order to achieve improvements in efficiency, and bucking of open circuit voltages by the converter in order that more panels may be placed on an individual string or substring, reducing the number of strings required for a given design, and achieving overall system and array manufacture savings.
Description
TECHNICAL FIELD

This invention relates to methods and apparatus involving grid- or electrical power network-tied photovoltaic (PV) converters. In one embodiment, it especially relates to multiple panel grid-tied PV converters commonly deployed either commercial or even residential power installations.


BACKGROUND

Many common PV converters may have challenges to meet cost and reliability challenges. Such challenges need to be viewed from the perspective of generating their electricity savings for payback of initial investment over longer periods. The present invention provides systems that may in some embodiments address cost and reliability goals for many PV systems.


At the current time the use of PV (photovoltaic) panels to generate electricity may be in a period of rapid growth. The cost of solar power may even be decreasing and many factors appear to limit the growth of non-renewable energy sources. Today there are both large scale systems and small scale systems being deployed. In a typical system, many PV panels may be connected to a grid-tied converter or inverter which may take the power from the PV panels, perhaps at or near their maximum power points, and may then transforms it to AC power suitable to back-feeding the grid or other electrical power network.


SUMMARY OF THE INVENTION

This invention solves one fundamental disadvantage of string converters when compared to module level converters. In solar PV installations there are various architectures which address the need for allowing solar PV modules to operate at their Maximum Power Point (MPP). Conventional central inverters (1) operate with their input voltage controlled to find the MPP of an array. This array typically has several (to hundreds or thousands) of strings (2) of individual solar modules (3). But every module has an individual MPP and an array MPP solution leaves energy unharvested. At the other end of the spectrum MPP per module converters allow maximum harvesting from each module. There is a middle ground being considered today whereby each string is equipped with a DC/DC converter (4) operating at the MPP for a series string of PV modules (5).


For certain modules (e.g., thin film modules) the ratio of VOC cold to VMPP hot may be 2:1. Take for example a module having VOC cold=70 volts and hot=35 volts. In this installation the rail voltage on a cold day when the inverter is not connected to the grid will be 70×8=560 volts. This is safely below the US regulatory limit of 600 volts. A conventional string converter could simply be connected to this string. Obviously it would not meet the same regulatory limit with a conventional system if more modules were added to this string.


The normal operating voltage of this string though may be only 35×8=280 volts. This low operating voltage requires a large wire plus the inverter must operate at 280 volts while being able to withstand 560 volts. The circuit of an embodiment of this invention capitalizes on the situation where thin film solar PV modules typically operate with VMPP of, less than, and perhaps only about half of, VOC cold.


One advantage is that string MPP architectures gain much of the energy of individual module MPP architectures while costing a bit less. There are a few limitations of string MPP architectures:

    • The harvesting is less compared to MPP/module as current may vary within a string which cannot be corrected.
    • Diagnostic information is only available at the string level instead of module level.
    • During periods when the downstream inverter is not able to deliver power, the string voltage moves to the open circuit voltage of each module added together. This limits the number of modules which may be connected in a string for a given regulatory voltage level.
    • The string inverter must operate over a wide input voltage range.


A novel string DC/DC converter with MPP can be used to solve the third limitation while adding several new benefits. Solving this modules-per-string problem allows a solar PV system designer to place more modules per string (perhaps 2× more) resulting in fewer strings and fewer combiner boxes. The final result can be a lowering of Balance Of System (BOS) cost. As will be seen the architecture disclosed also allows a DC/DC converter to operate at its sweet spot improving efficiency. Another aspect of this invention is the suitability of this architecture for thin film photovoltaic modules in that it can address the low fill factor of thin film technologies with a low cost, highly efficient design.


One advantage of the inventive technology may be, in embodiments, the ability to place more modules on a string, thereby lowering the total number of strings that a solar array must have to generate a design power. Such reduction of the total number of strings translates into a cost savings, as strings often require expensive componentry (e.g., combiner boxes). In some embodiments, twice as many solar panels may be placed on a string, relative to conventional technologies.


Additional Exemplary Advantages: Because of the allowed regulatory upper limit voltage (recall that even during an open circuit, during sunlight hours, where no power is output from the DC-AC inverter, there is a voltage output), and because of the fact that typically, an open circuit voltage from a solar panel is greater than a loaded (e.g., operating circuit) voltage from that solar panel (because MPP controls effective during loaded circuit conditions reduce output voltages as compared with open circuit conditions, in order to achieve maximum power), the number of solar panels per string in certain prior art string architecture was limited by the open circuit condition (again, because it produces higher voltages and because compliance with applicable voltage regulations is mandatory), with the inventive technology, the number of modules per string can be increased. This may be due to the bucking of open circuit voltages (which are typically higher than operational voltages); in this way, relative to a conventional apparatus with a maximum number of panels in a string, during open circuit condition, more panels can be added without going over the limit. And during operation, the voltage sum of the loaded panels of a single string can be greater than it otherwise would be (which is beneficial because such means more power per string . . . and the associated cost savings). This may be due to the fact that in embodiments of the inventive technology, the converter, established intermediately within the string, is connected with two portions of the string in which it is established via conductors, and the loaded circuit (e.g., MPP) voltages of such conductors sum to be substantially equal to the output from the converter. Such “sweet spot” operation affords additional efficiency of operation benefits relative to conventional apparatus. As such, not only does the inventive technology, in particular embodiments, offer advantages relative to an increase in the number of modules per string, but it also offers benefits relative to the efficiency of operation (due to “sweet spot” operation). Open circuit voltages may be reduced, or bucked, by the converter, such that they sum to at or below the maximum regulatory voltage. Of course, additional advantages may be as disclosed elsewhere in this patent application.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of one type of traditional system grid-tied solar power system with an inverter.



FIG. 2 shows a conceptual embodiment of the invention.



FIG. 3 shows one conceptual embodiment of the invention.



FIG. 4 shows a schematic of one embodiment of the invention.



FIG. 5 shows a schematic of one embodiment of the invention, showing loaded circuit voltages (Vcc), or Vmpp (maximum power point), and open circuit voltages (Voc) of various conductors/components. The voltmeter hookups are shown to illustrate where the Voc of 0V, 600V and the Vcc measurements of 300V are taken. Here, a maximum allowable voltage is 300V.



FIG. 6 shows a schematic of one embodiment of the invention.



FIG. 7 shows a schematic of one embodiment of an inventive DC-DC power converter.



FIG. 8 shows a schematic of one embodiment of an inventive DC-DC power converter.



FIG. 9 shows a schematic of one embodiment of an inventive DC-DC power converter.



FIG. 10 shows a prior art apparatus.





DESCRIPTION OF PREFERRED EMBODIMENTS

As may be understood from the earlier discussions, the present invention includes a variety of aspects, which may be combined in different ways. The following descriptions are provided to list elements and describe some of the embodiments of the present invention. These elements are listed with initial embodiments, however it should be understood that they may be combined in any manner and in any number to create additional embodiments. The variously described examples and preferred embodiments should not be construed to limit the present invention to only the explicitly described systems, techniques, and applications. Further, this description should be understood to support and encompass descriptions and claims of all the various embodiments, systems, techniques, methods, devices, and applications with any number of the disclosed elements, with each element alone, and also with any and all various permutations and combinations of all elements in this or any subsequent application


Consider first the architecture and circuit diagram of one embodiment of the invention shown in FIG. 4. This circuit has two of the former strings 5 combined into a power converter 52 (large blue box) and having a series diode 72, all making up a new string 60. The power converter can have: an intra-string control element 8, a controlled intra-string connector 9, or in a preferred embodiment, two DC/DC converters 55 (the upper box and the lower box; subconverters) perhaps appearing to operate in a mirror image of each other, among other options. During periods of no load, when the downstream inverter 63 is not connected to the grid, each of the DC/DC converters may operate in buck mode and reduce the string input voltage perhaps by about one half. At this time, for example, each DC/DC converter 52 may have a VOC input as high as 560 volts but an output of 280 volts. One may see that even though twice as many modules are connected in this string, the output voltage may remain at 560 volts, even when the individual modules are operating at VOC. There is little efficiency penalty for the DC/DC inverter at this time as there is not power being processed.


During power generating periods (loaded circuit condition), when individual module outputs may drop to VMPP, (the series of eight modules making perhaps˜280 volts) the DC/DC converters 52 may now pass the input voltage relatively unaltered to the output which may remain at 560 volts (conservatively below an upper maximum allowed by regulation of 600V). Importantly at this time when the DC/DC converters 52 are operating at significant power, they are also at their sweet spot—neither boosting nor bucking significantly and therefore operate at their highest efficiency!


The DC/DC converters 52 may be simply buck mode converters or may be many differing types of converters. This disclosure does not intend to limit aspects of the actual power converter or other element that may be used. For example, as shown conceptually in FIG. 3, embodiments may include: a circuit which divides voltage 8, a coupled inductor circuit, a simple switch perhaps across one or more DC/DC converters, a switching capability 8, an intra-string control element 8, a controllable intra-string connection 9, other designs for DC/DC converters, various circuits which may or may not include MPP/string capabilities, or even any circuit which apportions voltages between strings. Various embodiments may result in different operating conditions and/or operational ranges. One preferred embodiment may be dual mode converters perhaps such as shown in FIG. 4. For a detailed circuit operation for an embodiment of a dual mode DC/DC converter one may refer to PCT publication number WO2009051853 and U.S. Pat. No. 7,605,498. These converters may or may not include the following functionalities:


P & O MPP tracking for the string—even more, this circuit could provide MPP tracking for each half string, extremely high efficiency, and programmable voltage and current limits


As a result the circuit and architecture of embodiments of the invention may provide the following benefits:

    • Substantially more modules may be included in a string—reducing BOS cost. In the example of FIG. 3, there are twice as many modules in a string.
    • This circuit may provide MPP tracking for each half string improving harvesting or conventional string converters.
    • This circuit can greatly simplify a downstream inverter by providing constant or a narrow range of operating voltage for the inverter.
    • This circuit may operate at the highest possible efficiency by typically operating with input voltage near output voltage for each DC/DC converter.
    • This circuit may make use of extremely high efficiency converters, perhaps as described in PCT publication number WO2009051853 and U.S. Pat. No. 7,605,498.
    • While individual modules operate at VMPP, the string output and the array may operate at much higher voltage limited only by the regulatory environment.
    • This circuit simultaneously operates at a high efficiency while delivering power at the highest allowable string voltage.
    • There is no point in the array which exceeds the regulatory voltage limit.


The inventive technology, in embodiments, may adjust loaded condition power per string or even per substring (string portion 50) to achieve maximum power point for that string or substring, while bucking open circuit voltages. Indeed, in particular embodiments, the purpose of the converter may be, at least in part, to extract, perhaps using switches (e.g., perhaps one for each string or substring), maximum power from the string or substrings with which it is connected, while bucking open circuit voltages to provide for a greater number of panels for each string (or substring). While the converters disclosed herein may be, at times, presented in the context of solar array power generation, they may have other applications.


In particular embodiments of the inventive technology, a DC-DC converter 52 may be established intermediately within a string of solar panels (which includes but is not limited to directly in the center of). While in certain embodiments a converter so established may be established such that the number of solar panel(s) serially connected between the converter and the lower rail is the same as the number of panels serially connected between the converter and the upper rail, such a symmetric architecture is not a necessary feature.


Particular embodiments may involve operation of the converter at a “sweet spot”, where the sum of the voltages of conductors from string portions to the converter is substantially equal to (e.g., within 20% of) the sum of the voltage of the conductor leading to the upper (or positive) rail (voltages measured relative to a lower or negative rail; see FIG. 5). Operational efficiencies inhere in “sweet spot” operation; indeed, as but one example, a converter that takes an input of 300 volts and outputs 600 volts is less efficient than a converter that, operating at its “sweet spot”, takes an input of 600 volts and outputs 600 volts (or substantially 600 volts, wherein 600 volts is the allowable limit, also expressed as the maximum regulatory voltage) (see, e.g., FIG. 5). In particular embodiments, the output from the converter may be at or close to (e.g., slightly below, or conservatively below), a regulatory limit.


Relatedly, the inventive technology, in particular embodiments, may be viewed as power architecture that allows a substantially constant voltage applied to a positive rail during open circuit and loaded circuit conditions (i.e., where the open circuit voltage of the positive rail relative to the negative rail is substantially equal to the loaded circuit voltage of the positive rail relative to the negative rail), and/or that affords the efficiency benefits of sweet spot converter operation while perhaps also outputting a near maximum regulatory voltage (see, e.g., FIG. 5). It should be understood that particular features of certain embodiments of the inventive technology may not be critical to, and may not be found in, all embodiments. For example, “sweet spot” operation might not be found in all types of converters used in the inventive technology.


In particular embodiments, the intermediately connected DC-DC converter may include sub-converters 55. Where two sub-converters are present, a first string portion may be electrically connected with one sub-converter and a second string portion may be electrically connected with the other sub-converter. The subconverters may be connected with an intra-string connector 9. The converter, regardless of whether it includes sub-converters, may be a buck/boost converter (e.g., a dual mode conductor as described in PCT publication number WO2009051853 and U.S. Pat. No. 7,605,498). Indeed the sub-converters themselves may be “dual mode” type as these references describe.


In particular embodiments where an intermediately established converter divides a solar panel string into two portions, the two string portions may operate as if in parallel during an open circuit condition, and operate in as if in series during a closed (operating, e.g., MPP) circuit condition. Further, in particular embodiments, converter circuitry (e.g., switching circuitry), may be able to smoothly transition from series connected substrings (string portions) to parallely connected substrings.


It should be understood that while the exemplary disclosure (e.g., in writing and/or figures) may appear to relate most particularly to unipolar designs, this application is intended to, and in fact does, also disclose bipolar designs (e.g., where the negative, lower or first rail has a voltage of zero).


At least one embodiment of the inventive technology may be generally described as a solar power system that includes: at least two solar panels 56 of a first solar power string 60; a first DC-DC converter 52 connected within the first solar power string; a first rail 61 electrically connected with one of the at least two solar panels and the first DC-DC converter; a second rail 62 electrically connected with a different one of the at least two solar panels and the first DC-DC converter; and a DC-AC power inverter 63 that acts on power conducted by the first and second rails. Often, a rail receives a plurality of inputs from parallely disposed components.


In particular embodiments the first DC-DC converter may operate at a sweet spot during loaded circuit condition of the system. More particularly, the first DC-DC converter connected within the first solar power string may be connected with a first portion 65 of the first solar power string through a first string portion conductor 66 and connected with a second portion 67 of the first solar power string through a second string portion conductor 68, where the first string portion conductor may have a first string portion loaded circuit voltage value (e.g., 600V, including slightly less than 600V) relative to the first rail, the second string portion conductor may have a second string portion loaded circuit voltage value (e.g., 300V) relative to the first rail, and a sum of the first string portion loaded circuit voltage value and the second string portion loaded circuit voltage value may be substantially equal to a loaded circuit voltage value 600V of the second rail relative to the first rail.


In particular embodiments, the system may further comprise a second solar power string 70 connected in parallel with the first solar power string; and a second DC-DC converter 71 connected may be established within the second solar power string. A diode 72 may be established between the second rail and the converter.


The second rail may have an open circuit voltage (e.g., 600V) relative to the first rail and a loaded circuit voltage relative to the first rail that are substantially equal. The second rail may have a loaded circuit voltage relative to the first rail that is conservatively close (such that expected variations in operating conditions will not cause an excessive voltage) to a regulatory maximum voltage limit (e.g., 560V).


In particular embodiments, the first DC-DC converter may include two sub-converters 55. At least one of the two sub-converters may be a dual mode converter; at least one of the two sub-converters may be a buck converter; and/or at least one of the two sub-converters may be a converter that is neither dual mode, buck, nor boost. Typically, a strictly boost converter would not be applicable, as there may be no need for boosting in converters of certain embodiments of the invention.


It is of note that in certain embodiments, the first rail is a lower rail, the first rail is a negative rail (where the rail can have either a negative or zero voltage value), the second rail is an upper rail, and/or the second rail is a positive rail. Further, the power system can be unipolar or bipolar.


At least one embodiment of the inventive technology may be generally described as a solar power system comprising a string of solar panels 60; a DC-DC converter 51 intermediately connected within the string as a part of the string; a positive rail and a negative rail 64 with which each the string and the DC-DC converter is connected; and at least one DC-AC power inverter 63 that acts on DC power conducted by the positive and negative rails.


In particular embodiments, the first DC-DC converter may operate at a sweet spot during loaded circuit condition of the system. More particularly, the first DC-DC converter connected within the string may be connected with a first portion of the string through a first string portion conductor and connected with a second portion of the string through a second string portion conductor, where the first string portion conductor has a first string portion loaded circuit voltage value relative to the negative rail, the second string portion conductor has a second string portion loaded circuit voltage value relative to the negative rail, and a sum of the first string portion loaded circuit voltage value and the second string portion loaded circuit voltage value is substantially equal to a loaded circuit voltage value of the positive rail relative to the negative rail.


The string may be a first string, and the system may further comprise at least one additional string 70 of solar panels connected in parallel with the first string. The system may further comprise at least one additional DC-DC converter 71, each of which may be connected within one of the at least one additional string of solar panels.


A diode may be established between the DC-DC converter and the positive rail 63. The positive rail may have an open circuit voltage relative to the negative rail 64 and a loaded circuit voltage relative to the negative rail that are substantially equal; further, or instead, the positive rail may have a loaded circuit voltage relative to the negative rail that is equal to or slightly less than a regulatory voltage limit (e.g., a federally imposed limit of 600 V).


In particular embodiments, the DC-DC converter may comprise two sub-converters (e.g., at least one of which is a dual mode converter (see WO2009/051853, and U.S. Pat. No. 7,605,498), at least one of which is a buck converter, and/or at least one of which is neither a dual mode nor buck converter. In particular embodiments, the system may be unipolar or bipolar. Further, the positive rail may be an upper rail and the negative rail may be a lower rail.


At least one embodiment of the inventive technology may be described as a solar power system comprising a string 60 of solar panels; a DC-DC converter 52 established intermediately within the first string of solar panels, the converter dividing the string into a first portion 56 and a second portion 67, the first portion connected with the DC-DC converter through a first string portion conductor 66 and the second portion connected with the DC-DC converter through a second string portion conductor 68; a first rail 61 connected with the first string portion and the DC-DC converter; a second rail 62 connected with the second string portion and the DC-DC converter, and a converter conductor 80 traveling from the converter towards the second rail 62. In certain embodiments: a loaded circuit voltage of the first string portion conductor relative to a voltage of the first rail has a first string portion loaded circuit voltage value; a loaded circuit voltage of the second string portion conductor relative to a voltage of the first rail has a second string portion loaded circuit voltage value; a loaded circuit voltage of the second rail relative to the first rail has a second rail loaded circuit voltage value; an open circuit voltage of the second rail relative to the first rail has a second rail open circuit voltage value; a loaded circuit voltage of the converter conductor relative to the first rail has a converter conductor loaded circuit voltage value; and a sum of the first string portion loaded circuit voltage value and the second string portion loaded circuit voltage value is substantially equal to the converter conductor loaded circuit voltage value. Such may be sweet spot operation, and operating to achieve such condition is sweet spot operating.


The second rail loaded circuit voltage value may be substantially equal to the second rail open circuit voltage value, and/or a sum of the first string portion loaded circuit voltage value and the second string portion loaded circuit voltage value is substantially equal to the second rail loaded circuit voltage value. This condition may be seen during sweet spot operation.


An open circuit voltage of the first string portion conductor relative to the first rail may be the to have a first string portion open circuit voltage value, an open circuit voltage of the second string portion conductor relative to the first rail may be the to have a second string portion open circuit voltage value, and an open circuit voltage of the converter conductor relative to the first rail may be the to have a converter conductor open circuit voltage value. In certain embodiments, a sum of the first string portion open circuit voltage value and the second string portion open circuit voltage value is substantially equal to the converter conductor open circuit voltage value. In certain embodiments, a sum of the first string portion open circuit voltage value and the second string portion open circuit voltage value is substantially equal to the converter conductor loaded circuit voltage value. In particular embodiments, a sum of the first string portion open circuit voltage value and the second string portion open circuit voltage value is less than or equal to a regulatory maximum voltage limit. Relationships between open circuit voltages as described herein may be the result of bucking of voltages by the converter (or sub-converters that may be established therein).


In particular embodiments, the first string portion loaded circuit voltage value is equal to the second string portion loaded circuit voltage. An open circuit voltage of the second rail relative to the first rail may be said to be an second rail open circuit voltage value, and the first string portion open circuit voltage value may be substantially equal to the second rail open circuit voltage value. The second string portion open circuit voltage value may be, in certain embodiments, substantially equal to zero. A sum of the first string portion loaded circuit voltage value and the second string portion loaded circuit voltage value is substantially equal to the second rail open circuit voltage value. The second rail open circuit voltage value may be substantially equal to the second rail loaded circuit voltage value.


In certain embodiments, the converter conductor is a converter output conductor, and the converter conductor loaded circuit voltage value is conservatively less than a regulatory maximum voltage limit. Further, the converter is a DC-DC may include two sub-converters, at least one of which is a dual mode converter; at least one of which may include a buck converter; and at least one of which is neither dual mode, buck, nor boost. Additionally, the first rail is a lower rail, the first rail is a negative rail, the second rail is an upper rail, and/or the second rail is a positive rail. As with other designs, the power system is unipolar or bipolar.


At least one embodiment of the inventive technology may be described as a solar power control method comprising the steps of generating power from at least two solar panel substrings of a solar power string that is connected to negative and positive rails; maximum power point controlling, with a maximum power point controller, a voltage output by each the at least two solar panel substrings; and converting a power at maximum power point to AC. The step of maximum power point controlling may comprise the step of controlling with a maximum power point controller having at least two switches. Such switches may provide shunting functionality. The step of maximum power point controlling, with a maximum power point controller, a voltage output by each the at least two solar panel substrings may comprise the step of maximum power point controlling, with DC-DC converter.


At least one embodiment of the inventive technology may be described as a solar power control method comprising the steps of generating power from two solar panel substrings of a solar panel string that is connected to negative and positive rails; and mirror image controlling the power from two solar panel substrings of a converter established within the solar power string. Mirror image controlling may involve symmetric identical control where inputs are equal. The step of mirror image controlling the power from the two solar panel substrings may comprise the step of maximum power point controlling. It may involve the step of controlling with two sub-converters that each comprise a switch; such sub-converters may be substantially identically, but perhaps oriented in mirror image fashion, perhaps with any diodes changed from a strict mirror image so as to enable proper functionality as intended.


At least one embodiment of the inventive technology is a solar power control method comprising the steps of: bucking open circuit voltage from each of a plurality of solar panel substrings of a solar panel string of a solar power system, with a converter during open circuit condition; and sweet spot processing loaded circuit voltage from each of the plurality of solar panel substrings during loaded circuit condition. The method may further comprise the step of pulling maximum power point power from the each of the plurality of solar panel substrings during loaded circuit condition. A sum of voltages associated with the maximum power point power of each of the plurality of solar panel substrings may be is less than or equal to a maximum regulatory voltage. The step of bucking open circuit voltage from each of a plurality of solar panel substrings may comprise the step of bucking so that a sum of bucked voltages is less than or equal to a maximum regulatory voltage; the step of bucking open circuit voltage from each of a plurality of solar panel substrings comprises the step of bucking open circuit voltage to approximately one-half voltage input to the converter by each of the substrings.


At least one embodiment of the inventive technology may be described as a solar power control system comprising: at least two solar panel substrings of a solar panel string of a solar power system; a controller established so as to maintain an open circuit voltage from the controller during an open circuit condition of the solar power system that is substantially equal to a loaded circuit voltage from the controller during a loaded circuit condition of the solar power system. In certain embodiments, an average of the open circuit voltage and the loaded circuit voltage is substantially equal to a maximum regulatory voltage.


At least one additional embodiment of the inventive technology may be described as a solar power control method comprising the steps of: loaded circuit, high efficiency, high power delivering of power generated by a solar panel string; and converting the delivered power to AC. The step of loaded circuit, high efficiency, high power delivering of power generated by a solar panel string comprises the step of loaded circuit, high efficiency, high power delivering of power generated by at least two solar panel substrings of the solar panel string. The step of loaded circuit, high efficiency, high power delivering of power generated by a solar panel string may comprise the step of neither bucking nor boosting (or simply not comprise the step of bucking or boosting, or comprise the step of refraining from bucking or boosting). The step of loaded circuit, high efficiency, high power delivering of power comprises the step of delivering maximum power point power.


It is of note that during “sweet spot” operation, where a converter has sub-converters, the inputs to and the outputs from each of the sub-converters is also substantially the same.


At least one embodiment of the inventive technology may be described as a solar power string control method, comprising the steps of generating power with solar panels of at least two substrings of a solar power string; managing circuit functionality with a DC-DC converter established intermediately of said string, said power controller defining said substrings (e.g., by dividing a larger string connected between rails into two substrings). The step of managing circuit functionality may comprises the steps of bucking open circuit voltages generated by said substrings, and, perhaps also the step of sweet spot operating during loaded circuit condition. Such converter may also achieve MPP control (e.g., with switches of said converter).


While novel converters disclosed herein may be, at times, presented in the context of solar array power generation, they may have other applications. FIGS. 7, 8 and 9 show examples of novel converters that may find application as DC-DC converters for MPP control of panel strings or substrings. FIG. 7 shows a converter that balances voltage (for example, when voltages of the substrings are different) but not current (e.g., so a current of one of the substrings will need to be compromised so the currents of the substrings are equal), and does not operate at the “sweet spot”. It controls MPP for the entire string only (not for each substring). FIG. 8 shows a converter that balances voltage and current, that does not operate at the “sweet spot”, and that does manage MPP for both substrings (for voltage and current differences). FIG. 9 shows a converter that fully balances voltage and current, that may operate at the “sweet spot”, and that controls MPP for both substrings (for voltage and current). Further, it requires more complex bipolar switches.


As shown in FIG. 7, a DC-DC power converter 101 may comprise: a switch 102 along a first conductor 103 that is established between two nodes, the two nodes including a first 104 node defined by an intersection of the first conductor, a second conductor 105, a third conductor 106 and a fourth conductor 107, and a second node 108 defined by an intersection of the first conductor with a fifth conductor 109, a sixth conductor 110 and a seventh conductor 111; a first diode 112 established along the second conductor between a third node 113 and the first node, the third node defined by an intersection of the second conductor, the fifth conductor, and a lower voltage conductor 114 that electrically connects the converter, the first diode allowing flow towards the first node; a second diode 115 established along the third conductor between the first node and a fourth node 116, the fourth node defined by an intersection of the third conductor, the sixth conductor, and a higher voltage conductor 117 that electrically connects the converter, the second diode allowing flow towards the fourth node; a third diode 118 established along the fifth conductor between the third node and the second node, the third diode allowing flow towards the second node; a fourth diode 119 established along the sixth conductor between the second node and the fourth node, the fourth diode allowing flow towards the fourth node; a first inductor 120 established along the fourth conductor; and a second inductor 121 established along the seventh conductor.


In particular embodiments, the converter may further comprise a first power generator 122 electrically connected with the first inductor. The first power generator may be a first solar panel substring; current from the first solar panel substring may flow away from the first node. The first power generator may be electrically connected with the high voltage conductor. The converter may further comprise a second power generator 123 electrically connected with the second inductor; the second power generator may be a second solar panel substring. Current from the second solar panel substring may flow towards the second node. Further, the second power generator may be electrically connected with the low voltage conductor. The converter may further comprise at least one additional parallely connected converter 124 and additional power generators 125 associated with (e.g., connected with) each of the at least one additional parallely connected converter. In certain embodiments, the higher voltage conductor connects to a positive rail 126, and the first power generator is connected with the positive rail. In certain embodiments, the lower voltage conductor connects to a negative rail 127 and the second power generator is connected with the negative rail. Further, the DC-DC converter may be established within a solar panel string, the DC-DC converter may be part of a unipolar power generation system; and/or the DC-DC converter may be part of a bipolar power generation system.


As shown in FIG. 8, at least one embodiment of the inventive technology may be a DC-DC converter 130 that comprises: an inductor 131 established along a first conductor 132, between a first 133 and a second node 134, the first node defined by an intersection of the first conductor, a second conductor 135, and a third conductor 136, and the second node defined by an intersection of the first conductor, and a fourth 137 and fifth conductor 138; a first switch 139 established along the second conductor between the first node and a third node 140, the third node defined by an intersection of the second conductor, a sixth conductor 141, and a first power generator connector 142; a diode 143 established along the third conductor between the first node and a fifth node 144 defined by an intersection of the third conductor, the sixth conductor, and a higher voltage conductor 145, the diode allowing flow towards the fifth node; a capacitor 146 established along the sixth conductor between the third node and the fifth node; a second switch 147 established along the fourth conductor between the second node and a fourth node 148, the fourth node defined by an intersection of the fourth conductor, a seventh conductor 149, and a second power generator connector 150; a diode 151 established along the fifth conductor between a sixth node 152 and the second node, the sixth node defined by an intersection of the fifth conductor, the seventh conductor, and a lower voltage conductor 153, the diode allowing flow towards the second node; and a capacitor 154 established along the seventh conductor between the fourth node and the sixth node. In certain embodiments, the converter may include a first power generator 155 connected to the first power generator connector; current may flow from the first power generator away from the DC-DC converter. The converter (an apparatus) may further comprise a second power generator 156 connected to the second power generator connector; current may from the second power generator towards the DC-DC converter. The converter may further comprise at least one additional parallely connected converter 157 and at least two additional power generators 158 connected with each of the at least one additional parallely connected converter. The converter may be part of a unipolar power generation system or a bipolar power generation system. In certain embodiments, the higher voltage conductor connects to a positive rail 159, as may be the first power generator. The lower voltage conductor may connect to a negative rail 160, as may be second power generator.


As shown in FIG. 9, at least one additional embodiment of the inventive technology may be a DC-DC converter 170 comprising: an inductor 171 established along a first conductor 172 between a first node 173 and a second node 174, the first node defined by an intersection of the first conductor, a second conductor 175, a third conductor 176, and a fourth conductor 177, the second node defined by an intersection of the first conductor, a fifth conductor 178, a sixth conductor 179, and a seventh conductor 180; a first diode 181 established along the third conductor between the first node and a third node, the third node 182 defined by an intersection of the third conductor, the fifth conductor, an eighth conductor 183 and a higher voltage conductor 184, the first diode allowing flow towards the third node; a first switch 185 established along the fifth conductor between the second node and the third node; a second switch 186 established along the fourth conductor between the first node and a fourth node 187, the fourth node defined by an intersection of the fourth conductor, the eighth conductor, and a first power generator connector 188; a first capacitor 189 established along the eighth conductor between the third node and the fourth node; a second diode established along the sixth conductor between the second node and a fifth node 190, the fifth node defined by an intersection of the sixth conductor, a ninth conductor 191, the second conductor, and a lower voltage conductor 192, the second diode allowing flow towards the second node; a third switch 193 established along the second conductor between the first node and the fifth node; a fourth switch 194 established along the seventh conductor between the second node and a sixth node 195, the sixth node defined by an intersection of the seventh conductor, the ninth conductor, and a second power generator connector 196; and a second capacitor 197 established along the ninth conductor between the fifth node and the sixth node. In particular embodiments, the DC-DC converter may be part of a unipolar power generation system or a bipolar power generation system. The first power generator 198 may be connected to the first power generator connector and the higher voltage conductor; current may flow from the first power generator away from the converter. The apparatus may further comprise a second power generator 199 connected to the second power generator connector and the lower voltage conductor. Current may flow from the second power generator towards the converter. The apparatus may further comprise at least one additional parallely connected converter 200 and additional power generators 201.


In the various descriptions provided herein, the following may apply: conductor can be one or more than one wire (it may be whatever conducts). Substantially equal may mean within less than or equal to 20%, 17.5%, 15%, 12.5%, 10%, 7.5%, 5%, or 2.5%. Two components or conductors may be electrically connected even if they are intervening (typically non-converting) devices. Diodes may be option; indeed some capacitors, particularly in the figures of the various inventive converters, may not even be shown. The term negative rail applies where there is a rail type conductor that is either at negative (e.g., the negative of the positive voltage of the positive rail) or zero volts (negative voltage may be found, e.g., in the case of a bipolar design). It is of note that the inventive converters need not necessarily have power generation connectors as claimed or described, or power generators attached thereto as claimed or described.


As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. It involves both control techniques as well as devices to accomplish the appropriate controlling. In this application, the control techniques are disclosed as part of the results shown to be achieved by the various devices described and as steps which are inherent to utilization. They are simply the natural result of utilizing the devices as intended and described. In addition, while some devices are disclosed, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways. Importantly, as to all of the foregoing, all of these facets should be understood to be encompassed by this disclosure.


The discussion included in this application is intended to serve as a basic description. The reader should be aware that the specific discussion may not explicitly describe all embodiments possible; many alternatives are implicit. It also may not fully explain the generic nature of the invention and may not explicitly show how each feature or element can actually be representative of a broader function or of a great variety of alternative or equivalent elements. Again, these are implicitly included in this disclosure. Where the invention is described in device-oriented terminology, each element of the device implicitly performs a function. Apparatus claims may not only be included for the device described, but also method or process claims may be included to address the functions the invention and each element performs. Neither the description nor the terminology is intended to limit the scope of the claims that will be included in any subsequent patent application.


It should also be understood that a variety of changes may be made without departing from the essence of the invention. Such changes are also implicitly included in the description. They still fall within the scope of this invention. A broad disclosure encompassing both the explicit embodiment(s) shown, the great variety of implicit alternative embodiments, and the broad methods or processes and the like are encompassed by this disclosure and may be relied upon when drafting the claims for any subsequent patent application. It should be understood that such language changes and broader or more detailed claiming may be accomplished at a later date (such as by any required deadline) or in the event the applicant subsequently seeks a patent filing based on this filing. With this understanding, the reader should be aware that this disclosure is to be understood to support any subsequently filed patent application that may seek examination of as broad a base of claims as deemed within the applicant's right and may be designed to yield a patent covering numerous aspects of the invention both independently and as an overall system.


Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. Additionally, when used or implied, an element is to be understood as encompassing individual as well as plural structures that may or may not be physically connected. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these. Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms—even if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates. Regarding this last aspect, as but one example, the disclosure of a “converter” should be understood to encompass disclosure of the act of “converting”—whether explicitly discussed or not—and, conversely, were there effectively disclosure of the act of “converting”, such a disclosure should be understood to encompass disclosure of a “converter” and even a “means for converting”. Such changes and alternative terms are to be understood to be explicitly included in the description.


Any acts of law, statutes, regulations, or rules mentioned in this application for patent; or patents, publications, or other references mentioned in this application for patent are hereby incorporated by reference. Any priority case(s) claimed by this application is hereby appended and hereby incorporated by reference. In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with a broadly supporting interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as contained in the Random House Webster's Unabridged Dictionary, second edition are hereby incorporated by reference. Finally, all references listed below or other information statement filed with the application are hereby appended and hereby incorporated by reference, however, as to each of the above, to the extent that such information or statements incorporated by reference might be considered inconsistent with the patenting of this/these invention(s) such statements are expressly not to be considered as made by the applicant(s).
















US Patent
US Patent
US Patent
US Patent
US Patent


Number
Number
Number
Number
Number







4,127,797
5,179,508
6,369,462
7,333,916
5,270,636


4,168,124
5,179,508
6,433,522
7,471,073
6,593,521 B2


4,218,139
5,401,561
6,433,992
6,545,211 B1
6,219,623


4,222,665
5,493,204
6,441,896
7,019,988 B2
7,605,498


4,249,958
5,503,260
6,448,489
7,365,661 B2
7,719,140


4,341,607
5,646,502
6,493,246
4,274,044
7,807,919


4,375,662
5,648,731
6,515,215
5,493,155 A
7,619,200


4,390,940
5,669,987
6,624,350
6,686,727 B2


4,404,472
5,689,242
6,670,721
6,545,868 B1


4,445,030
5,741,370
6,686,533
4,395,675


4,445,049
5,747,967
6,750,391
5,402,060


4,513,167
5,896,281
6,791,024
7,248,946 B2


4,528,503
5,923,100
6,804,127
4,649,334


4,580,090
5,932,994
6,889,122
5,782,994


4,581,716
6,046,401
6,914,418
6,162,986


4,616,983
6,081,104
6,920,055
6,262,558 B1


4,619,863
6,124,769
6,952,355
7,479,774 B2


4,725,740
6,180,868
6,958,922
7,514,900 B2


4,749,982
6,181,590
6,984,965
7,602,080 B1


4,794,909
6,218,820
6,984,970
D602432 S


4,873,480
6,278,052
7,046,531
3,900,943


4,896,034
6,281,485
7,091,707
5,659,465


4,899,269
6,282,104
7,158,395
5,898,585


4,922,396
6,314,007
7,193,872
6,218,605


5,027,051
6,331,670
7,227,278
7,068,017


5,028,861
6,351,400
7,274,975
7,092,265






















US Publiation
US Publiation
US Publiation
US Publiation


Number
Number
Number
Number







20010007522 A1
20070119718 A1
20090114263 A1
20090097655 A1


20030075211 A1
20070133241 A1
20090218887 A1
20090146505 A1


20030075211 A1
20070159866 A1
2009206666 A1
20090133736 A1


20040095020 A1
20070171680 A1
20090039852 A1
20090120485 A1


20040135560 A1
20070236187 A1
20090237042 A1
20090114263 A1


20040164557 A1
20080036440 A1
20090237043 A1
20090140715 A1


20040207366 A1
20080062724 A1
20090273241 A1
20090141522 A1


20040211456 A1
20080101101 A1
20090146671 A1
20090145480 A1


20050002214 A1
20080111517 A1
20090284240 A1
20090146667 A1


20050068012 A1
20080123375 A1
20090284232 A1
20090147554 A1


20050109386 A1
20080136367 A1
20090284078 A1
20010007522 A1


20050121067 A1
20080144294 A1
20090283129 A1
20050254191 A1


20050162018 A1
20080147335 A1
20090283128 A1
20050169018 A1


20100253150 A1
20080150366 A1
20090284998 A1
20090150005 A1


20060017327 A1
20080247201 A1
20100139734 A1
20090160258 A1


20060103360 A1
20080257397 A1
20100139743 A1
20050105224 A1


20060162772 A1
20080164766 A1
20100139732 A1
20040159102 A1


20060171182 A1
20080143188 A1
20100127571 A1
20100246230 A1


20060174939 A1
20010032664 A1
20100127570 A1
20100001587 A1


20070024257 A1
20030062078 A1
20100118985 A1
20100229915 A1


20070035975 A1
20080186004 A1
20100117858 A1
20100132758 A1


20070044837 A1
20080097655 A1
20100027297 A1


20070069520 A1
20090078300 A1
20100026097 A1


20070111103 A1
20080238195 A1
20090234692 A1
























Patent/
Kind

Patent/
Kind



Publication No.
Code
Country
PublicationNo.
Code
Country







677749
A2
EP
9097918
A2
JP


677749
A3
EP
56042365
A2
JP


780750
B1
EP
60027964
A2
JP


824273
A2
EP
60148172
A2
JP


964415
A1
EP
62154121
A2
JP


964457
A2
EP
2000020150
A2
JP


964457
A3
EP
2002231578
A2
JP


978884
A3
EP
2002231578
A
JP


1120895
A3
EP
2007058843
A
JP


612859

FR
2007104872
A
JP


310362

GB
2007225625
A
JP


612859

GB
2001-1086765
A
JP


1231961

GB
102005-
A
KR





0071689


2415841
A
GB
102006-
A
KR





0060825


2419968
A
GB
102008-
A
KR





0092747


2421847
A
GB
200708429
A2
WO


2434490
A
GB
2003036688
A2
WO


2434490
A
GB
2004100344
A2
WO


5003678
A2
JP
2004100348
A1
WO


6035555
A2
JP
2005027300
A1
WO


6141261
A2
JP
2005036725
A1
WO


7026849
U2
JP
2006005125
A1
WO


7222436
A2
JP
2006013600
A2
WO


8033347
A2
JP
2006013600
A3
WO


8066050
A2
JP
2006048688
A1
WO


8181343
A2
JP
2006048689
A2
WO


8204220
A2
JP
2009114341
A2
WO


2006048689
A3
WO
2009114341
A3
WO


2006071436
A2
WO
2009075985
A2
WO


2006078685
A2
WO
2009075985
A3
WO


2006078685
A2
WO
2009064683
A2
WO


2006090675

WO
2009064683
A3
WO


2006117551
A2
WO
2009059028
A2
WO


2006137948
A2
WO
2009059028
A3
WO


2007007360
A2
WO
2008132553
A2
WO


2007080429
A2
WO
2009073867
A1
WO


2007142693
A2
WO
2008125915
A2
WO


2008069926
A3
WO
2008125915
A3
WO


20020073785
A1
WO
2008132551
A2
WO


90/03680

WO
2008132551
A3
WO


2009051853
A1
WO
2008142480
A2
WO


2009055474
A1
WO
2008142480
A3
WO


2009051854
A1
WO
2008142480
A4
WO


2009051870
A1
WO
2009007782
A2
WO


9148613
A
JP
2009007782
A3
WO


2009140539
A2
WO
2009007782
A4
WO


2009140539
A3
WO
2009072075
A2
WO


2009140551
A2
WO
2009072075
A3
WO


2009140551
A3
WO
2009072075
A9
WO


2009140543
A2
WO
2009072076
A2
WO


2009140543
A3
WO
2009072076
A3
WO


2009140536
A2
WO
2009072077
A1
WO


2009140536
A3
WO
2009073868
A1
WO


2010062662
A2
WO
2009118682
A2
WO


2010062662
A3
WO
2009118682
A3
WO


2010262410
A1
WO
2009118682
A4
WO


2010014116
A1
WO
2009118683
A2
WO


2009118683
A3
WO


2009118683
A4
WO


2009136358
A1
WO


2009136358
A4
WO


27058845
A
JP


5050197

GB


9003680
A1
WO


1020070036528
A
KR


2010065043
A1
WO


2010002960
A1
WO


2004107543
A2
WO



















III. NON-PATENT LITERATURE DOCUMENTS















Solar Sentry Corp., Protecting Solar Investment “Solar Sentry's Competitive Advantage”, 4 pages


estimated as October 2008


ANON SOURCE; International Symposium on Signals, Circuits and Systems, Jul. 12-13, 2007; Iasi,


Romania; Publisher: Institute of Electrical and Electroncis Engineers Computer Society; Abstract.


ASSOCIATION FOR APPLIED SOLAR ENERGY, Alt. Journal; Uniform Title: “Solar energy


(Photnix, AZ); Key Title: Solar energy; Preceding Title: Journal of solar energy, science and


engineering; Standard No: ISSN: 0038-092XCODEN: SRENA4. No abstract available.


BASCOPE, G. V. T.; Barbi, I; “Generation of a Family of Non-isolated DC-DC PWM Converters


Using New Three-state Switching Cells;” 2000 IEEE 31st Annual Power Electronics Specialists


Conference in Galway, Ireland; Vol. 2, pp 858-863; Abstract.


Bower, et al. “Innovative PV Micro-Inverter Topology Eliminates Electrolytic Capacitors for Longer


Lifetime,” 1-4244-0016-3-06 IEEE p. 2038


Cambridge Consultants, Interface Issue 43, Autumn 2007


CASE, M. J.; “Minimum Component Photovoltaic Array Maximum Power Point Tracker,” Vector


(Electrical Engineering), June 1999; p 4-8; Abstract.


Tse, K. K. et al. “A Novel Maximum Power Point Tracking Technique for PV Panels;” Dept. of


Electronic Engineering, City Univerisity of Hong Kong; Source: PESC Record - IEEE Annual Power


Electronics Specialists Conference, v 4, 2001, p 1970-1975, Jun. 17-21, 2001; Abstract.


CUADRAS, A; Ben Amor, N; Kanoun, O; “Smart Interfaces for Low Power Energy Harvesting


Systems,” 2008 IEEE Instrumentation and Measurement Technology Conference May 12-15, 2008 in


Victoria, BC Canada; pp 78-82 and 12-15. Abstract.


DAHER, Sergio; “Analysis, Design and Implementation of a High Efficiency Multilevel Converter for


Renewable Energy Systems,” Kassel University Press, ISBN: 978-3-89958-236-9, 2006, 147 pages.


Abstract.


Dallas Semiconductor; Battery I.D. chip from Dallas Semiconductor monitors and reports battery pack


temperature, Bnet World Network, Jul. 10, 1995


De Doncker, R. W.; “Power Converter for PV-Systems,” Institute for Power Electrical Drives, RWTH


Aachen Univ. Feb. 06, 2006


de Haan, S. W. H., et al; Test results of a 130 W AC module, a modular solar AC power station,


Photovoltaic Energy Conversion, 1994; Conference Record of the 24th IEEE Photovoltaic Specialists


Conference Dec. 5-9, 1994; 1994 IEEE First World Conference, Volume 1, Pages 925-928


DEHBONEI, Hooman; Corp author(s): Curtin University of Technology, School of Electrical and


Computer Engineering; 2003; Description: xxi, 284 leaves; ill.; 31 cm. Dissertation: Thesis. Abstract


Jung, D; Soft Switching Boost Converter for Photovoltaic Power Generation System, 2008 13th


International Power Electronics and Motion Control Conference (EPE-PEMC 2008)


DUAN, Rouo-Yong; Chang, Chao-Tsung; “A Novel High-efficiency Inverter for StAMPT-alone and


Grid-connected Systems,” 2008 3rd IEEE Conference on Industrial Electronics and Applications in


Singapore, Jun. 3-5, 2008; Article Number 4582577. Abstract.


DUNCAN, Joseph, A Global Maximum Power Point Tracking DC-DC Converter, Massachussetts


Institute of Technology, Dept. of Electrical Engineering and Computer Science Dissertation;


Jan. 20, 2005


EDELMOSER, K. H. et al.; “High Efficiency DC-to-AC Power Inverter with Special DC Interface;


Professional Paper, ISSN 0005-1144, Automatika 46 (2005) 3-4, 143-148


ENRIQUE, J. M.; Duran, E; Sidrach-de-Cadona, M; Andujar, J M; “Theoretical Assessment of the


Maximum Power Point Tracking Efficiency of Photovoltaic Facilities with Different Converter


Topologies;” Source: Solar Energy 81, No. 1 (2007); 31 (8 pages).


ENSLIN, J. H. R.; “Integrated Photovoltaic Maximum Power Point Tracking Converter;” Industrial


Electronics, IEEE Transactions on Volume 44, Issue 6, December 1997, Pages 769-773


ERTL, H; Kolar, J. W.; Zach, F. C.; “A Novel Multicell DC-AC Converter for Applications in


Renewable Energy Systems;” IEEE Transactions on Industrial Electronics, October 2002; vol. 49,


Issue 5, pp 1048-1057; Abstract.


ESMAILI, Gholamreza; “Application of Advanced Power Electronics in Renewable Energy Sources


and Hygrid Generating Systems, Ohio State University, Graduate Program in Electrical and Computer


Engineering, 2006, Dissertation.


European patent application No. 1999111425 filed Nov. 6, 1999; and various office actions


Gomez, M; “Consulting in the solar power age,” IEEE-CNSV: Consultants' Network of Silicon Valley,


Nov. 13, 2007


Guo, G. Z.; “Design of a 400 W, 1 Omega, Buck-boost Inverter for PV Applications,” 32nd Annual


Canadian Solar Energy Conference, Jun. 10, 2007


Hashimoto et al; “A Novel High Performance Utility Interactive Photovoltaic Inverter System,”


Department of Electrical Engineering, Tokyo Metropolitan University, 1-1 Miinami-Osawa, Hachioji,


Tokyo, 192-0397, Japan; page 2255, Aug. 06, 2002


Ho, Billy M. T.; “An Integrated Inverter with Maximum Power Tracking for Grid-Connected PV


Systems;” Department of Electronic Engineering, City University of Hong Kong; Conference


Proceedings, 19th Annual IEEE Applied Power Electronics Conference and Exposition, Feb. 22-26,


2004; p 1559-1565.


Ho, Billy M. T.; “An Integrated Inverter with Maximum Power Tracking for Grid-Connected PV


Systems;” Department of Electronic Engineering, City University of Hong Kong; IEEE Transactions


on Power Electronics, v 20, n 4, July 2005; p 953-962. Abstract.


http://www.solarsentry.com; Protecting Your Solar Investment, 2005, Solar Sentry Corp.


Hua, C et al; “Control of DC-DC Converters for Solar energy System with Maximum Power


Tracking,” Department of Electrical Engineering; National Yumin University of Science &


Technology, Taiwan; Volume 2, Nov. 9-14, 1997; Pages 827-832


International Application filed Apr. 15, 2008, Ser. No. PCT/US08/60345


International Application filed Jul. 18, 2008, Ser. No. PCT/US08/70506


International Application filed Mar. 14, 2008, Ser. No. PCT/US08/57105


International Application filed Oct. 10, 2008, Ser. No. PCT/US08/79605


International Application No. PCT/US08/57105, International Search Report dated Jun. 25, 2008


International Application No. PCT/US08/57105, Written Opinion dated Jun. 25, 2008


International Application No. PCT/US08/60345, International Search Report dated Aug. 18, 2008


International Application No. PCT/US08/60345, Written Opinion dated Aug. 18, 2008


International Application No. PCT/US08/70506, International Search Report dated Sep. 26, 2008


International Application No. PCT/US08/70506, Written Opinion dated Sep. 26, 2008


JOO, Hyuk Lee; “Soft Switching Multi-Phase Boost Converter for Photovoltaic System,”


http://www.conftool.com/epe-


pemc2008/index.php?page=browseSessions&form_session=26&presentations=show&metadata=show,


abstract.


KAIWEI, Yao, Mao, Ye; Ming, Xu; Lee, F. C.; “Tapped-inductor Buck Converter for High-step-down


DC-DC Conversion,” IEEE Transactions on Power Electronics, Vol. 20, Issue 4, July 2005; pp 775-


780; Abstract.


Kang, F et al; “Photovoltaic Power Interface Circuit Incorporated with a Buck-boost Converter and a


Full-bridge Inverter;' doi: 10.1016-j.apenergy.2004.10.009


Kern, G; “SunSine (TM)300: Manufacture of an AC Photovoltaic Module,” Final Report, Phases I &


II, Jul. 25, 1995-Jun. 30, 1998; National Renewable Energy Laboratory, March 1999; NREL-SR-520-


26085


Kretschmar, K et al; “An AC Converter with a Small DC Link Capacitor for a 15 kW Permanent


Magnet Synchronous Integral Motor, Power Electronics and Variable Speed Drive,” 1998; 7th


International Conference; Conf. Publ. No. 456; Sep. 21-23, 1998; Pages 622-625


Kroposki, H. Thomas and Witt, B & C; “Progress in Photovoltaic Components and Systems,” National


Renewable Energy Laboratory, May 1, 2000; NREL-CP-520-27460


KUO, J. -L.; “Duty-based Control of Maximum Power Point Regulation for Power Converter in Solar


Fan System with Battery Storage,” Proceedings of the Third IASTED Asian Conference, Apr. 2, 2007,


Phuket, Thialand


Lim, Y. H. et al; “Simple Maximum Power Point Tracker for Photovoltaic Arrays,” Electronics Letters


May 25, 2000; Vol. 36, No. 11


Linear Technology Specification Sheet, LTM4607, estimated as Nov. 14, 2007


Matsuo, H et al; “Novel Solar Cell Power Supply System using the Multiple-input DC-DC Converter;'


Telecommunications Energy Conference, 1998; INTELEC, 20th International, Pages 797-8022


MUTOH, Nobuyoshi, “A Controlling Method for Charging Photovoltaic Generation Power Obtained


by a MPPT Control Method to Series Connected Ultra-electric Double Layer Capacitors;” Intelligent


Systems Department, Faculty of Engineering, Graduate School of Tokyo; 39th IAS Annual Meeting


(IEEE Industry Applications Society); v 4, 2004, p 2264-2271. Abstract.


MUTOH, Nobuyoshi; “A Photovoltaic Generation System Acquiring Efficiently the Electrical Energy


Generated with Solar Rays,; Graduate School of Tokyo, Metropolitan Institute of Technology; Source:


Series on Energy and Power Systems, Proceedings of the Fourth IASTED International Conference on


Power and Energy Systems, Jun. 28-30, 2004; p 97-103. Abstract.


NISHIDA, Yasuyuki, “A Novel Type of Utility-interactive Inverter for Photovoltaic System,”


Conference Proceedings, IPEMC 2004; 4th International Power and Electronics Conference,


Aug. 14-16, 2004; Xian Jiaotong University Press, Xian, China; p 1785-1790. Abstract.


Oldenkamp, H. et al; “AC Modules: Past, Present and Future, Workshop Installing the Solar Solution;


pp 22-23; January 1998; Hatfield, UK


POWER ARTICLE, Aerospace Systems Lab, Washington University, St. Louis, MO; estimated at


September 2007


U.S. patent application No. 11333005 filed Jan. 17, 2006, First Named Inventor Gordon E. Presher,


Jr., entire current file wrapper available on USPTO PAIRS


QUAN, Li; Wolfs, P; “An Analysis of the ZVS Two-inductor Boost Converter Under Variable


Frequency Operation,” IEEE Transactions on Power Electronics, Central Queensland University,


Rockhamton, Qld, AU; Vol. 22, No. 1, January 2007; pp 120-131. Abstract.


RAJAN, Anita; “Maximum Power Point Tracker Optimized for Solar Powered Cars;” Society of


Automotive Engineers, Transactions, v 99, n Sect 6, 1990, p 1408-1420; Abstract.


REIMANN, T, Szeponik, S; Berger, G; Petzoldt, J; “A Novel Control Principle of Bi-directional DC-


DC Power Conversion,” 28th Annual IEEE Power Electroncis Specialists Conference, St. Louis, MO


Jun. 22-27, 1997; vol. 2 pp 978-984. Abstract.


Rodriguez, C; “Analytic Solution to the Photovoltaic Maximum Power Point Problem;” IEEE


Transactions of Power Electronics, Vol. 54, No. 9, September 2007


Roman, E et al; “Intelligent PV Module for Grid-Connected PV Systems;” IEEE Transactions of


Power Electronics, Vol. 53, No. 4, August 2006


Russell, M. C. et al; “The Massachusetts Electric Solar Project: A Pilot Project to Commercialize


Residential PC Systems,” Photovoltaic Specialists Conference 2000; Conference Record of the 28th


IEEE; Pages 1583-1586


SatCon Power Systems, PowerGate Photovoltaic 50 kW Power Converter System; Spec Sheet; June


2004


Schekulin, Dirk et al; “Module-integratable Inverters in the Power-Range of 100-400 Watts,” 13th


European Photovoltaic Solar Energy Conference, Oct. 23-27, 1995; Nice, France; p 1893-1896


Shimizu, et al; “Generation Control Circuit for Photovoltaic Modules,” IEEE Transactions on Power


Electronics; Vol. 16, No. 3, May 2001


SIRI, K; “Study of System Instability in Current-mode Converter Power Systems Operating in Solar


Array Voltage Regulation Mode,” Dept. of Electrical and Electronic Systems, Aerospace Corp., El


Segundo, CA; Feb. 6-10, 2000 in New Orleans, LA, 15th Annual IEEE Applied Power Electronics


Conference and Exposition, pp 228-234.


solar-electric.com; Northern Arizona Wind & Sun, “All About MPPT Solar Charge Controllers;


Nov. 5, 2007


Takahashi, I. et al; “Development of a Long-life Three-phase Flywheel UPS Using an Electrolytic


Capacitorless Converter-inverter,” 1999 ScriptaTechnica, Electr. Eng. Jpn, 127(3); 25-32


United States Provisional Application filed Dec. 6, 2006, Ser. No. 60/868,851


United States Provisional Application filed Dec. 6, 2006, Ser. No. 60/868,893


United States Provisional Application filed Dec. 7, 2006, Ser. No. 60/868,962


United States Provisional Application filed Mar. 26, 2007, Ser. No. 60/908,095


United States Provisional Application filed May 9, 2007, Ser. No. 60/916,815


United States Provisional Application filed Nov. 15, 2007, Ser. No. 60/986,979


United States Provisional Application filed Oct. 15, 2007, Ser. No. 60/980,157


United States Provisional Application filed Oct. 23, 2007, Ser. No. 60/982,053


Walker, G. R. et al; “Cascaded DC-DC Converter Connection of Photovoltaic Modules,” IEEE


Transactions of Power Electronics, Vol. 19, No. 4, July 2004


Walker, G. R. et al; “PV String Per-Module Power Point Enabling Converters,” School of Information


Technology and Electrical Engineering; The University of Queensland, presented at the Australasian


Universities Power Engineering Conference, Sep. 28-Oct. 1, 2003 in Christchurch; AUPEC2003


Wang, Ucilia; Greentechmedia; “National semi casts solarmagic;” www.greentechmedia.com; Jul. 2, 2008


XUE, John, “PV Module Series String Balancing Converters,” Supervised by Geoffrey Walker,


Nov. 6, 2002; University of Queensland, School of Information Technology and Electrical


Engineering.


YUVARAJAN, S; Dachuan, Yu; Shanguang, Xu; “A Novel Power Converter for Photovoltaic


Applications,” Journal of Power Sources, Sep. 3, 2004; Vol. 135, No. 1-2, Pages 327-331; Abstract.


Feuermann, D. et al., Reversible low solar heat gain windows for energy savings. Solar Energy Vol.


62, No. 3, pp. 169-175, 1998


Román, E., et al. Experimental results of controlled PV module for building integrated PV systems;


Science Direct; Solar Energy, Volume 82, Issue 5, May 2008, Pages 471-480


Linares, L., et al. Improved Energy Capture in Series String Photovoltaics via Smart Distributed Power


Electronics; Proceedings APEC 2009: 24th Annual IEEE Applied Power Electronics Conference.


Washington, D.C., February 2009


Chen, J., et al. Buck-Boost PWM Converters Having Two Independently Controlled Switches, IEEE


Power Electronics Specialists Conference, June 2001, vol. 2, pp. 736-741.


Chen, J., et al. A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications, IEEE


Applied Power Electronics Conference, February 2001.


Walker, G. et al. Photo Voltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass


Grid Connection Topologies - Design and Optimisation, 37th IEEE Power Electronics Specialists


Conference/Jun. 18-22, 2006, Jeju, Korea


Esram, T., Chapman, P. L., “Comparison of Photovoltaic Array Maximum Power Point Tracking


Techniques,” Energy Conversion, IEEE Transactions, Vo. 22, No. 2, pp. 439-449, June 2007


Knaupp, W. et al., Operation of A 110 kW PV facade with 100 W AC photovoltaic modules, 25th


PVSC; May 13-17, 1996; Washington, D.C.


Schoen. T. J. N., BIPV overview & getting PV into the marketplace in the Netherlands, The 2nd World


Solar Electric Buildings Conference: Sydney 8th-10th Mar. 2000


Stern M., et al. Development of a Low-Cost Integrated 20-kW-AC Solar Tracking Subarray for Grid-


Connected PV Power System Applications - Final Report, National Renewable Energy Laboratory,


June 1998


Verhoeve, C. W. G., et al., Recent Test Results of AC-Module inverters, Netherlands Energy Research


Foundation ECN, 1997


International Application No. PCT/US08/57105, International Preliminary Report on


Patentability, mailed Mar. 12, 2010


International Application No. PCT/US08/70506 corrected International Preliminary Report on


Patentability, mailed Jun. 25, 2010


CHUNG, H. S. H.; HuiTse, K. K.; “A Novel Maximum Power Point Tracking Technique for PV


Panels;” Dept. of Electronic Engineering, City Univerisity of Hong Kong; Source: PESC Record -


IEEE Annual Power Electronics Specialists Conference, v 4, 2001, p 1970-1975, Jun. 17-21, 2001;


Abstract.


International App. No. PCT/US09/41044, Search Report dated Jun. 5, 2009


International App. No. PCT/US09/41044, Written Opinion dated Jun. 5, 2010


International App. No. PCT/US08/79605, Search Report dated Feb. 3, 2009


International App. No. PCT/US08/79605, Written Opinion dated Feb. 3, 2010


International App. No. PCT/US08/80794, Search Report dated Feb. 23, 2009


International App. No. PCT/US08/80794, Written Opinion dated Feb. 23, 2010


U.S. Nonprovisional Application No. 12/363,709, Accelerated Examination Support Document


filed Jan. 30, 2009.


U.S. Nonprovisional Application No. 12/363,709, First Amended Accelerated Examination Support


Document filed Jul. 15, 2009.


National Semiconductor News Release—National semiconductor's SolarMagic Chipset Makes Solar


Panels “Smarter” May 2009


SM3320 Power Optimizer Specifications; SolarMagic Power Optimizer April 2009


TwentyNinety.com/en/about-us/, printed Aug. 17, 2010; 3 pages


International Patent Application No. PCT/US08/60345. International Prelimianry Report on


Patentability dated Aug. 30, 2010









Thus, the applicant(s) should be understood to have support to claim and make a statement of invention to at least: i) each of the solar power devices as herein disclosed and described, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative designs which accomplish each of the functions shown as are disclosed and described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, ix) each system, method, and element shown or described as now applied to any specific field or devices mentioned, x) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, xi) the various combinations and permutations of each of the elements disclosed, xii) each potentially dependent claim or concept as a dependency on each and every one of the independent claims or concepts presented, and xiii) all inventions described herein. In addition and as to computer aspects and each aspect amenable to programming or other electronic automation, the applicant(s) should be understood to have support to claim and make a statement of invention to at least: xiv) processes performed with the aid of or on a computer as described throughout the above discussion, xv) a programmable apparatus as described throughout the above discussion, xvi) a computer readable memory encoded with data to direct a computer comprising means or elements which function as described throughout the above discussion, xvii) a computer configured as herein disclosed and described, xviii) individual or combined subroutines and programs as herein disclosed and described, xix) the related methods disclosed and described, xx) similar, equivalent, and even implicit variations of each of these systems and methods, xxi) those alternative designs which accomplish each of the functions shown as are disclosed and described, xxii) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, xxiii) each feature, component, and step shown as separate and independent inventions, and xxiv) the various combinations and permutations of each of the above.


With regard to claims whether now or later presented for examination, it should be understood that for practical reasons and so as to avoid great expansion of the examination burden, the applicant may at any time present only initial claims or perhaps only initial claims with only initial dependencies. The office and any third persons interested in potential scope of this or subsequent applications should understand that broader claims may be presented at a later date in this case, in a case claiming the benefit of this case, or in any continuation in spite of any preliminary amendments, other amendments, claim language, or arguments presented, thus throughout the pendency of any case there is no intention to disclaim or surrender any potential subject matter. It should be understood that if or when broader claims are presented, such may require that any relevant prior art that may have been considered at any prior time may need to be re-visited since it is possible that to the extent any amendments, claim language, or arguments presented in this or any subsequent application are considered as made to avoid such prior art, such reasons may be eliminated by later presented claims or the like. Both the examiner and any person otherwise interested in existing or later potential coverage, or considering if there has at any time been any possibility of an indication of disclaimer or surrender of potential coverage, should be aware that no such surrender or disclaimer is ever intended or ever exists in this or any subsequent application. Limitations such as arose in Hakim v. Cannon Avent Group, PLC, 479 F.3d 1313 (Fed. Cir 2007), or the like are expressly not intended in this or any subsequent related matter. In addition, support should be understood to exist to the degree required under new matter laws—including but not limited to European Patent Convention Article 123(2) and United States Patent Law 35 USC 132 or other such laws—to permit the addition of any of the various dependencies or other elements presented under one independent claim or concept as dependencies or elements under any other independent claim or concept. In drafting any claims at any time whether in this application or in any subsequent application, it should also be understood that the applicant has intended to capture as full and broad a scope of coverage as legally available. To the extent that insubstantial substitutes are made, to the extent that the applicant did not in fact draft any claim so as to literally encompass any particular embodiment, and to the extent otherwise applicable, the applicant should not be understood to have in any way intended to or actually relinquished such coverage as the applicant simply may not have been able to anticipate all eventualities; one skilled in the art, should not be reasonably expected to have drafted a claim that would have literally encompassed such alternative embodiments.


Further, if or when used, the use of the transitional phrase “comprising” is used to maintain the “open-end” claims herein, according to traditional claim interpretation. Thus, unless the context requires otherwise, it should be understood that the term “comprise” or variations such as “comprises” or “comprising”, are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps. Such terms should be interpreted in their most expansive form so as to afford the applicant the broadest coverage legally permissible. The use of the phrase, “or any other claim” is used to provide support for any claim to be dependent on any other claim, such as another dependent claim, another independent claim, a previously listed claim, a subsequently listed claim, and the like. As one clarifying example, if a claim were dependent “on claim 20 or any other claim” or the like, it could be re-drafted as dependent on claim 1, claim 15, or even claim 715 (if such were to exist) if desired and still fall with the disclosure. It should be understood that this phrase also provides support for any combination of elements in the claims and even incorporates any desired proper antecedent basis for certain claim combinations such as with combinations of method, apparatus, process, and the like claims.


Finally, any claims set forth at any time are hereby incorporated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the matter for which protection is sought by this application or by any subsequent continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon.

Claims
  • 1. A solar power system comprising: at least two solar panels of a first solar power string;a first DC-DC converter connected within said first solar power string;a first rail electrically connected with one of said at least two solar panels and said first DC-DC converter; anda second rail electrically connected with a different one of said at least two solar panels and said first DC-DC converter.
  • 2. A solar power system as described in claim 1 wherein said first DC-DC converter operates at a sweet spot during loaded circuit condition of said system.
  • 3. A solar power system as described in claim 2 wherein said first DC-DC converter connected within said first solar power string is connected with a first portion of said first solar power string through a first string portion conductor and connected with a second portion of said first solar power string through a second string portion conductor, wherein said first string portion conductor has a first string portion loaded circuit voltage value relative to said first rail, said second string portion conductor has a second string portion loaded circuit voltage value relative to said first rail, and a sum of said first string portion loaded circuit voltage value and said second string portion loaded circuit voltage value is substantially equal to a loaded circuit voltage value of said second rail relative to said first rail.
  • 4. A solar power system as described in claim 3 wherein said string portion loaded circuit voltages are achieved by bucking by said DC-DC converter.
  • 5. A solar power system as described in claim 1 further comprising a second solar power string connected in parallel with said first solar power string.
  • 6. A solar power system as described in claim 5 further comprising a second DC-DC converter connected within said second solar power string.
  • 7. A solar power system as described in claim 1 further comprising a diode established between said second rail and said converter.
  • 8. A solar power system as described in claim 1 wherein said second rail has an open circuit voltage relative to said first rail and a loaded circuit voltage relative to said first rail that are substantially equal.
  • 9. A solar power system as described in claim 1 wherein said second rail has a loaded circuit voltage relative to said first rail that is conservatively close to a regulatory maximum voltage limit.
  • 10. A solar power system as described in claim 1 wherein said first DC-DC converter comprises two sub-converters.
  • 11. A solar power system as described in claim 10 wherein at least one of said two sub-converters comprises a dual mode converter.
  • 12. A solar power system as described in claim 10 wherein at least one of said two sub-converters comprises a buck converter.
  • 13. A solar power system as described in claim 10 wherein at least one of said two sub-converters comprises a converter that is neither dual mode, buck, nor boost.
  • 14. A solar power system as described in claim 1 wherein said first rail is a lower rail.
  • 15. A solar power system as described in claim 1 wherein said first rail is a negative rail.
  • 16. A solar power system as described in claim 1 wherein said second rail is an upper rail.
  • 17. A solar power system as described in claim 1 wherein said second rail is a positive rail.
  • 18. A solar power system as described in claim 1 wherein said power system is unipolar.
  • 19. A solar power system as described in claim 1 wherein said power system is bipolar.
  • 20. A solar power system comprising: a string of solar that includes solar panels;a DC-DC converter intermediately electrically connected within said string as a part of said string;a positive rail and a negative rail with which each said string and said DC-DC converter is electrically connected;at least one DC-AC power inverter that acts on DC power conducted by said positive and negative rails.
  • 21. A solar power system as described in claim 20 wherein said first DC-DC converter operates at a sweet spot during loaded circuit condition of said system.
  • 22. A solar power system as described in claim 21 wherein said first DC-DC converter electrically connected within said string is electrically connected with a first portion of said string through a first string portion conductor and electrically connected with a second portion of said string through a second string portion conductor, wherein said first string portion conductor has a first string portion loaded circuit voltage value relative to said negative rail, said second string portion conductor has a second string portion loaded circuit voltage value relative to said negative rail, and a sum of said first string portion loaded circuit voltage value and said second string portion loaded circuit voltage value is substantially equal to a loaded circuit voltage value of said positive rail relative to said negative rail.
  • 23. A solar power system as described in claim 22 wherein said string portion open circuit voltages are achieved by bucking by said DC-DC converter.
  • 24. A solar power system as described in claim 20 wherein said string is a first string, and further comprising at least one additional string that includes additional solar panels, said at least one additional string electrically connected in parallel with said first string.
  • 25. A solar power system as described in claim 24 further comprising at least one additional DC-DC converter, each of which is electrically connected within one of said at least one additional string.
  • 26. A solar power system as described in claim 20 further comprising a diode established between said DC-DC converter and said positive rail.
  • 27. A solar power system as described in claim 20 wherein said positive rail has an open circuit voltage relative to said negative rail and a loaded circuit voltage relative to said negative rail that are substantially equal.
  • 28. A solar power system as described in claim 20 wherein said positive rail has a loaded circuit voltage relative to said negative rail that is equal to or slightly less than a regulatory voltage limit.
  • 29. A solar power system as described in claim 20 wherein said DC-DC converter comprises two sub-converters.
  • 30. A solar power system as described in claim 29 wherein at least one of said two sub-converters comprises a dual mode converter.
  • 31. A solar power system as described in claim 29 wherein at least one of said two sub-converters comprises a buck converter.
  • 32. A solar power system as described in claim 29 wherein at least one of said two sub-converters comprises a converter that is neither dual mode, buck, nor boost.
  • 33. A solar power system as described in claim 20 wherein said system is unipolar.
  • 34. A solar power system as described in claim 20 wherein said system is bipolar.
  • 35. A solar power system as described in claim 20 wherein said positive rail is an upper rail.
  • 36. A solar power system as described in claim 20 wherein said negative rail is a lower rail.
  • 37-63. (canceled)
  • 64. A solar power control method comprising the steps of: generating power from at least two solar panel substrings of a solar power string that is connected to negative and positive rails; andmaximum power point controlling, with a maximum power point controller, a voltage output by each said at least two solar panel substrings.
  • 65. A solar power control method as described in claim 64 wherein said step of maximum power point controlling comprises the step of controlling with a maximum power point controller having at least two switches.
  • 66. A solar power control method as described in claim 65 wherein said switches provide shunting functionality.
  • 67. A solar power control method as described in claim 64 wherein said step of maximum power point controlling, with a maximum power point controller, a voltage output by each said at least two solar panel substrings comprises the step of maximum power point controlling, with a DC-DC converter.
  • 68-117. (canceled)
  • 118. A solar power system as described in claim 1 further comprising a DC-AC power inverter that acts on power conducted by said first and second rails.
  • 119. A solar power system as described in claim 1 wherein said first DC-DC converter divides said first solar power string into at least two substrings.
  • 120. A solar power system as described in claim 1 wherein said first DC-DC converter comprises at least two subconverters.
  • 121. A solar power system as described in claim 1 wherein said first DC-DC converter comprises at least two inputs.
  • 122. A solar power system as described in claim 20 further comprising a DC-AC power inverter that acts on power conducted by said positive and negative rails.
  • 123. A solar power system as described in claim 20 wherein said DC-DC converter divides said string into at least two substrings.
  • 124. A solar power system as described in claim 20 wherein said DC-DC converter comprises at least two subconverters.
  • 125. A solar power system as described in claim 20 wherein said DC-DC converter comprises at least two inputs.
  • 126. A solar power control method as described in claim 64 further comprising the step of converting a power at maximum power point to AC.
CROSS-REFERENCES TO RELATED APPLICATIONS

This is an international patent application and claims priority to U.S. Provisional App. No. 61/253,025, filed Oct. 19, 2010, the provisional application incorporated herein in its entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2010/053253 10/19/2010 WO 00 4/19/2012
Provisional Applications (1)
Number Date Country
61253025 Oct 2009 US