NOVEL SYNTHESIS FOR THIAZOLIDINEDIONE COMPOUNDS

Information

  • Patent Application
  • 20130204004
  • Publication Number
    20130204004
  • Date Filed
    April 18, 2011
    13 years ago
  • Date Published
    August 08, 2013
    11 years ago
Abstract
The present invention provides novel methods for synthesizing PPARγ sparing compounds, e.g., thiazolidinediones, that are useful for preventing and/or treating metabolic disorders such as diabetes, obesity, hypertension, and inflammatory diseases.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention provides novel methods for synthesizing PPARγ sparing compounds, e.g., thiazolidinediones, that are useful for preventing and/or treating metabolic disorders such as diabetes, obesity, hypertension, and inflammatory diseases.


BACKGROUND OF THE INVENTION

Over the past several decades, scientists have postulated that PPARγ is the generally accepted site of action for insulin sensitizing thiazolidinedione compounds.


Peroxisome Proliferator Activated Receptors (PPARs) are members of the nuclear hormone receptor super-family, which are ligand-activated transcription factors regulating gene expression. PPARs have been implicated in autoimmune diseases and other diseases, i.e., diabetes mellitus, cardiovascular and gastrointestinal disease, and Alzheimer's disease.


PPARγ is a key regulator of adipocyte differentiation and lipid metabolism. PPARγ is also found in other cell types including fibroblasts, myocytes, breast cells, human bone-marrow precursors, and macrophages/monocytes. In addition, PPARγ has been shown in macrophage foam cells in atherosclerotic plaques.


Thiazolidinediones, such as pioglitazone, developed originally for the treatment of type-2 diabetes, generally exhibit high affinity as PPARγ ligands. The finding that thiazolidinediones might mediate their therapeutic effects through direct interactions with PPARγ helped to establish the concept that PPARγ is a key regulator of glucose and lipid homeostasis. However, compounds that involve the activation of PPARγ, such as pioglitazone, also trigger sodium reabsorption and other unpleasant side effects.


SUMMARY OF THE INVENTION

In general, the invention relates to methods of synthesizing compounds that have reduced binding and activation of the nuclear transcription factor PPARγ when compared with high affinity PPARγ ligands such as pioglitazone. These novel methods are scalable for industrial production and employ safer, more stable, and/or less costly starting materials and process conditions.


Compounds exhibiting PPARγ activity induce transcription of genes that favor sodium reabsorption. Advantageously, the compounds produced by the syntheses of this invention have reduced binding or activation of the nuclear transcription factor PPARγ when compared with traditional high affinity PPARγ ligands (e.g., pioglitazone or rosiglitazone), and therefore produce fewer or diminished side effects (e.g., reduced augmentation of sodium reabsorption) that are associated with traditional high affinity PPARγ ligands, and are therefore more useful in treating hypertension, diabetes, and inflammatory diseases. Most specifically, the reduced PPARγ binding and reduced activity exhibited by these compounds, as compared with traditional high affinity PPARγ ligands (e.g., pioglitazone or rosiglitazone), are particularly useful for treating hypertension, diabetes, and inflammatory diseases both as single agents and in combination with other classes of antihypertensive agents. As hypertension and inflammatory diseases pose major risk factors in the onset of diabetes and pre-diabetes, these compounds are also useful for the treatment and prevention of diabetes and other inflammatory diseases. In fact, compounds synthesized by the present invention may induce remission of the symptoms of diabetes in a human patient.


One aspect of the present invention provides a novel synthesis for generating thiazolidinedione compounds that are useful for the treatment of metabolic disorders. This synthesis is useful for preparing a compound of Formula I:




embedded image


or a pharmaceutically acceptable salt thereof, wherein each of R1 and R3 is independently selected from H, halo, aliphatic, and alkoxy, wherein the aliphatic or alkoxy is optionally substituted with 1-3 of halo; each of R′2 and R2 are independently selected from —H, halo, hydroxy, or optionally substituted aliphatic, alkoxy, —O-acyl, —O-aroyl, —O-heteroaroyl, —O(SO2)NH2, —O—CH(Rm)OC(O)Rn, —O—CH(Rm)OP(O)(ORn)2—O—P(O)(ORn)2, or




embedded image


wherein each Rm is independently C1-6 alkyl, each Rn is independently C1-12 alkyl, C3-8 cycloalkyl, or phenyl, each of which is optionally substituted; R2 and R′2 together form oxo, R2 and R′2 together form —O(CH2)nO—, wherein n is 2 or 3, or R2 and R′2 together form —S(CH2)mS—, wherein m is 2 or 3; and ring A is phenyl, pyridin-2-yl, pyridin-3-yl or pyridin-4-yl, each of which is optionally substituted; comprising the step of reacting a compound of Formula 2A:




embedded image


wherein X is a leaving group, with a compound of Formula 3A




embedded image


wherein ring B is selected from




embedded image


wherein Y1 is hydrogen or PGN and Y2 is PGO, wherein PGN is a nitrogen protecting group and PGO is an oxygen protecting group, to form a compound of Formula 4A; and




embedded image


when Y1 is other than hydrogen or when Y2 is present, deprotecting the compound of Formula 4A to form a compound of Formula I.







DETAILED DESCRIPTION

The present invention provides novel methods for preparing thiazolidinedione compounds having reduced PPARγ activity.


As used herein, the following definitions shall apply unless otherwise indicated.


I. DEFINITIONS

For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed. Additionally, general principles of organic chemistry are described in “Organic Chemistry”, Thomas Sorrell, University Science Books, Sausalito: 1999, and “March's Advanced Organic Chemistry”, 5th Ed., Ed.: Smith, M. B. and March, J., John Wiley & Sons, New York: 2001, the entire contents of which are hereby incorporated by reference.


As described herein, “protecting group” refers to a moiety or functionality that is introduced into a molecule by chemical modification of a functional group in order to obtain chemoselectivity in a subsequent chemical reaction. Standard protecting groups are provided in Wuts and Greene: “Greene's Protective Groups in Organic Synthesis” 4th Ed, Wuts, P.G.M. and Greene, T. W., Wiley-Interscience, New York: 2006.


As described herein, compounds of the invention may optionally be substituted with one or more moieties, such as are illustrated generally above, or as exemplified by particular classes, subclasses, and species of the invention.


As used herein, the term “hydroxyl” or “hydroxy” refers to an —OH moiety.


As used herein the term “aliphatic” encompasses the terms alkyl, alkenyl, alkynyl, each of which being optionally substituted as set forth below.


As used herein, an “alkyl” group refers to a saturated aliphatic hydrocarbon group containing 1-12 (e.g., 1-8, 1-6, or 1-4) carbon atoms. An alkyl group can be straight or branched. Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-heptyl, or 2-ethylhexyl. An alkyl group can be substituted (i.e., optionally substituted) with one or more substituents such as halo, phospho, cycloaliphatic [e.g., cycloalkyl or cycloalkenyl], heterocycloaliphatic [e.g., heterocycloalkyl or heterocycloalkenyl], aryl, heteroaryl, alkoxy, aroyl, heteroaroyl, acyl [e.g., (aliphatic)carbonyl, (cycloaliphatic)carbonyl, or (heterocycloaliphatic)carbonyl], nitro, cyano, amido [e.g., (cycloalkylalkyl)carbonylamino, arylcarbonylamino, aralkylcarbonylamino, (heterocycloalkyl)carbonylamino, (heterocycloalkylalkyl)carbonylamino, heteroarylcarbonylamino, heteroaralkylcarbonylamino alkylaminocarbonyl, cycloalkylaminocarbonyl, heterocycloalkylaminocarbonyl, arylaminocarbonyl, or heteroarylaminocarbonyl], amino [e.g., aliphaticamino, cycloaliphaticamino, or heterocycloaliphaticamino], sulfonyl [e.g., aliphatic-SO2—], sulfinyl, sulfanyl, sulfoxy, urea, thiourea, sulfamoyl, sulfamide, oxo, carboxy, carbamoyl, cycloaliphaticoxy, heterocycloaliphaticoxy, aryloxy, heteroaryloxy, aralkyloxy, heteroarylalkoxy, alkoxycarbonyl, alkylcarbonyloxy, or hydroxy. Without limitation, some examples of substituted alkyls include carboxyalkyl (such as HOOC-alkyl, alkoxycarbonylalkyl, and alkylcarbonyloxyalkyl), cyanoalkyl, hydroxyalkyl, alkoxyalkyl, acylalkyl, aralkyl, (alkoxyaryl)alkyl, (sulfonylamino)alkyl (such as (alkyl-SO2-amino)alkyl), aminoalkyl, amidoalkyl, (cycloaliphatic)alkyl, or haloalkyl.


As used herein, an “alkenyl” group refers to an aliphatic carbon group that contains 2-8 (e.g., 2-12, 2-6, or 2-4) carbon atoms and at least one double bond. Like an alkyl group, an alkenyl group can be straight or branched. Examples of an alkenyl group include, but are not limited to allyl, isoprenyl, 2-butenyl, and 2-hexenyl. An alkenyl group can be optionally substituted with one or more substituents such as halo, phospho, cycloaliphatic [e.g., cycloalkyl or cycloalkenyl], heterocycloaliphatic [e.g., heterocycloalkyl or heterocycloalkenyl], aryl, heteroaryl, alkoxy, aroyl, heteroaroyl, acyl [e.g., (aliphatic)carbonyl, (cycloaliphatic)carbonyl, or (heterocycloaliphatic)carbonyl], nitro, cyano, amido [e.g., (cycloalkylalkyl)carbonylamino, arylcarbonylamino, aralkylcarbonylamino, (heterocycloalkyl)carbonylamino, (heterocycloalkylalkyl)carbonylamino, heteroarylcarbonylamino, heteroaralkylcarbonylamino alkylaminocarbonyl, cycloalkylaminocarbonyl, heterocycloalkylaminocarbonyl, arylaminocarbonyl, or heteroarylaminocarbonyl], amino [e.g., aliphaticamino, cycloaliphaticamino, heterocycloaliphaticamino, or aliphaticsulfonylamino], sulfonyl [e.g., alkyl-SO2—, cycloaliphatic-SO2—, or aryl-SO2—], sulfinyl, sulfanyl, sulfoxy, urea, thiourea, sulfamoyl, sulfamide, oxo, carboxy, carbamoyl, cycloaliphaticoxy, heterocycloaliphaticoxy, aryloxy, heteroaryloxy, aralkyloxy, heteroaralkoxy, alkoxycarbonyl, alkylcarbonyloxy, or hydroxy. Without limitation, some examples of substituted alkenyls include cyanoalkenyl, alkoxyalkenyl, acylalkenyl, hydroxyalkenyl, aralkenyl, (alkoxyaryl)alkenyl, (sulfonylamino)alkenyl (such as (alkyl-SO2-amino)alkenyl), aminoalkenyl, amidoalkenyl, (cycloaliphatic)alkenyl, or haloalkenyl.


As used herein, an “alkynyl” group refers to an aliphatic carbon group that contains 2-8 (e.g., 2-12, 2-6, or 2-4) carbon atoms and has at least one triple bond. An alkynyl group can be straight or branched. Examples of an alkynyl group include, but are not limited to, propargyl and butynyl. An alkynyl group can be optionally substituted with one or more substituents such as aroyl, heteroaroyl, alkoxy, cycloalkyloxy, heterocycloalkyloxy, aryloxy, heteroaryloxy, aralkyloxy, nitro, carboxy, cyano, halo, hydroxy, sulfo, mercapto, sulfanyl [e.g., aliphaticsulfanyl or cycloaliphaticsulfanyl], sulfinyl [e.g., aliphaticsulfinyl or cycloaliphaticsulfinyl], sulfonyl [e.g., aliphatic-SO2—, aliphaticamino-SO2—, or cycloaliphatic-SO2—], amido [e.g., aminocarbonyl, alkylaminocarbonyl, alkylcarbonylamino, cycloalkylaminocarbonyl, heterocycloalkylaminocarbonyl, cycloalkylcarbonylamino, arylaminocarbonyl, arylcarbonylamino, aralkylcarbonylamino, (heterocycloalkyl)carbonylamino, (cycloalkylalkyl)carbonylamino, heteroaralkylcarbonylamino, heteroarylcarbonylamino or heteroarylaminocarbonyl], urea, thiourea, sulfamoyl, sulfamide, alkoxycarbonyl, allylcarbonyloxy, cycloaliphatic, heterocycloaliphatic, aryl, heteroaryl, acyl [e.g., (cycloaliphatic)carbonyl or (heterocycloaliphatic)carbonyl], amino [e.g., aliphaticamino], sulfoxy, oxo, carboxy, carbamoyl, (cycloaliphatic)oxy, (heterocycloaliphatic)oxy, or (heteroaryl)alkoxy.


As used herein, an “amido” encompasses both “aminocarbonyl” and “carbonylamino”. These terms when used alone or in connection with another group refer to an amido group such as —N(RX)—C(O)—RY or —C(O)—N(RX)2, when used terminally, and —C(O)—N(RX)— or —N(RX)—C(O)— when used internally, wherein RX and RY can be aliphatic, cycloaliphatic, aryl, araliphatic, heterocycloaliphatic, heteroaryl or heteroaraliphatic. Examples of amido groups include alkylamido (such as alkylcarbonylamino or alkylaminocarbonyl), (heterocycloaliphatic)amido, (heteroaralkyl)amido, (heteroaryl)amido, (heterocycloalkyl)alkylamido, arylamido, aralkylamido, (cycloalkyl)alkylamido, or cycloalkylamido.


As used herein, an “amino” group refers to —NRXRY wherein each of RX and RY is independently hydrogen, aliphatic, cycloaliphatic, (cycloaliphatic)aliphatic, aryl, araliphatic, heterocycloaliphatic, (heterocycloaliphatic)aliphatic, heteroaryl, carboxy, sulfanyl, sulfinyl, sulfonyl, (aliphatic)carbonyl, (cycloaliphatic)carbonyl, ((cycloaliphatic)aliphatic)carbonyl, arylcarbonyl, (araliphatic)carbonyl, (heterocycloaliphatic)carbonyl, ((heterocycloaliphatic)aliphatic)carbonyl, (heteroaryl)carbonyl, or heteroaraliphatic)carbonyl, each of which being defined herein and being optionally substituted. Examples of amino groups include alkylamino, dialkylamino, or arylamino. When the term “amino” is not the terminal group (e.g., alkylcarbonylamino), it is represented by —NRX—, where RX has the same meaning as defined above.


As used herein, an “aryl” group used alone or as part of a larger moiety as in “aralkyl”, “aralkoxy”, or “aryloxyalkyl” refers to monocyclic (e.g., phenyl); bicyclic (e.g., indenyl, naphthalenyl, tetrahydronaphthyl, tetrahydroindenyl); and tricyclic (e.g., fluorenyl tetrahydrofluorenyl, or tetrahydroanthracenyl, anthracenyl) ring systems in which the monocyclic ring system is aromatic or at least one of the rings in a bicyclic or tricyclic ring system is aromatic. The bicyclic and tricyclic groups include benzofused 2-3 membered carbocyclic rings. For example, a benzofused group includes phenyl fused with two or more C4-8 carbocyclic moieties. An aryl is optionally substituted with one or more substituents including aliphatic [e.g., alkyl, alkenyl, or alkynyl]; cycloaliphatic; (cycloaliphatic)aliphatic; heterocycloaliphatic; (heterocycloaliphatic)aliphatic; aryl; heteroaryl; alkoxy; (cycloaliphatic)oxy; (heterocycloaliphatic)oxy; aryloxy; heteroaryloxy; (araliphatic)oxy; (heteroaraliphatic)oxy; aroyl; heteroaroyl; amino; oxo (on a non-aromatic carbocyclic ring of a benzofused bicyclic or tricyclic aryl); nitro; carboxy; amido; acyl [e.g., (aliphatic)carbonyl; (cycloaliphatic)carbonyl; ((cycloaliphatic)aliphatic)carbonyl; (araliphatic)carbonyl; (heterocycloaliphatic)carbonyl; ((heterocycloaliphatic)aliphatic)carbonyl; or (heteroaraliphatic)carbonyl]; sulfonyl [e.g., aliphatic-SO2— or amino-SO2—]; sulfinyl [e.g., aliphatic-S(O)— or cycloaliphatic-S(O)—]; sulfanyl [e.g., aliphatic-S—]; cyano; halo; hydroxy; mercapto; sulfoxy; urea; thiourea; sulfamoyl; sulfamide; or carbamoyl. Alternatively, an aryl can be unsubstituted.


Non-limiting examples of substituted aryls include haloaryl [e.g., mono-, di (such as p,m-dihaloaryl), and (trihalo)aryl]; (carboxy)aryl [e.g., (alkoxycarbonyl)aryl, ((aralkyl)carbonyloxy)aryl, and (alkoxycarbonyl)aryl]; (amido)aryl [e.g., (aminocarbonyl)aryl, (((alkylamino)alkyl)aminocarbonyl)aryl, (alkylcarbonyl)aminoaryl, (arylaminocarbonyl)aryl, and (((heteroaryl)amino)carbonyl)aryl]; aminoaryl [e.g., ((alkylsulfonyl)amino)aryl or ((dialkyl)amino)aryl]; (cyanoalkyl)aryl; (alkoxy)aryl; (sulfamoyl)aryl [e.g., (aminosulfonyl)aryl]; (alkylsulfonyl)aryl; (cyano)aryl; (hydroxyalkyl)aryl; ((alkoxy)alkyl)aryl; (hydroxy)aryl, ((carboxy)alkyl)aryl; (((dialkyl)amino)alkyl)aryl; (nitroalkyl)aryl; (((alkylsulfonyl)amino)alkyl)aryl; ((heterocycloaliphatic)carbonyl)aryl; ((alkylsulfonyl)alkyl)aryl; (cyanoalkyl)aryl; (hydroxyalkyl)aryl; (alkylcarbonyl)aryl; alkylaryl; (trihaloalkyl)aryl; p-amino-m-alkoxycarbonylaryl; p-amino-m-cyanoaryl; p-halo-m-aminoaryl; or (m-(heterocycloaliphatic)-o-(alkyl))aryl.


As used herein, an “araliphatic” such as an “aralkyl” group refers to an aliphatic group (e.g., a C1-4 alkyl group) that is substituted with an aryl group. “Aliphatic,” “alkyl,” and “aryl” are defined herein. An example of an araliphatic such as an aralkyl group is benzyl.


As used herein, an “aralkyl” group refers to an alkyl group (e.g., a C1-4 alkyl group) that is substituted with an aryl group. Both “alkyl” and “aryl” have been defined above. An example of an aralkyl group is benzyl. An aralkyl is optionally substituted with one or more substituents such as aliphatic [e.g., alkyl, alkenyl, or alkynyl, including carboxyalkyl, hydroxyalkyl, or haloalkyl such as trifluoromethyl], cycloaliphatic [e.g., cycloalkyl or cycloalkenyl], (cycloalkyl)alkyl, heterocycloalkyl, (heterocycloalkyl)alkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, heterocycloalkyloxy, aryloxy, heteroaryloxy, aralkyloxy, heteroaralkyloxy, aroyl, heteroaroyl, nitro, carboxy, alkoxycarbonyl, alkylcarbonyloxy, amido [e.g., aminocarbonyl, alkylcarbonylamino, cycloalkylcarbonylamino, (cycloalkylalkyl)carbonylamino, arylcarbonylamino, aralkylcarbonylamino, (heterocycloalkyl)carbonylamino, (heterocycloalkylalkyl)carbonylamino, heteroarylcarbonylamino, or heteroaralkylcarbonylamino], cyano, halo, hydroxy, acyl, mercapto, alkylsulfanyl, sulfoxy, urea, thiourea, sulfamoyl, sulfamide, oxo, or carbamoyl.


As used herein, a “bicyclic ring system” includes 8-12 (e.g., 9, 10, or 11) membered structures that form two rings, wherein the two rings have at least one atom in common (e.g., 2 atoms in common). Bicyclic ring systems include bicycloaliphatics (e.g., bicycloalkyl or bicycloalkenyl), bicycloheteroaliphatics, bicyclic aryls, and bicyclic heteroaryls.


As used herein, a “cycloaliphatic” group encompasses a “cycloalkyl” group and a “cycloalkenyl” group, each of which being optionally substituted as set forth below.


As used herein, a “cycloalkyl” group refers to a saturated carbocyclic mono- or bicyclic (fused or bridged) ring of 3-10 (e.g., 5-10) carbon atoms. Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, norbornyl, cubyl, octahydro-indenyl, decahydro-naphthyl, bicyclo[3.2.1]octyl, bicyclo[2.2.2]octyl, bicyclo[3.3.1]nonyl, bicyclo[3.3.2.]decyl, bicyclo[2.2.2]octyl, adamantyl, or ((aminocarbonyl)cycloalkyl)cycloalkyl.


A “cycloalkenyl” group, as used herein, refers to a non-aromatic carbocyclic ring of 3-10 (e.g., 4-8) carbon atoms having one or more double bonds. Examples of cycloalkenyl groups include cyclopentenyl, 1,4-cyclohexa-di-enyl, cycloheptenyl, cyclooctenyl, hexahydro-indenyl, octahydro-naphthyl, cyclohexenyl, cyclopentenyl, bicyclo[2.2.2]octenyl, or bicyclo[3.3.1]nonenyl.


A cycloalkyl or cycloalkenyl group can be optionally substituted with one or more substituents such as phosphor, aliphatic [e.g., alkyl, alkenyl, or alkynyl], cycloaliphatic, (cycloaliphatic) aliphatic, heterocycloaliphatic, (heterocycloaliphatic) aliphatic, aryl, heteroaryl, alkoxy, (cycloaliphatic)oxy, (heterocycloaliphatic)oxy, aryloxy, heteroaryloxy, (araliphatic)oxy, (heteroaraliphatic)oxy, aroyl, heteroaroyl, amino, amido [e.g., (aliphatic)carbonylamino, (cycloaliphatic)carbonylamino, ((cycloaliphatic)aliphatic)carbonylamino, (aryl)carbonylamino, (araliphatic)carbonylamino, (heterocycloaliphatic)carbonylamino, ((heterocycloaliphatic)aliphatic)carbonylamino, (heteroaryl)carbonylamino, or (heteroaraliphatic)carbonylamino], nitro, carboxy [e.g., HOOC—, alkoxycarbonyl, or alkylcarbonyloxy], acyl [e.g., (cycloaliphatic)carbonyl, ((cycloaliphatic) aliphatic)carbonyl, (araliphatic)carbonyl, (heterocycloaliphatic)carbonyl, ((heterocycloaliphatic)aliphatic)carbonyl, or (heteroaraliphatic)carbonyl], cyano, halo, hydroxy, mercapto, sulfonyl [e.g., alkyl-SO2— and aryl-SO2—], sulfinyl [e.g., alkyl-S(O)—], sulfanyl [e.g., alkyl-S—], sulfoxy, urea, thiourea, sulfamoyl, sulfamide, oxo, or carbamoyl.


As used herein, the term “heterocycloaliphatic” encompasses heterocycloalkyl groups and heterocycloalkenyl groups, each of which being optionally substituted as set forth below.


As used herein, a “heterocycloalkyl” group refers to a 3-10 membered mono- or bicylic (fused or bridged) (e.g., 5- to 10-membered mono- or bicyclic) saturated ring structure, in which one or more of the ring atoms is a heteroatom (e.g., N, O, S, or combinations thereof). Examples of a heterocycloalkyl group include piperidyl, piperazyl, azetidinyl, tetrahydropyranyl, tetrahydrofuryl, 1,4-dioxolanyl, 1,4-dithianyl, 1,3-dioxolanyl, oxazolidyl, isoxazolidyl, morpholinyl, thiomorpholyl, octahydrobenzofuryl, octahydrochromenyl, octahydrothiochromenyl, octahydroindolyl, octahydropyrindinyl, decahydroquinolinyl, octahydrobenzo[b]thiopheneyl, 2-oxa-bicyclo[2.2.2]octyl, 1-aza-bicyclo[2.2.2]octyl, 3-aza-bicyclo[3.2.1]octyl, and 2,6-dioxa-tricyclo[3.3.1.03,7]nonyl. A monocyclic heterocycloalkyl group can be fused with a phenyl moiety to form structures, such as tetrahydroisoquinoline, which would be categorized as heteroaryls.


A “heterocycloalkenyl” group, as used herein, refers to a mono- or bicylic (e.g., 5- to 10-membered mono- or bicyclic) non-aromatic ring structure having one or more double bonds, and wherein one or more of the ring atoms is a heteroatom (e.g., N, O, or S). Monocyclic and bicyclic heterocycloaliphatics are numbered according to standard chemical nomenclature.


A heterocycloalkyl or heterocycloalkenyl group can be optionally substituted with one or more substituents such as phosphor, aliphatic [e.g., alkyl, alkenyl, or alkynyl], cycloaliphatic, (cycloaliphatic)aliphatic, heterocycloaliphatic, (heterocycloaliphatic)aliphatic, aryl, heteroaryl, alkoxy, (cycloaliphatic)oxy, (heterocycloaliphatic)oxy, aryloxy, heteroaryloxy, (araliphatic)oxy, (heteroaraliphatic)oxy, aroyl, heteroaroyl, amino, amido [e.g., (aliphatic)carbonylamino, (cycloaliphatic)carbonylamino, ((cycloaliphatic) aliphatic)carbonylamino, (aryl)carbonylamino, (araliphatic)carbonylamino, (heterocycloaliphatic)carbonylamino, ((heterocycloaliphatic) aliphatic)carbonylamino, (heteroaryl)carbonylamino, or (heteroaraliphatic)carbonylamina nitro, carboxy [e.g., HOOC—, alkoxycarbonyl, or alkylcarbonyloxy], acyl [e.g., (cycloaliphatic)carbonyl, ((cycloaliphatic) aliphatic)carbonyl, (araliphatic)carbonyl, (heterocycloaliphatic)carbonyl, ((heterocycloaliphatic)aliphatic)carbonyl, or (heteroaraliphatic)carbonyl], nitro, cyano, halo, hydroxy, mercapto, sulfonyl [e.g., alkylsulfonyl or arylsulfonyl], sulfinyl [e.g., alkylsulfinyl], sulfanyl [e.g., alkylsulfanyl], sulfoxy, urea, thiourea, sulfamoyl, sulfamide, oxo, or carbamoyl.


A “heteroaryl” group, as used herein, refers to a monocyclic, bicyclic, or tricyclic ring system having 4 to 15 ring atoms wherein one or more of the ring atoms is a heteroatom (e.g., N, O, S, or combinations thereof) and in which the monocyclic ring system is aromatic or at least one of the rings in the bicyclic or tricyclic ring systems is aromatic. A heteroaryl group includes a benzofused ring system having 2 to 3 rings. For example, a benzofused group includes benzo fused with one or two 4 to 8 membered heterocycloaliphatic moieties (e.g., indolizyl, indolyl, isoindolyl, 3H-indolyl, indolinyl, benzo[b]furyl, benzo[b]thiophenyl, quinolinyl, or isoquinolinyl). Some examples of heteroaryl are pyridyl, 1H-indazolyl, furyl, pyrrolyl, thienyl, thiazolyl, oxazolyl, imidazolyl, tetrazolyl, benzofuryl, isoquinolinyl, benzthiazolyl, xanthene, thioxanthene, phenothiazine, dihydroindole, benzo[1,3]dioxole, benzo[b]furyl, benzo[b]thiophenyl, indazolyl, benzimidazolyl, benzthiazolyl, puryl, cinnolyl, quinolyl, quinazolyl, cinnolyl, phthalazyl, quinazolyl, quinoxalyl, isoquinolyl, 4H-quinolizyl, benzo-1,2,5-thiadiazolyl, or 1,8-naphthyridyl.


Without limitation, monocyclic heteroaryls include furyl, thiophenyl, 2H-pyrrolyl, pyrrolyl, oxazolyl, thazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, 1,3,4-thiadiazolyl, 2H-pyranyl, 4-H-pranyl, pyridyl, pyridazyl, pyrimidyl, pyrazolyl, pyrazyl, or 1,3,5-triazyl. Monocyclic heteroaryls are numbered according to standard chemical nomenclature.


Without limitation, bicyclic heteroaryls include indolizyl, indolyl, isoindolyl, 3H-indolyl, indolinyl, benzo[b]furyl, benzo[b]thiophenyl, quinolinyl, isoquinolinyl, indolizyl, isoindolyl, indolyl, benzo[b]furyl, bexo[b]thiophenyl, indazolyl, benzimidazyl, benzthiazolyl, purinyl, 4H-quinolizyl, quinolyl, isoquinolyl, cinnolyl, phthalazyl, quinazolyl, quinoxalyl, 1,8-naphthyridyl, or pteridyl. Bicyclic heteroaryls are numbered according to standard chemical nomenclature.


A heteroaryl is optionally substituted with one or more substituents such as aliphatic [e.g., alkyl, alkenyl, or alkynyl]; cycloaliphatic; (cycloaliphatic)aliphatic; heterocycloaliphatic; (heterocycloaliphatic)aliphatic; aryl; heteroaryl; alkoxy; (cycloaliphatic)oxy; (heterocycloaliphatic)oxy; aryloxy; heteroaryloxy; (araliphatic)oxy; (heteroaraliphatic)oxy; aroyl; heteroaroyl; amino; oxo (on a non-aromatic carbocyclic or heterocyclic ring of a bicyclic or tricyclic heteroaryl); carboxy; amido; acyl [e.g., aliphaticcarbonyl; (cycloaliphatic)carbonyl; ((cycloaliphatic)aliphatic)carbonyl; (araliphatic)carbonyl; (heterocycloaliphatic)carbonyl; ((heterocycloaliphatic)aliphatic)carbonyl; or (heteroaraliphatic)carbonyl]; sulfonyl [e.g., aliphaticsulfonyl or aminosulfonyl]; sulfinyl [e.g., aliphaticsulfinyl]; sulfanyl [e.g., aliphaticsulfanyl]; nitro; cyano; halo; hydroxy; mercapto; sulfoxy; urea; thiourea; sulfamoyl; sulfamide; or carbamoyl. Alternatively, a heteroaryl can be unsubstituted.


Non-limiting examples of substituted heteroaryls include (halo)heteroaryl [e.g., mono- and di-(halo)heteroaryl]; (carboxy)heteroaryl [e.g., (alkoxycarbonyl)heteroaryl]; cyanoheteroaryl; aminoheteroaryl [e.g., ((alkylsulfonyl)amino)heteroaryl and ((dialkyl)amino)heteroaryl]; (amido)heteroaryl [e.g., aminocarbonylheteroaryl, ((alkylcarbonyl)amino)heteroaryl, ((((alkyl)amino)alkyl)aminocarbonyl)heteroaryl, (((heteroaryl)amino)carbonyl)heteroaryl, ((heterocycloaliphatic)carbonyl)heteroaryl, and ((alkylcarbonyl)amino)heteroaryl]; (cyanoalkyl)heteroaryl; (alkoxy)heteroaryl; (sulfamoyl)heteroaryl [e.g., (aminosulfonyl)heteroaryl]; (sulfonyl)heteroaryl [e.g., (alkylsulfonyl)heteroaryl]; (hydroxyalkyl)heteroaryl; (alkoxyalkyl)heteroaryl; (hydroxy)heteroaryl; ((carboxy)alkyl)heteroaryl; (((dialkyl)amino)alkyl]heteroaryl; (heterocycloaliphatic)heteroaryl; (cycloaliphatic)heteroaryl; (nitroalkyl)heteroaryl; (((alkylsulfonyl)amino)alkyl)heteroaryl; ((alkylsulfonyl)alkyl)heteroaryl; (cyanoalkyl)heteroaryl; (acyl)heteroaryl [e.g., (alkylcarbonyl)heteroaryl]; (alkyl)heteroaryl; or (haloalkyl)heteroaryl [e.g., trihaloalkylheteroaryl].


A “heteroaraliphatic (such as a heteroaralkyl group) as used herein, refers to an aliphatic group (e.g., a C1-4 alkyl group) that is substituted with a heteroaryl group. “Aliphatic,” “alkyl,” and “heteroaryl” have been defined above.


A “heteroaralkyl” group, as used herein, refers to an alkyl group (e.g., a C1-4 alkyl group) that is substituted with a heteroaryl group. Both “alkyl” and “heteroaryl” have been defined above. A heteroaralkyl is optionally substituted with one or more substituents such as alkyl (including carboxyalkyl, hydroxyalkyl, and haloalkyl such as trifluoromethyl), alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, heterocycloalkyl, (heterocycloalkyl)alkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, heterocycloalkyloxy, aryloxy, heteroaryloxy, aralkyloxy, heteroaralkyloxy, aroyl, heteroaroyl, nitro, carboxy, alkoxycarbonyl, alkylcarbonyloxy, aminocarbonyl, alkylcarbonylamino, cycloalkylcarbonylamino, (cycloalkylalkyl)carbonylamino, arylcarbonylamino, aralkylcarbonylamino, (heterocycloalkyl)carbonylamino, (heterocycloalkylalkyl)carbonylamino, heteroarylcarbonylamino, heteroaralkylcarbonylamino, cyano, halo, hydroxy, acyl, mercapto, alkylsulfanyl, sulfoxy, urea, thiourea, sulfamoyl, sulfamide, oxo, or carbamoyl.


As used herein, “cyclic moiety” and “cyclic group” refer to mono-, bi-, and tri-cyclic ring systems including cycloaliphatic, heterocycloaliphatic, aryl, or heteroaryl, each of which has been previously defined.


As used herein, a “bridged bicyclic ring system” refers to a bicyclic heterocyclicalipahtic ring system or bicyclic cycloaliphatic ring system in which the rings are bridged. Examples of bridged bicyclic ring systems include, but are not limited to, adamantanyl, norbornanyl, bicyclo[3.2.1]octyl, bicyclo[2.2.2]octyl, bicyclo[3.3.1]nonyl, bicyclo[3.3.2]decyl, 2-oxabicyclo[2.2.2]octyl, 1-azabicyclo[2.2.2]octyl, 3-azabicyclo[3.2.1]octyl, and 2,6-dioxa-tricyclo[3.3.1.03,7]nonyl. A bridged bicyclic ring system can be optionally substituted with one or more substituents such as alkyl (including carboxyalkyl, hydroxyalkyl, and haloalkyl such as trifluoromethyl), alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, heterocycloalkyl, (heterocycloalkyl)alkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, heterocycloalkyloxy, aryloxy, heteroaryloxy, aralkyloxy, heteroaralkyloxy, aroyl, heteroaroyl, nitro, carboxy, alkoxycarbonyl, alkylcarbonyloxy, aminocarbonyl, alkylcarbonylamino, cycloalkylcarbonylamino, (cycloalkylalkyl)carbonylamino, arylcarbonylamino, aralkylcarbonylamino, (heterocycloalkyl)carbonylamino, (heterocycloalkylalkyl)carbonylamino, heteroarylcarbonylamino, heteroaralkylcarbonylamino, cyano, halo, hydroxy, acyl, mercapto, alkylsulfanyl, sulfoxy, urea, thiourea, sulfamoyl, sulfamide, oxo, or carbamoyl.


As used herein, an “acyl” group refers to a formyl group or RX—C(O)— (such as alkyl-C(O)—, also referred to as “alkylcarbonyl”) where RX and “alkyl” have been defined previously. Acetyl and pivaloyl are examples of acyl groups.


As used herein, an “aroyl” or “heteroaroyl” refers to an aryl-C(O)— or a heteroaryl-C(O)—. The aryl and heteroaryl portion of the aroyl or heteroaroyl is optionally substituted as previously defined.


As used herein, an “alkoxy” group refers to an alkyl-O— group where “alkyl” has been defined previously.


As used herein, a “carbamoyl” group refers to a group having the structure —O—CO—NRXRY or —NRX—CO—O—RZ, wherein RX and RY have been defined above and RZ can be aliphatic, aryl, araliphatic, heterocycloaliphatic, heteroaryl, or heteroaraliphatic.


As used herein, a “carboxy” group refers to —COOH, —COORX, —OC(O)H, —OC(O)RX, when used as a terminal group; or —OC(O)— or —C(O)O— when used as an internal group.


As used herein, a “haloaliphatic” group refers to an aliphatic group substituted with 1-3 halogen. For instance, the term haloalkyl includes the group —CF3.


As used herein, a “mercapto” group refers to —SH.


As used herein, a “sulfo” group refers to —SO3H or —SO3RX when used terminally or —S(O)3— when used internally.


As used herein, a “sulfamide” group refers to the structure —NRX—S(O)2—NRYRZ when used terminally and —NRX—S(O)2—NRY— when used internally, wherein RX, RY, and RZ have been defined above.


As used herein, a “sulfamoyl” group refers to the structure —O—S(O)2—NRYRZ wherein RY and RZ have been defined above.


As used herein, a “sulfonamide” group refers to the structure —S(O)2—NRXRY or —NRX—S(O)2—RZ when used terminally; or —S(O)2—NRX— or —NRX—S(O)2— when used internally, wherein RX, RY, and RZ are defined above.


As used herein a “sulfanyl” group refers to —S—RX when used terminally and —S— when used internally, wherein RX has been defined above. Examples of sulfanyls include aliphatic-S—, cycloaliphatic-S—, aryl-S—, or the like.


As used herein a “sulfinyl” group refers to —S(O)—RX when used terminally and —S(O)— when used internally, wherein RX has been defined above. Exemplary sulfinyl groups include aliphatic-S(O)—, aryl-S(O)—, (cycloaliphatic(aliphatic))-S(O)—, cycloalkyl-S(O)—, heterocycloaliphatic-S(O)—, heteroaryl-S(O)—, or the like.


As used herein, a “sulfonyl” group refers to —S(O)2—RX when used terminally and —S(O)2— when used internally, wherein RX has been defined above. Exemplary sulfonyl groups include aliphatic-S(O)2—, aryl-S(O)2—, (cycloaliphatic(aliphatic))-S(O)2—, cycloaliphatic-S(O)2—, heterocycloaliphatic-S(O)2—, heteroaryl-S(O)2—, (cycloaliphatic(amido(aliphatic)))-S(O)2— or the like.


As used herein, a “sulfoxy” group refers to —O—SO—RX or —SO—O—RX, when used terminally and —O—S(O)— or —S(O)—O— when used internally, where RX has been defined above.


As used herein, a “halogen” or “halo” group refers to fluorine, chlorine, bromine or iodine.


As used herein, an “alkoxycarbonyl,” which is encompassed by the term carboxy, used alone or in connection with another group refers to a group such as alkyl-O—C(O)—.


As used herein, an “alkoxyalkyl” refers to an alkyl group such as alkyl-O-alkyl-, wherein alkyl has been defined above.


As used herein, a “carbonyl” refer to —C(O)—.


As used herein, an “oxo” refers to =0.


As used herein, the term “phospho” refers to phosphinates and phosphonates. Examples of phosphinates and phosphonates include —P(O)(RP)2, wherein RP is aliphatic, alkoxy, aryloxy, heteroaryloxy, (cycloaliphatic)oxy, (heterocycloaliphatic)oxy aryl, heteroaryl, cycloaliphatic or amino.


As used herein, an “aminoalkyl” refers to the structure (RX)2N-alkyl-.


As used herein, a “cyanoalkyl” refers to the structure (NC)-alkyl-.


As used herein, a “urea” group refers to the structure —NRX—CO—NRYRZ and a “thiourea” group refers to the structure —NRX—CS—NRYRZ when used terminally and —NRX—CO—NRY— or —NRX—CS—NRY— when used internally, wherein RX, RY, and RZ have been defined above.


As used herein, a “guanidine” group refers to the structure —N═C(N(RXRY))N(RXRY) or —NRX—C(═NRX)NRXRY wherein RX and RY have been defined above.


As used herein, the term “amidino” group refers to the structure —C═(NRX)N(RXRY) wherein RX and RY have been defined above.


In general, the term “vicinal” refers to the placement of substituents on a group that includes two or more carbon atoms, wherein the substituents are attached to adjacent carbon atoms.


In general, the term “geminal” refers to the placement of substituents on a group that includes two or more carbon atoms, wherein the substituents are attached to the same carbon atom.


The terms “terminally” and “internally” refer to the location of a group within a substituent. A group is terminal when the group is present at the end of the substituent not further bonded to the rest of the chemical structure. Carboxyalkyl, i.e., RXO(O)C-alkyl is an example of a carboxy group used terminally. A group is internal when the group is present in the middle of a substituent of the chemical structure. Alkylcarboxy (e.g., alkyl-C(O)O— or alkyl-OC(O)—) and alkylcarboxyaryl (e.g., alkyl-C(O)O-aryl- or alkyl-O(CO)-aryl-) are examples of carboxy groups used internally.


As used herein, an “aliphatic chain” refers to a branched or straight aliphatic group (e.g., alkyl groups, alkenyl groups, or alkynyl groups). A straight aliphatic chain has the structure —[CH2]v—, where v is 1-12. A branched aliphatic chain is a straight aliphatic chain that is substituted with one or more aliphatic groups. A branched aliphatic chain has the structure —[CQQ]v- where Q is independently a hydrogen or an aliphatic group; however, Q shall be an aliphatic group in at least one instance. The term aliphatic chain includes alkyl chains, alkenyl chains, and alkynyl chains, where alkyl, alkenyl, and alkynyl are defined above.


The phrase “optionally substituted” is used interchangeably with the phrase “substituted or unsubstituted.” As described herein, compounds of the invention can optionally be substituted with one or more substituents, such as are illustrated generally above, or as exemplified by particular classes, subclasses, and species of the invention. As described herein, the variables R1, R2, R′2, R3, R4, and other variables contained in the Formulae described herein encompass specific groups, such as alkyl and aryl. Unless otherwise noted, each of the specific groups for the variables R1, R2, R′2, R3, R4, and other variables contained therein can be optionally substituted with one or more substituents described herein. Each substituent of a specific group is further optionally substituted with one to three of halo, cyano, oxo, alkoxy, hydroxy, amino, nitro, aryl, cycloaliphatic, heterocycloaliphatic, heteroaryl, haloalkyl, and alkyl. For instance, an alkyl group can be substituted with alkylsulfanyl and the alkylsulfanyl can be optionally substituted with one to three of halo, cyano, oxo, alkoxy, hydroxy, amino, nitro, aryl, haloalkyl, and alkyl. As an additional example, the cycloalkyl portion of a (cycloalkyl)carbonylamino can be optionally substituted with one to three of halo, cyano, alkoxy, hydroxy, nitro, haloalkyl, and alkyl. When two alkoxy groups are bound to the same atom or adjacent atoms, the two alkxoy groups can form a ring together with the atom(s) to which they are bound.


In general, the term “substituted,” whether preceded by the term “optionally” or not, refers to the replacement of hydrogen radicals in a given structure with the radical of a specified substituent. Specific substituents are described above in the definitions and below in the description of compounds and examples thereof. Unless otherwise indicated, an optionally substituted group can have a substituent at each substitutable position of the group, and when more than one position in any given structure can be substituted with more than one substituent selected from a specified group, the substituent can be either the same or different at every position. A ring substituent, such as a heterocycloalkyl, can be bound to another ring, such as a cycloalkyl, to form a spiro-bicyclic ring system, e.g., both rings share one common atom. As one of ordinary skill in the art will recognize, combinations of substituents envisioned by this invention are those combinations that result in the formation of stable or chemically feasible compounds.


The phrase “stable or chemically feasible,” as used herein, refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and preferably their recovery, purification, and use for one or more of the purposes disclosed herein. In some embodiments, a stable compound or chemically feasible compound is one that is not substantially altered when kept at a temperature of 40° C. or less, in the absence of moisture or other chemically reactive conditions, for at least a week.


As used herein, an “effective amount” is defined as the amount required to confer a therapeutic effect on the treated patient, and is typically determined based on age, surface area, weight, and condition of the patient. The interrelationship of dosages for animals and humans (based on milligrams per meter squared of body surface) is described by Freireich et al., Cancer Chemother. Rep., 50: 219 (1966). Body surface area may be approximately determined from height and weight of the patient. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardsley, N.Y., 537 (1970). As used herein, “patient” refers to a mammal, including a human.


Unless otherwise stated, structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the structure; for example, the R and S configurations for each asymmetric center, (Z) and (E) double bond isomers, and (Z) and (E) conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the invention. Unless otherwise stated, all tautomeric forms of the compounds of the invention are within the scope of the invention. Additionally, unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this invention. Such compounds are useful, for example, as analytical tools or probes in biological assays, or as therapeutic agents.


Chemical structures and nomenclature are derived from ChemDraw, version 11.0.1, Cambridge, Mass.


II. COMMONLY USED ABBREVIATIONS

The following abbreviations are used:

    • PG protecting group
    • LG leaving group
    • DCM dichloromethane
    • Ac acetyl
    • DMF dimethylformamide
    • EtOAc ethyl acetate
    • DMSO dimethyl sulfoxide
    • MeCN acetonitrile
    • TCA trichloroacetic acid
    • ATP adenosine triphosphate
    • EtOH ethanol
    • Ph phenyl
    • Me methyl
    • Et ethyl
    • Bu butyl
    • DEAD diethylazodicarboxylate
    • HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
    • BSA bovine serum albumin
    • DTT dithiothreitol
    • MOPS 4-morpholinepropanesulfonic acid
    • NMR nuclear magnetic resonance
    • HPLC high performance liquid chromatography
    • LCMS liquid chromatography-mass spectrometry
    • TLC thin layer chromatography
    • Rt retention time
    • HOBt hydroxybenzotriazole
    • Ms mesyl
    • Ts tosyl
    • Tf triflyl
    • Bs besyl
    • Ns nosyl
    • Cbz carboxybenzyl
    • Moz p-methoxybenzyl carbonyl
    • Boc tert-butyloxycarbonyl
    • Fmoc 9-fluorenylmethyloxycarbonyl
    • Bz benzoly
    • Bn benzyl
    • PMB p-methoxybenzyl
    • DMPM 3,4-dimethoxybenzyl
    • PMP p-methoxyphenyl


III. METHODS OF SYNTHESIZING COMPOUNDS OF FORMULA I

One aspect of the present invention provides a novel synthesis for generating thiazolidine compounds that are useful for the treatment of metabolic disorders. One aspect of the present invention provides a novel synthesis for generating thiazolidine compounds that are useful for the treatment of metabolic disorders. This synthesis is useful for preparing a compound of Formula I:




embedded image


or a pharmaceutically acceptable salt thereof, wherein each of R1 and R3 is independently selected from H, halo, aliphatic, and alkoxy, wherein the aliphatic or alkoxy is optionally substituted with 1-3 of halo; each of R′2 and R2 are independently selected from —H, halo, hydroxy, or optionally substituted aliphatic, alkoxy, —O-acyl, —O-aroyl, —O-heteroaroyl, —O(SO2)NH2, —O—CH(Rm)OC(O)Rn, —O—CH(Rm)OP(O)(ORn)2—O—P(O)(ORn)2, or




embedded image


wherein each Rm is independently C1-6 alkyl, each Rn is independently C1-12 alkyl, C3-8 cycloalkyl, or phenyl, each of which is optionally substituted; R2 and R′2 together form oxo, R2 and R′2 together form —O(CH2)nO—, wherein n is 2 or 3, or R2 and R′2 together form —S(CH2)mS—, wherein m is 2 or 3; and ring A is phenyl, pyridin-2-yl, pyridin-3-yl or pyridin-4-yl, each of which is optionally substituted; comprising the step of reacting a compound of Formula 2A:




embedded image


wherein X is a leaving group, with a compound of Formula 3A




embedded image


wherein ring B is selected from




embedded image


wherein Y1 is hydrogen or PGN, wherein PGN is a nitrogen protecting group, and Y2 is PGO, wherein PGO is an oxygen protecting group, to form a compound of Formula 4A; and




embedded image


when Y1 is other than hydrogen or when Y2 is present, deprotecting the compound of Formula 4A to form a compound of Formula I.


It is noted that when ring B is




embedded image


and Y1 is other than hydrogen, the nitrogen atom is considered to be protected, i.e., not of the form




embedded image


Also, when ring B is




embedded image


and Y2 is present, the oxygen atom is considered to be protected. In either case where the nitrogen atom or the oxygen atom is protected, the compound of Formula 4A must undergo an additional deprotection step (e.g., treatment with a reagent (e.g., an aqueous acid or an aqueous base)) to form a compound of Formula I. However, when Y1 is hydrogen on ring B, then the compound of Formula 4A is a compound of Formula I.


In several embodiments, X is a leaving group selected from —Br, —Cl, —I, —OMs, —OTs, —OTf, —OBs, —ONs, —O-tresylate, or —OPO(OR4)2, wherein each R4 is independently C1-4 alkyl or two of R4 together with the oxygen and phosphorous atoms to which they are attached form a 5-7 membered ring. For instance X is a halo. In other instances, X is —Br, —Cl, or —I.


Some embodiments further comprise converting a compound of Formula 2B




embedded image


into a compound of Formula 2A.


Some embodiments comprise reacting a compound of Formula 5A




embedded image


wherein X1 is halo, with a compound of Formula 6A




embedded image


wherein each of R5 and R′5 are independently selected from optionally substituted C1-6 alkyl, or R5 and R′5 taken together with the nitrogen atom to which they are attached form an optionally substituted 3-7 membered monocyclic heterocyle optionally comprising 1-2 additional heteroatoms selected from N, O, or S, to generate a compound of Formula 2B.


Other embodiments comprise halogenating a compound of Formula 7A




embedded image


to form a compound of Formula 5A.


In many embodiments, the compound of Formula 6A includes a standard Weinreb amide or NCH3OCH3. In some embodiments, R5 and R′5 taken together with the nitrogen atom to which they are attached form a ring selected from




embedded image


In other instances, R5 and R′5 taken together with the nitrogen atom to which they are attached form a ring selected from




embedded image


And, in some instances, R5 and R′5 taken together with the nitrogen atom to which they are attached form




embedded image


In some embodiments, the compound of Formula 7A comprises




embedded image


wherein each of R1 and R3 is independently selected from H, halo, aliphatic, and alkoxy, wherein the aliphatic or alkoxy is optionally substituted with 1-3 of halo; and the compound of Formula 5A comprises




embedded image


wherein X1 is halo. For example, the compound of Formula 7A comprises




embedded image


and the compound of Formula 5A comprises




embedded image


wherein X1 is halo.


In some embodiments, the compound of Formula 5A is treated with a Grignard reagent and reacted with compound of Formula 6A to form a compound of Formula 2B. And, in some examples, the Grignard reagent comprises i-PrMgBr or i-PrMgCl.


In other embodiments, a compound of Formula 7A is reacted with a compound of Formula 6A, under direct acylation conditions, to form a compound of Formula 2B. For example, a compound of Formula 7A is treated with n-butyllithium and Me2NCH2CH2OLi, followed by treatment with a compound of Formula 6A to form a compound of Formula 2B.


In some embodiments, X and X1 are independently selected from —Br and —Cl.


Other embodiments comprise halogenating a compound of Formula 8A




embedded image


to form a compound of Formula 2A.


In some embodiments, the compound of Formula 8A comprises




embedded image


wherein each of R1 and R3 is independently selected from H, halo, aliphatic, and alkoxy, wherein the aliphatic or alkoxy is optionally substituted with 1-3 of halo; each of R′2 and R2 are independently selected from —H, halo, hydroxy, or optionally substituted aliphatic, alkoxy, —O-acyl, —O-aroyl, —O-heteroaroyl, —O(SO2)NH2, —O—CH(Rm)OC(O)Rn, —O—CH(Rm)OP(O)(ORn)2—O—P(O)(ORn)2,




embedded image


wherein each R1 is independently C1-6 alkyl, each Rn is independently C1-12 alkyl, C3-8 cycloalkyl, or phenyl, each of which is optionally substituted; R2 and R′2 together form oxo, R2 and R′2 together form —O(CH2)nO—, wherein n is 2 or 3, or R2 and R′2 together form —S(CH2)mS—, wherein m is 2 or 3.


In some embodiments, each of R2 and R′2 is independently selected from —H, —OH, or optionally substituted alkoxy; or R2 and R′2 together form oxo, R2 and R′2 together form —O(CH2)nO—, wherein n is 2 or 3, or R2 and R′2 together form —S(CH2)mS—, wherein m is 2 or 3. For example, in some instances, R2 and R′2 together form oxo.


In some embodiments, the compound of Formula 8A comprises




embedded image


wherein R1 is selected from a C1-6 alkyl or C1-6 alkoxy, either of which is optionally substituted with 1-3 halo, and R3 is —H or halo. In some examples of this embodiment, R1 is a C1-6 alkoxy optionally substituted with 1-3 halo. For example, R1 is selected from methoxy, ethoxy, or propoxy, any of which is optionally substituted with 1-3 halo.


Some embodiments comprise reacting the compound




embedded image


with a compound of Formula 9A




embedded image


wherein ring B is




embedded image


under condensation conditions to form a compound of Formula 10A, and




embedded image


hydrogenating the compound of Formula 10A to form a compound of Formula 3A.


In some embodiments, ring B of Formula 9A is




embedded image


Y1 is PGN, and PGN is a nitrogen protecting group selected from Cbz, Moz, Boc, Fmoc, Ac, Bz, Bn, PMB, DMPM, PMP, or trityl. In other embodiments, ring B of Formula 9A is




embedded image


and Y1 is hydrogen.


In some embodiments, ring B of Formula 9A is




embedded image


Y2 is PGO, and PGO is an oxygen protecting group selected from —Si(R6)3, optionally substituted alkyl, or optionally substituted alkylcarbonyl, wherein each R6 is independently straight or branched C1-4 alkyl or phenyl. For example, ring B of Formula 9A is




embedded image


Y2 is PGO, and PGO is —Si(R6)3, wherein each R6 is independently selected from methyl, ethyl, propyl, iso-propyl, tert-butyl, or phenyl. In other examples, ring B of Formula 9A is




embedded image


Y2 is PGO, and PGO is a C1-6 alkyl or a C1-6 alkylcarbonyl.


In several embodiments, R′2 and R2, in any of the Formulae above, are independently selected from —OMe, —OEt or other optionally substituted O—C1-6 alkyl groups. In other embodiments, R′2 and R2 are groups that can readily be converted to oxo without performing an oxidation reaction.


In some embodiments, X is a leaving group that allows for nucleophilic displacement by 1,3-thiazolidine-2,4-dione or protected 1,3-thiazolidine-2,4-dione. For example, X is —Br, —Cl, —I, —OMs, —OTs, —ONs, or —OPO(OR4)2, wherein each R4 is independently C1-12 alkyl, C3-8 cycloalkyl, or phenyl, each of which is optionally substituted.


In some embodiments where Y1 is PGN, in any of the Formulae above, PGN is Ac, methoxymethyl, ethoxyethyl, ethoxymethyl, p-methoxybenxyl, methoxycarbonyl, ethoxycarbonyl, or triphenylmethyl.


Another aspect of the present invention provides a process for preparing a compound of Formula I:




embedded image


or a pharmaceutically acceptable salt thereof, wherein ach of R1 and R3 is independently selected from H, halo, aliphatic, and alkoxy, wherein the aliphatic or alkoxy is optionally substituted with 1-3 of halo; each of R′2 and R2 are independently selected from —H, halo, hydroxy, or optionally substituted aliphatic, alkoxy, —O-acyl, —O-aroyl, —O-heteroaroyl, —O(SO2)NH2, —O—CH(Rm)OC(O)Rn, —O—CH(Rm)OP(O)(ORn)2—O—P(O)(ORn)2, or




embedded image


wherein each Rm is independently C1-6 alkyl, each Rn is independently C1-12 alkyl, C3-8 cycloalkyl, or phenyl, each of which is optionally substituted; R2 and R′2 together form oxo, R2 and R′2 together form —O(CH2)nO—, wherein n is 2 or 3, or R2 and R′2 together form —S(CH2)mS—, wherein m is 2 or 3; and ring A is phenyl, pyridin-2-yl, pyridin-3-yl or pyridin-4-yl, each of which is optionally substituted; comprising the step of reacting a compound of Formula 2A:




embedded image


wherein X is a leaving group, with a compound of Formula 10A




embedded image


wherein ring B is selected from




embedded image


wherein Y1 is hydrogen or PGN, wherein PGN is a nitrogen protecting group, and Y2 is PGO, wherein PGO is an oxygen protecting group, to form a compound of Formula 4B; and




embedded image


hydrogenating the compound of Formula 4B to generate a compound of Formula 4A, and




embedded image


when Y1 is other than hydrogen or when Y2 is present, deprotecting the compound of Formula 4A to form a compound of Formula I.


In several embodiments, X is a leaving group selected from —Br, —Cl, —I, —OMs, —OTs, —OTf, —OBs, —ONs, —O-tresylate, or —OPO(OR4)2, wherein each R4 is independently C1-4 alkyl or two of R4 together with the oxygen and phosphorous atoms to which they are attached form a 5-7 membered ring.


Some embodiments comprise converting a compound of Formula 2B




embedded image


into a compound of Formula 2A.


Other embodiments comprising reacting a compound of Formula SA




embedded image


wherein X1 is halo, with a compound of Formula 6A




embedded image


wherein each of R5 and R′5 are independently selected from optionally substituted C1-6 alkyl, or R5 and R′5 taken together with the nitrogen atom to which they are attached form a an optionally substituted 3-7 membered monocyclic heterocyle optionally comprising 1-2 additional heteroatoms selected from N, O, or S to generate a compound of Formula 2B.


Some embodiments comprise halogenating a compound of Formula 7A




embedded image


to form a compound of Formula 5A.


In some embodiments, R5 and R′5 taken together with the nitrogen atom to which they are attached form a ring selected from




embedded image


For instance, R5 and R′5 taken together with the nitrogen atom to which they are attached form




embedded image


In some embodiments, the compound of Formula 7A comprises




embedded image


wherein each of R1 and R3 is independently selected from H, halo, aliphatic, and alkoxy, wherein the aliphatic or alkoxy is optionally substituted with 1-3 of halo; and the compound of Formula 5A comprises




embedded image


wherein X1 is halo. For example, the compound of Formula 7A comprises




embedded image


and the compound of Formula 5A comprises




embedded image


wherein X1 is halo.


In other embodiments, the compound of Formula 5A is treated with a Grignard reagent and reacted with compound of Formula 6A to form a compound of Formula 2B. And, in some examples, the Grignard reagent comprises i-PrMgBr.


In some embodiments, X and X1 are independently selected from —Br and —Cl.


Other embodiments comprise reacting a compound a compound of Formula 7A




embedded image


with a compound of Formula 6A




embedded image


wherein each of R5 and R′5 are independently selected from optionally substituted C1-6 alkyl, or R5 and R′5 taken together with the nitrogen atom to which they are attached form a an optionally substituted 3-7 membered monocyclic heterocyle optionally comprising 1-2 additional heteroatoms selected from N, O, or S, under direct acylation conditions, to generate a compound of Formula 2B.


Some embodiments comprise halogenating a compound of Formula 8A




embedded image


to form a compound of Formula 2A.


And, some embodiments the compound of Formula 8A comprises




embedded image


wherein each of R1 and R3 is independently selected from H, halo, aliphatic, and alkoxy, wherein the aliphatic or alkoxy is optionally substituted with 1-3 of halo; each of R′2 and R2 are independently selected from —H, halo, hydroxy, or optionally substituted aliphatic, alkoxy, —O-acyl, —O-aroyl, —O-heteroaroyl, —O(SO2)NH2, —O—CH(Rm)OC(O)Rn, —O—CH(Rm)OP(O)(ORn)2, —O—P(O)(ORn)2,




embedded image


wherein each Rm is independently C1-6 alkyl, each Rn is independently C1-12 alkyl, C3-8 cycloalkyl, or phenyl, each of which is optionally substituted;


R2 and R′2 together form oxo,


R2 and R′2 together form —O(CH2)nO—, wherein n is 2 or 3, or


R2 and R′2 together form —S(CH2)mS—, wherein m is 2 or 3.


In some embodiments, each of R2 and R′2 is independently selected from —H, —OH, or optionally substituted alkoxy; or R2 and R′2 together form oxo, R2 and R′2 together form —O(CH2)nO—, wherein n is 2 or 3, or R2 and R′2 together form —S(CH2)mS—, wherein m is 2 or 3. For example, R2 and R′2 together form oxo.


In some embodiments, the compound of Formula 8A comprises




embedded image


wherein R1 is selected from a C1-6 alkyl or C1-6 alkoxy, either of which is optionally substituted with 1-3 halo, and R3 is —H or halo. In some examples, R1 is a C1-6 alkoxy optionally substituted with 1-3 halo. In other examples, R1 is selected from methoxy, ethoxy, or propoxy, any of which is optionally substituted with 1-3 halo.


Some embodiments comprise reacting the compound




embedded image


with a compound of Formula 9A




embedded image


wherein ring B is




embedded image


under condensation conditions to form a compound of Formula 10A. In some instances, ring B of Formula 9A is




embedded image


Y1 is PGN, and PGN is a nitrogen protecting group selected from Cbz, Moz, Boc, Fmoc, Ac, Bz, Bn, PMB, DMPM, trityl, or PMP. In other instances, ring B of Formula 9A is




embedded image


and Y1 is hydrogen. In other instances, ring B of Formula 9A is




embedded image


Y2 is PGO, and PGO is an oxygen protecting group selected from —Si(R6)3, optionally substituted alkyl, or optionally substituted alkylcarbonyl, wherein each R6 is independently straight or branched C1-4 alkyl or phenyl. Or, ring B of Formula 9A is




embedded image


Y2 is PGO, and PGO is —Si(R6)3, wherein each R6 is independently selected from methyl, ethyl, propyl, iso-propyl, tert-butyl, or phenyl.


Alternatively, ring B of Formula 9A is




embedded image


Y2 is PGO, and PGO is a C1-6 alkyl or a C1-6 alkylcarbonyl.


IV. EXEMPLARY SYNTHESES

The following synthetic schemes represent example embodiments of the present invention:




embedded image


wherein X and Y1 are defined in Formula I, above.


In several embodiments, starting material is generated according to Scheme 1A, below:




embedded image


wherein X is a leaving group, as defined above in Formula I.


In several embodiments, the starting material is generated according to Scheme 1B, below:




embedded image


wherein X is —Cl.


In several embodiments, the starting material ib is generated according to Scheme 1C, below:




embedded image


wherein Y1 is hydrogen.




embedded image


wherein X and Y1 are defined above in Formula I.


In some embodiments, starting material iia is generated according to Scheme 2A, below:




embedded image


wherein X is —Cl.




embedded image


V. NOVEL COMPOUNDS

Another aspect of the present invention provides novel compounds that are useful in the synthesis of compounds of Formula I. For example, one aspect of the present invention provides a compound of Formula 11A, 12A, or 13A




embedded image


wherein R7 is a C1-6 alkyl optionally substituted with 1-3 halo.


For example, in some embodiments, the compound is one selected from




embedded image


Another aspect of the present invention provides a compound of Formula ib




embedded image


wherein Y1 is defined above in Formula I.


Another aspect of the present invention provides a compound selected from




embedded image


embedded image


V. EXAMPLES
Example 1
Preparation of 5-{4-[2-(3-methoxyphenyl)-2-oxoethoxy]benzyl}-1,3-thiazolidine-2,4-dione



embedded image


To a stirring solution of 5-(4-hydroxybenzyl)thiazolidine-2,4-dione (100 mg, 0.4 mmol) in DMSO (2 ml), potassium tert-butoxide (106 mg, 0.941 mmol) was added. Stirring continued at RT for about 1 hour. 2-Bromo-3′-methoxyacetophenone (100 mg, 0.5 mmol) was then added to the mixture. After 2 hours, LCMS showed that the reaction was complete. The reaction mixture was partitioned between EtOAc and water, and the aqueous phase was extracted with EtOAc. Combined extracts were washed with brine, dried on (Na2SO4), filtered, and evaporated in vacuo. The residue was analyzed on a small RediSep column eluting with 0-10% acetone/DCM. Fractions containing the product were combined and evaporated in vacuo to afford 70 mg of 5-{4-[2-(3-methoxyphenyl)-2-oxoethoxy]benzyl}-1,3-thiazolidine-2,4-dione as a pale yellow solid.













Test
Results







Physical Appearance
Pale yellow solid.



1H NMR Spectrum

δ 12.03 (s, 1H), 7.62 (d, J = 7.67 Hz, 1H),


(400 MHz, DMSO-d4
7.49 (m, 2H), 7.27 (dd, J = 8.19, 2.54 Hz, 1H),



7.15 (d, J = 8.71 Hz, 2H), 6.91 (d, J = 8.5 Hz,



2H), 5.55 (s, 2H), 4.88 (dd, J = 9.12, 4.35 Hz,



1H), 3.83 (s, 3H), 3.31 (m, 1H), 3.05 (dd, J =



14.1, 9.33 Hz, 1H).


HPLC Analysis
Retention time: 3.760 min, 96% at 210 and 99%



at 254 nm.



Agilent 1100 HPLC



Agilent Scalar C18 150 × 4.6 mm 5 micron



column



Solvent A - Water (0.1% TFA)



Solvent B - Acetonitrile (0.07% TFA)



Gradient - 10 min 95% A to 95% B; 5 min hold;



then recycle



UV Detection @ 210 and 254 nm.


Mass Spectrum
Consistent: ES+ 372.0 m/z (M + 1) and ES−



370.0 m/z (M − 1).


Melting Point
183-184° C.









Example 2
Preparation of 2-(4-(hydroxymethyl)phenoxy)-1-(3-methoxyphenyl)ethanone



embedded image


To a stirring solution of 2-bromo-3′-methoxyacetophenone (3.00 g, 13.1 mmol; Supplier=Kalexsyn; Lot=803-TTP-145) in acetone (30 ml) was added 4-hydroxybenzylalcohol (1.69 g, 13.6 mmol) and potassium carbonate (1.88 g, 13.6 mmol). The resulting mixture was stirred at RT overnight. The reaction mixture was partitioned between water and EtOAc, and the aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine, dried (Na2SO4), filtered and evaporated in vacuo. The product was analyzed on a large Biotage column eluting with 50% EtOAc/hexanes. Fractions containing product were combined and evaporated in vacuo to give 2.98 g of the title compound as a white solid.













Test
Results







Physical Appearance
White solid.



1H NMR Spectrum

δ 7.58 (d, J = 7.7 Hz, 1H), 7.53 (m, 1H), 7.42


(400 MHz, CDCl3)
(t, J = 7.9 Hz, 1H), 7.29 (m, 2H), 7.17 (dd,



J = 8.3, 1.7 Hz, 1H), 6.93 (d, J = 8.7 Hz, 2H),



5.28 (s, 2H), 4.62 (s, 2H), 3.87 (s, 3H).


HPLC Analysis
Retention time: 3.339 min, 100% at 210 and



254 nm.



Agilent 1100 HPLC



Agilent Scalar C18 150 × 4.6 mm 5 micron



column



Solvent A - Water (0.1% TFA)



Solvent B - Acetonitrile (0.07% TFA)



Gradient - 10 min 95% A to 95% B; 5 min hold;



then recycle



UV Detection @ 210 and 254 nm.


Mass Spectrum
Consistent: ES+ 273.04 m/z (M + 1).









Example 3
Assays

Assays for Measuring Reduced PPARγ Receptor Activation


Whereas activation of the PPARγ receptor is generally believed to be a selection criteria to select for molecules that may have anti-diabetic and insulin sensitizing pharmacology, this invention finds that activation of this receptor should be a negative selection criterion. Molecules will be chosen from this chemical space because they have reduced, not just selective, activation of PPARγ. The optimal compounds have at least a 10-fold reduced potency as compared to pioglitazone and less than 50% of the full activation produced by rosiglitazone in assays conducted in vitro for transactivation of the PPARγ receptor. The assays are conducted by first evaluation of the direct interactions of the molecules with the ligand binding domain of PPARγ. This can be performed with a commercial interaction kit that measures the direct interaction by florescence using rosiglitazone as a positive control. Further assays can be conducted in a manner similar to that described by Lehmann et al. [Lehmann J M, Moore L B, Smith-Oliver T A: An Antidiabetic Thiazolidinedione is a High Affinity Ligand for Peroxisome Proliferator-activated Receptor (PPAR) J. Biol. Chem. (1995) 270: 12953] but will use luciferase as a reporter as in Vosper et al. [Vosper, H., Khoudoli, G A, Palmer, C N (2003) The peroxisome proliferators activated receptor d is required for the differentiation of THP-1 moncytic cells by phorbol ester. Nuclear Receptor 1:9]. Compound stocks will be dissolved in DMSO and added to the cell cultures at final concentrations of 0.1 to 100 μM and the relative activation will be calculated as induction of the reporter gene (luciferase) as corrected for by the expression of the control plasmid (coding for galactosidase). Pioglitazone and rosiglitazone will be used as reference compounds as described above.


In addition to showing the reduced activation of the PPARγ receptor in vitro, the compounds will not produce significant activation of the receptor in animals. Compounds dosed to full effect for insulin sensitizing actions in vivo (see below) will be not increase activation of PPARγ in the liver as measured by the expression of a P2, a biomarker for ectopic adipogenesis in the liver [Matsusue K, Haluzik M, Lambert G, Yim S-H, Oksana Gavrilova O, Ward J M, Brewer B, Reitman M L, Gonzalez F J. (2003) Liver-specific disruption of PPAR in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest.; 111: 737] in contrast to pioglitazone and rosiglitazone, which do increase a P2 expression under these conditions.


The insulin sensitizing and antidiabetic pharmacology are measured in the KKAY mice as previously reported [Hofmann, C., Lornez, K., and Colca, J. R. (1991). Glucose transport deficiency corrected by treatment with the oral anti-hyperglycemic agent Pioglitazone. Endocrinology, 129:1915-1925.] Compounds are formulated in 1% sodium carboxy methylcellulose, and 0.01% tween 20 and dosed daily by oral gavage. After 4 days of once daily treatment, treatment blood samples are taken from the retro-orbital sinus and analyzed for glucose, triglycerides, and insulin as described in Hofmann et al. Doses of compounds that produce at least 80% of the maximum lowering of glucose, triglycerides, and insulin will not significantly increase the expression of a P2 in the liver of these mice.


Measuring PPARγ Receptor Activation


The ability of several exemplary compounds of the present invention to bind to PPARγ was measured using a commercial binding assay (Invitrogen Corporation, Carlsbad, Calif.) that measures the test compounds ability to bind with PPAR-LBD/Fluormone PPAR Green complex. These assays were performed on three occasions with each assay using four separate wells (quadruplicate) at each concentration of tested compound. The data are mean and SEM of the values obtained from the three experiments. Rosiglitazone was used as the positive control in each experiment. Compounds were added at the concentrations shown, which range from 0.1-100 micromolar.


Glucose, Insulin, and Triglyceride in Diabetic KKAy Mice Treated with Exemplary Compounds of the Present Invention.


The insulin sensitizing and antidiabetic pharmacology are measured in the KKAY mice as previously reported [Hofmann, C., Lornez, K., and Colca, J. R. (1991). Glucose transport deficiency corrected by treatment with the oral anti-hyperglycemic agent Pioglitazone. Endocrinology, 129:1915-1925.]. Compounds are formulated in 1% sodium carboxy methylcellulose, and 0.01% tween 20 and dosed daily by oral gavage. After 4 days of once daily treatment, blood samples are taken from the retro-orbital sinus and analyzed for glucose, triglycerides, and insulin as described in Hofmann et al. Doses of compounds that produce at least 80% of the maximum lowering of glucose, triglycerides, and insulin will not significantly increase the expression of a P2 in the liver of these mice.


Compounds were formulated by suspension and orally dosed to KKAY mice at 93 mg/kg for 4 days. The compounds were first dissolved in DMSO and then placed into aqueous suspension containing 7-10% DMSO, 1% sodium methylcarboxycellulose, and 0.01% Tween 20. On the fifth day, the mice were fasted and blood samples were obtained approximately 18 hours after the last dose. The parameters were measured by standard assay methods. Data are mean and SEM N=6-12 mice.









TABLE A







Assay Results













Cmpd
Glucose
Insulin
TG



Example Description
No.
(Mean/SD)
(Mean/SD)
(Mean/SD)
Glucose





Vehicle A

518
24
284





 59
 5
 36






5-[4-(2-oxo-2- phenylethoxy)benzyl]-1,3- thiazolidine-2,4-dione   embedded image
1
0.71 0.03
0.13 0.02
0.56 0.05
36.5  2.4





5-{4-[2-(4-fluorophenyl)-2- oxoethoxy]benzyl}-1,3- thiazolidine-2,4-dione   embedded image
2
0.61 0.02
0.10 0.02
0.45 0.02
63.7 12.2





5-{4-[2-(2-fluorophenyl)-2- oxoethoxy]benzyl}-1,3- thiazolidine-2,4-dione   embedded image
3
0.64 0.02
0.20 0.07
0.62 0.04
97.9  4.0





5-{4-[2-(3-fluorophenyl)-2- oxoethoxy]benzyl}-1,3- thiazolidine-2,4-dione   embedded image
4
0.62 0.05
0.24 0.05
0.46 0.07
64.8 17.5





5-{4-[2-(3-methoxyphenyl)-2- oxoethoxy]benzyl}-1,3- thiazolidine-2,4-dione   embedded image
5
0.56 0.05
0.22 0.03
0.41 0.06
13.2  0.6





5-{4-[2-(2-methoxyphenyl)-2- oxoethoxy]benzyl)-1,3- thiazolidine-2,4-dione   embedded image
6
0.75 0.04
1.20 0.27
0.80 0.11
76.2  5.6





5-{4-[2-(3-chlorophenyl)-2- oxoethoxy]benzyl}-1,3- thiazolidine-2,4-dione   embedded image
7
0.54 0.03
0.59 0.33
0.43 0.04
74.4  1.4





5-{4-[2-(2-chlorophenyl)-2- oxoethoxy]benzyl}-1,3- thiazolidine-2,4-dione   embedded image
8
1.05 0.03
0.47 0.04
0.97 0.10






5-{4-[2-(4-methoxyphenyl)-2- oxoethoxy]benzyl}-1,3- thiazolidine-2,4-dione   embedded image
9
1.00 0.03
0.76 0.21
0.90 0.06
37.2  5.0









Compound Nos. 1-5 exhibited a plasma insulin level of less than about 5 ng/ml and compound no. 6 exhibited a plasma insulin level between about 15 and 20 ng/ml; compound nos. 1, 2, 3, 4, and 5 exhibited a plasma triglyceride level of between about 100 and 200 mg/dl, and compound no. 6 exhibited a plasma triglyceride level between about 300 and 400 mg/dl; compound nos. 1, 2, 3, 4, and 5 exhibited a plasma glucose level of between about 350 and 425 mg/dl and compound no. 6 exhibited a plasma glucose level between about 450 and 525 mg/dl.


The PPARγ-sparing compounds of this invention will be more effective for the treatment of diseases caused by metabolic inflammation such as diabetes and metabolic syndrome by limiting the side effects attributable to direct and partial activation of nuclear transcription factors.


Because the compounds of the present invention exhibit reduced PPARγ activation, it is anticipated that these compounds are suitable for use in combination with other compounds having antidiabetic activity, such as metformin, DDP-4 inhibitors, or other antidiabetic agents that function by differing mechanisms to augment the actions or secretions of GLP1 or insulin. Specifically because of the reduced PPARγ interaction, these compounds will also be useful for treating dyslipidemia associated with metabolic inflammatory diseases combining particularly well with lipid lowering statins such as atorvastatin or the like. It is also anticipated that the combination of a compound of Formula I and other antidiabetic compounds will be more effective in treating diabetes than combinations with PPAR-activating compounds as they will avoid side effects associated with PPARγ activation that may include volume expansion, edema, and bone loss.


Other Embodiments

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims
  • 1. A process for preparing a compound of Formula I:
  • 2. The process of claim 1, wherein X is a leaving group selected from —Br, —Cl, —I, —OMs, —OTs, —OTf, —OBs, —ONs, —O-tresylate, or —OPO(OR4)2, wherein each R4 is independently C1-4 alkyl or two of R4 together with the oxygen and phosphorous atoms to which they are attached form a 5-7 membered ring.
  • 3. The process of claim 2, further comprising converting a compound of Formula 2B
  • 4. The process of claim 3, further comprising reacting a compound of Formula 5A
  • 5. The process of claim 4, further comprising halogenating a compound of Formula 7A
  • 6. The process of claim 4, wherein R5 and R′5 taken together with the nitrogen atom to which they are attached form a ring selected from
  • 7. (canceled)
  • 8. The process of claim 5, wherein the compound of Formula 7A comprises
  • 9. The process of claim 8, wherein the compound of Formula 7A comprises
  • 10. The process of claim 4, wherein the compound of Formula 5A is treated with a Grignard reagent and reacted with compound of Formula 6A to form a compound of Formula 2B.
  • 11. The process of claim 10, wherein the Grignard reagent comprises i-PrMgBr.
  • 12. The process of claim 4, wherein X and X1 are independently selected from —Br and —Cl.
  • 13. The process of claim 3, further comprising reacting a compound a compound of Formula 7A
  • 14. The process of claim 1, further comprising halogenating a compound of Formula 8A
  • 15. The process of claim 14, wherein the compound of Formula 8A comprises
  • 16. The process of claim 14, wherein each of R2 and R′2 is independently selected from —H, —OH, or optionally substituted alkoxy; or R2 and R′2 together form oxo, R2 and R′2 together form —O(CH2)nO—, wherein n is 2 or 3, or R2 and R′2 together form —S(CH2)mS—, wherein m is 2 or 3.
  • 17. The process of claim 16, wherein R2 and R′2 together form oxo.
  • 18. The process of claim 14, wherein the compound of Formula 2A comprises
  • 19. The process of claim 18, wherein R1 is a C1-6 alkoxy optionally substituted with 1-3 halo.
  • 20. The process of claim 19, wherein R1 is selected from methoxy, ethoxy, or propoxy, any of which is optionally substituted with 1-3 halo.
  • 21. The process of claim 1, further comprising reacting the compound
  • 22. The process of claim 21, wherein ring B of Formula 9A is
  • 23. The process of claim 21, wherein ring B of Formula 9A is
  • 24. The process of claim 21, wherein ring B of Formula 9A is
  • 25. The process of claim 24, wherein ring B of Formula 9A is
  • 26. (canceled)
  • 27. A compound of Formula 11A, 12A, or 13A
  • 28. A compound selected from
  • 29. A compound of Formula ib
  • 30. A compound selected from
  • 31. A process for preparing a compound of Formula I:
  • 32. The process of claim 31, wherein X is a leaving group selected from —Br, —Cl, —I, —OMs, —OTs, —OTf, —OBs, —ONs, —O-tresylate, or —OPO(OR4)2, wherein each R4 is independently C1-4 alkyl or two of R4 together with the oxygen and phosphorous atoms to which they are attached form a 5-7 membered ring.
  • 33. The process of claim 32, further comprising converting a compound of Formula 2B
  • 34. The process of claim 33, further comprising reacting a compound of Formula 5A
  • 35. The process of claim 34, further comprising halogenating a compound of Formula 7A
  • 36. The process of claim 34, wherein R5 and R′5 taken together with the nitrogen atom to which they are attached form a ring selected from
  • 37. (canceled)
  • 38. The process of claim 35, wherein the compound of Formula 7A comprises
  • 39. The process of claim 38, wherein the compound of Formula 7A comprises
  • 40. The process of claim 34, wherein the compound of Formula 5A is treated with a Grignard reagent and reacted with compound of Formula 6A to form a compound of Formula 2B.
  • 41. The process of claim 40, wherein the Grignard reagent comprises i-PrMgBr.
  • 42. The process of claim 34, wherein X and X1 are independently selected from —Br and —Cl.
  • 43. The process of claim 33, further comprising reacting a compound a compound of Formula 7A
  • 44. The process of claim 31, further comprising halogenating a compound of Formula 8A
  • 45. The process of claim 44, wherein the compound of Formula 8A comprises
  • 46. The process of claim 44, wherein each of R2 and R′2 is independently selected from —H, —OH, or optionally substituted alkoxy; or R2 and R′2 together form oxo, R2 and R′2 together form —O(CH2)nO—, wherein n is 2 or 3, or R2 and R′2 together form —S(CH2)mS—, wherein m is 2 or 3.
  • 47. The process of claim 46, wherein R2 and R′2 together form oxo.
  • 48. The process of claim 44, wherein the compound of Formula 8A comprises
  • 49. The process of claim 48, wherein R1 is a C1-6 alkoxy optionally substituted with 1-3 halo.
  • 50. The process of claim 49, wherein R1 is selected from methoxy, ethoxy, or propoxy, any of which is optionally substituted with 1-3 halo.
  • 51. The process of claim 31, further comprising reacting the compound
  • 52. The process of claim 51, wherein ring B of Formula 9A is
  • 53. The process of claim 51, wherein ring B of Formula 9A is
  • 54. The process of claim 51, wherein ring B of Formula 9A is
  • 55. The process of claim 54, wherein ring B of Formula 9A is
  • 56. (canceled)
CROSS-REFERENCE TO RELATED APPLICATION

This PCT application claims priority to U.S. Application No. 61/325,502, filed on Apr. 19, 2010 and U.S. Application No. 61/327,498, filed on Apr. 23, 2010. The entire contents of the aforementioned applications are incorporated herein by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US11/32822 4/18/2011 WO 00 11/28/2012
Provisional Applications (2)
Number Date Country
61325502 Apr 2010 US
61327498 Apr 2010 US