NOVEL TARGETS FOR ENHANCING ANTI-TUMOR IMMUNITY

Abstract
The present disclosure relates to identifying novel tumor immune evasion targets. A CRISPR activation screen was employed to identify novel checkpoint inhibitor targets, where upon upregulation, conferred tumor resistance to cytotoxic T cells in model cancer cell lines. Using MAGeCK and FDR analyses to identify candidate genes that were enriched in cancer cells, B3GNT2, MCL1, BCL2A1 and JUNB were identified as the most enriched after a pathway analysis of the top 576 genes prioritized by MAGeCK. Currently, these four genes have not been identified or suggested as possible checkpoint inhibitor targets. Provided herein are methods of targeting the expression or activity of B3GNT2, MCL1, BCL2A1 and JUNB using small molecule agents and/or gene editing methods with the aim of enhancing anti-tumor immunity in subjects in need thereof.
Description
REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (“BROD-4270WP_ST25.txt”; Size is 18,958 bytes and it was created on Jun. 3, 2022) is herein incorporated by reference in its entirety.


TECHNICAL FIELD

The subject matter disclosed herein is generally directed to methods of enhancing anti-tumor immunity by administering agents that reduce or inhibit the expression or activity of B3GNT2, MCL1, BCL2A1 or JUNB.


BACKGROUND

The cellular processes that govern tumor resistance to immunotherapy remain poorly understood (Chen and Mellman, 2017; Hegde and Chen, 2020; Zaretsky et al., 2016). By harnessing cytotoxic T cells of the immune system to eliminate cancer cells, cancer immunotherapy has transformed the foundation of cancer treatment and achieved notable clinical successes (Reck et al., 2016). Nevertheless, resistance to immunotherapy is a major challenge (Chen and Mellman, 2017; Hegde and Chen, 2020; Zaretsky et al., 2016), and elucidating the cellular pathways that confer resistance is critical for developing alternative and auxiliary strategies to expand the scope of immunotherapy. Small-scale studies have identified a small number of genes, including CD274 (PD-L1), that enable tumors to evade the immune system, and PD-L1 in particular has been the focus of on-going clinical development (Dong et al., 2002; Holmgaard et al., 2013; Sica et al., 2003; Tseng et al., 2013; Wolchok et al., 2013; Zaretsky et al., 2016). More recently, large-scale, loss-of-function genetic screens using CRISPR have identified additional genes that mediate resistance to T cell-induced cytoxicity in the antigen presentation, interferon-γ (IFNγ)-sensing, tumor necrosis factor (TNF), and autophagy pathways (Lawson et al., 2020; Manguso et al., 2017; Pan et al., 2018; Patel et al., 2017; Vredevoogd et al., 2019). However, in loss-of-function screens, candidate genes that can be inhibited to sensitize tumors against immunotherapy are depleted. As depletion screens have a lower dynamic range than enrichment screens (Doench, 2018), a more tractable approach is to perform a gain-of-function screen to enrich for genes that confer resistance upon upregulation (Decker et al., 2019) and could theoretically be inhibited to sensitize tumors against immunotherapy. Applicants therefore performed a genome-scale CRISPR activation (CRISPRa) screen for resistance against T cell cytotoxicity to gain insight into these processes and identify genes that could potentially improve immunotherapy outcomes.


Citation or identification of any document in this application is not an admission that such a document is available as prior art to the present invention.


SUMMARY

In certain example embodiments, are disclosed methods of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents that reduce the expression or activity of B3GNT2.


In an embodiment, the one or more agents are small molecules that bind the active site of B3GNT2 or comprise an allosteric inhibitor of B3GNT2.


In an embodiment, the one or more reagents is a programmable nuclease capable of reducing the expression of B3GNT2. In an embodiment, the one or more agents is a polynucleotide capable of inducing RNAi knockdown of B3GNT2 expression.


In certain example embodiments, are disclosed methods of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents that inhibit poly-N-acetyllactosamine (poly-LacNac) synthesis in tumor cells or reduces poly-LacNac on surface N-glycans. In an embodiment, the one or more agents are small molecule inhibitors of poly-LacNac synthesis selected from the group consisting of benzyl-O—N-acetylgalactosamide (BAG), kifunensine (KIF), tunicamycin, 3′-Azidothymidine (AZT), 2-acetamido-1,3,6-tri-O-acetyl-4-deoxy-4-fluoro-D-glucopyranose (4-F-GlcNac), and deoxymannojirimycin (DMN), whereby poly-LacNac synthesis is inhibited. In an embodiment, the one or more agents comprise an antibody that binds to a tumor-specific surface marker and is linked to an enzyme capable of cleaving poly-LacNac. In an embodiment, the enzyme is selected from the group consisting of endo H, endo F2, endo F3, peptide:N-glycosidase F (PNGase F), endo D, O-glycosidase, endo-b-galactosidase, sialidase and O-sialoglycoprotease.


In certain example embodiments, are disclosed methods of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents capable of inhibiting the expression or activity of MCL1. In an embodiment, the one or more agents increase the expression of one or more genes selected from the group consisting of BID, PMAIP1 (NOXA), BAX, BAK, BIM, BAD and PUMA. In an embodiment, the one or more agents is a small molecule selected from the group consisting of S63845, MIK665/S64315, AT101 (R-(−)-gossypol), TW-37, Gambogic acid, Sabutoclax (BI-97C1), Marinopyrrole A (maritoclax), UMI-77, A-1210477, Fesik's compounds, AMG176, AZD5991, Flavopiridol, Roscovitine, CR8, Voruciclib (P1446A-05), Cardiac glycoside, UNBS1450, Benzyl isothiocyanate, BAY43-9006, BAY1251152, BEZ235, AZD4573, AZD8055, SNS-032, dinaciclib, Arsenic trioxide Bufalin, and analogues thereof.


In an embodiment, the one or more agents is a programmable nuclease capable of reducing MCL1 activity. In an embodiment, the one or more agents is a polynucleotide capable of inducing RNAi knock down of MCL1 expression.


In certain example embodiments, is disclosed a method of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents capable of inhibiting the expression or activity of BCL2A1. In an embodiment, the one or more agents increase the expression of one or more genes selected from the group consisting of BID, PMAIP1 (NOXA), BAX, BAK, BIM, BAD and PUMA. In an embodiment, the one or more agents is a small molecule selected from the group consisting of AT101 (R-(−)-gossypol), TW-37, Gambogic acid, Sabutoclax (BI-97C1) and Marinopyrrole A (maritoclax). In an embodiment, the one or more agents is a programmable nuclease capable of reducing BCL2A1 expression or activity. In an embodiment, the one or more agents is a polynucleotide capable of inducing RNAi knock down of BCL2A1 expression.


In certain example embodiments, is disclosed a method of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents capable of inhibiting the expression or activity of JUNB. In an embodiment, the one or more agents is a dominant-negative JUNB protein or vector encoding the same. In an embodiment, wherein the one or more agents is a small molecule selected from the group consisting of curcumin, SP100030, SPC-839, T-5224, K1115A, momordin I, isosteviol and analogues thereof. In an embodiment, the one or more agents is a programmable nuclease capable of reducing JUNB expression or activity. In an embodiment, the one or more agents is a polynucleotide capable of inducing RNAi knock down of JUNB expression. In an embodiment, the one or more agents is capable of inhibiting the expression or activity of one or more downstream targets of JUNB selected from Table 5 or Table 6.


In certain example embodiments, the method disclosed herein further comprises administering an immunotherapy in combination with the one or more agents described above.


In an embodiment, the immunotherapy comprises adoptive cell transfer. In an embodiment, adoptive cell transfer comprises the administration of CAR (chimeric antigen receptor) T cells or natural killer cells, T cells expressing a T cell receptor (TCR) specific for a tumor antigen, or tumor infiltrating lymphocytes (TILs).


In an embodiment, the immunotherapy comprises checkpoint blockade (CPB) therapy. In an embodiment, the checkpoint blockade therapy comprises anti-CTLA4, anti-PD-L1, anti-PD1, anti-TIM3, anti-TIGIT, anti-LAG3, or combinations thereof.


In an embodiment, the subject is treated with an immunotherapy followed by the one or more agents described above. In an embodiment, the subject is treated with an immunotherapy followed by the one or more agents and an immunotherapy.


In an embodiment, the programmable nuclease is selected from the group consisting of a CRISPR system, a zinc finger nuclease, a TALE, or a meganuclease.


In certain example embodiments, is disclosed a method of monitoring the efficacy of an immunotherapy comprising detecting the expression of one or more genes selected from the group consisting of MCL1, BCL2A1, JUNB and B3GNT2 in a subject treated with an immunotherapy, wherein the subject is a non-responder to the immunotherapy if the one or more genes are upregulated after being treated. In an embodiment, the expression is detected at two or more time points during treatment, wherein a trend of increasing expression of the one or more genes indicates a poor outcome and/or a non-responder. In an embodiment, disclosed herein is a method of administering a treatment as described above if a poor outcome and/or a non-responder is indicated.


In certain example embodiments, is disclosed a method of treating a cancer in a subject in need thereof comprising determining if the patient is an immunotherapy responder or non-responder by detecting in a tumor obtained from the subject the expression or activity of one or more genes selected from candidate genes in Table 2, wherein if the expression of the one or more genes is higher than a reference value the subject is an immunotherapy non-responder and if the one or more genes is lower than a reference value then the subject is an immunotherapy responder; and if the subject is an immunotherapy non-responder, treating the subject using the method of any embodiment for enhancing an anti-tumor immune response herein; and if the subject is an immunotherapy responder, treating the subject with an immunotherapy.


In certain embodiments, is disclosed a method wherein the detecting comprises evaluating the expression or activity of 500 to 575 genes, of 400 to 500 genes, of 300 to 400 genes, of 200 to 300 genes, of 100 to 200 genes, of 50 to 100 genes, of 25 to 50 genes, of 10 to 25 genes, of 5 to 10 genes or of 1 to 5 genes selected from candidate genes in Table 2, wherein if the expression of the one or more genes is higher than a reference value the subject is an immunotherapy non-responder and if the one or more genes is lower than a reference value then the subject is an immunotherapy responder; and if the subject is an immunotherapy non-responder, treating the subject using the method of any embodiment for enhancing an anti-tumor immune response herein; and if the subject is an immunotherapy responder, treating the subject with an immunotherapy.


In certain embodiments, is disclosed a method wherein the detecting comprises evaluating the expression or activity of 1 to 5 genes selected from candidate genes in Table 2, wherein if the expression of the genes is higher than a reference value the subject is an immunotherapy non-responder and if the 1 to 5 genes is lower than a reference value then the subject is an immunotherapy responder; and if the subject is an immunotherapy non-responder, treating the subject using the method of any embodiment for enhancing an anti-tumor immune response herein; and if the subject is an immunotherapy responder, treating the subject with an immunotherapy. In certain embodiments, the one or more genes comprise B3GNT2, MCL1, BCL2A, JUNB, or a combination thereof.


In certain example embodiments, is disclosed a method of screening for agents capable of decreasing poly-LacNAc on tumor cells comprising a) contacting a population of tumor cells having upregulated B3GNT2 with an agent and b) detecting binding of one or more proteins to the tumor cells selected from the group consisting of CD2, 4-1BB, TREML2 (TLT2), NKG2D, and an antibody specific for an HLA class I bound tumor antigen, wherein increased binding indicates reduced poly-LacNAc. In an embodiment, the one or more proteins are labeled with a detectable marker.


In an example embodiment, is disclosed a method of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents capable of inhibiting the expression or activity of one or more targets selected from Table 1 or Table 3.


In certain example embodiments, is disclosed a T cell that expresses an enzyme capable of cleaving poly-LacNac on the T cell surface.


In an embodiment, the enzyme is selected from the group consisting of endo H, endo F2, endo F3, peptide:N-glycosidase F (PNGase F), endo D, O-glycosidase, endo-β-galactosidase, sialidase and O-sialoglycoprotease. In an embodiment, a method is disclosed of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject the T cell that expresses an enzyme capable of cleaving poly-LacNac on the T cell surface. These and other aspects, objects, features, and advantages of the example embodiments will become apparent to those having ordinary skill in the art upon consideration of the following detailed description of example embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

An understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention may be utilized, and the accompanying drawings of which:



FIG. 1 (A-K)— Establishing a genome-scale CRISPR activation screen for resistance to T cell cytotoxicity. (FIG. 1A) Percent indels generated by different CRISPR knockout (KO) sgRNAs targeting CTAG1A/B genes that encode for the NY-ESO-1 antigen. N=3. (FIG. 1B-C) Cell survival of NY-ESO-1+ and HLA-A2 A375 melanoma cells with different (TAG1A/B KO sgRNAs that were co-cultured with T cells expressing the NY-ESO-1 T cell receptor (ESO T cells) relative to cells that have not been exposed to T cells (B) or cells co-cultured with unmodified T cells (C). N=8. NT, non-targeting. Percent survival at different effector to target (E:T) ratios were measured. (FIG. 1D-K) Results of the acute and chronic exposure screens showing normalized sgRNA counts as counts per million (CPM; D-E), sgRNA enrichment in the ESO T cell condition relative to control (F-G), gene enrichment determined by the average sgRNA enrichment (H-I), and MAGeCK analysis P-values (J-K). The two most enriched genes from each screening strategy are highlighted in red. All values are mean±s.e.m. ****P<0.0001; ***P<0.001; *P<0.05; ns, not significant.



FIG. 2 (A-F)—Genome-scale CRISPR activation screen identifies four candidate genes that confer resistance to T cell cytotoxicity. (FIG. 2A) Schematic of the CRISPRa screen. NY-ESO-1+ and HLA-A2+ A375 melanoma cells were transduced with the pooled sgRNA library targeting more than 23,000 coding isoforms. A375 cells were exposed to primary CD4+ and CD8+ T cells expressing the T cell receptor (TCR) specific for the NY-ESO-1 antigen. Deep sequencing identified candidate genes. (FIG. 2B) Average MAGeCK analysis P-values for the acute and chronic exposure screens. Top candidate genes are annotated and the two most enriched genes from each screening strategy are highlighted in red. (FIG. 2C) Most significant pathways enriched among the 576 candidate genes. (FIG. 2D) Heatmap showing Pearson's correlation between expression of the top four candidate genes and cytolytic activity across patient tumors from TCGA. Only significant (FDR<0.05) correlations are shown. (FIG. 2E) Box plots showing single-sample Gene Set Enrichment Analysis (ssGSEA) (Barbie et al., 2009) of 576 candidate genes in 310 patient tumor samples (Auslander et al., 2018; Braun et al., 2020; Gide et al., 2019; Hugo et al., 2016; Pender et al., 2021; Riaz et al., 2017). (FIG. 2F) Cell survival of A375 cells transduced with ORFs encoding candidate genes against ESO T cell cytotoxicity at different effector to target (E:T) ratios. Cell survival was measured using a luminescent cell viability assay and normalized to paired control cells that were not cultured with T cells. T cells were derived from donors used in the CRISPRa screen. All values are mean±s.e.m. with n=12. ****P<0.0001.



FIG. 3 (A-H)—Validation of four candidate genes for resistance to T cell cytotoxicity. (FIG. 3A) Heatmap showing Pearson's correlation between cytolytic activity and expression of the top 576 candidate genes across patient tumors from TCGA. Only significant (FDR<0.05) correlations are shown. (FIG. 3B) Number of candidate genes with significant (FDR<0.05) positive or negative Pearson's correlation across patient tumors from TCGA. (FIG. 3C-D) Heatmaps showing significant Pearson's correlations between cytolytic activity and expression of 291 negative control housekeeping genes (FIG. 3C), or four positive control genes known to promote resistance upon overexpression (FIG. 3D) across patient tumors from TCGA. (FIG. 3E-F) Average MAGeCK analysis P-values of genes that promote A375 cell growth (FIG. 3E) or death (FIG. 3F) determined by comparing the distribution of sgRNAs in the CRISPRa screen control conditions to the initial sgRNA library. (FIG. 3G) Enrichment of CRISPR activation sgRNAs targeting each candidate gene for different screening biological replicates (bioreps). (FIG. 3H) T cell cytotoxicity resistance (n=12) and transcriptional upregulation (n=4) in A375 cells upon CRISPR activation of candidate genes. NT, non-targeting. All values are mean±s.e.m. ****P<0.0001; ***P<0.001; **P<0.01; ns, not significant.



FIG. 4 (A-E)—Relevance of top four candidate genes in patient tumors. (FIG. 4A) Box plots showing expression of candidate genes in TCGA datasets for 31 types of human cancers. Genes that were significantly differentially expressed between tumor and matched with normal tissues are indicated. (FIG. 4B) Copy number variation of candidate genes represented as percent of cases for each type of cancer in TCGA. (FIG. 4C) Comparison of candidate gene expression and clinical response to anti-PD-1 treatment using patient data from the Hugo et al. dataset (Hugo et al., 2016). Mean±s.e.m. is shown. (FIG. 4D) Comparison of candidate gene expression before (pre) and after (post) anti-PD-1 treatment and clinical response using patient data from the Riaz et al. dataset (Riaz et al., 2017). *P<0.05. (FIG. 4E) Pearson's correlation between candidate gene expression and cytolytic score (Rooney et al., 2015) prior to treatment using patient data from Riaz et al. (Riaz et al., 2017).



FIG. 5 (A-E) Candidate gene overexpression mediates resistance in other cell types and in vivo. (FIG. 5A) Cell survival against ESO T cell cytotoxicity of H1793 (NY-ESO-1+, HLA-A2) non-small cell lung adenocarcinoma transduced with HLA-A2 and ORFs encoding candidate genes. N=12. (FIG. 5B) Heatmap summarizing results from ESO T cell cytotoxicity assays for 8 cell lines derived from different tissues. Each value represents significance of the difference between survival of each ORF and GFP control. (FIG. 5C) Schematic of the in vivo experiments to test the response of A375 xenografts overexpressing candidate genes to adoptive cell transfer (ACT) in NSG mice. (FIG. 5D-E) Tumor growth in mice receiving ACT of ESO T cells. Tumor volume (FIG. 5D) and overall host survival (FIG. 5E) are shown. Data is representative of two independent experiments. N=12. All values are mean±s.e.m. ****P<0.0001; ***P<0.001; **P<0.01



FIG. 6 (A-H)—Candidate genes mediate resistance to T cell cytotoxicity across different co-culture conditions. (FIG. 6A) Cell survival against ESO T cell-mediated cytotoxicity in A375 cells overexpressing candidate gene ORFs. T cells were derived from donors that were not used in the CRISPRa screen. n=8. (FIG. 6B) Cell survival against ESO T cell-mediated cytotoxicity in A375 cells overexpressing candidate gene ORFs over time. Viability was measured using an alternative assay based on secreted Gaussia luciferase. n=8. (FIG. 6C) Growth of A375 cells overexpressing candidate gene ORFs in the absence of ESO T cell co-culture over time measured using secreted Gaussia luciferase. Data was fitted using the Malthusian exponential growth Y(t)=Yoekt, with 1=time, Y=luminescence, k=growth rate. The growth rates were compared using the extra sum-of-squares F test. n=8. (FIG. 6D) Growth of A375 cells overexpressing candidate gene ORFs in the absence of ESO T cell co-culture measured using a luminescent cell viability assay from 5 independent experiments with n=44. (FIG. 6E) Dox-induction of candidate genes in A375 cells. Cell survival against ESO T cell cytotoxicity (n=8) and candidate gene expression relative to ACTB control (n=4) were measured at different Dox concentrations. (FIG. 6F) Expression of candidate genes in 1,019 cell lines from the Cancer Cell Line Encyclopedia (Barretina et al., 2012). Expression in A375 cells and the expression threshold above which the candidate gene conferred resistance to T cell cytotoxicity in A375 cells are indicated. The percentage of cell lines with gene expression above the resistance threshold is shown. (FIG. 6G) Cell survival of A375 cells overexpressing candidate genes against CD4+, CD8+, or CD4+ and CD8+ T cell cytotoxicity. n=8. (FIG. 6H) Cell survival of A375 cells overexpressing candidate genes against T cells expressing the AXL chimeric antigen receptor (CAR). n=8. All values are mean±s.e.m. ****P<0.0001; ***P<0.001; **P<0.01; *P<0.05; ns, not significant.



FIG. 7 (A-J)—Candidate genes mediate resistance to T cell cytotoxicity in other cell types and in vivo. (FIG. 7A) Expression level of the NY-ESO-1 antigen represented as the average expression of CTAG1A and CTAG1B genes. RNA-seq expression data for each cell line was obtained from the Cancer Cell Line Encyclopedia (Barretina et al., 2012). (FIG. 7B-G) Resistance to ESO T cell-mediated cytotoxicity in SW1417 (NY-ESO-1, HLA-A2) colorectal adenocarcinoma (FIG. 7B), OAW28 (NY-ESO-1+, HLA-A2) ovarian cystadenocarcinoma (C), H1299 (NY-ESO-1+, HLA-A2) non-small cell lung carcinoma (FIG. 7D), A2058 (NY-ESO-1, HLA-A2) melanoma (FIG. 7E), LN-18 (NY-ESO-1+, HLA-A2+) glioblastoma (FIG. 7F), or SK-N-AS (NY-ESO-1+, HLA-A2) neuroblastoma (FIG. 7G) cell lines. Cell lines that did not endogenously express HLA-A2 or NY-ESO-1 were transduced with the respective constructs. n=8 (B, C, E) or 12 (D, F, G). (FIG. 7H) Heatmap showing average expression (n=4) relative to ACTB of candidate genes in various cell lines overexpressing the ORF or GFP. (FIG. 7I-J) Tumor growth in control mice that did not receive adoptive cell transfer (ACT). Tumor volume (FIG. 7I) and overall survival (FIG. 7J) are shown. n=6. All values are mean±s.e.m. ****P<0.0001; ***P<0.001; **P<0.01; *P<0.05; ns, not significant.



FIG. 8 (A-D)—Effect of candidate gene overexpression on the transcriptome and IFNγ pathways. (FIG. 8A) Volcano plots showing transcriptome changes measured by RNA-seq in A375 cells overexpressing candidate genes. The number of genes that were significantly differentially expressed with P-value≥0.01 FDR correction are indicated. Out of these genes, those with |log2(fold change)|≥1 are shown as red dots and the number of genes is indicated in parentheses. n=3. (FIG. 8B) T cell cytotoxicity resistance (n=8) and transcriptional upregulation (n=4) in A375 cells overexpressing N- or C-terminal FLAG tagged (N-FLAG or C-FLAG respectively) JUNB or B3GNT2. (FIG. 8C) IFNγ measured by ELISA in cell culture media of ESO T cells co-cultured with A375 cells overexpressing candidate genes. n=16. (FIG. 8D) Western blots of phosphorylated or total STAT1 in A375 cells overexpressing candidate genes that have been exposed to different concentrations of IFNγ. All values are mean±s.e.m. ****P<0.0001; ***P<0.001; **P<0.01; *P<0.05; ns, not significant.



FIG. 9 (A-G)—MCL1 and JUNB mediate resistance to FasL- and TRAIL-induced cell death through the mitochondrial apoptosis pathway. (FIG. 9A) Caspase 8 activity measured using a colorimetric cleavage assay in A375 cells overexpressing candidate genes after treating with 500 ng/μL of FasL or TRAIL for 3 hours. N=3. (FIG. 9B) Dox-induction of genes in the mitochondrial apoptosis pathway in A375 cells overexpressing MCL1 or GFP. Cell survival against ESO T cell cytotoxicity (n=8) and expression of MCL1 interaction partners (n=4) were measured at different Dox concentrations. (FIG. 9C) Histograms showing expression of cell surface Fas or TRAIL receptor, FAS or TNFRSF10B, measured by antibody staining and flow cytometry in A375 cells overexpressing candidate genes. N=3. (FIG. 9D) Cell survival against 500 ng/μL of FasL- or TRAIL-induced cell death in A375 cells overexpressing JUNB or GFP with BCL2A1 knocked down. N=4. KD, knockdown. NT, non-targeting. (FIG. 9E) RNA-seq expression of NF-κB pathway genes overlapping JUNB ChIP-seq measured as fold change in A375 cells overexpressing JUNB relative to GFP control. N=3. (FIG. 9F) Western blots of phosphorylated or total p65 (RELA) protein in A375 cells overexpressing candidate genes. (FIG. 9G) Schematic describing the pathways MCL1 and JUNB are involved in to mediate resistance to T cell cytotoxicity. All values are mean±s.e.m. ****P<0.0001; ***P<0.001; **P<0.01; *P<0.05; ns, not significant.



FIG. 10 (A-F)—MCL1 and JUNB mediate survival by resisting FasL- and TRAIL-induced cytotoxicity. (FIG. 10A) Cell survival of A375 cells overexpressing candidate genes against different concentrations of FasL, TRAIL, or TNFα. N=4. (FIG. 10B) Western blots showing Caspase 8 cleavage products in A375 cells overexpressing candidate genes after treating with 500 ng/μL of FasL or TRAIL for 3 hours. (FIG. 10C) Dox-induction of different RefSeq isoforms of genes in the mitochondrial apoptosis pathway in A375 cells overexpressing MCL1. Cell survival against ESO T cell-induced cytotoxicity (n=8) and expression (n=4) of MCL1 interaction partners were measured at different Dox concentrations. (FIG. 10D) Expression of BCL2A1 in A375 cells overexpressing JUNB or B3GNT2 with BCL2A1 knocked down. N=4. KD, knockdown. NT, non-targeting. (FIG. 10E) Cell survival against 125 ng/μL of FasL- or TRAIL-induced cell death in A375 cells overexpressing JUNB or GFP with BCL2A1 knocked down. N=4. (FIG. 10F) Cell survival against ESO T cells in A375 cells overexpressing JUNB or GFP with BCL2A1 knocked down. N=8. All values are mean±s.e.m. ****P<0.0001; ***P<0.001; **P<0.01; *P<0.05; ns, not significant.



FIGS. 11 (A-F)—B3GNT2 adds poly-LacNAc to tumor ligands and receptors to promote tumor immune evasion. (FIG. 11A) Intra- and extra-cellular poly-LacNAc measured by tomato lectin staining in A375 cells overexpressing B3GNT2 or GFP that were treated with different concentrations of kifunensine or benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside (BAG) glycosylation inhibitors. N=3. (FIG. 11B) Cell survival against T cell cytotoxicity (top) and T cell IFNγ secretion (bottom) in A375 cells overexpressing B3GNT2 or GFP that have been treated with different concentrations of BAG at E:T ratio of 3. N=6. (FIG. 11C-D) Western blots of different tumor ligands and receptors that interact with T cells in A375 cells overexpressing candidate genes. For a subset of the ligands and receptors that were potentially glycosylated (D), enzymatic deglycosylation was performed to confirm presence of N- or O-glycosylation. (FIG. 11E) Western blots of tumor cell surface ligands and receptors that interact with T cells in SW1417 colorectal adenocarcinoma cells. Cells were treated with kifunensine (KIF) or BAG to remove N- or O-glycosylation respectively. (FIG. 11F) Co-IP of N- or C-terminal FLAG tagged (N-FLAG or C-FLAG) B3GNT2 followed by Western blot for different B3GNT2 target proteins. 2% of the input and IgY IP controls are shown. All values are mean±s.e.m. ****P<0.0001; **P<0.01; *P<0.05; ns, not significant.



FIGS. 12 (A-D)—B3GNT2 disrupts ligand-receptor interactions between tumor and T cells. (FIG. 12A) Cell survival against T cell cytotoxicity (top) and T cell IFNγ secretion (bottom) in A375 cells overexpressing B3GNT2 or GFP that have been treated with different concentrations of kifunensine at E:T ratio of 3. N=6. (FIG. 12B) Western blots of tumor cell surface ligands and receptors that interact with T cells in A375 cells overexpressing B3GNT2 or GFP. Cells were treated with kifunensine (KIF) or benzyl 2-acetamido-2-deoxy-α-D-galactopyranoside (BAG) to remove N- or O-glycosylation respectively. (FIG. 12C) Histograms showing binding of recombinant T cell proteins to A375 cells measured by flow cytometry. A375 cells were overexpressing GFP or B3GNT2 and treated with KIF or BAG. N=3. (FIG. 12D) Schematic showing the tumor cell surface ligands and receptors modified by B3GNT2 to disrupt interactions with T cells that mediate cytotoxicity. All values are mean±s.e.m. ****P<0.0001; ***P<0.001; **P<0.01; *P<0.05; ns, not significant.



FIG. 13 (A-J)—Inhibition of candidate genes increases susceptibility of tumors to T cell killing upon knockdown. (FIG. 13A) Heatmap showing expression of candidate genes in different cell lines transduced with CRISPR knockdown (KD) sgRNAs relative to non-targeting (NT) sgRNAs. N=4. (FIG. 13B) Percent indels generated by different CRISPR knockout (KO) sgRNAs targeting candidate genes in A375 melanoma and SW1417 colorectal adenocarcinoma cells. N=3. (FIG. 13C-H) Cell survival against T cell-mediated cytotoxicity with different candidate genes knocked down (C-E) or knocked out (F-H). Cell lines that did not endogenously express HLA-A2 or NY-ESO-1 were transduced with the respective constructs. N=8. c, SW1417 (NY-ESO-1, HLA-A2) colorectal adenocarcinoma against ESO T cells. (FIG. 13D) A375 (NY-ESO-1+, HLA-A2+) melanoma against ESO T cells. (FIG. 13E) OAW28 (NY-ESO-1+, HLA-A2) ovarian cystadenocarcinoma against ESO T cells. (FIG. 13F) SW1417 (HER2+) colorectal adenocarcinoma against HER2 CAR T cells. (FIG. 13G) SW1417 (NY-ESO-1, HLA-A2) colorectal adenocarcinoma against ESO T cells. (FIG. 13H) A375 (NY-ESO-1+, HLA-A2+) melanoma against ESO T cells. (FIG. 13I-J) Cell survival against T cell cytotoxicity in tumor cells treated with small molecule inhibitors targeting MCL1 (S63845 and AZD5991) or B3GNT2 (kifunensine). N=8. (FIG. 13I) A375 (NY-ESO-1+, HLA-A2+) melanoma against ESO T cells. (FIG. 13J) CCLF_MELM_0011 T (HER2+) primary patient-derived melanoma model against HER2 CAR T cells. All values are mean±s.e.m. ****P<0.0001; ***P<0.001; **P<0.01; *P<0.05; ns, not significant.



FIGS. 14 (A-H)—B3GNT2 overexpression disrupts binding of T cell ligands and receptors to tumor cells. (FIG. 14A) Histograms showing binding of various T cell ligands or receptor proteins to A375 cells overexpressing candidate genes measured by flow cytometry. (FIG. 14B) Histogram showing binding of an antibody specific for HLA-A2:NY-ESO-1 to A375 cells overexpressing B3GNT2 or GFP that have been treated with kifunensine (KIF). (FIG. 14C) Percent indels generated by different CRISPR knockout (KO) sgRNAs targeting 4-1BBL (TNFSF9) in A375 cells. (FIG. 14D) Protein expression of 4-1BBL after CRISPR KO. (FIG. 14E) Histogram showing binding of 4-1BB to A375 cells with different KO sgRNAs targeting 4-1BBL. (FIG. 14F) CD276 expression in A375 cells with different CRISPR knockdown (KD) sgRNAs. (G) Protein expression of CD276 after CRISPR KD. (FIG. 14H) Histogram showing binding of TREML2 to A375 cells with different KD sgRNAs targeting CD276. All values are mean±s.e.m. with n=3. NT, non-targeting; ****P<0.0001; ***P<0.001; **P<0.01; *P<0.05; ns, not significant.



FIG. 15 (A-E)—Inhibition of candidate genes sensitizes tumors to T cell cytotoxicity. (FIG. 15A) Cell survival against HER2 CAR T cell cytotoxicity in SW1417 (HER2+) colorectal adenocarcinoma with different candidate genes knocked down using CRISPRi and 2 sgRNAs per gene. KD, knockdown. NT, non-targeting. (FIG. 15B-E) Cell survival against T cell cytotoxicity in tumor cells treated with MCL1 or B3GNT2 small molecule inhibitors, S63845 and kifunensine respectively. (FIG. 15B) A375 (NY-ESO-1+, HLA-A2*) melanoma against ESO T cells. (FIG. 15C) SW1417 (HER2+) colorectal adenocarcinoma against HER2 CAR T cells. (FIG. 15D) CCLF_MELM_0011_T (AXL+) primary patient-derived melanoma model against AXL CAR T cells. (FIG. 15E) CCLF_PANC_0014_T (HER2+) primary patient-derived pancreatic adenocarcinoma against HER2 CAR T cells. All values are mean±s.e.m with n=8. ****P<0.0001; ***P<0.001; **P<0.01; *P<0.05; ns, not significant.





The figures herein are for illustrative purposes only and are not necessarily drawn to scale.


DETAILED DESCRIPTION OF THE EXAMPLE EMBODIMENTS
General Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. Definitions of common terms and techniques in molecular biology may be found in Molecular Cloning: A Laboratory Manual, 2nd edition (1989) (Sambrook, Fritsch, and Maniatis); Molecular Cloning: A Laboratory Manual, 4th edition (2012) (Green and Sambrook); Current Protocols in Molecular Biology (1987) (F. M. Ausubel et al. eds.); the series Methods in Enzymology (Academic Press, Inc.): PCR 2: A Practical Approach (1995) (M. J. MacPherson, B. D. Hames, and G. R. Taylor eds.): Antibodies, A Laboratory Manual (1988) (Harlow and Lane, eds.): Antibodies A Laboratory Manual, 2nd edition 2013 (E. A. Greenfield ed.); Animal Cell Culture (1987) (R.I. Freshney, ed.); Benjamin Lewin, Genes IX, published by Jones and Bartlet, 2008 (ISBN 0763752223); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0632021829); Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 9780471185710); Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N. Y. 1992); and Marten H. Hofker and Jan van Deursen, Transgenic Mouse Methods and Protocols, 2nd edition (2011).


As used herein, the singular forms “a”, “an”, and “the” include both singular and plural referents unless the context clearly dictates otherwise.


The term “optional” or “optionally” means that the subsequent described event, circumstance or substituent may or may not occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.


The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within the respective ranges, as well as the recited endpoints.


The terms “about” or “approximately” as used herein when referring to a measurable value such as a parameter, an amount, a temporal duration, and the like, are meant to encompass variations of and from the specified value, such as variations of +/−10% or less, +/−5% or less, +/−1% or less, and +/−0.1% or less of and from the specified value, insofar such variations are appropriate to perform in the disclosed invention. It is to be understood that the value to which the modifier “about” or “approximately” refers is itself also specifically, and preferably, disclosed.


As used herein, a “biological sample” may contain whole cells and/or live cells and/or cell debris. The biological sample may contain (or be derived from) a “bodily fluid”. The present invention encompasses embodiments wherein the bodily fluid is selected from amniotic fluid, aqueous humour, vitreous humour, bile, blood serum, breast milk, cerebrospinal fluid, cerumen (earwax), chyle, chyme, endolymph, perilymph, exudates, feces, female ejaculate, gastric acid, gastric juice, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sebum (skin oil), semen, sputum, synovial fluid, sweat, tears, urine, vaginal secretion, vomit and mixtures of one or more thereof. Biological samples include cell cultures, bodily fluids, cell cultures from bodily fluids. Bodily fluids may be obtained from a mammal organism, for example by puncture, or other collecting or sampling procedures.


The terms “subject,” “individual,” and “patient” are used interchangeably herein to refer to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets. Tissues, cells and their progeny of a biological entity obtained in vivo or cultured in vitro are also encompassed.


Various embodiments are described hereinafter. It should be noted that the specific embodiments are not intended as an exhaustive description or as a limitation to the broader aspects discussed herein. One aspect described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced with any other embodiment(s). Reference throughout this specification to “one embodiment”, “an embodiment,” “an example embodiment,” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” or “an example embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention. For example, in the appended claims, any of the claimed embodiments can be used in any combination.


All publications, published patent documents, and patent applications cited herein are hereby incorporated by reference to the same extent as though each individual publication, published patent document, or patent application was specifically and individually indicated as being incorporated by reference.


Overview

Embodiments disclosed herein provide novel gene targets, B3GNT2, MCL1, BCL2A1 and JUNB, which when overexpressed, enabled tumor cells to evade killing by cytotoxic T cells. These four gene targets have not heretofore been associated with immune evasion or to confer resistance to diverse cancer cell types and mouse xenografts. The importance of immune evasion by tumors is exemplified by the introduction and success of T cell targeted immunomodulators blocking the immune checkpoints CTLA-4 and PD1 or PDL1 (immune checkpoint inhibitors (ICI)). Anti-PD1/PDL1 antibodies have become some of the most widely prescribed anti-cancer therapies. T-cell-targeted immunomodulators are now used as single agents or in combination with chemotherapies as first or second lines of treatment for about 50 cancer types. Thus, immunotherapy leads the field in cancer research owing to the clinical success of ICI and the need to identify additional immune evasion targets is greater than ever.


In one aspect, embodiments disclosed herein are directed to methods of enhancing anti-tumor immunity by administering one or more agents that reduce the expression or activity of B3GNT2. In another aspect, embodiments disclosed herein are directed to methods of enhancing anti-tumor immunity by administering one or more agents that inhibit poly-N-acetyl-lactosamine (poly-LacNAc) synthesis in tumor cells, or by reducing poly-LacNac on surface N-glycans. In another aspect, embodiments disclosed herein are directed to methods of enhancing anti-tumor immunity by administering one or more agents capable of inhibiting the expression or activity of MCL1. In another aspect, embodiments disclosed herein are directed to methods of enhancing anti-tumor immunity by administering one or more agents that reduce the expression or activity of BCL2A1. In another aspect, embodiments disclosed herein are directed to methods of enhancing anti-tumor immunity by administering one or more agents that reduce the expression or activity of JUNB.


In another aspect, the therapeutic methods disclosed above may be administered in combination with an immunotherapy. In one example embodiment, the immunotherapy may comprise adoptive cell transfer of immune cells specific for a tumor. In one example embodiment, the cell transfer comprises the administration of CAR (chimeric antigen receptor) T cells or natural killer cells, T cells expressing a T cell receptor (TCR) specific for a tumor antigen, or tumor infiltrating lymphocytes (TILs). In one example embodiment, the immunotherapy comprises checkpoint blockade (CPB) therapy. In one example embodiment, the checkpoint blockade therapy comprises anti-CTLA4, anti-PD-L1, anti-PD1, anti-TIM3, anti-TIGIT, anti-LAG3, or combinations thereof.


In another aspect, embodiments disclosed herein are directed to methods of monitoring the efficacy of an immunotherapy comprising detecting the expression of one or more genes selected from the group consisting of B3GNT2, MCL1, BCL2A1, and JUNB in a subject treated with an immunotherapy, wherein the subject is a non-responder to the immunotherapy if the one or more genes are upregulated after being treated.


In another aspect, embodiments disclosed herein are directed to methods of screening for agents capable of decreasing poly-LacNac on tumor cells comprising a) contacting a population of tumor cells having upregulated B3GNT2 with an agent; and b) detecting binding of one or more proteins to the tumor cells selected from the group consisting of CD2, 4-1BB, TREML2 (TLT2), NKG2D, and an antibody specific for an HLA class I bound tumor antigen, wherein increased binding indicates reduced poly-LacNac.


In another aspect, embodiments disclosed herein are directed to methods of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents capable of inhibiting the expression or activity of one or more targets selected from Table 1, Table 2 (candidate genes) or Table 3.


Method of Enhancing Anti-Tumor Immunity Through Inhibition of B3GNT2 Protein Activity

The β1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) enzyme is encoded by the B3GNT2 gene and is involved in poly-N-acetyl-lactosamine (poly-LacNac) synthesis). As with other β1,3-N-acetylglucosaminyltransferases, the enzyme is a Golgi-resident glycosyltransferase. Poly-N-acetyl-lactosamine (poly-LacNAc) structures are composed of repeating [-Galβ(1,4)-GlcNAcβ(1,3)-]n glycan extensions. Further, they are found on both N- and O-glycoproteins and glycolipids and play an important role in development, immune function, and human disease. The majority of mammalian poly-LacNAc is synthesized by the alternating iterative action of B3GNT2 and β1,4-galactosyltransferases. B3GNT2 is in the largest mammalian glycosyltransferase family, GT31. As discussed further herein, the Applicant has identified B3GNT2 expression as up-regulated in tumors that have become non-responsive to immunotherapy, including use of checkpoint inhibitors and adoptive cell transfer. Additionally, reducing B3GNT2 activity shifts tumors from an immunotherapy non-responsive to a responsive phenotype.


In one example embodiment, a method of enhancing anti-tumor immunity comprises administering one or more agents capable of inhibiting the expression or activity of B3GNT2. In one example embodiment, the method comprises administering one or more small molecules that inhibit B3GNT2 activity. In another example embodiment, the method comprises administering a RNAi polynucleotide to knockdown expression of B3GNT2. In another example embodiment, the method comprises delivering a programmable nuclease to reduce expression of B3GNT2.


Small Molecule Inhibitors of B3GNT2

In one example embodiment, a method of enhancing anti-tumor immunity in a subject comprises administering one or more small molecules that inhibit B3GNT2 activity. The small molecule inhibits may bind to B3GNT2's active site or function as an allosteric inhibitor of B3GNT2 activity.


In one example embodiment, B3GNT2 protein activity is inhibited by administering one or more small molecule agents selected from the group consisting of benzyl-O—N-acetylgalactosamide (BAG), kifunensine (KIF), tunicamycin, 3′-Azidothymidine (AZT), 2-acetamido-1,3,6-tri-O-acetyl-4-deoxy-4-fluoro-D-glucopyranose [4-F-GlcNAc], and deoxymannojirimycin (DMN).


Method of Enhancing Anti-Tumor Immunity Through Inhibition of MCL1 Protein Function

A tumor may block an apoptosis pathway in order to evade killing by an anti-tumor immune response. In certain embodiments, a tumor overexpresses MCL1. Apoptosis is a crucial process by which multicellular organisms control tissue growth, removal and inflammation. Disruption of the normal apoptotic function is often observed in cancer, where cell death is avoided by the overexpression of anti-apoptotic proteins of the Bcl-2 (B-cell lymphoma) family, including MCL1 (myeloid cell leukemia). This makes MCL1 a potential target for drug therapy, through which normal apoptosis may be restored by inhibiting the protective function of MCL1.


Myeloid cell leukemia-1 (MCL1) is an anti-apoptotic member of the B-cell lymphoma-2 (BCL-2) family of proteins that regulates apoptosis. Alternative splicing occurs for MCL1 and two transcript variants encoding distinct isoforms have been identified. The longer gene product (isoform 1, MCL-1L) enhances cell survival by inhibiting apoptosis while the alternatively spliced shorter gene product (isoform 2 MCL-1S) promotes apoptosis and is death-inducing. In certain embodiments, isoform 1 is targeted. The members of the Bel-2 family are designated as such due to their BCL-2 homology (BH) domains and involvement in apoptosis regulation. The BH domains facilitate the family members' interactions with each other, and can indicate pro- or anti-apoptotic function. Traditionally, these proteins are categorized into one of three subfamilies; anti-apoptotic, BH3-only (pro-apoptotic), and pore-forming or ‘executioner’ (pro-apoptotic) proteins (BAX and BAK) (see, e.g., Warren C F A, Wong-Brown M W, Bowden N A. BCL-2 family isoforms in apoptosis and cancer Cell Death Dis. 2019; 10(3): 177; and Vogler, M. BCL2A1: the underdog in the BCL2 family. Cell Death Differ 19, 67-74 (2012)). MCL-1 exerts its antiapoptotic function by sequestering proapoptotic proteins BAK/BAX through the BH3 domain containing hydrophobic groove. In the prosurvival mode, BAK/BAX interacts with antiapoptotic BCL-2 proteins and is unable to execute the apoptotic program, thereby allowing cells to maintain homeostasis (see, e.g., Xiang W, Yang C Y, Bai L. MCL-1 inhibition in cancer treatment. Onco Targets Ther. 2018; 11:7301-7314). BH3-only proteins, BIM, PUMA, BAD, NOXA and BID, restore BAX/BAK activities through interruption of the MCL-1:BAK/BAX complexes. Id.


Elevated levels of MCL1 contribute to tumorigenesis and resistance to conventional chemotherapies and targeted therapies, including the BCL-2 selective inhibitor venetoclax. Applicants discovered that MCL1 overexpression is used to evade an anti-tumor immune response and MCL1 inhibitors can be used to enhance an immunotherapy. Accordingly, in some embodiments disclosed herein, are methods designed to downregulate MCL1 expression or inhibit MCL1 for treating cancer, preferably in combination with an immunotherapy. In certain embodiments, subjects being treated with an immunotherapy have increased expression of MCL1 and become non-responsive. In certain embodiments, administering an agent targeting MCL1 expression or activity shifts a subject non-responsive to an immunotherapy to a responder. In certain embodiments, the one or more therapeutics described herein are administered to a subject that has a tumor overexpressing MCL1. The present invention also provides for determining subjects that may respond to an MCL1 inhibitor. For example, the tumor overexpresses MCL1 and does not overexpress another protein that allows evasion of an immune response.


Human cancers are genetically and epigenetically heterogeneous and have the capacity to commandeer a variety of cellular processes to aid in their survival, growth and resistance to therapy. One such strategy is to overexpress proteins that suppress apoptosis, such as the BCL-2 family protein MCL1. The MCL1 protein plays a pivotal role in protecting cells from apoptosis and is overexpressed in a variety of human cancers. In an embodiment, a method of enhancing anti-tumor immunity in a subject in need thereof comprises administering to the subject one or more agents capable of inhibiting the expression or activity of MCL1.


Small Molecule Inhibitors of MCL1

Dysregulation of the mitochondrial apoptotic pathway controlled by members of the BCL-2 protein family plays a central role in cancer development and resistance to conventional cytotoxic as well as targeted therapies. The selective inhibition of the pro-survival BCL-2 family of proteins to activate apoptosis in malignant cells represents an anti-cancer strategy. The remarkable clinical performance of the selective BCL-2 antagonist Venetoclax has highlighted the potential for selective inhibitors of the other pro-survival members of the BCL-2 family, particularly MCL1. Venetoclax is a BH3-mimetic and can block the anti-apoptotic B-cell lymphoma-2 (Bcl-2) family proteins. The present invention also provides for use of the small molecules in combination with an immunotherapy treatment regimen. In certain embodiments, small molecules are administered in doses that do not induce apoptosis in the absence of an effective anti-tumor immune response. Thus, doses required to shift a subject from a nonresponder to a responder are lower than doses required to induce apoptosis and the doses of the present invention are lower than certain standard doses. In particular, doses are lower in a combination immunotherapy treatment regimen.


In certain embodiments disclosed herein, the methods provide several drugs or small molecules that cause downregulation of MCL1 expression or a decrease in activity as part of their mechanism of action. Pan-cyclin-dependent kinase inhibitors, such as flavopiridol, SNS-032, CYC202 (Roscovitine) and dinaciclib, or the selective CDK9 inhibitors BAY1251152 and AZD4573 have been reported to kill cells in part by blocking MCL1 transcription (Chen et al., 2009; Cidado et al., 2018; Fu et al., 2011; Gojo, Zhang et al. 2002; Luecking et al., 2017). Chemotherapeutic drugs such as anthracyclines were found to preferentially repress MCL1 transcription to induce apoptosis in tumor cells (Wei et al., 2012). These small molecules that target MCL1 expression or activity are hereby specifically incorporated by reference.


In certain example embodiments disclosed herein, the methods provide other drugs or small molecules capable of inhibiting the expression or activity of MCL1 and include S63845, MIK665/S64315, AT101 (R-(−)-gossypol), TW-37, Gambogic acid, Sabutoclax (BI-97C1), Marinopyrrole A (maritoclax), UMI-77, A-1210477, Fesik's compounds, AMG176, AZD5991, Flavopiridol, Roscovitine, CR8, Voruciclib (P1446A-05), Cardiac glycoside, UNBS1450, Benzyl isothiocyanate, BAY43-9006, BEZ235, AZD8055, BEZ235, AZD8055, and arsenic trioxide Bufalin (see, e.g., Xiang W, Yang C Y, Bai L. MCL-1 inhibition in cancer treatment. Onco Targets Ther. 2018; 11:7301-7314).


In a certain example embodiment, disclosed herein is provided a method for inhibiting MCL1 expression or activity by administering one or more small molecule agents to a subject in need thereof. In embodiments, the present disclosure provides one or more small molecule agents selected from the group consisting of S63845, MIK665/S64315, AT101 (R-(−)-gossypol), TW-37, Gambogic acid, Sabutoclax (BI-97C1), Marinopyrrole A (maritoclax), UMI-77, A-1210477, Fesik's compounds, AMG176, AZD5991, Flavopiridol, Roscovitine, CR8, Voruciclib (P1446A-05), Cardiac glycoside, UNBS1450, Benzyl isothiocyanate, BAY43-9006, BAY1251152, BEZ235, AZD4573, AZD8055, SNS-032, dinaciclib, BEZ235, AZD8055, arsenic trioxide Bufalin, and analogues thereof.


MCL1 protein is unique compared to its pro-survival BCL-2 relatives. MCL1 expression is regulated at the transcriptional level by trophic factors such as granulocyte-macrophage stimulating factor, epidermal growth factor and cytokines (Chao et al., 1998; Huang, et al., 2000; Jourdan et al, 2000). At the intracellular level, transcription of MCL1 is controlled by several signaling pathways, including the PI3K/AKT, p38/MAPK and STAT3 pathways (Akgul, 2009; Becker et al., 2014; Huelsemann et al., 2014). In addition, N10 miRNA has been identified to modulate MCL1 translation, including miR-29 and miR-125b, and are reviewed elsewhere (Cui et al, 2018).


In some embodiments, the methods of inhibiting or downregulating MCL1 expression or activity may further comprise administering the above trophic factors (e.g., EGF) and modulating the above signaling pathways. These trophic factors and signaling pathways that target MCL1 expression or activity are hereby specifically incorporated by reference.


Embodiments of the present disclosure take into consideration the pro-survival role MCL1 has in many normal tissues. MCL1 is ubiquitously expressed and essential for embryonic development as demonstrated by studies performed in mice with homozygous loss of MCL1 (Kozopas, et al, 1993; Rinkenberger et al., 2000). Conditional MCL1 knockout mice showed that MCL1 also plays a critical role in the survival of hematopoietic stem cells, lymphocytes and cardiomyocytes, among other normal cells (Opferman et al., 2003; Opferman et al., 2005; Thomas et al., 2013). However, it is possible that some of the observed effects in normal tissues are caused by chronic depletion of MCL1 or other activities besides their anti-apoptotic function and could potentially be mitigated by careful dosing and schedule of MCL1 inhibitors in disease treatment. Accordingly, embodiments of the present disclosure take into consideration the clinical applications of administering MCL1 inhibitors and the pro-survival role of MCL1.


Method of Enhancing Anti-Tumor Immunity Through Inhibition of BCL2A1 Protein Activity

BCL2A1 encodes a member of the bcl2 protein family. The proteins of this family form hetero- or homodimers and act as anti- and pro-apoptotic regulators that are involved in a wide variety of cellular activities such as embryonic development, homeostasis and tumorigenesis. The protein encoded by this gene is able to reduce the release of pro-apoptotic cytochrome c from mitochondria and block caspase activation. This gene is a direct transcription target of NF-kappa B in response to inflammatory mediators and has been shown to be up-regulated by different extracellular signals, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), CD40, phorbol ester and inflammatory cytokine TNF and IL-1, which suggests a cytoprotective function that is essential for lymphocyte activation as well as cell survival. BCL2A1 is overexpressed in a variety of cancer cells, including hematological malignancies and solid tumors, and may contribute to tumor progression (see, e.g., Vogler, M. BCL2A1: the underdog in the BCL2 family. Cell Death Differ 19, 67-74 (2012)). BCL2A1 exerts its anti-apoptotic function by sequestering pro-apoptotic B-cell lymphoma 2 (BCL2) proteins. Id. Enhanced expression of BCL2A1 can result in resistance to chemotherapeutic drugs. Id. The main function of the anti-apoptotic BCL2 proteins is to counteract the activation of BAX and BAK. Thus, they can either inhibit BAX and BAK directly, or sequester and inactivate BH3-only proteins. Id. Multiple anti-apoptotic BCL2 proteins have been described, namely BCL2, BCL-XL, BCL-w, MCL1, BCL-B and BCL2A1. Id. BCL2A1 does not display a well-defined C-terminal transmembrane domain. The C-terminus of BCL2A1 is of importance for the anti-apoptotic function and the subcellular localization of BCL2A1. Id. BCL2A1 has a similar binding profile as displayed by MCL1. Id. Applicants identified BCL2A1 as a gene overexpressed in tumors resistant to T cell killing. Thus, inhibition of BCL2A1 can be used to enhance anti-tumor immunity and immunotherapy.


Accordingly, in some embodiments disclosed herein, are methods designed to downregulate BCL2A1 expression or inhibit BCL2A1 for treating cancer, preferably in combination with an immunotherapy. In certain embodiments, subjects being treated with an immunotherapy have increased expression of BCL2A1 and become non-responsive. In certain embodiments, administering an agent targeting BCL2A1 expression or activity shifts a subject non-responsive to an immunotherapy to a responder. In certain embodiments, the one or more therapeutics described herein are administered to a subject that has a tumor overexpressing BCL2A1. The present invention also provides for determining subjects that may respond to an BCL2A1 inhibitor. For example, the tumor overexpresses BCL2A1 and does not overexpress another protein that allows evasion of an immune response.


Small Molecule and Peptide Inhibitors of BCL2A1

Dysregulation of the mitochondrial apoptotic pathway controlled by members of the BCL-2 protein family plays a central role in cancer development and resistance to conventional cytotoxic as well as targeted therapies. The selective inhibition of the pro-survival BCL-2 family of proteins to activate apoptosis in malignant cells represents an anti-cancer strategy. The remarkable clinical performance of the selective BCL-2 antagonist Venetoclax has highlighted the potential for selective inhibitors of the other pro-survival members of the BCL-2 family, particularly BCL2A1. Venetoclax is a BH3-mimetic and can block the anti-apoptotic B-cell lymphoma-2 (Bcl-2) family proteins. The present invention also provides for use of the small molecules/peptide inhibitors in combination with an immunotherapy treatment regimen. In certain embodiments, inhibitors are administered in doses that do not induce apoptosis in the absence of an effective anti-tumor immune response. Thus, doses required to shift a subject from a nonresponder to a responder are lower than doses required to induce apoptosis and the doses of the present invention are lower than certain standard doses. In particular, doses are lower in a combination immunotherapy treatment regimen.


In certain embodiments disclosed herein, the methods provide several drugs or small molecules that are capable of inhibiting the expression or activity of BCL2A1. Non-limiting examples include Venetoclax, AT101 (R-(−)-gossypol), TW-37, Gambogic acid, Sabutoclax (BI-97C1) and Marinopyrrole A (maritoclax). Other small molecules may be used (see, e.g., Vogler, M. BCL2A1: the underdog in the BCL2 family. Cell Death Differ 19, 67-74 (2012)). For example, N-aryl maleimides have been identified as potential BCL2A1 inhibitors by high-throughput screening of 66 000 compounds (Cashman J R, MacDonald M, Ghirmai S, Okolotowicz K J, Sergienko E, Brown B et al. Inhibition of Bfl-1 with N-aryl maleimides. Bioorg Med Chem Lett 2010; 20: 6560-6564). Several apogossypol derivatives may target BCL2A1 (Wei J, Kitada S, Rega M F, Emdadi A, Yuan H, Cellitti J et al. Apogossypol derivatives as antagonists of antiapoptotic Bcl-2 family proteins. Mol Cancer Ther 2009; 8: 904-913). Additionally, peptide aptamers that specifically target BCL2A1 have been presented, which sensitized malignant B-cells to chemotherapeutic drugs (Brien G, Debaud A L, Bickle M, Trescol-Biemont M C, Moncorge O, Colas P et al. Characterization of peptide aptamers targeting Bfl-1 anti-apoptotic protein. Biochemistry 2011; 50: 5120-5129).


Alternative Methods to Counter-Acting MCL1 and BCL2A1 Anti-Apoptotic Activity in Tumor Cells

The members of the Bcl-2 family are designated as such due to their BCL-2 homology (BH) domains and involvement in apoptosis regulation. The BH domains facilitate the family members' interactions with each other, and can indicate pro- or anti-apoptotic function. Traditionally, these proteins are categorized into one of three subfamilies; anti-apoptotic, BH3-only (pro-apoptotic), and pore-forming or ‘executioner’ (pro-apoptotic) proteins (BAX and BAK) (see, e.g., Warren C F A, Wong-Brown M W, Bowden N A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019; 10(3):177; and Vogler, M. BCL2A1: the underdog in the BCL2 family. Cell Death Differ 19, 67-74 (2012)). MCL-1 exerts its antiapoptotic function by sequestering proapoptotic proteins BAK/BAX through the BH3 domain containing hydrophobic groove. In the prosurvival mode, BAK/BAX interacts with antiapoptotic BCL-2 proteins and is unable to execute the apoptotic program, thereby allowing cells to maintain homeostasis (see, e.g., Xiang W, Yang C Y, Bai L. MCL-1 inhibition in cancer treatment. Onco Targets Ther. 2018; 11:7301-7314). BH3-only proteins, BIM, PUMA, BAD, NOXA and BID, restore BAX/BAK activities through interruption of the MCL-1:BAK/BAX complexes. Id. BAK/BAX allows release of cytochrome c and activates caspase cascade.


Gene Therapy Embodiments For Increasing BID, PMAIP1, BAX, BAK, BIM, BAD and PUMA

In one example embodiment, gene therapy may be used to increase one or more genes selected from the group consisting of BID, PMAIP1 (NOXA), BAX, BAK, BIM, BAD and PUMA in tumor cells. In certain embodiments, expression is increased in proportion to overexpression of MCL1. In certain embodiments, gene therapy is used for subjects having tumors that overexpress MCL1. As used herein, the terms “gene therapy,” “gene delivery,” “gene transfer” and “genetic modification” are used interchangeably and refer to modifying or manipulating the expression of a gene to alter the biological properties of living cells for therapeutic use.


In one example embodiment, a vector for use in gene therapy comprises a sequence encoding a gene selected from the group consisting of BID, PMAIP1 (NOXA), BAX, BAK, BIM, BAD and PUMA and is used to deliver said sequence to tumor cells. The vector may further comprise one or more regulatory elements to control expression of the gene. The vector may further comprise regulatory/control elements, e.g., promoters, enhancers, introns, polyadenylation signals, Kozak consensus sequences, or internal ribosome entry sites (IRES). The vector may further comprise a targeting moiety that directs the vector specifically to tumor cells. In another example embodiment, the vector may comprise a viral vector with a tropism specific for tumors.


In general, and throughout this specification, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Vectors include, but are not limited to, nucleic acid molecules that are single-stranded, double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g., circular); nucleic acid molecules that comprise DNA, RNA, or both; and other varieties of polynucleotides known in the art. There are no limitations regarding the type of vector that can be used. The vector can be a cloning vector, suitable for propagation and for obtaining polynucleotides, gene constructs or expression vectors incorporated to several heterologous organisms. Suitable vectors include eukaryotic expression vectors based on viral vectors (e.g. adenoviruses, adeno-associated viruses as well as retroviruses and lentiviruses), as well as non-viral vectors such as plasmids.


In one example embodiment, the vector is a viral vector, wherein virally-derived DNA or RNA sequences are present in the vector for packaging into a virus (e.g., retroviruses, replication defective retroviruses, adenoviruses, replication defective adenoviruses, and adeno-associated viruses). Viral vectors also include polynucleotides carried by a virus for transfection into a host cell. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operably linked. Such vectors are referred to herein as “expression vectors.” Vectors for and that result in expression in a eukaryotic cell can be referred to herein as “eukaryotic expression vectors.” In another example embodiment, the vector integrates the gene into the cell genome or is maintained episomally.


In one example embodiment, the vector is a “plasmid,” which refers to a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques.


In one example embodiment, the vector is an mRNA vector (see, e.g., Sahin, U, Kariko, K and Tureci, O (2014). mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov 13: 759-780; Weissman D, Kariko K. mRNA: Fulfilling the Promise of Gene Therapy. Mol Ther. 2015; 23(9): 1416-1417. doi: 10.1038/mt.2015.138; Kowalski P S, Rudra A, Miao L, Anderson D G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther. 2019; 27(4):710-728. doi:10.1016/j.ymthe.2019.02.012; Magadum A, Kaur K, Zangi L. mRNA-Based Protein Replacement Therapy for the Heart. Mol Ther. 2019; 27(4): 785-793. doi:10.1016/j.ymthe.2018.11.018; Reichmuth A M, Oberli M A, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles Ther Deliv. 2016; 7(5):319-334. doi:10.4155/tde-2016-0006; and Khalil A S, Yu X, Umhoefer J M, et al. Single-dose mRNA therapy via biomaterial-mediated sequestration of overexpressed proteins. Sci Adv. 2020; 6(27):eaba2422). In an exemplary embodiment, mRNA encoding for dominant negative JUNB is delivered using lipid nanoparticles (see, e.g., Reichmuth, et al., 2016) and administered directly to a tumor. In an exemplary embodiment, mRNA encoding for dominant negative JUNB is delivered using biomaterial-mediated sequestration (see, e.g., Khalil, et al., 2020) and administered directly to tumor tissue. Sequences present in mRNA molecules, as described further herein, are applicable to mRNA vectors (e.g., Kozak consensus sequence, miRNA target sites and WPRE).


Regulatory Elements

Recombinant expression vectors can comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory elements, which may be selected on the basis of the host cells to be used for expression, that is operably-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory element(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term “operably linked” as used herein also refers to the functional relationship and position of a promoter sequence relative to a polynucleotide of interest (e.g., a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of that sequence). Typically, an operably linked promoter is contiguous with the sequence of interest. However, enhancers need not be contiguous with the sequence of interest to control its expression. The term “promoter”, as used herein, refers to a nucleic acid fragment that functions to control the transcription of one or more polynucleotides, located upstream of the polynucleotide sequence(s), and which is structurally identified by the presence of a binding site for DNA-dependent RNA polymerase, transcription initiation sites, and any other DNA sequences including, but not limited to, transcription factor binding sites, repressor, and activator protein binding sites, and any other sequences of nucleotides known in the art to act directly or indirectly to regulate the amount of transcription from the promoter. A “tissue-specific” promoter is only active in specific types of differentiated cells or tissues.


In another embodiment, the vector of the invention further comprises expression control sequences including, but not limited to, appropriate transcription sequences (i.e. initiation, termination, promoter, and enhancer), efficient RNA processing signals (e.g. splicing and polyadenylation (polyA) signals), sequences that stabilize cytoplasmic mRNA, sequences that enhance translation efficiency (i.e. Kozak consensus sequence), and sequences that enhance protein stability. A great number of expression control sequences, including promoters which are native, constitutive, inducible, or tissue-specific are known in the art and may be utilized according to the present invention.


In another embodiment, the vector of the invention further comprises a post-transcriptional regulatory region. In a preferred embodiment, the post-transcriptional regulatory region is the Woodchuck Hepatitis Virus post-transcriptional region (WPRE) or functional variants and fragments thereof and the PPT-CTS or functional variants and fragments thereof (see, e.g., Zufferey R, et al., J. Virol. 1999; 73:2886-2892; and Kappes J, et al., WO 2001/044481). In a particular embodiment, the post-transcriptional regulatory region is WPRE. The term “Woodchuck hepatitis virus posttranscriptional regulatory element” or “WPRE”, as used herein, refers to a DNA sequence that, when transcribed, creates a tertiary structure capable of enhancing the expression of a gene (see, e.g., Lee Y, et ah, Exp. Physiol. 2005; 90(1):33-37 and Donello J, et al, J. Virol. 1998; 72(6):5085-5092).


The term “regulatory element” is intended to include promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g., transcription termination signals, such as polyadenylation signals and poly-U sequences). Such regulatory elements are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990).


Regulatory elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). A tissue-specific promoter may direct expression primarily in a desired tissue of interest, such as adipose tissue or particular cell types (e.g., adipocytes or adipocyte progenitors). Regulatory elements may also direct expression in a temporal-dependent manner, such as in a cell-cycle dependent or developmental stage-dependent manner, which may or may not also be tissue or cell-type specific. In some embodiments, a vector comprises one or more pol III promoter (e.g., 1, 2, 3, 4, 5, or more pol III promoters), one or more pol II promoters (e.g., 1, 2, 3, 4, 5, or more pol II promoters), one or more pol I promoters (e.g., 1, 2, 3, 4, 5, or more pol I promoters), or combinations thereof. Also encompassed by the term “regulatory element” are enhancer elements (e.g., adipose specific enhancers or Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE)). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression desired, etc. A vector can be introduced into host cells to thereby produce transcripts, proteins, or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., JUNB).


In one embodiment, the vector contains at least one target sequence of at least one miRNA expressed in non-tumor tissue. The term “microRNAs” or “miRNAs”, as used herein, are small (˜22-nt), evolutionarily conserved, regulatory RNAs involved in RNA-mediated gene silencing at the post-transcriptional level (see, e.g., Barrel D P. Cell 2004; 116: 281-297). Through base pairing with complementary regions (most often in the 3′ untranslated region (3′UTR) of cellular messenger RNA (mRNA)), miRNAs can act to suppress mRNA translation or, upon high-sequence homology, cause the catalytic degradation of mRNA. Because of the highly differential tissue expression of many miRNAs, cellular miRNAs can be exploited to mediate tissue-specific targeting of gene therapy vectors. By engineering tandem copies of target elements perfectly complementary to tissue-specific miRNAs (miRT)


Method of Enhancing Anti-Tumor Immunity Through Targeting of JunB Protein Activity

In one example embodiment, a method of enhancing anti-tumor immunity comprising inhibiting JunB activity. Inhibition of JunB expression or activity may increase the sensitivity of a tumor to T cell killing and further enhances the effectiveness of an immunotherapy (e.g., adoptive cell transfer). JunB inhibitors may be administered to subjects having a cancer with increased expression of JunB, especially where JunB expression is higher as compared to other Jun or AP-1 proteins. Administering a JunB inhibitor may help make a subject who is initially non-responsive to immunotherapy responsive to immunotherapy. The inhibitor used may directly JunB directly or indirection via a downstream target of JunB (Table 5 or Table 6).


JunB is a member of the AP-1 (activator protein-1) family of dimeric transcription factors. The AP-1 family of transcription factors is composed of homodimers and heterodimers of Jun (v-Jun, c-Jun, JunB, and JunD), Fos (v-Fos, c-Fos, FosB, Fra1, and Fra2), ATF (ATF2, ATF3/LRF1, B-ATF, JDP1, and JDP2), and MAF (c-Maf, MafB, MafA, MafG/F/K, and Nrl) protein families, which are characterized by highly conserved dimeric basic leucine zipper (bZIP) DNA-binding domains (see, e.g., Ye N, Ding Y, Wild C, Shen Q, Zhou J. Small molecule inhibitors targeting activator protein 1 (AP-1). J Med Chem. 2014; 57(16):6930-6948). Specific Jun (JunB and JunD) and Fos (FosB, Fra1 and Fra2) proteins have been identified as oncoproteins, all of which are components of AP-1. Id. Certain AP-1 proteins have either a weak transforming activity (Fra1 and Fra2) or no transforming activity (JunB and JunD) due to the lack of potent transactivation domains. Id. AP-1 activity in cancer seems to depend upon AP-1 dimer composition and tumor type as well as its differentiation state, tumor stage, and the genetic background of tumor. Id. Generally, c-Jun mainly has oncogenic functions, while JunB and JunD have antioncogenic effects. Id. As such, it would be quite challenging for medicinal chemists to design potent and specific AP-1 inhibitors as potential therapy for cancer. Id. Individualized treatment may provide a solution to this problem by selecting appropriate patient populations (e.g., overexpressing JunB). In certain embodiments, subjects are treated that overexpress JunB.


Small Molecule Inhibitors of JunB

In one example embodiment, anti-tumor immunity is enhanced by administering one or more AP-1 inhibitors. Non-limiting examples of AP-1 inhibitors include curcumin, SP100030, SPC-839, T-5224, K1115A, momordin I, isosteviol and analogues thereof.


Dominant Negative JunB

In certain embodiments, a recombinant JunB dominant negative protein is used to inhibit endogenous JunB activity. JUNB has 347 amino acids with a predicted molecular weight 35.9 kD (see, e.g., HGNC: 6205, NCBI Entrez Gene: 3726, Ensembl: ENSG00000171223, UniProtKB/Swiss-Prot: P17275). Structurally, JUNB is similar to c-JUN, which contains a JNK (MAPK8) docking site (JUNB a.a. 35-61), nuclear localization signal (276-289), basic domain for DNA binding (250-276) and a leucine zipper domain for dimerization (296-317). However, JUNB does not contain a JNK phosphorylation site. Thus, the transactivation activity of JUNB is not regulated by JNK.


JUNB is a member of JUN family (c-JUN, JUNB and JUND) that can dimerize with one another, or with members of Fos and ATF families, to form an AP-1 transcription factor. Comparing with c-JUN, the transactivation activity of JUNB is much weaker (see, e.g., Deng T, Karin M. JunB differs from c-Jun in its DNA-binding and dimerization domains and represses c-Jun by formation of inactive heterodimers. Genes Dev. 1993; 7(3):479-490). Due to the small differences on the amino acid sequences in the basic DNA binding domain, and leucine zipper domain, JUNB requires multiple AP-1 DNA binding sites for sufficient DNA binding. A number of studies demonstrated that JUNB antagonizes the functions of c-JUN in cell cycle regulation, proliferation and transformation by competing with c-JUN to form less efficient transactivating dimers. Thus, JUNB was considered as a tumor suppressor.


In gene knockout studies, mice lacking c-Jun gene die during embryonic day 12.5 and 13.5, whereas embryos lacking JunB die earlier, around day 9.5, owing to vascular defects in the placenta and extraembryonic tissue. Interestingly, gene knock-in experiment indicated that JUNB could partially substitute the activities of c-JUN in mouse development and cell proliferation. As a possible explanation for this is that in presence of c-JUN, JUNB is a negative regulator for c-JUN. In contrast, in the absence of c-JUN, JUNB may substitute c-JUN and activate AP-1 target genes required for development and cell proliferation.


Dominant negative mutants of c-Jun have been described (see, e.g., Brown P H, Kim S H, Wise S C, Sabichi A L, Birrer M J. Dominant-negative mutants of c-Jun inhibit AP-1 activity through multiple mechanisms and with different potencies. Cell Growth Differ. 1996; 7(8): 1013-1021). A dominant-negative mutant of c-Jun that lacks the transactivation domain (TAD) prevents AP-1-mediated transcriptional activation by quenching endogenous Jun or Fos proteins (del. 3-102; and del. 3-122). Id. c-Jun mutations in the TAD, DNA-binding domain (DBD), or leucine zipper domain are all unable to activate transcription, but only TAD and DBD mutants function in a dominant-negative fashion by inhibiting both c-Jun-induced transcriptional activation and transformation. Id. TAM-67 is a c-JUN dominant negative mutant with a deletion of amino acids 3-122 (see, e.g., Matthews C P, Birkholz A M, Baker A R, et al. Dominant-negative activator protein 1 (TAM67) targets cyclooxygenase-2 and osteopontin under conditions in which it specifically inhibits tumorigenesis. Cancer Res. 2007; 67(6):2430-2438).


In certain embodiments, a dominant negative JUNB is administered to a subject. In certain embodiments, the TAD of JUNB is removed or mutated to abolish activity. In certain embodiments, the DBD of JUNB is removed or mutated to abolish activity. In certain embodiments, the dominant negative JUNB is administered directly to a tumor. In certain embodiments, a vector having tropism for tumor cells is administered.


In one example embodiment, a subject in need thereof is treated by expression of a dominant negative JUNB using a gene therapy approach as described herein (see, MCL1). In one example embodiment, a vector for use in gene therapy comprises a sequence encoding dominant negative JUNB and is used to deliver said sequence to tumor cells. Vector based embodiments to deliver polynucleotides to delivery dominant negative JUNB may be used as described above at [0078]-[0084].


Recombinant Dominant Negative JUNB

In certain embodiments, recombinant dominant negative JUNB protein is delivered intracellularly to a subject in need thereof and is used as a protein therapeutic. Protein therapeutics offer high specificity, and the ability to treat “undruggable” targets, in diseases associated with protein deficiencies or mutations.


In certain embodiments, virus like particles (VLPs) are used to facilitate intracellular recombinant protein therapy (see, e.g., WO2020252455A1, U.S. Ser. No. 10/577,397B2). In certain embodiments, VLPs include a Gag-dominant negative JUNB fusion protein. The Gag-dominant negative JUNB fusion protein may include a matrix protein, a capsid protein, and/or a nucleocapsid protein covalently linked to JUNB. In certain embodiments, the VLPs include a membrane comprising a phospholipid bilayer with one or more human endogenous retrovirus (HERV) derived ENV/glycoprotein(s) on the external side; a HERV-derived GAG protein in the VLP core, and a JUNB fusion protein on the inside of the membrane, wherein JUNB is fused to a human-endogenous GAG or other plasma membrane recruitment domain (see, e.g., WO2020252455A1). Fusion proteins can be obtained using standard recombinant protein technology.


In certain embodiments, cell-penetrating peptides (CPPs) are used to facilitate intracellular recombinant protein therapy (see, e.g., Dinca A, Chien W-M, Chin M T. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease. International Journal of Molecular Sciences. 2016; 17(2):263). In certain embodiments, cell-penetrating peptides can be conjugated to JUNB, for example, using standard recombinant protein technology. In certain embodiments, cell-penetrating peptides can be concurrently delivered with recombinant JUNB.


In certain embodiments, nanocarriers are used to facilitate intracellular recombinant protein therapy (see, e.g., Lee Y W, Luther D C, Kretzmann J A, Burden A, Jeon T, Zhai S, Rotello V M. Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers. Theranostics 2019; 9(11):3280-3292). Non-limiting nanocarriers include, but are not limited to nanoparticles (e.g., silica, gold), polymers, lipid based (e.g., cationic lipid within a polymer shell, lipid-like nanoparticles).


Method of Inhibiting B3GNT2, MCL1, BCLA21, and JunB Expression By RNAi

In one example embodiment, a method of enhancing anti-tumor activity comprises administering a RNAi therapeutic to reduce expression of one or more of B3GNT2, MCL1, BCLA21, and JUNB (collectively “target sequences”). A RNAi therapeutic comprises a polynucleotide that is complementary to a portion of the target sequence mRNA, generally ranging in size from 15 to 50 base pairs. RNAi modalities may include miRNA and siRNA. The RNAi modality may also be in the form a pre-miRNA which is processed by Dicer to form a miRNA. Likewise, the RNAi modality may be in the form of a dsRNA or shRNA which is processed by Dicer to form a siRNA. RNAi modalities may also be derived from endogenous microRNA. The RNAi polynucleotide may comprise one or more modifications to suppress innate immune activation, enhance activity and specificity, and reduce off-target induced toxicity. The RNAi therapeutic may further comprise a delivery platform for delivery of the RNAi polynucleotide.


The RNAi modalities used herein may be used to achieve gene silencing of B3GNT2 expression. As used herein, “gene silencing” or “gene silenced” in reference to an activity of an RNAi molecule, for example a siRNA or miRNA refers to a decrease in the mRNA level in a cell for a target gene by at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 99%, about 100% of the mRNA level found in the cell without the presence of the miRNA or RNA interference molecule. In one preferred embodiment, the mRNA levels are decreased by at least about 70%, about 80%, about 90%, about 95%, about 99%, about 100%.


Example Polynucleotide Sequences

The following sections provide example target sequences to which RNAi polynucleotides may be designed to hybridize to and induce RNAi mediated knockdown of target gene expression.


B3GNT2 Sequences

B3GNT2, also known as 3-Gn-T1, 3-Gn-T2, B3Gn-T2, B3GNT, B2GNT-2, B3GNT1 BETA3GNT, BGNT2, BGnT-2, beta-1 beta-3Gn-T1, and beta3Gn-T2 is located on human chromosome 2, locus 2P15, accession No. NC_000002.12 from position 62196115 to 62/224,731. In one example embodiment, the polynucleotide sequence included in the vector is a DNA sequence with the primary accession numbers AC018462, AC093401 and CH471053. In another example embodiment, the DNA sequence is selected from the group consisting of AC018462, AC093401 and CH471053.


In another example embodiment, the polynucleotide sequence included in the vector is a RNA sequence derived from NM_006577.6 and NM_001319075.2. In another example embodiment, the polynucleotide sequence included in the vector is a RNA sequence selected from the group consisting of NM_006577.6 and NM_001319075.2. In another example embodiment, the sequence included in the vector is derived from mRNA selected from the group consisting of AB049584.1, AF09205.12, AF288208.1, AF288209.1, AJ006077.1, AK002009.1, BC030579.2 and BC047933.1. In another example embodiment, the sequence included in the vector is a mRNA sequence selected from the group consisting of AB049584.1, AF09205.12, AF288208.1, AF288209.1, AJ006077.1, AK002009.1, BC030579.2 and BC047933.1. In another example embodiment, the amino acid sequence is derived from the primary accession number Q9NY97, NP_006568.2, and NP_001306004.1. In another example embodiment, the amino acid sequence is selected from the group consisting of Q9NY97, NP_006568.2 and NP_001306004.1. In another example embodiment, the amino acid sequence is derived from the secondary accession numbers Q54AC1, Q9NQQ9, Q9NQR0 and Q9NUT9. In another example embodiment, the amino acid sequence is selected from the group consisting of Q54AC1, Q9NQQ9, Q9NQR0 and Q9NUT9.


MCL1 Sequences

MCL1, also known as TM; EAT; MCL1L; MCL1S; Mcl-1; BCL2L3; MCL1-ES; bcl2-L-3; mcl1/EAT is located on human chromosome 1, locus 1Q21.2, accession no. NC_000001.11 from position, complement 150547034 to 150552086. In one example embodiment, the polynucleotide sequence included in the vector is a DNA sequence with the primary accession numbers AF147742.1, AF198614.1, AH009713.2, AL356356.17, CH471121.2 and NG_029146. In another example embodiment, the DNA sequence is selected from the group consisting of AF147742.1, AF198614.1, AH009713.2, AL356356.17, CH471121.2 and NG_029146.


In another example embodiment, the polynucleotide sequence included in the vector is a RNA sequence derived from NM_021960.5, NM_182763.3 and NM_001197320.2. In another example embodiment, the polynucleotide sequence included in the vector is a RNA sequence selected from the group consisting of NM_021960.5, NM_182763.3 and NM 001197320.2. In another example embodiment, the sequence included in the vector is derived from mRNA selected from the group consisting of AA453505.1, AF118124.1, AF118276.1, AF118277.1, AF118278.1, AK294462.1, AK297217.2, AK300499.1, AK304775.1, AK312508.1, AK316267.1, BC017197.2, BC071897.1, BC107735.1, BT006640.1, CA421486.1, FJ917536.1 and L08246.1. In another example embodiment, the sequence included in the vector is a mRNA sequence selected from the group consisting of AA453505.1, AF118124.1, AF118276.1, AF118277.1, AF118278.1, AK294462.1, AK297217.2, AK300499.1, AK304775.1, AK312508.1, AK316267.1, BC017197.2, BC071897.1, BC107735.1, BT006640.1, CA421486.1, FJ917536.1 and L08246.1. In another example embodiment, the amino acid sequence is derived from the primary accession number Q07820, NP_068779.1, NP_877495.1 and NP_001184249.1. In another example embodiment, the amino acid sequence is selected from the group consisting of Q07820, NP_068779.1, NP_877495.1 and NP_001184249.1. In another example embodiment, the amino acid sequence is derived from the secondary accession numbers B2R6B2, D3DV03, D3DV04, Q9HD91, Q9NRQ3, Q9NRQ4, Q9UHR7, Q9UHR8, Q9UHR9 and Q9UNJ1. In another example embodiment, the amino acid sequence is selected from the group consisting of B2R6B2, D3DV03, D3DV04, Q9HD91, Q9NRQ3, Q9NRQ4, Q9UHR7, Q9UHR8, Q9UHR9 and Q9UNJ1.


BCLA21 Sequences

BCL2A1, also known as ACC-1, ACC-2, ACC1, ACC2, BCL2L5, BFL1, GRS, HBPA1 is located on human chromosome 15, locus 15Q25.1, accession no. NC_000015.10 from position, complement 79960892 to 79971196. In one example embodiment, the polynucleotide sequence included in the vector is a DNA sequence with the primary accession numbers AC015871.7, AF479683.1, CH471136.2, DQ081729.1, HI574046.1 and NG_029487. In another example embodiment, the DNA sequence is selected from the group consisting of AC015871.7, AF479683.1, CH471136.2, DQ081729.1, HI574046.1 and NG_029487.


In another example embodiment, the polynucleotide sequence included in the vector is a RNA sequence derived from NM_004049.4, and NM_001114735.2. In another example embodiment, the polynucleotide sequence included in the vector is a RNA sequence selected from the group consisting of NM_004049.4, and NM_001114735.2. In another example embodiment, the sequence included in the vector is derived from mRNA selected from the group consisting of AL110097.1, AY234180.1, BC016281.1, BG198875.1, BG204033.1, BG216703.1, BT007103.1, CD640106.1, CR541937.1, CR541962.1, U27467.1, U29680.1 and Y09397.1. In another example embodiment, the sequence included in the vector is a mRNA sequence selected from the group consisting of AL110097.1, AY234180.1, BC016281.1, BG198875.1, BG204033.1, BG216703.1, BT007103.1, CD640106.1, CR541937.1, CR541962.1, U27467.1, U29680.1 and Y09397.1. In another example embodiment, the amino acid sequence is derived from the primary accession number Q16548, NP_068779.1, NP_877495.1 and NP_001184249.1. In another example embodiment, the amino acid sequence is selected from the group consisting of Q16548, NP_068779.1, NP 877495.1 and NP_001184249.1. In another example embodiment, the amino acid sequence is derived from the secondary accession numbers Q6FGZ4, Q6FH19, Q86W13 and Q99524. In another example embodiment, the amino acid sequence is selected from the group consisting of Q6FGZ4, Q6FH19, Q86W13 and Q99524.


JUNB Sequences

JUNB, also known as AP-1 is located on human chromosome 19, locus 19P13.13, accession no. NC_000019.10 from position 12791486 to 12793315. In one example embodiment, the polynucleotide sequence included in the vector is a DNA sequence with the primary accession numbers AC01861.6, AY751746.1, CH471106.1, KT584920.1, M29039.1 and U20734. In another example embodiment, the DNA sequence is selected from the group consisting of AC01861.6, AY751746.1, CH471106.1, KT584920.1, M29039.1 and U20734.


In another example embodiment, the polynucleotide sequence included in the vector is a RNA sequence derived from NM_002229.3. In another example embodiment, the polynucleotide sequence included in the vector is a RNA sequence selected from the group consisting of NM_002229.3. In another example embodiment, the sequence included in the vector is derived from mRNA selected from the group consisting of AK222532.1, AK313737.1, BC004250.1, BC009465.1, BC009466.1, BC1130372.1, BT019760.1, DQ650707.1 and X51345.1. In another example embodiment, the sequence included in the vector is a mRNA sequence selected from the group consisting of AK222532.1, AK313737.1, BC004250.1, BC009465.1, BC009466.1, BC1130372.1, BT019760.1, DQ650707.1 and X51345.1. In another example embodiment, the amino acid sequence is derived from the primary accession number P17275 and NP_002220.1. In another example embodiment, the amino acid sequence is selected from the group consisting of P17275 and NP_002220.1. In another example embodiment, the amino acid sequence is derived from the secondary accession numbers Q96GH3. In another example embodiment, the amino acid sequence is selected from the group consisting of Q96GH3.


All gene name symbols as used throughout the specification refer to the gene as commonly known in the art. The examples described herein that refer to gene names are to be understood to encompass human genes, as well as genes in any other organism (e.g., homologous, orthologous genes). The term, homolog, may apply to the relationship between genes separated by the event of speciation (e.g., ortholog). Orthologs are genes in different species that evolved from a common ancestral gene by speciation. Normally, orthologs retain the same function in the course of evolution. Gene symbols may be those referred to by the HUGO Gene Nomenclature Committee (HGNC) or National Center for Biotechnology Information (NCBI). Any reference to the gene symbol is a reference made to the entire gene or variants of the gene. Reference to a gene encompasses the gene product (e.g., protein encoded for by the gene).


Example siRNA Embodiments

In one example embodiment, the RNAi modality is a siRNA. As used herein, a “siRNA” refers to a nucleic acid that forms a double stranded RNA, which double stranded RNA has the ability to reduce or inhibit expression of a gene or target gene when the siRNA is present or expressed in the same cell as the target gene. The double stranded RNA siRNA can be formed by the complementary strands. In one embodiment, a siRNA refers to a nucleic acid that can form a double stranded siRNA. The sequence of the siRNA can correspond to the full-length target gene, or a subsequence thereof. Typically, the siRNA is at least about 15-50 nucleotides in length (e.g., each complementary sequence of the double stranded siRNA is about 15-50 nucleotides in length, and the double stranded siRNA is about 15-50 base pairs in length, preferably about 19-30 base nucleotides, preferably about 20-25 nucleotides in length, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length).


Example shRNA Embodiments

In one example embodiment, the RNAi modality is a shRNA. As used herein “shRNA” or “small hairpin RNA” (also called stem loop) is a type of siRNA. In one embodiment, these shRNAs are composed of a short, e.g. about 19 to about 25 nucleotide, antisense strand, followed by a nucleotide loop of about 5 to about 9 nucleotides, and the analogous sense strand. Alternatively, the sense strand can precede the nucleotide loop structure and the antisense strand can follow.


Example microRNA Embodiments

In one example embodiment, the RNAi modality is engineered microRNA derived from an endogenous. The terms “microRNA” or “miRNA”, used interchangeably herein, are endogenous RNAs, some of which are known to regulate the expression of protein-coding genes at the posttranscriptional level. Endogenous microRNAs are small RNAs naturally present in the genome that are capable of modulating the productive utilization of mRNA. The term artificial microRNA includes any type of RNA sequence, other than endogenous microRNA, which is capable of modulating the productive utilization of mRNA. MicroRNA sequences have been described in publications such as Lim, et al., Genes & Development, 17, p. 991-1008 (2003), Lim et al Science 299, 1540 (2003), Lee and Ambros Science, 294, 862 (2001), Lau et al., Science 294, 858-861 (2001), Lagos-Quintana et al, Current Biology, 12, 735-739 (2002), Lagos Quintana et al, Science 294, 853-857 (2001), and Lagos-Quintana et al, RNA, 9, 175-179 (2003), which are incorporated by reference. Multiple microRNAs can also be incorporated into a precursor molecule. Furthermore, miRNA-like stem-loops can be expressed in cells as a vehicle to deliver artificial miRNAs and short interfering RNAs (siRNAs) for the purpose of modulating the expression of endogenous genes through the miRNA and or RNAi pathways.


Example dsRNA Embodiments

In one example embodiment, the RNAi modality is a dsRNA. As used herein, “double stranded RNA” or “dsRNA” refers to RNA molecules that are comprised of two strands. Double-stranded molecules include those comprised of a single RNA molecule that doubles back on itself to form a two-stranded structure. For example, the stem loop structure of the progenitor molecules from which the single-stranded miRNA is derived, called the pre-miRNA (Bartel et al. 2004. Cell 1 16:281-297), comprises a dsRNA molecule.


Example RNAi configurations

In an embodiment, a single-stranded RNAi molecule disclosed herein has a single-stranded oligonucleotide structure and mediates RNA interference against a target RNA (e.g., B3GNT2). A single-stranded B3GNT2 RNAi agent comprises: (a) a nucleic acid portion comprising a first nucleotide portion (N1) and a second nucleotide portion (N2), wherein said nucleic acid portion comprises at least 8 nucleotides that can base pair with a target RNA, and wherein the total number of nucleotides within the nucleic acid portion is from 8 to 26 nucleotides; and, (b) an internal spacer portion comprising at least a first non-nucleotide spacer portion (S1) that covalently links the first and second nucleotide portions. The first and second nucleotide portions are not self-complementary. The total number of nucleotides of a single-stranded B3GNT2 RNAi agent disclosed herein (e.g., 8 to 26) is distributed between the nucleotide portions of the RNAi molecule, wherein each nucleotide portion contains at least one nucleotide.


In one embodiment, the nucleic acid portion of a single-stranded B3GNT2 RNAi agent disclosed herein contains two nucleotide portions, referred to as the first nucleotide portion (N1) and the second nucleotide portion (N2). The first and second nucleotide portions of a B3GNT2 RNAi agent disclosed herein are covalently attached to a non-nucleotide spacer portion of the molecule. In another embodiment, the nucleic acid portion of the B3GNT2 single-stranded RNAi agent disclosed herein contains more than one nucleotide portion (e.g., 3, 4, or 5, referred to as third (N3), fourth (N4) or fifth (N5) nucleotide portions, respectively).


In one embodiment, the internal spacer portion of a single-stranded B3GNT2 RNAi agent disclosed herein contains only one non-nucleotide spacer portion, referred to as the first non-nucleotide spacer portion (S1). The first non-nucleotide spacer portion (S1) of a B3GNT2 RNAi agent disclosed herein is covalently attached to two nucleotides and/or non-nucleotide substitutes, each located within a distinct nucleotide portion of the single-stranded molecule. In another embodiment, the internal spacer portion of a single-stranded B3GNT2 RNAi agent disclosed herein contains more than one non-nucleotide spacer portion (e.g., 2, 3, or 4, referred to as second (S2), third (S3) or fourth (S4) non-nucleotide spacer portions, respectively).


A single-stranded B3GNT2 RNAi agent disclosed herein can comprise substitutions, chemically modified nucleotides, and non-nucleotides, including substitutions or modifications in the backbone, sugars, bases, or nucleosides. In certain embodiments, the use of substituted or modified single-stranded B3GNT2 RNAi agents can enable achievement of a given therapeutic effect at a lower dose since these molecules may be designed to have an increased half-life in a subject or biological samples (e.g., blood). Furthermore, certain substitutions or modifications can be used to improve the bioavailability of single-stranded B3GNT2 RNAi agents by targeting particular cells or tissues or improving cellular uptake of the single-stranded B3GNT2 RNAi agents.


In an embodiment, the internal spacer portion of a single-stranded B3GNT2 RNAi agent can comprise one or more non-nucleotide spacer portions. A non-nucleotide spacer portion can include any aliphatic or aromatic chemical group that can be further substituted, wherein said spacer portion does not contain a nucleotide. The spacer portion can be substituted with a chemical moiety that provides additional functionality to a single-stranded B3GNT2 RNAi agent. For example, a non-nucleotide spacer portion can be substituted with a moiety that binds specifically to a target molecule of interest or facilitates/enhances cellular delivery of the molecule. In one embodiment, a non-nucleotide spacer portion includes an alkyl, alkenyl or alkynyl chain of preferably 1 to 20 carbons that can be optionally substituted.


The single-stranded B3GNT2 RNAi molecules disclosed herein are useful agents, which can be used in methods for a variety of therapeutic, diagnostic, genetic engineering, and pharmacological applications. Thus, embodiments of the present disclosure further include methods comprising using a single-stranded B3GNT2 RNAi agent and methods for inhibiting B3GNT2 expression of one or more corresponding target mRNAs to enhance anti-tumor immunity in a cell or organism. Further, this disclosure provides methods and B3GNT2 RNAi agents for treating a subject, by enhancing anti-tumor immunity in a subject in need thereof, including a human cell, tissue, individual or subject.


Modifications

The RNAi modalities described above may comprise one or more modifications including, but not limited to, base modification, ribose modifications, and phosphate modifications. Example base modifications may include 2′-O-methyl, 2′0-methoxyethyl, 2′-arabinoo-fluoro, 2′-O-benzyl, 2′-O-methyl-4-pyridine, locked nucleic acid (LNA), (S)-cEt-BNA, tricyclo-DNA, PMO, unlocked nucleic acid, and glycol nucleic acid. Phosphate modifications include phophoorothioate (PS, Rp isomer, and PS, Sp isomer), phosphorodithioate, methylphosphonate, methoxypropyl-phosphonate, 5′-(E)-vinylphophonate, 5′-Methyl Phosphonate, (S)-5′-C-methyl with phosphate, 5′-phosphorothioate, and peptide nucleic acid. Base modifications may include pseudouridine, 2′-thiouridine, N6′-methyladenosine, 5′-methylcytidine, 5′-fluoro-2′-deoxyuridine, N-ethylpiperidine 7′-EAA triazole modified adenine, N-ethylpiperidine 6′-triazole modified adenine, 6′-phenylpyrrolo-cytosinie, 2′,4′-difluorotoluly ribonucleoside, and 5′-nitroindole. A summary of modifications and example locations within a RNAi polynucleotide for each modification are describe in Hu et al. “Therapeutic siRNA: state of the art” Signal Transduction and Targeted Therapy 5, Article number 100 (2020), particularly FIGS. 2 and 3, which are incorporated herein by reference.


Delivery Platforms

While the RNAi polynucleotides described above may be delivered as naked RNA (with or without modification) in certain example embodiments, the RNAi therapeutic may further comprise a delivery platform. Example delivery planforms include, but are not limited to liposomes, conjugates, peptides, exosomes, polymers, dendrimers, and inorganic nanoparticles. Example liposomes include Dlin-DMA, Dlin-MC3-DMA, and EnCore.


Example conjugates include GalNAc, cholesterol, and RGD. Example polymers include cyclodextrin, PBAVE, PEI, and PLGA. Example peptides include DPC2.0 (MLP), and PNP. Example delivery platforms are described in Hu et al. “Therapeutic siRNA: state of the art” Signal Transduction and Targeted Therapy 5, Article number 100 (2020), particularly pages 11-20 and FIG. 6, which are incorporated herein by reference.


In general, and throughout this specification, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Vectors include, but are not limited to, nucleic acid molecules that are single-stranded, double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g., circular); nucleic acid molecules that comprise DNA, RNA, or both; and other varieties of polynucleotides known in the art. There are no limitations regarding the type of vector that can be used. The vector can be a cloning vector, suitable for propagation and for obtaining polynucleotides, gene constructs or expression vectors incorporated to several heterologous organisms. Suitable vectors include eukaryotic expression vectors based on viral vectors (e.g. adenoviruses, adeno-associated viruses as well as retroviruses and lentiviruses), as well as non-viral vectors such as plasmids. Exemplary therapeutic delivery vectors of RNAi including viruses are described in Nguyen et al. “RNAi therapeutics: An update on delivery” (2008). Current Opinion in Molecular Therapeutics 10(2): 158-167. Exemplary RNAi delivery vectors from a variety of viruses including, but not limited to, adenovirus (Ad), adeno-associated virus (AAV), retroviruses, et al. are described in Lundstrom, K. “Viral Vectors Applied for RNAi-Based Antiviral Therapy” Viruses (2020) 12, 924 doi: 10:3390/v12092924 (14 pages), particularly on pages 3 and 4, which are herein incorporated by reference. Exemplary viral vectors using alphaviruses, flaviviruses, measles viruses and rhabdoviruses are described in Lundstrom, K. “Self-Amplifying RNA Viruses as RNA Vaccines” 21, 5130 (2020); doi:10.3390/ijms21145130 (29 pages), particularly the viral vectors listed on page 6, which are herein incorporated by reference.


In one example embodiment, the vector is a viral vector, wherein virally-derived DNA or RNA sequences are present in the vector for packaging into a virus (e.g., retroviruses, replication defective retroviruses, adenoviruses, replication defective adenoviruses, and adeno-associated viruses). Viral vectors also include polynucleotides carried by a virus for transfection into a host cell. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.


In one example embodiment, the vector is a “plasmid,” which refers to a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques.


In one example embodiment, RNAi molecules are delivered via liposomes. The RNAi molecules may be modified.


Use of Gene Editing Systems to Reduce B3GNT2, MCL1, BCLA21, and/or JunB Expression or Activity in Tumor Cells


In one example embodiment, a gene editing system is used to reduce the expression or activity of one or more of B3GNT2, MCL1, BCLA21 and JUNB (collectively “target sequences”) in tumor cells. In one example embodiment, a programmable nuclease is used to make one or more insertions or deletions in one or more that target sequences that results in reduced expression of the one or more target sequences. In another example embodiment, a programmable nuclease, in combination with a donor template, is used to replace a portion one or more target genes with either a non-functional variant of the target gene or a modified target gene that results in expression of a gene produce of reduced activity. In one example embodiment, a catalytically inactive programmable nuclease is used to recruit a functional domain (e.g., repressor domain) to the target gene to reduce expression. In one example embodiment, the gene editing system is a base editing system. In one example embodiment, the base editing system is a DNA base editing system used to make one or more base or base pair edits to one or more target genes that reduce target gene expression. In one example embodiment, the base editing system is a RNA base editing system used to modify mRNA expressed from the one or more genes to reduce protein function, for example, by modifying one or more post-translation modification sites encoded by the mRNA In another example embodiment, the gene editing system is a prime editing system. A prime editing system may be used to edit DNA like a base editing system. A prime editing system may also be used to replace all or a portion of the target genes to produce a non-functional variant or expression of a gene product with reduced activity.


Programmable Nucleases

In certain example embodiments, a programmable nuclease may be used to edit a genomic region comprising one or more genomic variants associated with decreased expression or activity of B3GNT2. Gene editing using programmable nucleases may utilize two different cell repair pathways, non-homologous end joining (NHEJ) and homology-directed repair (HDR). In certain example embodiment, HDR is used to provide a template that replaces a genomic region comprising the variant with a donor that edits the risk variant to a wild-type or non-risk variant. Example programmable nucleases for use in this manner include zinc finger nucleases (ZFN), TALE nucleases (TALENS), meganucleases, and CRISPR-Cas systems.


CRISPR-Cas

In one example embodiment, the gene editing system is a CRISPR-Cas system. The CRISPR-Cas system comprises a Cas polypeptide and a guide sequence, wherein the guide sequence is capable of forming a CRISPR-Cas complex with the Cas polypeptide and directing site-specific binding of the CRISPR-Cas sequence to a target sequence. The Cas polypeptide may induce a double- or single-stranded break at a designated site in the target sequence. The site of CRISPR-Cas cleavage, for most CRISPR-Cas systems, is dictated by distance from a protospacer-adjacent motif (PAM), discussed in further detail below. Accordingly, a guide sequence may be selected to direct the CRISPR-Cas system to induce cleavage at a desired target site at or near the one or more variants.


NHEJ-Based Editing
B3GNT2

In one example embodiment, the CRISPR-Cas system is used to introduce one or more insertions or deletions that reduces or inhibits B3GNT2 expression or activity. More than one guide sequence may be selected to insert multiple insertions, deletions, or combinations thereof. Likewise, more than one Cas protein type may be used, for example, to maximize targets sites adjacent to different PAMs. In one example embodiment, a guide sequence is selected that directs the CRISPR-Cas system to make one or more insertions or deletions in wild type B3GNT2 that reduces B3GNT2 expression. The wild type human B3GNT2 gene, Locus and Accession number NM_006577, is 2761 bp encoding a protein of 397 amino acids. The B3GNT2 gene contains two exons from nt 1-241 and from nt 242 to 2761. The B3GNT2 ORF contains the feature of having an in-frame stop codon at nt 245 to nt 247. The B3GNT2 amino acid sequence contains a transmembrane region from AA 272 to 334, glycosylation sites at AA 485 to 487, 515 to 517, 629 to 631, 767 to 769, 905 to 907, a polyA signal sequence (AATAAA) at AA 2740 to 2745 and a major polyA site at AA 2761. In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more deletions that affects one or more splicing sites in the B3GNT2 gene causing a decrease in the expression of the B3GNT2 ORF. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make a deletion in the B3GNT2 gene such that a frame-shift is introduced into the ORF causing a decrease in expression of the full-length B3GNT2 transcript. In one example embodiment, a guide sequence is selected that directs the CRISPR-Cas system to make an insertion that affects one or more splicing sites in the B3GNT2 gene, which causes a decrease in the expression of the B3GNT2 gene. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make an insertion in the B3GNT2 gene such that a frame-shift is introduced into the ORF causing a decrease in expression of the full-length B3GNT2 transcript.


In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make a deletion that affects the transmembrane region of the B3GNT2 protein, which causes instability and a decrease in the activity of the B3GNT2 protein. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make a deletion in the B3GNT2 ORF such that a frame-shift is introduced into the ORF introducing a stop codon which leads to a decrease in activity of the truncated B3GNT2 protein. In an example embodiment, a guide is selected that directs the CRISPR-Cas system to make a substitution at amino acid position 245 (D, aspartic acid) which abolishes catalytic activity. In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make a deletion or insertion of the B3GNT2 gene, which leads to disruption of the polyA signal sequence region of the protein, causing a decrease in activity of the B3GNT2 protein.


MCL1

In one example embodiment, the CRISPR-Cas system is used to introduce one or more insertions or deletions that reduces or inhibits MCL1 expression or activity. More than one guide sequence may be selected to insert multiple insertions, deletions, or combinations thereof. Likewise, more than one Cas protein type may be used, for example, to maximize targets sites adjacent to different PAMs. In one example embodiment, a guide sequence is selected that directs the CRISPR-Cas system to make one or more insertions or deletions in wild type MCL1 that reduces MCL1 expression. The wild type human MCL1 gene, Locus and Accession number NM_021960, is 3950 bp encoding a protein of 350 amino acids. The MCL1 ORF contains three exons from nt 1-768, from nt 769 to 1016 and from nt 1017 to 3950. The MCL1 gene contains the feature of having a transcription initiation site at nt 1. The MCL1 amino acid sequence contains functional domains for multiple phosphorylation sites, a PEST-like site, two cleavage sites, a BH3-binding site, a BH2-binding site, a BH1-binding region, a transmembrane region, a polyA signal sequence and a major polyA site. In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more deletions that affects one or more splicing sites in the MCL1 gene causing a decrease in the expression of the MCL1 gene. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make a deletion in the MCL1 gene such that a frame-shift is introduced into the ORF causing a decrease in expression of the full-length MCL1 transcript. In one example embodiment, a guide sequence is selected that directs the CRISPR-Cas system to make one or more insertions that affects one or more splicing sites in the MCL1 gene, which causes a decrease in the expression of the MCL1 gene. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more insertions in the MCL1 gene such that a frame-shift is introduced into the ORF causing a decrease in expression of the full-length MCL1 transcript.


In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more deletions that affects or disrupts one or more phosphorylation sites, one or more cleavage sites, the BH1-, BH2-, BH3-binding sites or the transmembrane region of the MCL1 protein, or any combination thereof, all of which cause protein instability and a decrease in the activity of the MCL1 protein. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make a deletion in the MCL1 ORF such that a frame-shift is introduced into the ORF introducing a stop codon which leads to a decrease in activity of the truncated MCL1 protein. In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more deletions or insertions of the MCL1 gene, which leads to disruption of the polyA signal sequence region of the MCL1 protein, causing a decrease in activity of the MCL1 protein.


BCL2A1

In one example embodiment, the CRISPR-Cas system is used to introduce one or more insertions or deletions that reduces or inhibits BCL2A1 expression or activity. More than one guide sequence may be selected to insert multiple insertions, deletions, or combinations thereof. Likewise, more than one Cas protein type may be used, for example, to maximize targets sites adjacent to different PAMs. In one example embodiment, a guide sequence is selected that directs the CRISPR-Cas system to make one or more insertions or deletions in wild type BCL2A1 that reduces BCL2A1 expression. The wild type human BCL2A1 gene, Locus and Accession number NM_004049 is 780 bp encoding a protein of 175 amino acids. The BCL2A1 ORF contains two exons from nt 1-497 and from nt 498 to 780. The BCL2A1 ORF contains the feature of having an in-frame stop codon at nt 3 to nt 5. The BCL2A1 amino acid sequence contains a BH2-binding site, a BH1-binding site, a polyA signal sequence and a major polyA site. In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more deletions that affects one or more splicing sites in the BCL2A1 gene causing a decrease in the expression of the BCL2A1 gene. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make a deletion in the BCL2A1 gene such that a frame-shift is introduced into the ORF causing a decrease in expression of the full-length BCL2A1 transcript. In one example embodiment, a guide sequence is selected that directs the CRISPR-Cas system to make one or more insertions that affects one or more splicing sites in the BCL2A1 gene, which causes a decrease in the expression of the BCL2A1 gene. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more insertions in the BCL2A1 gene such that a frame-shift is introduced into the ORF causing a decrease in expression of the full-length BCL2A1 transcript.


In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more deletions that affects the transmembrane region of the BCL2A1 protein, which causes instability and a decrease in the activity of the BCL2A1 protein. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make a deletion in the BCL2A1 ORF such that a frame-shift is introduced into the ORF introducing a stop codon which leads to a decrease in activity of the BCL2A1 protein. In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more deletions or insertions of the BCL2A1 gene which leads to disruption of the polyA signal sequence region of the BCL2A1 protein, causing a decrease in activity of the BCL2A1 protein.


JUNB

In one example embodiment, the CRISPR-Cas system is used to introduce one or more insertions or deletions that reduces or inhibits JUNB expression or activity. More than one guide sequence may be selected to insert multiple insertions, deletions, or combinations thereof. Likewise, more than one Cas protein type may be used, for example, to maximize targets sites adjacent to different PAMs. In one example embodiment, a guide sequence is selected that directs the CRISPR-Cas system to make one or more insertions or deletions in wild type JUNB that reduces JUNB expression. The wild type human JUNB gene, Locus and Accession number NM_002229 is 1830 bp encoding a protein of 347 amino acids. The JUNB gene contains one exon from nt 1-1830. The JUNB gene contains the feature of having an in-frame stop codon at nt 8 to nt 10. The JUNB amino acid sequence contains multiple phosphorylation sites, an acetylation site, a leucine zipper region a polyA signal sequence and a major polyA site. In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more deletions that affects the splicing site in the JUNB gene causing a decrease in the expression of the JUNB gene. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make a deletion in the JUNB gene such that a frame-shift is introduced into the ORF causing a decrease in expression of the full-length JUNB transcript. In one example embodiment, a guide sequence is selected that directs the CRISPR-Cas system to make one or more insertions that affects the splicing site in the JUNB gene, which causes a decrease in the expression of the JUNB gene. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more insertions in the JUNB gene such that a frame-shift is introduced into the ORF causing a decrease in expression of the full-length JUNB transcript.


In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more deletions that affects or disrupts one or more phosphorylation sites and/or the acetylation site, or combinations thereof, which cause protein instability and a decrease in the activity of the JUNB protein. In an embodiment, a guide is selected that directs the CRISPR-Cas system to make a deletion in the JUNB gene such that a frame-shift is introduced into the ORF introducing a stop codon which leads to a decrease in activity of the truncated JUNB protein. In one example embodiment, a guide is selected that directs the CRISPR-Cas system to make one or more deletions or insertions of the JUNB gene which leads to disruption of the polyA signal sequence region of the JUNB protein, causing a decrease in activity of the JUNB protein.


HDR Template Based Editing

In one example embodiment, a donor template is provided to replace a genomic sequence comprising one or more variants that reduce B3GNT2 expression. A donor template may comprise an insertion sequence flanked by two homology regions. The insertion sequence comprises an edited sequence to be inserted in place of the target sequence (e.g. a portion of genomic DNA comprising the one or more variants). The homology regions comprise sequences that are homologous to the genomic DNA strands at the site of the CRISPR-Cas induced double-strand break. Cellular HDR mechanisms then facilitate insertion of the insertion sequence at the site of the DSB. Accordingly, in certain example embodiments, a donor template and guide sequence are selected to direct excision and replacement of a section of genome DNA comprising a variant that reduces B3GNT2 expression with an insertion sequence that edits the one or more variants to a wild-type or non-risk variant. In one example embodiment, the insertion sequence comprises a wild-type or non-risk variant that reduces B3GNT2 expression. In one example embodiment, the insertion sequence encodes a portion of genomic DNA in which the variant is changed from a C to a T.


The donor template may include a sequence which results in a change in sequence of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more nucleotides of the target sequence.


A donor template may be of any suitable length, such as about or more than about 10, 15, 20, 25, 50, 75, 100, 150, 200, 500, 1000, or more nucleotides in length. In an embodiment, the template nucleic acid may be 20+/−10, 30+/−10, 40+/−10, 50+/−10, 60+/−10, 70+/−10, 80+/−10, 90+/−10, 100+/−10, 1 10+/−10, 120+/−10, 130+/−10, 140+/−10, 150+/−10, 160+/−10, 170+/−10, 1 80+/−10, 190+/−10, 200+/−10, 210+/−10, of 220+/−10 nucleotides in length. In an embodiment, the template nucleic acid may be 30+/−20, 40+/−20, 50+/−20, 60+/−20, 70+/−20, 80+/−20, 90+/−20, 100+/−20, 1 10+/−20, 120+/−20, 130+/−20, 140+/−20, I 50+/−20, 160+/−20, 170+/−20, 180+/−20, 190+/−20, 200+/−20, 210+/−20, of 220+/−20 nucleotides in length. In an embodiment, the template nucleic acid is 10 to 1,000, 20 to 900, 30 to 800, 40 to 700, 50 to 600, 50 to 500, 50 to 400, 50 to300, 50 to 200, or 50 to 100 nucleotides in length.


The homology regions of the donor template may be complementary to a portion of a polynucleotide comprising the target sequence. When optimally aligned, a donor template might overlap with one or more nucleotides of a target sequences (e.g. about or more than about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 or more nucleotides). In some embodiments, when a template sequence and a polynucleotide comprising a target sequence are optimally aligned, the nearest nucleotide of the template polynucleotide is within about 1, 5, 10, 15, 20, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 5000, 10000, or more nucleotides from the target sequence.


The donor template comprises a sequence to be integrated (e.g., a mutated gene). The sequence for integration may be a sequence endogenous or exogenous to the cell. Examples of a sequence to be integrated include polynucleotides encoding a protein or a non-coding RNA (e.g., a microRNA). Thus, the sequence for integration may be operably linked to an appropriate control sequence or sequences. Alternatively, the sequence to be integrated may provide a regulatory function.


Homology arms of the donor template may comprise from about 20 bp to about 2500 bp, for example, about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 bp. In some methods, the exemplary upstream or downstream sequence have about 200 bp to about 2000 bp, about 600 bp to about 1000 bp, or more particularly about 700 bp to about 1000.


In one example embodiment, one or both homology arms may be shortened to avoid including certain sequence repeat elements. For example, a 5′ homology arm may be shortened to avoid a sequence repeat element. In other embodiments, a 3′ homology arm may be shortened to avoid a sequence repeat element. In some embodiments, both the 5′ and the 3′ homology arms may be shortened to avoid including certain sequence repeat elements.


The donor template may further comprise a marker. Such a marker may make it easy to screen for targeted integrations. Examples of suitable markers include restriction sites, fluorescent proteins, or selectable markers. The donor template of the disclosure can be constructed using recombinant techniques (see, for example, Sambrook et al., 2001 and Ausubel et al., 1996).


In one example embodiment, a donor template is a single-stranded oligonucleotide. When using a single-stranded oligonucleotide, 5′ and 3′ homology arms may range up to about 200 base pairs (bp) in length, e.g., at least 25, 50, 75, 100, 125, 150, 175, or 200 bp in length.


Suzuki et al. describe in vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration (2016, Nature 540:144-149).


Class 1 Systems

The CRISPR-Cas therapeutic methods disclosed herein may be designed for use with Class 1 CRISPR-Cas systems. In certain example embodiments, the Class 1 system may be Type I, Type III or Type IV CRISPR-Cas as described in Makarova et al. “Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants” Nature Reviews Microbiology, 18:67-81 (February 2020), incorporated in its entirety herein by reference, and particularly as described in FIG. 1, p. 326. The Class 1 systems typically use a multi-protein effector complex, which can, in some embodiments, include ancillary proteins, such as one or more proteins in a complex referred to as a CRISPR-associated complex for antiviral defense (Cascade), one or more adaptation proteins (e.g. Cas1, Cas2, RNA nuclease), and/or one or more accessory proteins (e.g. Cas 4, DNA nuclease), CRISPR associated Rossman fold (CARF) domain containing proteins, and/or RNA transcriptase. Although Class 1 systems have limited sequence similarity, Class 1 system proteins can be identified by their similar architectures, including one or more Repeat Associated Mysterious Protein (RAMP) family subunits, e.g. Cas 5, Cas6, Cas7. RAMP proteins are characterized by having one or more RNA recognition motif domains. Large subunits (for example cas8 or cas10) and small subunits (for example, cas11) are also typical of Class 1 systems. See, e.g., FIGS. 1 and 2. Koonin E V, Makarova K S. 2019 Origins and evolution of CRISPR-Cas systems. Phil. Trans. R. Soc. B 374: 20180087, DOI: 10.1098/rstb.2018.0087. In one aspect, Class 1 systems are characterized by the signature protein Cas3. The Cascade in particular Class1 proteins can comprise a dedicated complex of multiple Cas proteins that binds pre-crRNA and recruits an additional Cas protein, for example Cas6 or Cas5, which is the nuclease directly responsible for processing pre-crRNA. In one aspect, the Type I CRISPR protein comprises an effector complex comprises one or more Cas5 subunits and two or more Cas7 subunits. Class 1 subtypes include Type I-A, I-B, I-C, I-U, I-D, I-E, and I-F, Type IV-A and IV-B, and Type III-A, III-D, III-C, and III-B. Class 1 systems also include CRISPR-Cas variants, including Type I-A, I-B, I-E, I-F and I-U variants, which can include variants carried by transposons and plasmids, including versions of subtype I-F encoded by a large family of Tn7-like transposon and smaller groups of Tn7-like transposons that encode similarly degraded subtype I-B systems. Peters et al., PNAS 114 (35) (2017); DOI: 10.1073/pnas. 1709035114; see also, Makarova et al, the CRISPR Journal, v. 1, n5, FIG. 5.


Class 2 Systems

The CRISPR-Cas therapeutic methods disclosed herein may be designed for use with. Class 2 systems are distinguished from Class 1 systems in that they have a single, large, multi-domain effector protein. In certain example embodiments, the Class 2 system can be a Type II, Type V, or Type VI system, which are described in Makarova et al. “Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants” Nature Reviews Microbiology, 18:67-81 (February 2020), incorporated herein by reference. Each type of Class 2 system is further divided into subtypes. See Markova et al. 2020, particularly at Figure. 2. Class 2, Type II systems can be divided into 4 subtypes: II-A, II-B, II-C1, and II-C2. Class 2, Type V systems can be divided into 17 subtypes: V-A, V-B1, V-B2, V-C, V-D, V-E, V-F1, V-F1(V-U3), V-F2, V-F3, V-G, V-H, V-I, V-K (V-U5), V-U1, V-U2, and V-U4. Class 2, Type IV systems can be divided into 5 subtypes: VI-A, VI-B1, VI-B2, VI-C, and VI-D.


The distinguishing feature of these types is that their effector complexes consist of a single, large, multi-domain protein. Type V systems differ from Type II effectors (e.g., Cas9), which contain two nuclear domains that are each responsible for the cleavage of one strand of the target DNA, with the HNH nuclease inserted inside a split Ruv-C like nuclease domain sequence. The Type V systems (e.g., Cas12) only contain a RuvC-like nuclease domain that cleaves both strands. Some Type V systems have also been found to possess this collateral activity with two single-stranded DNA in in vitro contexts.


In one example embodiment, the Class 2 system is a Type II system. In one example embodiment, the Type II CRISPR-Cas system is a II-A CRISPR-Cas system. In one example embodiment, the Type II CRISPR-Cas system is a II-B CRISPR-Cas system. In one example embodiment, the Type II CRISPR-Cas system is a II-C1 CRISPR-Cas system. In one example embodiment, the Type II CRISPR-Cas system is a II-C2 CRISPR-Cas system. In one example embodiments, the Type II system is a Cas9 system. In some embodiments, the Type II system includes a Cas9.


In one example embodiment, the Class 2 system is a Type V system. In one example embodiment, the Type V CRISPR-Cas system is a V-A CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-B1 CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-B2 CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-C CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-D CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-E CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-F1 CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-F1 (V-U3) CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-F2 CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-F3 CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-G CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-H CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-I CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-K (V-U5) CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-U1 CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-U2 CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas system is a V-U4 CRISPR-Cas system. In one example embodiment, the Type V CRISPR-Cas is a Cas12a (Cpf1), Cas12b (C2c1), Cas12c (C2c3), Cas12d (CasY), Cas12e (CasX), Cas14, and/or CasΦ.


Guide Molecules

The following include general design principles that may be applied to the guide molecule. The terms guide molecule, guide sequence and guide polynucleotide refer to polynucleotides capable of guiding Cas to a target genomic locus and are used interchangeably as in foregoing cited documents such as International Patent Publication No. WO 2014/093622 (PCT/US2013/074667). In general, a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR complex to the target sequence. The guide molecule can be a polynucleotide.


The ability of a guide sequence (within a nucleic acid-targeting guide RNA) to direct sequence-specific binding of a nucleic acid-targeting complex to a target nucleic acid sequence may be assessed by any suitable assay. For example, the components of a nucleic acid-targeting CRISPR system sufficient to form a nucleic acid-targeting complex, including the guide sequence to be tested, may be provided to a host cell having the corresponding target nucleic acid sequence, such as by transfection with vectors encoding the components of the nucleic acid-targeting complex, followed by an assessment of preferential targeting (e.g., cleavage) within the target nucleic acid sequence, such as by Surveyor assay (Qui et al. 2004. BioTechniques. 36(4)702-707). Similarly, cleavage of a target nucleic acid sequence may be evaluated in a test tube by providing the target nucleic acid sequence, components of a nucleic acid-targeting complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions. Other assays are possible and will occur to those skilled in the art.


In some embodiments, the guide molecule is an RNA. The guide molecule(s) (also referred to interchangeably herein as guide polynucleotide and guide sequence) that are included in the CRISPR-Cas or Cas based system can be any polynucleotide sequence having sufficient complementarity with a target nucleic acid sequence to hybridize with the target nucleic acid sequence and direct sequence-specific binding of a nucleic acid-targeting complex to the target nucleic acid sequence. In some embodiments, the degree of complementarity, when optimally aligned using a suitable alignment algorithm, can be about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting examples of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g., the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, CA), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net).


A guide sequence, and hence a nucleic acid-targeting guide, may be selected to target any target nucleic acid sequence. The target sequence may be DNA. The target sequence may be any RNA sequence. In some embodiments, the target sequence may be a sequence within an RNA molecule selected from the group consisting of messenger RNA (mRNA), pre-mRNA, ribosomal RNA (rRNA), transfer RNA (tRNA), micro-RNA (miRNA), small interfering RNA (siRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), double stranded RNA (dsRNA), non-coding RNA (ncRNA), long non-coding RNA (lncRNA), and small cytoplasmatic RNA (scRNA). In some preferred embodiments, the target sequence may be a sequence within an RNA molecule selected from the group consisting of mRNA, pre-mRNA, and rRNA. In some preferred embodiments, the target sequence may be a sequence within an RNA molecule selected from the group consisting of ncRNA, and lncRNA. In some more preferred embodiments, the target sequence may be a sequence within an mRNA molecule or a pre-mRNA molecule.


In some embodiments, a nucleic acid-targeting guide is selected to reduce the degree secondary structure within the nucleic acid-targeting guide. In some embodiments, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, or fewer of the nucleotides of the nucleic acid-targeting guide participate in self-complementary base pairing when optimally folded. Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegler (Nucleic Acids Res. 9 (1981), 133-148). Another example folding algorithm is the online webserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g., A. R. Gruber et al., 2008, Cell 106(1): 23-24; and P A Carr and G M Church, 2009, Nature Biotechnology 27(12): 1151-62).


In one example embodiment, a guide RNA or crRNA may comprise, consist essentially of, or consist of a direct repeat (DR) sequence and a guide sequence or spacer sequence. In another example embodiment, the guide RNA or crRNA may comprise, consist essentially of, or consist of a direct repeat sequence fused or linked to a guide sequence or spacer sequence. In another example embodiment, the direct repeat sequence may be located upstream (i.e., 5′) from the guide sequence or spacer sequence. In other embodiments, the direct repeat sequence may be located downstream (i.e., 3′) from the guide sequence or spacer sequence.


In one example embodiment, the crRNA comprises a stem loop, preferably a single stem loop. In one example embodiment, the direct repeat sequence forms a stem loop, preferably a single stem loop.


In one example embodiment, the spacer length of the guide RNA is from 15 to 35 nt. In another example embodiment, the spacer length of the guide RNA is at least 15 nucleotides. In another example embodiment, the spacer length is from 15 to 17 nt, e.g., 15, 16, or 17 nt, from 17 to 20 nt, e.g., 17, 18, 19, or 20 nt, from 20 to 24 nt, e.g., 20, 21, 22, 23, or 24 nt, from 23 to 25 nt, e.g., 23, 24, or 25 nt, from 24 to 27 nt, e.g., 24, 25, 26, or 27 nt, from 27 to 30 nt, e.g., 27, 28, 29, or 30 nt, from 30 to 35 nt, e.g., 30, 31, 32, 33, 34, or 35 nt, or 35 nt or longer.


The “tracrRNA” sequence or analogous terms includes any polynucleotide sequence that has sufficient complementarity with a crRNA sequence to hybridize. In some embodiments, the degree of complementarity between the tracrRNA sequence and crRNA sequence along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher. In some embodiments, the tracr sequence is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or more nucleotides in length. In some embodiments, the tracr sequence and crRNA sequence are contained within a single transcript, such that hybridization between the two produces a transcript having a secondary structure, such as a hairpin.


In general, degree of complementarity is with reference to the optimal alignment of the sca sequence and tracr sequence, along the length of the shorter of the two sequences. Optimal alignment may be determined by any suitable alignment algorithm and may further account for secondary structures, such as self-complementarity within either the sca sequence or tracr sequence. In some embodiments, the degree of complementarity between the tracr sequence and sca sequence along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher.


In some embodiments, the degree of complementarity between a guide sequence and its corresponding target sequence can be about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or 100%; a guide or RNA or sgRNA can be about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length; or guide or RNA or sgRNA can be less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length; and tracr RNA can be 30 or 50 nucleotides in length. In some embodiments, the degree of complementarity between a guide sequence and its corresponding target sequence is greater than 94.5% or 95% or 95.5% or 96% or 96.5% or 97% or 97.5% or 98% or 98.5% or 99% or 99.5% or 99.9%, or 100%. Off target is less than 100% or 99.9% or 99.5% or 99% or 99% or 98.5% or 98% or 97.5% or 97% or 96.5% or 96% or 95.5% or 95% or 94.5% or 94% or 93% or 92% or 91% or 90% or 89% or 88% or 87% or 86% or 85% or 84% or 83% or 82% or 81% or 80% complementarity between the sequence and the guide, with it being advantageous that off target is 100% or 99.9% or 99.5% or 99% or 99% or 98.5% or 98% or 97.5% or 97% or 96.5% or 96% or 95.5% or 95% or 94.5% complementarity between the sequence and the guide.


In some embodiments according to the invention, the guide RNA (capable of guiding Cas to a target locus) may comprise (1) a guide sequence capable of hybridizing to a genomic target locus in the eukaryotic cell; (2) a tracr sequence; and (3) a tracr mate sequence. All of (1) to (3) may reside in a single RNA, i.e., an sgRNA (arranged in a 5′ to 3′ orientation), or the tracr RNA may be a different RNA than the RNA containing the guide and tracr sequence. The tracr hybridizes to the tracr mate sequence and directs the CRISPR/Cas complex to the target sequence. Where the tracr RNA is on a different RNA than the RNA containing the guide and tracr sequence, the length of each RNA may be optimized to be shortened from their respective native lengths, and each may be independently chemically modified to protect from degradation by cellular RNase or otherwise increase stability.


Many modifications to guide sequences are known in the art and are further contemplated within the context of this invention. Various modifications may be used to increase the specificity of binding to the target sequence and/or increase the activity of the Cas protein and/or reduce off-target effects. Example guide sequence modifications are described in International Patent Application No. PCT US2019/045582, specifically paragraphs [0178]-[0333]. which is incorporated herein by reference.


Target Sequences, PAMs, and PESs

In the context of formation of a CRISPR complex, “target sequence” refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex. In other words, the target polynucleotide can be a polynucleotide or a part of a polynucleotide to which a part of the guide sequence is designed to have complementarity with and to which the effector function mediated by the complex comprising the CRISPR effector protein and a guide molecule is to be directed. In some embodiments, a target sequence is located in the nucleus or cytoplasm of a cell.


PAM elements are sequences that can be recognized and bound by Cas proteins. Cas proteins/effector complexes can then unwind the dsDNA at a position adjacent to the PAM element. It will be appreciated that Cas proteins and systems target RNA do not require PAM sequences (Marraffini et al. 2010. Nature. 463:568-571). Instead, many rely on PFSs, which are discussed elsewhere herein. In one example embodiment, the target sequence should be associated with a PAM (protospacer adjacent motif) or PFS (protospacer flanking sequence or site), that is, a short sequence recognized by the CRISPR complex. Depending on the nature of the CRISPR-Cas protein, the target sequence should be selected, such that its complementary sequence in the DNA duplex (also referred to herein as the non-target sequence) is upstream or downstream of the PAM. In the embodiments, the complementary sequence of the target sequence is downstream or 3′ of the PAM or upstream or 5′ of the PAM. The precise sequence and length requirements for the PAM differ depending on the Cas protein used, but PAMs are typically 2-5 base pair sequences adjacent the protospacer (that is, the target sequence). Examples of the natural PAM sequences for different Cas proteins are provided herein below and the skilled person will be able to identify further PAM sequences for use with a given Cas protein.


The ability to recognize different PAM sequences depends on the Cas polypeptide(s) included in the system. See e.g., Gleditzsch et al. 2019. RNA Biology. 16(4):504-517. Table 3 (from Gleditzsch et al. 2019) below shows several Cas polypeptides and the PAM sequence they recognize.









TABLE 3







Example PAM Sequences










Cas Protein
PAM Sequence







SpCas9
NGG/NRG







SaCas9
NGRRT or NGRRN







NmeCas9
NNNNGATT







CjCas9
NNNNRYAC







StCas9
NNAGAAW







Cas12a (Cpf1)
TTTV



(including




LbCpf1 and




AsCpf1)








Cas12b (C2c1)
TTT, TTA, and TTC







Cas12c (C2c3)
TA







Cas12d (CasY)
TA







Cas12e (CasX)
5′-TTCN-3′







Cas1
5′-CTT-3′







Cas8e
5′-ATG-3′







Type I-A
5′-CCN-3′







Type I-B
TTC, ACT, TAA, TAT,




TAG, and CAC







Type I-C
NTTC







Type I-E
5′-AAG-3′







Type I-F
GG










In a preferred embodiment, the CRISPR effector protein may recognize a 3′ PAM. In one example embodiment, the CRISPR effector protein may recognize a 3′ PAM which is 5′H, wherein His A, C or U.


Further, engineering of the PAM Interacting (PI) domain on the Cas protein may allow programing of PAM specificity, improve target site recognition fidelity, and increase the versatility of the CRISPR-Cas protein, for example as described for Cas9 in Kleinstiver B P et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015 Jul. 23; 523(7561):481-5. doi: 10.1038/nature14592. As further detailed herein, the skilled person will understand that Cas 13 proteins may be modified analogously. Gao et al, “Engineered Cpf1 Enzymes with Altered PAM Specificities,” bioRxiv 091611; doi: http://dx.doi.org/10.1101/091611 (Dec. 4, 2016). Doench et al. created a pool of sgRNAs, tiling across all possible target sites of a panel of six endogenous mouse and three endogenous human genes and quantitatively assessed their ability to produce null alleles of their target gene by antibody staining and flow cytometry. The authors showed that optimization of the PAM improved activity and also provided an on-line tool for designing sgRNAs.


PAM sequences can be identified in a polynucleotide using an appropriate design tool, which are commercially available as well as online. Such freely available tools include, but are not limited to, CRISPRFinder and CRISPRTarget. Mojica et al. 2009. Microbiol. 155(Pt. 3):733-740; Atschul et al. 1990. J. Mol. Biol. 215:403-410; Biswass et al. 2013 RNA Biol. 10:817-827; and Grissa et al. 2007. Nucleic Acid Res. 35:W52-57. Experimental approaches to PAM identification can include, but are not limited to, plasmid depletion assays (Jiang et al. 2013. Nat. Biotechnol. 31:233-239; Esvelt et al. 2013. Nat. Methods. 10:1116-1121; Kleinstiver et al. 2015. Nature. 523:481-485), screened by a high-throughput in vivo model called PAM-SCNAR (Pattanayak et al. 2013. Nat. Biotechnol. 31:839-843 and Leenay et al. 2016. Mol. Cell. 16:253), and negative screening (Zetsche et al. 2015. Cell. 163:759-771).


As previously mentioned, CRISPR-Cas systems that target RNA do not typically rely on PAM sequences. Instead, such systems typically recognize protospacer flanking sites (PFSs) instead of PAMs Thus, Type VI CRISPR-Cas systems typically recognize protospacer flanking sites (PFSs) instead of PAMs. PFSs represents an analogue to PAMs for RNA targets. Type VI CRISPR-Cas systems employ a Cas13. Some Cas13 proteins analyzed to date, such as Cas13a (C2c2) identified from Leptotrichia shahii (LShCAs13a) have a specific discrimination against G at the 3′end of the target RNA. The presence of a C at the corresponding crRNA repeat site can indicate that nucleotide pairing at this position is rejected. However, some Cas13 proteins (e.g., LwaCAs13a and PspCas13b) do not seem to have a PFS preference. See e.g., Gleditzsch et al. 2019. RNA Biology. 16(4):504-517.


Some Type VI proteins, such as subtype B, have 5′-recognition of D (G, T, A) and a 3′-motif requirement of NAN or NNA. One example is the Cas13b protein identified in Bergeyella zoohelcum (BzCas13b). See e.g., Gleditzsch et al. 2019. RNA Biology. 16(4):504-517.


Overall Type VI CRISPR-Cas systems appear to have less restrictive rules for substrate (e.g., target sequence) recognition than those that target DNA (e.g., Type V and type II).


Sequences Related to Nucleus Targeting and Transportation

In some embodiments, one or more components (e.g., the Cas protein) in the composition for engineering cells may comprise one or more sequences related to nucleus targeting and transportation. Such sequences may facilitate the one or more components in the composition for targeting a sequence within a cell. In order to improve targeting of the CRISPR-Cas protein used in the methods of the present disclosure to the nucleus, it may be advantageous to provide one or both of these components with one or more nuclear localization sequences (NLSs).


In one example embodiment, the NLSs used in the context of the present disclosure are heterologous to the proteins. Non-limiting examples of NLSs include an NLS sequence derived from: the NLS of the SV40 virus large T-antigen, having the amino acid sequence PKKKRKV (SEQ ID NO: 1) or PKKKRKVEAS (SEQ ID NO: 2); the NLS from nucleoplasmin (e.g., the nucleoplasmin bipartite NLS with the sequence KRPAATKKAGQAKKKK (SEQ ID NO: 3)); the c-myc NLS having the amino acid sequence PAAKRVKLD (SEQ ID NO: 4) or RQRRNELKRSP (SEQ ID NO: 5); the hRNPA1 M9 NLS having the sequence NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY (SEQ ID NO: 6); the sequence RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID NO: 7) of the IBB domain from importin-alpha; the sequences VSRKRPRP (SEQ ID NO: 8) and PPKKARED (SEQ ID NO: 9) of the myoma T protein; the sequence PQPKKKPL (SEQ ID NO: 10) of human p53; the sequence SALIKKKKKMAP (SEQ ID NO: 11) of mouse c-abl IV; the sequences DRLRR (SEQ ID NO: 12) and PKQKKRK (SEQ ID NO: 13) of the influenza virus NS1; the sequence RKLKKKIKKL (SEQ ID NO: 14) of the Hepatitis virus delta antigen; the sequence REKKKFLKRR (SEQ ID NO: 15) of the mouse Mx1 protein; the sequence KRKGDEVDGVDEVAKKKSKK (SEQ ID NO: 16) of the human poly(ADP-ribose) polymerase; and the sequence RKCLQAGMNLEARKTKK (SEQ ID NO: 17) of the steroid hormone receptors (human) glucocorticoid. In general, the one or more NLSs are of sufficient strength to drive accumulation of the DNA-targeting Cas protein in a detectable amount in the nucleus of a eukaryotic cell. In general, strength of nuclear localization activity may derive from the number of NLSs in the CRISPR-Cas protein, the particular NLS(s) used, or a combination of these factors. Detection of accumulation in the nucleus may be performed by any suitable technique. For example, a detectable marker may be fused to the nucleic acid-targeting protein, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g., a stain specific for the nucleus such as DAPI). Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of nucleic acid-targeting complex formation (e.g., assay for deaminase activity) at the target sequence, or assay for altered gene expression activity affected by DNA-targeting complex formation and/or DNA-targeting), as compared to a control not exposed to the Cas protein, or exposed to a Cas protein lacking the one or more NLSs.


The Cas proteins may be provided with 1 or more, such as with, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more heterologous NLSs. In some embodiments, the proteins comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g., zero or at least one or more NLS at the amino-terminus and zero or at one or more NLS at the carboxy terminus). When more than one NLS is present, each may be selected independently of the others, such that a single NLS may be present in more than one copy and/or in combination with one or more other NLSs present in one or more copies. In some embodiments, an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus. In preferred embodiments of the Cas proteins, an NLS attached to the C-terminal of the protein.


Zinc-Finger Nucleases (ZFN)

Other preferred tools for genome editing for use in the context of this invention include zinc finger systems. One type of programmable DNA-binding domain is provided by artificial zinc-finger (ZF) technology, which involves arrays of ZF modules to target new DNA-binding sites in the genome. Each finger module in a ZF array targets three DNA bases. A customized array of individual zinc finger domains is assembled into a ZF protein (ZFP). Zinc-finger nuclease (ZFNs) have been used to modify endogenous genes in various organisms, including viruses, bacteria, nematodes, frogs, plants, insects, fish and mammals such as mice, rats and pigs, as well as in cultured mammalian and avian cells.


In one example embodiment, a method of enhancing the anti-tumor immunity of a subject in need thereof comprises administering administering a zinc-finger nuclease editing system that generates variants with decreased expression or activity of B3GNT2.


ZFPs can comprise a functional domain. The first synthetic zinc finger nucleases (ZFNs) were developed by fusing a ZF protein to the catalytic domain of the Type IIS restriction enzyme FokI. (Kim, Y. G. et al., 1994, Chimeric restriction endonuclease, Proc. Natl. Acad. Sci. U.S.A. 91, 883-887; Kim, Y. G. et al., 1996, Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U.S.A. 93, 1156-1160). Increased cleavage specificity can be attained with decreased off target activity by use of paired ZFN heterodimers, each targeting different nucleotide sequences separated by a short spacer. (Doyon, Y. et al., 2011, Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat. Methods 8, 74-79). ZFPs can also be designed as transcription activators and repressors and have been used to target many genes in a wide variety of organisms. Exemplary methods of genome editing using ZFNs can be found for example in U.S. Pat. Nos. 6,534,261, 6,607,882, 6,746,838, 6,794,136, 6,824,978, 6,866,997, 6,933,113, 6,979,539, 7,013,219, 7,030,215, 7,220,719, 7,241,573, 7,241,574, 7,585,849, 7,595,376, 6,903,185, and 6,479,626, all of which are specifically incorporated by reference.


TALENs

As disclosed herein editing can be made by way of the transcription activator-like effector nucleases (TALENs) system. In some embodiments, the programmable nuclease may be a transcription activator-like effector nuclease (TALEN), a functional fragment thereof, or a variant thereof. The present disclosure also includes nucleotide sequences that are or encode one or more components of a TALEN system. As disclosed herein, editing can be made by way of the transcription activator-like effector (TALEs) system, which have been used to modify endogenous genes in various species, including viruses, yeast, plants, nematodes, insects, frogs, fish and mammals such as mice, rats and pigs, as well as in cultured mammalian cells.


Naturally occurring TALEs or “wild type TALEs” are nucleic acid binding proteins secreted by numerous species of proteobacteria. TALE polypeptides contain a nucleic acid binding domain composed of tandem repeats of highly conserved monomer polypeptides that are predominantly 33, 34 or 35 amino acids in length and that differ from each other mainly in amino acid positions 12 and 13. Transcription activator-like effectors (TALEs) can be engineered to bind practically any desired DNA sequence. Exemplary methods of genome editing using the TALEN system can be found for example in Cermak T. Doyle E L. Christian M. Wang L. Zhang Y. Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011; 39:e82; Zhang F. Cong L. Lodato S. Kosuri S. Church G M. Arlotta P Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. 2011; 29:149-153 and U.S. Pat. Nos. 8,450,471, 8,440,431 and 8,440,432, all of which are specifically incorporated by reference. The structure and function of TALEs is further described in, for example, Moscou et al., Science 326:1501 (2009); Boch et al., Science 326:1509-1512 (2009); and Zhang et al., Nature Biotechnology 29:149-153 (2011).


In some embodiments, provided herein include isolated, non-naturally occurring, recombinant or engineered DNA binding proteins that comprise TALE monomers as a part of their organizational structure that enable the targeting of nucleic acid sequences with improved efficiency and expanded specificity.


In one example embodiment, a method of enhancing the anti-tumor immunity of a subject in need thereof comprises administering administering a TALENs editing system that generates variants with decreased expression or activity of B3GNT2.


In some embodiments, TALENs can be designed to target almost any given DNA sequence, which is a crucial advantage of TALENs over other types of nucleases. For example, small DNA sequences (such as enhancers or miRNA-coding sequences) may lack targetable sites for ZFNs or CRISPR-Cas systems but can be mutated preferentially using TALENs. The only limitation in the design of TALENs seems to be the requirement for a thymine at the 5′ end of the target sequence, which is recognized by two amino-terminal cryptic repeat folds. Although there have been conflicting reports that emphasize or refute the importance of this 5′ thymine, choosing a target sequence with a thymine at the 5′ end is usually recommended. Recently developed TALE variants that recognize other bases at the 5′ end would further broaden the range of targetable sites. Conventional TALENs cannot cleave target DNA that contains methylated cytosines. However, a methylated cytosine is indistinguishable from a thymine in the major groove; hence, the His-Asp RVD repeat (which recognizes cytosines) can be replaced with an Asn-Gly RVD repeat (which recognizes thymines) to generate TALENs that can cleave methylated DNA.


As described in Zhang et al., Nature Biotechnology 29:149-153 (2011), TALE polypeptide binding efficiency may be increased by including amino acid sequences from the “capping regions” that are directly N-terminal or C-terminal of the DNA binding region of naturally occurring TALEs into the engineered TALEs at positions N-terminal or C-terminal of the engineered TALE DNA binding region. Thus, in certain embodiments, the TALE polypeptides described herein further comprise an N-terminal capping region and/or a C-terminal capping region.


In some embodiments described herein, the TALE polypeptides of the invention include a nucleic acid binding domain linked to the one or more effector domains. The terms “effector domain” or “regulatory and functional domain” refer to a polypeptide sequence that has an activity other than binding to the nucleic acid sequence recognized by the nucleic acid binding domain. By combining a nucleic acid binding domain with one or more effector domains, the polypeptides of the invention may be used to target the one or more functions or activities mediated by the effector domain to a particular target DNA sequence to which the nucleic acid binding domain specifically binds.


Meganucleases

In some embodiments, the programmable nuclease may be a meganuclease or system thereof. Meganucleases, which are endodeoxyribonucleases characterized by a large recognition site (double-stranded DNA sequences of 12 to 40 base pairs). Exemplary methods for using meganucleases can be found in U.S. Pat. Nos. 8,163,514, 8,133,697, 8,021,867, 8,119,361, 8,119,381, 8,124,369, and 8,129,134, which are specifically incorporated by reference.


In one example embodiment, a method of enhancing the anti-tumor immunity of a subject in need thereof comprises administering administering a meganuclease or system thereof that generates variants with decreased expression or activity of B3GNT2.


Base Editing

Provided herein are methods for editing DNA or RNA, i.e., base editing, without inducing double-stranded breaks in the DNA targeted for modification. A base-editing system may comprise a Cas polypeptide linked to a nucleobase deaminase (“base editing system”) and a guide molecule capable of forming a complex with the Cas polypeptide and directing sequence-specific binding of the base editing system at a target sequence. In one example embodiment, the Cas polypeptide is catalytically inactive. In another example embodiment, the Cas polypeptide is a nickase. The Cas polypeptide may be any of the Cas polypeptides disclosed above. In one example embodiment, the Cas polypeptide is a Type II Cas polypeptide. In one example embodiment, the Cas polypeptide is a Cas9 polypeptide. In another example embodiment, the Cas polypeptide is a Type V Cas polypeptide. In one example embodiment, the Cas polypeptide is a Cas 12a or Cas 12b polypeptide. The nucleobase deaminase may be cytosine base editor (CBE) or adenosine base editors (ABEs). CBEs convert C·G base pairs into a T·A base pair (Komor et al. 2016. Nature. 533:420-424; Nishida et al. 2016. Science. 353; and Li et al. Nat. Biotech. 36:324-327) and ABEs convert an A·T base pair to a G·C base pair. Collectively, CBEs and ABEs can mediate all four possible transition mutations (C to T, A to G, T to C, and G to A). Example base editing systems are disclosed in Rees and Liu (2018), Nat. Rev. Genet. 19(12): 770-788, particularly at FIGS. 1b, 2a-2c, 3a-3f, and Table 1, which is specifically incorporated herein by reference. In certain example embodiments, the base editing system may further comprise a DNA glycosylase inhibitor.


In one example embodiment, a method of enhancing the anti-tumor immunity of a subject in need thereof comprises administering a base editing system that generates one or more variants with decreased expression or activity of B3GNT2.


The editing window of a base editing system may range over a 5-8 nucleotide window, depending on the base editing system used. Id. Accordingly, given the base editing system used, a guide sequence may be selected to direct the base editing system to convert a base or base pair of one or more variants resulting in reduced B3GNT2 expression. In one example embodiment, the variant is generated as using one or more of the gene editing methods described herein.


ARCUS Based Editing

In one example embodiment, a method of enhancing the anti-tumor immunity of a subject in need thereof comprises administering administering an ARCUS base editing system. Exemplary methods for using ARCUS can be found in U.S. Pat. No. 10,851,358, US Publication No. 2020-0239544, and WIPO Publication No. 2020/206231 which are incorporated herein by reference


DNA Base Editing

In some embodiments, a polynucleotide of the present invention described elsewhere herein can be modified using a base editing system. In some embodiments, a Cas protein is connected or fused to a nucleotide deaminase. Thus, in some embodiments the Cas-based system can be a base editing system. As used herein, “base editing” refers generally to the process of polynucleotide modification via a CRISPR-Cas-based or Cas-based system that does not include excising nucleotides to make the modification. Base editing can convert base pairs at precise locations without generating excess undesired editing byproducts that can be made using traditional CRISPR-Cas systems.


In some embodiments, the nucleotide deaminase may be a DNA base editor used in combination with a DNA binding Cas protein such as, but not limited to, Class 2 Type II and Type V systems. Two classes of DNA base editors are generally known: cytosine base editors (CBEs) and adenine base editors (ABEs). CBEs convert a C·G base pair into a T·A base pair (Komor et al. 2016. Nature. 533:420-424; Nishida et al. 2016. Science. 353; and Li et al. Nat. Biotech. 36:324-327) and ABEs convert an A·T base pair to a G·C base pair. Collectively, CBEs and ABEs can mediate all four possible transition mutations (C to T, A to G, T to C, and G to A). Rees and Liu. 2018. Nat. Rev. Genet. 19(12): 770-788, particularly at FIGS. 1b, 2a-2c, 3a-3f, and Table 1. In some embodiments, the base editing system includes a CBE and/or an ABE. In some embodiments, a polynucleotide of the present invention described elsewhere herein can be modified using a base editing system. Rees and Liu. 2018. Nat. Rev. Gent. 19(12): 770-788. Base editors also generally do not need a DNA donor template and/or rely on homology-directed repair. Komor et al. 2016. Nature. 533:420-424; Nishida et al. 2016. Science. 353; and Gaudeli et al. 2017. Nature. 551:464-471. Upon binding to a target locus in the DNA, base pairing between the guide RNA of the system and the target DNA strand leads to displacement of a small segment of ssDNA in an “R-loop”. Nishimasu et al. Cell. 156:935-949. DNA bases within the ssDNA bubble are modified by the enzyme component, such as a deaminase. In some systems, the catalytically disabled Cas protein can be a variant or modified Cas can have nickase functionality and can generate a nick in the non-edited DNA strand to induce cells to repair the non-edited strand using the edited strand as a template. Komor et al. 2016. Nature. 533:420-424; Nishida et al. 2016. Science. 353; and Gaudeli et al. 2017. Nature. 551:464-471. Base editors may be further engineered to optimize conversion of nucleotides (e.g. A:T to G:C). Richter et al. 2020. Nature Biotechnology. doi.org/10.1038/s41587-020-0453-z.


Other Example Type V base editing systems are described in International Patent Publication Nos. WO 2018/213708, WO 2018/213726, and International Patent Applications No. PCT/US2018/067207, PCT/US2018/067225, and PCT/US2018/067307, each of which is incorporated herein by reference.


RNA Base Editing

The present application relates, in part, to modifying a target RNA sequence of interest. In certain example embodiments, the base editing system may be a RNA base editing system. As with DNA base editors, a nucleotide deaminase capable of converting nucleotide bases may be fused to a Cas protein. However, in these embodiments, the Cas protein will need to be capable of binding RNA. Example RNA binding Cas proteins include, but are not limited to, RNA-binding Cas9s such as Francisella novicida Cas9 (“FnCas9”), and Class 2 Type VI Cas systems. The nucleotide deaminase may be a cytidine deaminase or an adenosine deaminase, or an adenosine deaminase engineered to have cytidine deaminase activity. In certain example embodiments, the RNA based editor may be used to delete or introduce a post-translational modification site in the expressed mRNA. In contrast to DNA base editors, whose edits are permanent in the modified cell, RNA base editors can provide edits where finer temporal control may be needed, for example in modulating a particular immune response. Example Type VI RNA-base editing systems are described in Cox et al. 2017. Science 358: 1019-1027, WO 2019/005884, WO 2019/005886, WO 2019/071048, PCT/US20018/05179, PCT/US2018/067207, which are incorporated herein by reference. An example FnCas9 system that may be adapted for RNA base editing purposes is described in WO 2016/106236, which is incorporated herein by reference.


An example method for delivery of base-editing systems, including use of a split-intein approach to divide CBE and ABE into reconstitutable halves, is described in Levy et al. Nature Biomedical Engineering doi.org/10.1038/s41441-019-0505-5 (2019), which is incorporated herein by reference.


Using RNA-targeting rather than DNA targeting offers several advantages relevant for therapeutic development. First, there are substantial safety benefits to targeting RNA: there will be fewer off-target events because the available sequence space in the transcriptome is significantly smaller than the genome, and if an off-target event does occur, it will be transient and less likely to induce negative side effects. Second, RNA-targeting therapeutics will be more efficient because they are cell-type independent and do not have to enter the nucleus, making them easier to deliver.


In an embodiment, the present disclosure includes an engineered composition for site-directed base editing comprising: a targeting domain; and an adenosine deaminase or catalytic domain thereof, wherein the adenosine deaminase is modified to convert activity to a cytidine deaminase.


In some embodiments, the adenosine deaminase is modified by one or more mutations at one or more positions selected from E396, C451, V351, R455, T375, K376, S486, Q488, R510, K594, R348, G593, S397, H443, L444, Y445, F442, E438, T448, A353, V355, T339, P539, V525 and 1520. In some embodiments, the adenosine deaminase is mutated at one or more positions selected from E488, V351, S486, T375, S370, P462, and N597. In some embodiments, the adenosine deaminase comprises one or more mutations selected from E488Q, V351G, S486A, T375S, S370C, P462A, and N597I. In some embodiments, the adenosine deaminase protein or catalytic domain thereof is a human, cephalopod, or Drosophila adenosine deaminase protein or catalytic domain thereof. In some embodiments, said adenosine deaminase protein or catalytic domain thereof has been modified to comprise a mutation at glutamic acid488 of the hADAR2-D amino acid sequence, or a corresponding position in a homologous ADAR protein. In some embodiments, said glutamic acid residue at position 488 or a corresponding position in a homologous ADAR protein is replaced by a glutamine residue (E488Q). In some embodiments, said adenosine deaminase protein or catalytic domain thereof is a mutated hADAR2d comprising mutation E488Q or a mutated hADAR1d comprising mutation E1008Q. In some embodiments, the targeting domain is a catalytically inactive Cas13 protein, or a nucleotide sequence encoding said catalytically inactive Cas13 protein. In some embodiments, the catalytically inactive Cas13 protein is catalytically inactive Cas13a, catalytically inactive Cas 13b, or catalytically inactive Cas13c. In some embodiments, said catalytically inactive Cas13 protein is obtained from a Cas13 nuclease derived from a bacterial species selected from the group consisting of the bacterial species listed in any of Tables 1, 2, 3, or 4. In some embodiments, the composition further comprising a guide molecule which comprises a guide sequence linked to a direct repeat sequence, or a nucleotide sequence encoding said guide molecule. In some embodiments, said adenosine deaminase protein or catalytic domain thereof is covalently or non-covalently linked to the targeting domain.


In another embodiment, the disclosure relates to a method of modifying an Adenine in a target RNA sequence of interest. In particular embodiments, the method comprises delivering to said target RNA: (a) a catalytically inactive (dead) Cas13 protein; (b) a guide molecule which comprises a guide sequence linked to a direct repeat sequence; and (c) an adenosine deaminase protein or catalytic domain thereof; wherein said adenosine deaminase protein or catalytic domain thereof is covalently or non-covalently linked to said dead Cas 13 protein or said guide molecule or is adapted to link thereto after delivery; wherein guide molecule forms a complex with said dead Cas13 protein and directs said complex to bind said target RNA sequence of interest, wherein said guide sequence is capable of hybridizing with a target sequence comprising said Adenine to form an RNA duplex, wherein said guide sequence comprises a non-pairing Cytosine at a position corresponding to said Adenine resulting in an A-C mismatch in the RNA duplex formed; wherein said adenosine deaminase protein or catalytic domain thereof deaminates said Adenine in said RNA duplex.


In some embodiments, the RNA editing is carried out using the Cas13 protein, wherein the Cas13 protein is Cas13a, Cas13b or Cas13c.


The adenosine deaminase protein or catalytic domain thereof is fused to N- or C-terminus of said dead Cas13 protein. In some embodiments, the adenosine deaminase protein or catalytic domain thereof is fused to said dead Cas13 protein by a linker.


In some embodiments, the adenosine deaminase protein or catalytic domain thereof is linked to an adaptor protein and said guide molecule or said dead Cas 13 protein comprises an aptamer sequence capable of binding to said adaptor protein. The adaptor sequence may be selected from MS2, PP7, QB, F2, GA, fr, JP501, M12, R17, BZ13, JP34, JP500, KU1, M11, MX1, TW18, VK, SP, FI, ID2, NL95, TW19, AP205, ϕCb5, ϕCb8r, ϕCb12r, ϕCb23r, 7s and PRR1.


In some embodiments, the adenosine deaminase protein or catalytic domain thereof is inserted into an internal loop of said dead Cas13 protein. In some embodiments, the Cas13a protein comprises one or more mutations in the two HEPN domains, particularly at position R474 and R1046 of Cas 13a protein originating from Leptotrichia wadei or amino acid positions corresponding thereto of a Cas13a ortholog.


In some embodiments, the Cas13 protein is a Cas13b proteins, and the Cas13b comprises a mutation in one or more of positions R116, H121, R1177, H1182 of Cas13b protein originating from Bergeyella zoohelcum ATCC 43767 or amino acid positions corresponding thereto of a Cas 13b ortholog. In some embodiments, the mutation is one or more of R116A, H121A, R1177A, H1182A of Cas13b protein originating from Bergeyella zoohelcum ATCC 43767 or amino acid positions corresponding thereto of a Cas13b ortholog.


In some embodiments, the guide sequence has a length of about 29-53 nt capable of forming said RNA duplex with said target sequence. In some embodiments, the guide sequence has a length of about 40-50 nt capable of forming said RNA duplex with said target sequence. In some embodiments, the distance between said non-pairing C and the 5′ end of said guide sequence is 20-30 nucleotides.


In some embodiments, the adenosine deaminase protein or catalytic domain thereof is a human, cephalopod, or Drosophila adenosine deaminase protein or catalytic domain thereof. In certain example embodiments, the adenosine deaminase protein or catalytic domain thereof has been modified to comprise a mutation at glutamic acid488 of the hADAR2-D amino acid sequence, or a corresponding position in a homologous ADAR protein. In some embodiments, the glutamic acid residue may be at position 488 or a corresponding position in a homologous ADAR protein is replaced by a glutamine residue (E488Q).


In some embodiments, the adenosine deaminase protein or catalytic domain thereof is a mutated hADAR2d comprising mutation E488Q or a mutated hADAR1d comprising mutation E1008Q.


In some embodiments, the guide sequence comprises more than one mismatch corresponding to different adenosine sites in the target RNA sequence or wherein two guide molecules are used, each comprising a mismatch corresponding to a different adenosine site in the target RNA sequence.


In some embodiments, the Cas13 protein and optionally said adenosine deaminase protein or catalytic domain thereof comprise one or more heterologous nuclear localization signal(s) (NLS(s)).


In some embodiments, the method further comprises, determining the target sequence of interest and selecting an adenosine deaminase protein or catalytic domain thereof which most efficiently deaminates said adenine present in then target sequence.


The components of the systems described herein may be delivered to said cell as a ribonucleoprotein complex or as one or more polynucleotide molecules. The one or more polynucleotide molecules may comprise one or more mRNA molecules encoding the components. The one or more polynucleotide molecules may be comprised within one or more vectors. The one or more polynucleotide molecules may further comprise one or more regulatory elements operably configured to express said Cas13 protein, said guide molecule, and said adenosine deaminase protein or catalytic domain thereof, optionally wherein said one or more regulatory elements comprise inducible promoters. The one or more polynucleotide molecules or said ribonucleoprotein complex may be delivered via particles, vesicles, or one or more viral vectors. The particles may comprise a lipid, a sugar, a metal or a protein. The particles may comprise lipid nanoparticles. The vesicles may comprise exosomes or liposomes. The one or more viral vectors may comprise one or more of adenovirus, one or more lentivirus or one or more adeno-associated virus.


The RNA editing methods disclosed herein may be used to modify a cell, a cell line or an organism by manipulation of one or more target RNA sequences.


In some embodiments, the deamination of said Adenine in said target RNA of interest remedies a disease caused by transcripts containing a pathogenic G→A or C→T point mutation.


The methods disclosed herein, may be used to make a modification that affects specific, targeted genes of an organism (e.g., B3GNT2). The modification may affect splicing of said target RNA sequence. The modification may introduce a mutation in a transcript that reduces expression of the targeted gene. The modification may introduce an amino acid change and cause a reduction in activity of the targeted protein.


In some embodiments, the deamination of the adenine in said target RNA of interest causes a loss of function or reduced expression of a gene. In certain example embodiments, the loss of function or reduced expression of the gene leads to an enhancement of anti-tumor immunity in a subject.


In some embodiments, the cytosine of the adenosine deaminase is not 5′ flanked by guanosine. In certain embodiments, said adenosine deaminase is ADAR, optionally huADAR, optionally (hu)ADAR1 or (hu)ADAR2. In certain embodiments, said Cas13, preferably Cas13b, is truncated, preferably C-terminally truncated, preferably wherein said Cas 13 is a truncated functional variant of the corresponding wild type Cas13.


In another aspect, the present disclosure includes a method of modifying an Adenine in a target RNA sequence of interest, comprising delivering to said target RNA: (a) a catalytically inactive (dead) Cas13 protein; (b) a guide molecule which comprises a guide sequence linked to a direct repeat sequence; and (c) an adenosine deaminase protein or catalytic domain thereof mutated to convert activity to a cytidine deaminase; wherein said adenosine deaminase protein or catalytic domain thereof is covalently or non-covalently linked to said dead Cas13 protein or said guide molecule or is adapted to link thereto after delivery; wherein said guide molecule forms a complex with said dead Cas13 protein and directs said complex to bind said target RNA sequence of interest, wherein said guide sequence is capable of hybridizing with a target sequence comprising said adenine to form an RNA duplex, wherein said guide sequence comprises a non-pairing cytosine at a position corresponding to said adenine resulting in an A-C mismatch in the RNA duplex formed; wherein said adenosine deaminase protein or catalytic domain thereof deaminates said adenine in said RNA duplex.


In some embodiments, the adenosine deaminase is mutated at one or more positions selected from E396, C451, V351, R455, T375, K376, S486, Q488, R510, K594, R348, G593, S397, H443, L444, Y445, F442, E438, T448, A353, V355, T339, P539, V525 and I520. In some example embodiments, the adenosine deaminase is mutated at one or more positions selected from E488, V351, S486, T375, S370, P462, and N597.


In some embodiments, the present disclosure includes an engineered, non-naturally occurring RNA editing system suitable for modifying an adenine in a target locus of interest. comprising (a) a guide molecule which comprises a guide sequence linked to a direct repeat sequence, or a nucleotide sequence encoding said guide molecule; (b) a catalytically inactive Cas13 protein, or a nucleotide sequence encoding said catalytically inactive Cas13 protein; (c) an adenosine deaminase protein or catalytic domain thereof, or a nucleotide sequence encoding said adenosine deaminase protein or catalytic domain thereof; wherein the adenosine deaminase is modified to convert activity to a cytidine deaminase; wherein said adenosine deaminase protein or catalytic domain thereof is covalently or non-covalently linked to said Cas13 protein or said guide molecule or is adapted to link thereto after delivery; wherein said guide sequence is capable of hybridizing with a target RNA sequence comprising an adenine to form an RNA duplex, wherein said guide sequence comprises a non-pairing cytosine at a position corresponding to said Adenine resulting in an A-C mismatch in the RNA duplex formed


In some embodiments, the adenosine deaminase is modified by one or more mutations selected from E396, C451, V351, R455, T375, K376, S486, Q488, R510, K594, R348, G593, S397, H443, L444, Y445, F442, E438, T448, A353, V355, T339, P539, V525 and I520. In some embodiments, the adenosine deaminase is mutated at one or more positions selected from E488, V351, S486, T375, S370, P462, and N597.


Prime Editing

In one example embodiment, a method of enhancing the anti-tumor immunity of a subject in need thereof comprises administering administering a prime editing system that generates one or more variants with decreased expression or activity of B3GNT21. Like base editing systems, prime editing systems are capable of targeted modification of a polynucleotides without generating double stranded breaks. See e.g. Anzalone et al. 2019. Nature. 576: 149-157, incorporated herein by reference. Prime editing can operate via a “search-and-replace” methodology and can mediate targeted insertions, deletions, as well as all 12 possible base-to-base conversion and combinations thereof.


In one example embodiment, a prime editing system comprises a Cas polypeptide having nickase activity, a reverse transcriptase, and a prime editing guide RNA (pegRNA). Cas polypeptide, and/or reverse transcriptase can be coupled together or otherwise associate with each other to form a prime editing complex and edit a target sequence. The Cas polypeptide may be any of the Cas polypeptides disclosed above. In one example embodiment, the Cas polypeptide is a Type II Cas polypeptide. In another example embodiment, the Cas polypeptide is a Cas9 nickase. In one example embodiment, the Cas polypeptide is a Type V Cas polypeptide. In another example embodiment, the Cas polypeptide is a Cas12a or Cas12b.


The prime editing guide molecule (pegRNA) comprises a primer binding site (PBS) configured to hybridize with a portion of a nicked strand on a target polynucleotide (e.g. genomic DNA) a reverse transcriptase (RT) template comprising the edit to be inserted in the genomic DNA and a spacer sequence designed to hybridize to a target sequence at the site of the desired edit. The nicking site is dependent on the Cas polypeptide used and standard cutting preference for that Cas polypeptide relative to the PAM. Thus, based on the Cas polypeptide used, a pegRNA can be designed to direct the prime editing system to introduce a nick where the desired edit should take place. In one example embodiment, a pegRNA is configured to direct the prime editing system to convert a single base or base pair of the one or more variants associated with reduced B3GNT2 expression. In one example embodiment, a pegRNA is configured to direct the prime editing system to convert a single base or base pair of one or more variants associated with reduced B3GNT2 expression such that B3GNT2 protein activity is reduced.


The pegRNA can be about 10 to about 200 or more nucleotides in length, such as 10 to/or 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, or 200 or more nucleotides in length. Optimization of the peg guide molecule can be accomplished as described in Anzalone et al. 2019. Nature. 576: 149-157, particularly at pg. 3, FIG. 2a-2b, and Extended Data FIGS. 5a-c


CRISPR-Associated Transposases (CAST) Systems

In one example embodiment, a method of enhancing the anti-tumor immunity of a subject in need thereof comprises administering a CAST system that incorporates or inserts a genomic region comprising one or more variants associated with decreased expression or activity of B3GNT2. In one example embodiment, a CAST system is used to replace all or a portion of B3GNT2 comprising one or more variants that reduce B3GNT2 expression or activity. In one example embodiment, the variant is generated using one or more of the gene editing methods described herein.


CAST systems comprise a Cas polypeptide, a guide sequence, a transposase, and a donor construct. The transposase is linked to or otherwise capable of forming a complex with the Cas polypeptide. The donor construct comprises a donor sequence to be inserted into a target polynucleotide and one or more transposase recognition elements. The transposase is capable of binding the donor construct and excising the donor template and directing insertion of the donor template into a target site on a target polynucleotide (e.g. genomic DNA). The guide molecule is capable of forming a CRISPR-Cas complex with the Cas polypeptide, and can be programmed to direct the entire CAST complex such that the transposase is positioned to insert the donor sequence at the target site on the target polynucleotide. For multimeric transposase, only those transposases needed for recognition of the donor construct and transposition of the donor sequence into the target polypeptide may be required. The Cas may be naturally catalytically inactive or engineered to be catalyically inactive.


In one example embodiment, the CAST system is a Tn7-like CAST system, wherein the transposase comprises one or more polypeptides from a Tn7 or Tn7-like transposase. The Cas polypeptide of the Tn7-like transposase may be a Class 1 (multimeric effector complex) or Class 2 (single protein effector) Cas polypeptide.


In one example embodiments, the Cas polypeptide is a Class 1 Type-If Cas polypeptide. In one example embodiment, the Cas polypeptide may comprise a cas6, a cas7, and a cas8-cas5 fusion. In one example embodiments, the Tn7 transposase may comprise TnsB, TnsC, and TniQ. In another example embodiment, the Tn7 transposase may comprise TnsB, TnsC, and TnsD. In certain example embodiments, the Tn7 transposase may comprise TnsD, TnsE, or both. As used herein, the terms “TnsAB”, “TnsAC”, “TnsBC”, or “TnsABC” refer to a transponson complex comprising TnsA and TnsB, TnsA and TnsC, TnsB and TnsC, TnsA and TnsB and TnsC, respectively. In these combinations, the transposases (TnsA, TnsB, TnsC) may form complexes or fusion proteins with each other. Similarly, the term TnsABC-TniQ refer to a transposon comprising TnsA, TnsB, TnsC, and TniQ, in a form of complex or fusion protein. An example Type If-Tn7 CAST system is described in Klompe et al. Nature, 2019, 571:219-224 and Vo et al. bioRxiv, 2021, doi.org/10.1101/2021.02.11.430876, which are incorporated herein by reference.


In one example embodiment, the Cas polypeptide is a Class 1 Type-1b Cas polypeptide. In one example embodiment, the Cas polypeptide may comprise a cas6, a cas7, and a cas8b (e.g. a ca8b3). In one example embodiments, the Tn7 transposase may comprise TnsB, TnsC, and TniQ. In another example embodiment, the Tn7 transposase may comprise TnsB, TnsC, and TnsD. In certain example embodiments, the Tn7 transposase may comprise TnsD, TnsE, or both. As used herein, the terms “TnsAB”, “TnsAC”, “TnsBC”, or “TnsABC” refer to a transponson complex comprising TnsA and TnsB, TnsA and TnsC, TnsB and TnsC, TnsA and TnsB and TnsC, respectively. In these combinations, the transposases (TnsA, TnsB, TnsC) may form complexes or fusion proteins with each other. Similarly, the term TnsABC-TniQ refer to a transposon comprising TnsA, TnsB, TnsC, and TniQ, in a form of complex or fusion protein.


In one example embodiment, the Cas polypeptide is Class 2, Type V Cas polypeptide. In one example embodiment, the Type V Cas polypeptide is a Cas12k. In one example embodiments, the Tn7 transposase may comprise TnsB, TnsC, and TniQ. In another example embodiment, the Tn7 transposase may comprise TnsB, TnsC, and TnsD. In certain example embodiments, the Tn7 transposase may comprise TnsD, TnsE, or both. As used herein, the terms “TnsAB”, “TnsAC”, “TnsBC”, or “TnsABC” refer to a transponson complex comprising TnsA and TnsB, TnsA and TnsC, TnsB and TnsC, TnsA and TnsB and TnsC, respectively. In these combinations, the transposases (TnsA, TnsB, TnsC) may form complexes or fusion proteins with each other. Similarly, the term TnsABC-TniQ refer to a transposon comprising TnsA, TnsB, TnsC, and TniQ, in a form of complex or fusion protein. An example Cas12k-Tn7 CAST system is described in Strecker et al. Science, 2019 365:48-53, which is incorporated herein by reference.


In one example embodiment, the CAST system is a Mu CAST system, wherein the transposase comprises one or more polypeptides of a Mu transposase. An example Mu CAST system is disclosed in WO/2021/041922 which is incorporated herein by reference.


In one example embodiment, the CAST comprise a catalytically inactive Type II Cas polypeptide (e.g. dCas9) fused to one or more polypeptides of a Tn5 transposase. In another example embodiment, the CAST system comprises a catalytically inactive Type II Cas polypeptide (e.g. dCas9) fused to a piggyback transposase.


Donor Polynucleotides

The system may further comprise one or more donor polynucleotides (e.g., for insertion into the target polynucleotide). A donor polynucleotide may be an equivalent of a transposable element that can be inserted or integrated to a target site. The donor polynucleotide may be or comprise one or more components of a transposon. A donor polynucleotide may be any type of polynucleotides, including, but not limited to, a gene, a gene fragment, a non-coding polynucleotide, a regulatory polynucleotide, a synthetic polynucleotide, etc. The donor polynucleotide may include a transposon left end (LE) and transposon right end (RE). The LE and RE sequences may be endogenous sequences for the CAST used or may be heterologous sequences recognizable by the CAST used, or the LE or RE may be synthetic sequences that comprise a sequence or structure feature recognized by the CAST and sufficient to allow insertion of the donor polynucleotide into the target polynucleotides. In certain example embodiments, the LE and RE sequences are truncated. In certain example embodiments may be between 100-200 bps, between 100-190 base pairs, 100-180 base pairs, 100-170 base pairs, 100-160 base pairs, 100-150 base pairs, 100-140 base pairs, 100-130 base pairs, 100-120 base pairs, 100-110 base pairs, 20-100 base pairs, 20-90 base pairs, 20-80 base pairs, 20-70 base pairs, 20-60 base pairs, 20-50 base pairs, 20-40 base pairs, 20-30 base pairs, 50 to 100 base pairs, 60-100 base pairs, 70-100 base pairs, 80-100 base pairs, or 90-100 base pairs in length


The donor polynucleotide may be inserted at a position upstream or downstream of a PAM on a target polynucleotide. In some embodiments, a donor polynucleotide comprises a PAM sequence. Examples of PAM sequences include TTTN, ATTN, NGTN, RGTR, VGTD, or VGTR.


The donor polynucleotide may be inserted at a position between 10 bases and 200 bases, e.g., between 20 bases and 150 bases, between 30 bases and 100 bases, between 45 bases and 70 bases, between 45 bases and 60 bases, between 55 bases and 70 bases, between 49 bases and 56 bases or between 60 bases and 66 bases, from a PAM sequence on the target polynucleotide. In some cases, the insertion is at a position upstream of the PAM sequence. In some cases, the insertion is at a position downstream of the PAM sequence. In some cases, the insertion is at a position from 49 to 56 bases or base pairs downstream from a PAM sequence. In some cases, the insertion is at a position from 60 to 66 bases or base pairs downstream from a PAM sequence.


The donor polynucleotide may be used for editing the target polynucleotide. In some cases, the donor polynucleotide comprises one or more mutations to be introduced into the target polynucleotide. Examples of such mutations include substitutions, deletions, insertions, or a combination thereof. The mutations may cause a shift in an open reading frame on the target polynucleotide. In some cases, the donor polynucleotide alters a stop codon in the target polynucleotide. For example, the donor polynucleotide may correct a premature stop codon. The correction may be achieved by deleting the stop codon or introduces one or more mutations to the stop codon. In other example embodiments, the donor polynucleotide addresses loss of function mutations, deletions, or translocations that may occur, for example, in certain disease contexts by inserting or restoring a functional copy of a gene, or functional fragment thereof, or a functional regulatory sequence or functional fragment of a regulatory sequence. A functional fragment refers to less than the entire copy of a gene by providing sufficient nucleotide sequence to restore the functionality of a wild type gene or non-coding regulatory sequence (e.g. sequences encoding long non-coding RNA). In certain example embodiments, the systems disclosed herein may be used to replace a single allele of a defective gene or defective fragment thereof. In another example embodiment, the systems disclosed herein may be used to replace both alleles of a defective gene or defective gene fragment. A “defective gene” or “defective gene fragment” is a gene or portion of a gene that when expressed fails to generate a functioning protein or non-coding RNA with functionality of a corresponding wild-type gene. In certain example embodiments, these defective genes may be associated with one or more disease phenotypes. In certain example embodiments, the defective gene or gene fragment is not replaced but the systems described herein are used to insert donor polynucleotides that encode gene or gene fragments that compensate for or override defective gene expression such that cell phenotypes associated with defective gene expression are eliminated or changed to a different or desired cellular phenotype.


In certain embodiments of the invention, the donor may include, but not be limited to, genes or gene fragments, encoding proteins or RNA transcripts to be expressed, regulatory elements, repair templates, and the like. According to the invention, the donor polynucleotides may comprise left end and right end sequence elements that function with transposition components that mediate insertion.


In certain cases, the donor polynucleotide manipulates a splicing site on the target polynucleotide. In some examples, the donor polynucleotide disrupts a splicing site. The disruption may be achieved by inserting the polynucleotide to a splicing site and/or introducing one or more mutations to the splicing site. In certain examples, the donor polynucleotide may restore a splicing site. For example, the polynucleotide may comprise a splicing site sequence.


The donor polynucleotide to be inserted may have a size from 10 bases to 50 kb in length, e.g., from 50 to 40 kb, from 100 to 30 kb, from 100 bases to 300 bases, from 200 bases to 400 bases, from 300 bases to 500 bases, from 400 bases to 600 bases, from 500 bases to 700 bases, from 600 bases to 800 bases, from 700 bases to 900 bases, from 800 bases to 1000 bases, from 900 bases to from 1100 bases, from 1000 bases to 1200 bases, from 1100 bases to 1300 bases, from 1200 bases to 1400 bases, from 1300 bases to 1500 bases, from 1400 bases to 1600 bases, from 1500 bases to 1700 bases, from 600 bases to 1800 bases, from 1700 bases to 1900 bases, from 1800 bases to 2000 bases, from 1900 bases to 2100 bases, from 2000 bases to 2200 bases, from 2100 bases to 2300 bases, from 2200 bases to 2400 bases, from 2300 bases to 2500 bases, from 2400 bases to 2600 bases, from 2500 bases to 2700 bases, from 2600 bases to 2800 bases, from 2700 bases to 2900 bases, or from 2800 bases to 3000 bases in length.


The components in the systems herein may comprise one or more mutations that alter their (e.g., the transposase(s)) binding affinity to the donor polynucleotide. In some examples, the mutations increase the binding affinity between the transposase(s) and the donor polynucleotide. In certain examples, the mutations decrease the binding affinity between the transposase(s) and the donor polynucleotide. The mutations may alter the activity of the Cas and/or transposase(s).


In certain embodiments, the systems disclosed herein are capable of unidirectional insertion, that is the system inserts the donor polynucleotide in only one orientation.


B3GNT2 Example Target Modifications

B3GNT2-specific mutations may be introduced using the gene editing systems described above B3GNT2 structure, including human B3GNT2, has been elucidated and active site mutations reducing or eliminating polylactosamine synthesis activity have been performed (Hao, Y et al. J Biol. Chem. (2021), 296 100042; Kadirvelraj, R. et al. (2021), J. Biol. Chem. Research 296 100110). These studies evaluated the importance of specific residues in catalysis and substrate recognition and are expressly incorporated herein by reference. Prior studies by Okada, Y. et al. (2012), Reveille, J (2010) and Tsoi, L. (2012) implicated B3GNT2 as having a crucial role in immune responses involved in polylactosamine synthesis. Those studies supported the connection of B3GNT2 and immune system function in genome-wide association studies that revealed single nucleotide polymorphisms reduced expression of B3GNT2 and were associated with autoimmune diseases including rheumatoid arthritis, ankylosing spondylitis and psoriasis in different populations. Hao et al. reconstituted B3GNT2-deficient Jurkat cells with various point mutations and assessed polylactosamine levels via flow cytometry using the LEA lectin derived from Lycopersicon esculentum. CRISPR-mediated deletion of B3GNT2 in Jurkat cells resulted in a significant decrease in LEA binding relative to wildtype (WT) cells demonstrating B3GNT2 as the major N-acetylglucosaminyltransferase involved in polylactosamine biosynthesis. LEA staining in B3GNT2 KO cells could be recovered by retroviral overexpression if WT B3GNT2 but not empty GFP vector alone. In contrast, reconstitution of KO cells with point mutations within residues required for metal binding (D247A, H376Q, H376L, H376E), substrate binding (K149A, D245A, Y289F, D332A), or within the active site base (D333N) failed to restore cell surface polylactosamine levels, suggesting significantly reduced enzyme activity. Ala279 from the B5-B6 loop is less than 4 Å from the acetyl group of the GlcNAc of the acceptor substrate. A mutation of Ala279 to either Val or Leu may create steric hindrance with the GlcNAc and failed to restore LEA staining when expressed in KO cells. In comparison, expression of a A279G point mutant partially restored polylactosamine levels, although not as robustly as WT B3GNT2. Ala279 is conserved among the seven B3GNTs (B3GNT2-B3GNT8) except for B3GNT3 and B3GNT6 where it is replaced by a Val and a Ser, respectively.


In an embodiment, a programmable nuclease is used to generate an edited B3GNT2 protein that results in a reduction in polylactosamine synthesis (i.e., reduction in B3GNT2 activity). In an embodiment, B3GNT2 is edited to contain point mutations within residues required for metal binding (D247A, H376Q, H376L, H376E), any of which fails to produce polylactosamine or restore cell surface polylactosamine levels in living cells as a consequence of significantly reduced or no B3GNT2 enzyme activity (e.g., base editing). In an embodiment, B3GNT2 is edited to contain point mutations within residues required for substrate binding (K149A, D245A, Y289F, D332A), any of which fails to produce polylactosamine or restore cell surface polylactosamine levels in living cells as a consequence of significantly reduced or no B3GNT2 enzyme activity (e.g., base editing). In an embodiment, B3GNT2 is edited to contain a point mutation within the active site base (e.g., D333N), which fails to produce polylactosamine or restore cell surface polylactosamine levels in living cells as a consequence of significantly reduced or no B3GNT2 enzyme activity (e.g., base editing). In an embodiment, B3GNT2 is edited to contain a mutation of Ala279 from the β5-β6 loop of the B3GNT2 protein, which is less than 4 Å from the acetyl group of the GlcNAc of the acceptor substrate, to either a Val or Leu to create steric hindrance with the GlcNAc, resulting in a B3GNT2 protein which is unable to synthesize polylactosamine as a consequence of significantly reduced or no B3GNT2 enzyme activity.


MCL1 Example Target Modifications

MCL1 is an anti-apoptotic protein of the BCL-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, MCL1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Initial studies of MCL1 identified that its expression was growth-factor dependent in many situations, and that it was capable of protecting cells from growth factor withdrawal-induced apoptosis (Bodrug, S. E. et al. Cell Death Diff. (1995), 2(3), 173-182). Ubiquitination of MCL1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. MCL1-specific mutations may be introduced using the gene editing systems described above. BCL-2-related proteins all contain at least one of the four conserved BCL-2 homology domains (BH1-BH4), which enable protein-protein interactions between the different members of the family. Proteins of the BCL-2 family display either anti-apoptotic or pro-apoptotic functions. The members that inhibit apoptosis include Bcl-2, Bcl-XL, MCL1, (BCL2A1; Bfl-1/A1), BCL-B and BCL-W. These anti-apoptotic proteins and the pro-apoptotic effector members, such as Bax and Bak, share at least three BH domains and a similar globular structure. These two groups are thus named multi-domain proteins and they mainly reside at the mitochondria. (Moldoveanu, T. et al. Trends Biochem. Sci. (2014), 39, 101-111).


A growing list of trophic factors has been shown to induce transcriptional upregulation of MCL1, including cytokines such as the interleukins IL-3, IL-5, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF), as well as growth factors such as epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). Intracellular regulation of MCL1 transcription is mediated by a number of externally activated and constitutively activated transcription factors, notably the signal transducers and activators of transcription (STAT) family. The promoter region of MCL1, characterized by Akgul et al. (Cell Mol. Life Sci. 57(4), 684-691), contains an array of putative and confirmed transcription factor binding sites, including consensus STAT response elements, cAMP response elements (CRE), and nuclear factor kappaB binding sites. Both STAT3, in response to IL-6, VEGF and IL-3, and STAT5, in response to Bcr-Abl signaling in chronic myeloid leukemia, have been shown to upregulate MCL1 transcription. It has been suggested that STAT3 activation by phosphorylation is absolutely required for MCL1-mediated macrophage survival (Liu, H. et al. Blood (2003), 102(1), 344-352). Other confirmed transcription factors known to upregulate MCL1 expression include cAMP response element binding protein, PU.1, SP1, and under hypoxic conditions, hypoxia-inducible factor 1a (Liu X. H., et al. J. Cell Biochem. (2006), 97(4), 755-765). Conversely, MCL1 may be down-regulated transcriptionally under a number of conditions, particularly under growth factor withdrawal, and on the induction of apoptosis induced by a variety of treatments, including staurosporine and UV exposure (Nijhawan, D. et al. Genes Dev. (2003), 7(12), 1475-1486). In most cases, down-regulation is mediated by inactivation of the transcription factors stimulating MCL1 transcription, but the MCL1 promoter is directly repressed by the binding of the E2F-1 transcription factor. Unlike other BCL-2-related survival proteins, MCL1 harbors a long unstructured N-terminus that appears to be involved in different post-translational modifications of MCL1 (Le Gouill, S., et al. Cell Cycle (2004), 3, 1259-1262). For example, it has been shown that, during apoptosis, MCL1 protein can be cleaved by caspases and granzyme B, at two distinct sites (Asp127 and Asp157) within the N-terminus (Han, J. et al. J. Biol. Chem. (2005), 280, 16383-16392; Herrant, M., et al. Oncogene (2004), 23, 7863-7873). Some studies reported that cleavage at these sites impairs the anti-apoptotic properties of MCL1, or even converts it into a pro-apoptotic protein (Han, J. et al. J. Biol. Chem. (2005), 280, 16383-16392; Micheals, J. et al. Oncogene (2004), 23, 4818-4827; Herrant, M., et al. Oncogene (2004), 23, 7863-7873). Cleavage of MCL1 thus appears to be a process through which apoptotic cells can inactivate residual MCL1 that could act as a brake to the achievement of cell death. The N-terminus of MCL1 contains PEST regions (Kozopas, K. M. et al., Proc. Natl. Acad. Sci. (1993), 90, 3516-3520), enriched in proline (P), glutamate (E), serine (S) and threonine (T) residues, which are common features of rapidly degraded proteins (Rechsteiner, M. et al. Trends Biochem. Sci. (1996), 21, 267-271). These regions contain the two caspase cleavage sites of MCL1 and many phosphorylation sites. Differential phosphorylation of MCL1 at specific sites has been reported to result in different outcomes. For example, the cell cycle-dependent phosphorylation of Ser64 by CDK1, CDK2 and JNK1 enhances the anti-apoptotic function of MCL1 by increasing its interaction with pro-apoptotic members of the BCL-2 family, without modifying its half-life (Kobayashi, S. et al. J. Biol. Chem. (2007), 282, 18407-18417). Two independent groups have also shown that MCL1 phosphorylation at Thr92 and Thr163, stimulated by TPA-induced ERK activation, stabilizes MCL1 in some cancer cell lines (Domina, A. M. et al. Oncogene (2004), 23, 5301-5315; Ding, Q. Cancer Res. (2008), 68, 6109-6117; Nifoussi, S. K. PloS One (2012), 7, e47060). Likewise, Ser121 and Thr163 have been found to be phosphorylated by JNK (Inoshita, S., J. Biol. Chem. (2002), 277, 43730-43734; Kodama, Y. et al., Gastroenterology 136, 1423-1434). In hepatocytes, this JNK-mediated phosphorylation stabilizes MCL1 and affords protection against TNF-induced apoptosis, whereas in endothelial cells submitted to oxidative stress, this phosphorylation reduces the anti-apoptotic effect of MCL1 (Inoshita, S., J. Biol. Chem. (2002), 277, 43730-43734; Kodama, Y. et al., Gastroenterology 136, 1423-1434). Moreover, phosphorylation of MCL1 at Ser155, Ser159 and Thr163, in a different cellular context, has been shown to favor MCL1 degradation by the ubiquitin-proteosome system (UPS).


In an embodiment, a gene editing system as described above is used to generate an edited MCL1 gene that results in a reduction or inhibition in MCL1 expression or activity. In an embodiment, MCL1 is edited to contain mutations including point mutations, deletions and insertions within the MCL1 promoter region required for upregulation of expression by an array of putative and confirmed transcription factors, including consensus STAT response elements, cAMP response elements (CRE), and nuclear factor kappaB binding sites, which lead to a reduction or inhibition in MCL1 expression because the transcription factor(s) can no longer bind efficiently to the MCL1 promoter region. Both STAT3, in response to IL-6, VEGF and IL-3, and STAT5, in response to Ber-Abl signaling in chronic cancer (e.g. myeloid leukemia), have been shown to upregulate MCL1 transcription. It has been suggested that STAT3 activation by phosphorylation is absolutely required for MCL1-mediated macrophage survival. In an embodiment, MCL1 is edited to contain mutations including point mutations, deletions and insertions within the MCL1 promoter region that reduces or inhibits STAT3 binding which leads to a reduction or inhibition in MCL1 expression or activity. In an embodiment, editing is used to mutate one or more transcription factor genes that stimulate MCL1 transcription. In an embodiment, the MCL1 transcription factors STAT3, cAMP response element binding protein, PU.1, SP1 and hypoxia-inducible factor 1a are edited and mutated, which leads to a reduction or inhibition of MCL1 expression or activity because the above transcription factors, either alone and in any combination thereof, are inactivated.


The MCL1 promoter is directly repressed by the binding of the E2F-1 transcription factor. In an embodiment, MCL1 expression and activity is decreased by editing and imparting mutations in the E2F-1 transcription factor whereby E2F-1 binding is increased by stabilizing the binding interaction between E2F-1 to the MCL1 promoter region, which leads to a reduction or inhibition in MCL1 expression and activity.


As disclosed herein, MCL1 protein can be cleaved by caspases and granzyme B at two distinct sites (Asp127 and Asp157) within the N-terminus and it appears that cleavage at these sites impairs the anti-apoptotic properties of MCL1, or even converts it into a pro-apoptotic protein. Cleavage of MCL1 thus appears to be a process through which apoptotic cells can inactivate residual MCL1, which in turn could act as a brake on apoptosis. In an embodiment, MCL1 is edited to contain one or more mutations to stabilize the Asp127 and Asp157 cleavage sites such that caspases and granzyme cleave the MCL1 Asp127 and Asp157 sites more efficiently during apoptosis leading to more cancer cell death.


As disclosed herein, the N-terminus of MCL1 contains PEST regions, which as described above are enriched in proline (P), glutamate (E), serine (S) and threonine (T) residues and are common features of rapidly degraded proteins. These regions contain the two caspase cleavage sites of MCL1 (Asp127 and Asp 157 discussed above) and many phosphorylation sites. Differential phosphorylation of MCL1 at specific sites has been reported to result in different outcomes. For example, the cell cycle-dependent phosphorylation of Ser64 by CDK1, CDK2 and JNK1 enhances the anti-apoptotic function of MCL1 by increasing its interaction with pro-apoptotic members of the BCL-2 family, without modifying its half-life. In an embodiment, MCL1 is edited at Ser64 which decreases or eliminates phosphorylation of the Ser64 residue which in turn reduces the anti-apoptotic function of MCL1 by reducing its interaction with pro-apoptotic members of the BCL-2 family. As discussed above, it has been shown that MCL1 phosphorylation at Thr92 and Thr163, stimulated by TPA-induced ERK activation, stabilizes MCL1 in some cancer cell lines. In an embodiment, MCL1 is edited at Thr92 and Thr163, which reduces phosphorylation at these two residues and leads to a reduction in MCL1 activity because the MCL1 protein is destabilized. Likewise, Ser121 and Thr163 have been found to be phosphorylated by JNK. In hepatocytes, JNK-mediated phosphorylation stabilizes MCL1 and affords protection against TNF-induced apoptosis, whereas in endothelial cells submitted to oxidative stress, this phosphorylation reduces the anti-apoptotic effect of MCL1. In an embodiment, MCL1 is edited and mutated at Ser121 and Thr163, which reduces phosphorylation at these two residues and leads to a reduction in MCL1 stabilization and affords a reduction in protection against TNF-induced apoptosis. Moreover, phosphorylation of MCL1 at Ser155, Ser159 and Thr163, in a different cellular context, has been shown to favor MCL1 degradation by the ubiquitin-proteosome system (UPS). In an embodiment, MCL1 is edited at one or more of Ser155, Ser 159 and Thr163, which increases phosphorylation at one or more of these residues and increases MCL1 degradation by the ubiquitin-proteosome system (UPS).


BCL2A1 Example Target Modifications

The transcription of BCL2A1 is highly regulated. It was originally identified by as a gene induced by GM-CSF and LPS, suggesting that it may be an early-response gene. Later on it was found to be inducible by tumor necrosis factor A and identified as an NF-κB target gene (Zong, W. et al. Genes Dev (1999), 13, 382-387). Simultaneously, BCL2A1 transcription was reported to be induced in response to antigen receptor stimulation. Subsequently, several reports have demonstrated the importance of BCL2A1 upregulation for B-lymphocyte survival upon CD40 signaling (Lee, H. et al. Proc. Natl. Acad. Sci. (1999), 96, 9136-9141). In addition to CD40 signaling, PI3K and ERK signaling initiated by ICAM-1 binding have been found to induce NF-κB and subsequently BCL2A1 expression. Interestingly, both hyperoxia and low levels of reactive oxygen species were described to increase BCL2A1 transcription, possibly in an NF-κB-dependent manner (Kim, H. et al. Oncogene (2005), 24, 1252-1261). In both situations, BCL2A1 exerted a pro-survival function to prevent cell death. Besides NF-κB, several other transcription factors have been implicated in BCL2A1 transcriptional regulation, including all-trans retinoic acids or retinoic X receptor agonists, the (_EX5/_KTS) isoform of WT-142 and the transcriptional enhancer Spi-1/PU.1. On the other hand, BCL2A1 transcription is repressed by the plasma cell transcription factor PRDI-BF1/Blimp-1 (Shaffer, A. et al. Immunity (2002), 17, 51-62). In addition to the transcriptional regulation, BCL2A1 is also controlled at the post-translational level. In this regard, BCL2A1 is regulated by the ubiquitin/proteasome pathway and undergoes constitutive proteasome-mediated turnover, resulting in a short half-life of the protein. However, thus far no E3-ligase for BCL2A1 has been identified. Whether the proteasomal degradation of BCL2A1 can also be controlled by certain pro- or anti-apoptotic stimuli, for example, via phosphorylation events, has not been investigated yet but may provide an extra layer of regulation. In addition to the proteasomal turnover, cleavage by m-calpain can convert BCL2A1 from an anti-into a pro-apoptotic protein (Kucharczak, J. et al. Cell Death Diff. (2005), 12, 1225-1239).


BCL2A1 shares all four BH-domains with BCL-2. Of these, the BH1 and BH2 domains are highly conserved while the BH3 and in particular the BH4 domains have little homology with those of the cognate anti-apoptotic proteins. Similar to the other anti-apoptotic BCL-2 proteins, BCL2A1 consists of 8 a-helixes. In particular, the helixes α4, α5 and α6, corresponding to the BH3, BH1 and BH2 domains, respectively, form a groove on the protein surface that is able to interact with the BH3 domain of the pro-apoptotic BCL-2 family proteins (Smits, C. et al. Structure (2008), 16, 818-829). Despite the overall structural homology, BCL2A1 differs from all the other anti-apoptotic BCL-2 family members in its C-terminal end (Herman, M. et al. FEBS Letters (2008), 582, 3590-3594). While BCL-2, BCL-XL, BCL-W and MCL1 localize predominantly to inner cellular membranes via their hydrophobic region at the C-terminal end, the C-terminal portion of BCL2A1 contains a hydrophilic stretch responsible for ubiquitination and degradation via the proteosome pathway. Interestingly among all the pro-survival family members only BCL2A1 and MCL1 show such a rapid turnover rate. The half-life of BCL2A1 and MCL1 is estimated to be as short as 30 min while the half-life of BCL-2 is estimated to be around 24 h (Herold, J. et al. J. Biol. Chem., (2006), 281, 13663-13671). Whether BCL2A1 membrane association can be equated with insertion, as reported for BCL-W, remains to be investigated. Of note, BCL2A1 may interact with all BH-123 proteins, including Bok, as well as several BH3-only proteins. In a second study using in vitro translated protein, human A1/Bfl-1 was found to co-immunoprecipitate only with Bax when its transmembrane domain was deleted (Zhang, H. et al. J. Biol. Chem. (2000), 275, 11092-11099). Other studies performed in a more physiological context, reported a strong association between both human and murine BCL2A1 and endogenous Bak but not with Bax (Simmons, M. Oncogene (2008), 27, 1421-1428). BCL2A1 with Bax or Bak reflects a preferential binding affinity that can be found also in the other pro-survival members of the family. In general, the anti-apoptotic proteins can be subdivided depending on their ability to interact strongly with either Bax or Bak. The BH3-only peptide of Bax is able to interact with high affinity with BCL-2 and BCL-W, while Bak peptide binds potently Bcl-xL, MCL1 and BCL2A1 (Willis, S. et al. Genes Dev. (2005), 19, 1294-1305; Ku, B. et al. Cell Res. (2010), 21, 627-641). BCL2A1 interacts with different affinity also to the BH3-only proteins. Competitive binding assays using BH3-peptides show that BCL2A1, similarly to MCL1, has no affinity for Bad whereas it binds very tightly to Bim, Bid and BBC3 (PUMA); while BCL-2, Bcl-xL and Bcl-w interact potently with Bad, Bmf, Bim and BBC3 (PUMA) (Chen, L. et al. Mol. Cell (2005), 17, 393-403). The specific interaction pattern of BCL2A1 is probably due to the presence of an acidic residue, glutamate 78, within the binding groove that serves as an interaction surface for the BH3-domains of the pro-apoptotic BCL-2 family members (Ottina, E. et al. Exp. Cell Res. (2012), 318, 1291-1313). In contrast, all other anti-apoptotic proteins have a hydrophobic or slightly positively charged binding groove. Moreover, BCL2A1 can be stabilized by the interaction with Bim (Herold M. et al. J. Biol. Chem. (2006), 281, 13663-13671). The ability to be stabilized by BH3-only proteins and its cytosolic localization suggest that mouse BCL2A1 might act as a first barrier against premature or faulty activation of the apoptotic machinery. However, this feature does not seem to be conserved, as human BCL2A1 can target mitochondria, although it is unclear if it could also do so in the absence of pro-apoptotic BCL-2 family proteins.


The Bfl-1-Bim-BH3 peptide-binding pocket has similar overall properties as the corresponding groove in other BCL-2 proteins. Several hydrophobic patches line along the pocket at positions conserved in the BCL-2 proteins These hydrophobic patches interact with highly conserved residues on the amphipathic helix of BH3-only proteins. In the Bim peptide these residues are represented by Ile148, Leu152, Ile155 and Phe159. The Bim peptide makes two additional hydrophobic interactions; Trp147 of Bim stacks onto a surface patch formed by Leu52 and Cys55 of Bfl-1, and Tyr163 of Bim makes hydrophobic interactions with Phe148 and Val40 of BCL2A1(Bfl-1) (Herman, M. et al. FEBS Letters (2008), 582, 3590-3594). Since these latter residues are highly conserved in other anti-apoptotic BCL-2 proteins, this region is labeled the h5 patch. The part of the pocket lined by helix a4 and a5 has several polar interactions similar to those in other BCL-2 proteins. The most notable is the conserved Arg88 of the WGR motif in BH1, which interacts with the strictly conserved Asp157 of Bim. A characteristic feature of the Bfl-1 BH3-binding groove is the higher negative charge in its central region, contributed by Glu78 and Glu80 at the end of helix a4 (Herman, M. et al. FEBS Letters (2008), 582, 3590-3594).


In an embodiment, a gene editing system is used to generate an edited BCL2A1 gene that results in a reduction or inhibition in BCL2A1 expression or activity. In an embodiment, BCL2A1 is edited to contain mutations including point mutations, deletions and insertions within the BCL2A1 promoter region required for upregulation of expression by an array of putative and confirmed transcription factors, in which CD40 signaling, PI3K and ERK signaling initiated by ICAM-1 binding have been found to induce NF-κB and subsequently BCL2A1 expression. Further, both hyperoxia and low levels of reactive oxygen species were described to increase BCL2A1 transcription, possibly in an NF-κB-dependent manner. In an embodiment, the promoter region involved in binding the transcription activating factor NF-kB is mutated, which leads to a reduction or inhibition in BCL2A1 expression and activity because the NF-κB transcription factor can no longer bind efficiently to the BCL2A1 promoter region. Besides NF-κB, several other transcription factors have been implicated in BCL2A1 transcriptional regulation, including all-trans retinoic acids or retinoic X receptor agonists, the (_EX5/_KTS) isoform of WT-142 and the transcriptional enhancer Spi-1/PU.1. In an embodiment, the BCL2A1 promoter region involved in binding the transcription factors trans retinoic acids or retinoic X receptor agonists, the (_EX5/_KTS) isoform of WT-142 and the transcriptional enhancer Spi-1/PU.1 is mutated which leads to a reduction or inhibition in BCL2A1 expression and activity because the transcription factors can no longer bind efficiently to the BCL2A1 promoter region. Alternatively, BCL2A1 transcription is repressed by the plasma cell transcription factor PRDI-BF1/Blimp-1. In an embodiment, the BCL2A1 promoter region involved in binding transcription factor PRDI-BF1/Blimp-1 is mutated, which leads to an increase or improvement in BLIMP-1 binding and consequently increased repression of BCL2A1 expression and activity because the transcription factor binds more efficiently to the BCL2A1 promoter region.


As described herein, competitive binding assays using BH3-peptides show that BCL2A1, similarly to MCL1, has no affinity for Bad whereas it binds very tightly to Bim, Bid andBBC3 (PUMA); while BCL-2, Bcl-xL and Bcl-w interact potently with Bad, Bmf, Bim andBBC3 (PUMA). The specific interaction pattern of BCL2A1 is probably due to the presence of an acidic residue, glutamate 78, within the binding groove that serves as an interaction surface for the BH3-domains of the pro-apoptotic BCL-2 family members. In an embodiment, BCL2A1 protein activity is decreased by editing and imparting mutations corresponding to the acidic residue located at glutamate 78 (Glu78) in the native protein within the binding groove, which leads to a decrease in BCL2A1 activity due to a reduced binding interaction with BH3 peptide domains.


As described herein, the Bfl-1-Bim-BH3 peptide-binding pocket has similar overall properties as the corresponding groove in other BCL-2 proteins. Several hydrophobic patches line along the pocket at positions conserved in the BCL-2 proteins. These hydrophobic patches interact with highly conserved residues on the amphipathic helix of BH3-only proteins. In the Bim peptide these residues are represented by Ile148, Leu152, Ile155 and Phe159. In an embodiment, BCL2A1 protein activity is decreased by editing and imparting substitution mutations corresponding to the hydrophobic patches that interact with one or more highly conserved residues on the amphipathic helix of BH3-only proteins for example, the Bim peptide where these residues are represented by Ile148, Leu152, Ile155 and Phe159, which leads to a decrease in BCL2A1 activity due to a reduced binding interaction with BH3 (e.g., Bim) peptide domains. The Bim peptide makes two additional hydrophobic interactions with BCL2A1. Trp147 of Bim stacks onto a surface patch formed by Leu52 and Cys55 of BCL2A1 and Tyr163 of Bim makes hydrophobic interactions with Phe148 and Val40 of BCL2A1. In an embodiment, BCL2A1 protein activity is decreased by editing and imparting mutations corresponding to one or more of the additional hydrophobic regions that interact with highly conserved residues Trp147 of Bim, Leu52 and Cys55 of BCL2A1 and Tyr163 of Bim and makes hydrophobic interactions with Phe148 and Val40, of BCL2A1 which leads to a decrease in BCL2A1 activity due to a reduced binding interaction with Bim peptide domains.


These Phe148 and Val40 residues are highly conserved in other anti-apoptotic BCL-2 proteins. The part of the pocket lined by helix a4 and a5 has several polar interactions similar to those in other BCL-2 proteins. The most notable is the conserved Arg88 of the WGR motif in BH1, which interacts with the strictly conserved Asp157 of Bim. In an embodiment, BCL2A1 protein activity is decreased by editing and imparting substitution mutations corresponding to Arg88 of the WGR motif in BH1, which leads to a reduction in BCL2A1 activity because the polar interactions between Arg88 and Asp157 are reduced or eliminated.


JUNB Example Target Modifications

The product of the junB gene is a member of the AP-1 family of transcription factors that activates transcription by binding to TPA-responsive elements (TREs) within the promoters of target genes. Components of AP-1 are immediate-early genes whose expression is upregulated by a plethora of extracellular stimuli and are important in mediating cellular proliferation and differentiation. Such stimuli include the pleiotropic cytokine interleukin-6 (IL-6) which plays a role in immune and inflammatory responses and ciliary neurotrophic factor (CNTF) which enhances survival and differentiation of neurons and glia. Expression from junB promoter-CAT reporter constructs in HepG2 cells identified a region between −196 and −91 that can mediate response to IL-6 and CNTF and was able to confer responsiveness to a heterologous promoter. It was shown by gel retardation analysis that distinct nuclear factors induced by IL-6 specifically bind to this interleukin-6 response element (IRE) (Lutticken, C. et al. Oncogene (1995), 10(5), 985-994). This region contains both a putative ETS- and a STAT-transcription factor binding site. Further, it was shown by mutational analysis and supershift data that the IL-6 induced complex contains the transcription factor APRF/Stat3 that is both necessary and sufficient for activation. This site does not appear to bind STAT1 itself, as was shown by supershift analysis and a lack of response to IFN-gamma both at the DNA-binding and transcriptional level. Furthermore, it was demonstrated that the junB-IRE-binding activity induced by IL-6 requires tyrosine kinase activity, whereas induced transactivation of IRE-constructs additionally occurs through an H7-sensitive pathway that is p21ras-independent, implicating serine/threonine kinases in the transactivation of IRE-binding factors (Lutticken, C. et al. Oncogene (1995), 10(5), 985-994).


JunB differs considerably from c-Jun in its ability to activate AP-1-responsive genes and induce oncogenic transformation. It has been demonstrated that the decreased ability of JunB to activate gene expression is the result of a small number of amino acid changes between its DNA-binding and dimerization motifs and the corresponding regions of c-Jun (Deng, T. et al. Genes and Dev. (1993), 7:479-490). Changes in its DNA-binding and dimerization motifs led to a 10-fold decrease in the DNA-binding activity of JunB. JunB can be converted into a c-Jun-like activator by substituting four amino acids in its DNA-binding and dimerization motifs with the corresponding c-Jun sequences. JunB can also attenuate trans-activation by c-Jun, an activity mediated by its leucine zipper. This ability depends on two glycine residues that decrease the stability of the JunB leucine zipper, resulting in decreased homodimerization and increased heterodimerization. It has been shown that small changes in primary structure, including chemically conservative changes, can result in functional divergence of two highly related transcriptional regulators.


The role of the DNA-binding domain in JUN proteins, was investigated by generating a restriction site at the sequence surrounding codons 260 of c-Jun and 273 of JunB, which correspond to the exact amino termini of their basic regions (Vogt. P. et al. Adv. Cancer Res. (1990), 55, 1-35). The results indicated that chimeras containing amino acids 1-260 of c-Jun and the JunB DNA-binding domain, CB5, was an inefficient activator of reporter gene expression as with JunB, whereas the reverse chimera BC5, was a potent activator similar to c-Jun. A chimera containing the first 278 amino acids of c-Jun, CB6, whose basic region is derived from c-Jun, but whose leucine zipper is from JunB was two-fold less efficient than c-Jun. Hence, the JunB leucine zipper may not be as effective as the corresponding region of c-Jun. This finding was further supported by the significant increase in activity of the reverse chimera, BC6, which contains mostly JunB sequences with the exception of the leucine zipper derived from c-Jun. In comparison with wild-type JunB, BC6 was 3.5-fold more active. These results indicated that the major determinants of the differential activity of c-Jun and JunB are located in the basic region, which directly contacts DNA, and the leucine zipper, which mediates dimerization (Vinson, C et al., Science et al. (1989), 246: 911-916).


Among the 11-amino acid differences between the two DNA-binding domains, all except two, E293G and N299G, are conservative changes. Importantly, these sequence substitutions result in the presence of two glycines within the leucine zipper of JunB. Glycine and proline residues are helix destabilizers and are discriminated against within leucine zippers (Landschulz, W. et al. Science (1988a), 240: 1759-1764). Therefore, these glycines are likely to decrease the stability of the α-helix formed by the JunB leucine zipper. Replacement of the two glycines of JunB with the corresponding c-Jun sequences, resulted in a four-to-five-fold increase in activity. Replacement of either glycine alone resulted in a smaller increase in JunB activity. Two of the other sequence differences, I264L and S267T, between the DNA-binding domains of c-Jun and JunB, reside in the basic region. Despite the conserved nature of these changes, replacement of the JunB sequences with the corresponding c-Jun sequences (L264I/T267S), resulted in a six-to-seven-fold increase in activity. The effect of the single substitutions was smaller, with T267S being more effective than L264I. Combination of the two basic region substitutions with the two leucine zipper substitutions resulted in a 12-fold increase in JunB activity, reaching almost the same level of activity as c-Jun. To confirm the importance of the two glycine substitutions within the leucine zipper, three other positions within the JunB leucine zipper were converted to the corresponding c-Jun sequences (A292S, S295A, and A297T). Individually, none of these substitutions had any effect on JunB activity (Deng, T, et al., Genes and Dev. (1993), 7, 479-490).


In an embodiment, a gene editing system as described above is used to generate an edited JUNB gene that results in a reduction or inhibition in JUNB expression or activity. In an embodiment, JUNB is edited to contain mutations including point mutations, deletions and insertions within the JUNB promoter region required for upregulation of expression by an array of putative and confirmed AP-1 family of transcription factors that activate transcription by binding to TPA-responsive elements (TREs) within the promoter region of JUNB. In an embodiment, the JUNB promoter region involved in binding the AP-1 family of transcription factors that activates transcription by binding to TPA-responsive elements (TREs) is mutated which leads to a reduction or inhibition in JUNB expression and activity because the binding of the transcription factors is decreased or inhibited at the JUNB promoter region.


In an embodiment, a programmable nuclease is used to generate an edited JUNB gene in the leucine zipper basic region which leads to a reduction in JUNB activity. In an embodiment, the gene edited mutation leads to an altered protein sequence with substitutions occurring from E293G and N299G to E293P and N299G, or E293G and N299P, or E293P and N299P. Importantly, any of these sequence substitutions result in the presence of one glycine and one proline or two prolines within the leucine zipper of JunB. Glycine and proline residues are known helix destabilizers and are discriminated against within leucine zippers. In an embodiment, the edited JUNB protein containing substitutions from residues E293G and N299G to E293P and N299G lead to a reduction in JUNB activity because the mutations decrease dimerization of the JUNB proteins. In an embodiment, the edited JUNB protein containing substitutions from residues E293G and N299G to E293G and N299P lead to a reduction in JUNB activity because the mutations decrease dimerization of the JUNB proteins. In an embodiment, the edited JUNB protein containing substitutions from residues E293G and N299G to E293P and N299P lead to a reduction in JUNB activity because the mutations decrease dimerization of the JUNB protein. Replacement of the two glycines of JunB with the corresponding c-Jun sequences, resulted in a four-to-five-fold increase in activity, indicating the importance of these residues on functional activity. Two of the other sequence differences, I264L and S267T, between the DNA-binding domains of c-Jun and JunB, reside in the basic region. Despite the conserved nature of these changes, replacement of the JunB sequences with the corresponding c-Jun sequences (L264I/T267S), resulted in a six-to-seven-fold increase in activity. In an embodiment, the edited JUNB protein containing substitutions in the basic region at positions 1264 and S267 lead to a reduction in JUNB activity because the basic region amino acids 1264 and S267 have been mutated. In an embodiment, the edited JUNB protein containing substitutions in the basic region at positions 1264 and S267 lead to a reduction in JUNB activity because the basic region amino acids 1264 and S267 have been mutated by substituting to non-conserved amino acids. The effect of the single substitutions was smaller, with T267S being more effective than L264I. In an embodiment, the edited JUNB protein containing a substitution in the basic region containing a single substitution at position I264 leads to a reduction in JUNB activity because the basic region amino acid 1264 has been mutated by substituting to a non-conserved amino acid. In an embodiment, the edited JUNB protein containing a substitution in the basic region containing a single mutation at position T267 leads to a reduction in JUNB activity because the basic region amino acid T267 has been mutated by substituting to a non-conserved amino acid. Combination of the two basic region substitutions with the two leucine zipper substitutions resulted in a 12-fold increase in JunB activity, reaching almost the same level of activity as c-Jun. In an embodiment, the edited JUNB protein containing substitutions in the two basic regions lead to a significant reduction in JUNB activity because the two basic regions amino acids 1264 and T267 and E293 and N299 have been mutated by substituting to non-conserved amino acids at one or more or all of these positions. The importance of the two glycine substitutions within the leucine zipper, were determined at three other positions within the JunB leucine zipper by converting to the corresponding c-Jun sequences at positions A292S, S295A, and A297T. Individually, none of these substitutions had any effect on JunB activity, thus demonstrating the importance of the above described amino acids. (Deng, T, et al., Genes and Dev. (1993), 7, 479-490).


Method of Enhancing Anti-Tumor Immunity by Inhibiting Poly-LacNac Synthesis

Poly-LacNac is increased on glycoproteins on the surface of tumors to inhibit binding of certain T cell activating surface proteins, thus allowing tumors to evade an anti-tumor immune response (e.g., by overexpressing B3GNT2). Poly-LacNac consists of repeated N-acetyl-lactosamine (Galβ1-4GlcNAc)n residues formed as GlcNAc residues and are attached to galactosyl termini via the enzymatic activity of β-1,3 N-acetylglucosaminyltransferase (B3GNT family, including B3GNT2). B3GNT2 is a beta-1,3-N-acetylglucosaminyltransferase involved in poly-LacNac synthesis that has been suggested to glycosylate PD-1 in T cells and to affect T cell activation (Sun et al. 2020). In the present disclosure, B3GNT2 was shown to promote resistance through an orthogonal pathway by increasing poly-LacNac on at least 10 tumor ligands and receptors (CD276, CD70, CD58, NECTIN2, HLA-A, TNFRSF1A, IFNGR2, FAS, IFNARI, MICB). Increased poly-LacNac was confirmed using the potent inhibitors kifunensine or benzyl-O—N-acetylgalactosamide (BAG). All of these ligands and receptors are N-glycosylated, whereas a subset (CD276, CD58, NECTIN2, IFNGR2, FAS, and IFNAR1) are O-glycosylated (Example 1, FIG. 12). In a prior study investigating the function of B3GNT2, it was shown that B3GNT2 knockout mice have lower polyLacNac on B and T cells, resulting in hyperactivity (Togayachi et al. 2010).


In one example embodiments, one or more agents capable of decreasing Poly-LacNac is administered to a subject to enhance an anti-tumor immune response or an immunotherapy. In certain embodiments, the one or more therapeutics described herein are administered to a subject that has a tumor overexpressing B3GNT2 or has increased poly-LacNac on surface proteins. The present invention also provides for determining subjects that may respond to inhibition of poly-LacNac. For example, the tumor overexpresses B3GNT2 and does not overexpress another protein that allows evasion of an immune response.


Small Molecule Inhibitors of Poly-LacNac Synthesis

In embodiments, the present disclosure provides methods of enhancing anti-tumor immunity by inhibiting poly-N-acetyl-lactosamine (poly-LacNac) synthesis. Poly-LacNac synthesis can be inhibited by agents that block synthesis of N- or O-linked glycan extension or inhibit a-mannosidase activity. For example, tunicamycin, is a potent inhibitor of N-glycan synthesis and kefunensine inhibits human endoplasmic reticulum a-1,2-mannosidase I and Golgi Class I mannosidases IA, IB and IC with Ki values of 130 and 23 nM, respectively.


In embodiments, poly-LacNac synthesis is inhibited by administering one or more small molecule agents selected from the group consisting of benzyl-O—N-acetylgalactosamide (BAG), kifunensine (KIF), tunicamycin, 3′-Azidothymidine (AZT), 2-acetamido-1,3,6-tri-O-acetyl-4-deoxy-4-fluoro-D-glucopyranose [4-F-GlcNAc], and deoxymannojirimycin (DMN).


Conjugated Antibodies for Reduction of Poly-LacNAc on Tumor Surface

In another embodiment, the one or more agents comprise an antibody that binds to a tumor-specific marker and is linked to an enzyme capable of cleaving poly-LacNac. The marker can be any tumor specific surface marker or a tumor antigen presented on the surface by class I HLA molecules. The conjugated antibody may be an antibody or antigen binding fragment thereof, chemically linked to one or more enzymes. In a preferred embodiment, an antibody includes a linker that enables attachment or conjugation of the enzyme to the antibody. The term “antibody” is used interchangeably with the term “immunoglobulin” herein, and includes intact antibodies, fragments of antibodies, e.g., Fab, F(ab′)2 fragments, and intact antibodies and fragments that have been mutated either in their constant and/or variable region (e.g., mutations to produce chimeric, partially humanized, or fully humanized antibodies, as well as to produce antibodies with a desired trait, e.g., enhanced binding and/or reduced FcR binding). The term “fragment” refers to a part or portion of an antibody or antibody chain comprising fewer amino acid residues than an intact or complete antibody or antibody chain. Fragments can be obtained via chemical or enzymatic treatment of an intact or complete antibody or antibody chain. Fragments can also be obtained by recombinant means. Exemplary fragments include Fab, Fab′, F(ab′)2, Fabc, Fd, dAb, VHH and scFv and/or Fv fragments.


Non-limiting tumor markers include the following: MR1 (see, e.g., Crowther, et al., 2020, Genome-wide CRISPR-Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1, Nature Immunology volume 21, pages 178-185), B cell maturation antigen (BCMA) (see, e.g., Friedman et al., Effective Targeting of Multiple BCMA-Expressing Hematological Malignancies by Anti-BCMA CAR T Cells, Hum Gene Ther. 2018 Mar. 8; Berdeja J G, et al. Durable clinical responses in heavily pretreated patients with relapsed/refractory multiple myeloma: updated results from a multicenter study of bb2121 anti-Bcma CAR T cell therapy. Blood. 2017; 130:740; and Mouhieddine and Ghobrial, Immunotherapy in Multiple Myeloma: The Era of CAR T Cell Therapy, Hematologist, May-June 2018, Volume 15, issue 3); PSA (prostate-specific antigen); prostate-specific membrane antigen (PSMA); PSCA (Prostate stem cell antigen); Tyrosine-protein kinase transmembrane receptor ROR1; fibroblast activation protein (FAP); Tumor-associated glycoprotein 72 (TAG72); Carcinoembryonic antigen (CEA); Epithelial cell adhesion molecule (EPCAM); Mesothelin; Human Epidermal growth factor Receptor 2 (ERBB2 (Her2/neu)); Prostase; Prostatic acid phosphatase (PAP); elongation factor 2 mutant (ELF2M); Insulin-like growth factor 1 receptor (IGF-1R); gplOO; BCR-ABL (breakpoint cluster region-Abelson); tyrosinase; New York esophageal squamous cell carcinoma 1 (NY-ESO-1); K-light chain, LAGE (L antigen); MAGE (melanoma antigen); Melanoma-associated antigen 1 (MAGE-A1); MAGE A3; MAGE A6; legumain; Human papillomavirus (HPV) E6; HPV E7; prostein; survivin; PCTA1 (Galectin 8); Melan-A/MART-1; Ras mutant; TRP-1 (tyrosinase related protein 1, or gp75); Tyrosinase-related Protein 2 (TRP2); TRP-2/INT2 (TRP-2/intron 2); RAGE (renal antigen); receptor for advanced glycation end products 1 (RAGE1); Renal ubiquitous 1, 2 (RU1, RU2); intestinal carboxyl esterase (ICE); Heat shock protein 70-2 (HSP70-2) mutant; thyroid stimulating hormone receptor (TSHR); CD123; CD171; CD19; CD20; CD22; CD26; CD30; CD33; CD44v7/8 (cluster of differentiation 44, exons 7/8); CD53; CD92; CD100; CD148; CD150; CD200; CD261; CD262; CD362; CS-1 (CD2 subset 1, CRACC, SLAMF7, CD319, and 19A24); C-type lectin-like molecule-1 (CLL-1); ganglioside GD3 (aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); Tn antigen (Tn Ag); Fms-Like Tyrosine Kinase 3 (FLT3); CD38; CD138; CD44v6; B7H3 (CD276); KIT (CD117); Interleukin-13 receptor subunit alpha-2 (IL-13Ra2); Interleukin 11 receptor alpha (IL-11Ra); prostate stem cell antigen (PSCA); Protease Serine 21 (PRSS21); vascular endothelial growth factor receptor 2 (VEGFR2); Lewis(Y) antigen; CD24; Platelet-derived growth factor receptor beta (PDGFR-beta); stage-specific embryonic antigen-4 (SSEA-4); Mucin 1, cell surface associated (MUC1); mucin 16 (MUC16); epidermal growth factor receptor (EGFR); epidermal growth factor receptor variant III (EGFRvIII); neural cell adhesion molecule (NCAM); carbonic anhydrase IX (CAIX); Proteasome (Prosome, Macropain) Subunit, Beta Type, 9 (LMP2); ephrin type-A receptor 2 (EphA2); Ephrin B2; Fucosyl GM1; sialyl Lewis adhesion molecule (sLe); ganglioside GM3 (aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); TGS5; high molecular weight-melanoma-associated antigen (HMWMAA); o-acetyl-GD2 ganglioside (OAcGD2); Folate receptor alpha; Folate receptor beta; tumor endothelial marker 1 (TEMI/CD248); tumor endothelial marker 7-related (TEM7R); claudin 6 (CLDN6); G protein-coupled receptor class C group 5, member D (GPRC5D); chromosome X open reading frame 61 (CXORF61); CD97; CD179a; anaplastic lymphoma kinase (ALK); Polysialic acid; placenta-specific 1 (PLAC1); hexasaccharide portion of globoH glycoceramide (GloboH); mammary gland differentiation antigen (NY-BR-1); uroplakin 2 (UPK2); Hepatitis A virus cellular receptor 1 (HAVCR1); adrenoceptor beta 3 (ADRB3); pannexin 3 (PANX3); G protein-coupled receptor 20 (GPR20); lymphocyte antigen 6 complex, locus K 9 (LY6K); Olfactory receptor 51E2 (OR51E2); TCR Gamma Alternate Reading Frame Protein (TARP); Wilms tumor protein (WT1); ETS translocation-variant gene 6, located on chromosome 12p (ETV6-AML); sperm protein 17 (SPA17); X Antigen Family, Member 1A (XAGE1); angiopoietin-binding cell surface receptor 2 (Tie 2); CT (cancer/testis (antigen)); melanoma cancer testis antigen-1 (MAD-CT-1); melanoma cancer testis antigen-2 (MAD-CT-2); Fos-related antigen 1; p53; p53 mutant; human Telomerase reverse transcriptase (hTERT); sarcoma translocation breakpoints; melanoma inhibitor of apoptosis (ML-IAP); ERG (transmembrane protease, serine 2 (TMPRSS2) ETS fusion gene); N-Acetyl glucosaminyl-transferase V (NA17); paired box protein Pax-3 (PAX3); Androgen receptor; Cyclin B1; Cyclin D1; v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN); Ras Homolog Family Member C (RhoC); Cytochrome P450 1B1 (CYP1B1); CCCTC-Binding Factor (Zinc Finger Protein)-Like (BORIS); Squamous Cell Carcinoma Antigen Recognized By T Cells-1 or 3 (SART1, SART3); Paired box protein Pax-5 (PAX5); proacrosin binding protein sp32 (OY-TES1); lymphocyte-specific protein tyrosine kinase (LCK); A kinase anchor protein 4 (AKAP-4); synovial sarcoma, X breakpoint-1, -2, -3 or -4 (SSX1, SSX2, SSX3, SSX4); CD79a; CD79b; CD72; Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1); Fc fragment of IgA receptor (FCAR); Leukocyte immunoglobulin-like receptor subfamily A member 2 (LILRA2); CD300 molecule-like family member f (CD300LF); C-type lectin domain family 12 member A (CLEC12A); bone marrow stromal cell antigen 2 (BST2); EGF-like module-containing mucin-like hormone receptor-like 2 (EMR2); lymphocyte antigen 75 (LY75); Glypican-3 (GPC3); Fc receptor-like 5 (FCRL5); mouse double minute 2 homolog (MDM2); livin; alphafetoprotein (AFP); transmembrane activator and CAML Interactor (TACI); B-cell activating factor receptor (BAFF-R); V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS); immunoglobulin lambda-like polypeptide 1 (IGLL1); 707-AP (707 alanine proline); ART-4 (adenocarcinoma antigen recognized by T4 cells); BAGE (B antigen; b-catenin/m, b-catenin/mutated); CAMEL (CTL-recognized antigen on melanoma); CAP1 (carcinoembryonic antigen peptide 1); CASP-8 (caspase-8); CDC27m (cell-division cycle 27 mutated); CDK4/m (cycline-dependent kinase 4 mutated); Cyp-B (cyclophilin B); DAM (differentiation antigen melanoma); EGP-2 (epithelial glycoprotein 2); EGP-40 (epithelial glycoprotein 40); Erbb2, 3, 4 (erythroblastic leukemia viral oncogene homolog-2, -3, 4); FBP (folate binding protein); fAchR (Fetal acetylcholine receptor); G250 (glycoprotein 250); GAGE (G antigen); GnT-V (N-acetylglucosaminyltransferase V); HAGE (helicose antigen); ULA-A (human leukocyte antigen-A); HST2 (human signet ring tumor 2); KIAA0205; KDR (kinase insert domain receptor); LDLR/FUT (low density lipid receptor/GDP L-fucose: b-D-galactosidase 2-a-L fucosyltransferase); L1CAM (L1 cell adhesion molecule); MC1R (melanocortin 1 receptor); Myosin/m (myosin mutated); MUM-1, -2, -3 (melanoma ubiquitous mutated 1, 2, 3); NA88-A (NA cDNA clone of patient M88); KG2D (Natural killer group 2, member D) ligands; oncofetal antigen (h5T4); p190 minor bcr-abl (protein of 190KD bcr-abl); Pml/RARa (promyelocytic leukaemia/retinoic acid receptor a); PRAME (preferentially expressed antigen of melanoma); SAGE (sarcoma antigen); TEL/AMLI (translocation Ets-family leukemia/acute myeloid leukemia 1); TPI/m (triosephosphate isomerase mutated); CD70; and any combination thereof.


In certain example embodiments, the enzyme is selected from the group consisting of endo H, endo F2, endo F3, peptide:N-glycosidase F (PNGase F), endo D, O-glycosidase, endo-β-galactosidase, sialidase and O-sialoglycoprotease.


Combination Therapy

The present invention also provides methods comprising combination therapy. As used herein, “combination therapy” includes administration of a therapeutically effective amount of the one or more agents described herein in combination with administering an immunotherapy. In an embodiment, the method further comprises administering an immunotherapy in combination with the one or more agents described herein. In embodiments, the immunotherapy is adoptive cell therapy. In another embodiment, the immunotherapy is checkpoint blockade (CPB) therapy, also referred to as immune checkpoint inhibition (ICI). The therapeutic agents described herein may shift a subject from an immunotherapy nonresponder to a responder. In certain embodiments, a tumor may overexpress any of the targets after administered an immunotherapy. Thus, overexpression of a target may be determined during immunotherapy treatment and thus guide the combination therapy.


Adoptive Cell Transfer

In certain embodiments, the methods of enhancing an anti-tumor immune response are administered with adoptive cell transfer (ACT). As used herein, “ACT”, “adoptive cell therapy” and “adoptive cell transfer” may be used interchangeably. Adoptive cell therapy (ACT) can refer to the transfer of cells, most commonly immune-derived cells, back into the same patient or into a new recipient host with the goal of transferring the immunologic functionality and characteristics into the new host. If possible, use of autologous cells helps the recipient by minimizing GVHD issues. The adoptive transfer of autologous tumor infiltrating lymphocytes (TIL) (Zacharakis et al., (2018) Nat Med. 2018 June; 24(6):724-730; Besser et al., (2010) Clin. Cancer Res 16 (9) 2646-55; Dudley et al., (2002) Science 298 (5594): 850-4; and Dudley et al., (2005) Journal of Clinical Oncology 23 (10): 2346-57.) or genetically re-directed peripheral blood mononuclear cells (Johnson et al., (2009) Blood 114 (3): 535-46; and Morgan et al., (2006) Science 314(5796) 126-9) has been used to successfully treat patients with advanced solid tumors, including melanoma, metastatic breast cancer and colorectal carcinoma, as well as patients with CD19-expressing hematologic malignancies (Kalos et al., (2011) Science Translational Medicine 3 (95): 95ra73). In certain embodiments, allogenic cells immune cells are transferred (see, e.g., Ren et al., (2017) Clin Cancer Res 23 (9) 2255-2266). As described further herein, allogenic cells can be edited to reduce alloreactivity and prevent graft-versus-host disease. Thus, use of allogenic cells allows for cells to be obtained from healthy donors and prepared for use in patients as opposed to preparing autologous cells from a patient after diagnosis.


In certain embodiments, modified T cells are used for an adoptive cell therapy. In one example embodiment, a modified T cell that expresses an enzyme capable of cleaving poly-LacNAc on its cell surface is administered. Not being bound by a theory, the T cell will be resistant to increased glycosylation on the surface of a tumor. The enzyme may be selected from the group consisting of endo H, endo F2, endo F3, peptide:N-glycosidase F (PNGase F), endo D, O-glycosidase, endo-β-galactosidase, sialidase and O-sialoglycoprotease. Any method of expressing a protein on the cell surface may be used. For example, the enzyme can be fused to a short sequence encoding a lipid modification, such as myristoyl and paloutoyl that automatically targets to the plasma membrane (MyrPalm) (see, e.g., Zacharias D A, Violin J D. Newton A C, Tsien R Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002:296(5569):913-916). Alternative methods for membrane-targeting of the enzyme include other protein modifications (e g. polybasic domains or isoprenylation) or fusing the enzyme to a transmembrane protein.


Aspects of the invention involve the adoptive transfer of immune system cells, such as T cells, specific for selected antigens, such as tumor associated antigens or tumor specific neoantigens (see, e.g., Maus et al., 2014, Adoptive Immunotherapy for Cancer or Viruses, Annual Review of Immunology, Vol. 32: 189-225; Rosenberg and Restifo, 2015, Adoptive cell transfer as personalized immunotherapy for human cancer, Science Vol. 348 no. 6230 pp. 62-68; Restifo et al., 2015, Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12(4): 269-281; and Jenson and Riddell, 2014, Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev. 257(1): 127-144; and Rajasagi et al., 2014, Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014 Jul. 17; 124(3):453-62).


In certain embodiments, an antigen (such as a tumor antigen) to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) may be selected from a group consisting of: MR1 (see, e.g., Crowther, et al., 2020, Genome-wide CRISPR-Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1, Nature Immunology volume 21, pages 178-185), B cell maturation antigen (BCMA) (see, e.g., Friedman et al., Effective Targeting of Multiple BCMA-Expressing Hematological Malignancies by Anti-BCMA CAR T Cells, Hum Gene Ther. 2018 Mar. 8; Berdeja J G, et al. Durable clinical responses in heavily pretreated patients with relapsed/refractory multiple myeloma: updated results from a multicenter study of bb2121 anti-Bcma CAR T cell therapy. Blood. 2017; 130:740; and Mouhieddine and Ghobrial, Immunotherapy in Multiple Myeloma: The Era of CAR T Cell Therapy, Hematologist, May-June 2018, Volume 15, issue 3); PSA (prostate-specific antigen); prostate-specific membrane antigen (PSMA); PSCA (Prostate stem cell antigen); Tyrosine-protein kinase transmembrane receptor ROR1; fibroblast activation protein (FAP); Tumor-associated glycoprotein 72 (TAG72); Carcinoembryonic antigen (CEA); Epithelial cell adhesion molecule (EPCAM); Mesothelin; Human Epidermal growth factor Receptor 2 (ERBB2 (Her2/neu)); Prostase; Prostatic acid phosphatase (PAP); elongation factor 2 mutant (ELF2M); Insulin-like growth factor 1 receptor (IGF-1R); gplOO; BCR-ABL (breakpoint cluster region-Abelson); tyrosinase; New York esophageal squamous cell carcinoma 1 (NY-ESO-1); K-light chain, LAGE (L antigen); MAGE (melanoma antigen); Melanoma-associated antigen 1 (MAGE-A1); MAGE A3; MAGE A6; legumain; Human papillomavirus (HPV) E6; HPV E7; prostein; survivin; PCTA1 (Galectin 8); Melan-A/MART-1; Ras mutant; TRP-1 (tyrosinase related protein 1, or gp75); Tyrosinase-related Protein 2 (TRP2); TRP-2/INT2 (TRP-2/intron 2); RAGE (renal antigen); receptor for advanced glycation end products 1 (RAGE1); Renal ubiquitous 1, 2 (RU1, RU2); intestinal carboxyl esterase (ICE); Heat shock protein 70-2 (HSP70-2) mutant; thyroid stimulating hormone receptor (TSHR); CD123; CD171; CD19; CD20; CD22; CD26; CD30; CD33; CD44v7/8 (cluster of differentiation 44, exons 7/8); CD53; CD92; CD100; CD148; CD150; CD200; CD261; CD262; CD362; CS-1 (CD2 subset 1, CRACC, SLAMF7, CD319, and 19A24); C-type lectin-like molecule-1 (CLL-1); ganglioside GD3 (aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); Tn antigen (Tn Ag); Fms-Like Tyrosine Kinase 3 (FLT3); CD38; CD138; CD44v6; B7H3 (CD276); KIT (CD117); Interleukin-13 receptor subunit alpha-2 (IL-13Ra2); Interleukin 11 receptor alpha (IL-11Ra); prostate stem cell antigen (PSCA); Protease Serine 21 (PRSS21); vascular endothelial growth factor receptor 2 (VEGFR2); Lewis(Y) antigen; CD24; Platelet-derived growth factor receptor beta (PDGFR-beta); stage-specific embryonic antigen-4 (SSEA-4); Mucin 1, cell surface associated (MUC1); mucin 16 (MUC16); epidermal growth factor receptor (EGFR); epidermal growth factor receptor variant III (EGFRvIII); neural cell adhesion molecule (NCAM); carbonic anhydrase IX (CAIX); Proteasome (Prosome, Macropain) Subunit, Beta Type, 9 (LMP2); ephrin type-A receptor 2 (EphA2); Ephrin B2; Fucosyl GM1; sialyl Lewis adhesion molecule (sLe); ganglioside GM3 (aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); TGS5; high molecular weight-melanoma-associated antigen (HMWMAA); o-acetyl-GD2 ganglioside (OAcGD2); Folate receptor alpha; Folate receptor beta; tumor endothelial marker 1 (TEMI/CD248); tumor endothelial marker 7-related (TEM7R); claudin 6 (CLDN6); G protein-coupled receptor class C group 5, member D (GPRC5D); chromosome X open reading frame 61 (CXORF61); CD97; CD179a; anaplastic lymphoma kinase (ALK); Polysialic acid; placenta-specific 1 (PLAC1); hexasaccharide portion of globoH glycoceramide (GloboH); mammary gland differentiation antigen (NY-BR-1); uroplakin 2 (UPK2); Hepatitis A virus cellular receptor 1 (HAVCR1); adrenoceptor beta 3 (ADRB3); pannexin 3 (PANX3); G protein-coupled receptor 20 (GPR20); lymphocyte antigen 6 complex, locus K 9 (LY6K); Olfactory receptor 51E2 (OR51E2); TCR Gamma Alternate Reading Frame Protein (TARP); Wilms tumor protein (WT1); ETS translocation-variant gene 6, located on chromosome 12p (ETV6-AML); sperm protein 17 (SPA17); X Antigen Family, Member 1A (XAGE1); angiopoietin-binding cell surface receptor 2 (Tie 2); CT (cancer/testis (antigen)); melanoma cancer testis antigen-1 (MAD-CT-1); melanoma cancer testis antigen-2 (MAD-CT-2); Fos-related antigen 1; p53; p53 mutant; human Telomerase reverse transcriptase (hTERT); sarcoma translocation breakpoints; melanoma inhibitor of apoptosis (ML-IAP); ERG (transmembrane protease, serine 2 (TMPRSS2) ETS fusion gene); N-Acetyl glucosaminyl-transferase V (NA17); paired box protein Pax-3 (PAX3); Androgen receptor; Cyclin B1; Cyclin D1; v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN); Ras Homolog Family Member C (RhoC); Cytochrome P450 1B1 (CYP1B1); CCCTC-Binding Factor (Zinc Finger Protein)-Like (BORIS); Squamous Cell Carcinoma Antigen Recognized By T Cells-1 or 3 (SART1, SART3); Paired box protein Pax-5 (PAX5); proacrosin binding protein sp32 (OY-TES1); lymphocyte-specific protein tyrosine kinase (LCK); A kinase anchor protein 4 (AKAP-4); synovial sarcoma, X breakpoint-1, -2, -3 or -4 (SSX1, SSX2, SSX3, SSX4); CD79a; CD79b; CD72; Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1); Fc fragment of IgA receptor (FCAR); Leukocyte immunoglobulin-like receptor subfamily A member 2 (LILRA2); CD300 molecule-like family member f (CD300LF); C-type lectin domain family 12 member A (CLEC12A); bone marrow stromal cell antigen 2 (BST2); EGF-like module-containing mucin-like hormone receptor-like 2 (EMR2); lymphocyte antigen 75 (LY75); Glypican-3 (GPC3); Fc receptor-like 5 (FCRL5); mouse double minute 2 homolog (MDM2); livin; alphafetoprotein (AFP); transmembrane activator and CAML Interactor (TACI); B-cell activating factor receptor (BAFF-R); V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS); immunoglobulin lambda-like polypeptide 1 (IGLL1); 707-AP (707 alanine proline); ART-4 (adenocarcinoma antigen recognized by T4 cells); BAGE (B antigen; b-catenin/m, b-catenin/mutated); CAMEL (CTL-recognized antigen on melanoma); CAP1 (carcinoembryonic antigen peptide 1); CASP-8 (caspase-8); CDC27m (cell-division cycle 27 mutated); CDK4/m (cycline-dependent kinase 4 mutated); Cyp-B (cyclophilin B); DAM (differentiation antigen melanoma); EGP-2 (epithelial glycoprotein 2); EGP-40 (epithelial glycoprotein 40); Erbb2, 3, 4 (erythroblastic leukemia viral oncogene homolog-2, -3, 4); FBP (folate binding protein); fAchR (Fetal acetylcholine receptor); G250 (glycoprotein 250); GAGE (G antigen); GnT-V (N-acetylglucosaminyltransferase V); HAGE (helicose antigen); ULA-A (human leukocyte antigen-A); HST2 (human signet ring tumor 2); KIAA0205; KDR (kinase insert domain receptor); LDLR/FUT (low density lipid receptor/GDP L-fucose: b-D-galactosidase 2-a-L fucosyltransferase); L1CAM (L1 cell adhesion molecule); MC1R (melanocortin 1 receptor); Myosin/m (myosin mutated); MUM-1, -2, -3 (melanoma ubiquitous mutated 1, 2, 3); NA88-A (NA cDNA clone of patient M88); KG2D (Natural killer group 2, member D) ligands; oncofetal antigen (h5T4); p190 minor bcr-abl (protein of 190KD bcr-abl); Pml/RARa (promyelocytic leukaemia/retinoic acid receptor a); PRAME (preferentially expressed antigen of melanoma); SAGE (sarcoma antigen); TEL/AML 1 (translocation Ets-family leukemia/acute myeloid leukemia 1); TPI/m (triosephosphate isomerase mutated); CD70; and any combination thereof.


In certain embodiments, an antigen to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) is a tumor-specific antigen (TSA).


In certain embodiments, an antigen to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) is a neoantigen.


In certain embodiments, an antigen to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) is a tumor-associated antigen (TAA).


In certain embodiments, an antigen to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) is a universal tumor antigen. In certain preferred embodiments, the universal tumor antigen is selected from the group consisting of: a human telomerase reverse transcriptase (hTERT), survivin, mouse double minute 2 homolog (MDM2), cytochrome P450 1B 1 (CYP1B), HER2/neu, Wilms' tumor gene 1 (WT1), livin, alphafetoprotein (AFP), carcinoembryonic antigen (CEA), mucin 16 (MUC16), MUC1, prostate-specific membrane antigen (PSMA), p53, cyclin (D1), and any combinations thereof.


In certain embodiments, an antigen (such as a tumor antigen) to be targeted in adoptive cell therapy (such as particularly CAR or TCR T-cell therapy) of a disease (such as particularly of tumor or cancer) may be selected from a group consisting of: CD19, BCMA, CD70, CLL-1, MAGE A3, MAGE A6, HPV E6, HPV E7, WT1, CD22, CD171, ROR1, MUC16, and SSX2. In certain preferred embodiments, the antigen may be CD19. For example, CD19 may be targeted in hematologic malignancies, such as in lymphomas, more particularly in B-cell lymphomas, such as without limitation in diffuse large B-cell lymphoma, primary mediastinal b-cell lymphoma, transformed follicular lymphoma, marginal zone lymphoma, mantle cell lymphoma, acute lymphoblastic leukemia including adult and pediatric ALL, non-Hodgkin lymphoma, indolent non-Hodgkin lymphoma, or chronic lymphocytic leukemia. For example, BCMA may be targeted in multiple myeloma or plasma cell leukemia (see, e.g., 2018 American Association for Cancer Research (AACR) Annual meeting Poster: Allogeneic Chimeric Antigen Receptor T Cells Targeting B Cell Maturation Antigen). For example, CLL1 may be targeted in acute myeloid leukemia. For example, MAGE A3, MAGE A6, SSX2, and/or KRAS may be targeted in solid tumors. For example, HPV E6 and/or HPV E7 may be targeted in cervical cancer or head and neck cancer. For example, WT1 may be targeted in acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), chronic myeloid leukemia (CML), non-small cell lung cancer, breast, pancreatic, ovarian or colorectal cancers, or mesothelioma. For example, CD22 may be targeted in B cell malignancies, including non-Hodgkin lymphoma, diffuse large B-cell lymphoma, or acute lymphoblastic leukemia. For example, CD171 may be targeted in neuroblastoma, glioblastoma, or lung, pancreatic, or ovarian cancers. For example, ROR1 may be targeted in ROR1+ malignancies, including non-small cell lung cancer, triple negative breast cancer, pancreatic cancer, prostate cancer, ALL, chronic lymphocytic leukemia, or mantle cell lymphoma. For example, MUC16 may be targeted in MUC16ecto+epithelial ovarian, fallopian tube or primary peritoneal cancer. For example, CD70 may be targeted in both hematologic malignancies as well as in solid cancers such as renal cell carcinoma (RCC), gliomas (e.g., GBM), and head and neck cancers (HNSCC). CD70 is expressed in both hematologic malignancies as well as in solid cancers, while its expression in normal tissues is restricted to a subset of lymphoid cell types (see, e.g., 2018 American Association for Cancer Research (AACR) Annual meeting Poster: Allogeneic CRISPR Engineered Anti-CD70 CAR-T Cells Demonstrate Potent Preclinical Activity Against Both Solid and Hematological Cancer Cells).


Various strategies may for example be employed to genetically modify T cells by altering the specificity of the T cell receptor (TCR) for example by introducing new TCR a and B chains with selected peptide specificity (see U.S. Pat. No. 8,697,854; PCT Patent Publications: WO2003020763, WO2004033685, WO2004044004, WO2005114215, WO2006000830, WO2008038002, WO2008039818, WO2004074322, WO2005113595, WO2006125962, WO2013166321, WO2013039889, WO2014018863, WO2014083173; U.S. Pat. No. 8,088,379).


As an alternative to, or addition to, TCR modifications, chimeric antigen receptors (CARs) may be used in order to generate immunoresponsive cells, such as T cells, specific for selected targets, such as malignant cells, with a wide variety of receptor chimera constructs having been described (see U.S. Pat. Nos. 5,843,728; 5,851,828; 5,912,170; 6,004,811; 6,284,240; 6,392,013; 6,410,014; 6,753,162; 8,211,422; and, PCT Publication WO9215322).


In general, CARs are comprised of an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises an antigen-binding domain that is specific for a predetermined target. While the antigen-binding domain of a CAR is often an antibody or antibody fragment (e.g., a single chain variable fragment, scFv), the binding domain is not particularly limited so long as it results in specific recognition of a target. For example, in some embodiments, the antigen-binding domain may comprise a receptor, such that the CAR is capable of binding to the ligand of the receptor. Alternatively, the antigen-binding domain may comprise a ligand, such that the CAR is capable of binding the endogenous receptor of that ligand.


The antigen-binding domain of a CAR is generally separated from the transmembrane domain by a hinge or spacer. The spacer is also not particularly limited, and it is designed to provide the CAR with flexibility. For example, a spacer domain may comprise a portion of a human Fc domain, including a portion of the CH3 domain, or the hinge region of any immunoglobulin, such as IgA, IgD, IgE, IgG, or IgM, or variants thereof. Furthermore, the hinge region may be modified so as to prevent off-target binding by FcRs or other potential interfering objects. For example, the hinge may comprise an IgG4 Fc domain with or without a S228P, L235E, and/or N297Q mutation (according to Kabat numbering) in order to decrease binding to FcRs. Additional spacers/hinges include, but are not limited to, CD4, CD8, and CD28 hinge regions.


The transmembrane domain of a CAR may be derived either from a natural or from a synthetic source. Where the source is natural, the domain may be derived from any membrane bound or transmembrane protein. Transmembrane regions of particular use in this disclosure may be derived from CD8, CD28, CD3, CD45, CD4, CD5, CDS, CD9, CD 16, CD22, CD33, CD37, CD64, CD80, CD86, CD 134, CD137, CD 154, TCR. Alternatively, the transmembrane domain may be synthetic, in which case it will comprise predominantly hydrophobic residues such as leucine and valine. Preferably a triplet of phenylalanine, tryptophan and valine will be found at each end of a synthetic transmembrane domain. Optionally, a short oligo- or polypeptide linker, preferably between 2 and 10 amino acids in length may form the linkage between the transmembrane domain and the cytoplasmic signaling domain of the CAR. A glycine-serine doublet provides a particularly suitable linker.


Alternative CAR constructs may be characterized as belonging to successive generations. First-generation CARs typically consist of a single-chain variable fragment of an antibody specific for an antigen, for example comprising a VL linked to a VH of a specific antibody, linked by a flexible linker, for example by a CD8α hinge domain and a CD8α transmembrane domain, to the transmembrane and intracellular signaling domains of either CD3ζ or FcRγ (scFv-CD33 or scFv-FcRγ; see U.S. Pat. Nos. 7,741,465; 5,912,172; 5,906,936). Second-generation CARs incorporate the intracellular domains of one or more costimulatory molecules, such as CD28, OX40 (CD134), or 4-1BB (CD137) within the endodomain (for example scFv-CD28/OX40/4-1BB-CD3ζ; see U.S. Pat. Nos. 8,911,993; 8,916,381; 8,975,071; 9,101,584; 9,102,760; 9,102,761). Third-generation CARs include a combination of costimulatory endodomains, such a CD3g-chain, CD97, GDI 1a-CD18, CD2, ICOS, CD27, CD154, CDS, OX40, 4-1BB, CD2, CD7, LIGHT, LFA-1, NKG2C, B7-H3, CD30, CD40, PD-1, or CD28 signaling domains (for example scFv-CD28-4-1BB-CD3ζ or scFv-CD28-OX40-CD3ζ; see U.S. Pat. Nos. 8,906,682; 8,399,645; 5,686,281; PCT Publication No. WO2014134165; PCT Publication No. WO2012079000). In certain embodiments, the primary signaling domain comprises a functional signaling domain of a protein selected from the group consisting of CD3 zeta, CD3 gamma, CD3 delta, CD3 epsilon, common FcR gamma (FCERIG), FcR beta (Fc Epsilon R1b), CD79a, CD79b, Fc gamma RIIa, DAP10, and DAP12. In certain preferred embodiments, the primary signaling domain comprises a functional signaling domain of CD3ζ or FcRγ. In certain embodiments, the one or more costimulatory signaling domains comprise a functional signaling domain of a protein selected, each independently, from the group consisting of: CD27, CD28, 4-1BB (CD137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, CDS, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, CD4, CD8 alpha, CD8 beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, ITGB7, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, NKp44, NKp30, NKp46, and NKG2D. In certain embodiments, the one or more costimulatory signaling domains comprise a functional signaling domain of a protein selected, each independently, from the group consisting of: 4-1BB, CD27, and CD28. In certain embodiments, a chimeric antigen receptor may have the design as described in U.S. Pat. No. 7,446,190, comprising an intracellular domain of CD3 chain (such as amino acid residues 52-163 of the human CD3 zeta chain, as shown in SEQ ID NO: 14 of U.S. Pat. No. 7,446,190), a signaling region from CD28 and an antigen-binding element (or portion or domain; such as scFv). The CD28 portion, when between the zeta chain portion and the antigen-binding element, may suitably include the transmembrane and signaling domains of CD28 (such as amino acid residues 114-220 of SEQ ID NO: 10, full sequence shown in SEQ ID NO: 6 of U.S. Pat. No. 7,446,190; these can include the following portion of CD28 as set forth in Genbank identifier NM 006139 (sequence version 1, 2 or 3): IEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGVLACYSLLVT VAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS)) (SEQ ID NO: 18). Alternatively, when the zeta sequence lies between the CD28 sequence and the antigen-binding element, intracellular domain of CD28 can be used alone (such as amino sequence set forth in SEQ ID NO: 9 of U.S. Pat. No. 7,446,190). Hence, certain embodiments employ a CAR comprising (a) a zeta chain portion comprising the intracellular domain of human CD3ζ chain, (b) a costimulatory signaling region, and (c) an antigen-binding element (or portion or domain), wherein the costimulatory signaling region comprises the amino acid sequence encoded by SEQ ID NO: 6 of U.S. Pat. No. 7,446,190.


Alternatively, co-stimulation may be orchestrated by expressing CARs in antigen-specific T cells, chosen so as to be activated and expanded following engagement of their native αβTCR, for example by antigen on professional antigen-presenting cells, with attendant co-stimulation. In addition, additional engineered receptors may be provided on the immunoresponsive cells, for example to improve targeting of a T-cell attack and/or minimize side effects


By means of an example and without limitation, Kochenderfer et al., (2009) J Immunother. 32 (7): 689-702 described anti-CD19 chimeric antigen receptors (CAR). FMC63-28Z CAR contained a single chain variable region moiety (scFv) recognizing CD19 derived from the FMC63 mouse hybridoma (described in Nicholson et al., (1997) Molecular Immunology 34: 1157-1165), a portion of the human CD28 molecule, and the intracellular component of the human TCR-(molecule. FMC63-CD828BBZ CAR contained the FMC63 scFv, the hinge and transmembrane regions of the CD8 molecule, the cytoplasmic portions of CD28 and 4-1BB, and the cytoplasmic component of the TCR-(molecule. The exact sequence of the CD28 molecule included in the FMC63-28Z CAR corresponded to Genbank identifier NM_006139; the sequence included all amino acids starting with the amino acid sequence IEVMYPPPY (SEQ ID NO: 19) and continuing all the way to the carboxy-terminus of the protein. To encode the anti-CD19 scFv component of the vector, the authors designed a DNA sequence which was based on a portion of a previously published CAR (Cooper et al., (2003) Blood 101: 1637-1644). This sequence encoded the following components in frame from the 5′ end to the 3′ end: an XhoI site, the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α-chain signal sequence, the FMC63 light chain variable region (as in Nicholson et al., supra), a linker peptide (as in Cooper et al., supra), the FMC63 heavy chain variable region (as in Nicholson et al., supra), and a NotI site. A plasmid encoding this sequence was digested with XhoI and NotI. To form the MSGV-FMC63-28Z retroviral vector, the XhoI and NotI-digested fragment encoding the FMC63 scFv was ligated into a second XhoI and NotI-digested fragment that encoded the MSGV retroviral backbone (as in Hughes et al., (2005) Human Gene Therapy 16: 457-472) as well as part of the extracellular portion of human CD28, the entire transmembrane and cytoplasmic portion of human CD28, and the cytoplasmic portion of the human TCR-ζ molecule (as in Maher et al., 2002) Nature Biotechnology 20: 70-75). The FMC63-28Z CAR is included in the KTE-C19 (axicabtagene ciloleucel) anti-CD19 CAR-T therapy product in development by Kite Pharma, Inc. for the treatment of inter alia patients with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma (NHL). Accordingly, in certain embodiments, cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may express the FMC63-28Z CAR as described by Kochenderfer et al. (supra). Hence, in certain embodiments, cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may comprise a CAR comprising an extracellular antigen-binding element (or portion or domain; such as scFv) that specifically binds to an antigen, an intracellular signaling domain comprising an intracellular domain of a CD3ζ chain, and a costimulatory signaling region comprising a signaling domain of CD28. Preferably, the CD28 amino acid sequence is as set forth in Genbank identifier NM_006139 (sequence version 1, 2 or 3) starting with the amino acid sequence IEVMYPPPY (SEQ ID NO: 19) and continuing all the way to the carboxy-terminus of the protein. The sequence is reproduced herein: IEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGVLACY SLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS (SEQ ID NO: 18). Preferably, the antigen is CD19, more preferably the antigen-binding element is an anti-CD19 scFv, even more preferably the anti-CD19 scFv as described by Kochenderfer et al. (supra).


Additional anti-CD19 CARs are further described in WO2015187528. More particularly Example 1 and Table 1 of WO2015187528, incorporated by reference herein, demonstrate the generation of anti-CD19 CARs based on a fully human anti-CD19 monoclonal antibody (47G4, as described in US20100104509) and murine anti-CD19 monoclonal antibody (as described in Nicholson et al. and explained above). Various combinations of a signal sequence (human CD8-alpha or GM-CSF receptor), extracellular and transmembrane regions (human CD8-alpha) and intracellular T-cell signaling domains (CD28-CD32; 4-1BB-CD3ζ; CD27-CD3ζ; CD28-CD27-CD3ζ, 4-1BB-CD27-CD3ζ; CD27-4-1BB-CD3ζ; CD28-CD27-FcεR1 gamma chain; or CD28-FcεRI gamma chain) were disclosed. Hence, in certain embodiments, cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may comprise a CAR comprising an extracellular antigen-binding element that specifically binds to an antigen, an extracellular and transmembrane region as set forth in Table 1 of WO2015187528 and an intracellular T-cell signaling domain as set forth in Table 1 of WO2015187528. Preferably, the antigen is CD19, more preferably the antigen-binding element is an anti-CD19 scFv, even more preferably the mouse or human anti-CD19 scFv as described in Example 1 of WO2015187528. In certain embodiments, the CAR comprises, consists essentially of or consists of an amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, or SEQ ID NO: 13 as set forth in Table 1 of WO2015187528.


By means of an example and without limitation, chimeric antigen receptor that recognizes the CD70 antigen is described in WO2012058460A2 (see also, Park et al., CD70 as a target for chimeric antigen receptor T cells in head and neck squamous cell carcinoma, Oral Oncol. 2018 March; 78:145-150; and Jin et al., CD70, a novel target of CAR T-cell therapy for gliomas, Neuro Oncol. 2018 Jan. 10; 20(1):55-65). CD70 is expressed by diffuse large B-cell and follicular lymphoma and also by the malignant cells of Hodgkins lymphoma, Waldenstrom's macroglobulinemia and multiple myeloma, and by HTLV-1- and EBV-associated malignancies. (Agathanggelou et al. Am. J. Pathol. 1995; 147: 1152-1160; Hunter et al., Blood 2004; 104:4881. 26; Lens et al., J Immunol. 2005; 174:6212-6219; Baba et al., J Virol. 2008; 82:3843-3852.) In addition, CD70 is expressed by non-hematological malignancies such as renal cell carcinoma and glioblastoma. (Junker et al., J Urol. 2005; 173:2150-2153; Chahlavi et al., Cancer Res 2005; 65:5428-5438) Physiologically, CD70 expression is transient and restricted to a subset of highly activated T, B, and dendritic cells.


By means of an example and without limitation, chimeric antigen receptor that recognizes BCMA has been described (see, e.g., US20160046724A1; WO2016014789A2; WO2017211900A1; WO2015158671A1; US20180085444A1; WO2018028647A1; US20170283504A1; and WO2013154760A1).


In certain embodiments, the immune cell may, in addition to a CAR or exogenous TCR as described herein, further comprise a chimeric inhibitory receptor (inhibitory CAR) that specifically binds to a second target antigen and is capable of inducing an inhibitory or immunosuppressive or repressive signal to the cell upon recognition of the second target antigen. In certain embodiments, the chimeric inhibitory receptor comprises an extracellular antigen-binding element (or portion or domain) configured to specifically bind to a target antigen, a transmembrane domain, and an intracellular immunosuppressive or repressive signaling domain. In certain embodiments, the second target antigen is an antigen that is not expressed on the surface of a cancer cell or infected cell or the expression of which is downregulated on a cancer cell or an infected cell. In certain embodiments, the second target antigen is an MHC-class I molecule. In certain embodiments, the intracellular signaling domain comprises a functional signaling portion of an immune checkpoint molecule, such as for example PD-1 or CTLA4. Advantageously, the inclusion of such inhibitory CAR reduces the chance of the engineered immune cells attacking non-target (e.g., non-cancer) tissues.


Alternatively, T-cells expressing CARs may be further modified to reduce or eliminate expression of endogenous TCRs in order to reduce off-target effects. Reduction or elimination of endogenous TCRs can reduce off-target effects and increase the effectiveness of the T cells (U.S. Pat. No. 9,181,527). T cells stably lacking expression of a functional TCR may be produced using a variety of approaches. T cells internalize, sort, and degrade the entire T cell receptor as a complex, with a half-life of about 10 hours in resting T cells and 3 hours in stimulated T cells (von Essen, M. et al. 2004. J. Immunol. 173:384-393). Proper functioning of the TCR complex requires the proper stoichiometric ratio of the proteins that compose the TCR complex. TCR function also requires two functioning TCR zeta proteins with ITAM motifs. The activation of the TCR upon engagement of its MHC-peptide ligand requires the engagement of several TCRs on the same T cell, which all must signal properly. Thus, if a TCR complex is destabilized with proteins that do not associate properly or cannot signal optimally, the T cell will not become activated sufficiently to begin a cellular response.


Accordingly, in some embodiments, TCR expression may eliminated using RNA interference (e.g., shRNA, siRNA, miRNA, etc.), CRISPR, or other methods that target the nucleic acids encoding specific TCRs (e.g., TCR-a and TCR-B) and/or CD3 chains in primary T cells. By blocking expression of one or more of these proteins, the T cell will no longer produce one or more of the key components of the TCR complex, thereby destabilizing the TCR complex and preventing cell surface expression of a functional TCR.


In some instances, CAR may also comprise a switch mechanism for controlling expression and/or activation of the CAR. For example, a CAR may comprise an extracellular, transmembrane, and intracellular domain, in which the extracellular domain comprises a target-specific binding element that comprises a label, binding domain, or tag that is specific for a molecule other than the target antigen that is expressed on or by a target cell. In such embodiments, the specificity of the CAR is provided by a second construct that comprises a target antigen binding domain (e.g., an scFv or a bispecific antibody that is specific for both the target antigen and the label or tag on the CAR) and a domain that is recognized by or binds to the label, binding domain, or tag on the CAR. See, e.g., WO 2013/044225, WO 2016/000304, WO 2015/057834, WO 2015/057852, WO 2016/070061, U.S. Pat. No. 9,233,125, US 2016/0129109. In this way, a T-cell that expresses the CAR can be administered to a subject, but the CAR cannot bind its target antigen until the second composition comprising an antigen-specific binding domain is administered.


Alternative switch mechanisms include CARs that require multimerization in order to activate their signaling function (see, e.g., US 2015/0368342, US 2016/0175359, US 2015/0368360) and/or an exogenous signal, such as a small molecule drug (US 2016/0166613, Yung et al., Science, 2015), in order to elicit a T-cell response. Some CARs may also comprise a “suicide switch” to induce cell death of the CAR T-cells following treatment (Buddee et al., PLOS One, 2013) or to downregulate expression of the CAR following binding to the target antigen (WO 2016/011210).


Alternative techniques may be used to transform target immunoresponsive cells, such as protoplast fusion, lipofection, transfection or electroporation. A wide variety of vectors may be used, such as retroviral vectors, lentiviral vectors, adenoviral vectors, adeno-associated viral vectors, plasmids or transposons, such as a Sleeping Beauty transposon (see U.S. Pat. Nos. 6,489,458; 7,148,203; 7,160,682; 7,985,739; 8,227,432), may be used to introduce CARs, for example using 2nd generation antigen-specific CARs signaling through CD3 and either CD28 or CD137. Viral vectors may for example include vectors based on HIV, SV40, EBV, HSV or BPV. In certain embodiments, inducible gene switches are used to regulate expression of a CAR or TCR (see, e.g., Chakravarti, Deboki et al. “Inducible Gene Switches with Memory in Human T Cells for Cellular Immunotherapy.” ACS synthetic biology vol. 8, 8 (2019): 1744-1754).


Cells that are targeted for transformation may for example include T cells, Natural Killer (NK) cells, cytotoxic T lymphocytes (CTL), regulatory T cells, human embryonic stem cells, tumor-infiltrating lymphocytes (TIL) or a pluripotent stem cell from which lymphoid cells may be differentiated. T cells expressing a desired CAR may for example be selected through co-culture with y-irradiated activating and propagating cells (AaPC), which co-express the cancer antigen and co-stimulatory molecules. The engineered CAR T-cells may be expanded, for example by co-culture on AaPC in presence of soluble factors, such as IL-2 and IL-21. This expansion may for example be carried out so as to provide memory CAR+ T cells (which may for example be assayed by non-enzymatic digital array and/or multi-panel flow cytometry). In this way, CAR T cells may be provided that have specific cytotoxic activity against antigen-bearing tumors (optionally in conjunction with production of desired chemokines such as interferon-γ). CAR T cells of this kind may for example be used in animal models, for example to treat tumor xenografts.


In certain embodiments, ACT includes co-transferring CD4+ Th1 cells and CD8+ CTLs to induce a synergistic antitumour response (see, e.g., Li et al., Adoptive cell therapy with CD4+ T helper 1 cells and CD8+ cytotoxic T cells enhances complete rejection of an established tumour, leading to generation of endogenous memory responses to non-targeted tumour epitopes. Clin Transl Immunology. 2017 October; 6(10): e160).


In certain embodiments, Th17 cells are transferred to a subject in need thereof. Th17 cells have been reported to directly eradicate melanoma tumors in mice to a greater extent than Th1 cells (Muranski P, et al., Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood. 2008 Jul. 15; 112(2):362-73; and Martin-Orozco N, et al., T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity. 2009 Nov. 20; 31(5):787-98). Those studies involved an adoptive T cell transfer (ACT) therapy approach, which takes advantage of CD4″T cells that express a TCR recognizing tyrosinase tumor antigen. Exploitation of the TCR leads to rapid expansion of Th17 populations to large numbers ex vivo for reinfusion into the autologous tumor-bearing hosts.


In certain embodiments, ACT may include autologous iPSC-based vaccines, such as irradiated iPSCs in autologous anti-tumor vaccines (see e.g., Kooreman, Nigel G. et al., Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo, Cell Stem Cell 22, 1-13, 2018, doi.org/10.1016/j.stem.2018.01.016).


Unlike T-cell receptors (TCRs) that are MHC restricted, CARs can potentially bind any cell surface-expressed antigen and can thus be more universally used to treat patients (see Irving et al., Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don't Forget the Fuel, Front. Immunol., 3 Apr. 2017, doi.org/10.3389/fimmu.2017.00267). In certain embodiments, in the absence of endogenous T-cell infiltrate (e.g., due to aberrant antigen processing and presentation), which precludes the use of TIL therapy and immune checkpoint blockade, the transfer of CAR T-cells may be used to treat patients (see, e.g., Hinrichs C S, Rosenberg S A. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev (2014) 257(1):56-71. doi:10.1111/imr.12132).


Approaches such as the foregoing may be adapted to provide methods of treating and/or increasing survival of a subject having a disease, such as a neoplasia, for example by administering an effective amount of an immunoresponsive cell comprising an antigen recognizing receptor that binds a selected antigen, wherein the binding activates the immunoresponsive cell, thereby treating or preventing the disease (such as a neoplasia, a pathogen infection, an autoimmune disorder, or an allogeneic transplant reaction).


In certain embodiments, the treatment can be administered after lymphodepleting pretreatment in the form of chemotherapy (typically a combination of cyclophosphamide and fludarabine) or radiation therapy. Initial studies in ACT had short lived responses and the transferred cells did not persist in vivo for very long (Houot et al., T-cell-based immunotherapy: adoptive cell transfer and checkpoint inhibition. Cancer Immunol Res (2015) 3(10):1115-22; and Kamta et al., Advancing Cancer Therapy with Present and Emerging Immuno-Oncology Approaches. Front. Oncol. (2017) 7:64). Immune suppressor cells like Tregs and MDSCs may attenuate the activity of transferred cells by outcompeting them for the necessary cytokines. Not being bound by a theory lymphodepleting pretreatment may eliminate the suppressor cells allowing the TILs to persist.


In one embodiment, the treatment can be administrated into patients undergoing an immunosuppressive treatment (e.g., glucocorticoid treatment). The cells or population of cells, may be made resistant to at least one immunosuppressive agent due to the inactivation of a gene encoding a receptor for such immunosuppressive agent. In certain embodiments, the immunosuppressive treatment provides for the selection and expansion of the immunoresponsive T cells within the patient.


In certain embodiments, the treatment can be administered before primary treatment (e.g., surgery or radiation therapy) to shrink a tumor before the primary treatment. In another embodiment, the treatment can be administered after primary treatment to remove any remaining cancer cells.


In certain embodiments, immunometabolic barriers can be targeted therapeutically prior to and/or during ACT to enhance responses to ACT or CAR T-cell therapy and to support endogenous immunity (see, e.g., Irving et al., Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don't Forget the Fuel, Front. Immunol., 3 Apr. 2017, doi.org/10.3389/fimmu.2017.00267).


The administration of cells or population of cells, such as immune system cells or cell populations, such as more particularly immunoresponsive cells or cell populations, as disclosed herein may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. The cells or population of cells may be administered to a patient subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, intrathecally, by intravenous or intralymphatic injection, or intraperitoneally. In some embodiments, the disclosed CARs may be delivered or administered into a cavity formed by the resection of tumor tissue (i.e. intracavity delivery) or directly into a tumor prior to resection (i.e. intratumoral delivery). In one embodiment, the cell compositions of the present invention are preferably administered by intravenous injection.


The administration of the cells or population of cells can consist of the administration of 104-109 cells per kg body weight, preferably 105 to 106 cells/kg body weight including all integer values of cell numbers within those ranges. Dosing in CAR T cell therapies may for example involve administration of from 106 to 109 cells/kg, with or without a course of lymphodepletion, for example with cyclophosphamide. The cells or population of cells can be administrated in one or more doses. In another embodiment, the effective amount of cells are administrated as a single dose. In another embodiment, the effective amount of cells are administrated as more than one dose over a period time. Timing of administration is within the judgment of managing physician and depends on the clinical condition of the patient. The cells or population of cells may be obtained from any source, such as a blood bank or a donor. While individual needs vary, determination of optimal ranges of effective amounts of a given cell type for a particular disease or conditions are within the skill of one in the art. An effective amount means an amount which provides a therapeutic or prophylactic benefit. The dosage administrated will be dependent upon the age, health and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired.


In another embodiment, the effective amount of cells or composition comprising those cells are administrated parenterally. The administration can be an intravenous administration. The administration can be directly done by injection within a tumor.


To guard against possible adverse reactions, engineered immunoresponsive cells may be equipped with a transgenic safety switch, in the form of a transgene that renders the cells vulnerable to exposure to a specific signal. For example, the herpes simplex viral thymidine kinase (TK) gene may be used in this way, for example by introduction into allogeneic T lymphocytes used as donor lymphocyte infusions following stem cell transplantation (Greco, et al., Improving the safety of cell therapy with the TK-suicide gene. Front. Pharmacol. 2015; 6: 95). In such cells, administration of a nucleoside prodrug such as ganciclovir or acyclovir causes cell death. Alternative safety switch constructs include inducible caspase 9, for example triggered by administration of a small-molecule dimerizer that brings together two nonfunctional icasp9 molecules to form the active enzyme. A wide variety of alternative approaches to implementing cellular proliferation controls have been described (see U.S. Patent Publication No. 20130071414; PCT Patent Publication WO2011146862; PCT Patent Publication WO2014011987; PCT Patent Publication WO2013040371; Zhou et al. BLOOD, 2014, 123/25:3895-3905; Di Stasi et al., The New England Journal of Medicine 2011; 365:1673-1683; Sadelain M, The New England Journal of Medicine 2011; 365:1735-173; Ramos et al., Stem Cells 28(6):1107-15 (2010)).


In a further refinement of adoptive therapies, genome editing may be used to tailor immunoresponsive cells to alternative implementations, for example providing edited CAR T cells (see Poirot et al., 2015, Multiplex genome edited T-cell manufacturing platform for “off-the-shelf”adoptive T-cell immunotherapies, Cancer Res 75 (18): 3853; Ren et al., 2017, Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition, Clin Cancer Res. 2017 May 1; 23(9):2255-2266. doi: 10.1158/1078-0432.CCR-16-1300. Epub 2016 Nov. 4; Qasim et al., 2017, Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells, Sci Transl Med. 2017 Jan. 25; 9(374); Legut, et al., 2018, CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood, 131(3), 311-322; Georgiadis et al., Long Terminal Repeat CRISPR-CAR-Coupled “Universal” T Cells Mediate Potent Anti-leukemic Effects, Molecular Therapy, In Press, Corrected Proof, Available online 6 Mar. 2018; and Roth, T. L. Editing of Endogenous Genes in Cellular Immunotherapies. Curr Hematol Malig Rep 15, 235-240 (2020)). Cells may be edited using any CRISPR system and method of use thereof as described herein. CRISPR systems may be delivered to an immune cell by any method described herein. In preferred embodiments, cells are edited ex vivo and transferred to a subject in need thereof. Immunoresponsive cells, CAR T cells or any cells used for adoptive cell transfer may be edited. Editing may be performed for example to insert or knock-in an exogenous gene, such as an exogenous gene encoding a CAR or a TCR, at a preselected locus in a cell (e.g. TRAC locus); to eliminate potential alloreactive T-cell receptors (TCR) or to prevent inappropriate pairing between endogenous and exogenous TCR chains, such as to knock-out or knock-down expression of an endogenous TCR in a cell; to disrupt the target of a chemotherapeutic agent in a cell; to block an immune checkpoint, such as to knock-out or knock-down expression of an immune checkpoint protein or receptor in a cell; to knock-out or knock-down expression of other gene or genes in a cell, the reduced expression or lack of expression of which can enhance the efficacy of adoptive therapies using the cell; to knock-out or knock-down expression of an endogenous gene in a cell, said endogenous gene encoding an antigen targeted by an exogenous CAR or TCR; to knock-out or knock-down expression of one or more MHC constituent proteins in a cell; to activate a T cell; to modulate cells such that the cells are resistant to exhaustion or dysfunction; and/or increase the differentiation and/or proliferation of functionally exhausted or dysfunctional CD8+ T-cells (see PCT Patent Publications: WO2013176915, WO2014059173, WO2014172606, WO2014184744, and WO2014191128).


In certain embodiments, editing may result in inactivation of a gene. By inactivating a gene, it is intended that the gene of interest is not expressed in a functional protein form. In a particular embodiment, the CRISPR system specifically catalyzes cleavage in one targeted gene thereby inactivating said targeted gene. The nucleic acid strand breaks caused are commonly repaired through the distinct mechanisms of homologous recombination or non-homologous end joining (NHEJ). However, NHEJ is an imperfect repair process that often results in changes to the DNA sequence at the site of the cleavage. Repair via non-homologous end joining (NHEJ) often results in small insertions or deletions (Indel) and can be used for the creation of specific gene knockouts. Cells in which a cleavage induced mutagenesis event has occurred can be identified and/or selected by well-known methods in the art. In certain embodiments, homology directed repair (HDR) is used to concurrently inactivate a gene (e.g., TRAC) and insert an endogenous TCR or CAR into the inactivated locus.


Hence, in certain embodiments, editing of cells (such as by CRISPR/Cas), particularly cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may be performed to insert or knock-in an exogenous gene, such as an exogenous gene encoding a CAR or a TCR, at a preselected locus in a cell. Conventionally, nucleic acid molecules encoding CARs or TCRs are transfected or transduced to cells using randomly integrating vectors, which, depending on the site of integration, may lead to clonal expansion, oncogenic transformation, variegated transgene expression and/or transcriptional silencing of the transgene. Directing of transgene(s) to a specific locus in a cell can minimize or avoid such risks and advantageously provide for uniform expression of the transgene(s) by the cells. Without limitation, suitable ‘safe harbor’ loci for directed transgene integration include CCR5 or AAVS1. Homology-directed repair (HDR) strategies are known and described elsewhere in this specification allowing to insert transgenes into desired loci (e.g., TRAC locus).


Further suitable loci for insertion of transgenes, in particular CAR or exogenous TCR transgenes, include without limitation loci comprising genes coding for constituents of endogenous T-cell receptor, such as T-cell receptor alpha locus (TRA) or T-cell receptor beta locus (TRB), for example T-cell receptor alpha constant (TRAC) locus, T-cell receptor beta constant 1 (TRBC1) locus or T-cell receptor beta constant 2 (TRBC1) locus. Advantageously, insertion of a transgene into such locus can simultaneously achieve expression of the transgene, potentially controlled by the endogenous promoter, and knock-out expression of the endogenous TCR. This approach has been exemplified in Eyquem et al., (2017) Nature 543: 113-117, wherein the authors used CRISPR/Cas9 gene editing to knock-in a DNA molecule encoding a CD19-specific CAR into the TRAC locus downstream of the endogenous promoter; the CAR-T cells obtained by CRISPR were significantly superior in terms of reduced tonic CAR signaling and exhaustion.


T cell receptors (TCR) are cell surface receptors that participate in the activation of T cells in response to the presentation of antigen. The TCR is generally made from two chains, a and B, which assemble to form a heterodimer and associates with the CD3-transducing subunits to form the T cell receptor complex present on the cell surface. Each a and B chain of the TCR consists of an immunoglobulin-like N-terminal variable (V) and constant (C) region, a hydrophobic transmembrane domain, and a short cytoplasmic region. As for immunoglobulin molecules, the variable region of the α and β chains are generated by V(D)J recombination, creating a large diversity of antigen specificities within the population of T cells. However, in contrast to immunoglobulins that recognize intact antigen, T cells are activated by processed peptide fragments in association with an MHC molecule, introducing an extra dimension to antigen recognition by T cells, known as MHC restriction. Recognition of MHC disparities between the donor and recipient through the T cell receptor leads to T cell proliferation and the potential development of graft versus host disease (GVHD). The inactivation of TCRα or TCRβ can result in the elimination of the TCR from the surface of T cells preventing recognition of alloantigen and thus GVHD. However, TCR disruption generally results in the elimination of the CD3 signaling component and alters the means of further T cell expansion.


Hence, in certain embodiments, editing of cells (such as by CRISPR/Cas), particularly cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may be performed to knock-out or knock-down expression of an endogenous TCR in a cell. For example, NHEJ-based or HDR-based gene editing approaches can be employed to disrupt the endogenous TCR alpha and/or beta chain genes. For example, gene editing system or systems, such as CRISPR/Cas system or systems, can be designed to target a sequence found within the TCR beta chain conserved between the beta 1 and beta 2 constant region genes (TRBC1 and TRBC2) and/or to target the constant region of the TCR alpha chain (TRAC) gene.


Allogeneic cells are rapidly rejected by the host immune system. It has been demonstrated that, allogeneic leukocytes present in non-irradiated blood products will persist for no more than 5 to 6 days (Boni, Muranski et al. 2008 Blood 1; 112(12):4746-54). Thus, to prevent rejection of allogeneic cells, the host's immune system usually has to be suppressed to some extent. However, in the case of adoptive cell transfer the use of immunosuppressive drugs also have a detrimental effect on the introduced therapeutic T cells. Therefore, to effectively use an adoptive immunotherapy approach in these conditions, the introduced cells would need to be resistant to the immunosuppressive treatment. Thus, in a particular embodiment, the present invention further comprises a step of modifying T cells to make them resistant to an immunosuppressive agent, preferably by inactivating at least one gene encoding a target for an immunosuppressive agent. An immunosuppressive agent is an agent that suppresses immune function by one of several mechanisms of action. An immunosuppressive agent can be, but is not limited to a calcineurin inhibitor, a target of rapamycin, an interleukin-2 receptor α-chain blocker, an inhibitor of inosine monophosphate dehydrogenase, an inhibitor of dihydrofolic acid reductase, a corticosteroid or an immunosuppressive antimetabolite. The present invention allows conferring immunosuppressive resistance to T cells for immunotherapy by inactivating the target of the immunosuppressive agent in T cells. As non-limiting examples, targets for an immunosuppressive agent can be a receptor for an immunosuppressive agent such as: CD52, glucocorticoid receptor (GR), a FKBP family gene member and a cyclophilin family gene member.


In certain embodiments, editing of cells (such as by CRISPR/Cas), particularly cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may be performed to block an immune checkpoint, such as to knock-out or knock-down expression of an immune checkpoint protein or receptor in a cell. Immune checkpoints are inhibitory pathways that slow down or stop immune reactions and prevent excessive tissue damage from uncontrolled activity of immune cells. In certain embodiments, the immune checkpoint targeted is the programmed death-1 (PD-1 or CD279) gene (PDCD1) (see, e.g., Rupp L J, Schumann K, Roybal K T, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017; 7(1):737). In other embodiments, the immune checkpoint targeted is cytotoxic T-lymphocyte-associated antigen (CTLA-4). In additional embodiments, the immune checkpoint targeted is another member of the CD28 and CTLA4 Ig superfamily such as BTLA, LAG3, ICOS, PDL1 or KIR. In further additional embodiments, the immune checkpoint targeted is a member of the TNFR superfamily such as CD40, OX40, CD137, GITR, CD27 or TIM-3.


Additional immune checkpoints include Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) (Watson H A, et al., SHP-1: the next checkpoint target for cancer immunotherapy? Biochem Soc Trans. 2016 Apr. 15; 44(2):356-62). SHP-1 is a widely expressed inhibitory protein tyrosine phosphatase (PTP). In T-cells, it is a negative regulator of antigen-dependent activation and proliferation. It is a cytosolic protein, and therefore not amenable to antibody-mediated therapies, but its role in activation and proliferation makes it an attractive target for genetic manipulation in adoptive transfer strategies, such as chimeric antigen receptor (CAR) T cells. Immune checkpoints may also include T cell immunoreceptor with Ig and ITIM domains (TIGIT/Vstm3/WUCAM/VSIG9) and VISTA (Le Mercier I, et al., (2015) Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators. Front. Immunol. 6:418).


WO2014172606 relates to the use of MT1 and/or MT2 inhibitors to increase proliferation and/or activity of exhausted CD8+ T-cells and to decrease CD8+ T-cell exhaustion (e.g., decrease functionally exhausted or unresponsive CD8+ immune cells). In certain embodiments, metallothioneins are targeted by gene editing in adoptively transferred T cells.


In certain embodiments, targets of gene editing may be at least one targeted locus involved in the expression of an immune checkpoint protein. Such targets may include, but are not limited to CTLA4, PPP2CA, PPP2CB, PTPN6, PTPN22, PDCD1, ICOS (CD278), PDL1, KIR, LAG3, HAVCR2, BTLA, CD160, TIGIT, CD96, CRTAM, LAIR1, SIGLEC7, SIGLEC9, CD244 (2B4), TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7, FADD, FAS, TGFBRII, TGFRBRI, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGIF1, IL10RA, IL10RB, HMOX2, IL6R, IL6ST, EIF2AK4, CSK, PAG1, SIT1, FOXP3, PRDM1, BATF, VISTA, GUCY1A2, GUCY1A3, GUCY1B2, GUCY1B3, MT1, MT2, CD40, OX40, CD137, GITR, CD27, SHP-1, TIM-3, CEACAM-1, CEACAM-3, or CEACAM-5. In preferred embodiments, the gene locus involved in the expression of PD-1 or CTLA-4 genes is targeted. In other preferred embodiments, combinations of genes are targeted, such as but not limited to PD-1 and TIGIT.


By means of an example and without limitation, WO2016196388 concerns an engineered T cell comprising (a) a genetically engineered antigen receptor that specifically binds to an antigen, which receptor may be a CAR; and (b) a disrupted gene encoding a PD-L1, an agent for disruption of a gene encoding a PD-L1, and/or disruption of a gene encoding PD-L1, wherein the disruption of the gene may be mediated by a gene editing nuclease, a zinc finger nuclease (ZFN), CRISPR/Cas9 and/or TALEN. WO2015142675 relates to immune effector cells comprising a CAR in combination with an agent (such as CRISPR, TALEN or ZFN) that increases the efficacy of the immune effector cells in the treatment of cancer, wherein the agent may inhibit an immune inhibitory molecule, such as PD1, PD-L1, CTLA-4, TIM-3, LAG-3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, TGFR beta, CEACAM-1, CEACAM-3, or CEACAM-5. Ren et al., (2017) Clin Cancer Res 23 (9) 2255-2266 performed lentiviral delivery of CAR and electro-transfer of Cas9 mRNA and gRNAs targeting endogenous TCR, β-2 microglobulin (B2M) and PD1 simultaneously, to generate gene-disrupted allogeneic CAR T cells deficient of TCR, HLA class I molecule and PD1.


In certain embodiments, cells may be engineered to express a CAR, wherein expression and/or function of methylcytosine dioxygenase genes (TET1, TET2 and/or TET3) in the cells has been reduced or eliminated, such as by CRISPR, ZNF or TALEN (for example, as described in WO201704916).


In certain embodiments, editing of cells (such as by CRISPR/Cas), particularly cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may be performed to knock-out or knock-down expression of an endogenous gene in a cell, said endogenous gene encoding an antigen targeted by an exogenous CAR or TCR, thereby reducing the likelihood of targeting of the engineered cells. In certain embodiments, the targeted antigen may be one or more antigen selected from the group consisting of CD38, CD138, CS-1, CD33, CD26, CD30, CD53, CD92, CD100, CD148, CD150, CD200, CD261, CD262, CD362, human telomerase reverse transcriptase (hTERT), survivin, mouse double minute 2 homolog (MDM2), cytochrome P450 1B1 (CYP1B), HER2/neu, Wilms' tumor gene 1 (WT1), livin, alphafetoprotein (AFP), carcinoembryonic antigen (CEA), mucin 16 (MUC16), MUC1, prostate-specific membrane antigen (PSMA), p53, cyclin (D1), B cell maturation antigen (BCMA), transmembrane activator and CAML Interactor (TACI), and B-cell activating factor receptor (BAFF-R) (for example, as described in WO2016011210 and WO2017011804).


In certain embodiments, editing of cells (such as by CRISPR/Cas), particularly cells intended for adoptive cell therapies, more particularly immunoresponsive cells such as T cells, may be performed to knock-out or knock-down expression of one or more MHC constituent proteins, such as one or more HLA proteins and/or beta-2 microglobulin (B2M), in a cell, whereby rejection of non-autologous (e.g., allogeneic) cells by the recipient's immune system can be reduced or avoided. In preferred embodiments, one or more HLA class I proteins, such as HLA-A, B and/or C, and/or B2M may be knocked-out or knocked-down. Preferably, B2M may be knocked-out or knocked-down. By means of an example, Ren et al., (2017) Clin Cancer Res 23 (9) 2255-2266 performed lentiviral delivery of CAR and electro-transfer of Cas9 mRNA and gRNAs targeting endogenous TCR, β-2 microglobulin (B2M) and PD1 simultaneously, to generate gene-disrupted allogeneic CAR T cells deficient of TCR, HLA class I molecule and PD1.


In other embodiments, at least two genes are edited. Pairs of genes may include, but are not limited to PD1 and TCRα, PD1 and TCRβ, CTLA-4 and TCRα, CTLA-4 and TCRβ, LAG3 and TCRα, LAG3 and TCRβ, Tim3 and TCRα, Tim3 and TCRβ, BTLA and TCRα, BTLA and TCRβ, BY55 and TCRα, BY55 and TCRβ, TIGIT and TCRα, TIGIT and TCRβ, B7H5 and TCRα, B7H5 and TCRβ, LAIR1 and TCRα, LAIR1 and TCRβ, SIGLEC10 and TCRα, SIGLEC10 and TCRβ, 2B4 and TCRα, 2B4 and TCRβ, B2M and TCRα, B2M and TCRβ.


In certain embodiments, a cell may be multiply edited (multiplex genome editing) as taught herein to (1) knock-out or knock-down expression of an endogenous TCR (for example, TRBC1, TRBC2 and/or TRAC), (2) knock-out or knock-down expression of an immune checkpoint protein or receptor (for example PD1, PD-L1 and/or CTLA4); and (3) knock-out or knock-down expression of one or more MHC constituent proteins (for example, HLA-A, B and/or C, and/or B2M, preferably B2M).


Whether prior to or after genetic modification of the T cells, the T cells can be activated and expanded generally using methods as described, for example, in U.S. Pat. Nos. 6,352,694; 6,534,055; 6,905,680; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and 7,572,631. T cells can be expanded in vitro or in vivo.


Immune cells may be obtained using any method known in the art. In one embodiment, allogenic T cells may be obtained from healthy subjects. In one embodiment T cells that have infiltrated a tumor are isolated. T cells may be removed during surgery. T cells may be isolated after removal of tumor tissue by biopsy. T cells may be isolated by any means known in the art. In one embodiment, T cells are obtained by apheresis. In one embodiment, the method may comprise obtaining a bulk population of T cells from a tumor sample by any suitable method known in the art. For example, a bulk population of T cells can be obtained from a tumor sample by dissociating the tumor sample into a cell suspension from which specific cell populations can be selected. Suitable methods of obtaining a bulk population of T cells may include, but are not limited to, any one or more of mechanically dissociating (e.g., mincing) the tumor, enzymatically dissociating (e.g., digesting) the tumor, and aspiration (e.g., as with a needle).


The bulk population of T cells obtained from a tumor sample may comprise any suitable type of T cell. Preferably, the bulk population of T cells obtained from a tumor sample comprises tumor infiltrating lymphocytes (TILs).


The tumor sample may be obtained from any mammal. Unless stated otherwise, as used herein, the term “mammal” refers to any mammal including, but not limited to, mammals of the order Logomorpha, such as rabbits; the order Carnivora, including Felines (cats) and Canines (dogs); the order Artiodactyla, including Bovines (cows) and Swines (pigs); or of the order Perssodactyla, including Equines (horses). The mammals may be non-human primates, e.g., of the order Primates, Ceboids, or Simoids (monkeys) or of the order Anthropoids (humans and apes). In some embodiments, the mammal may be a mammal of the order Rodentia, such as mice and hamsters. Preferably, the mammal is a non-human primate or a human. An especially preferred mammal is the human.


T cells can be obtained from a number of sources, including peripheral blood mononuclear cells (PBMC), bone marrow, lymph node tissue, spleen tissue, and tumors. In certain embodiments of the present invention, T cells can be obtained from a unit of blood collected from a subject using any number of techniques known to the skilled artisan, such as Ficoll separation. In one preferred embodiment, cells from the circulating blood of an individual are obtained by apheresis or leukapheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. In one embodiment, the cells collected by apheresis may be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media for subsequent processing steps. In one embodiment of the invention, the cells are washed with phosphate buffered saline (PBS). In an alternative embodiment, the wash solution lacks calcium and may lack magnesium or may lack many if not all divalent cations. Initial activation steps in the absence of calcium lead to magnified activation. As those of ordinary skill in the art would readily appreciate a washing step may be accomplished by methods known to those in the art, such as by using a semi-automated “flow-through” centrifuge (for example, the Cobe 2991 cell processor) according to the manufacturer's instructions. After washing, the cells may be resuspended in a variety of biocompatible buffers, such as, for example, Ca-free, Mg-free PBS. Alternatively, the undesirable components of the apheresis sample may be removed and the cells directly resuspended in culture media.


In another embodiment, T cells are isolated from peripheral blood lymphocytes by lysing the red blood cells and depleting the monocytes, for example, by centrifugation through a PERCOLL™ gradient. A specific subpopulation of T cells, such as CD28+, CD4+, CDC, CD45RA+, and CD45RO+ T cells, can be further isolated by positive or negative selection techniques. For example, in one preferred embodiment, T cells are isolated by incubation with anti-CD3/anti-CD28 (i.e., 3×28)-conjugated beads, such as DYNABEADS® M-450 CD3/CD28 T, or XCYTE DYNABEADS™ for a time period sufficient for positive selection of the desired T cells. In one embodiment, the time period is about 30 minutes. In a further embodiment, the time period ranges from 30 minutes to 36 hours or longer and all integer values there between. In a further embodiment, the time period is at least 1, 2, 3, 4, 5, or 6 hours. In yet another preferred embodiment, the time period is 10 to 24 hours. In one preferred embodiment, the incubation time period is 24 hours. For isolation of T cells from patients with leukemia, use of longer incubation times, such as 24 hours, can increase cell yield. Longer incubation times may be used to isolate T cells in any situation where there are few T cells as compared to other cell types, such in isolating tumor infiltrating lymphocytes (TIL) from tumor tissue or from immunocompromised individuals. Further, use of longer incubation times can increase the efficiency of capture of CD8+ T cells.


Enrichment of a T cell population by negative selection can be accomplished with a combination of antibodies directed to surface markers unique to the negatively selected cells. A preferred method is cell sorting and/or selection via negative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, to enrich for CD4+ cells by negative selection, a monoclonal antibody cocktail typically includes antibodies to CD14, CD20, CD11b, CD16, HLA-DR, and CD8.


Further, monocyte populations (i.e., CD14+ cells) may be depleted from blood preparations by a variety of methodologies, including anti-CD14 coated beads or columns, or utilization of the phagocytotic activity of these cells to facilitate removal. Accordingly, in one embodiment, the invention uses paramagnetic particles of a size sufficient to be engulfed by phagocytotic monocytes. In certain embodiments, the paramagnetic particles are commercially available beads, for example, those produced by Life Technologies under the trade name Dynabeads™. In one embodiment, other non-specific cells are removed by coating the paramagnetic particles with “irrelevant” proteins (e.g., serum proteins or antibodies). Irrelevant proteins and antibodies include those proteins and antibodies or fragments thereof that do not specifically target the T cells to be isolated. In certain embodiments, the irrelevant beads include beads coated with sheep anti-mouse antibodies, goat anti-mouse antibodies, and human serum albumin.


In brief, such depletion of monocytes is performed by preincubating T cells isolated from whole blood, apheresed peripheral blood, or tumors with one or more varieties of irrelevant or non-antibody coupled paramagnetic particles at any amount that allows for removal of monocytes (approximately a 20: 1 bead:cell ratio) for about 30 minutes to 2 hours at 22 to 37 degrees C., followed by magnetic removal of cells which have attached to or engulfed the paramagnetic particles. Such separation can be performed using standard methods available in the art. For example, any magnetic separation methodology may be used including a variety of which are commercially available, (e.g., DYNAL® Magnetic Particle Concentrator (DYNAL MPC®)). Assurance of requisite depletion can be monitored by a variety of methodologies known to those of ordinary skill in the art, including flow cytometric analysis of CD14 positive cells, before and after depletion.


For isolation of a desired population of cells by positive or negative selection, the concentration of cells and surface (e.g., particles such as beads) can be varied. In certain embodiments, it may be desirable to significantly decrease the volume in which beads and cells are mixed together (i.e., increase the concentration of cells), to ensure maximum contact of cells and beads. For example, in one embodiment, a concentration of 2 billion cells/ml is used. In one embodiment, a concentration of 1 billion cells/ml is used. In a further embodiment, greater than 100 million cells/ml is used. In a further embodiment, a concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used. In yet another embodiment, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used. In further embodiments, concentrations of 125 or 150 million cells/ml can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T cells, or from samples where there are many tumor cells present (i.e., leukemic blood, tumor tissue, etc). Such populations of cells may have therapeutic value and would be desirable to obtain. For example, using high concentration of cells allows more efficient selection of CD8+ T cells that normally have weaker CD28 expression.


In a related embodiment, it may be desirable to use lower concentrations of cells. By significantly diluting the mixture of T cells and surface (e.g., particles such as beads), interactions between the particles and cells is minimized. This selects for cells that express high amounts of desired antigens to be bound to the particles. For example, CD4+ T cells express higher levels of CD28 and are more efficiently captured than CD8+ T cells in dilute concentrations. In one embodiment, the concentration of cells used is 5×106/ml. In other embodiments, the concentration used can be from about 1×105/ml to 1×106/ml, and any integer value in between.


T cells can also be frozen. Wishing not to be bound by theory, the freeze and subsequent thaw step provides a more uniform product by removing granulocytes and to some extent monocytes in the cell population. After a washing step to remove plasma and platelets, the cells may be suspended in a freezing solution. While many freezing solutions and parameters are known in the art and will be useful in this context, one method involves using PBS containing 20% DMSO and 8% human serum albumin, or other suitable cell freezing media, the cells then are frozen to −80° C. at a rate of 1° per minute and stored in the vapor phase of a liquid nitrogen storage tank. Other methods of controlled freezing may be used as well as uncontrolled freezing immediately at −20° C. or in liquid nitrogen.


T cells for use in the present invention may also be antigen-specific T cells. For example, tumor-specific T cells can be used. In certain embodiments, antigen-specific T cells can be isolated from a patient of interest, such as a patient afflicted with a cancer or an infectious disease. In one embodiment, neoepitopes are determined for a subject and T cells specific to these antigens are isolated. Antigen-specific cells for use in expansion may also be generated in vitro using any number of methods known in the art, for example, as described in U.S. Patent Publication No. US 20040224402 entitled, Generation and Isolation of Antigen-Specific T Cells, or in U.S. Pat. Nos. 6,040,177. Antigen-specific cells for use in the present invention may also be generated using any number of methods known in the art, for example, as described in Current Protocols in Immunology, or Current Protocols in Cell Biology, both published by John Wiley & Sons, Inc., Boston, Mass.


In a related embodiment, it may be desirable to sort or otherwise positively select (e.g. via magnetic selection) the antigen specific cells prior to or following one or two rounds of expansion. Sorting or positively selecting antigen-specific cells can be carried out using peptide-MHC tetramers (Altman, et al., Science. 1996 Oct. 4; 274(5284):94-6). In another embodiment, the adaptable tetramer technology approach is used (Andersen et al., 2012 Nat Protoc. 7:891-902). Tetramers are limited by the need to utilize predicted binding peptides based on prior hypotheses, and the restriction to specific HLAs. Peptide-MHC tetramers can be generated using techniques known in the art and can be made with any MHC molecule of interest and any antigen of interest as described herein. Specific epitopes to be used in this context can be identified using numerous assays known in the art. For example, the ability of a polypeptide to bind to MHC class I may be evaluated indirectly by monitoring the ability to promote incorporation of 1251 labeled β2-microglobulin (B2m) into MHC class I/B2m/peptide heterotrimeric complexes (see Parker et al., J. Immunol. 152:163, 1994).


In one embodiment cells are directly labeled with an epitope-specific reagent for isolation by flow cytometry followed by characterization of phenotype and TCRs. In one embodiment, T cells are isolated by contacting with T cell specific antibodies. Sorting of antigen-specific T cells, or generally any cells of the present invention, can be carried out using any of a variety of commercially available cell sorters, including, but not limited to, MoFlo sorter (DakoCytomation, Fort Collins, Colo.), FACSAria™, FACSArray™, FACSVantage™ BD™ LSR II, and FACSCalibur™ (BD Biosciences, San Jose, Calif.).


In a preferred embodiment, the method comprises selecting cells that also express CD3. The method may comprise specifically selecting the cells in any suitable manner. Preferably, the selecting is carried out using flow cytometry. The flow cytometry may be carried out using any suitable method known in the art. The flow cytometry may employ any suitable antibodies and stains. Preferably, the antibody is chosen such that it specifically recognizes and binds to the particular biomarker being selected. For example, the specific selection of CD3, CD8, TIM-3, LAG-3, 4-1BB, or PD-1 may be carried out using anti-CD3, anti-CD8, anti-TIM-3, anti-LAG-3, anti-4-1BB, or anti-PD-1 antibodies, respectively. The antibody or antibodies may be conjugated to a bead (e.g., a magnetic bead) or to a fluorochrome. Preferably, the flow cytometry is fluorescence-activated cell sorting (FACS). TCRs expressed on T cells can be selected based on reactivity to autologous tumors. Additionally, T cells that are reactive to tumors can be selected for based on markers using the methods described in patent publication Nos. WO2014133567 and WO2014133568, herein incorporated by reference in their entirety. Additionally, activated T cells can be selected for based on surface expression of CD107a.


In one embodiment of the invention, the method further comprises expanding the numbers of T cells in the enriched cell population. Such methods are described in U.S. Pat. No. 8,637,307 and is herein incorporated by reference in its entirety. The numbers of T cells may be increased at least about 3-fold (or 4-, 5-, 6-, 7-, 8-, or 9-fold), more preferably at least about 10-fold (or 20-, 30-, 40-, 50-, 60-, 70-, 80-, or 90-fold), more preferably at least about 100-fold, more preferably at least about 1,000-fold, or most preferably at least about 100,000-fold. The numbers of T cells may be expanded using any suitable method known in the art. Exemplary methods of expanding the numbers of cells are described in patent publication No. WO 2003057171, U.S. Pat. No. 8,034,334, and U.S. Patent Application Publication No. 2012/0244133, each of which is incorporated herein by reference.


In one embodiment, ex vivo T cell expansion can be performed by isolation of T cells and subsequent stimulation or activation followed by further expansion. In one embodiment of the invention, the T cells may be stimulated or activated by a single agent. In another embodiment, T cells are stimulated or activated with two agents, one that induces a primary signal and a second that is a co-stimulatory signal. Ligands useful for stimulating a single signal or stimulating a primary signal and an accessory molecule that stimulates a second signal may be used in soluble form. Ligands may be attached to the surface of a cell, to an Engineered Multivalent Signaling Platform (EMSP), or immobilized on a surface. In a preferred embodiment both primary and secondary agents are co-immobilized on a surface, for example a bead or a cell. In one embodiment, the molecule providing the primary activation signal may be a CD3 ligand, and the co-stimulatory molecule may be a CD28 ligand or 4-1BB ligand.


In certain embodiments, T cells comprising a CAR or an exogenous TCR, may be manufactured as described in WO2015120096, by a method comprising: enriching a population of lymphocytes obtained from a donor subject; stimulating the population of lymphocytes with one or more T-cell stimulating agents to produce a population of activated T cells, wherein the stimulation is performed in a closed system using serum-free culture medium; transducing the population of activated T cells with a viral vector comprising a nucleic acid molecule which encodes the CAR or TCR, using a single cycle transduction to produce a population of transduced T cells, wherein the transduction is performed in a closed system using serum-free culture medium; and expanding the population of transduced T cells for a predetermined time to produce a population of engineered T cells, wherein the expansion is performed in a closed system using serum-free culture medium. In certain embodiments, T cells comprising a CAR or an exogenous TCR, may be manufactured as described in WO2015120096, by a method comprising: obtaining a population of lymphocytes; stimulating the population of lymphocytes with one or more stimulating agents to produce a population of activated T cells, wherein the stimulation is performed in a closed system using serum-free culture medium; transducing the population of activated T cells with a viral vector comprising a nucleic acid molecule which encodes the CAR or TCR, using at least one cycle transduction to produce a population of transduced T cells, wherein the transduction is performed in a closed system using serum-free culture medium; and expanding the population of transduced T cells to produce a population of engineered T cells, wherein the expansion is performed in a closed system using serum-free culture medium. The predetermined time for expanding the population of transduced T cells may be 3 days. The time from enriching the population of lymphocytes to producing the engineered T cells may be 6 days. The closed system may be a closed bag system. Further provided is population of T cells comprising a CAR or an exogenous TCR obtainable or obtained by said method, and a pharmaceutical composition comprising such cells.


In certain embodiments, T cell maturation or differentiation in vitro may be delayed or inhibited by the method as described in WO2017070395, comprising contacting one or more T cells from a subject in need of a T cell therapy with an AKT inhibitor (such as, e.g., one or a combination of two or more AKT inhibitors disclosed in claim 8 of WO2017070395) and at least one of exogenous Interleukin-7 (IL-7) and exogenous Interleukin-15 (IL-15), wherein the resulting T cells exhibit delayed maturation or differentiation, and/or wherein the resulting T cells exhibit improved T cell function (such as, e.g., increased T cell proliferation; increased cytokine production; and/or increased cytolytic activity) relative to a T cell function of a T cell cultured in the absence of an AKT inhibitor.


In certain embodiments, a patient in need of a T cell therapy may be conditioned by a method as described in WO2016191756 comprising administering to the patient a dose of cyclophosphamide between 200 mg/m2/day and 2000 mg/m2/day and a dose of fludarabine between 20 mg/m2/day and 900 mg/m2/day.


In certain embodiments, a patient in need of adoptive cell transfer may be administered a TLR agonist to enhance anti-tumor immunity (see, e.g., Urban-Wojciuk, et al., The Role of TLRs in Anti-cancer Immunity and Tumor Rejection, Front Immunol. 2019; 10: 2388; and Kaczanowska et al., TLR agonists: our best frenemy in cancer immunotherapy, J Leukoc Biol. 2013 June; 93(6): 847-863). In certain embodiments, TLR agonists are delivered in a nanoparticle system (see, e.g., Buss and Bhatia, Nanoparticle delivery of immunostimulatory oligonucleotides enhances response to checkpoint inhibitor therapeutics, Proc Natl Acad Sci USA. 2020 Jun. 3; 202001569). In certain embodiments, the agonist is a TLR9 agonist. Id.


In certain embodiments, the adoptive cell transfer method comprises the administration of CAR (chimeric antigen receptor) T cells or natural killer cells, T cells expressing a T cell receptor (TCR) specific for tumor antigen, or tumor infiltrating lymphocytes (TILs).


Checkpoint Blockade Therapy

In embodiments, the immunotherapy is checkpoint blockade (CPB) therapy. Antibodies that block the activity of checkpoint receptors, including CTLA-4, PD-1, Tim-3, Lag-3, and TIGIT, either alone or in combination, have been associated with improved effector CD8+ T cell responses in multiple pre-clinical cancer models (Johnston et al., 2014. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer cell 26, 923-937; Ngiow et al., 2011. Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer research 71, 3540-3551; Sakuishi et al., 2010. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. The Journal of experimental medicine 207, 2187-2194; and Woo et al., 2012. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer research 72, 917-927). Similarly, blockade of CTLA-4 and PD-1 in patients (Brahmer et al., 2012. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. The New England journal of medicine 366, 2455-2465; Hodi et al., 2010. Improved survival with ipilimumab in patients with metastatic melanoma. The New England journal of medicine 363, 711-723; Schadendorf et al., 2015. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 33, 1889-1894; Topalian et al., 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England journal of medicine 366, 2443-2454; and Wolchok et al., 2017. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. The New England journal of medicine 377, 1345-1356) has shown increased frequencies of proliferating T cells, often with specificity for tumor antigens, as well as increased CD8+ T cell effector function (Ayers et al., 2017. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. The Journal of clinical investigation 127, 2930-2940; Das et al., 2015. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. Journal of immunology 194, 950-959; Gubin et al., 2014. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577-581; Huang et al., 2017. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60-65; Kamphorst et al., 2017. Proliferation of PD-1+CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proceedings of the National Academy of Sciences of the United States of America 114, 4993-4998; Kvistborg et al., 2014. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Science translational medicine 6, 254ra128; van Rooij et al., 2013. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 31, e439-442; and Yuan et al., 2008. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proceedings of the National Academy of Sciences of the United States of America 105, 20410-20415). Accordingly, the success of checkpoint receptor blockade has been attributed to the binding of blocking antibodies to checkpoint receptors expressed on dysfunctional CD8+ T cells and restoring effector function in these cells. The check point blockade therapy may be an inhibitor of any check point protein described herein. The checkpoint blockade therapy may comprise anti-TIM3, anti-CTLA4, anti-PD-L1, anti-PD1, anti-TIGIT, anti-LAG3, or combinations thereof. Anti-PD1 antibodies are disclosed in U.S. Pat. No. 8,735,553. Antibodies to LAG-3 are disclosed in U.S. Pat. No. 9,132,281. Anti-CTLA4 antibodies are disclosed in U.S. Pat. Nos. 9,327,014; 9,320,811; and 9,062,111. Specific check point inhibitors include, but are not limited to, anti-CTLA4 antibodies (e.g., Ipilimumab and Tremelimumab), anti-PD-1 antibodies (e.g., Nivolumab, Pembrolizumab), and anti-PD-L1 antibodies (e.g., Atezolizumab).


In certain embodiments, checkpoint inhibition may be enhanced by administering a TLR agonist to enhance anti-tumor immunity (see, e.g., Urban-Wojciuk, et al., The Role of TLRs in Anti-cancer Immunity and Tumor Rejection, Front Immunol. 2019; 10: 2388; and Kaczanowska et al., TLR agonists: our best frenemy in cancer immunotherapy, J Leukoc Biol. 2013 June; 93(6): 847-863). In certain embodiments, a TLR9 agonist is administered (see, e.g., Chuang, et al., Adjuvant Effect of Toll-Like Receptor 9 Activation on Cancer Immunotherapy Using Checkpoint Blockade, Front. Immunol., 29 May 2020; and Reilley, et al., TLR9 activation cooperates with T cell checkpoint blockade to regress poorly immunogenic melanoma, J. Immunotherapy Cancer, 2019, 7, 323). In certain embodiments, TLR agonists are delivered in a nanoparticle system (see, e.g., Buss and Bhatia, Nanoparticle delivery of immunostimulatory oligonucleotides enhances response to checkpoint inhibitor therapeutics, Proc Natl Acad Sci USA. 2020 Jun. 3; 202001569).


Recombinant Protein Formulation, Dosage, and Delivery

In one example embodiment, virus like particles (VLPs) are used to facilitate intracellular recombinant protein therapy (see, e.g., WO2020252455A1, U.S. Ser. No. 10/577,397B2). In certain embodiments, VLPs include a Gag-B3GNT2, a Gag-MCL1, a Gag-BCL2A1, or a Gag-JUNB fusion protein. The Gag-B3GNT2, Gag-MCL1, Gag-BCL2A1, or Gag-JUNB fusion proteins may include a matrix protein, a capsid protein, and/or a nucleocapsid protein covalently linked to B3GNT2, MCL1, BCL2A1 or JUNB. In certain embodiments, the VLPs include a membrane comprising a phospholipid bilayer with one or more human endogenous retrovirus (HERV) derived ENV/glycoprotein(s) on the external side; a HERV-derived GAG protein in the VLP core, and a Gag-B3GNT2, a Gag-MCL1, a Gag-BCL2A1, or a Gag-JUNB fusion protein on the inside of the membrane, wherein B3GNT2, MCL1, BCL2A1 OR JUNB is fused to a human-endogenous GAG or other plasma membrane recruitment domain (see, e.g., WO2020252455A1). Fusion proteins can be obtained using standard recombinant protein technology.


In one example embodiment, cell-penetrating peptides (CPPs) are used to facilitate intracellular recombinant protein therapy (see, e.g., Dinca A, Chien W-M, Chin M T. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease. International Journal of Molecular Sciences. 2016; 17(2):263). In certain embodiments, cell-penetrating peptides can be conjugated to B3GNT2, MCL1, BCL2A1 or JUNB, for example, using standard recombinant protein technology. In certain embodiments, cell-penetrating peptides can be concurrently delivered with recombinant B3GNT2, MCL1, BCL2A1 or JUNB.


In one example embodiment, nanocarriers are used to facilitate intracellular recombinant protein therapy (see, e.g., Lee Y W, Luther D C, Kretzmann J A, Burden A, Jeon T, Zhai S, Rotello V M. Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers. Theranostics 2019; 9(11):3280-3292). Non-limiting nanocarriers include, but are not limited to nanoparticles (e.g., silica, gold), polymers, lipid based (e.g., cationic lipid within a polymer shell, lipid-like nanoparticles).


The pharmaceutical composition of the invention may be administered locally or systemically. In a preferred embodiment, the pharmaceutical composition is administered near the tissue whose cells are to be transduced. In a particular embodiment, the pharmaceutical composition of the invention is administered locally to the subcutaneous adipose tissue, which is composed of varying amounts of the two different types of adipose tissue: white adipose tissue (WAT) that stores energy in the form of triacylglycerol (TAG) and brown adipose tissue (BAT) that dissipates energy as heat, “burning” fatty acids to maintain body temperature. In one example embodiment, the pharmaceutical composition of the invention is administered in the white adipose tissue (WAT) and/or in the brown adipose tissue (BAT) by intra-WAT or intra-BAT injection. In another preferred embodiment, the pharmaceutical composition of the invention is administered systemically.


The “adeno-associated virus” (AAV) can be formulated with a physiologically acceptable carrier for use in gene transfer and gene therapy applications. The dosage of the formulation can be measured or calculated as viral particles or as genome copies (“GC”)/viral genomes (“vg”). Any method known in the art can be used to determine the genome copy (GC) number of the viral compositions of the invention. One method for performing AAV GC number titration is as follows: purified AAV vector samples are first treated with DNase to eliminate un-encapsulated AAV genome DNA or contaminating plasmid DNA from the production process. The DNase resistant particles are then subjected to heat treatment to release the genome from the capsid. The released genomes are then quantitated by real-time PCR using primer/probe sets targeting specific region of the viral genome.


In any of the described methods the one or more vectors may be comprised in a delivery system. In any of the described methods the vectors may be delivered via liposomes, particles (e.g. nanoparticles), exosomes, microvesicles, a gene-gun. In any of the described methods viral vectors may be delivered by transduction of viral particles. The delivery systems may be administered systemically or by localized administration (e.g., direct injection). The term “systemically administered” and “systemic administration”, as used herein, means that the polynucleotides, vectors, polypeptides, or pharmaceutical compositions of the invention are administered to a subject in a non-localized manner. The systemic administration of the polynucleotides, vectors, polypeptides, or pharmaceutical compositions of the invention may reach several organs or tissues throughout the body of the subject or may reach specific organs or tissues of the subject. For example, the intravenous administration of a pharmaceutical composition of the invention may result in the transduction of more than one tissue or organ in a subject. The term “transduce” or “transduction”, as used herein, refers to the process whereby a foreign nucleotide sequence is introduced into a cell via a viral vector. The term “transfection”, as used herein, refers to the introduction of DNA into a recipient eukaryotic cell.


Recombinant protein compositions described herein may be administered systemically (e.g., intravenously) or administered locally to adipose tissue (e.g., injection). In preferred embodiments, the recombinant protein compositions are administered with an appropriate carrier to be administered to a mammal, especially a human, preferably a pharmaceutically acceptable composition. A “pharmaceutically acceptable composition” refers to a non-toxic semisolid, liquid, or aerosolized filler, diluent, encapsulating material, colloidal suspension or formulation auxiliary of any type. Preferably, this composition is suitable for injection. These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and similar solutions or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.


Alternate Tumor Immune Evasion Targets

Applicants identified additional gene targets that were enriched in the overexpression screens. Applicants used MAGeCK (Li et al., 2014) and FDR analyses to identify candidate genes that were enriched in cells cultured with ESO T cells relative to control (FIG. 1h-k, FIG. 2b, Tables 1A-B, 2, and 3A-B). Pathway analysis performed on 576 genes prioritized by the MAGeCK analysis, which included the top 1% of multiple screening replicates by combining the acute and chronic screens, revealed pathways that were significantly enriched (FDR<0.05) within these top 1% of candidates, including some that have been previously shown to be important for tumor immune evasion, such as lipopolysaccharide response, extrinsic apoptosis signaling, NF-κB activation, JAK-STAT signaling, and antigen presentation (Lawson et al., 2020; Manguso et al., 2017; Pan et al., 2018; Patel et al., 2017; Vredevoogd et al., 2019). This analysis identified the novel immune evasion targets, B3GNT2, MCL1, BCL2A1 and JUNB. Validation studies were performed for these genes and knockout of all genes resulted in enhanced vulnerability to an immunotherapy. A similar approach can be used to test and identify further novel targets for enhancing anti-tumor immunity. In certain embodiments, targets are validated in a tumor animal model. In certain embodiments, the genes are knocked out in a tumor model and tested for resistance and sensitivity to T cell killing. In certain embodiments, the genes are over expressed in a tumor model and tested for resistance and sensitivity to T cell killing. In certain embodiments, the alternative targets are used to enhance anti-tumor immunity. In preferred embodiments, the targets used are one or more of the top ten ranked genes in either Table 1 or Table 3.


The additional targets in Table 1 and Table 3 may also be targeted using the same approaches laid out above for the four targets B3GNT2, MCL1, BCLA21, and JUNB. In one example embodiment, any of the aforementioned methods targeting B3GNT2, MCL1, BCLA21, and JUNB, may further comprise targeting one or more genes in Table 1 or Table 3.









TABLE 1A







MAGeCK analysis results of the CRISPRa screen for resistance to T cell cytotoxicity


in the acute screen. Gene targets are in ranked order. Gene names, RefSeq IDs,


and MAGeCK P-values for each of the top 1000 screening bioreps are listed.














Acute no T
Acute T
Acute no T
Acute T


Gene
id
cells biorep 1
cells biorep 1
cells biorep 2
cells biorep 2





CD274
NM_014143
7.89E−04
2.08E−03
2.54E−03
8.41E−05


MCL1
NM_021960
4.57E−05
2.48E−04
3.23E−03
8.84E−03


ZBTB10
NM_001277145
2.52E−03
7.80E−03
2.18E−03
3.47E−03


LMNA
NM_001257374
5.71E−03
1.29E−02
1.93E−04
5.54E−04


C1R
NM_001733
4.34E−03
2.65E−03
1.35E−02
4.30E−03


RABGGTA
NM_182836
8.06E−04
5.54E−04
6.64E−03
1.79E−02


GNAL
NM_001142339
1.67E−02
9.79E−03
1.83E−03
1.06E−03


KCNQ2
NM_004518
4.98E−03
4.13E−03
3.06E−03
2.42E−02


COMMD4
NM_017828
2.54E−02
7.70E−03
3.55E−03
7.36E−03


WRAP53
NM_001143991
1.97E−02
2.41E−02
5.02E−03
1.06E−03


GRIP1
NM_001178074
4.66E−03
1.80E−03
2.72E−02
1.63E−02


SCMH1
NM_001172222
1.40E−02
2.43E−02
1.71E−02
1.28E−02


OLFM1
NM_006334
6.79E−03
7.90E−03
4.73E−02
9.83E−03


RAB27A
NM_183234
1.16E−02
2.69E−02
2.18E−02
1.18E−02


MBD3L3
NM_001164425
4.33E−04
7.52E−04
2.45E−02
4.76E−02


HGD
NM_000187
3.65E−02
1.36E−02
1.87E−02
5.77E−03


JMJD1C
NM_001282948
2.63E−02
2.71E−02
4.16E−03
1.98E−02


NXNL1
NM_138454
1.48E−02
2.48E−02
1.68E−02
2.21E−02


RNF166
NM_001171816
2.38E−02
2.89E−02
7.35E−03
2.14E−02


ISLR
NM_201526
4.33E−02
9.40E−03
2.44E−02
4.93E−03


NLRP2
NM_001174081
1.39E−02
1.13E−02
7.85E−03
5.10E−02


JADE3
NM_001077445
1.38E−02
1.16E−02
5.30E−02
7.53E−03


MAGED2
NM_014599
3.03E−02
1.33E−02
3.49E−02
7.73E−03


DUS4L
NM_181581
1.58E−02
2.10E−02
2.06E−02
2.92E−02


BCL2L1
NM_001191
1.97E−02
4.92E−02
1.67E−02
1.61E−03


SYCE1
NM_001143764
4.62E−03
1.94E−02
5.93E−02
9.74E−03


C12orf73
NM_001135570
2.26E−02
2.03E−02
2.55E−03
5.37E−02


ST8SIA5
NM_013305
5.83E−03
2.54E−02
5.33E−02
1.59E−02


MYBL1
NM_001144755
2.76E−02
6.64E−02
2.12E−04
6.68E−03


CYB5D2
NM_001254755
8.96E−03
5.72E−03
2.67E−02
6.32E−02


CGREF1
NM_001166241
8.24E−03
3.42E−02
6.81E−03
6.03E−02


SEC22A
NM_012430
2.67E−02
1.52E−02
4.59E−02
2.39E−02


PROSC
NM_007198
5.23E−02
3.47E−02
3.30E−03
2.15E−02


AHR
NM_001621
5.75E−02
1.59E−02
1.98E−02
1.90E−02


FLCN
NM_144997
2.57E−02
8.54E−02
9.28E−04
4.42E−04


C7orf76
NM_001201451
1.94E−02
8.94E−02
1.94E−03
5.98E−03


RARRES3
NM_004585
2.93E−02
4.10E−02
5.37E−02
3.87E−03


SDC2
NM_002998
3.77E−02
7.81E−03
7.64E−02
7.01E−03


PNLIPRP1
NM_006229
6.86E−04
1.31E−03
4.58E−02
8.21E−02


R3HDM1
NM_001282799
4.76E−03
9.13E−03
6.55E−02
5.47E−02


TLE2
NM_001144761
2.44E−02
1.11E−01
2.11E−04
2.19E−03


CUZD1
NM_022034
1.50E−02
6.46E−03
6.61E−02
5.16E−02


HIST3H2BB
NM_175055
3.05E−02
6.94E−02
2.83E−02
1.78E−02


ARMCX5
NM_001168480
7.73E−02
5.83E−02
6.70E−03
6.20E−03


RPS7
NM_001011
2.02E−02
2.28E−03
2.35E−02
1.09E−01


PANK1
NM_138316
4.77E−03
2.92E−02
1.03E−02
1.11E−01


RABEPK
NM_001174153
6.36E−02
8.33E−02
2.50E−03
7.06E−03


SNCA
NM_000345
4.28E−02
2.70E−02
6.66E−02
2.03E−02


STAG2
NM_001042749
1.32E−02
3.91E−02
3.59E−02
7.11E−02


TYMS
NM_001071
4.00E−02
1.72E−02
6.79E−02
3.58E−02


OR4F29
NM_001005221
3.81E−02
8.66E−02
7.24E−03
3.55E−02


KIAA1958
NM_133465
3.90E−02
1.98E−02
8.09E−02
2.85E−02


INTS10
NM_018142
1.58E−03
1.63E−03
5.73E−02
1.08E−01


CXorf57
NM_018015
6.22E−02
9.19E−02
8.61E−03
6.65E−03


DEFA3
NM_005217
4.14E−02
2.56E−02
5.29E−02
5.05E−02


PRKAG1
NM_002733
8.95E−03
6.46E−02
6.73E−02
2.99E−02


DSC1
NM_004948
4.81E−03
1.69E−02
5.10E−02
9.85E−02


JUNB
NM_002229
2.36E−05
2.30E−06
1.53E−01
1.85E−02


RECK
NM_021111
2.66E−02
1.18E−01
2.06E−02
8.31E−03


MBD3L2
NM_144614
3.61E−03
1.39E−03
3.29E−02
1.36E−01


PCNA
NM_182649
1.05E−02
4.13E−02
2.69E−02
9.57E−02


MGAT5
NM_002410
3.18E−02
2.21E−02
9.13E−02
3.03E−02


UBA3
NM_003968
3.12E−02
6.00E−02
5.92E−02
2.77E−02


AMER3
NM_001105193
2.33E−02
1.43E−01
6.64E−03
8.27E−03


LAMC3
NM_006059
4.70E−02
7.01E−02
2.21E−02
4.24E−02


GSTCD
NM_024751
3.47E−02
3.71E−02
9.06E−02
1.99E−02


ACVRL1
NM_001077401
1.62E−02
3.10E−02
2.60E−02
1.10E−01


REG4
NM_001159352
1.26E−01
4.49E−02
2.71E−04
1.46E−02


ZNF750
NM_024702
2.41E−02
3.94E−02
1.03E−01
2.09E−02


CDK16
NM_006201
2.18E−02
7.07E−02
3.78E−02
5.78E−02


GPR161
NM_001267614
5.45E−02
2.03E−02
7.53E−02
3.81E−02


COLEC11
NM_001255988
6.91E−02
2.47E−02
6.03E−02
3.53E−02


TBC1D9B
NM_015043
1.85E−02
6.46E−02
6.26E−02
4.44E−02


C17orf105
NM_001136483
2.28E−02
7.64E−02
6.88E−02
2.33E−02


TMEM19
NM_018279
6.92E−02
1.93E−02
5.18E−03
9.76E−02


TRIM58
NM_015431
1.09E−02
1.11E−01
1.03E−02
6.06E−02


RASA2
NM_006506
1.26E−01
2.61E−02
2.31E−02
1.76E−02


RPRM
NM_019845
1.63E−02
1.55E−02
2.57E−02
1.40E−01


TMEM201
NM_001010866
4.18E−03
9.52E−03
1.47E−01
3.74E−02


PTRH2
NM_016077
6.69E−02
3.04E−02
9.66E−02
5.56E−03


C11orf70
NM_001195005
9.52E−02
6.53E−03
8.36E−02
1.50E−02


TYK2
NM_003331
1.39E−02
2.17E−02
6.36E−02
1.06E−01


EPHA1
NM_005232
4.17E−02
4.60E−02
1.86E−02
9.93E−02


HIST1H2BI
NM_003525
2.52E−02
2.16E−02
8.00E−02
7.89E−02


MFSD12
NM_174983
4.09E−02
9.61E−03
7.30E−02
8.31E−02


TAF1
NM_001286074
3.90E−02
4.67E−02
1.91E−02
1.03E−01


KIF21A
NM_001173463
4.10E−02
7.17E−02
8.08E−02
1.53E−02


PRKACB
NM_002731
1.27E−01
8.23E−02
1.08E−03
2.93E−04


GPT2
NM_001142466
1.94E−02
3.63E−02
6.58E−02
8.94E−02


CNP
NM_033133
3.06E−02
7.91E−03
7.74E−02
9.67E−02


STARD13
NM_178006
1.17E−01
7.94E−02
9.75E−03
6.71E−03


SH2D1B
NM_053282
7.33E−02
3.68E−02
6.57E−02
3.76E−02


TRHDE
NM_013381
9.76E−02
9.39E−02
1.14E−02
1.20E−02


DCST2
NM_144622
9.47E−02
3.29E−02
7.61E−02
1.49E−02


KCTD18
NM_152387
3.32E−02
3.66E−02
1.25E−01
2.41E−02


CAPG
NM_001256139
5.11E−02
6.33E−02
9.26E−02
1.26E−02


FOXC1
NM_001453
7.38E−02
2.96E−02
8.31E−02
3.61E−02


ZSCAN26
NM_152736
1.66E−02
1.78E−02
9.68E−02
9.18E−02


TMX1
NM_030755
1.06E−03
8.06E−04
8.59E−02
1.36E−01


GMIP
NM_001288998
3.65E−02
2.84E−02
4.01E−02
1.18E−01


FAM65C
NM_080829
6.28E−03
2.62E−02
1.05E−01
8.63E−02


TEX11
NM_031276
1.03E−02
1.86E−02
1.10E−01
8.53E−02


WDR35
NM_020779
6.58E−02
7.19E−02
7.91E−03
8.03E−02


BCAR1
NM_001170719
5.94E−02
2.89E−02
5.87E−02
7.99E−02


ANKRD66
NM_001162435
4.25E−02
2.94E−02
7.04E−02
8.91E−02


NGLY1
NM_001145294
4.38E−02
3.28E−02
5.44E−02
1.02E−01


UBE2NL
NM_001012989
2.08E−02
3.34E−02
4.93E−02
1.31E−01


CYP1A2
NM_000761
5.43E−02
1.26E−01
1.10E−02
4.42E−02


TAAR2
NM_014626
3.75E−02
1.62E−02
7.81E−02
1.04E−01


ZMYM4
NM_005095
5.95E−03
4.31E−03
6.38E−02
1.61E−01


RPS3A
NM_001006
6.72E−03
1.46E−02
3.90E−02
1.77E−01


FKBP2
NM_004470
9.13E−02
4.84E−02
4.66E−02
5.09E−02


ARNT
NM_001668
1.09E−01
1.25E−01
4.54E−03
3.73E−04


UGT2B15
NM_001076
3.73E−02
1.02E−01
1.53E−02
8.70E−02


KCNRG
NM_199464
8.41E−02
4.65E−02
4.72E−02
6.37E−02


CXCL5
NM_002994
1.18E−02
3.26E−03
1.19E−01
1.08E−01


ZBTB25
NM_006977
1.31E−01
5.58E−02
2.26E−02
3.35E−02


ZNF281
NM_001281294
1.14E−02
9.46E−03
1.48E−01
7.41E−02


PCDHA12
NM_018903
4.78E−03
5.25E−03
1.04E−01
1.31E−01


CDO1
NM_001801
4.22E−02
1.03E−03
1.31E−01
7.15E−02


BIN3
NM_018688
8.58E−02
1.39E−01
1.70E−03
2.08E−02


RIN2
NM_001242581
5.01E−02
1.31E−01
2.22E−02
4.51E−02


STK4
NM_006282
1.02E−01
5.90E−02
5.53E−02
3.19E−02


MYOM1
NM_019856
5.36E−02
3.12E−02
7.01E−02
9.56E−02


SMAD4
NM_005359
1.16E−01
9.56E−02
7.10E−03
3.49E−02


BBS5
NM_152384
1.60E−02
2.11E−02
1.54E−01
6.34E−02


NACC1
NM_052876
1.63E−01
6.55E−02
4.54E−03
2.18E−02


MITD1
NM_138798
1.91E−02
3.05E−02
1.76E−01
2.91E−02


BTN3A2
NM_001197249
9.53E−02
1.21E−01
3.61E−02
3.31E−03


NMU
NM_006681
3.72E−02
5.47E−02
1.28E−01
3.61E−02


GABARAPL2
NM_007285
6.80E−02
5.88E−02
1.08E−01
2.28E−02


OLIG1
NM_138983
7.40E−02
1.49E−01
1.51E−02
2.10E−02


TBX21
NM_013351
1.05E−01
2.54E−02
5.20E−02
7.78E−02


SATB2
NM_015265
4.86E−02
6.23E−02
9.44E−02
5.48E−02


FGR
NM_001042747
9.96E−02
1.07E−01
3.48E−02
2.13E−02


DCTN4
NM_001135643
2.52E−02
8.57E−02
1.06E−01
4.70E−02


C1QTNF9B-AS1
NM_001014442
4.69E−02
6.80E−02
8.45E−02
6.60E−02


CYP2S1
NM_030622
2.39E−02
9.48E−03
1.73E−01
6.04E−02


SLC1A1
NM_004170
5.20E−02
1.44E−01
2.25E−02
4.97E−02


CCDC88A
NM_018084
5.21E−02
2.04E−02
4.02E−02
1.56E−01


C2orf88
NM_001042521
3.74E−03
3.21E−03
8.03E−02
1.83E−01


IL34
NM_001172772
2.05E−02
2.31E−02
3.24E−02
1.95E−01


COL11A1
NM_001190709
4.14E−02
3.90E−02
1.69E−01
2.16E−02


TMEM87B
NM_032824
3.66E−02
1.02E−01
6.13E−02
7.16E−02


EBPL
NM_001278636
3.91E−02
1.34E−01
7.57E−02
2.22E−02


SEPTIN9
NM_001113495
7.89E−02
1.11E−01
4.30E−02
3.97E−02


TSPY1
NM_001197242
1.87E−01
3.84E−02
1.62E−02
3.40E−02


RREB1
NM_001003699
2.09E−02
6.98E−02
5.12E−02
1.34E−01


AMMECR1L
NM_031445
3.07E−02
1.86E−01
4.65E−02
1.35E−02


C1orf228
NM_001145636
8.16E−02
3.45E−02
4.50E−02
1.16E−01


MYL4
NM_001002841
8.17E−02
1.02E−01
2.84E−02
6.50E−02


REL
NM_002908
1.70E−01
5.86E−02
2.52E−02
2.48E−02


ZNF675
NM_138330
9.47E−02
6.40E−02
6.72E−02
5.50E−02


KLRC1
NM_002259
2.46E−03
9.19E−03
1.80E−01
9.05E−02


ANO3
NM_031418
6.47E−02
3.23E−02
2.54E−02
1.60E−01


ACOT6
NM_001037162
6.20E−02
2.20E−01
4.42E−04
1.55E−04


FLNA
NM_001110556
6.08E−02
2.28E−02
7.12E−02
1.28E−01


C9orf50
NM_199350
7.60E−03
9.24E−03
1.09E−01
1.58E−01


NLGN4Y
NM_001206850
2.64E−02
3.12E−02
1.33E−01
9.36E−02


RPLP1
NM_213725
1.04E−03
1.87E−03
5.50E−02
2.27E−01


TBC1D2
NM_001267572
1.25E−02
5.76E−02
5.68E−02
1.58E−01


PAMR1
NM_001001991
1.13E−01
1.15E−01
2.35E−02
3.33E−02


NOTCH1
NM_017617
4.13E−02
8.10E−02
3.00E−02
1.35E−01


MAGEA11
NM_005366
9.25E−02
8.37E−02
8.01E−02
3.28E−02


AMZ1
NM_001284355
7.75E−02
7.83E−02
2.41E−02
1.12E−01


GPHN
NM_020806
3.04E−02
2.24E−02
5.78E−02
1.82E−01


SOCS2
NM_001270468
2.40E−03
3.16E−02
1.17E−01
1.42E−01


HIST1H2BM
NM_003521
1.08E−01
6.06E−02
8.24E−03
1.17E−01


KRT31
NM_002277
1.67E−01
1.13E−01
8.49E−03
6.75E−03


SECISBP2
NM_001282690
1.53E−02
6.14E−02
1.89E−02
2.00E−01


SMPDL3B
NM_001009568
2.73E−02
1.92E−03
3.43E−02
2.32E−01


ARHGAP27
NM_001282290
7.66E−03
2.57E−02
1.44E−01
1.18E−01


PM20D2
NM_001010853
1.36E−03
6.28E−02
4.19E−02
1.90E−01


ZFP62
NM_152283
8.20E−02
1.48E−01
2.31E−02
4.35E−02


BAMBI
NM_012342
3.97E−02
1.97E−02
1.33E−01
1.05E−01


CSTF1
NM_001033522
3.02E−02
6.93E−02
1.52E−01
4.72E−02


TRAF3
NM_001199427
9.13E−02
9.01E−02
5.21E−02
6.54E−02


ZNF385B
NM_001113398
1.55E−01
1.20E−01
8.72E−03
1.64E−02


FAM64A
NM_001195228
1.08E−01
1.22E−01
4.43E−02
2.72E−02


NOL4
NM_001198549
6.84E−02
5.52E−02
1.31E−01
4.77E−02


PSMC1
NM_002802
3.06E−02
6.26E−02
6.19E−02
1.47E−01


FAM53C
NM_001135647
5.38E−02
6.09E−02
4.52E−02
1.43E−01


CSTB
NM_000100
1.98E−01
5.98E−02
3.53E−02
1.06E−02


AKNA
NM_030767
7.16E−03
1.23E−02
1.76E−01
1.09E−01


NGFR
NM_002507
6.21E−02
9.96E−02
1.92E−02
1.23E−01


FAM175A
NM_139076
2.68E−02
1.24E−02
5.43E−02
2.11E−01


DNMT3B
NM_175850
3.17E−02
6.16E−02
1.07E−01
1.06E−01


P2RX5
NM_001204519
1.23E−01
1.77E−01
1.11E−03
6.18E−03


KCNQ5
NM_001160130
7.71E−02
7.18E−02
9.38E−02
6.44E−02


FRAT2
NM_012083
1.78E−03
7.13E−04
1.06E−01
1.99E−01


KRTAP21-2
NM_181617
1.24E−01
1.09E−01
3.33E−02
4.25E−02


PDC
NM_022576
8.59E−03
3.56E−02
2.14E−02
2.44E−01


UBAC2
NM_001144072
5.37E−02
3.48E−02
1.29E−01
9.47E−02


ZNF548
NM_001172773
4.05E−02
1.12E−02
1.06E−01
1.55E−01


SPARCL1
NM_001128310
6.02E−03
3.15E−02
1.60E−01
1.16E−01


TTC38
NM_017931
6.77E−02
9.54E−02
6.70E−02
8.38E−02


TBX20
NM_001077653
7.80E−02
2.97E−02
5.74E−02
1.49E−01


CLEC19A
NM_001256720
1.24E−02
8.38E−03
2.34E−02
2.70E−01


RBFOX1
NM_001142333
1.01E−01
5.64E−02
9.43E−02
6.27E−02


PCGF5
NM_032373
5.17E−02
1.35E−01
3.99E−02
8.77E−02


STEAP2
NM_001040666
4.54E−03
2.75E−02
8.22E−02
2.00E−01


OTOP1
NM_177998
1.75E−01
4.05E−02
1.55E−02
8.40E−02


DPP6
NM_001039350
2.70E−02
9.94E−03
2.29E−02
2.56E−01


FADD
NM_003824
1.13E−01
2.91E−02
7.55E−02
9.79E−02


MOBP
NM_182935
9.97E−03
1.30E−02
8.45E−02
2.08E−01


RPS27A
NM_001135592
1.90E−01
1.17E−01
4.65E−03
3.94E−03


MAFF
NM_001161573
4.37E−02
9.33E−02
8.31E−02
9.60E−02


CLCA2
NM_006536
1.00E−01
1.11E−01
1.84E−02
8.71E−02


CHMP1A
NM_001083314
8.71E−04
2.15E−02
1.53E−01
1.42E−01


CLIC6
NM_053277
2.15E−02
1.08E−01
1.75E−01
1.38E−02


PHF1
NM_002636
3.68E−02
8.08E−02
8.58E−02
1.16E−01


ORAI3
NM_152288
3.11E−02
3.95E−02
1.71E−01
7.84E−02


CDKN1A
NM_001220778
5.97E−02
4.70E−02
5.95E−02
1.54E−01


LSMEM2
NM_153215
1.45E−01
7.51E−02
6.55E−02
3.44E−02


CBL
NM_005188
7.66E−02
1.78E−01
3.08E−02
3.53E−02


KCNK6
NM_004823
4.21E−02
2.12E−02
9.08E−02
1.67E−01


BCL6
NM_001706
8.26E−02
6.28E−02
1.15E−02
1.64E−01


KRTAP10-2
NM_198693
4.34E−02
8.20E−02
4.48E−02
1.53E−01


MAP2K5
NM_001206804
1.28E−02
8.59E−02
7.37E−02
1.53E−01


SEPP1
NM_005410
2.75E−02
4.19E−02
1.67E−01
8.92E−02


CHCHD4
NM_001098502
3.44E−02
6.38E−03
1.00E−01
1.85E−01


SRBD1
NM_018079
3.65E−02
1.23E−01
1.26E−01
4.03E−02


CNTNAP3B
NM_001201380
1.36E−01
2.13E−02
3.77E−02
1.31E−01


CIZ1
NM_001131015
1.55E−01
9.64E−02
4.40E−02
3.15E−02


COX7C
NM_001867
8.18E−02
2.46E−02
9.23E−02
1.28E−01


PDF
NM_022341
8.26E−02
3.11E−02
3.78E−02
1.76E−01


TECPR1
NM_015395
8.29E−02
4.70E−02
9.81E−02
9.99E−02


IGJ
NM_144646
5.75E−02
1.14E−01
5.57E−02
1.01E−01


CCDC30
NM_001080850
7.21E−02
1.87E−01
2.08E−02
4.87E−02


ABCA2
NM_212533
2.20E−02
4.81E−02
8.89E−02
1.70E−01


AKR7A2
NM_003689
1.13E−01
8.73E−02
1.24E−01
4.59E−03


KLK1
NM_002257
3.97E−02
9.12E−03
1.59E−01
1.21E−01


ALS2CL
NM_001190707
6.30E−02
1.41E−01
2.78E−02
9.85E−02


PRIM2
NM_001282488
1.97E−01
8.87E−02
4.26E−02
1.98E−03


PPIC
NM_000943
3.16E−02
4.53E−02
1.37E−01
1.19E−01


EGR3
NM_004430
1.39E−01
1.02E−01
1.98E−02
7.24E−02


ANKRD35
NM_001280799
1.57E−02
1.80E−02
1.58E−01
1.41E−01


OR5K4
NM_001005517
3.36E−02
1.86E−02
7.78E−02
2.04E−01


DNAH14
NM_144989
7.77E−02
5.69E−02
5.16E−02
1.48E−01


ATF7IP
NM_018179
7.14E−02
8.19E−02
7.56E−02
1.07E−01


ESRRB
NM_004452
9.83E−02
1.10E−01
5.54E−02
7.24E−02


GNPDA2
NM_138335
1.79E−01
1.73E−02
1.32E−01
8.34E−03


DEFB127
NM_139074
2.34E−01
1.03E−01
6.82E−05
1.21E−04


ATAD3B
NM_031921
1.57E−02
3.27E−02
1.50E−01
1.38E−01


MEIS2
NM_172315
5.25E−03
3.35E−03
2.72E−01
5.71E−02


STX1B
NM_052874
1.03E−01
1.14E−01
1.01E−01
2.06E−02


CHD1L
NM_001256336
6.88E−02
1.76E−01
5.45E−02
3.93E−02


SEBOX
NM_001080837
3.02E−02
4.55E−02
2.61E−01
2.63E−03


ERMP1
NM_024896
2.34E−02
1.23E−01
1.17E−01
7.78E−02


MSH6
NM_001281494
2.05E−02
4.91E−02
2.33E−01
3.88E−02


BTBD7
NM_001289133
1.07E−01
1.30E−01
2.28E−02
8.30E−02


PPP1R1B
NM_032192
6.45E−03
1.66E−02
2.64E−01
5.55E−02


CELF2
NM_001083591
4.41E−02
1.38E−01
5.05E−02
1.10E−01


TMEM213
NM_001085429
8.18E−02
1.08E−01
7.33E−02
7.98E−02


USP5
NM_003481
4.39E−02
6.29E−02
6.39E−02
1.73E−01


HLA-DMA
NM_006120
3.72E−03
2.57E−02
1.83E−01
1.31E−01


SNX20
NM_001144972
6.43E−02
1.30E−01
5.19E−02
9.82E−02


ZNF395
NM_018660
1.58E−01
1.25E−02
1.69E−01
3.83E−03


CENPE
NM_001813
2.94E−02
8.34E−02
1.64E−01
6.80E−02


C18orf8
NM_001276342
1.91E−01
7.06E−02
5.00E−02
3.39E−02


HOXC13
NM_017410
2.64E−02
2.07E−02
9.91E−02
2.01E−01


ASB2
NM_001202429
7.13E−02
4.24E−02
1.71E−01
6.29E−02


SEPTIN1
NM_052838
3.86E−02
1.90E−01
9.99E−02
1.94E−02


WDR74
NM_018093
3.46E−02
4.60E−02
7.92E−02
1.88E−01


ZNF573
NM_152360
5.01E−02
2.72E−02
1.01E−01
1.71E−01


SLC25A24
NM_013386
1.47E−01
1.45E−01
1.85E−02
3.80E−02


LTA4H
NM_001256643
1.41E−01
7.55E−02
8.67E−02
4.64E−02


DIRAS2
NM_017594
1.30E−01
3.25E−02
2.22E−02
1.67E−01


GJB6
NM_006783
2.66E−02
2.67E−02
2.06E−01
9.15E−02


EMP1
NM_001423
6.28E−02
7.40E−02
1.26E−02
2.02E−01


TES
NM_152829
1.60E−01
9.27E−02
1.65E−02
8.19E−02


CPXCR1
NM_033048
4.21E−02
5.08E−02
5.12E−02
2.09E−01


C6orf58
NM_001010905
2.04E−02
2.77E−02
2.51E−01
5.35E−02


HDAC9
NM_178425
4.46E−02
9.25E−02
4.93E−02
1.68E−01


TRAPPC11
NM_021942
3.67E−02
8.02E−03
1.58E−01
1.52E−01


RNLS
NM_018363
2.78E−03
2.11E−03
3.26E−01
2.45E−02


MS4A2
NM_001256916
1.89E−01
1.16E−01
2.20E−02
3.02E−02


COL9A3
NM_001853
1.69E−01
1.31E−01
1.10E−02
4.72E−02


HTR6
NM_000871
9.08E−02
1.08E−01
1.02E−01
5.72E−02


CATSPERB
NM_024764
1.42E−01
1.60E−01
3.62E−02
1.97E−02


HYAL4
NM_012269
5.77E−02
5.48E−02
5.79E−02
1.88E−01


MTHFD2
NM_006636
3.49E−02
1.89E−01
3.58E−02
9.94E−02


NLRC4
NM_021209
6.56E−02
1.54E−01
8.21E−02
5.82E−02


ANXA8
NM_001271702
1.27E−01
2.18E−01
1.10E−02
4.69E−03


SPATS2L
NM_001282735
1.73E−03
3.54E−02
8.06E−02
2.43E−01


MAP3K13
NM_001242317
6.32E−02
1.19E−01
9.16E−02
8.74E−02


SFMBT2
NM_001018039
1.33E−01
2.11E−01
1.21E−02
5.29E−03


LHX9
NM_020204
7.80E−02
5.45E−02
1.15E−01
1.14E−01


RSLID1
NM_015659
1.11E−02
1.84E−02
1.54E−01
1.80E−01


FBLIM1
NM_001024216
3.68E−02
1.26E−01
6.47E−02
1.36E−01


KRTAP13-2
NM_181621
5.59E−02
1.71E−01
5.81E−02
7.85E−02


NUS1
NM_138459
1.40E−01
1.20E−01
3.62E−02
6.81E−02


PRICKLE1
NM_153026
9.74E−02
1.15E−01
1.14E−01
3.95E−02


TEX33
NM_001163857
1.39E−01
1.76E−02
1.32E−01
7.69E−02


TMEM255B
NM_182614
1.23E−01
1.49E−01
4.74E−02
4.75E−02


DEGS1
NM_003676
1.76E−01
5.71E−02
8.08E−02
5.50E−02


WDR33
NM_018383
1.24E−01
1.83E−01
6.06E−02
1.37E−03


RHOG
NM_001665
1.94E−01
1.39E−01
3.51E−02
2.52E−03


LIN54
NM_001115007
1.34E−01
6.20E−02
1.25E−01
4.87E−02


STAM
NM_003473
1.35E−01
9.36E−02
8.32E−02
5.90E−02


SPIN2B
NM_001006683
1.75E−02
1.56E−01
7.62E−02
1.21E−01


RAD54B
NM_012415
1.24E−01
2.13E−01
1.20E−02
2.28E−02


SDR39U1
NM_001290292
1.93E−01
8.77E−02
8.97E−02
1.55E−03


TAPT1
NM_153365
3.71E−02
4.29E−02
6.67E−02
2.26E−01


APC
NM_001127510
9.95E−02
1.62E−01
8.73E−03
1.03E−01


RORC
NM_005060
2.20E−02
2.85E−01
3.50E−02
3.21E−02


HMCES
NM_020187
1.46E−01
4.71E−02
1.06E−01
7.44E−02


TCEAL2
NM_080390
1.00E−01
1.32E−02
1.35E−01
1.26E−01


AP5S1
NM_018347
4.79E−02
8.25E−02
1.21E−01
1.22E−01


SERINC1
NM_020755
8.45E−02
1.34E−01
1.36E−02
1.43E−01


LHX3
NM_014564
1.52E−02
1.12E−02
2.54E−01
9.51E−02


TMEM25
NM_032780
7.76E−03
5.26E−03
2.73E−01
9.04E−02


C8orf76
NM_032847
2.31E−01
1.45E−01
7.51E−05
1.45E−04


PIGS
NM_033198
7.00E−02
5.23E−02
1.13E−01
1.42E−01


CHST8
NM_001127895
1.50E−01
5.15E−02
1.19E−01
5.67E−02


CHERP
NM_006387
9.40E−02
2.94E−02
1.12E−01
1.43E−01


TMEM234
NM_019118
6.45E−02
7.52E−02
1.43E−01
9.63E−02


CYP3A43
NM_057096
2.83E−02
2.00E−01
1.76E−02
1.35E−01


CORO1B
NM_020441
2.14E−01
1.38E−01
7.96E−03
2.15E−02


WBSCR16
NM_148842
1.26E−01
1.74E−01
5.39E−02
2.78E−02


PTPRCAP
NM_005608
6.01E−02
6.64E−02
1.03E−01
1.54E−01


FHDC1
NM_033393
3.93E−02
7.92E−02
1.18E−01
1.47E−01


PILRA
NM_178273
1.87E−01
1.20E−01
1.99E−02
5.83E−02


ZNF583
NM_152478
2.40E−01
1.17E−01
1.37E−02
1.45E−02


IFT81
NM_014055
6.10E−02
3.00E−01
1.66E−02
7.87E−03


TCTE3
NM_174910
4.91E−02
2.92E−01
1.96E−02
2.44E−02


ACADVL
NM_001270447
1.76E−01
1.85E−01
9.63E−03
1.59E−02


OSGIN2
NM_004337
9.50E−02
2.11E−01
5.95E−02
2.04E−02


SMC4
NM_001288753
8.17E−03
1.42E−02
1.40E−01
2.23E−01


PRELID2
NM_138492
1.36E−01
1.98E−01
3.70E−02
1.62E−02


KRT20
NM_019010
2.61E−02
2.93E−02
1.32E−01
2.00E−01


SRSF9
NM_003769
2.57E−01
1.17E−01
1.08E−02
4.78E−03


ITFG2
NM_018463
1.18E−01
1.48E−01
1.07E−01
1.65E−02


CASC1
NM_001204102
8.71E−02
1.64E−01
7.65E−02
6.14E−02


NKX2-1
NM_001079668
3.04E−02
6.60E−02
1.86E−03
2.91E−01


CD72
NM_001782
6.36E−02
4.50E−02
8.90E−02
1.92E−01


DDX3Y
NM_001122665
1.81E−01
1.03E−01
3.28E−02
7.30E−02


SLC16A11
NM_153357
1.83E−01
1.74E−01
1.31E−02
1.90E−02


ACYP1
NM_001107
7.38E−02
4.30E−02
1.65E−01
1.07E−01


KRTCAP2
NM_173852
6.96E−02
2.69E−02
1.00E−01
1.93E−01


CNPY3
NM_006586
1.86E−01
8.36E−02
3.65E−02
8.40E−02


CABYR
NM_153770
4.97E−02
3.87E−02
1.64E−01
1.37E−01


PREPL
NM_006036
1.04E−01
1.49E−01
8.63E−02
5.13E−02


IQCJ-SCHIP1
NM_001197113
6.57E−03
2.70E−02
8.32E−02
2.73E−01


C6orf211
NM_001286562
3.50E−02
8.65E−02
9.20E−02
1.78E−01


LOC100129520
NM_001195272
1.19E−01
8.83E−02
5.22E−02
1.32E−01


SREK1IP1
NM_173829
3.15E−02
5.42E−02
2.07E−01
1.00E−01


NAV3
NM_014903
3.69E−03
1.27E−02
8.54E−02
2.91E−01


ARID1B
NM_020732
1.01E−01
1.56E−01
7.77E−02
5.74E−02


PRDM10
NM_199439
9.82E−02
1.28E−01
9.79E−02
6.88E−02


TOR1A
NM_000113
8.78E−02
3.41E−02
1.16E−01
1.56E−01


HES1
NM_005524
3.95E−03
7.82E−03
8.38E−02
2.99E−01


CHID1
NM_001142675
7.52E−02
2.26E−01
6.35E−02
2.96E−02


COX14
NM_001257134
7.25E−04
1.26E−03
2.00E−01
1.93E−01


F8
NM_000132
1.93E−01
1.05E−01
8.60E−02
1.12E−02


PQBP1
NM_001167990
1.79E−01
1.81E−01
3.09E−02
5.08E−03


TK2
NM_001271934
2.35E−02
3.56E−02
1.46E−01
1.92E−01


COMTD1
NM_144589
4.83E−02
8.43E−02
5.92E−02
2.08E−01


ALKBH8
NM_138775
1.06E−01
4.79E−02
1.84E−01
6.22E−02


XRCC6BP1
NM_033276
3.81E−02
6.76E−02
2.41E−01
5.32E−02


DEFA6
NM_001926
5.30E−02
1.34E−02
1.31E−01
2.03E−01


ETV3L
NM_001004341
1.44E−01
1.62E−01
5.06E−02
4.35E−02


LNX2
NM_153371
1.49E−01
6.34E−02
5.76E−02
1.31E−01


MNAT1
NM_002431
9.82E−02
1.02E−01
2.27E−02
1.78E−01


CREM
NM_182724
1.19E−01
2.27E−01
1.01E−02
4.56E−02


DTNA
NM_001198944
1.16E−01
1.05E−01
1.41E−01
3.88E−02


GPR149
NM_001038705
2.31E−01
1.43E−01
9.84E−03
1.77E−02


GALK2
NM_001001556
8.10E−03
2.79E−02
1.85E−01
1.81E−01


COQ2
NM_015697
5.74E−02
6.34E−02
1.52E−01
1.30E−01


STAP2
NM_017720
2.73E−02
2.58E−01
4.63E−02
7.20E−02


CALHM1
NM_001001412
1.11E−01
5.00E−02
8.20E−02
1.61E−01


RXRB
NM_021976
5.92E−02
7.73E−02
1.62E−01
1.06E−01


HIST1H4F
NM_003540
1.62E−01
2.23E−01
7.68E−03
1.27E−02


PRDM13
NM_021620
1.51E−02
6.09E−03
2.09E−01
1.77E−01


PELO
NM_015946
5.39E−03
1.93E−02
1.52E−01
2.31E−01


WIBG
NM_001143853
8.40E−02
1.36E−01
1.20E−01
6.84E−02


UBE2J1
NM_016021
1.60E−01
2.40E−01
5.92E−03
4.04E−03


SDHB
NM_003000
1.31E−01
2.44E−01
3.14E−02
2.81E−03


EIF1AD
NM_001242484
7.31E−02
1.38E−01
1.50E−01
5.04E−02


DGCR6L
NM_033257
4.14E−02
1.09E−01
2.11E−01
5.07E−02


SLC7A5
NM_003486
1.88E−01
1.64E−01
4.73E−02
1.35E−02


MYADM
NM_001020818
8.89E−02
5.87E−02
1.28E−01
1.37E−01


CAMKK2
NM_172226
8.65E−02
6.69E−02
2.53E−01
6.54E−03


ZNF667
NM_022103
1.77E−01
3.65E−02
1.46E−01
5.46E−02


TRIM64C
NM_001206631
1.55E−01
7.12E−02
5.37E−02
1.34E−01


ACP6
NM_016361
1.77E−01
1.63E−01
6.70E−02
7.58E−03


YOD1
NM_018566
1.08E−01
7.92E−02
1.36E−01
9.10E−02


TSHZ1
NM_005786
2.32E−02
8.95E−02
1.10E−01
1.92E−01


IDH2
NM_001289910
3.37E−02
8.92E−02
1.63E−01
1.30E−01


AKR1C1
NM_001353
5.19E−02
3.96E−02
2.33E−01
9.34E−02


MAML1
NM_014757
1.12E−01
1.52E−02
1.60E−01
1.32E−01


KRTAP26-1
NM_203405
4.75E−03
1.85E−02
2.09E−01
1.86E−01


IFT80
NM_001190241
1.38E−01
1.89E−01
5.02E−02
4.16E−02


MLPH
NM_001281473
1.13E−02
1.28E−02
3.12E−01
8.29E−02


SEMA4G
NM_001203244
1.69E−02
9.93E−02
1.68E−01
1.35E−01


VAT1L
NM_020927
2.09E−02
2.15E−02
2.66E−01
1.12E−01


RAB41
NM_001032726
1.20E−01
1.05E−01
1.21E−01
7.53E−02


CELA2B
NM_015849
2.13E−04
1.57E−04
4.24E−02
3.79E−01


H2AFY2
NM_018649
8.86E−02
1.13E−01
1.74E−01
4.58E−02


TMED2
NM_006815
9.94E−02
9.17E−02
8.26E−02
1.49E−01


PPFIBP2
NM_003621
3.36E−02
4.55E−02
8.97E−02
2.54E−01


ARHGAP29
NM_004815
6.11E−02
1.15E−02
7.58E−02
2.75E−01


MAGEE1
NM_020932
1.54E−02
7.41E−02
1.96E−01
1.39E−01


KDELC1
NM_024089
8.49E−02
1.37E−01
1.68E−01
3.41E−02


RING1
NM_002931
2.89E−01
6.33E−02
1.86E−02
5.45E−02


TMEM116
NM_001193453
2.93E−01
7.19E−02
1.67E−02
4.43E−02


MARVELD3
NM_052858
2.98E−01
6.11E−02
4.37E−02
2.35E−02


OR9K2
NM_001005243
1.21E−01
1.14E−01
1.41E−01
5.11E−02


TSEN34
NM_001282333
2.61E−01
5.68E−02
8.67E−02
2.19E−02


HAPLN4
NM_023002
2.29E−01
9.75E−03
1.20E−01
6.79E−02


HRASLS5
NM_054108
1.20E−01
1.65E−01
4.46E−02
9.77E−02


COX4I2
NM_032609
1.86E−01
1.86E−01
1.30E−02
4.22E−02


SLC45A3
NM_033102
9.38E−02
6.36E−02
8.78E−02
1.83E−01


AATF
NM_012138
7.46E−02
7.42E−02
9.78E−02
1.82E−01


SMIM12
NM_138428
5.62E−02
1.54E−01
1.73E−01
4.71E−02


LPPR5
NM_001037317
2.04E−01
1.52E−01
4.91E−02
2.53E−02


SMIM13
NM_001135575
9.51E−02
6.75E−02
5.76E−02
2.10E−01


SLC39A1
NM_001271958
1.67E−01
1.73E−01
2.02E−02
7.08E−02


ELAC2
NM_001165962
2.14E−01
1.32E−01
1.76E−02
6.90E−02


LOC100131303
NM_001282442
2.76E−03
2.52E−03
3.94E−02
3.89E−01


SETD1A
NM_014712
6.80E−02
1.49E−01
1.65E−01
5.16E−02


MASP2
NM_006610
1.61E−01
9.03E−02
1.02E−01
8.00E−02


BAHD1
NM_014952
1.64E−01
1.25E−01
8.64E−02
5.91E−02


CDK19
NM_015076
1.71E−03
1.07E−03
3.24E−01
1.08E−01


SLCO1B3
NM_019844
1.54E−01
1.82E−01
2.38E−02
7.51E−02


ITPRIPL2
NM_001034841
1.25E−01
1.42E−01
1.41E−01
2.71E−02


GATA1
NM_002049
9.91E−02
1.94E−01
6.17E−02
8.06E−02


FUT4
NM_002033
3.13E−02
3.14E−02
1.98E−01
1.75E−01


FAM156B
NM_001099684
1.81E−01
2.15E−01
1.71E−02
2.40E−02


OR5H6
NM_001005479
9.15E−03
3.04E−02
1.46E−01
2.52E−01


MAGEC3
NM_138702
5.90E−02
8.05E−02
1.75E−01
1.23E−01


MAP3K3
NM_203351
1.66E−01
2.40E−01
2.97E−03
2.93E−02


IMP3
NM_018285
1.57E−01
4.68E−02
9.37E−02
1.41E−01


LMOD1
NM_012134
1.97E−01
1.76E−01
2.55E−02
3.99E−02


ARHGAP18
NM_033515
8.10E−03
1.57E−02
2.63E−01
1.54E−01


KCNIP4
NM_001035004
3.44E−02
7.57E−02
1.10E−01
2.21E−01


SKA1
NM_145060
1.21E−01
1.89E−01
1.62E−02
1.15E−01


METRN
NM_024042
2.12E−02
3.02E−03
3.50E−01
6.74E−02


CEACAM1
NM_001024912
5.36E−02
2.55E−02
9.43E−02
2.68E−01


PKD2L2
NM_001258449
1.14E−01
1.92E−01
5.68E−02
7.91E−02


PUM2
NM_001282791
6.90E−02
1.77E−01
2.95E−02
1.68E−01


REPS1
NM_001128617
5.53E−02
1.49E−01
1.53E−01
8.74E−02


HIST1H4J
NM_021968
8.29E−02
6.05E−02
2.37E−01
6.51E−02


LRRC29
NM_001004055
2.15E−01
1.83E−01
1.39E−02
3.40E−02


SMIM5
NM_001162995
6.71E−02
7.41E−02
7.88E−02
2.26E−01


STAT3
NM_213662
7.42E−02
1.81E−01
6.86E−03
1.84E−01


PBRM1
NM_018313
1.66E−01
8.39E−02
2.56E−02
1.72E−01


ISLR2
NM_001130136
1.86E−01
5.17E−02
1.54E−01
5.58E−02


PLEKHF1
NM_024310
1.68E−01
3.23E−02
8.59E−02
1.61E−01


C2orf50
NM_182500
1.55E−01
1.28E−01
6.36E−02
1.01E−01


INPP5A
NM_005539
4.07E−02
1.50E−01
2.90E−02
2.29E−01


ELP5
NM_015362
1.21E−01
1.72E−01
1.18E−01
3.77E−02


DLK2
NM_023932
1.29E−01
1.03E−01
8.37E−02
1.33E−01


MTA2
NM_004739
1.52E−01
7.42E−02
1.82E−01
4.19E−02


SPTBN1
NM_003128
6.26E−02
4.67E−03
2.77E−01
1.07E−01


DEDD
NM_001039712
2.50E−01
1.32E−01
4.30E−02
2.79E−02


PFKFB2
NM_006212
2.41E−01
7.34E−02
1.08E−01
3.07E−02


CPNE8
NM_153634
1.96E−01
1.88E−01
4.78E−02
2.24E−02


PRR35
NM_145270
1.33E−01
2.08E−01
9.34E−02
1.86E−02


PHF21A
NM_016621
2.13E−01
5.21E−02
7.38E−02
1.14E−01


RANBP10
NM_020850
1.86E−02
5.53E−02
1.40E−01
2.41E−01


CCDC22
NM_014008
1.47E−01
1.71E−01
7.13E−02
6.53E−02


ISLR2
NM_001130137
9.77E−02
4.76E−02
1.32E−01
1.78E−01


STPG1
NM_001199012
1.01E−01
2.51E−01
2.50E−02
7.85E−02


TAL1
NM_003189
8.62E−02
7.89E−02
1.24E−01
1.67E−01


LINC01272
NM_001278655
3.63E−02
3.98E−02
2.80E−01
9.98E−02


N4BP2L2
NM_014887
1.64E−02
3.59E−03
1.67E−01
2.70E−01


BCAT1
NM_001178093
1.62E−01
1.08E−01
1.80E−01
7.29E−03


CNGB1
NM_001297
4.32E−02
1.73E−01
7.47E−02
1.67E−01


USP9X
NM_001039590
1.42E−01
1.20E−01
8.49E−02
1.12E−01


VSTM2B
NM_001146339
5.85E−02
1.37E−01
1.06E−01
1.59E−01


ABCC8
NM_001287174
1.18E−03
1.06E−03
2.38E−01
2.19E−01


OR2AG2
NM_001004490
3.95E−02
7.97E−02
1.55E−01
1.86E−01


COMMD1
NM_152516
2.65E−02
1.92E−02
2.60E−01
1.55E−01


TMCO2
NM_001008740
3.68E−02
6.02E−02
2.21E−01
1.43E−01


HOXA4
NM_002141
1.29E−01
1.33E−01
7.57E−02
1.24E−01


G0S2
NM_015714
1.03E−01
2.93E−02
2.41E−01
8.80E−02


KLF7
NM_001270942
5.39E−02
1.87E−02
3.23E−01
6.61E−02


PRAF2
NM_007213
1.38E−01
1.92E−01
2.73E−02
1.04E−01


TPP1
NM_000391
2.22E−02
2.32E−02
9.17E−02
3.25E−01


PIRT
NM_001101387
2.09E−01
1.53E−01
6.55E−02
3.58E−02


CXCL1
NM_001511
2.05E−01
1.96E−01
3.82E−02
2.47E−02


PRSS1
NM_002769
9.53E−02
1.49E−01
2.13E−01
7.41E−03


ZFP28
NM_020828
9.52E−03
5.37E−03
2.58E−01
1.92E−01


CEP83
NM_001042399
4.08E−02
6.87E−02
1.31E−01
2.24E−01


NGDN
NM_015514
2.07E−01
5.99E−02
7.47E−02
1.23E−01


SSX7
NM_173358
1.27E−01
3.27E−01
2.77E−03
8.41E−03


APBB1IP
NM_019043
1.41E−02
1.19E−02
1.53E−01
2.87E−01


OR52D1
NM_001005163
1.30E−01
3.01E−02
1.10E−01
1.96E−01


GTF2F1
NM_002096
6.08E−02
9.78E−02
6.81E−02
2.40E−01


RPS27A
NM_001177413
1.63E−01
3.66E−02
2.27E−02
2.45E−01


HSD17B1
NM_000413
1.05E−01
1.31E−01
1.76E−01
5.69E−02


TCF23
NM_175769
2.78E−02
3.09E−02
3.99E−01
1.05E−02


DHX33
NM_001199699
1.72E−01
1.45E−01
1.14E−01
3.86E−02


MARCO
NM_006770
8.32E−02
1.24E−01
1.99E−01
6.27E−02


TAL2
NM_005421
1.39E−02
1.10E−01
2.73E−01
7.28E−02


SNN
NM_003498
1.13E−01
2.09E−01
9.52E−02
5.20E−02


IMMP1L
NM_144981
1.18E−01
6.45E−02
3.00E−02
2.58E−01


TDRD10
NM_182499
2.01E−01
2.20E−01
2.94E−02
1.92E−02


TBL1X
NM_001139467
4.08E−02
9.20E−02
2.07E−01
1.31E−01


MGAT5B
NM_001199172
2.30E−01
2.30E−01
8.37E−03
2.40E−03


MAFA
NM_201589
1.57E−01
1.74E−01
1.31E−02
1.26E−01


PDXDC1
NM_015027
3.77E−02
1.14E−01
1.28E−01
1.92E−01


TBC1D4
NM_014832
1.88E−01
8.43E−02
8.30E−02
1.17E−01


ZBTB7B
NM_001252406
1.64E−01
1.31E−01
1.18E−01
5.90E−02


FIGN
NM_018086
1.31E−01
1.13E−01
9.22E−02
1.36E−01


LIPT1
NM_145198
6.15E−02
8.32E−02
2.70E−01
5.81E−02


TMC5
NM_001261841
4.80E−02
4.18E−02
3.34E−02
3.50E−01


FBXO42
NM_018994
1.91E−01
1.94E−01
4.41E−02
4.43E−02


ASZ1
NM_130768
2.19E−02
4.94E−03
1.78E−01
2.69E−01


HERPUD2
NM_022373
2.72E−01
9.80E−02
9.97E−02
4.54E−03


LGALS9C
NM_001040078
2.32E−02
4.06E−02
1.81E−01
2.30E−01


SPTBN1
NM_178313
3.12E−01
1.60E−01
2.07E−03
8.67E−04


SLC35C1
NM_018389
4.24E−02
6.17E−02
2.91E−01
8.15E−02


UBASH3B
NM_032873
6.59E−02
2.48E−01
9.47E−02
6.84E−02


CHST5
NM_024533
8.46E−02
6.11E−02
2.45E−01
8.65E−02


RNF121
NM_018320
8.03E−02
3.64E−01
6.97E−03
2.54E−02


IPO4
NM_024658
1.83E−01
2.21E−01
5.25E−02
2.00E−02


KLK7
NM_005046
3.64E−01
9.49E−02
1.32E−02
5.39E−03


VSX2
NM_182894
1.53E−02
4.84E−03
2.91E−01
1.67E−01


MDM2
NM_002392
2.87E−02
6.55E−02
3.19E−02
3.54E−01


GBP4
NM_052941
2.78E−02
2.25E−02
2.93E−01
1.37E−01


AMPD1
NM_000036
6.89E−02
1.01E−01
1.54E−01
1.57E−01


OR4C11
NM_001004700
2.80E−01
1.60E−01
1.29E−02
2.82E−02


CCDC104
NM_001282761
7.44E−02
1.00E−01
2.80E−01
2.73E−02


HTR2A
NM_001165947
1.77E−02
3.09E−01
6.41E−02
9.08E−02


TDRD3
NM_001146070
9.01E−02
3.09E−01
1.28E−02
7.04E−02


SAMD3
NM_001258275
4.95E−03
7.24E−03
5.48E−02
4.16E−01


LIN7A
NM_004664
1.97E−01
6.13E−02
1.16E−01
1.09E−01


C16orf74
NM_206967
1.23E−01
3.19E−02
2.90E−01
3.78E−02


UQCRHL
NM_001089591
6.74E−02
9.98E−02
1.44E−01
1.72E−01


ACADVL
NM_000018
2.57E−02
6.48E−02
3.15E−01
7.76E−02


GUCY1A3
NM_001130684
1.47E−02
4.65E−02
2.14E−01
2.09E−01


GLB1
NM_001135602
1.43E−01
8.76E−02
1.34E−01
1.21E−01


MAST3
NM_015016
8.28E−02
2.04E−02
2.60E−01
1.22E−01


ARMCX3
NM_016607
7.74E−02
7.56E−02
1.43E−01
1.90E−01


C1orf85
NM_001256608
1.45E−01
3.13E−02
8.43E−02
2.25E−01


MYO1B
NM_001161819
1.85E−02
3.80E−02
1.18E−01
3.11E−01


CCDC7
NM_145023
4.53E−02
3.60E−02
1.77E−01
2.27E−01


DLG4
NM_001365
1.57E−01
1.20E−01
6.42E−02
1.45E−01


ATP6V1C1
NM_001695
2.14E−01
2.37E−01
2.43E−02
1.02E−02


FAM78A
NM_033387
2.25E−01
3.56E−02
1.11E−01
1.15E−01


FOXN1
NM_003593
1.34E−01
2.71E−01
4.32E−02
3.81E−02


CDKN2A
NM_000077
2.72E−01
2.03E−01
8.10E−03
4.37E−03


ELL2
NM_012081
9.65E−02
2.12E−01
1.41E−01
3.71E−02


RIIAD1
NM_001144956
3.37E−01
1.47E−01
2.05E−03
1.92E−03


PRKAG3
NM_017431
7.90E−02
5.65E−02
1.82E−01
1.70E−01


HPSE2
NM_001166244
1.60E−01
2.51E−01
1.32E−02
6.30E−02


OR51I1
NM_001005288
2.22E−01
1.90E−01
7.70E−03
6.87E−02


XRCC2
NM_005431
2.33E−02
6.25E−02
1.98E−01
2.05E−01


PPP2R2C
NM_001206996
8.06E−02
1.79E−01
7.40E−02
1.55E−01


ATF6
NM_007348
1.69E−01
2.66E−01
2.71E−02
2.67E−02


ETV6
NM_001987
9.22E−02
6.90E−02
9.05E−02
2.37E−01


NAIP
NM_004536
1.54E−02
1.09E−01
2.35E−01
1.30E−01


XAGE1E
NM_001097604
8.23E−02
2.00E−01
1.38E−01
6.86E−02


IPP
NM_001145349
2.24E−01
2.38E−01
1.45E−02
1.30E−02


DYRK1A
NM_001396
4.39E−02
5.43E−02
1.08E−01
2.84E−01


DYRK4
NM_003845
1.11E−01
1.15E−01
2.08E−01
5.58E−02


SIN3A
NM_015477
2.53E−02
7.65E−02
1.22E−01
2.67E−01


C10orf71
NM_001135196
9.59E−02
2.66E−01
1.77E−02
1.11E−01


MAP2K2
NM_030662
1.88E−01
3.21E−02
1.69E−01
1.02E−01


BMPR1B
NM_001256793
8.80E−02
1.11E−01
2.12E−01
8.10E−02


BCL7B
NM_001707
9.86E−03
3.05E−02
9.44E−02
3.57E−01


LMF1
NM_022773
3.65E−03
1.15E−02
2.12E−01
2.65E−01


DOCK8
NM_203447
2.27E−01
2.53E−01
1.92E−03
1.03E−02


ODF3L2
NM_182577
1.12E−01
1.29E−01
1.62E−01
8.92E−02


TRUB2
NM_015679
1.80E−01
1.21E−01
6.26E−02
1.30E−01


ACSL6
NM_001205251
1.15E−01
2.69E−01
3.73E−02
7.29E−02


PDE1B
NM_001165975
2.21E−01
1.55E−01
5.60E−02
6.23E−02


SRPR
NM_001177842
4.94E−02
1.92E−01
9.23E−02
1.61E−01


HIPK1
NM_198269
1.52E−01
7.91E−02
2.12E−01
5.09E−02


OR5D16
NM_001005496
1.27E−01
4.56E−02
1.65E−01
1.58E−01


BFSP1
NM_001195
4.43E−02
6.44E−02
2.74E−01
1.13E−01


MAPK10
NM_002753
7.05E−02
1.58E−01
1.46E−01
1.21E−01


CLEC12A
NM_201623
1.93E−02
7.76E−02
2.34E−01
1.66E−01


DYNLRB1
NM_014183
1.78E−01
1.63E−01
6.30E−02
9.34E−02


COPZ1
NM_001271735
9.47E−02
8.42E−02
1.88E−01
1.30E−01


CTBP2
NM_001083914
1.13E−02
3.18E−02
3.16E−01
1.38E−01


GSG1
NM_001206843
1.36E−01
1.42E−01
1.54E−01
6.58E−02


SLC4A2
NM_001199692
3.18E−01
1.64E−01
6.15E−03
8.35E−03


HIST1H3A
NM_003529
1.38E−01
1.42E−01
7.20E−02
1.46E−01


SLC7A1
NM_003045
3.64E−02
1.45E−02
1.15E−01
3.33E−01


MORC1
NM_014429
7.29E−02
1.56E−01
1.55E−01
1.17E−01


TLE3
NM_020908
1.47E−01
7.60E−02
1.50E−02
2.62E−01


LAMTOR2
NM_001145264
4.50E−02
6.94E−02
1.46E−01
2.40E−01


EIF3H
NM_003756
7.23E−02
7.78E−02
2.06E−01
1.45E−01


SCD5
NM_001037582
6.32E−02
7.72E−02
1.23E−01
2.38E−01


ITPKA
NM_002220
6.38E−02
1.56E−01
1.33E−01
1.50E−01


LIPH
NM_139248
4.89E−02
1.44E−01
1.98E−01
1.11E−01


WDR18
NM_024100
1.78E−01
1.30E−01
1.50E−01
4.54E−02


WDR55
NM_017706
1.92E−02
1.77E−02
2.72E−01
1.95E−01


ALDH8A1
NM_022568
1.28E−01
1.27E−01
4.81E−02
2.02E−01


TMEM256
NM_152766
1.92E−01
2.64E−01
3.55E−02
1.29E−02


MYH10
NM_001256095
1.64E−01
2.47E−01
5.18E−02
4.23E−02


TERF2IP
NM_018975
8.64E−03
2.40E−03
4.29E−01
6.47E−02


UBE2V2
NM_003350
1.37E−01
1.12E−01
5.47E−02
2.02E−01


SLC39A13
NM_001128225
5.56E−02
5.96E−02
1.17E−01
2.73E−01


MUC22
NM_001198815
2.24E−02
1.47E−01
9.82E−02
2.38E−01


SLC35F2
NM_017515
1.42E−01
8.06E−02
2.33E−01
5.27E−02


PHLPP2
NM_001289003
5.70E−02
7.01E−02
1.05E−01
2.76E−01


LTA
NM_001159740
9.85E−02
2.21E−01
1.12E−01
7.82E−02


MATR3
NM_001194954
4.23E−02
2.21E−02
3.12E−01
1.33E−01


DDRGK1
NM_023935
2.23E−02
1.30E−01
1.02E−01
2.55E−01


THBD
NM_000361
6.09E−02
1.59E−01
2.77E−01
1.33E−02


MYO15A
NM_016239
2.34E−01
5.88E−02
1.34E−02
2.04E−01


MRPL55
NM_181456
1.21E−01
1.65E−01
1.27E−01
9.69E−02


OR5R1
NM_001004744
7.03E−02
3.82E−01
1.37E−02
4.42E−02


FBXL14
NM_152441
8.95E−02
1.27E−01
2.16E−01
7.80E−02


JAZF1
NM_175061
3.84E−02
8.26E−02
1.73E−01
2.16E−01


TRAPPC3
NM_001270895
1.50E−01
5.39E−02
2.01E−01
1.06E−01


MAPT
NM_005910
1.43E−01
1.61E−01
1.43E−01
6.30E−02


FBXO32
NM_148177
1.24E−01
2.97E−01
6.82E−02
2.20E−02


FAIM
NM_001033032
2.14E−02
4.96E−02
3.17E−01
1.23E−01


TMEM31
NM_182541
4.30E−01
6.73E−02
1.41E−02
5.85E−04


OR5AN1
NM_001004729
6.30E−03
6.88E−03
3.90E−01
1.09E−01


C1orf21
NM_030806
2.99E−01
1.87E−01
2.55E−02
2.16E−03


CKMT1A
NM_001015001
5.30E−02
1.47E−01
1.71E−01
1.43E−01


TMEM11
NM_003876
1.19E−01
4.73E−02
2.42E−01
1.06E−01


TBX18
NM_001080508
3.17E−02
9.74E−03
1.47E−01
3.26E−01


THSD1
NM_199263
2.56E−02
7.46E−03
2.42E−01
2.42E−01


ZBTB18
NM_001278196
2.58E−01
2.40E−01
6.35E−03
1.22E−02


ANKRD26
NM_014915
7.58E−02
3.80E−01
9.36E−03
5.30E−02


TMED5
NM_001167830
1.66E−01
2.37E−01
4.97E−02
6.60E−02


PAIP2B
NM_020459
6.06E−02
2.20E−02
3.50E−01
8.73E−02


CEP112
NM_001037325
4.29E−02
1.45E−02
2.35E−01
2.27E−01


MRPL23
NM_021134
3.81E−02
2.99E−02
2.96E−01
1.56E−01


UBA5
NM_198329
1.96E−01
3.07E−01
5.97E−03
1.14E−02


DYNLT3
NM_006520
7.26E−02
7.41E−02
2.02E−01
1.72E−01


PLG
NM_000301
3.43E−03
1.86E−02
3.39E−01
1.61E−01


SLC12A6
NM_001042497
7.80E−03
6.65E−03
2.11E−01
2.98E−01


LPAR6
NM_001162497
1.17E−01
1.40E−01
1.59E−01
1.07E−01


OSR1
NM_145260
1.02E−01
8.56E−02
6.14E−02
2.75E−01


CLEC4E
NM_014358
1.90E−01
1.32E−01
5.64E−02
1.46E−01


MED14
NM_004229
1.55E−01
9.15E−02
2.53E−01
2.63E−02


SLCO1B7
NM_001009562
1.36E−01
1.19E−01
1.28E−01
1.43E−01


MARCHF1
NM_017923
3.11E−01
1.52E−01
5.65E−03
5.68E−02


DAPK1
NM_001288731
7.43E−02
7.38E−02
2.12E−01
1.66E−01


CDK20
NM_001039803
1.69E−01
2.36E−01
1.01E−01
2.03E−02


ITM2C
NM_030926
1.60E−02
7.28E−03
2.00E−01
3.04E−01


XAGE2
NM_130777
1.90E−01
1.99E−01
9.83E−02
4.06E−02


ROS1
NM_002944
6.20E−02
5.57E−02
4.25E−02
3.68E−01


IPO7
NM_006391
8.25E−03
5.60E−03
3.39E−01
1.76E−01


C20orf197
NM_173644
1.76E−01
5.01E−02
1.24E−01
1.79E−01


OPN5
NM_181744
1.12E−01
1.20E−01
1.52E−01
1.48E−01


SMAD1
NM_005900
1.93E−01
1.79E−01
1.20E−01
3.91E−02


PAK3
NM_001128168
3.83E−02
6.82E−02
1.64E−01
2.61E−01


CTRL
NM_001907
1.70E−01
2.02E−01
8.99E−02
6.85E−02


PITX2
NM_001204398
6.92E−02
3.39E−01
6.76E−02
5.58E−02


MEF2C
NM_001193349
4.35E−02
5.50E−02
2.62E−02
4.07E−01


G3BP1
NM_198395
1.02E−01
2.06E−01
9.98E−02
1.25E−01


SLC35A2
NM_005660
3.60E−01
1.12E−01
1.31E−02
4.85E−02


SPCS3
NM_021928
1.98E−01
2.67E−02
1.16E−01
1.92E−01


CCSER2
NM_001284242
2.05E−01
3.18E−01
8.88E−03
1.44E−03


SOS1
NM_005633
5.78E−02
1.14E−01
7.40E−02
2.88E−01


EIF2AK2
NM_001135652
2.04E−02
4.42E−02
2.84E−01
1.85E−01


SRP68
NM_001260503
3.10E−02
2.06E−02
2.46E−01
2.37E−01


TRIM68
NM_018073
5.16E−02
1.29E−01
6.06E−02
2.93E−01


GSTK1
NM_001143680
2.39E−01
1.24E−01
1.43E−01
2.92E−02


AKAP14
NM_178813
2.21E−01
1.86E−01
2.92E−02
9.95E−02


DNAH8
NM_001206927
8.41E−02
2.81E−01
1.87E−02
1.52E−01


CCDC88B
NM_032251
1.40E−01
1.36E−01
1.43E−01
1.18E−01


PTPRR
NM_001207016
6.90E−02
5.20E−02
1.68E−01
2.48E−01


SLC35F3
NM_173508
4.47E−03
5.67E−03
3.27E−01
1.99E−01


CD44
NM_001202557
1.84E−01
5.87E−02
2.77E−01
1.73E−02


LRRC36
NM_001161575
2.97E−01
2.16E−01
2.06E−02
3.38E−03


C1orf27
NM_001164246
1.42E−02
3.07E−02
4.08E−01
8.49E−02


ALKBH6
NM_032878
7.27E−02
1.19E−01
3.44E−01
2.13E−03


TLR10
NM_030956
2.43E−01
2.38E−01
2.35E−02
3.36E−02


C6orf47
NM_021184
1.35E−01
1.19E−01
1.08E−01
1.76E−01


SLFNL1
NM_144990
3.31E−02
1.24E−01
1.26E−01
2.55E−01


RASSF1
NM_001206957
1.71E−01
5.61E−02
2.25E−01
8.72E−02


BUB1B
NM_001211
1.90E−01
2.03E−01
1.03E−01
4.32E−02


ADK
NM_001202449
1.30E−01
2.76E−02
1.88E−01
1.93E−01


PSMD10
NM_002814
1.05E−01
4.54E−02
1.54E−01
2.36E−01


PSMB4
NM_002796
2.83E−02
2.72E−02
1.95E−01
2.90E−01


PWP1
NM_007062
1.93E−04
4.42E−04
1.59E−01
3.81E−01


EFCAB3
NM_001144933
3.99E−02
2.98E−02
3.66E−01
1.06E−01


AKT1
NM_005163
1.76E−01
1.38E−01
8.49E−02
1.42E−01


OR12D2
NM_013936
1.41E−01
2.12E−01
2.48E−02
1.65E−01


NAPSA
NM_004851
1.50E−01
2.87E−01
4.75E−02
5.79E−02


TRAK1
NM_001265609
2.45E−01
2.21E−01
4.50E−02
3.25E−02


USP33
NM_015017
2.57E−01
2.40E−01
1.20E−02
3.50E−02


POU5F1
NM_203289
1.72E−01
3.28E−01
1.22E−02
3.16E−02


KRTAP19-8
NM_001099219
4.64E−02
3.26E−02
1.31E−01
3.35E−01


PLEKHG5
NM_001042665
1.64E−02
9.96E−03
3.27E−01
1.92E−01


SMPDL3A
NM_006714
1.92E−01
2.19E−01
6.63E−02
6.94E−02


HIF3A
NM_ 152794
3.75E−03
1.12E−02
2.96E−01
2.35E−01


RAB3IP
NM_022456
1.54E−01
2.27E−01
3.67E−02
1.30E−01


HIST1H2BH
NM_003524
2.46E−02
4.05E−02
3.79E−01
1.04E−01


FIGF
NM_004469
1.02E−01
1.91E−01
2.39E−01
1.58E−02


CHD7
NM_017780
1.68E−01
1.75E−01
7.75E−02
1.28E−01


ZNF664-FAM101A
NM_001204299
3.10E−01
5.49E−02
1.65E−01
1.91E−02


AASDHPPT
NM_015423
7.56E−02
7.13E−02
1.68E−01
2.34E−01


AQP2
NM_000486
2.60E−01
2.28E−01
5.97E−02
7.44E−04


ZNF808
NM_001039886
4.43E−02
3.79E−02
1.39E−01
3.28E−01


VCX
NM_013452
1.04E−01
1.61E−01
2.35E−01
4.96E−02


SLC4A8
NM_001258403
2.28E−03
9.86E−03
3.26E−01
2.12E−01


USP44
NM_032147
1.36E−01
1.87E−01
1.22E−01
1.05E−01


ACSS1
NM_001252676
3.25E−02
2.20E−02
2.05E−01
2.92E−01


AIFM2
NM_032797
4.79E−02
3.78E−02
2.18E−01
2.48E−01


KHDC1L
NM_001126063
4.45E−02
4.77E−02
4.11E−01
4.90E−02


VN1R5
NM_173858
1.18E−01
3.55E−02
1.68E−01
2.31E−01


DNAJA4
NM_001130183
3.57E−01
8.72E−02
9.57E−02
1.24E−02


MID1
NM_001193277
1.84E−01
1.56E−01
8.78E−02
1.25E−01


PARP9
NM_001146104
8.81E−02
4.84E−02
2.82E−01
1.35E−01


DHTKD1
NM_018706
9.40E−02
9.62E−02
6.68E−02
2.96E−01


PIK3C2A
NM_002645
1.79E−01
1.69E−01
1.89E−01
1.62E−02


RHPN2
NM_033103
9.29E−02
2.99E−02
1.56E−01
2.75E−01


FOCAD
NM_017794
1.08E−01
1.27E−01
2.62E−01
5.59E−02


LRP10
NM_014045
1.99E−01
2.20E−01
6.49E−02
6.94E−02


FSD1
NM_024333
2.50E−01
2.33E−01
6.58E−02
5.10E−03


TRAP1
NM_016292
2.02E−01
2.37E−01
3.23E−03
1.12E−01


CD209
NM_001144897
1.84E−01
4.68E−02
6.21E−02
2.62E−01


RICTOR
NM_152756
2.03E−01
2.11E−01
9.07E−02
4.93E−02


MDH1
NM_001199112
2.89E−02
2.24E−02
4.47E−01
5.64E−02


ZNF763
NM_001012753
1.54E−01
1.66E−01
3.22E−02
2.03E−01


PTGR2
NM_152444
1.20E−01
1.31E−01
9.56E−02
2.09E−01


MINPP1
NM_001178118
2.61E−01
2.81E−01
7.58E−03
6.18E−03


AQP8
NM_001169
2.06E−01
3.48E−01
6.86E−04
1.80E−03


STX3
NM_004177
1.38E−01
4.66E−02
2.21E−01
1.50E−01


MCAM
NM_006500
3.28E−02
1.17E−01
3.62E−01
4.41E−02


PSG6
NM_001031850
2.41E−01
1.36E−01
8.61E−02
9.40E−02


SLC35G4
NM_001282300
8.00E−02
8.48E−02
2.04E−01
1.89E−01


FRMPD3
NM_032428
1.06E−02
1.05E−02
2.23E−01
3.12E−01


SELENOF
NM_004261
1.78E−01
1.45E−01
4.84E−02
1.85E−01


CTNNA2
NM_001282599
1.30E−01
1.38E−01
2.35E−01
5.43E−02


COL19A1
NM_001858
2.21E−01
1.14E−01
1.62E−01
6.14E−02


OPRK1
NM_000912
8.70E−02
1.90E−01
1.92E−01
8.89E−02


SLC2A6
NM_001145099
2.03E−01
4.87E−02
4.76E−02
2.60E−01


GFRA2
NM_001165038
2.00E−01
2.90E−01
4.04E−02
2.93E−02


UNKL
NM_001276414
1.98E−01
1.72E−01
1.22E−02
1.78E−01


JADE3
NM_014735
1.56E−01
1.46E−01
9.25E−02
1.65E−01


ZAR1
NM_175619
2.02E−01
3.83E−02
1.81E−01
1.39E−01


STAG3
NM_012447
1.64E−01
1.41E−01
6.67E−02
1.88E−01


SNX27
NM_030918
2.55E−01
9.55E−02
7.40E−03
2.03E−01


SERPINB12
NM_080474
1.40E−01
2.79E−01
6.47E−02
7.65E−02


NXPE3
NM_001134456
3.55E−01
1.05E−01
9.96E−03
9.11E−02


SEMA4B
NM_020210
1.01E−01
4.39E−01
1.51E−02
6.46E−03


LHFPL1
NM_178175
2.15E−01
1.13E−01
1.80E−01
5.40E−02


ZNF92
NM_152626
2.60E−01
2.36E−01
5.01E−02
1.57E−02


CNR2
NM_001841
2.02E−01
4.62E−02
4.08E−02
2.73E−01


PRDM8
NM_020226
2.95E−01
1.33E−01
2.00E−02
1.15E−01


KLB
NM_175737
1.87E−01
2.00E−01
4.19E−02
1.34E−01


FAM115A
NM_001206938
8.83E−02
6.13E−02
2.36E−01
1.77E−01


TMEM95
NM_198154
3.53E−01
1.90E−01
8.22E−03
1.18E−02


SPG21
NM_001127889
1.33E−01
1.72E−01
6.90E−02
1.90E−01


SLC35E2
NM_001199787
1.92E−01
1.75E−01
5.25E−03
1.91E−01


ETFB
NM_001985
1.91E−01
3.52E−01
1.01E−02
1.11E−02


HPR
NM_020995
4.31E−03
4.36E−02
3.30E−01
1.87E−01


OR2T1
NM_030904
1.40E−02
5.06E−02
2.44E−01
2.56E−01


ARPP21
NM_001267617
3.59E−01
1.50E−01
6.58E−03
4.83E−02


OR9Q1
NM_001005212
2.22E−01
2.19E−01
1.02E−01
2.21E−02


ATXN1L
NM_001137675
2.66E−01
9.37E−02
7.65E−02
1.29E−01


AP3B2
NM_001278511
2.59E−02
4.75E−03
2.83E−01
2.52E−01


IVL
NM_005547
1.13E−01
1.04E−01
3.03E−01
4.73E−02


SCARF1
NM_145350
1.15E−01
8.88E−02
1.46E−01
2.18E−01


GPX1
NM_000581
1.11E−01
2.68E−03
1.53E−01
3.00E−01


NABP2
NM_024068
1.72E−02
5.31E−02
3.30E−01
1.67E−01


BCKDHB
NM_000056
2.09E−01
1.11E−01
8.21E−02
1.65E−01


MRPL30
NM_145212
1.02E−01
1.46E−01
2.06E−01
1.14E−01


FIBP
NM_004214
4.81E−02
3.55E−02
4.01E−01
8.42E−02


BCAS1
NM_003657
4.71E−02
6.33E−02
3.81E−01
7.77E−02


BMP2K
NM_198892
1.27E−01
6.69E−02
1.41E−01
2.34E−01


SLC25A36
NM_018155
5.59E−02
2.27E−01
1.63E−01
1.23E−01


MACROD2
NM_080676
2.84E−01
2.71E−01
5.68E−03
8.70E−03


KDELR1
NM_006801
1.93E−01
3.20E−01
5.21E−02
5.09E−03


C3orf18
NM_001171741
9.85E−02
1.11E−01
2.65E−02
3.34E−01


CDK2AP1
NM_001270434
1.08E−02
1.65E−02
3.10E−01
2.33E−01


FCGRT
NM_001136019
1.97E−01
9.06E−02
2.65E−01
1.93E−02


TNIP1
NM_001258454
8.72E−02
6.11E−02
1.44E−01
2.80E−01


SRM
NM_003132
1.53E−02
7.28E−02
2.82E−01
2.03E−01


COMMD10
NM_016144
2.02E−02
2.40E−02
2.88E−01
2.40E−01


ARL4A
NM_001195396
1.52E−01
1.54E−01
2.27E−01
4.09E−02


CPSF2
NM_017437
9.47E−02
1.51E−01
2.04E−01
1.23E−01


KCNN2
NM_170775
2.82E−01
1.15E−01
1.07E−01
6.86E−02


HEY2
NM_012259
2.22E−01
1.38E−01
6.49E−02
1.49E−01


PIP5K1C
NM_012398
1.76E−01
7.82E−02
1.41E−01
1.78E−01


PASK
NM_001252122
1.28E−01
1.30E−01
5.12E−02
2.64E−01


TBC1D10C
NM_198517
9.11E−02
1.36E−01
3.10E−01
3.66E−02


DGCR6
NM_005675
2.40E−01
1.19E−01
1.51E−01
6.43E−02


CHST6
NM_021615
2.52E−01
2.86E−01
1.86E−02
1.91E−02


SCML4
NM_001286409
8.26E−02
1.14E−01
2.53E−01
1.26E−01


HOOK2
NM_001100176
2.98E−01
2.52E−01
9.64E−03
1.66E−02


MLC1
NM_015166
1.96E−01
2.33E−01
9.23E−02
5.52E−02


SMC5
NM_015110
1.94E−01
1.36E−01
1.05E−01
1.42E−01


MARCHF5
NM_017824
2.68E−01
1.36E−01
1.59E−01
1.45E−02


WNT5B
NM_030775
1.29E−01
3.56E−01
2.84E−02
6.40E−02


CSNK1G2
NM_001319
9.37E−02
1.03E−01
1.57E−01
2.24E−01


C6orf223
NM_153246
4.82E−02
9.72E−02
8.35E−02
3.49E−01


HNRNPL
NM_001533
1.42E−01
1.60E−01
1.48E−01
1.29E−01


CMTM4
NM_181521
2.27E−01
6.97E−02
1.36E−01
1.46E−01


NOTCH2
NM_024408
2.03E−01
2.87E−01
4.97E−02
4.02E−02


EPPIN-WFDC6
NM_001198986
1.01E−02
5.12E−02
2.34E−01
2.85E−01


NOP16
NM_001256539
2.82E−01
2.60E−01
2.76E−02
1.16E−02


SPAM1
NM_001174045
7.89E−02
3.57E−01
5.63E−02
8.93E−02


ATP6V1H
NM_213620
1.18E−01
8.14E−02
2.10E−01
1.72E−01


NFS1
NM_001198989
1.80E−01
7.23E−02
8.66E−02
2.43E−01


CBFA2T3
NM_005187
1.08E−02
1.37E−02
1.62E−01
3.96E−01


HS3ST4
NM_006040
5.64E−02
6.40E−02
1.31E−01
3.31E−01


C18orf21
NM_001201476
2.25E−02
8.46E−03
4.52E−01
9.95E−02


APOLD1
NM_030817
1.25E−01
1.07E−01
2.87E−01
6.31E−02


KLHL22
NM_032775
1.69E−01
7.74E−02
1.48E−01
1.88E−01


CCDC136
NM_001201372
5.97E−02
4.65E−02
1.89E−01
2.88E−01


KIAA1024
NM_015206
2.83E−01
1.26E−01
7.02E−02
1.03E−01


NKG7
NM_005601
3.78E−02
3.03E−02
3.88E−01
1.27E−01


TTC7A
NM_020458
2.58E−01
1.53E−01
2.59E−02
1.47E−01


ATP1A3
NM_001256214
2.08E−01
2.42E−01
3.13E−02
1.03E−01


BATF2
NM_138456
2.07E−01
3.04E−01
6.63E−02
6.99E−03


SPANXA1
NM_013453
1.63E−01
1.16E−01
8.14E−02
2.24E−01


ID1
NM_181353
1.32E−01
3.91E−01
2.57E−02
3.55E−02


QTRTD1
NM_024638
2.00E−02
1.31E−01
2.94E−01
1.39E−01


AIMP1
NM_001142415
2.25E−01
2.18E−01
7.84E−02
6.35E−02


RASGRF2
NM_006909
1.21E−01
1.56E−01
5.19E−02
2.56E−01


KHDRBS1
NM_006559
2.88E−01
1.30E−01
7.89E−02
8.78E−02


LCMT2
NM_014793
1.81E−01
2.82E−01
5.22E−02
6.98E−02


EXOC6
NM_019053
8.91E−02
1.87E−01
1.75E−01
1.34E−01


NIF3L1
NM_021824
3.36E−02
9.66E−03
3.23E−01
2.19E−01


PSMB1
NM_002793
6.99E−02
1.30E−01
5.97E−02
3.26E−01


DOC2A
NM_003586
1.46E−01
4.81E−02
2.35E−01
1.56E−01


NUDT10
NM_153183
1.93E−01
2.48E−01
7.28E−02
7.19E−02


RAC3
NM_005052
7.91E−02
1.11E−02
1.39E−01
3.57E−01


SDHA
NM_004168
4.13E−02
2.82E−02
2.35E−01
2.83E−01


GPBAR1
NM_170699
2.71E−01
4.64E−02
1.55E−01
1.15E−01


AIFM3
NM_001146288
1.76E−01
3.09E−01
8.29E−02
1.90E−02


CCDC94
NM_018074
1.04E−01
1.36E−01
1.61E−01
1.86E−01


NFKBIE
NM_004556
3.59E−02
5.07E−01
8.56E−03
3.69E−02


HDLBP
NM_203346
1.32E−01
2.03E−01
2.26E−01
2.65E−02


KCNQ3
NM_004519
7.52E−02
1.96E−02
2.31E−01
2.63E−01


SLURP1
NM_020427
1.80E−01
6.85E−02
1.74E−01
1.66E−01


PTPRB
NM_001206971
1.42E−01
2.21E−01
4.33E−02
1.83E−01


NR1H4
NM_001206993
6.83E−02
5.66E−03
1.83E−01
3.32E−01


CXorf23
NM_198279
1.91E−01
2.81E−01
9.98E−02
1.79E−02


HOXB13
NM_006361
2.52E−02
1.59E−02
3.16E−01
2.33E−01


FCAR
NM_133278
3.50E−01
1.19E−01
2.21E−02
9.90E−02


GPT
NM_005309
3.63E−03
1.99E−02
2.88E−01
2.80E−01


GLIPR1
NM_006851
9.36E−02
1.29E−01
2.47E−01
1.22E−01


PP2D1
NM_001252657
7.97E−02
7.64E−02
2.14E−01
2.21E−01


FUT6
NM_000150
2.69E−01
3.20E−01
1.51E−03
8.09E−04


IFT140
NM_014714
3.23E−02
3.77E−01
1.24E−01
5.79E−02


SIN3B
NM_015260
8.64E−02
1.73E−01
1.71E−01
1.61E−01


UXS1
NM_001253875
1.63E−01
4.04E−01
1.90E−02
6.29E−03


SLC6A12
NM_001206931
1.38E−01
1.07E−01
2.15E−01
1.32E−01


SYT11
NM_152280
1.24E−01
1.22E−01
1.81E−01
1.67E−01


MRPS10
NM_018141
2.42E−02
6.26E−02
2.25E−01
2.82E−01


TMC2
NM_080751
1.72E−01
3.25E−01
2.59E−02
7.20E−02


IP6K3
NM_054111
1.02E−01
2.76E−01
1.28E−01
8.93E−02


NCAPD2
NM_014865
8.87E−02
1.56E−01
2.42E−01
1.09E−01


C15orf41
NM_001130010
8.93E−02
8.09E−02
2.20E−01
2.04E−01


ZNF200
NM_003454
6.11E−02
6.08E−02
2.69E−01
2.04E−01


ACADL
NM_001608
1.72E−01
6.28E−02
2.14E−01
1.47E−01


GP1BB
NM_000407
3.17E−01
1.64E−01
1.10E−01
5.79E−03


TTLL11
NM_001139442
4.77E−02
2.58E−02
3.52E−01
1.71E−01


PRR5
NM_001017528
1.49E−01
3.72E−01
2.55E−02
5.02E−02


BMPR2
NM_001204
8.93E−02
3.74E−01
8.66E−03
1.24E−01


PTGES3
NM_006601
1.78E−01
1.37E−01
1.22E−01
1.60E−01


BDKRB1
NM_000710
8.75E−02
5.02E−02
2.07E−01
2.54E−01


NXF1
NM_001081491
1.13E−01
7.40E−02
1.14E−01
2.97E−01


HAND2
NM_021973
1.96E−01
1.82E−01
4.20E−02
1.78E−01


GRID2
NM_001286838
3.77E−01
6.98E−02
8.10E−02
7.16E−02


KLHL30
NM_198582
9.96E−02
1.62E−01
2.29E−01
1.09E−01


CCR6
NM_004367
3.74E−02
7.64E−02
1.08E−01
3.77E−01


KIAA0368
NM_001080398
1.20E−01
1.68E−01
7.28E−02
2.39E−01


PRPF38A
NM_032864
1.05E−01
1.10E−01
1.38E−01
2.46E−01


MAP3K13
NM_004721
2.60E−01
3.02E−01
9.79E−03
2.79E−02


CORO6
NM_032854
3.60E−01
1.92E−01
2.78E−02
2.05E−02


ARHGEF25
NM_001111270
2.64E−01
1.63E−01
7.49E−02
9.78E−02


AMOTL2
NM_001278683
2.56E−01
2.33E−01
7.09E−02
4.02E−02


TRMT5
NM_020810
3.31E−02
1.59E−01
5.95E−02
3.50E−01


ARSF
NM_001201538
4.17E−01
8.71E−02
5.06E−02
4.65E−02


PACS2
NM_001100913
1.64E−01
9.48E−02
1.86E−01
1.56E−01


LSM7
NM_016199
8.05E−02
1.88E−01
1.59E−01
1.74E−01


MMP11
NM_005940
2.87E−02
1.95E−02
4.01E−01
1.52E−01


SLC25A37
NM_016612
3.33E−02
2.85E−01
1.41E−01
1.43E−01


KRT14
NM_000526
1.31E−03
6.86E−04
2.96E−01
3.04E−01


ANKRD37
NM_181726
6.98E−02
3.64E−02
2.50E−01
2.47E−01


EPHA7
NM_001288629
3.13E−02
9.11E−02
2.54E−01
2.28E−01


CSTF1
NM_001033521
8.49E−03
4.90E−03
2.01E−01
3.90E−01


SPATA13
NM_153023
3.45E−02
1.05E−01
1.65E−01
3.01E−01


HN1
NM_016185
2.11E−01
1.44E−01
2.05E−01
4.55E−02


PARD6G
NM_032510
3.63E−01
1.57E−01
5.02E−02
3.56E−02


GAPDHS
NM_014364
1.67E−01
3.86E−01
3.87E−02
1.32E−02


SYNCRIP
NM_001159673
2.39E−01
4.78E−02
6.42E−02
2.55E−01


MXI1
NM_130439
3.71E−01
2.25E−01
2.06E−03
7.74E−03


DMPK
NM_001081563
2.70E−01
6.36E−02
1.52E−01
1.20E−01


IPO5
NM_002271
3.00E−01
9.77E−02
8.80E−02
1.21E−01


ATP10B
NM_025153
4.20E−01
1.35E−01
7.80E−03
4.36E−02


RPL17-C18orf32
NM_001199355
2.48E−01
1.66E−01
7.95E−02
1.13E−01


TRIM42
NM_152616
1.60E−01
1.51E−01
2.75E−02
2.69E−01


CDC20
NM_001255
3.47E−01
2.53E−01
2.75E−03
4.93E−03


ATF3
NM_001030287
1.39E−01
2.04E−01
1.80E−01
8.59E−02


FARS2
NM_006567
1.93E−01
1.84E−01
2.05E−01
2.65E−02


MYO1C
NM_033375
6.64E−03
1.74E−02
2.74E−01
3.10E−01


POLR1D
NM_001206559
2.42E−01
2.22E−01
9.06E−02
5.47E−02


LUC7L2
NM_001270643
5.69E−02
9.42E−02
2.52E−01
2.07E−01


RASAL1
NM_001193520
1.59E−01
1.49E−01
1.69E−01
1.33E−01


DNAJC25-GNG10
NM_004125
9.52E−02
2.01E−01
1.91E−01
1.23E−01


MAGEB1
NM_002363
1.51E−01
2.86E−01
1.65E−01
8.56E−03


TJP2
NM_001170414
2.68E−01
1.78E−01
4.08E−02
1.24E−01


ATP1A1
NM_001160233
4.31E−02
6.71E−02
4.31E−01
6.93E−02


RRM2
NM_001165931
9.44E−02
1.94E−02
2.97E−01
2.00E−01


CCDC50
NM_178335
1.77E−02
5.74E−03
3.82E−01
2.06E−01


CTDSP1
NM_001206878
6.09E−02
1.89E−01
1.06E−01
2.56E−01


TMEM89
NM_001008269
6.32E−02
1.46E−01
1.53E−01
2.50E−01


BICD2
NM_015250
1.57E−01
2.77E−01
1.57E−01
2.20E−02


KLHL25
NM_022480
2.31E−01
3.78E−02
2.73E−01
7.20E−02


CCDC33
NM_025055
1.51E−01
2.59E−01
1.06E−01
9.79E−02


SNX32
NM_152760
3.54E−01
1.39E−01
2.66E−02
9.35E−02


MATR3
NM_018834
2.70E−01
8.08E−02
3.01E−02
2.34E−01


SLC46A3
NM_001135919
2.38E−01
1.43E−01
9.04E−02
1.43E−01


NLRC4
NM_001199139
1.69E−01
8.32E−02
3.03E−01
5.84E−02


PSMF1
NM_178578
4.61E−02
1.38E−01
3.41E−04
4.30E−01


CPNE9
NM_153635
2.83E−02
9.97E−03
2.88E−01
2.89E−01


KLF11
NM_001177716
2.12E−01
8.38E−02
1.35E−01
1.85E−01


CSN3
NM_005212
1.39E−01
1.09E−01
1.87E−01
1.82E−01


TRIM39
NM_021253
2.79E−01
3.26E−01
7.46E−03
4.01E−03


YY1AP1
NM_001198903
1.37E−01
1.13E−01
3.06E−01
6.13E−02


BTN2A1
NM_001197234
3.01E−02
5.61E−02
2.67E−01
2.64E−01


SMARCAD1
NM_001254949
1.80E−03
3.11E−03
1.15E−01
4.98E−01


PHYHIPL
NM_001143774
1.77E−02
2.24E−02
1.32E−01
4.45E−01


PHACTR4
NM_023923
1.07E−02
1.71E−03
2.45E−01
3.62E−01


LTA4H
NM_000895
5.58E−02
5.70E−02
1.02E−01
4.05E−01


TMEM30B
NM_001017970
1.72E−01
1.99E−01
1.26E−01
1.22E−01


CCDC9
NM_015603
1.39E−01
1.01E−01
1.74E−01
2.05E−01


NOV
NM_002514
3.30E−01
1.38E−01
8.11E−02
7.08E−02


NDUFB5
NM_002492
2.83E−01
2.98E−02
1.27E−01
1.80E−01


ARHGEF33
NM_001145451
2.43E−01
2.49E−01
4.59E−02
8.27E−02


ALG1
NM_019109
1.40E−01
2.63E−01
1.73E−01
4.46E−02


MAP4K4
NM_001242559
2.72E−01
8.06E−02
3.90E−02
2.28E−01


KCTD8
NM_198353
2.39E−01
1.20E−01
2.08E−01
5.38E−02


PDE4D
NM_001197219
2.14E−01
1.52E−01
1.27E−01
1.29E−01


PCDHGA4
NM_018917
7.76E−02
5.51E−02
4.20E−01
6.89E−02


OPN1SW
NM_001708
7.01E−02
1.83E−02
3.88E−01
1.45E−01


YBEY
NM_058181
8.97E−02
1.22E−01
2.15E−01
1.95E−01


ASRGL1
NM_001083926
7.12E−02
2.39E−02
2.65E−01
2.62E−01


NDUFAB1
NM_005003
3.69E−01
2.24E−01
1.71E−02
1.22E−02


GGTLC1
NM_178312
1.20E−01
2.53E−01
1.75E−01
7.48E−02


FIZ1
NM_032836
2.69E−01
3.23E−01
6.53E−03
2.55E−02


LMNA
NM_001282625
9.67E−02
5.60E−02
1.12E−01
3.60E−01


NUBP1
NM_002484
2.10E−01
2.63E−01
1.38E−01
1.27E−02


ATF2
NM_001256093
3.71E−01
1.97E−01
2.08E−02
3.55E−02


GNRH2
NM_001501
1.37E−01
3.57E−01
1.89E−02
1.13E−01


TPM3
NM_153649
1.48E−01
2.84E−01
1.23E−01
7.10E−02


NRROS
NM_198565
3.68E−02
8.08E−02
1.66E−01
3.42E−01


OVGP1
NM_002557
6.05E−02
3.66E−02
2.17E−01
3.11E−01


ATP2A1
NM_173201
2.44E−01
2.28E−01
4.08E−02
1.13E−01


SERF2
NM_001199878
4.81E−04
1.95E−04
4.01E−01
2.25E−01


TRIB1
NM_001282985
2.62E−01
2.47E−01
3.59E−02
8.09E−02


CCDC61
NM_001267723
3.35E−03
1.36E−02
2.06E−01
4.04E−01


WDR1
NM_017491
1.42E−01
3.80E−01
5.61E−03
9.90E−02


FBXO9
NM_033481
2.29E−01
3.40E−01
1.05E−02
4.71E−02


VWA5A
NM_014622
9.29E−02
4.16E−02
3.30E−01
1.63E−01


C1orf146
NM_001012425
3.37E−01
2.82E−01
8.78E−05
8.25E−03


ZAN
NM_003386
3.39E−01
2.04E−01
3.23E−02
5.40E−02


PLA2G4C
NM_001159323
4.19E−01
1.17E−01
1.45E−02
7.86E−02


SHFM1
NM_006304
9.60E−02
1.51E−01
2.02E−01
1.81E−01


ANAPC11
NM_001002245
2.86E−02
8.95E−03
2.06E−01
3.86E−01


APOA1BP
NM_144772
1.11E−01
2.44E−01
1.60E−01
1.15E−01


SUPT4H1
NM_003168
2.24E−01
2.68E−01
1.07E−01
3.11E−02


KLHL13
NM_001168299
4.34E−02
1.60E−01
3.36E−01
9.02E−02


DCX
NM_000555
1.83E−01
1.88E−01
1.14E−01
1.45E−01


CLDN10
NM_001160100
3.74E−01
2.16E−01
8.37E−03
3.14E−02


SMIM2
NM_024058
6.56E−02
4.02E−01
9.11E−02
7.11E−02


EBF2
NM_022659
1.73E−02
1.06E−01
2.30E−01
2.77E−01


TRPM3
NM_001007471
1.76E−01
1.71E−01
8.24E−02
2.00E−01


HBZ
NM_005332
3.11E−03
2.87E−03
3.48E−01
2.77E−01


TRADD
NM_003789
7.20E−02
7.47E−02
2.96E−02
4.55E−01


GNAI2
NM_002070
1.14E−01
2.08E−01
1.82E−01
1.28E−01


KIF12
NM_138424
2.30E−01
2.04E−01
1.21E−01
7.68E−02


OR5AC2
NM_054106
1.23E−01
1.19E−01
2.19E−01
1.71E−01


SCTR
NM_002980
1.19E−01
9.75E−02
1.55E−01
2.60E−01


LRRC27
NM_001143757
1.08E−01
3.65E−02
2.98E−01
1.90E−01


ZNF410
NM_001242924
1.73E−01
4.07E−01
3.29E−02
2.00E−02


CLECL1
NM_001253750
1.27E−01
4.62E−02
3.86E−01
7.36E−02


NPHS2
NM_014625
9.01E−02
1.08E−01
3.02E−01
1.33E−01


C16orf13
NM_032366
2.34E−01
2.32E−01
6.54E−02
1.03E−01


CDKN1A
NM_078467
7.18E−02
4.84E−02
1.60E−01
3.54E−01


APOF
NM_001638
1.34E−01
4.23E−01
2.77E−02
4.99E−02


BSCL2
NM_032667
3.29E−01
9.02E−02
1.00E−01
1.16E−01


BIRC5
NM_001168
1.37E−01
1.27E−02
2.11E−01
2.74E−01


PRKACB
NM_182948
8.76E−02
1.49E−01
2.13E−01
1.86E−01


ALAS2
NM_001037968
9.40E−02
4.09E−02
3.39E−01
1.61E−01


COL10A1
NM_000493
3.45E−01
2.82E−01
8.68E−03
1.36E−04


SLC2A5
NM_003039
4.39E−02
3.04E−02
2.04E−01
3.57E−01


ELAVL4
NM_001144775
1.93E−01
3.22E−01
1.43E−02
1.07E−01


LIMS1
NM_004987
3.17E−01
3.00E−01
1.17E−02
7.80E−03


PKHD1
NM_138694
2.99E−02
5.26E−03
1.78E−01
4.23E−01


NUP188
NM_015354
1.10E−01
1.36E−02
1.99E−01
3.14E−01


OR4C15
NM_001001920
2.04E−01
9.00E−02
1.10E−01
2.33E−01


PABPC4L
NM_001114734
6.25E−02
4.84E−02
1.33E−01
3.93E−01


TM7SF2
NM_001277233
2.67E−01
2.55E−01
7.00E−02
4.53E−02


POC5
NM_001099271
1.62E−01
1.29E−01
2.76E−01
7.11E−02


C1orf86
NM_182533
3.00E−01
2.63E−01
6.42E−02
1.22E−02


SBSN
NM_001166034
2.93E−01
3.02E−01
2.91E−03
4.14E−02


DEF8
NM_001242821
3.38E−01
2.16E−01
2.35E−02
6.21E−02


APLP1
NM_005166
1.02E−01
5.84E−02
3.34E−01
1.45E−01


DCK
NM_000788
1.60E−01
4.12E−01
5.54E−03
6.24E−02


CLDN24
NM_001185149
2.46E−01
1.37E−01
1.37E−01
1.20E−01


CETN2
NM_004344
2.12E−01
2.36E−01
1.29E−01
6.43E−02


CTSA
NM_001127695
3.13E−02
5.49E−03
2.78E−01
3.27E−01
















TABLE 1B







MAGeCK analysis results of the CRISPRa screen for resistance to T cell cytotoxicity


in the chronic screen. Gene targets are in ranked order. Gene names, RefSeq IDs,and


MAGeCK P-values for each of the top 1000 screening bioreps are listed.
















Chronic
Chronic
Chronic
Chronic
Chronic
Chronic




Round 1
Round 1
Round 2
Round 2
Round3
Round 3


Gene
id
biorep 1
biorep 2
biorep 1
biorep 2
biorep 1
biorep 2





JUNB
NM_002229
2.28E−03
4.31E−03
2.05E−03
1.97E−04
2.25E−03
3.57E−03


B3GNT2
NM_006577
1.24E−02
2.28E−04
7.91E−03
5.20E−05
2.64E−03
1.29E−04


INO80
NM_017553
3.59E−03
9.27E−03
3.23E−03
5.03E−04
1.06E−02
1.55E−03


KRBA1
NM_001290187
4.50E−04
4.23E−02
1.61E−03
4.58E−03
3.97E−03
2.85E−03


ADAMTS12
NM_030955
3.65E−02
8.21E−04
6.75E−03
7.50E−03
2.00E−03
1.14E−02


RBPMS2
NM_194272
3.53E−02
4.52E−02
3.57E−03
6.45E−03
2.23E−03
2.15E−02


WDR76
NM_001167941
1.45E−02
9.20E−02
2.01E−04
3.06E−03
1.55E−03
3.71E−02


STK40
NM_032017
8.27E−02
5.61E−03
1.03E−02
2.58E−02
1.41E−02
9.75E−03


GABBR1
NM_021904
2.11E−02
1.20E−01
3.46E−03
5.41E−03
1.40E−03
2.27E−02


C2orf88
NM_001042520
9.24E−03
2.04E−02
3.87E−02
2.40E−02
6.17E−02
2.11E−02


GPR26
NM_153442
7.08E−02
4.32E−02
2.89E−02
1.24E−02
1.20E−02
1.21E−02


KCNF1
NM_002236
3.67E−02
1.06E−01
3.11E−03
4.65E−03
1.52E−02
1.64E−02


HHATL
NM_020707
2.40E−03
3.15E−03
3.95E−02
3.67E−02
1.80E−02
9.34E−02


ATP2A2
NM_170665
1.95E−03
1.41E−01
2.16E−02
5.44E−03
1.35E−02
1.09E−02


EFNA1
NM_004428
8.43E−02
3.64E−02
1.07E−02
5.77E−02
7.46E−03
1.17E−03


CIDEC
NM_001199623
1.24E−01
3.89E−03
6.36E−02
1.56E−03
7.17E−03
7.74E−05


DKK2
NM_014421
2.60E−02
8.08E−02
3.96E−06
3.52E−02
2.30E−06
5.89E−02


ZNF497
NM_001207009
4.06E−03
2.00E−03
1.98E−02
8.65E−02
2.90E−02
6.50E−02


TNS3
NM_022748
1.62E−01
1.34E−03
1.84E−02
1.17E−02
9.65E−03
5.70E−03


KCNH7
NM_033272
5.14E−02
6.60E−02
3.03E−02
2.61E−02
1.32E−02
2.55E−02


CLDN4
NM_001305
3.25E−02
5.24E−02
6.73E−03
5.57E−02
1.68E−02
6.25E−02


AP3M1
NM_207012
1.59E−01
2.00E−02
4.78E−03
3.71E−02
2.48E−03
7.11E−03


NME2
NM_001018139
4.11E−02
1.73E−02
1.93E−04
1.84E−02
6.93E−04
1.55E−01


RBBP8
NM_002894
4.58E−02
2.61E−02
4.78E−02
1.12E−03
1.12E−01
1.54E−03


NIPAL1
NM_207330
2.04E−02
2.82E−02
4.89E−02
2.23E−02
8.06E−02
4.06E−02


IQSEC3
NM_015232
4.36E−02
1.76E−02
3.18E−02
9.93E−02
2.16E−02
2.73E−02


FEZ2
NM_005102
6.68E−02
1.07E−01
7.59E−03
2.21E−02
1.76E−02
2.56E−02


ERMN
NM_001009959
1.31E−02
9.99E−02
1.16E−02
2.89E−02
1.60E−02
7.95E−02


NYNRIN
NM_025081
4.67E−02
6.86E−02
1.73E−02
3.81E−02
1.58E−02
6.40E−02


ACTG1
NM_001199954
1.37E−01
2.70E−02
2.64E−02
2.45E−02
6.31E−03
3.26E−02


NELFA
NM_005663
2.23E−02
2.89E−02
2.75E−02
1.02E−01
2.52E−02
4.85E−02


ACTA1
NM_001100
5.13E−02
1.72E−02
9.57E−02
1.71E−02
5.12E−02
2.63E−02


MAGEA4
NM_001011549
5.60E−03
1.51E−01
1.18E−03
2.96E−02
4.93E−03
6.64E−02


ESRRG
NM_001134285
1.35E−01
4.08E−02
2.07E−02
2.23E−03
5.84E−02
4.79E−03


ITLN1
NM_017625
8.31E−02
2.37E−02
8.43E−03
4.69E−02
5.74E−03
9.54E−02


ECHDC1
NM_018479
1.85E−02
2.07E−03
5.00E−02
1.56E−01
4.40E−02
2.18E−03


RALGDS
NM_001271774
1.43E−01
3.31E−02
3.50E−02
4.91E−03
5.59E−02
6.87E−03


LGALS14
NM_203471
1.73E−02
6.99E−03
1.55E−01
1.75E−02
6.06E−02
2.34E−02


SGPP2
NM_152386
1.71E−02
7.69E−02
1.92E−02
7.45E−02
3.20E−02
6.46E−02


CCDC66
NM_001141947
1.08E−01
1.09E−02
4.28E−02
6.26E−04
1.24E−01
1.34E−03


ZNF576
NM_024327
1.13E−01
1.19E−01
1.96E−02
2.82E−02
4.27E−03
6.06E−03


MACROD2
NM_001033087
2.70E−02
7.67E−02
7.80E−02
7.41E−02
1.83E−02
1.59E−02


HMGB2
NM_001130689
3.64E−02
1.03E−01
4.11E−02
4.10E−03
1.04E−01
2.64E−03


JUN
NM_002228
2.84E−02
1.12E−02
3.59E−02
9.50E−02
8.28E−02
5.26E−02


PPP2R2C
NM_001206995
1.56E−02
1.14E−02
1.07E−01
4.14E−02
1.13E−01
2.15E−02


RCAN2
NM_001251974
2.02E−02
1.20E−01
3.70E−03
4.13E−02
8.05E−03
1.22E−01


SATB1
NM_001195470
9.02E−03
9.09E−02
3.55E−03
1.35E−01
2.81E−02
4.92E−02


F8A2
NM_001007523
6.75E−02
4.82E−02
3.37E−02
6.40E−02
3.24E−02
7.14E−02


MCRS1
NM_006337
8.90E−02
4.55E−02
3.75E−02
5.73E−02
3.25E−02
5.55E−02


CCDC160
NM_001101357
5.70E−02
2.94E−02
1.96E−02
7.44E−02
1.61E−02
1.22E−01


USP10
NM_001272075
6.17E−02
1.98E−02
4.55E−02
4.41E−02
6.08E−02
8.80E−02


LAD1
NM_005558
6.17E−02
8.25E−02
3.17E−02
6.39E−02
2.46E−02
5.90E−02


CCBL2
NM_001008661
3.42E−03
1.34E−01
2.68E−02
4.00E−02
9.51E−02
2.58E−02


FAM118A
NM_017911
1.38E−03
2.79E−01
2.12E−03
9.03E−03
2.28E−02
1.14E−02


RINT1
NM_021930
1.25E−01
7.92E−04
8.66E−02
5.51E−02
5.91E−02
2.85E−03


SF3A2
NM_007165
6.61E−02
1.77E−01
2.10E−02
2.95E−02
5.49E−03
3.09E−02


ASXL3
NM_030632
9.94E−02
2.35E−02
1.95E−03
7.64E−02
2.54E−03
1.28E−01


PCDH7
NM_032457
9.21E−02
2.31E−02
3.66E−02
8.02E−02
1.59E−02
8.37E−02


HNRNPF
NM_001098204
1.70E−02
4.06E−02
1.39E−01
4.74E−02
8.09E−02
1.35E−02


ZNF728
NM_001267716
7.66E−02
5.18E−02
7.22E−03
6.46E−02
4.60E−03
1.38E−01


CHRND
NM_001256657
2.19E−01
7.80E−03
4.90E−02
1.01E−02
2.27E−02
3.81E−02


MEPE
NM_001291183
9.15E−02
1.39E−02
5.30E−02
9.63E−02
1.95E−02
7.58E−02


REM1
NM_014012
1.64E−01
2.03E−02
3.23E−02
2.88E−02
1.16E−02
9.36E−02


RPUSD4
NM_032795
4.70E−03
3.67E−02
9.50E−03
1.02E−01
3.07E−02
1.67E−01


RPS11
NM_001015
8.68E−02
7.76E−03
1.05E−01
2.11E−02
9.78E−02
3.68E−02


VAMP2
NM_014232
4.60E−02
4.00E−02
1.89E−02
9.93E−02
2.01E−02
1.31E−01


DUSP10
NM_144728
1.37E−01
9.08E−02
6.90E−02
1.22E−02
1.38E−02
3.26E−02


NSG1
NM_001287763
4.81E−03
8.65E−02
2.21E−03
7.11E−02
1.58E−01
3.38E−02


CDKN2A
NM_000077
2.52E−02
1.32E−02
3.08E−02
4.49E−02
2.29E−01
1.36E−02


MBD3L3
NM_001164425
3.71E−03
6.80E−02
1.18E−02
1.06E−01
7.68E−02
9.45E−02


CCDC109B
NM_017918
1.24E−01
1.34E−01
1.59E−02
3.74E−02
5.98E−03
4.40E−02


CMTM4
NM_181521
9.98E−02
1.52E−02
1.90E−02
5.62E−02
5.71E−02
1.16E−01


PLA2G4B
NM_001114633
2.10E−02
1.64E−01
4.71E−02
5.11E−02
4.40E−02
3.60E−02


SRC
NM_198291
1.77E−01
8.69E−02
4.50E−03
3.67E−02
1.23E−03
5.80E−02


WBP1L
NM_017787
3.36E−02
6.43E−02
1.27E−02
4.52E−02
1.99E−01
1.18E−02


SCN11A
NM_014139
1.36E−01
1.80E−03
1.90E−02
1.03E−01
6.31E−02
5.15E−02


LHX2
NM_004789
2.05E−01
1.03E−02
6.41E−02
3.68E−02
5.06E−02
7.82E−03


DISP2
NM_033510
1.41E−02
2.22E−01
1.18E−02
4.27E−02
3.14E−03
8.52E−02


PLEC
NM_201382
3.26E−02
1.45E−01
8.27E−02
3.35E−02
4.98E−02
4.09E−02


SHROOM3
NM_020859
6.29E−03
1.98E−01
4.42E−03
6.15E−02
5.90E−03
1.10E−01


TCF7L2
NM_001198529
6.63E−02
1.36E−01
2.37E−02
6.47E−02
7.49E−03
9.57E−02


TMPRSS5
NM_030770
7.17E−02
5.46E−02
7.16E−03
8.56E−02
8.48E−03
1.68E−01


ANKEF1
NM_198798
1.02E−01
2.43E−01
3.83E−03
1.26E−02
6.62E−03
3.36E−02


CALD1
NM_033140
1.40E−02
3.43E−02
4.35E−02
1.58E−01
4.24E−02
1.11E−01


NKX2-2
NM_002509
1.10E−01
1.18E−01
2.65E−02
2.82E−02
1.57E−02
1.05E−01


RPL15
NM_001253384
1.25E−01
1.25E−02
6.18E−02
3.54E−03
2.03E−01
2.28E−03


TMEM55B
NM_144568
7.24E−02
1.81E−02
8.17E−02
6.26E−02
8.91E−02
8.51E−02


STYX
NM_001130701
3.87E−02
5.08E−03
1.18E−01
7.94E−02
1.02E−01
6.72E−02


EIF2B2
NM_014239
9.31E−02
1.06E−01
3.73E−02
6.70E−02
4.50E−02
6.27E−02


GOLGA8M
NM_001282468
1.35E−01
8.66E−02
1.20E−01
1.50E−02
5.17E−02
7.57E−03


SMIM12
NM_001164825
8.83E−02
1.60E−01
6.06E−02
6.55E−03
7.98E−02
1.98E−02


CYB5R3
NM_001171661
1.15E−01
7.58E−02
4.22E−02
6.28E−02
6.98E−02
5.15E−02


POP1
NM_015029
1.52E−01
3.10E−02
6.56E−02
3.57E−02
9.83E−02
3.48E−02


PRAC1
NM_032391
2.44E−02
5.20E−02
6.53E−02
3.57E−02
1.73E−01
7.05E−02


LTN1
NM_015565
6.29E−02
9.84E−02
6.78E−02
8.46E−02
2.92E−02
8.14E−02


ABCA4
NM_000350
2.42E−02
2.82E−02
1.59E−01
1.04E−01
7.19E−02
4.14E−02


DAO
NM_001917
5.74E−02
1.51E−01
3.70E−02
3.59E−02
4.52E−02
1.04E−01


FAM47A
NM_203408
4.28E−02
2.43E−01
3.07E−02
3.38E−02
3.07E−02
5.05E−02


TMTC2
NM_152588
6.66E−02
6.90E−02
1.07E−01
5.70E−02
8.13E−02
5.11E−02


ALAS1
NM_199166
1.04E−01
2.47E−02
1.28E−01
3.73E−02
1.22E−01
1.78E−02


LIN7C
NM_018362
1.84E−01
3.79E−02
9.41E−02
2.21E−02
4.86E−02
4.60E−02


C3orf80
NM_001168214
9.04E−02
4.85E−02
4.06E−02
1.08E−01
4.02E−02
1.06E−01


TRIM50
NM_001281451
1.13E−02
8.34E−02
3.13E−02
3.80E−02
1.86E−01
8.65E−02


CMTM3
NM_144601
1.87E−01
1.93E−02
8.37E−02
5.90E−02
8.67E−02
1.08E−03


LEMD2
NM_181336
2.30E−01
3.31E−02
1.66E−02
3.94E−02
3.39E−03
1.15E−01


DPM3
NM_153741
1.77E−01
1.67E−02
1.34E−01
2.83E−03
1.13E−01
2.55E−03


TRIM7
NM_203293
1.07E−01
3.00E−03
9.13E−02
7.56E−03
2.16E−01
2.01E−02


YY1AP1
NM_001198902
2.57E−01
5.07E−03
1.02E−01
1.87E−02
4.21E−02
2.13E−02


KCNV1
NM_014379
7.28E−02
1.64E−02
1.54E−01
3.94E−02
6.25E−02
1.02E−01


NDRG4
NM_022910
1.93E−02
2.33E−01
5.20E−02
4.00E−02
2.72E−02
7.61E−02


SH3TC1
NM_018986
6.37E−02
1.80E−01
8.64E−03
1.89E−02
8.74E−03
1.68E−01


LITAF
NM_004862
1.26E−02
3.03E−02
8.15E−02
3.83E−02
2.38E−01
4.82E−02


CD109
NM_001159587
1.74E−01
5.71E−03
1.27E−01
1.55E−02
1.12E−01
1.52E−02


ATG16L2
NM_033388
1.20E−01
2.26E−02
3.82E−02
1.08E−01
9.74E−02
6.42E−02


FAM151B
NM_205548
2.39E−02
1.21E−01
7.67E−02
8.04E−02
6.46E−02
8.65E−02


ANK1
NM_020475
1.93E−01
2.30E−02
7.85E−02
5.01E−03
4.64E−02
1.08E−01


ATF7IP
NM_018179
2.47E−02
6.73E−02
5.40E−02
7.62E−02
4.26E−02
1.90E−01


PLAA
NM_001031689
8.70E−03
2.32E−01
2.74E−02
8.10E−02
1.94E−02
8.80E−02


FCER1A
NM_002001
1.55E−02
1.44E−01
7.49E−02
8.75E−02
3.79E−02
9.79E−02


HGC6.3
NM_001129895
2.18E−01
3.68E−02
4.06E−02
3.08E−02
9.85E−03
1.24E−01


EXOC4
NM_021807
9.51E−02
1.02E−01
2.05E−02
1.50E−01
7.55E−02
2.08E−02


CHD3
NM_001005271
9.99E−02
6.73E−02
7.89E−02
4.29E−02
2.81E−02
1.50E−01


LZTR1
NM_006767
2.06E−01
9.78E−02
4.92E−02
3.29E−02
2.07E−02
6.06E−02


ZIC5
NM_033132
2.39E−02
1.78E−01
7.86E−03
9.17E−02
1.18E−01
5.18E−02


EFCAB1
NM_001142857
3.24E−02
8.53E−02
1.31E−01
5.16E−02
1.06E−01
6.63E−02


TPRN
NM_001128228
1.65E−01
2.14E−02
1.46E−01
4.09E−03
1.20E−01
1.67E−02


LRFN1
NM_020862
7.98E−02
8.76E−02
4.17E−02
9.53E−02
1.60E−01
8.76E−03


NSL1
NM_015471
1.45E−02
2.09E−01
2.80E−02
1.55E−01
1.54E−02
5.16E−02


CELF2
NM_006561
3.83E−03
2.23E−01
1.73E−02
9.70E−02
4.68E−02
8.65E−02


GHRHR
NM_000823
6.90E−02
2.00E−02
4.26E−02
1.38E−01
8.03E−02
1.25E−01


FZR1
NM_016263
5.21E−02
5.89E−02
3.08E−01
8.41E−04
3.50E−02
2.13E−02


SERF2
NM_001199877
1.57E−02
1.00E−01
1.11E−03
1.41E−01
9.08E−02
1.28E−01


ZEB1
NM_001174096
1.84E−01
1.58E−02
5.26E−02
7.88E−02
2.30E−02
1.25E−01


PPP3R2
NM_147180
3.10E−01
2.97E−02
8.74E−02
2.91E−03
3.88E−02
1.07E−02


CST4
NM_001899
1.62E−01
1.76E−03
1.94E−01
8.45E−04
1.23E−01
2.74E−03


PCYT2
NM_001184917
1.44E−02
4.53E−02
1.12E−02
2.14E−01
2.10E−02
1.79E−01


DCN
NM_001920
2.37E−01
4.42E−04
1.33E−01
7.49E−03
9.65E−02
1.11E−02


KRAS
NM_004985
7.54E−02
8.06E−04
1.98E−01
3.86E−03
1.97E−01
1.05E−02


KCNMA1
NM_001271518
2.86E−01
3.07E−02
1.03E−01
4.89E−03
4.76E−02
1.37E−02


SMARCA2
NM_001289397
3.79E−02
3.06E−02
1.32E−02
9.24E−02
3.23E−02
2.81E−01


SSX4B
NM_001034832
6.97E−02
1.54E−01
6.85E−02
7.26E−02
6.16E−02
6.11E−02


LDLRAD3
NM_174902
2.10E−01
4.20E−03
2.40E−02
5.47E−02
1.10E−01
8.58E−02


RPL6
NM_000970
1.13E−01
2.30E−03
1.98E−01
4.85E−03
1.66E−01
5.56E−03


FLI1
NM_001167681
2.22E−01
1.82E−02
2.78E−02
8.26E−02
1.72E−02
1.22E−01


KCNQ4
NM_004700
7.37E−02
6.00E−02
1.11E−01
3.55E−02
8.71E−02
1.25E−01


BCL11B
NM_138576
2.55E−02
9.14E−02
1.21E−01
8.58E−02
7.69E−02
9.32E−02


ATP7A
NM_000052
1.30E−01
5.79E−02
5.93E−02
1.51E−01
6.61E−02
3.04E−02


CACNA1B
NM_001243812
1.12E−01
8.87E−02
1.22E−01
3.13E−02
1.16E−01
2.54E−02


COL11A1
NM_001190709
1.35E−01
9.37E−02
3.62E−02
7.31E−02
1.77E−02
1.40E−01


SSH3
NM_017857
8.47E−02
5.71E−02
3.34E−02
7.82E−02
5.77E−02
1.85E−01


LOC113230
NM_001291291
1.28E−01
3.69E−02
7.80E−02
4.71E−02
2.07E−01
1.49E−03


PLA2G7
NM_001168357
1.64E−01
1.40E−01
3.91E−02
1.81E−02
2.75E−02
1.11E−01


CACNA2D2
NM_001174051
3.02E−02
9.41E−02
4.65E−02
4.29E−02
1.74E−01
1.12E−01


UBE2T
NM_014176
1.29E−01
1.08E−02
5.16E−02
3.87E−02
2.38E−01
3.45E−02


SPTBN2
NM_006946
9.07E−02
1.73E−01
4.18E−02
8.61E−02
4.38E−02
6.83E−02


SERPINB8
NM_001276490
1.02E−01
2.00E−03
1.25E−01
4.86E−02
1.99E−01
2.81E−02


TMEM182
NM_144632
7.59E−02
6.12E−02
1.61E−01
4.61E−02
1.06E−01
5.43E−02


EFHC1
NM_001172420
6.57E−02
3.72E−03
1.07E−01
1.54E−02
3.00E−01
1.36E−02


KIF13A
NM_001105568
2.01E−01
2.33E−02
2.90E−02
1.23E−01
7.24E−02
5.99E−02


SOCS2
NM_001270467
2.34E−01
7.11E−02
5.05E−02
5.28E−02
3.15E−02
6.87E−02


GCNT2
NM_145649
1.26E−02
1.45E−01
2.15E−02
9.20E−02
1.66E−01
7.30E−02


PHKB
NM_000293
7.41E−02
1.70E−01
6.83E−02
6.07E−02
4.97E−02
8.87E−02


ABI1
NM_001178116
4.80E−02
6.97E−02
1.09E−01
6.43E−02
1.20E−01
1.06E−01


OCLN
NM_001205255
2.53E−02
1.32E−01
6.92E−02
1.02E−01
2.89E−02
1.59E−01


TRIM5
NM_033092
1.08E−01
1.85E−02
1.62E−01
4.66E−02
1.32E−01
5.00E−02


NFE2
NM_001136023
3.94E−03
1.43E−01
2.47E−02
1.89E−01
2.19E−02
1.36E−01


PHKA1
NM_001172436
6.59E−02
1.26E−01
3.35E−03
7.69E−02
2.69E−02
2.23E−01


OR2C3
NM_198074
3.05E−02
2.33E−01
1.11E−02
1.25E−01
1.26E−03
1.20E−01


LTBR
NM_002342
1.64E−01
1.68E−03
2.38E−01
1.38E−02
8.74E−02
1.67E−02


TACR3
NM_001059
8.28E−02
7.57E−04
1.81E−01
2.05E−02
2.18E−01
1.98E−02


PRKRA
NM_001139518
2.64E−01
9.51E−02
3.10E−02
1.43E−02
8.61E−02
3.62E−02


PKIG
NM_001281444
9.46E−03
9.63E−02
3.36E−02
2.61E−01
6.60E−02
6.18E−02


YPEL5
NM_001127400
8.93E−02
4.32E−02
6.79E−02
8.25E−02
1.44E−01
1.02E−01


TGFBR1
NM_001130916
1.80E−01
1.12E−02
3.55E−02
4.01E−02
1.37E−01
1.27E−01


UBXN7
NM_015562
4.72E−02
3.11E−02
1.98E−01
2.77E−02
1.66E−01
6.13E−02


PRDX1
NM_001202431
1.29E−04
1.67E−01
3.00E−03
1.74E−01
9.57E−03
1.81E−01


KBTBD7
NM_032138
5.53E−02
8.49E−02
1.41E−01
6.99E−02
9.21E−02
9.24E−02


SHE
NM_001010846
8.72E−02
1.51E−03
6.85E−02
7.96E−03
3.46E−01
2.45E−02


ZNF486
NM_052852
1.45E−01
6.22E−02
1.98E−01
4.14E−04
1.29E−01
1.81E−03


TTLL10
NM_001130045
1.92E−01
5.51E−02
3.50E−02
7.47E−02
9.89E−02
8.36E−02


BACE1
NM_138971
1.35E−01
1.71E−01
6.95E−02
3.17E−02
9.50E−02
3.74E−02


GNG11
NM_004126
1.09E−01
6.39E−03
2.02E−01
1.51E−01
4.93E−02
2.20E−02


HUS1B
NM_148959
9.86E−02
7.86E−02
1.79E−01
1.46E−02
1.47E−01
2.16E−02


ART1
NM_004314
1.99E−01
8.50E−03
9.16E−02
5.54E−02
4.90E−02
1.36E−01


MTRR
NM_024010
3.98E−02
2.86E−02
1.40E−02
2.38E−01
4.06E−02
1.79E−01


TLE3
NM_020908
1.53E−01
9.97E−03
1.71E−01
2.87E−03
2.01E−01
2.80E−03


WARS2
NM_015836
1.80E−03
9.17E−02
4.42E−04
1.22E−01
2.17E−03
3.23E−01


ADCYAP1
NM_001099733
9.29E−02
1.72E−01
2.27E−02
5.93E−02
1.26E−01
6.91E−02


FAM155A
NM_001080396
2.82E−02
9.06E−02
8.35E−02
1.33E−01
3.65E−02
1.70E−01


CD151
NM_139030
1.42E−01
1.14E−01
2.90E−02
2.36E−02
1.70E−01
6.38E−02


KIF3A
NM_007054
1.23E−01
4.11E−02
7.51E−02
4.36E−02
1.51E−01
1.11E−01


CCDC84
NM_198489
1.58E−01
4.66E−03
1.14E−01
5.92E−02
1.95E−01
1.66E−02


OR4C11
NM_001004700
9.85E−02
4.21E−02
4.58E−02
1.43E−01
1.84E−01
3.54E−02


ZNF274
NM_133502
1.32E−01
2.30E−02
1.35E−01
3.64E−02
1.82E−01
4.12E−02


GNG7
NM_052847
7.90E−02
1.85E−01
6.29E−02
6.92E−02
3.46E−02
1.19E−01


TTC37
NM_014639
5.04E−04
9.77E−02
4.33E−03
7.50E−02
8.13E−03
3.64E−01


DNPEP
NM_012100
1.94E−02
7.68E−02
3.59E−03
1.72E−01
5.66E−03
2.76E−01


GPRASP2
NM_001184876
2.72E−02
9.80E−02
1.43E−01
2.92E−03
2.78E−01
4.28E−03


C9orf92
NM_001271829
1.46E−01
1.20E−02
1.80E−01
3.54E−02
1.18E−01
6.39E−02


MIER1
NM_001146112
1.03E−01
1.04E−01
7.82E−02
8.82E−02
7.85E−02
1.04E−01


SMIM24
NM_001136503
4.64E−02
1.83E−01
3.56E−02
1.02E−01
8.56E−02
1.09E−01


CYB5D2
NM_144611
8.35E−02
1.55E−01
6.73E−02
9.37E−02
1.82E−02
1.45E−01


ABHD8
NM_024527
5.25E−03
1.76E−01
3.47E−03
1.75E−01
1.93E−03
2.01E−01


MX1
NM_001178046
1.78E−02
1.09E−01
6.08E−02
1.26E−01
8.53E−02
1.64E−01


TNFAIP8L2-
NM_001204848
1.88E−01
8.00E−02
4.19E−02
5.15E−02
1.32E−01
7.12E−02


SCNM1


BEX2
NM_001168401
4.71E−02
1.25E−01
5.16E−02
1.03E−01
8.09E−02
1.58E−01


SLC25A1
NM_005984
8.58E−02
1.29E−01
8.31E−02
8.38E−02
3.18E−02
1.53E−01


GPS2
NM_004489
9.06E−02
2.14E−01
6.41E−02
6.10E−02
2.57E−02
1.11E−01


CORO1C
NM_001105237
1.01E−01
1.62E−02
1.60E−01
9.07E−02
1.63E−01
3.69E−02


FMO3
NM_006894
6.90E−02
9.04E−02
1.77E−01
1.59E−02
1.98E−01
1.75E−02


THOC7
NM_025075
2.68E−01
1.10E−01
5.04E−02
6.45E−02
1.03E−02
6.48E−02


ENY2
NM_001193557
2.36E−02
1.56E−02
9.24E−02
8.29E−02
2.23E−01
1.32E−01


LARP6
NM_001286679
1.92E−01
1.73E−01
3.80E−02
1.57E−02
1.25E−01
2.77E−02


AP1S1
NM_001283
6.46E−02
5.32E−02
1.00E−01
8.52E−02
1.13E−01
1.58E−01


HAUS4
NM_001166269
3.90E−01
4.63E−03
6.60E−02
3.56E−02
8.14E−03
6.98E−02


SHD
NM_020209
1.43E−03
2.01E−01
2.16E−03
2.02E−01
2.72E−03
1.64E−01


ADRA2A
NM_000681
1.25E−01
1.15E−01
1.09E−01
3.08E−02
1.06E−01
8.83E−02


NCDN
NM_001014839
1.06E−02
1.42E−01
1.12E−01
1.27E−01
8.19E−02
1.01E−01


ZNF764
NM_001172679
1.92E−01
1.02E−02
1.68E−01
2.09E−02
1.34E−01
5.48E−02


KIAA0247
NM_014734
1.72E−01
3.48E−02
2.17E−01
2.15E−02
1.12E−01
2.37E−02


ZNF283
NM_181845
1.23E−01
1.18E−01
1.52E−01
3.17E−02
6.05E−02
9.80E−02


LSP1
NM_001013253
2.08E−01
3.19E−04
1.82E−01
2.19E−02
1.26E−01
4.54E−02


ATG16L1
NM_017974
7.74E−02
1.33E−01
1.09E−01
5.09E−02
1.71E−01
4.31E−02


NOL12
NM_024313
5.42E−02
2.18E−02
5.00E−02
4.98E−02
2.72E−01
1.40E−01


TMEM132A
NM_017870
9.46E−02
8.61E−02
6.09E−02
2.75E−02
2.84E−01
3.65E−02


MPP2
NM_001278375
1.26E−01
5.94E−02
2.07E−01
1.12E−02
1.71E−01
1.46E−02


ABCG4
NM_022169
3.61E−03
3.51E−02
1.27E−01
8.69E−02
2.02E−01
1.36E−01


GSDMD
NM_001166237
2.44E−01
6.47E−02
4.38E−02
8.97E−02
1.19E−03
1.48E−01


OR2D3
NM_001004684
8.35E−02
1.53E−01
2.63E−02
5.89E−02
1.20E−01
1.54E−01


PLXDC2
NM_001282736
2.23E−01
1.47E−01
9.95E−02
1.44E−02
7.48E−02
3.84E−02


EGR1
NM_001964
3.63E−02
2.08E−01
4.68E−02
1.24E−01
2.54E−02
1.58E−01


IMPG2
NM_016247
1.54E−01
1.02E−01
7.34E−02
3.75E−02
2.15E−02
2.11E−01


C1orf100
NM_001276349
1.59E−01
1.29E−01
9.03E−02
7.89E−02
5.59E−02
8.74E−02


SLC25A35
NM_201520
3.23E−02
1.32E−02
1.48E−01
1.11E−01
2.08E−01
9.00E−02


NFIC
NM_205843
1.46E−01
1.60E−03
3.96E−02
1.00E−01
4.97E−02
2.70E−01


HNRNPR
NM_001102398
6.11E−02
3.86E−02
2.01E−01
3.20E−02
2.26E−01
4.78E−02


GALE
NM_001127621
1.30E−01
2.21E−01
9.75E−03
5.83E−02
5.51E−02
1.34E−01


WNT2B
NM_004185
1.60E−01
1.57E−02
5.04E−02
2.43E−01
1.13E−01
2.66E−02


RNF150
NM_020724
2.40E−01
1.19E−01
3.88E−02
1.51E−01
2.21E−02
3.90E−02


EXOC3L1
NM_178516
3.61E−02
4.84E−02
1.43E−01
1.47E−01
8.04E−02
1.56E−01


DAPL1
NM_001017920
9.96E−02
1.69E−01
1.09E−01
6.19E−02
1.56E−01
1.59E−02


MROH6
NM_001100878
1.48E−01
1.16E−01
6.59E−02
9.55E−02
1.17E−01
6.97E−02


TMEM147
NM_032635
2.50E−04
3.55E−01
6.74E−03
1.04E−01
1.27E−01
2.03E−02


SLC39A1
NM_001271960
1.09E−01
1.28E−01
4.71E−02
6.91E−02
1.53E−01
1.07E−01


POLD3
NM_006591
4.85E−03
1.46E−01
5.09E−03
2.75E−01
1.16E−01
6.60E−02


PHF19
NM_001286840
1.54E−01
5.19E−03
2.90E−02
9.01E−02
2.08E−01
1.28E−01


IL18RAP
NM_003853
1.03E−01
2.03E−01
1.14E−02
1.64E−01
1.17E−02
1.21E−01


CLTCL1
NM_001835
8.96E−02
1.08E−01
9.33E−02
6.73E−02
4.49E−02
2.12E−01


NDUFA5
NM_001282419
8.61E−02
3.83E−01
1.42E−02
7.55E−02
3.25E−02
2.59E−02


RIMKLB
NM_020734
2.48E−02
3.94E−03
2.75E−01
3.37E−03
3.04E−01
6.65E−03


NMT2
NM_004808
3.22E−02
2.51E−01
1.80E−02
1.90E−01
1.25E−02
1.15E−01


DEDD
NM_001039711
3.94E−02
2.07E−01
2.74E−02
1.36E−01
7.45E−02
1.36E−01


RAI14
NM_001145520
8.76E−02
2.18E−01
4.79E−02
9.74E−02
5.23E−02
1.17E−01


HIST1H3G
NM_003534
1.45E−01
1.09E−01
1.37E−01
3.76E−02
1.25E−01
6.51E−02


MANEA
NM_024641
1.93E−04
1.86E−01
6.86E−04
1.85E−01
8.61E−04
2.47E−01


PLAG1
NM_001114635
5.82E−02
4.66E−01
1.02E−02
2.78E−02
1.06E−03
5.68E−02


LDB3
NM_001171610
5.32E−02
2.10E−01
1.17E−01
1.29E−01
3.67E−02
7.40E−02


DUPD1
NM_001003892
1.85E−01
5.19E−03
2.11E−01
6.19E−03
2.13E−01
1.23E−03


RHPN1
NM_052924
5.69E−02
6.23E−02
2.66E−02
1.66E−01
4.79E−02
2.62E−01


ARHGEF26
NM_001251963
2.11E−01
4.70E−02
1.84E−01
1.94E−02
1.45E−01
1.70E−02


LTF
NM_001199149
3.88E−02
7.38E−02
2.01E−02
3.01E−01
1.19E−01
7.17E−02


C11orf83
NM_001085372
2.50E−01
3.42E−02
1.55E−01
4.56E−02
7.57E−02
6.49E−02


ITGB1BP2
NM_012278
4.47E−02
1.22E−01
7.88E−02
5.86E−02
2.26E−01
9.57E−02


RFPL2
NM_001098527
6.13E−02
3.42E−01
2.24E−02
1.16E−01
2.70E−02
5.68E−02


IQCF2
NM_203424
1.40E−01
1.92E−02
1.66E−01
6.33E−02
1.45E−01
9.42E−02


SRP54
NM_003136
1.73E−01
5.95E−02
8.64E−03
1.38E−01
7.09E−02
1.80E−01


SLURP1
NM_020427
1.19E−01
6.65E−03
6.83E−02
7.16E−02
2.51E−01
1.14E−01


TAF3
NM_031923
2.25E−01
1.51E−01
1.06E−02
1.08E−01
1.93E−04
1.36E−01


MFSD5
NM_001170790
2.44E−01
4.46E−02
7.85E−02
9.56E−03
2.28E−01
2.62E−02


TVP23B
NM_016078
1.67E−02
7.55E−02
2.01E−02
2.38E−01
3.02E−02
2.51E−01


EEFSEC
NM_021937
8.61E−02
7.49E−02
7.48E−02
5.21E−02
2.54E−01
8.99E−02


IFIT3
NM_001549
8.60E−02
1.56E−01
3.90E−02
1.05E−01
1.35E−01
1.12E−01


CCNT2
NM_058241
1.65E−01
1.09E−02
7.17E−02
2.22E−01
8.46E−02
7.89E−02


OBP2A
NM_014582
3.17E−02
9.45E−02
1.71E−02
1.89E−01
1.22E−01
1.81E−01


ZBTB22
NM_001145338
2.41E−01
3.23E−03
1.89E−01
3.51E−02
1.14E−01
5.22E−02


LRP10
NM_014045
9.12E−02
2.85E−02
5.29E−02
9.29E−02
1.55E−01
2.18E−01


CSAG1
NM_153478
3.74E−02
2.10E−01
1.03E−01
1.59E−01
1.17E−01
1.21E−02


AICDA
NM_020661
3.58E−02
1.17E−01
1.05E−01
2.41E−01
6.67E−02
7.50E−02


PDK2
NM_001199900
7.22E−03
2.42E−02
1.20E−01
1.05E−01
3.17E−01
6.70E−02


ASB8
NM_024095
6.92E−02
6.20E−02
1.45E−02
2.72E−02
4.28E−01
4.08E−02


ZNF277
NM_021994
1.89E−02
2.90E−01
1.64E−02
4.41E−02
1.94E−01
7.82E−02


RAB2A
NM_002865
1.18E−01
1.39E−01
4.63E−02
1.30E−01
7.07E−02
1.38E−01


C10orf105
NM_001164375
9.48E−02
1.49E−01
1.69E−01
4.06E−02
6.47E−02
1.26E−01


CCDC169
NM_001144984
3.14E−02
1.04E−01
8.82E−02
5.74E−02
2.68E−01
9.39E−02


XPNPEP1
NM_001167604
4.03E−04
2.50E−01
2.68E−02
1.33E−01
1.77E−02
2.16E−01


MXRA8
NM_001282582
1.23E−01
5.65E−02
9.69E−02
2.76E−01
4.99E−02
4.23E−02


TOX2
NM_001098797
1.44E−01
1.04E−01
5.94E−02
2.71E−02
2.18E−01
9.15E−02


TEC
NM_003215
2.85E−03
9.17E−02
1.48E−01
7.72E−02
3.00E−01
2.60E−02


SYNGR4
NM_012451
6.43E−02
2.85E−01
7.27E−02
8.27E−02
2.81E−02
1.14E−01


DYNC1I1
NM_001135556
2.69E−01
1.18E−01
7.84E−02
7.05E−02
2.40E−02
9.06E−02


DEXI
NM_014015
1.35E−01
2.78E−02
7.55E−02
4.15E−02
3.01E−01
6.94E−02


PLAC1
NM_021796
1.03E−01
5.50E−02
1.70E−01
5.25E−02
2.26E−01
4.41E−02


PNOC
NM_001284244
3.39E−02
5.90E−02
2.34E−02
3.35E−01
2.09E−03
1.99E−01


ZNF827
NM_178835
6.82E−03
5.15E−02
4.18E−01
7.71E−03
1.58E−01
1.06E−02


UIMC1
NM_001199297
3.72E−01
1.89E−01
5.10E−02
1.73E−02
1.24E−02
1.31E−02


TAAR8
NM_053278
9.58E−02
1.77E−02
9.83E−02
4.20E−02
3.51E−01
5.00E−02


HNRNPF
NM_004966
1.83E−01
1.63E−02
1.86E−01
5.42E−02
9.01E−02
1.25E−01


NREP
NM_001142483
2.19E−01
1.97E−01
1.27E−02
8.78E−02
9.52E−03
1.29E−01


ZNF605
NM_001164715
1.28E−02
2.53E−01
3.07E−02
1.10E−01
5.18E−02
1.98E−01


SHISA5
NM_001272066
7.00E−02
1.72E−01
1.15E−01
6.73E−02
1.25E−01
1.08E−01


MCL1
NM_021960
3.22E−04
1.45E−01
2.52E−02
2.21E−01
5.20E−02
2.14E−01


TRIM62
NM_018207
7.03E−02
1.71E−01
5.25E−02
1.19E−01
5.37E−02
1.91E−01


C9orf57
NM_001128618
5.67E−02
1.70E−01
7.74E−02
1.50E−01
9.52E−02
1.09E−01


RLTPR
NM_001013838
1.18E−02
1.33E−01
8.16E−02
1.01E−01
7.14E−02
2.60E−01


RPL13
NM_001243130
2.08E−01
9.52E−02
6.92E−02
9.65E−02
6.13E−02
1.30E−01


RNF170
NM_001160224
3.02E−01
1.44E−01
7.99E−02
2.54E−02
2.84E−02
8.06E−02


TLX2
NM_016170
5.01E−02
1.38E−01
7.09E−02
2.27E−02
2.98E−01
8.31E−02


ZBTB49
NM_145291
1.87E−01
1.13E−01
3.84E−02
1.14E−01
7.81E−02
1.33E−01


MEX3A
NM_001093725
1.50E−01
1.08E−01
6.88E−02
4.38E−02
2.06E−01
8.71E−02


TERF2
NM_005652
4.13E−01
6.27E−02
5.07E−02
1.33E−02
1.11E−01
1.60E−02


SLC8A2
NM_015063
1.98E−02
8.50E−02
1.28E−01
8.70E−02
2.19E−01
1.28E−01


FBXO33
NM_203301
7.15E−02
6.71E−02
7.87E−02
1.29E−01
2.90E−01
3.13E−02


NLGN4Y
NM_014893
1.46E−01
2.06E−01
4.46E−02
1.86E−01
5.50E−02
2.95E−02


PRDM8
NM_020226
1.54E−02
3.56E−01
1.64E−02
4.11E−02
7.35E−02
1.65E−01


C9orf84
NM_173521
1.75E−02
1.73E−01
7.81E−02
1.59E−01
2.10E−01
3.21E−02


MRPS15
NM_031280
5.91E−02
2.43E−01
8.17E−02
1.06E−01
7.32E−02
1.08E−01


AHCYL1
NM_001242674
1.33E−01
1.86E−01
4.62E−02
1.21E−01
3.08E−02
1.56E−01


ZNF766
NM_001010851
2.49E−01
1.54E−02
2.04E−01
6.52E−03
1.89E−01
7.56E−03


LOXL1
NM_005576
7.10E−02
2.44E−01
1.36E−01
4.04E−02
1.17E−01
6.37E−02


PRMT7
NM_001290018
8.67E−02
3.01E−01
6.80E−02
1.18E−01
1.52E−03
9.86E−02


ELP3
NM_018091
7.87E−02
2.65E−01
3.11E−03
7.88E−02
1.40E−01
1.08E−01


CNN3
NM_001839
6.82E−02
5.83E−02
1.45E−01
1.24E−01
1.53E−01
1.25E−01


NPY5R
NM_006174
2.34E−02
1.68E−02
3.39E−02
2.72E−01
2.33E−02
3.07E−01


SLITRK1
NM_052910
1.12E−01
1.92E−01
2.31E−01
6.37E−02
5.25E−02
2.79E−02


TEAD4
NM_003213
7.93E−03
3.42E−01
5.19E−03
1.26E−01
1.65E−03
1.98E−01


THOP1
NM_003249
2.46E−01
1.70E−01
1.78E−01
1.85E−02
4.93E−02
1.88E−02


GSN
NM_001258030
1.96E−01
5.48E−02
1.34E−01
8.68E−02
9.13E−02
1.18E−01


APRT
NM_000485
4.29E−02
1.67E−01
1.23E−01
9.02E−02
9.38E−02
1.65E−01


CORO6
NM_032854
1.15E−01
4.90E−02
5.24E−02
1.35E−01
5.12E−02
2.80E−01


COL9A3
NM_001853
2.43E−02
6.13E−02
9.70E−02
8.18E−02
2.97E−01
1.21E−01


MAGEB17
NM_001277307
7.71E−02
2.27E−01
9.85E−02
1.73E−01
8.19E−02
2.58E−02


CD97
NM_078481
2.31E−02
4.32E−03
1.27E−01
1.19E−01
2.20E−01
1.90E−01


PPM1G
NM_177983
3.43E−02
2.16E−01
6.45E−02
1.53E−01
6.95E−02
1.46E−01


DVL3
NM_004423
7.26E−02
3.83E−02
2.28E−01
5.13E−02
2.55E−01
3.99E−02


CREG2
NM_153836
4.68E−01
4.04E−02
1.13E−01
3.78E−03
5.29E−02
7.79E−03


DMPK
NM_001081563
8.29E−02
2.32E−02
9.12E−02
1.01E−01
6.48E−02
3.23E−01


EIF2B4
NM_172195
1.05E−01
2.72E−01
1.54E−01
2.38E−02
7.85E−02
5.25E−02


PRSS56
NM_001195129
2.61E−01
1.20E−01
1.35E−01
8.06E−02
6.25E−02
2.75E−02


UAP1L1
NM_207309
7.10E−02
1.03E−01
2.27E−02
1.45E−01
1.94E−02
3.26E−01


AKAP6
NM_004274
2.01E−01
1.44E−01
1.44E−01
7.78E−02
5.61E−02
6.41E−02


ZIC1
NM_003412
9.20E−02
4.21E−01
5.71E−03
4.98E−02
7.07E−02
4.94E−02


DDX43
NM_018665
8.34E−03
6.94E−03
1.75E−02
1.97E−01
2.41E−01
2.19E−01


NAE1
NM_003905
2.36E−01
6.32E−02
1.06E−01
3.52E−02
1.82E−01
6.76E−02


PLS1
NM_002670
5.05E−02
2.19E−01
1.36E−01
1.16E−01
1.13E−01
5.53E−02


TBP
NM_001172085
6.20E−02
8.95E−02
5.81E−02
4.36E−02
3.23E−01
1.16E−01


FAM217A
NM_173563
2.33E−01
1.59E−02
2.34E−01
1.09E−01
9.60E−02
4.64E−03


EXOC3L2
NM_138568
1.67E−01
7.14E−02
1.41E−01
2.83E−02
1.37E−01
1.49E−01


SOCS3
NM_003955
1.76E−01
1.90E−02
1.18E−01
2.05E−01
7.19E−02
1.04E−01


TRIM60
NM_001258025
3.66E−01
1.65E−02
8.02E−02
1.21E−02
1.96E−01
2.31E−02


SAMD8
NM_144660
1.34E−01
1.66E−02
6.35E−02
1.51E−01
3.10E−01
1.95E−02


SMPDL3B
NM_001009568
5.65E−02
1.24E−01
1.52E−01
2.19E−01
1.04E−01
4.18E−02


FOXP1
NM_001244808
2.00E−02
2.82E−01
6.04E−02
1.55E−01
6.84E−02
1.12E−01


CHD4
NM_001273
4.63E−01
4.45E−02
4.18E−02
3.64E−02
6.41E−03
1.06E−01


ELMO1
NM_014800
2.26E−01
1.21E−01
5.50E−02
1.19E−01
3.64E−02
1.43E−01


PLEKHM3
NM_001080475
3.19E−01
1.66E−02
1.00E−01
3.82E−03
2.53E−01
8.42E−03


MOB4
NM_015387
2.57E−01
4.15E−02
1.28E−01
3.61E−02
2.29E−01
1.27E−02


C6orf15
NM_014070
6.86E−04
3.84E−01
4.91E−02
8.89E−02
1.03E−01
8.17E−02


RANBP1
NM_001278641
1.44E−01
2.90E−02
2.29E−01
9.21E−03
2.83E−01
1.39E−02


TDRD9
NM_153046
2.59E−01
7.23E−02
1.25E−01
7.99E−02
2.58E−02
1.48E−01


ATP6V0C
NM_001694
5.73E−02
9.29E−03
2.55E−01
3.86E−02
2.55E−01
9.59E−02


TMPRSS9
NM_182973
6.13E−02
9.91E−02
1.34E−01
1.42E−01
1.49E−01
1.26E−01


ZNF408
NM_001184751
4.00E−02
9.87E−02
3.82E−02
2.17E−01
1.50E−01
1.67E−01


ZNF648
NM_001009992
8.06E−02
1.82E−01
6.02E−02
2.18E−01
2.95E−02
1.42E−01


USP22
NM_015276
4.08E−01
1.42E−01
7.96E−02
2.13E−02
1.97E−02
4.32E−02


PCDP1
NM_001271049
2.22E−01
1.65E−01
1.18E−01
2.85E−02
8.44E−02
9.60E−02


PROC
NM_000312
1.72E−01
1.83E−01
7.71E−02
1.47E−01
7.76E−02
5.72E−02


COQ6
NM_182480
3.81E−01
4.03E−02
1.58E−01
5.25E−03
1.14E−01
1.57E−02


C12orf29
NM_001009894
5.99E−03
1.85E−01
4.59E−03
3.25E−01
1.96E−02
1.74E−01


CDC27
NM_001114091
1.37E−01
7.52E−02
1.39E−01
7.15E−02
2.11E−01
8.09E−02


PCDHGB1
NM_018922
1.67E−01
9.02E−02
1.19E−01
9.76E−02
1.47E−01
9.43E−02


SS18L1
NM_198935
1.03E−01
7.24E−02
6.72E−02
1.89E−01
6.04E−02
2.27E−01


KLK10
NM_002776
8.38E−02
1.29E−01
8.89E−02
2.30E−01
4.47E−02
1.44E−01


GJB3
NM_001005752
2.85E−01
8.08E−03
6.98E−02
1.41E−01
4.54E−02
1.71E−01


TXLNA
NM_175852
2.04E−01
2.15E−02
2.18E−01
1.61E−02
2.53E−01
8.78E−03


YWHAZ
NM_001135699
7.49E−02
2.61E−01
1.84E−02
1.81E−01
2.04E−02
1.66E−01


C10orf82
NM_144661
2.17E−01
3.85E−02
1.58E−01
1.18E−01
3.70E−02
1.54E−01


FOXI1
NM_012188
2.99E−03
3.05E−01
1.83E−02
9.67E−02
9.48E−02
2.07E−01


RTN2
NM_206900
3.76E−01
1.25E−01
9.13E−02
5.30E−02
6.07E−02
2.00E−02


LSP1
NM_001289005
5.40E−03
2.27E−01
1.45E−03
2.33E−01
1.28E−01
1.32E−01


PAAF1
NM_001267803
2.01E−02
1.43E−02
3.93E−02
2.74E−01
9.32E−02
2.87E−01


HAVCR1
NM_001173393
6.13E−02
7.73E−02
1.91E−01
9.59E−02
1.90E−01
1.13E−01


MGMT
NM_002412
2.47E−01
2.40E−03
1.86E−01
2.56E−02
2.16E−01
5.21E−02


MBNL3
NM_133486
5.50E−02
1.42E−01
1.46E−01
1.52E−01
9.86E−02
1.36E−01


SPTBN4
NM_025213
1.77E−02
4.02E−01
4.14E−02
1.70E−01
7.42E−02
2.69E−02


AMER1
NM_152424
8.45E−05
1.95E−01
2.42E−03
2.13E−01
1.09E−01
2.14E−01


TMEM235
NM_001204212
1.19E−01
1.59E−01
4.81E−02
2.02E−01
3.98E−02
1.65E−01


IL20RB
NM_144717
9.20E−02
4.85E−02
2.31E−01
1.08E−02
3.23E−01
2.77E−02


SULT2B1
NM_177973
6.77E−02
4.09E−02
4.07E−01
6.11E−03
2.09E−01
3.02E−03


SPAG8
NM_172312
2.30E−02
1.72E−01
1.26E−02
2.24E−01
4.26E−03
2.98E−01


FLYWCH2
NM_001142499
1.21E−01
4.01E−02
5.71E−02
2.76E−01
8.82E−03
2.32E−01


CPEB1
NM_030594
5.19E−02
5.07E−02
1.46E−02
2.21E−01
1.10E−01
2.87E−01


SYNE3
NM_152592
4.09E−01
9.90E−02
1.12E−01
2.76E−02
3.96E−02
4.89E−02


PTDSS2
NM_030783
5.90E−02
2.15E−01
2.93E−02
1.79E−01
3.32E−02
2.21E−01


NPB
NM_148896
2.12E−01
1.49E−01
1.34E−01
2.91E−02
1.39E−01
7.29E−02


P2RX1
NM_002558
8.81E−02
1.92E−01
6.84E−02
6.24E−02
2.16E−01
1.12E−01


TESPA1
NM_001136030
1.22E−01
1.33E−01
7.90E−02
8.87E−02
1.71E−01
1.46E−01


SMO
NM_005631
1.78E−01
7.10E−04
1.66E−01
4.47E−02
3.15E−01
3.53E−02


SMARCA2
NM_001289396
9.67E−02
4.03E−01
1.41E−02
1.37E−01
2.65E−03
8.74E−02


RAPGEF6
NM_016340
3.70E−02
2.74E−03
1.41E−01
2.15E−02
5.18E−01
2.00E−02


DDX47
NM_016355
2.51E−01
2.76E−02
2.31E−01
7.40E−03
2.03E−01
2.17E−02


TMEM52
NM_178545
3.04E−01
1.20E−01
8.43E−02
5.79E−02
6.72E−02
1.09E−01


POU4F1
NM_006237
1.93E−01
1.70E−01
1.49E−01
3.43E−02
1.73E−01
2.32E−02


LMX1B
NM_001174147
2.40E−01
3.09E−03
3.04E−01
1.16E−03
1.91E−01
3.92E−03


NSUN3
NM_022072
2.98E−02
5.35E−02
4.29E−02
2.26E−01
8.43E−02
3.07E−01


ZNF135
NM_001289401
1.89E−01
3.27E−01
4.94E−02
5.85E−02
6.53E−02
5.50E−02


RNF24
NM_001134338
9.63E−02
1.40E−03
1.45E−01
6.55E−02
3.55E−01
8.04E−02


ZNF81
NM_007137
3.00E−03
4.61E−01
3.35E−03
9.80E−02
1.16E−02
1.68E−01


SHCBP1L
NM_030933
7.70E−02
9.54E−02
1.32E−01
9.51E−02
2.26E−01
1.19E−01


DEFB127
NM_139074
8.77E−02
3.14E−01
5.64E−02
1.02E−01
3.22E−02
1.53E−01


TAF7L
NM_024885
6.33E−02
1.52E−01
7.41E−02
7.73E−02
3.25E−01
5.45E−02


EIF4EBP1
NM_004095
1.87E−01
4.34E−02
1.89E−01
7.00E−02
8.93E−02
1.68E−01


YTHDF1
NM_017798
1.75E−02
3.32E−01
1.10E−01
7.49E−02
1.16E−01
9.62E−02


AWAT2
NM_001002254
6.28E−02
1.04E−01
2.32E−01
2.08E−02
2.93E−01
3.42E−02


KRT18
NM_199187
2.08E−01
2.76E−01
1.19E−01
2.52E−02
9.78E−02
2.22E−02


TACR2
NM_001057
2.75E−02
1.37E−01
1.03E−01
1.50E−01
1.49E−01
1.82E−01


NTRK3
NM_002530
2.02E−01
2.99E−01
1.25E−01
2.29E−02
8.98E−02
1.15E−02


KRT83
NM_002282
2.14E−01
2.53E−01
1.22E−01
3.15E−02
8.92E−02
4.15E−02


MAPK9
NM_139070
5.17E−02
6.80E−02
1.27E−02
2.52E−01
1.27E−01
2.40E−01


UBL4B
NM_203412
1.77E−01
1.29E−01
1.80E−01
3.23E−02
1.85E−01
4.77E−02


PMM1
NM_002676
2.05E−02
2.84E−02
8.20E−02
1.64E−01
3.29E−01
1.27E−01


FAM124B
NM_024785
1.73E−01
5.84E−02
1.07E−01
1.05E−01
1.48E−01
1.61E−01


PPAT
NM_002703
4.15E−01
3.40E−02
1.10E−01
2.16E−02
1.43E−01
2.89E−02


DAZAP2
NM_001136269
1.89E−01
3.21E−01
4.01E−02
8.32E−02
7.23E−02
4.67E−02


TTLL3
NM_001025930
1.69E−01
1.98E−01
6.23E−02
1.57E−01
1.31E−02
1.54E−01


OR1N1
NM_012363
1.19E−02
1.35E−01
1.20E−01
2.09E−01
2.06E−01
7.10E−02


GATC
NM_176818
7.38E−02
2.95E−01
1.66E−01
9.20E−02
6.18E−02
6.47E−02


DCP1A
NM_001290204
2.05E−03
2.96E−01
6.54E−03
2.04E−01
7.25E−03
2.39E−01


ZMYM3
NM_001171162
3.26E−01
1.61E−01
7.14E−02
5.64E−02
4.31E−02
9.63E−02


FGF14
NM_004115
2.33E−01
1.60E−02
2.13E−01
1.99E−03
2.85E−01
5.88E−03


FBXO6
NM_018438
1.87E−01
1.11E−01
1.47E−01
9.25E−02
1.02E−01
1.18E−01


C8orf33
NM_023080
3.40E−03
2.00E−01
6.78E−05
2.53E−01
2.90E−05
3.05E−01


CTBP1
NM_001012614
2.25E−01
1.60E−02
3.60E−01
6.68E−04
1.57E−01
3.12E−03


ZDHHC8
NM_013373
1.46E−01
2.47E−01
1.22E−01
9.91E−02
3.31E−02
1.15E−01


DMXL1
NM_005509
1.94E−01
9.10E−02
1.74E−01
4.84E−02
1.32E−01
1.23E−01


TUSC3
NM_006765
1.63E−01
9.84E−02
1.68E−01
1.90E−01
1.30E−01
1.30E−02


SPATA31A5
NM_001113541
4.35E−03
1.01E−02
1.45E−01
1.48E−01
3.57E−01
9.89E−02


C17orf67
NM_001085430
6.47E−02
2.12E−01
2.18E−01
5.30E−02
1.10E−01
1.06E−01


MYL6B
NM_002475
2.04E−01
3.09E−02
1.38E−01
2.39E−01
7.25E−02
8.01E−02


CAPN1
NM_005186
1.28E−01
1.41E−02
2.18E−01
1.87E−01
1.96E−01
2.21E−02


PGM5
NM_021965
2.36E−01
2.67E−01
1.69E−01
1.82E−03
6.92E−02
2.42E−02


HSD17B1
NM_000413
1.43E−01
6.21E−02
3.25E−01
7.40E−02
6.78E−02
9.61E−02


DSEL
NM_032160
5.13E−03
3.53E−01
5.49E−03
2.09E−01
1.01E−02
1.86E−01


OSTF1
NM_012383
1.36E−01
3.59E−02
7.06E−02
1.65E−01
1.33E−01
2.30E−01


KDM2A
NM_001256405
8.49E−02
3.04E−01
2.90E−01
5.12E−02
3.45E−02
1.09E−02


SP100
NM_001206704
3.54E−01
4.40E−02
1.62E−01
3.99E−02
7.42E−02
1.03E−01


DNAH5
NM_001369
5.09E−02
2.60E−02
2.76E−01
6.36E−02
2.74E−01
8.75E−02


GFPT2
NM_005110
2.46E−02
4.24E−02
9.78E−02
2.36E−01
2.99E−01
7.81E−02


EIF5A
NM_001143760
3.36E−01
1.09E−01
9.11E−02
1.81E−01
1.73E−02
4.37E−02


REC8
NM_001048205
3.01E−02
3.95E−01
1.81E−02
6.51E−02
2.12E−02
2.50E−01


ZFAND6
NM_001242917
1.13E−01
2.79E−01
8.42E−02
1.30E−01
4.75E−02
1.26E−01


PACRG
NM_001080378
1.42E−02
2.51E−01
9.76E−02
1.46E−01
1.44E−01
1.28E−01


TNFAIP2
NM_006291
4.83E−02
2.31E−01
5.86E−02
1.06E−01
1.83E−01
1.55E−01


KIAA1377
NM_020802
1.18E−01
7.46E−02
2.29E−01
7.60E−02
2.43E−01
4.11E−02


ZNF354A
NM_005649
1.44E−01
2.14E−01
1.91E−01
2.85E−02
1.54E−01
4.99E−02


OPRL1
NM_000913
1.82E−02
1.50E−01
1.11E−02
2.47E−01
3.71E−02
3.20E−01


KLHL32
NM_001286252
6.15E−02
1.08E−01
1.94E−01
6.93E−02
2.24E−01
1.27E−01


MOSPD1
NM_019556
7.55E−02
3.80E−02
3.21E−02
2.31E−01
1.64E−01
2.44E−01


SARDH
NM_007101
7.40E−02
1.57E−01
1.21E−01
1.67E−01
8.48E−02
1.81E−01


NPFF
NM_003717
8.05E−02
5.05E−02
1.86E−02
3.15E−01
1.02E−01
2.18E−01


ATP8B3
NM_138813
4.19E−02
4.81E−01
3.14E−02
7.02E−02
1.74E−02
1.44E−01


PDIA6
NM_001282705
2.20E−01
2.11E−01
5.28E−02
1.46E−01
2.75E−02
1.29E−01


RRP1
NM_003683
3.29E−01
7.85E−03
2.40E−01
4.30E−02
1.17E−01
5.04E−02


ALG1
NM_019109
9.22E−02
1.22E−01
1.32E−01
7.05E−02
2.94E−01
7.70E−02


TMEM135
NM_001168724
3.23E−02
4.18E−01
1.25E−02
1.05E−01
5.69E−02
1.67E−01


OR2B2
NM_033057
5.65E−01
8.25E−03
1.07E−01
2.69E−02
2.74E−02
5.72E−02


MEFV
NM_001198536
3.73E−01
2.43E−01
1.49E−01
6.10E−03
1.51E−02
5.38E−03


C6orf48
NM_001287484
1.43E−01
3.65E−02
7.44E−02
8.42E−02
3.02E−01
1.52E−01


KIAA0020
NM_014878
1.81E−01
6.32E−02
1.34E−01
2.71E−01
8.78E−02
5.60E−02


MCF2L
NM_001112732
4.01E−02
7.36E−03
1.03E−01
1.93E−01
1.58E−01
2.91E−01


HIST1H2BK
NM_080593
7.42E−02
1.67E−01
5.51E−02
7.49E−02
3.09E−01
1.13E−01


PRR5
NM_001017528
1.61E−01
2.47E−01
1.64E−01
7.81E−02
1.04E−01
3.98E−02


IRGC
NM_019612
3.19E−01
1.46E−01
1.67E−01
2.30E−02
8.43E−02
5.50E−02


ACOT7
NM_181864
6.73E−02
1.29E−01
1.58E−01
1.49E−01
7.53E−02
2.16E−01


RPS15A
NM_001019
3.87E−01
5.00E−02
4.77E−02
8.60E−02
1.24E−02
2.12E−01


GDA
NM_001242506
5.56E−03
4.29E−01
1.27E−02
6.82E−02
1.86E−01
9.64E−02


PCDH1
NM_001278613
1.01E−01
1.00E−01
1.46E−01
3.05E−02
3.89E−01
3.13E−02


TNNT1
NM_003283
4.64E−01
3.71E−02
7.21E−02
2.68E−02
1.96E−01
2.28E−03


ACKR1
NM_001122951
4.98E−02
2.06E−02
1.13E−01
3.03E−01
7.27E−02
2.40E−01


CDC42SE2
NM_001038702
8.72E−02
7.52E−02
1.76E−01
8.13E−02
1.72E−01
2.07E−01


SLC9A7
NM_032591
4.35E−02
4.52E−01
6.55E−02
7.77E−02
4.44E−02
1.17E−01


C7orf26
NM_024067
6.13E−02
2.33E−01
1.67E−01
1.56E−01
6.49E−02
1.19E−01


MBD6
NM_052897
1.25E−02
6.13E−01
2.55E−02
5.40E−02
5.78E−02
3.83E−02


LYPLA1
NM_001279356
1.10E−01
1.52E−01
2.07E−01
6.22E−02
2.23E−01
4.75E−02


PELP1
NM_014389
2.81E−01
2.03E−02
2.28E−01
4.33E−02
1.77E−01
5.18E−02


SLC2A8
NM_014580
2.31E−01
2.33E−01
1.95E−01
7.86E−03
1.29E−01
7.04E−03


ODF3L2
NM_182577
1.58E−01
2.00E−01
8.31E−04
2.48E−01
7.68E−03
1.88E−01


IFNA10
NM_002171
1.14E−01
3.20E−01
8.98E−02
8.77E−02
9.16E−02
1.01E−01


LY6E
NM_002346
4.39E−01
1.14E−02
1.85E−01
4.67E−02
4.03E−02
8.12E−02


CHMP2B
NM_014043
2.24E−02
3.77E−01
1.65E−02
1.27E−01
1.40E−01
1.19E−01


NINJ2
NM_016533
2.76E−01
1.25E−01
1.63E−01
3.84E−02
1.35E−01
6.71E−02


TM7SF3
NM_016551
2.07E−01
2.11E−01
9.42E−02
1.67E−02
2.41E−01
3.54E−02


ATP6V0D2
NM_152565
4.08E−02
3.79E−01
6.12E−02
9.44E−02
8.93E−02
1.39E−01


C1QTNF3
NM_181435
4.54E−03
1.83E−01
2.69E−02
3.09E−01
4.43E−02
2.38E−01


SLC26A8
NM_001193476
3.18E−01
4.65E−02
1.12E−01
1.51E−01
3.55E−02
1.43E−01


SPRR1B
NM_003125
1.79E−01
6.23E−02
2.24E−01
8.70E−02
1.40E−01
1.15E−01


WNT8A
NM_058244
2.49E−01
1.33E−01
2.39E−01
1.03E−02
1.64E−01
1.16E−02


EDARADD
NM_080738
4.96E−02
1.07E−01
2.67E−01
6.86E−02
2.62E−01
5.44E−02


GSDMB
NM_001042471
1.66E−01
2.98E−01
3.58E−02
7.79E−02
1.34E−01
9.66E−02


KCNK2
NM_001017424
1.43E−02
2.60E−01
1.37E−02
1.73E−01
1.86E−01
1.62E−01


IQCA1
NM_001270585
1.86E−02
3.76E−01
1.21E−02
1.07E−01
1.79E−01
1.19E−01


NKX2-1
NM_003317
8.42E−02
6.66E−02
3.26E−01
2.20E−02
2.81E−01
3.28E−02


ZNF627
NM_145295
5.29E−01
1.13E−02
1.09E−01
4.25E−02
3.36E−02
8.84E−02


SLC1A5
NM_001145145
1.13E−01
2.65E−01
8.71E−02
1.56E−01
1.44E−01
4.97E−02


SETDB2
NM_001160308
9.40E−03
2.84E−01
3.37E−02
2.81E−01
3.51E−02
1.73E−01


LRRC49
NM_017691
1.51E−02
1.03E−01
1.94E−02
2.21E−01
1.72E−01
2.86E−01


RCN2
NM_002902
1.01E−01
1.04E−01
6.42E−02
2.19E−01
1.39E−02
3.14E−01


FBXO7
NM_012179
1.04E−01
3.13E−01
2.51E−02
1.53E−01
6.47E−03
2.15E−01


PACRG
NM_001080379
7.02E−02
1.02E−01
3.61E−02
2.89E−01
2.27E−02
2.97E−01


SEPTIN9
NM_001113496
1.32E−01
1.82E−02
4.08E−01
1.51E−02
2.08E−01
3.51E−02


LMO3
NM_001243610
1.30E−01
3.59E−02
1.47E−01
5.75E−02
3.35E−01
1.13E−01


LDHA
NM_001165414
1.53E−01
1.20E−01
2.62E−01
3.60E−02
2.02E−01
4.57E−02


MSRB1
NM_016332
6.34E−02
3.34E−01
2.22E−01
6.51E−03
1.19E−01
7.64E−02


RCOR3
NM_001136223
1.53E−01
2.28E−01
1.89E−01
1.82E−02
1.87E−01
4.50E−02


ZNF165
NM_003447
1.06E−01
5.67E−02
2.11E−01
3.20E−02
3.54E−01
6.14E−02


ASNSD1
NM_019048
2.06E−01
2.11E−01
2.78E−01
1.09E−02
9.79E−02
1.80E−02


ARHGAP26
NM_015071
3.15E−01
1.06E−01
6.71E−02
1.86E−01
1.62E−02
1.33E−01


ZNF443
NM_005815
3.15E−01
1.73E−01
1.44E−01
2.66E−02
9.44E−02
7.09E−02


STC1
NM_003155
1.54E−01
6.08E−02
1.95E−01
2.74E−02
3.06E−01
8.18E−02


ASB4
NM_016116
1.87E−01
3.59E−02
2.36E−01
1.08E−01
2.01E−01
5.81E−02


ZNF93
NM_031218
1.76E−01
1.19E−01
1.58E−01
8.21E−02
1.55E−01
1.36E−01


GSTZ1
NM_145870
8.63E−02
1.86E−01
2.87E−01
2.12E−02
2.36E−01
9.08E−03


AASDH
NM_181806
3.70E−02
1.87E−01
1.62E−01
8.94E−02
2.60E−01
9.19E−02


CDK2AP2
NM_001271849
5.14E−02
6.48E−02
3.47E−01
5.10E−03
3.52E−01
7.11E−03


CDKN2B
NM_004936
9.45E−02
1.73E−01
1.64E−01
1.39E−01
2.05E−01
5.17E−02


QARS
NM_005051
9.27E−04
4.77E−02
7.38E−02
2.39E−01
1.09E−01
3.57E−01


NUP50
NM_153645
1.35E−02
1.36E−01
8.99E−02
1.35E−01
2.17E−01
2.36E−01


SCNN1G
NM_001039
8.01E−02
8.96E−02
2.92E−02
2.23E−01
1.74E−01
2.32E−01


PRDX6
NM_004905
3.35E−01
2.05E−03
1.95E−01
7.33E−03
2.77E−01
1.32E−02


MLEC
NM_014730
3.61E−02
1.63E−01
4.52E−02
1.74E−01
1.00E−01
3.12E−01


HMMR
NM_012484
4.55E−01
6.93E−03
2.34E−01
6.80E−03
1.26E−01
2.45E−03


ENAH
NM_018212
1.34E−01
5.83E−02
2.70E−01
8.19E−02
2.63E−01
2.32E−02


CNGB3
NM_019098
2.46E−01
1.17E−01
8.16E−02
1.54E−01
4.79E−02
1.87E−01


ADCK3
NM_020247
1.12E−01
1.36E−01
2.76E−02
1.75E−02
4.51E−01
8.87E−02


SH2D4B
NM_001145719
2.20E−02
1.32E−01
3.84E−02
1.84E−01
2.65E−01
1.92E−01


EEF1A1
NM_001402
1.87E−01
9.89E−02
1.95E−01
1.29E−01
2.11E−01
1.23E−02


GPATCH3
NM_022078
2.95E−01
1.00E−01
1.87E−01
8.01E−02
1.60E−01
1.23E−02


CBLC
NM_012116
2.12E−01
1.09E−01
6.18E−03
3.00E−01
2.86E−02
1.80E−01


ATG4B
NM_178326
3.21E−02
4.31E−01
3.08E−02
1.73E−01
3.28E−02
1.36E−01


TACR1
NM_001058
1.25E−01
2.05E−01
1.81E−01
1.59E−01
2.19E−02
1.44E−01


IGFBP4
NM_001552
1.11E−01
6.39E−02
4.95E−02
1.67E−01
1.78E−01
2.67E−01


CYP19A1
NM_031226
1.38E−01
1.78E−01
1.70E−01
2.30E−01
6.59E−02
5.73E−02


LHX6
NM_001242333
1.30E−01
3.07E−01
2.37E−02
2.15E−01
5.16E−03
1.58E−01


GPC5
NM_004466
3.99E−01
7.31E−02
1.79E−01
1.36E−02
1.44E−01
3.10E−02


TPTE2
NM_001271850
4.31E−03
3.84E−01
4.90E−03
1.79E−01
1.28E−02
2.56E−01


NBEAL2
NM_015175
7.45E−02
9.07E−02
8.19E−02
2.26E−01
5.51E−02
3.13E−01


AGPAT4
NM_020133
6.35E−02
1.67E−01
9.50E−02
1.60E−01
8.27E−02
2.72E−01


SERINC1
NM_020755
8.25E−03
2.60E−01
4.07E−02
2.59E−01
7.80E−02
1.96E−01


ALPPL2
NM_031313
1.79E−01
5.27E−02
2.64E−01
8.36E−02
1.46E−01
1.17E−01


DUSP22
NM_020185
2.19E−01
6.61E−02
5.14E−02
1.47E−01
9.90E−02
2.60E−01


NIPA1
NM_001142275
2.32E−01
2.54E−01
3.98E−02
1.06E−01
3.43E−02
1.78E−01


POU2F3
NM_014352
1.36E−01
1.07E−01
1.99E−01
6.14E−02
2.57E−01
8.41E−02


HTR5A
NM_024012
1.37E−01
1.01E−02
2.53E−01
6.21E−02
2.29E−01
1.53E−01


TXNL1
NM_004786
2.63E−01
9.32E−03
2.77E−01
1.40E−02
2.63E−01
1.75E−02


RAPGEF4
NM_007023
1.81E−01
2.20E−01
1.66E−01
6.68E−02
1.99E−01
1.20E−02


HACE1
NM_020771
5.17E−02
5.25E−03
3.64E−01
2.14E−02
3.71E−01
3.13E−02


MSRB3
NM_001193460
5.76E−02
2.80E−01
1.40E−01
1.13E−01
1.49E−01
1.07E−01


PWWP2B
NM_138499
1.08E−01
2.43E−01
5.49E−02
1.13E−01
5.33E−02
2.74E−01


SAYSD1
NM_018322
1.20E−01
5.17E−02
2.31E−01
7.42E−02
3.37E−01
3.18E−02


GPRC5C
NM_022036
2.60E−01
1.15E−01
1.81E−01
7.25E−03
2.71E−01
1.31E−02


SPEG
NM_001173476
1.95E−01
3.50E−01
1.43E−01
2.99E−03
1.54E−01
2.20E−03


GSTM4
NM_000850
1.67E−01
5.24E−02
2.20E−01
2.77E−02
3.18E−01
6.28E−02


CNTN1
NM_001256064
1.30E−01
6.72E−02
1.79E−01
1.43E−01
2.04E−01
1.27E−01


CTNND2
NM_001332
1.97E−01
2.28E−01
9.40E−02
1.67E−01
1.29E−01
3.47E−02


TANGO2
NM_001283199
2.36E−01
1.33E−01
1.95E−01
3.82E−02
2.39E−01
7.49E−03


TOMM34
NM_006809
2.89E−02
4.00E−01
1.13E−02
1.93E−01
1.08E−01
1.09E−01


FBXL12
NM_017703
2.45E−01
1.81E−01
2.55E−01
3.03E−02
5.69E−02
8.24E−02


ZNF692
NM_001136036
1.13E−01
1.49E−01
7.88E−02
1.54E−01
1.22E−01
2.36E−01


SOCS1
NM_003745
7.47E−02
8.82E−02
2.38E−01
9.95E−02
2.31E−01
1.22E−01


EPHA3
NM_182644
1.39E−02
1.44E−01
1.20E−01
2.12E−01
3.35E−02
3.29E−01


CTDNEP1
NM_001143775
8.39E−02
7.50E−02
1.09E−01
9.80E−02
2.99E−01
1.88E−01


VDAC1
NM_003374
2.07E−01
1.41E−01
2.28E−01
1.13E−02
2.40E−01
2.70E−02


CLDN19
NM_001185117
2.35E−01
1.24E−01
1.98E−01
3.95E−02
2.05E−01
5.29E−02


VSIG10L
NM_001163922
1.19E−01
1.27E−02
2.15E−01
1.32E−01
1.58E−01
2.17E−01


VAC14
NM_018052
1.98E−01
7.82E−02
1.08E−01
2.18E−01
1.12E−01
1.40E−01


LTV1
NM_032860
1.22E−01
3.20E−02
3.74E−01
7.24E−02
1.97E−01
5.94E−02


SHCBP1
NM_024745
5.24E−02
7.06E−02
9.09E−02
1.92E−01
2.15E−01
2.37E−01


GAPVD1
NM_001282680
1.24E−01
8.29E−02
1.29E−01
5.25E−02
2.65E−01
2.04E−01


FBXO5
NM_012177
1.12E−01
7.51E−02
2.98E−01
9.13E−02
2.65E−01
1.78E−02


RASGRP1
NM_001128602
8.40E−02
2.15E−01
5.66E−02
2.50E−01
4.88E−02
2.04E−01


NSD1
NM_172349
4.93E−02
3.02E−01
3.42E−02
1.01E−01
2.72E−01
1.02E−01


TAP1
NM_000593
8.40E−02
7.65E−03
4.47E−02
2.37E−01
1.49E−01
3.39E−01


ZNF454
NM_182594
5.27E−02
6.16E−02
1.24E−01
8.61E−02
3.53E−01
1.85E−01


PHF21A
NM_016621
3.65E−01
8.68E−02
3.77E−02
8.97E−02
2.43E−02
2.58E−01


PPP1R10
NM_002714
5.98E−02
2.47E−01
2.55E−02
2.44E−01
1.21E−01
1.65E−01


LRP1
NM_002332
6.82E−02
1.13E−01
1.49E−01
1.33E−01
2.49E−01
1.50E−01


SMARCA5
NM_003601
3.70E−01
1.42E−01
1.43E−01
2.62E−02
1.47E−01
3.64E−02


EDC3
NM_025083
9.89E−03
4.19E−01
1.36E−02
1.92E−01
1.51E−01
8.00E−02


BTK
NM_000061
4.34E−02
4.81E−02
8.57E−02
3.10E−01
9.25E−02
2.86E−01


PAM16
NM_016069
1.67E−03
2.99E−01
9.04E−03
1.34E−01
1.42E−01
2.80E−01


NBR1
NM_001291571
2.52E−03
9.47E−02
5.09E−02
2.49E−01
8.70E−02
3.83E−01


C9orf139
NM_207511
4.14E−01
1.71E−01
9.26E−02
1.46E−01
2.05E−02
2.38E−02


EPC1
NM_001282391
2.29E−02
2.92E−01
8.69E−02
2.32E−01
1.56E−01
7.80E−02


WDR54
NM_032118
2.63E−02
1.22E−01
2.23E−02
2.24E−01
1.34E−01
3.40E−01


ZNF248
NM_001267606
1.82E−02
7.33E−02
1.30E−01
1.01E−01
4.87E−01
5.97E−02


ETS2
NM_005239
2.11E−01
7.38E−02
2.74E−01
9.61E−03
2.84E−01
1.67E−02


MBD2
NM_003927
2.84E−01
4.46E−01
5.64E−02
6.20E−02
1.21E−02
8.05E−03


CD81
NM_004356
1.64E−01
1.51E−01
1.15E−01
4.61E−02
3.47E−01
4.57E−02


ADAMTSL2
NM_014694
8.25E−02
1.97E−01
1.78E−01
1.45E−01
1.17E−01
1.52E−01


RARG
NM_001243731
3.51E−02
2.72E−01
4.11E−02
2.87E−01
7.25E−02
1.63E−01


NRG3
NM_001165973
7.76E−03
3.90E−01
1.25E−01
1.01E−01
1.69E−01
7.67E−02


ADH5
NM_000671
5.01E−02
7.53E−02
1.04E−01
2.25E−01
1.69E−01
2.47E−01


NALCN
NM_052867
1.00E−01
5.19E−01
2.08E−02
1.01E−01
1.23E−02
1.18E−01


SOSTDC1
NM_015464
1.80E−01
2.43E−02
2.64E−01
2.87E−02
2.93E−01
8.36E−02


MPI
NM_002435
1.32E−01
1.55E−01
1.00E−01
1.58E−01
1.33E−01
1.96E−01


C20orf96
NM_153269
2.39E−01
2.14E−02
2.54E−01
6.21E−03
3.46E−01
6.20E−03


KRT79
NM_175834
4.05E−02
7.86E−02
2.74E−02
2.53E−01
1.02E−01
3.73E−01


CYBB
NM_000397
7.27E−02
3.60E−01
1.27E−01
1.23E−01
6.50E−02
1.28E−01


PLA2G7
NM_005084
2.20E−01
1.60E−02
2.33E−01
5.68E−02
3.16E−01
3.43E−02


USP2
NM_001243759
1.30E−01
7.89E−02
2.06E−01
1.05E−01
2.02E−01
1.54E−01


FBXO15
NM_001142958
5.41E−01
1.48E−03
1.53E−01
1.17E−02
1.49E−01
2.02E−02


ROPN1
NM_017578
1.41E−02
3.47E−01
5.29E−03
2.22E−01
5.24E−02
2.36E−01


GZMM
NM_001258351
1.77E−01
1.67E−01
9.81E−02
1.82E−01
8.79E−02
1.65E−01


H3F3C
NM_001013699
3.09E−01
4.58E−02
1.15E−01
4.92E−02
2.52E−01
1.07E−01


ELP2
NM_001242875
6.28E−02
2.55E−01
1.48E−01
1.24E−01
1.42E−01
1.46E−01


PIWIL2
NM_001135721
2.15E−01
2.20E−01
1.57E−02
1.54E−01
9.67E−04
2.73E−01


EMC4
NM_001286420
2.92E−01
2.11E−01
1.55E−01
3.46E−02
1.43E−01
4.42E−02


CKAP5
NM_001008938
1.32E−01
2.15E−01
6.77E−02
7.09E−02
2.95E−01
9.93E−02


GSC
NM_173849
3.90E−02
1.21E−01
8.01E−02
2.81E−01
1.46E−01
2.12E−01


AES
NM_198969
1.48E−01
2.31E−01
1.01E−01
8.28E−02
2.31E−01
8.53E−02


SLCO5A1
NM_001146008
2.01E−02
1.33E−02
1.09E−01
2.80E−01
3.10E−01
1.49E−01


ARSH
NM_001011719
2.69E−02
2.38E−01
5.60E−02
1.27E−01
3.01E−01
1.33E−01


WNK4
NM_032387
3.08E−02
3.67E−01
1.20E−01
1.36E−01
6.49E−02
1.62E−01


CPNE4
NM_153429
2.30E−01
1.48E−02
3.26E−01
7.09E−02
1.80E−01
5.94E−02


KIF25
NM_030615
2.03E−01
2.94E−01
1.16E−01
9.14E−02
1.08E−01
7.11E−02


LRIT1
NM_015613
3.27E−01
1.08E−01
1.24E−01
1.21E−01
1.04E−01
9.85E−02


CMTM1
NM_181296
2.07E−01
2.52E−02
2.65E−01
1.48E−02
3.40E−01
3.08E−02


ZNF687
NM_020832
4.28E−01
2.77E−02
1.10E−01
5.45E−02
1.70E−01
9.37E−02


TSSK3
NM_052841
5.57E−02
3.70E−03
3.67E−01
3.54E−02
3.06E−01
1.17E−01


CCDC155
NM_144688
5.41E−02
5.01E−01
5.19E−02
1.22E−01
4.24E−02
1.13E−01


KCNJ15
NM_170736
1.13E−01
1.98E−01
5.75E−02
2.33E−01
8.70E−02
1.96E−01


C2CD3
NM_001286577
2.21E−01
1.84E−01
1.61E−01
5.49E−02
1.89E−01
7.58E−02


KREMEN1
NM_032045
3.27E−01
2.11E−01
1.64E−01
4.73E−02
1.00E−01
3.66E−02


FOXP3
NM_014009
1.41E−01
3.23E−02
1.02E−01
1.98E−01
6.39E−02
3.48E−01


VASH2
NM_001136474
3.49E−01
2.99E−02
2.41E−01
1.79E−02
2.22E−01
2.54E−02


UBR5
NM_015902
3.63E−01
2.71E−02
7.43E−02
1.96E−01
1.74E−01
5.13E−02


OR2T33
NM_001004695
6.11E−02
2.60E−01
5.14E−02
2.69E−01
1.95E−01
4.97E−02


DZIP1L
NM_173543
4.99E−01
7.58E−03
1.37E−01
7.26E−02
5.78E−02
1.12E−01


SMIM11
NM_058182
2.95E−01
2.37E−01
5.70E−02
5.77E−02
1.68E−01
7.25E−02


EBF1
NM_024007
1.74E−01
2.53E−01
9.39E−02
1.11E−01
2.99E−02
2.25E−01


HABP4
NM_014282
3.74E−01
1.23E−01
1.74E−01
4.53E−02
1.07E−01
6.54E−02


WDR61
NM_025234
5.12E−01
4.50E−02
1.98E−01
9.73E−03
1.08E−01
1.64E−02


VGLL3
NM_016206
1.98E−01
7.02E−02
1.79E−01
1.68E−01
2.27E−01
4.80E−02


CHST8
NM_001127896
4.89E−01
6.58E−03
2.03E−01
3.72E−02
9.60E−02
5.93E−02


CRISP3
NM_001190986
1.41E−01
2.13E−01
2.07E−02
2.48E−01
3.70E−02
2.32E−01


PPP1CA
NM_206873
3.50E−01
1.12E−01
1.70E−01
1.87E−02
2.10E−01
3.20E−02


PIGZ
NM_025163
4.06E−01
8.95E−03
2.72E−01
5.57E−03
1.95E−01
6.80E−03


TMEM255A
NM_001104544
2.06E−01
6.49E−03
2.16E−01
1.26E−01
3.12E−01
2.88E−02


SPON1
NM_006108
2.65E−01
1.40E−02
2.32E−01
1.01E−02
3.30E−01
4.39E−02


SMARCB1
NM_003073
4.62E−03
4.06E−01
3.37E−02
2.03E−01
8.90E−02
1.59E−01


PTBP1
NM_031991
7.17E−03
4.44E−01
1.26E−01
1.17E−01
5.54E−02
1.48E−01


PPP1R27
NM_001007533
3.54E−01
1.11E−01
1.68E−01
2.26E−02
9.10E−02
1.50E−01


ATP2C1
NM_001199181
1.89E−01
5.57E−02
1.41E−01
3.35E−01
1.09E−01
6.71E−02


ADAM19
NM_033274
5.49E−03
2.59E−01
5.85E−02
1.62E−01
9.24E−02
3.20E−01


GKAP1
NM_001135953
2.95E−01
9.24E−02
2.05E−01
5.54E−02
2.02E−01
4.70E−02


NREP
NM_001142482
2.04E−01
1.46E−01
2.96E−02
2.23E−01
2.04E−02
2.74E−01


SLC39A9
NM_001252152
1.03E−01
1.77E−01
2.66E−01
1.31E−01
8.97E−02
1.31E−01


NPC2
NM_006432
2.94E−01
8.17E−02
1.83E−01
5.71E−02
1.90E−01
9.26E−02


SYNJ1
NM_003895
3.28E−01
5.69E−02
2.49E−01
7.52E−02
1.13E−01
7.61E−02


ATP6V1G1
NM_004888
4.18E−01
1.43E−02
1.77E−01
8.51E−02
1.61E−01
4.29E−02


PITPNB
NM_001284278
5.89E−01
2.06E−02
2.36E−01
4.14E−03
4.39E−02
5.12E−03


ZNF623
NM_001261843
7.61E−02
1.91E−01
1.73E−01
1.83E−01
1.41E−01
1.35E−01


DDX1
NM_004939
8.09E−02
1.06E−01
1.08E−01
1.04E−01
4.02E−01
9.99E−02


NUDT7
NM_001243661
3.68E−02
6.96E−01
5.35E−02
2.37E−02
3.59E−02
5.50E−02


S100A13
NM_005979
1.56E−01
1.24E−01
7.52E−02
2.02E−01
5.21E−02
2.91E−01


SEMA3C
NM_006379
2.81E−01
1.02E−01
1.90E−01
2.48E−01
2.68E−02
5.37E−02


EOMES
NM_005442
3.15E−02
6.20E−02
1.12E−01
1.49E−01
4.55E−01
9.20E−02


FBLN1
NM_006487
2.53E−02
2.50E−01
1.45E−01
1.18E−01
1.97E−01
1.67E−01


FAM131B
NM_014690
8.98E−02
3.16E−01
1.49E−01
9.61E−02
1.27E−01
1.24E−01


MTARC2
NM_017898
3.23E−03
1.16E−01
3.09E−02
3.27E−01
7.30E−02
3.53E−01


TIFA
NM_052864
2.22E−01
4.73E−01
8.84E−03
9.42E−02
2.98E−03
1.03E−01


RNF135
NM_197939
1.82E−01
1.54E−01
2.22E−01
8.67E−02
1.65E−01
9.42E−02


ALDH3B2
NM_001031615
4.89E−02
5.20E−01
1.46E−02
6.81E−02
1.30E−01
1.24E−01


COL8A1
NM_001850
3.82E−02
3.54E−01
1.93E−02
2.83E−01
1.14E−03
2.11E−01


CCT4
NM_001256721
2.04E−01
2.79E−01
1.59E−01
1.50E−02
1.70E−01
7.96E−02


QRICH1
NM_017730
1.79E−01
2.00E−01
1.13E−01
1.63E−01
1.09E−01
1.43E−01


RIOK2
NM_018343
3.74E−01
2.08E−01
7.12E−02
1.18E−01
5.92E−02
7.72E−02


EFHC1
NM_018100
5.94E−02
5.65E−01
1.84E−03
1.40E−01
1.70E−02
1.24E−01


AATK
NM_001080395
1.16E−01
3.64E−01
1.06E−01
1.89E−01
6.16E−02
7.06E−02


FAM217B
NM_001190826
2.35E−01
1.77E−01
6.12E−02
1.97E−01
5.06E−02
1.86E−01


CDK5RAP1
NM_016082
2.68E−01
1.24E−01
1.19E−01
1.01E−01
2.60E−01
3.84E−02


ITIH1
NM_001166434
2.50E−01
1.52E−01
2.59E−02
1.81E−01
1.69E−01
1.33E−01


FBXO34
NM_152231
1.60E−01
2.55E−01
1.62E−01
3.33E−02
2.17E−01
8.38E−02


ZFAT
NM_001289394
4.19E−01
5.28E−03
1.27E−01
1.73E−01
3.94E−02
1.47E−01


RABGAP1L
NM_001243764
5.43E−01
2.09E−02
1.72E−01
3.69E−03
1.59E−01
1.18E−02


KIF21B
NM_001252100
1.28E−01
1.47E−01
8.34E−02
1.50E−01
4.74E−02
3.57E−01


GABARAP
NM_007278
1.39E−01
8.44E−04
3.60E−01
1.47E−01
2.61E−01
4.99E−03


CLCN3
NM_001243374
5.27E−02
3.99E−01
1.46E−02
1.42E−01
2.38E−01
6.67E−02


RAD21
NM_006265
2.78E−01
7.78E−02
2.63E−01
1.47E−02
2.54E−01
2.67E−02


RNF165
NM_152470
6.96E−02
2.46E−01
1.18E−01
1.93E−01
6.26E−02
2.25E−01


EFCAB2
NM_032328
3.67E−01
1.32E−01
4.78E−02
1.68E−01
4.93E−02
1.51E−01


POTEH
NM_001136213
9.86E−02
3.14E−01
4.11E−02
1.35E−01
1.66E−01
1.61E−01


TRIM73
NM_198924
2.03E−01
1.67E−01
8.85E−02
1.13E−01
2.03E−01
1.42E−01


LHFP
NM_005780
2.14E−01
3.84E−02
3.81E−01
1.96E−02
2.14E−01
5.01E−02


PODN
NM_001199081
7.89E−02
3.59E−01
2.97E−02
2.43E−01
5.66E−03
2.01E−01


SYT15
NM_181519
1.16E−01
6.81E−02
2.55E−01
1.65E−01
8.68E−02
2.27E−01


TNPO2
NM_001136195
3.83E−01
4.18E−03
3.57E−01
6.78E−05
1.73E−01
6.78E−05


KRT19
NM_002276
6.80E−02
1.82E−01
1.12E−01
4.50E−02
4.93E−01
1.98E−02


FAM178B
NM_001172667
1.35E−01
1.04E−02
2.81E−01
9.92E−02
2.82E−01
1.13E−01


TBX1
NM_080646
3.30E−01
3.73E−02
2.51E−01
3.02E−02
2.53E−01
1.87E−02


MSL2
NM_001145417
5.74E−02
2.09E−01
2.46E−01
3.85E−02
2.05E−01
1.65E−01


ZNF30
NM_194325
4.96E−01
8.12E−02
1.58E−01
5.43E−03
1.78E−01
3.18E−03


C1orf158
NM_152290
2.32E−01
2.10E−01
2.42E−01
1.72E−02
1.81E−01
3.93E−02


HSPB7
NM_014424
1.35E−01
1.94E−01
1.41E−01
3.81E−02
3.89E−01
2.50E−02


MAG
NM_001199216
3.59E−01
2.59E−03
2.31E−01
1.43E−01
1.50E−01
3.76E−02


LMO2
NM_001142316
3.09E−01
2.37E−01
1.01E−01
9.22E−02
9.74E−02
8.73E−02


PHYHIP
NM_001099335
1.11E−01
1.07E−01
2.84E−01
7.12E−02
2.35E−01
1.15E−01


TIMM23B
NM_001290117
5.16E−02
9.58E−02
8.26E−02
2.57E−01
1.74E−01
2.63E−01


PSMA5
NM_001199773
1.45E−02
4.35E−01
2.15E−02
3.63E−01
3.17E−02
5.83E−02


ATP11A
NM_032189
1.47E−01
1.05E−01
2.26E−01
3.07E−02
3.99E−01
1.74E−02


C20orf78
NM_001242671
2.16E−03
3.80E−01
3.38E−03
4.52E−02
1.07E−01
3.88E−01


C20orf196
NM_152504
4.20E−01
2.46E−02
1.46E−01
1.22E−01
7.57E−02
1.37E−01


UHRF1BP1L
NM_015054
1.24E−01
2.35E−01
1.54E−02
3.25E−01
6.62E−03
2.19E−01


PTCH1
NM_000264
8.92E−02
6.71E−02
9.68E−02
2.54E−01
3.70E−01
5.00E−02


RGS12
NM_198227
2.31E−01
1.66E−01
1.36E−01
1.67E−01
6.90E−02
1.57E−01


RCN3
NM_020650
2.16E−01
1.18E−01
1.73E−01
9.84E−02
1.98E−01
1.24E−01


NAT8L
NM_178557
4.77E−01
6.75E−03
2.17E−01
1.08E−03
2.26E−01
6.87E−04


CCNI
NM_006835
7.90E−02
1.71E−01
1.22E−01
2.61E−01
1.59E−01
1.35E−01


ECSCR
NM_001077693
1.16E−02
1.04E−01
9.27E−02
7.47E−02
5.49E−01
9.65E−02


MTX3
NM_001167741
3.91E−02
1.22E−01
1.37E−01
1.99E−01
2.93E−01
1.38E−01


TENM3
NM_001080477
2.03E−02
2.37E−01
5.10E−02
1.21E−01
2.46E−01
2.54E−01


CTXN3
NM_001048252
6.56E−02
6.34E−02
2.07E−01
1.35E−01
4.17E−01
4.08E−02


ANAPC1
NM_022662
1.86E−01
2.82E−01
1.49E−01
1.57E−01
1.07E−01
4.90E−02


ZNF469
NM_001127464
1.73E−02
5.91E−02
1.27E−01
2.62E−01
2.73E−01
1.91E−01


FAM170A
NM_182761
4.13E−01
4.63E−02
1.99E−01
1.64E−01
9.10E−02
1.61E−02


MBD3L2
NM_144614
3.30E−02
5.76E−02
2.33E−01
7.55E−02
3.11E−01
2.21E−01


PUSL1
NM_153339
1.91E−01
4.31E−03
2.43E−01
7.21E−02
2.22E−01
1.99E−01


DIS3L
NM_001143688
3.56E−01
2.28E−03
2.44E−01
6.34E−02
1.74E−01
9.17E−02


AHCYL2
NM_001130722
3.96E−01
1.92E−02
2.18E−01
1.68E−01
1.00E−01
3.12E−02


HOXB4
NM_024015
6.36E−01
5.45E−02
1.65E−01
1.13E−02
2.25E−02
4.32E−02


YBEY
NM_058181
1.59E−02
1.67E−01
3.01E−02
3.41E−01
4.13E−02
3.38E−01


DPH5
NM_015958
4.60E−01
5.74E−02
1.73E−01
3.92E−02
1.11E−01
9.25E−02


RREB1
NM_001003699
1.24E−01
2.02E−02
3.00E−01
1.78E−01
3.06E−01
4.82E−03


CNTNAP4
NM_033401
2.07E−01
2.88E−02
2.98E−01
3.13E−02
3.64E−01
4.17E−03


SIRT3
NM_012239
5.75E−01
4.46E−03
2.83E−02
3.95E−02
1.37E−01
1.49E−01


RHOB
NM_004040
5.35E−01
8.98E−02
1.70E−01
3.50E−02
4.00E−02
6.46E−02


ZSWIM7
NM_001042698
1.67E−01
4.11E−02
2.45E−01
1.53E−01
2.82E−01
4.69E−02


CABP5
NM_019855
5.31E−01
7.16E−02
1.57E−01
3.14E−02
3.67E−02
1.07E−01


PPCS
NM_001287506
2.44E−01
2.31E−02
1.48E−01
1.60E−01
2.08E−01
1.54E−01


MAMSTR
NM_001130915
9.08E−02
3.15E−01
7.19E−02
1.85E−01
5.99E−02
2.15E−01


HEY1
NM_001282851
1.83E−01
6.44E−02
9.20E−02
9.94E−02
3.92E−01
1.07E−01


UBE2L3
NM_001256355
6.50E−02
1.95E−02
3.79E−02
2.44E−01
2.93E−01
2.79E−01


PPP1R37
NM_019121
1.29E−01
4.51E−01
6.21E−02
1.11E−01
4.86E−02
1.37E−01


CD3G
NM_000073
7.98E−02
2.77E−01
9.59E−03
1.94E−01
1.41E−03
3.79E−01


GAR1
NM_032993
2.33E−01
3.41E−01
1.48E−01
6.79E−02
8.18E−02
6.85E−02


ZC3H15
NM_018471
1.74E−02
4.51E−02
2.42E−02
3.34E−01
2.18E−02
4.98E−01


F13B
NM_001994
1.82E−01
5.14E−02
1.17E−01
2.08E−01
1.48E−01
2.35E−01


CACFD1
NM_017586
2.24E−01
2.05E−01
2.58E−02
2.79E−01
8.67E−03
1.99E−01


COX6B2
NM_144613
1.23E−01
6.88E−03
3.57E−01
1.77E−02
4.09E−01
2.76E−02


SPEN
NM_015001
1.26E−02
1.07E−01
4.07E−02
3.24E−01
9.16E−02
3.67E−01


PHLDA3
NM_012396
1.53E−02
5.65E−01
4.37E−02
1.13E−01
8.51E−02
1.20E−01


IL1RL2
NM_003854
1.16E−01
4.70E−02
9.57E−02
2.88E−01
2.21E−01
1.76E−01


TMEM170A
NM_145254
2.82E−01
9.87E−02
1.60E−01
1.49E−01
9.11E−02
1.63E−01


PBX3
NM_006195
3.56E−02
4.76E−01
2.32E−04
1.32E−01
8.33E−05
3.00E−01


ZNF718
NM_001039127
1.51E−01
3.13E−02
8.09E−02
2.60E−01
1.79E−01
2.41E−01


LYPD5
NM_001288763
3.52E−01
2.39E−01
1.83E−01
3.76E−02
7.68E−02
5.58E−02


TMEM51
NM_001136218
2.81E−01
1.90E−01
5.60E−02
1.36E−01
5.63E−02
2.25E−01


NFIA
NM_001134673
2.32E−01
1.92E−01
5.89E−02
1.55E−01
1.52E−01
1.55E−01


ZNF711
NM_021998
3.69E−02
6.18E−01
8.73E−03
2.32E−01
1.56E−02
3.37E−02


UBE2E1
NM_001202476
2.71E−01
2.66E−02
1.35E−01
1.79E−01
2.98E−01
3.72E−02


VEGFA
NM_001171630
2.08E−02
1.55E−01
1.63E−01
3.02E−01
9.27E−02
2.13E−01


GSTP1
NM_000852
2.50E−01
1.24E−01
1.96E−01
9.11E−02
2.75E−01
1.08E−02


KIAA1107
NM_015237
1.61E−01
1.02E−01
1.61E−01
1.06E−01
2.23E−01
1.93E−01


MXRA8
NM_032348
7.89E−02
8.08E−02
1.96E−02
4.19E−01
1.36E−02
3.36E−01


OSBPL1A
NM_080597
2.52E−01
1.75E−01
1.97E−01
1.28E−01
8.63E−02
1.11E−01


VNN1
NM_004666
2.83E−01
2.82E−02
1.53E−01
1.57E−01
9.46E−02
2.34E−01


DEFB125
NM_153325
3.21E−01
5.96E−02
2.49E−01
4.76E−02
1.95E−01
7.75E−02


ZNF185
NM_001178113
3.62E−01
1.96E−01
2.75E−01
4.32E−02
6.71E−02
6.71E−03


GNGT2
NM_001198754
7.74E−03
1.84E−01
8.78E−02
2.44E−01
1.40E−01
2.88E−01


COG4
NM_015386
2.61E−01
1.05E−01
1.29E−01
9.30E−02
2.53E−01
1.10E−01


DIO3
NM_001362
2.18E−01
7.79E−02
1.68E−01
5.38E−03
2.57E−01
2.26E−01


SLC7A6
NM_001076785
9.12E−02
3.97E−03
2.87E−01
2.12E−01
1.76E−01
1.82E−01


GRIN3A
NM_133445
2.20E−01
8.68E−02
1.52E−01
2.01E−01
1.14E−01
1.78E−01


SGCB
NM_000232
7.94E−03
3.03E−01
1.99E−02
2.75E−01
5.34E−03
3.41E−01


TAF6
NM_139315
5.50E−01
1.49E−02
1.74E−01
4.08E−02
1.19E−01
5.56E−02


XRCC4
NM_022550
3.69E−01
2.33E−01
4.28E−02
1.32E−01
6.46E−02
1.13E−01


NAT8
NM_003960
2.27E−02
4.06E−02
3.53E−02
4.21E−01
2.90E−02
4.05E−01


HOXB13
NM_006361
2.37E−01
1.73E−01
1.72E−01
1.34E−01
1.20E−01
1.18E−01


FAM96B
NM_016062
3.31E−01
8.86E−03
2.65E−01
6.40E−02
1.46E−01
1.40E−01


SLC16A3
NM_004207
1.79E−01
1.21E−01
2.23E−01
9.14E−02
2.41E−01
1.01E−01


NDUFA7
NM_005001
1.94E−01
9.65E−02
2.44E−01
1.21E−02
3.90E−01
1.92E−02


MYH4
NM_017533
5.05E−01
1.18E−01
1.75E−01
8.39E−02
5.15E−02
2.27E−02


FOXD4
NM_207305
2.24E−02
3.01E−01
4.98E−02
3.19E−01
6.03E−02
2.04E−01


PABPN1
NM_004643
1.11E−01
4.69E−02
5.17E−02
3.41E−01
1.68E−01
2.38E−01


TPCN1
NM_017901
1.40E−01
4.05E−01
5.13E−02
2.28E−01
5.16E−02
8.08E−02


PIANP
NM_001244015
4.07E−02
1.67E−01
7.10E−03
2.92E−01
3.87E−03
4.46E−01


LTBP2
NM_000428
1.06E−01
4.25E−01
3.74E−02
1.26E−01
3.94E−02
2.24E−01


C17orf49
NM_001142798
3.70E−01
1.19E−02
2.45E−01
4.82E−02
1.84E−01
1.01E−01


SFT2D3
NM_032740
1.95E−01
9.26E−02
2.74E−01
4.12E−02
2.55E−01
1.02E−01


DTWD2
NM_173666
3.64E−01
7.79E−02
1.18E−01
1.67E−01
4.03E−02
1.92E−01


IHH
NM_002181
7.48E−02
2.73E−01
6.19E−02
1.43E−01
3.03E−01
1.04E−01


NAA40
NM_024771
2.53E−02
4.14E−01
5.32E−02
1.98E−01
1.16E−01
1.54E−01


SPCS1
NM_014041
2.19E−01
1.74E−02
1.64E−01
1.48E−01
3.67E−01
4.45E−02


SEMA5A
NM_003966
2.34E−01
4.67E−01
9.50E−02
3.16E−02
4.50E−02
8.89E−02


CA7
NM_005182
5.81E−02
2.32E−01
1.63E−03
2.84E−01
2.23E−03
3.84E−01


TNFRSF10A
NM_003844
7.63E−02
8.80E−02
1.48E−01
1.73E−01
2.21E−01
2.56E−01


C2CD4C
NM_001136263
1.59E−01
1.74E−01
2.28E−01
1.40E−01
6.01E−02
2.03E−01


CD72
NM_001782
6.19E−02
1.58E−01
1.97E−02
2.64E−01
2.88E−01
1.71E−01


VWA2
NM_001272046
1.44E−01
1.43E−01
1.73E−01
1.83E−01
1.61E−01
1.60E−01


DAOA
NM_001161812
6.39E−02
4.12E−01
1.15E−01
5.33E−02
2.25E−01
9.47E−02


NKX3-2
NM_001189
3.98E−01
2.15E−01
2.67E−02
1.31E−01
3.87E−02
1.54E−01


IER3
NM_003897
6.26E−02
4.59E−02
5.14E−02
3.57E−01
1.71E−01
2.79E−01


OR51A7
NM_001004749
5.20E−01
2.02E−02
2.14E−01
4.59E−02
5.79E−02
1.10E−01


ARRDC3
NM_020801
4.08E−01
3.26E−02
2.11E−01
2.81E−02
2.44E−01
4.38E−02


C16orf59
NM_025108
5.31E−02
3.38E−01
2.64E−02
2.27E−01
7.21E−02
2.51E−01


CD274
NM_014143
7.10E−02
2.35E−03
3.25E−01
9.87E−02
4.60E−01
1.06E−02


EXOSC1
NM_016046
2.40E−01
3.42E−01
1.25E−01
7.33E−02
5.35E−02
1.35E−01


PELI1
NM_020651
2.09E−01
1.53E−01
1.88E−01
1.72E−01
1.18E−01
1.28E−01


ATG4A
NM_178270
3.62E−01
2.51E−01
6.12E−02
5.89E−02
1.61E−01
7.55E−02


FAM228A
NM_001040710
1.71E−01
1.56E−01
1.62E−01
1.36E−01
2.00E−01
1.45E−01


USP7
NM_003470
2.37E−01
2.23E−01
6.12E−02
6.27E−02
2.83E−01
1.02E−01


YOD1
NM_001276320
2.36E−02
3.72E−01
7.98E−02
1.59E−01
6.02E−02
2.75E−01


SLC52A2
NM_024531
3.01E−01
3.60E−01
8.46E−02
1.11E−01
2.28E−02
8.95E−02


PCDH11X
NM_001168360
5.99E−03
8.37E−02
2.74E−03
3.79E−01
1.55E−01
3.43E−01


ASIC3
NM_004769
4.52E−02
3.44E−01
2.66E−01
4.13E−02
2.20E−01
5.35E−02


PLS1
NM_001145319
1.70E−01
3.91E−01
3.23E−02
1.56E−01
7.25E−02
1.49E−01


C17orf102
NM_207454
5.28E−02
2.39E−01
5.92E−03
2.24E−01
1.97E−03
4.49E−01


ARMC7
NM_024585
1.09E−01
4.52E−02
8.37E−02
2.37E−01
2.52E−01
2.47E−01


POU3F2
NM_005604
6.10E−02
2.63E−01
1.47E−01
1.03E−01
6.61E−02
3.34E−01


TFPI
NM_006287
1.25E−01
1.40E−01
1.88E−01
1.87E−01
1.16E−01
2.19E−01


FAM83H
NM_198488
4.00E−01
1.65E−01
1.83E−01
4.60E−02
1.25E−01
5.47E−02


ITGA7
NM_002206
1.50E−01
1.41E−01
2.38E−02
1.79E−01
2.41E−01
2.39E−01


B3GNT4
NM_030765
1.70E−01
2.14E−01
2.09E−01
1.91E−01
1.31E−01
5.98E−02


ARHGAP25
NM_001166277
1.77E−01
1.56E−01
1.04E−01
2.37E−01
5.70E−02
2.44E−01


LHX3
NM_178138
4.02E−02
3.90E−01
8.07E−02
1.91E−01
4.70E−02
2.27E−01


VHLL
NM_001004319
2.89E−01
3.33E−02
7.30E−02
2.19E−01
7.94E−02
2.83E−01


KIAA1432
NM_020829
2.32E−01
1.50E−01
1.72E−01
8.12E−02
1.67E−01
1.74E−01


NGFRAP1
NM_014380
8.06E−02
4.34E−01
2.58E−02
1.24E−01
1.79E−01
1.34E−01


FXN
NM_001161706
1.56E−01
8.46E−02
3.73E−02
2.79E−01
1.05E−01
3.15E−01


NTNG1
NM_001113228
2.10E−01
1.09E−01
5.60E−02
2.70E−01
2.26E−02
3.11E−01


PIK3R3
NM_003629
8.43E−02
7.09E−03
1.72E−01
1.80E−01
1.55E−01
3.81E−01


EVL
NM_016337
2.67E−02
1.52E−01
7.92E−02
3.74E−01
7.28E−02
2.75E−01


LARS
NM_020117
1.08E−01
6.87E−03
2.91E−01
2.01E−02
5.41E−01
1.21E−02


TOE1
NM_025077
7.67E−02
7.34E−03
3.42E−01
1.93E−01
1.52E−01
2.08E−01


KRT38
NM_006771
6.12E−02
2.24E−01
2.25E−01
7.84E−02
2.94E−01
9.80E−02


PRKD2
NM_001079882
1.61E−01
2.52E−01
1.16E−01
2.29E−01
6.50E−02
1.59E−01


FUNDC1
NM_173794
5.79E−02
1.57E−01
9.02E−02
2.59E−01
1.56E−01
2.61E−01


ALYREF
NM_005782
1.73E−01
4.65E−01
1.51E−02
1.14E−01
1.16E−01
9.98E−02


KBTBD12
NM_207335
9.84E−02
2.96E−01
2.06E−01
4.87E−02
2.67E−01
6.69E−02


ADAL
NM_001159280
3.05E−02
7.47E−03
1.72E−01
3.10E−01
2.05E−01
2.58E−01


P2RY10
NM_014499
1.65E−01
8.35E−02
1.34E−01
1.58E−01
2.56E−01
1.86E−01


NSUN4
NM_001256128
2.58E−01
7.64E−02
2.85E−01
2.19E−02
2.59E−01
8.23E−02


ANKRD45
NM_198493
8.44E−02
6.64E−02
3.58E−01
1.21E−03
4.70E−01
3.37E−03


HELZ2
NM_033405
4.25E−02
2.02E−01
4.11E−02
1.61E−01
2.54E−01
2.84E−01


NAP1L5
NM_153757
5.52E−02
3.24E−01
2.55E−02
2.54E−01
2.78E−02
2.97E−01


BABAM1
NM_014173
1.43E−01
1.75E−01
1.00E−01
2.89E−01
6.82E−02
2.09E−01


ADTRP
NM_032744
1.77E−02
3.10E−01
3.92E−02
2.92E−01
1.07E−01
2.19E−01


AIF1
NM_001623
2.09E−01
2.28E−01
7.12E−02
1.38E−01
1.98E−01
1.42E−01


GPBP1
NM_001127236
1.82E−01
4.73E−02
3.83E−01
2.17E−02
2.81E−01
7.07E−02


RPS10
NM_001203245
9.83E−02
4.20E−01
5.17E−02
1.95E−01
4.04E−02
1.83E−01


C1orf162
NM_174896
2.83E−01
2.46E−02
2.64E−01
4.35E−02
3.08E−01
6.47E−02


SYNCRIP
NM_006372
1.43E−01
2.44E−01
1.54E−01
1.55E−01
6.65E−02
2.25E−01


GRK4
NM_182982
1.93E−01
4.96E−02
2.37E−01
3.25E−02
4.20E−01
5.66E−02


TBC1D21
NM_153356
1.67E−01
3.44E−01
1.60E−01
1.59E−01
1.10E−01
4.93E−02


PDE4D
NM_001197222
6.50E−01
1.23E−01
7.51E−02
5.31E−02
2.17E−02
6.67E−02


RPN1
NM_002950
2.64E−01
2.43E−01
1.06E−01
9.25E−02
1.14E−01
1.72E−01


FBXL19
NM_001282351
4.46E−01
6.32E−02
1.91E−01
1.25E−01
1.43E−01
2.33E−02


OR4S2
NM_001004059
3.36E−02
5.50E−02
1.87E−02
4.19E−01
4.55E−02
4.19E−01


ORC6
NM_014321
6.02E−02
2.35E−01
5.57E−02
3.25E−01
3.90E−02
2.76E−01


MRPL18
NM_014161
3.15E−01
2.69E−01
2.08E−01
6.53E−02
9.71E−02
3.89E−02


GALNT9
NM_021808
2.21E−01
4.46E−01
5.12E−02
1.36E−01
2.22E−02
1.16E−01


PIN4
NM_001170747
3.10E−01
2.27E−02
2.42E−01
7.09E−02
2.87E−01
6.04E−02


C2orf15
NM_144706
2.52E−02
2.78E−01
5.60E−03
2.40E−01
3.44E−03
4.42E−01


TUSC5
NM_172367
6.25E−02
1.46E−01
2.80E−01
1.34E−01
3.62E−01
1.06E−02


B4GALT2
NM_003780
4.30E−01
4.39E−02
9.21E−02
1.88E−01
2.79E−02
2.14E−01


NBL1
NM_001278166
4.89E−02
3.29E−01
2.08E−01
7.42E−02
2.71E−01
6.53E−02


AGK
NM_018238
2.15E−01
2.02E−01
1.01E−01
1.80E−01
8.70E−02
2.12E−01


TCP11L1
NM_001145541
9.13E−02
1.66E−01
2.12E−02
3.48E−01
8.29E−02
2.88E−01


SOWAHC
NM_023016
2.09E−02
2.29E−01
1.34E−01
2.97E−01
1.06E−01
2.10E−01


FOPNL
NM_144600
7.00E−02
6.40E−01
4.87E−02
8.91E−02
4.94E−02
1.01E−01


NMNAT2
NM_170706
2.67E−01
7.96E−02
1.21E−01
2.03E−01
9.40E−02
2.34E−01


OR5P2
NM_153444
2.06E−01
5.70E−02
3.01E−01
3.93E−02
3.23E−01
7.29E−02


CPLX2
NM_006650
3.74E−01
1.07E−01
3.93E−01
2.69E−02
7.53E−02
2.38E−02


GNA13
NM_006572
1.68E−01
3.57E−01
1.52E−01
3.77E−02
2.41E−01
4.36E−02


PDXDC1
NM_001285448
6.19E−02
2.82E−01
8.05E−02
1.39E−01
1.44E−01
2.92E−01


NFE2L2
NM_006164
7.58E−02
8.85E−02
4.07E−01
6.06E−02
2.63E−01
1.06E−01


CYP2U1
NM_183075
2.38E−01
3.07E−01
4.26E−02
1.38E−01
9.61E−02
1.80E−01


PAGE5
NM_001013435
2.94E−01
5.28E−02
2.72E−01
2.54E−02
3.28E−01
2.99E−02


PVRL3
NM_001243288
5.76E−02
4.75E−01
2.33E−02
1.12E−01
6.55E−02
2.69E−01


SOAT1
NM_001252511
1.68E−02
1.40E−01
1.49E−02
2.23E−01
1.18E−02
5.96E−01


RRAGD
NM_021244
2.48E−02
5.44E−01
2.02E−02
1.59E−01
3.60E−02
2.19E−01


KIF19
NM_153209
3.44E−01
2.01E−02
3.09E−01
3.31E−02
2.00E−01
9.72E−02


GUCY1A3
NM_001130684
5.12E−02
8.15E−01
3.15E−03
2.66E−02
9.63E−04
1.07E−01


PARP12
NM_022750
1.25E−01
5.19E−01
5.87E−02
2.15E−01
3.84E−02
4.82E−02


C2orf42
NM_017880
1.81E−01
1.13E−01
1.96E−01
1.73E−01
1.32E−01
2.11E−01


DPPA5
NM_001025290
2.89E−02
1.78E−02
6.85E−02
4.08E−01
7.18E−02
4.12E−01


NFASC
NM_001160331
1.58E−01
2.20E−01
2.63E−01
9.65E−02
1.67E−01
1.03E−01


MED10
NM_032286
1.20E−02
2.67E−01
2.44E−02
3.51E−01
2.08E−02
3.33E−01


MSRB3
NM_001193461
1.38E−01
3.83E−01
1.44E−01
7.20E−02
2.24E−01
4.59E−02


RRP1B
NM_015056
1.80E−01
5.62E−02
3.74E−01
2.05E−03
3.90E−01
5.18E−03


MAPKAP1
NM_024117
7.91E−03
5.71E−01
7.03E−02
1.22E−01
1.01E−01
1.37E−01


PDLIM2
NM_021630
5.42E−01
1.50E−01
1.73E−01
4.68E−02
9.68E−03
8.75E−02


TPSG1
NM_012467
4.45E−02
1.64E−01
7.39E−02
7.53E−02
3.59E−01
2.93E−01


STK32B
NM_018401
3.23E−02
1.03E−01
1.94E−01
2.90E−01
2.55E−01
1.36E−01


VSIG4
NM_001100431
2.40E−01
2.81E−01
2.03E−01
7.62E−02
1.16E−01
9.49E−02


SIRT1
NM_001142498
2.47E−01
5.85E−02
2.12E−01
3.49E−02
3.61E−01
9.74E−02


TRAF3IP1
NM_015650
9.03E−02
4.90E−03
3.33E−01
1.06E−02
5.31E−01
4.17E−02


VILL
NM_015873
1.10E−01
4.67E−01
1.88E−01
2.03E−02
2.02E−01
2.35E−02


PLCG1
NM_002660
6.95E−02
1.76E−01
2.06E−01
1.13E−01
3.41E−01
1.07E−01


TNXB
NM_032470
1.20E−01
1.05E−01
3.78E−02
5.08E−01
3.80E−02
2.03E−01


SUMO2
NM_006937
1.73E−01
1.64E−01
1.54E−01
1.74E−01
2.06E−01
1.41E−01


OR10G7
NM_001004463
2.54E−03
3.80E−01
3.58E−02
1.92E−01
2.28E−01
1.74E−01


ARID2
NM_152641
4.94E−01
4.97E−02
2.18E−01
3.95E−03
1.05E−01
1.45E−01


CPEB1
NM_001079533
2.10E−01
1.86E−01
4.76E−02
2.47E−01
2.73E−01
5.20E−02


TNS4
NM_032865
1.63E−01
2.28E−01
6.74E−02
2.60E−01
1.04E−01
1.94E−01


MS4A6A
NM_152851
3.93E−01
2.82E−01
1.18E−01
8.77E−02
1.05E−01
3.24E−02


DPF2
NM_006268
1.76E−01
4.05E−01
1.55E−01
9.54E−02
1.29E−01
5.87E−02


BRI3
NM_015379
1.12E−01
2.95E−01
2.32E−02
2.41E−01
5.44E−02
2.94E−01


PARD3
NM_001184788
5.69E−02
5.55E−01
9.44E−03
9.15E−02
4.59E−02
2.61E−01


AP5Z1
NM_014855
2.02E−01
3.10E−02
4.67E−02
4.05E−01
1.05E−01
2.30E−01


SLITRK6
NM_032229
3.20E−02
4.29E−01
8.60E−02
1.07E−01
7.11E−02
2.95E−01


MST4
NM_001042452
3.78E−01
9.38E−02
1.83E−01
1.14E−01
1.76E−01
7.63E−02


SMAD7
NM_001190822
5.55E−02
5.67E−01
9.21E−02
5.82E−02
1.02E−01
1.47E−01


YES1
NM_005433
1.53E−03
1.06E−01
6.65E−02
3.12E−01
1.41E−01
3.94E−01


CHRD
NM_003741
1.32E−01
1.82E−01
2.38E−01
1.86E−01
1.44E−01
1.41E−01


TNIP2
NM_024309
2.84E−01
2.48E−01
6.98E−02
1.98E−01
2.61E−03
2.20E−01


ZRANB2
NM_005455
1.27E−01
1.23E−01
2.45E−01
7.42E−02
3.30E−01
1.24E−01


KIAA0586
NM_001244189
3.44E−01
7.65E−02
2.86E−02
2.02E−01
8.60E−02
2.86E−01


USPL1
NM_005800
2.85E−02
2.89E−01
2.24E−03
3.16E−01
1.35E−01
2.52E−01


HCRTR2
NM_001526
2.77E−01
8.07E−04
2.96E−01
1.70E−02
4.08E−01
2.47E−02


ZNF397
NM_001135178
2.19E−01
6.96E−02
1.25E−01
6.32E−02
2.29E−01
3.18E−01


FAM53B
NM_014661
2.72E−01
1.42E−02
2.81E−01
6.29E−03
4.36E−01
1.40E−02


LYAR
NM_017816
1.01E−01
6.28E−01
2.99E−02
6.13E−02
3.56E−02
1.68E−01


CAV1
NM_001172896
2.61E−01
2.50E−01
1.34E−01
1.86E−01
8.97E−02
1.04E−01


TMEM89
NM_001008269
4.06E−01
1.73E−02
3.26E−01
5.87E−03
2.56E−01
1.30E−02


SPPL2C
NM_175882
1.95E−01
4.46E−02
2.41E−01
1.24E−01
3.56E−01
6.50E−02


ATE1
NM_001288736
3.04E−01
5.92E−02
2.54E−01
1.66E−01
1.07E−01
1.36E−01


CLDN23
NM_194284
1.39E−01
2.74E−01
4.25E−02
2.75E−01
3.83E−02
2.58E−01


PLEKHG1
NM_001029884
1.48E−01
1.11E−01
2.20E−01
2.10E−01
1.80E−01
1.59E−01


ETFDH
NM_001281738
7.58E−02
1.13E−01
4.08E−02
2.87E−01
1.53E−01
3.59E−01


ISYNA1
NM_016368
4.61E−02
1.97E−01
2.69E−01
7.86E−02
3.36E−01
1.03E−01


CAV1
NM_001172897
1.87E−01
3.20E−01
8.99E−02
1.33E−01
1.75E−01
1.24E−01


EMILIN3
NM_052846
2.25E−01
1.04E−02
2.84E−01
1.88E−02
3.76E−01
1.16E−01


ASB15
NM_080928
1.37E−01
2.23E−01
5.79E−02
9.37E−02
3.97E−01
1.21E−01


IFNA2
NM_000605
4.56E−02
2.50E−01
7.82E−02
2.19E−01
2.28E−01
2.09E−01


RRAS
NM_006270
1.33E−01
3.17E−01
1.70E−01
1.73E−01
4.76E−02
1.92E−01


SHANK3
NM_033517
1.55E−02
5.16E−01
3.73E−02
1.46E−01
1.34E−01
1.83E−01


TGIF1
NM_173211
3.70E−01
1.54E−01
1.61E−01
6.78E−02
1.72E−01
1.06E−01


SFRP2
NM_003013
7.58E−02
1.71E−01
3.73E−01
1.01E−01
3.06E−01
5.11E−03


CSRP2BP
NM_020536
1.61E−01
2.43E−01
1.40E−01
2.16E−01
8.39E−02
1.88E−01


RBMXL2
NM_014469
7.58E−02
1.26E−01
4.25E−01
2.01E−04
4.05E−01
4.33E−04


GH2
NM_022556
3.57E−01
1.21E−01
4.98E−02
1.57E−01
1.50E−01
1.98E−01


GP1BB
NM_000407
4.93E−02
5.89E−01
3.49E−02
2.33E−01
3.89E−02
8.86E−02


RAB9B
NM_016370
7.06E−01
3.75E−03
1.31E−01
3.35E−02
1.19E−01
3.97E−02


IRX1
NM_024337
2.72E−02
3.86E−02
3.92E−01
7.08E−02
4.46E−01
5.96E−02


KLK13
NM_015596
2.49E−01
2.19E−01
1.23E−01
1.63E−01
8.45E−02
1.96E−01


CBX3
NM_016587
6.49E−01
5.27E−03
1.85E−01
6.56E−02
6.04E−02
6.88E−02


NFKB1
NM_001165412
4.58E−01
4.78E−03
1.66E−01
9.85E−02
1.12E−01
1.94E−01


PPP1R3F
NM_033215
2.44E−01
2.65E−02
2.67E−01
7.23E−02
3.40E−01
8.43E−02


CCDC9
NM_015603
5.97E−02
9.42E−02
3.02E−01
7.05E−02
4.91E−01
1.82E−02


ORC4
NM_002552
1.48E−01
3.45E−01
1.42E−01
2.56E−01
8.25E−02
6.20E−02


PLEC
NM_201378
1.56E−01
6.88E−02
2.51E−01
1.39E−01
2.48E−01
1.76E−01


WDR5
NM_052821
1.47E−01
4.72E−01
1.10E−01
1.02E−01
1.06E−01
1.01E−01


CA2
NM_000067
4.12E−01
3.63E−02
3.27E−01
1.14E−02
2.00E−01
5.11E−02


VANGL1
NM_138959
7.11E−02
3.31E−01
1.42E−01
1.10E−01
1.45E−01
2.39E−01


FOXK2
NM_004514
1.53E−01
3.15E−01
1.76E−01
1.17E−01
1.56E−01
1.23E−01


STEAP1B
NM_207342
3.24E−01
2.28E−01
2.16E−01
2.35E−02
2.33E−01
1.37E−02


TRIM48
NM_024114
2.49E−01
7.57E−02
2.64E−01
1.13E−01
3.28E−01
9.26E−03


VMAC
NM_001017921
4.61E−01
2.28E−01
1.65E−01
6.33E−02
9.58E−02
2.64E−02


PSME2
NM_002818
4.36E−02
1.95E−01
1.12E−01
2.96E−01
9.75E−02
2.96E−01


ZNF275
NM_001080485
3.10E−01
5.57E−03
3.56E−01
1.97E−02
3.32E−01
1.71E−02


CAPRIN1
NM_203364
1.85E−01
4.27E−01
1.37E−01
7.35E−02
1.10E−01
1.07E−01


ADCK2
NM_052853
2.52E−01
2.97E−01
1.86E−01
1.73E−02
2.70E−01
1.90E−02


DNAH12
NM_178504
2.76E−02
3.13E−01
5.97E−02
3.58E−01
2.04E−01
7.92E−02


WBSCR27
NM_152559
4.16E−01
3.77E−03
2.11E−01
3.18E−02
3.41E−01
3.99E−02


BRINP1
NM_014618
3.89E−01
5.28E−02
1.05E−01
1.07E−01
2.32E−01
1.58E−01


ZNF331
NM_001079906
1.05E−02
6.71E−02
7.09E−02
3.88E−01
9.00E−02
4.17E−01


UBXN1
NM_001286078
4.08E−02
5.67E−01
1.12E−02
2.66E−01
5.71E−03
1.53E−01


ART5
NM_001079536
1.55E−02
1.17E−01
2.29E−01
2.14E−01
2.20E−01
2.49E−01


IMPDH1
NM_001142574
3.04E−01
4.09E−02
1.84E−01
9.51E−02
3.07E−01
1.12E−01


HAUS8
NM_033417
9.22E−02
1.52E−01
5.73E−01
5.74E−02
1.09E−01
6.10E−02


ARFIP2
NM_012402
3.67E−01
4.97E−02
2.06E−01
9.44E−02
2.06E−01
1.22E−01


KRI1
NM_023008
1.52E−01
1.35E−01
2.31E−01
1.89E−01
2.62E−01
7.75E−02


TOP3B
NM_001282113
1.27E−01
2.07E−02
5.16E−02
3.27E−01
1.80E−01
3.39E−01


COL5A2
NM_000393
1.31E−01
3.31E−01
2.61E−01
7.67E−02
2.33E−01
1.28E−02


PPP1R3D
NM_006242
3.29E−01
1.37E−01
1.66E−01
1.10E−01
2.14E−01
8.99E−02


OR6N2
NM_001005278
1.09E−01
2.65E−01
2.56E−01
3.67E−02
3.19E−01
6.08E−02


GLTSCR2
NM_015710
5.13E−01
1.27E−01
9.58E−02
7.54E−02
1.23E−01
1.13E−01


SLC1A3
NM_001166695
3.51E−01
5.00E−02
2.27E−01
1.57E−01
9.14E−02
1.70E−01


DOCK11
NM_144658
1.44E−01
3.24E−01
6.02E−02
2.47E−01
6.37E−02
2.08E−01


RNPC3
NM_017619
6.16E−02
1.56E−01
1.15E−01
1.61E−01
1.87E−01
3.66E−01


VPS37A
NM_001145152
4.27E−02
9.79E−01
5.51E−03
1.45E−02
1.84E−03
3.71E−03


PEX3
NM_003630
3.16E−01
4.58E−01
6.01E−02
1.28E−01
5.31E−02
3.24E−02


MAL
NM_022440
6.01E−01
8.87E−02
2.20E−01
2.08E−02
1.12E−01
5.71E−03


OR51T1
NM_001004759
5.26E−01
2.17E−01
1.40E−01
9.04E−02
3.86E−02
3.68E−02


RORC
NM_001001523
1.56E−01
2.27E−01
6.62E−02
1.49E−01
2.20E−01
2.32E−01


URI1
NM_001252641
3.72E−02
2.66E−01
1.64E−01
1.93E−01
1.62E−01
2.28E−01


NR2F2
NM_021005
3.02E−01
2.86E−01
4.15E−02
2.08E−01
5.34E−02
1.59E−01


CGB7
NM_033142
1.30E−01
2.38E−01
1.81E−01
1.94E−01
1.72E−01
1.35E−01


BCL2A1
NM_001114735
9.39E−02
5.87E−03
2.14E−01
2.20E−01
1.25E−01
3.92E−01


ZNF215
NM_013250
1.88E−01
1.64E−01
1.05E−02
3.31E−01
1.64E−02
3.41E−01


INA
NM_032727
1.40E−02
2.67E−01
6.14E−03
3.77E−01
3.02E−03
3.85E−01


FAM69A
NM_001252271
5.90E−02
3.22E−01
1.46E−01
1.66E−01
2.44E−01
1.14E−01


EPHX4
NM_173567
3.87E−02
2.16E−01
4.60E−02
3.71E−01
3.75E−02
3.43E−01


ITPKB
NM_002221
7.08E−02
4.15E−01
5.04E−02
3.03E−01
3.80E−02
1.75E−01


C10orf25
NM_001039380
7.29E−01
2.03E−01
3.72E−02
2.74E−02
1.37E−02
4.28E−02


FRZB
NM_001463
1.81E−01
3.70E−01
1.32E−01
1.63E−01
7.63E−02
1.31E−01


SMIM15
NM_001048249
2.71E−01
2.18E−01
1.54E−01
7.75E−02
9.15E−02
2.43E−01


IPCEF1
NM_015553
4.80E−02
1.17E−01
1.21E−01
1.06E−01
5.41E−01
1.20E−01


SPINK2
NM_021114
3.12E−01
1.00E−01
2.18E−01
2.17E−01
1.66E−01
4.21E−02
















TABLE 2







Negative control genes and candidate genes enriched in the CRISPRa screen. Set of 311


negative control housekeeping genes for estimating FDR of screening results and evaluating


cytolytic activity. Negative control genes consisted of ribosomal proteins, RNA polymerases,


translation factors, mitochondrial ribosomal proteins, GAPDH, and ACTB. Candidate genes


were enriched in the top 1% across at least two screening replicates.












Negative
Negative
Candidate
Candidate
Candidate
Candidate


Control
Control
Gene
Gene
Gene
Gene


Name
ID
Name
Refseq
Name
Refseq





ACTB
NM 001101
ABCC8
NM 001287174
MAP4K4
NM 001242559


EIF1
NM 005801
ABHD5
NM 016006
MAPK11
NM 002751


EIF1AD
NM 001242484
ABHD8
NM 024527
MAPRE2
NM 014268


EIF1AX
NM 001412
ACACA
NM 198839
MBD3L2
NM 144614


EIF1AY
NM 004681
ACOT6
NM 001037162
MBD3L3
NM 001164425


EIF1B
NM_005875
ACP6
NM_016361
MBLAC1
NM_203397


EIF2A
NM 032025
ACSL1
NM 001286708
MCAM
NM 006500


EIF2AK1
NM_001134335
ACTR2
NM_005722
MCL1
NM_021960


EIF2AK2
NM 002759
ADAMTS12
NM 030955
MCU
NM 138357


EIF2AK2
NM 001135652
ADAMTS13
NM 139027
MDK
NM 001270550


EIF2AK3
NM_004836
AFAP1L1
NM_001146337
ME2
NM_001168335


EIF2AK4
NM 001013703
AMER1
NM 152424
MEFV
NM 001198536


EIF2B1
NM_001414
AMER3
NM_001105193
MEIS2
NM_172315


EIF2B2
NM 014239
AMER3
NM 001105195
MEN1
NM 000244


EIF2B3
NM 001261418
ANGEL2
NM 144567
MFSD6
NM 017694


EIF2B4
NM 172195
ANGPTL7
NM 021146
MGAT5B
NM 001199172


EIF2B4
NM 015636
ANKAR
NM 144708
MINPP1
NM 001178118


EIF2B5
NM_003907
ANKEF1
NM_198798
MKNK2
NM_017572


EIF2D
NM 006893
ANKRD45
NM 198493
MLNR
NM 001507


EIF2S1
NM_004094
ANKRD52
NM_173595
MOCS1
NM_001075098


EIF2S2
NM 003908
AP1B1
NM 001127
MPC1L
NM 001195522


EIF2S3
NM 001415
AP3M1
NM 207012
MPP2
NM 001278371


EIF3A
NM_003750
APC
NM_001127510
MPZL2
NM_005797


EIF3B
NM 003751
APLP2
NM 001243299
MRPL15
NM 014175


EIF3C
NM_001037808
AQP1
NM_198098
MRPL53
NM_053050


EIF3C
NM 001199142
AOP8
NM 001169
MSS51
NM 001024593


EIF3CL
NM 001099661
ARFGEF1
NM 006421
MXI1
NM 130439


EIF3D
NM 003753
ARHGAP27
NM 001282290
MYBL1
NM 001144755


EIF3E
NM 001568
ARHGAP27
NM 174919
MYL9
NM 006097


EIF3F
NM_003754
ARHGAP28
NM_001010000
MZF1
NM_001267033


EIF3G
NM 003755
ARHGEF10L
NM 018125
NAT8L
NM 178557


EIF3H
NM 003756
ARID3C
NM 001017363
NBL1
NM 001204086


EIF3I
NM 003757
ARL6IP5
NM 006407
NBL1
NM 001278165


EIF3J
NM 003758
ARMCX5
NM 001168478
NBPF15
NM 173638


EIF3K
NM_013234
ARMCX5
NM_001168480
NCOA7
NM_001199619


EIF3L
NM 001242923
ARNT
NM 001668
NEDD4L
NM 001144966


EIF3M
NM_006360
ARPP21
NM_001267617
NEDD4L
NM_001144968


EIF4A1
NM 001416
ARPP21
NM 001267619
NEK6
NM 001166169


EIF4A2
NM 001967
ARRDC5
NM 001080523
NEK6
NM 001166171


EIF4A3
NM_014740
ASXL3
NM_030632
NFATC1
NM_001278670


EIF4B
NM 001417
ATG3
NM 022488
NFE2L2
NM 001145413


EIF4E
NM_001130678
ATP2A2
NM_170665
NIFK
NM_032390


EIF4E
NM 001968
ATP2C1
NM 001001485
NIPAL4
NM 001172292


EIF4E1B
NM 001099408
ATP2C1
NM 001001487
NME1
NM 000269


EIF4E2
NM 001276337
ATP5S
NM 015684
NME2
NM 001018139


EIF4E3
NM 001134650
B3GAT1
NM 018644
NOL9
NM 024654


EIF4E3
NM_001134651
B3GNT2
NM_006577
NSG1
NM_001287763


EIF4E3
NM 001134649
BCAR1
NM 001170717
NSG1
NM 014392


EIF4E3
NM_173359
BCL2A1
NM_001114735
NSMCE4A
NM_001167865


EIF4E3
NM 001282886
BCOR
NM 001123385
NUDT14
NM 177533


EIF4EBP1
NM 004095
BMP5
NM 021073
NUDT18
NM 024815


EIF4EBP2
NM_004096
BMX
NM_001721
NXT2
NM_018698


EIF4EBP3
NM 003732
BMX
NM 203281
ODF3
NM 001286136


EIF4ENIF1
NM_001164501
BPIFB3
NM_182658
ODF3L2
NM_182577


EIF4ENIF1
NM 001164502
BSG
NM 198589
OGG1
NM 002542


EIF4G1
NM 182917
BSG
NM 198591
OLAH
NM 018324


EIF4G1
NM_001291157
BTAF1
NM_003972
OLFM1
NM_006334


EIF4G1
NM 004953
BTC
NM 001729
OR13C2
NM 001004481


EIF4G1
NM_198244
BTNL10
NM_001287262
OR4C12
NM_001005270


EIF4G2
NM 001172705
C12orf29
NM 001009894
OR51L1
NM 001004755


EIF4G2
NM 001418
C12orf5
NM 020375
OR5AN1
NM 001004729


EIF4G3
NM 003760
C12orf74
NM 001178097
ORAI3
NM 152288


EIF4G3
NM 001198803
C16orf70
NM 025187
OTOP3
NM 178233


EIF4G3
NM_001198802
C16orf90
NM_001080524
OTX1
NM_014562


EIF4H
NM 022170
C16orf93
NM 001014979
OVCH1
NM 183378


EIF5
NM_001969
C17orf102
NM_207454
OXR1
NM_001198532


EIF5
NM 183004
C19orf52
NM 138358
P2RX5
NM 001204519


EIF5A
NM 001143761
C1orf146
NM 001012425
P2RX6
NM 001159554


EIF5A
NM_001143762
C1orf64
NM_178840
P4HA3
NM_182904


EIF5A
NM 001143760
C1orf87
NM 152377
PAM16
NM 016069


EIF5A
NM_001970
C1R
NM_001733
PBX3
NM_006195


EIF5A2
NM 020390
C20orf78
NM 001242671
PCBP1
NM 006196


EIF5AL1
NM_001099692
C20orf96
NM_153269
PCDH11X
NM_001168360


EIF5B
NM 015904
C2orf15
NM 144706
PCDHA12
NM 018903


EIF6
NM_181468
C2orf76
NM_001017927
PCDHGA1
NM_018912


EIF6
NM 181466
C2orf88
NM 001042520
PCP4
NM 006198


GAPDH
NM_001289746
C2orf88
NM_001042521
PCSK9
NM_174936


GAPDH
NM 002046
C5orf55
NM 138464
PCYOX1L
NM 024028


GAPDH
NM 001256799
C7orf76
NM 001201451
PDCL2
NM 152401


MRPL1
NM_020236
C8orf22
NM_001256598
PDE1A
NM_001003683


MRPL10
NM 148887
C8orf33
NM 023080
PDE1A
NM 001258314


MRPL11
NM_016050
C8orf76
NM_032847
PDE1A
NM_005019


MRPL12
NM 002949
C8orf86
NM 207412
PDE4C
NM 001098818


MRPL13
NM 014078
C9orf40
NM 017998
PDIA3
NM 005313


MRPL14
NM 032111
C9orf50
NM 199350
PDK2
NM 001199898


MRPL15
NM 014175
CA7
NM 005182
PDK2
NM 001199900


MRPL16
NM_017840
CAB39L
NM_001287339
PEG3
NM_001146186


MRPL17
NM 022061
CALM1
NM 006888
PGM2L1
NM 173582


MRPL18
NM_014161
CAPNS2
NM_032330
PHF11
NM_001040443


MRPL19
NM 014763
CARD10
NM 014550
PIANP
NM 001244015


MRPL2
NM 015950
CARHSP1
NM 001042476
PIGO
NM 001201484


MRPL20
NM_017971
CATSPERG
NM_021185
PIGZ
NM_025163


MRPL21
NM 181515
CCDC66
NM 001141947
PITPNB
NM 001284278


MRPL22
NM_014180
CCNC
NM_005190
PITRM1
NM_001242307


MRPL23
NM 021134
CCR4
NM 005508
PITX1
NM 002653


MRPL24
NM 024540
CCSER2
NM 001284242
PLCD1
NM 001130964


MRPL27
NM 016504
CD14
NM 001174105
PLEKHG2
NM 022835


MRPL28
NM 006428
CD164L2
NM 207397
PLEKHG5
NM 001042663


MRPL3
NM_007208
CD200R1L
NM_001199215
PLEKHM3
NM_001080475


MRPL30
NM 145212
CD274
NM 014143
PLN
NM 002667


MRPL32
NM 031903
CD36
NM 001127444
PNLIPRP1
NM 006229


MRPL33
NM 004891
CD36
NM 001289908
POC1B
NM 001199777


MRPL34
NM 023937
CD3G
NM 000073
POLD3
NM 006591


MRPL35
NM_145644
CDC14A
NM_033312
POLR3GL
NM_032305


MRPL36
NM 032479
CDC20
NM 001255
POP7
NM 005837


MRPL37
NM_016491
CDC42BPB
NM_006035
POU3F1
NM_002699


MRPL38
NM 032478
CDH18
NM 001167667
PPME1
NM 001271593


MRPL39
NM 017446
CDK10
NM 052988
PPOX
NM 000309


MRPL4
NM_015956
CDK19
NM_015076
PPP1R18
NM_001134870


MRPL40
NM 003776
CDK2AP2
NM 001271849
PPP1R8
NM 002713


MRPL41
NM_032477
CDKN1A
NM_001220778
PPRC1
NM_015062


MRPL42
NM 172177
CDKN2A
NM 000077
PQBP1
NM 001167989


MRPL43
NM 176792
CDYL
NM 004824
PQBP1
NM 001167990


MRPL44
NM 022915
CEBPE
NM 001805
PRDM2
NM 001007257


MRPL45
NM 001278279
CELA2B
NM 015849
PRDX1
NM 001202431


MRPL46
NM_022163
CEP41
NM_001257159
PRDX6
NM_004905


MRPL47
NM 020409
CGREF1
NM 001166241
PRH1
NM 001291314


MRPL48
NM_016055
CHCHD10
NM_213720
PRICKLE1
NM_001144883


MRPL49
NM 004927
CHID1
NM 001142676
PRKACB
NM 002731


MRPL50
NM 019051
CHRNA10
NM 020402
PRKAG1
NM 001206710


MRPL51
NM_016497
CHRNA9
NM_017581
PRKAG1
NM_002733


MRPL52
NM 181306
CHST13
NM 152889
PROCA1
NM 152465


MRPL53
NM_053050
CHTOP
NM_015607
PSMF1
NM_006814


MRPL54
NM 172251
CIART
NM 144697
PSMF1
NM 178578


MRPL55
NM 181456
CIDEB
NM 014430
PSMG3
NM 032302


MRPL57
NM_024026
CIDEC
NM_001199623
PTGR1
NM_001146109


MRPL9
NM 031420
CLDN14
NM 001146077
PTK2
NM 001199649


MRPS10
NM_018141
CLDN17
NM_012131
PTPDC1
NM_001253830


MRPS11
NM 176805
CLDN8
NM 199328
PTPDC1
NM 177995


MRPS12
NM 021107
CLEC2L
NM 001080511
PTPMT1
NM 001143984


MRPS12
NM 033362
CLIP3
NM 001199570
PTTG1IP
NM 004339


MRPS14
NM 022100
CLIP3
NM 015526
PWP1
NM 007062


MRPS15
NM_031280
COL10A1
NM_000493
R3HDM1
NM_001282799


MRPS16
NM 016065
COL20A1
NM 020882
RAB43
NM 001204885


MRPS17
NM_015969
COL25A1
NM_001256074
RABEPK
NM_001174153


MRPS18A
NM 001193343
COL4A3
NM 000091
RABGAP1L
NM 001035230


MRPS18B
NM 014046
COMMD4
NM 017828
RABGAP1L
NM 001243764


MRPS18C
NM_016067
CORO2B
NM_006091
RABGGTA
NM_182836


MRPS2
NM 016034
COX10
NM 001303
RAD51AP2
NM 001099218


MRPS21
NM_018997
COX14
NM_001257134
RALGDS
NM_001271774


MRPS22
NM 020191
CPLX3
NM 001030005
RALGDS
NM 001271775


MRPS23
NM_016070
CPN2
NM_001080513
RASA2
NM_006506


MRPS24
NM 032014
CRB3
NM 174881
RASD2
NM 014310


MRPS25
NM_022497
CREG2
NM_153836
RASSF3
NM_178169


MRPS26
NM_030811
CREM
NM 183012
RBBP8
NM 002894


MRPS27
NM_001286751
CSMD2
NM_052896
RBM24
NM_001143941


MRPS28
NM 014018
CST2
NM 001322
RBMXL2
NM 014469


MRPS30
NM 016640
CST4
NM 001899
RBPMS2
NM 194272


MRPS31
NM_005830
CSTF1
NM_001033521
RCAN2
NM_001251974


MRPS33
NM 053035
CTBP1
NM 001012614
RFC2
NM 002914


MRPS33
NM_016071
CXorf57
NM_018015
RFNG
NM_002917


MRPS34
NM 023936
CYB5D2
NM 001254755
RHCG
NM 016321


MRPS35
NM 001190864
CYB5RL
NM 001031672
RHOH
NM 001278369


MRPS36
NM 033281
DAAM2
NM 001201427
RIC8B
NM 018157


MRPS5
NM 031902
DAAM2
NM 015345
RIIAD1
NM 001144956


MRPS6
NM_032476
DAB2IP
NM_032552
RIMKLB
NM_020734


MRPS7
NM 015971
DCN
NM 001920
RINT1
NM 021930


MRPS9
NM_182640
DCP1A
NM_001290204
RNF146
NM_001242851


POLR1A
NM 015425
DCTN2
NM 001261413
RNF165
NM 152470


POLR1B
NM 001282772
DDHD2
NM 001164234
RNF186
NM 019062


POLR1B
NM_001282776
DDIT4L
NM_145244
RNF213
NM_001256071


POLR1C
NM 203290
DDX43
NM 018665
RNLS
NM 018363


POLR1D
NM_015972
DEFB127
NM_139074
RPA1
NM_002945


POLR1D
NM 001206559
DKK2
NM 014421
RPL15
NM 001253384


POLR1E
NM 001282766
DNAJB1
NM 006145
RPL6
NM 000970


POLR2A
NM 000937
DNPEP
NM 012100
RPLP1
NM 213725


POLR2B
NM 000938
DPF1
NM 004647
RPN2
NM 001135771


POLR2C
NM_032940
DPM3
NM_153741
RPS27A
NM_001135592


POLR2D
NM 004805
DSEL
NM 032160
RPUSD4
NM 032795


POLR2E
NM 002695
DUPD1
NM 001003892
RRP1B
NM 015056


POLR2F
NM 021974
DUT
NM 001025249
RXRA
NM 002957


POLR2G
NM 002696
DUT
NM 001948
RXRG
NM 001256571


POLR2H
NM_001278715
ECHDC1
NM_018479
SAMD1
NM_138352


POLR2H
NM 001278700
EFHC1
NM 001172420
SAMD3
NM 001258275


POLR2I
NM_006233
EFHC1
NM_018100
SATB1
NM_001195470


POLR2J
NM 006234
EFHD1
NM 025202
SBSN
NM 001166034


POLR2J2
NM 032959
EFNA1
NM 004428
SCP2D1
NM 178483


POLR2J3
NM_001097615
EIF2B3
NM_001261418
SCRN1
NM_001145514


POLR2K
NM 005034
EIF4G3
NM 003760
SDC2
NM 002998


POLR2L
NM_021128
EMX2
NM_001165924
SEMA3E
NM_001178129


POLR2M
NM 015532
EN1
NM 001426
SEPN1
NM 020451


POLR3A
NM 007055
ENHO
NM 198573
SEPTIN9
NM 001113491


POLR3B
NM 001160708
ENO2
NM 001975
SERF2
NM 001199876


POLR3B
NM 018082
ENPP3
NM 005021
SERF2
NM 001199877


POLR3C
NM_006468
ERCC6-PGBD3
NM_001277059
SERF2
NM_001199878


POLR3D
NM 001722
ESRRG
NM 001134285
SERPINB1
NM 030666


POLR3E
NM_001258034
ESX1
NM_153448
SETD4
NM_001007261


POLR3F
NM 001282526
EXOSC9
NM 005033
SETDB2
NM 001160308


POLR3G
NM 006467
FAHD2B
NM 199336
SETDB2
NM 031915


POLR3GL
NM_032305
FAM118A
NM_017911
SFMBT2
NM_001018039


POLR3H
NM 001282884
FAM153A
NM 173663
SFMBT2
NM 001029880


POLR3H
NM_001018052
FAM222A
NM_032829
SFTPC
NM_001172410


POLR3K
NM 016310
FAM58A
NM 001130997
SGCB
NM 000232


POLRMT
NM 005035
FAM84A
NM 145175
SH3TC1
NM 018986


RPL10
NM_001256577
FANCA
NM_001286167
SHD
NM_020209


RPL10A
NM 007104
FASTKD2
NM 014929
SHE
NM 001010846


RPL10L
NM_080746
FBXL12
NM_017703
SHROOM3
NM_020859


RPL11
NM 001199802
FGF14
NM 004115
SLC12A6
NM 001042497


RPL12
NM 000976
FLCN
NM 144997
SLC25A23
NM 024103


RPL13
NM 001243130
FLOT2
NM 004475
SLC2A8
NM 014580


RPL13
NM 033251
FLVCR2
NM 001195283
SLC35F3
NM 173508


RPL13A
NM_012423
FNDC8
NM_017559
SLC4A2
NM_001199692


RPL14
NM 001034996
FRAT2
NM 012083
SLC7A13
NM 138817


RPL14
NM_003973
FSCN3
NM_020369
SLC9A1
NM_003047


RPL15
NM 001253380
FSD1
NM 024333
SLMO1
NM 006553


RPL15
NM 001253384
FUK
NM 145059
SMARCAD1
NM 001254949


RPL15
NM_001253382
FUOM
NM_198472
SMIM13
NM_001135575


RPL15
NM 001253383
FURIN
NM 001289824
SOCS2
NM 001270468


RPL17
NM_001199340
FUT10
NM_032664
SOCS2
NM_003877


RPL17
NM 001199342
FUT6
NM 000150
SPEG
NM 001173476


RPL17-
NM_001199355
FXYD3
NM_005971
SPOCK3
NM_016950


C18orf32


RPL18
NM 000979
GABARAP
NM 007278
SPTBN1
NM 003128


RPL18A
NM_000980
GABBR1
NM_021904
SPTBN1
NM_178313


RPL19
NM 000981
GABRB3
NM 001191321
SRC
NM 198291


RPL21
NM_000982
GABRR1
NM_001256704
SSX7
NM_173358


RPL22
NM 000983
GABRR1
NM 001267582
STAMBP
NM 006463


RPL22L1
NM 001099645
GALK2
NM 001001556
STEAP2
NM 001040666


RPL23
NM_000978
GALK2
NM_002044
STEAP2
NM_001244946


RPL23A
NM 000984
GATA2
NM 001145662
STK40
NM 032017


RPL24
NM_000986
GATA2
NM_032638
STRN3
NM_001083893


RPL26
NM 000987
GGN
NM 152657
SULT2B1
NM 177973


RPL26L1
NM 016093
GHR
NM 001242406
SUSD1
NM 022486


RPL27
NM 000988
GNAL
NM 001142339
SUV39H1
NM 003173


RPL27A
NM 000990
GNG13
NM 016541
SYAP1
NM 032796


RPL28
NM_000991
GNGT1
NM_021955
TAF1A
NM_001201536


RPL29
NM 000992
GOLM1
NM 016548
TAPBPL
NM 018009


RPL3
NM_000967
GPKOW
NM_015698
TCF4
NM_001243233


RPL30
NM 000989
GPR119
NM 178471
TDO2
NM 005651


RPL31
NM 001098577
GPR87
NM 023915
TEAD4
NM 003213


RPL32
NM_000994
GPRASP2
NM_001184876
TEAD4
NM_201443


RPL32
NM 001007074
GPX6
NM 182701
TERF2IP
NM 018975


RPL34
NM_033625
GRIP1
NM_001178074
TERT
NM_198253


RPL34
NM 000995
GSTO2
NM 001191014
TGFBR2
NM 003242


RPL35
NM 007209
GUCY1A3
NM 001130684
TIFA
NM 052864


RPL35A
NM 000996
HAUS4
NM 001166269
TLE2
NM 001144761


RPL36
NM 015414
HBZ
NM 005332
TLE3
NM 020908


RPL36
NM_033643
HES1
NM_005524
TMEM125
NM_144626


RPL36A-
NM 001199973
HGD
NM 000187
TMEM141
NM 032928


HNRNPH2


RPL36AL
NM_001001
HHATL
NM_020707
TMEM147
NM_032635


RPL37
NM 000997
HIST1H2BB
NM 021062
TMEM164
NM 017698


RPL37A
NM_000998
HMGB2
NM_001130689
TMEM170B
NM_001100829


RPL38
NM 000999
HMMR
NM 012484
TMEM201
NM 001010866


RPL39
NM 001000
HOOK1
NM 015888
TMEM223
NM 001080501


RPL39L
NM 052969
HOXB6
NM 018952
TMEM25
NM 032780


RPL3L
NM 005061
HRH2
NM 022304
TMEM5
NM 014254


RPL4
NM_000968
HRNR
NM_001009931
TMEM53
NM_024587


RPL41
NM 001035267
HYPK
NM 016400
TMEM56
NM 001199679


RPL5
NM_000969
IARS2
NM_018060
TMEM56
NM_152487


RPL6
NM 000970
IFI27L2
NM 032036
TMEM92
NM 153229


RPL7
NM 000971
IFNA7
NM 021057
TMPRSS5
NM 030770


RPL7A
NM_000972
IFNAR1
NM_000629
TMX1
NM_030755


RPL7L1
NM 198486
IL15RA
NM 001243539
TNIP2
NM 001161527


RPL8
NM_000973
IL18RAP
NM_003853
TNIP2
NM_024309


RPL8
NM 033301
IL1A
NM 000575
TNIP3
NM 024873


RPL9
NM 001024921
INA
NM 032727
TNPO2
NM 001136195


RPL9
NM 000661
INO80
NM 017553
TNS3
NM 022748


RPLP0
NM 001002
INTS10
NM 018142
TPTE2
NM 001271850


RPLP1
NM_213725
INTS3
NM_023015
TREH
NM_007180


RPLP2
NM 001004
IPO7
NM 006391
TRIM39
NM 021253


RPS10
NM_001203245
IQGAP2
NM_001285460
TRIM7
NM_203293


RPS10-
NM 001202470
IRF5
NM 032643
TSHR
NM 000369


NUDT3


RPS11
NM 001015
ISLR
NM 201526
TSPAN5
NM 005723


RPS12
NM_001016
ISOC1
NM_016048
TSSK6
NM_032037


RPS13
NM 001017
ITLN1
NM 017625
TSTD3
NM 001195131


RPS14
NM_005617
JMJD7-PLA2G4B
NM_005090
TTC37
NM_014639


RPS15
NM 001018
JUNB
NM 002229
TULP2
NM 003323


RPS15A
NM 001019
KCNF1
NM 002236
UBA5
NM 024818


RPS16
NM_001020
KCNH6
NM_173092
UBA5
NM_198329


RPS17
NM 001021
KCNQ2
NM 004518
UBASH3A
NM 018961


RPS17L
NM_001199057
KHNYN
NM_015299
UBE2J1
NM_016021


RPS18
NM 022551
KIAA1456
NM 001099677
UGT1A9
NM 021027


RPS19
NM 001022
KIAA1456
NM 020844
UHRF1
NM 001290050


RPS19BP1
NM 194326
KIAA1462
NM 020848
UHRF1
NM 001290051


RPS2
NM 002952
KLHL2
NM 007246
URGCP-MRPS24
NM 001204871


RPS20
NM_001146227
KLK14
NM_022046
VCPIP1
NM_025054


RPS21
NM 001024
KLK9
NM 012315
VEPH1
NM 024621


RPS23
NM_001025
KLRC1
NM_002259
VGLL2
NM_153453


RPS24
NM 033022
KRAS
NM 004985
VPS37A
NM 001145152


RPS25
NM 001028
KRBA1
NM 001290187
VPS9D1
NM 004913


RPS26
NM 001029
KRT14
NM 000526
WARS2
NM 015836


RPS27
NM_001030
KRT17
NM_000422
WDR76
NM_001167941


RPS27A
NM 001177413
KRT31
NM 002277
WRAP53
NM 001143991


RPS27A
NM_002954
KRTAP20-2
NM_181616
XRCC6
NM_001469


RPS27A
NM 001135592
KRTAP20-3
NM 001128077
XRN1
NM 019001


RPS27L
NM 015920
KRTAP5-6
NM 001012416
YEATS4
NM 006530


RPS28
NM_001031
L3MBTL1
NM_032107
YTHDF3
NM_001277817


RPS29
NM 001030001
LARP1B
NM 018078
YTHDF3
NM 001277818


RPS3
NM_001005
LDHB
NM_002300
YY1AP1
NM_001198902


RPS3A
NM 001006
LIFR
NM 002310
YY1AP1
NM 018253


RPS4X
NM 001007
LINGO4
NM 001004432
ZBTB10
NM 001277145


RPS4Y1
NM 001008
LMBRD2
NM 001007527
ZC3H6
NM 198581


RPS4Y2
NM 001039567
LMNA
NM 001257374
ZFP41
NM 001271156


RPS5
NM_001009
LMO7
NM_005358
ZFP91
NM_053023


RPS6
NM 001010
LMX1B
NM 001174147
ZFX
NM 001178086


RPS6KA1
NM_001006665
LOC100131094
NM_001242901
ZMYM4
NM_005095


RPS6KA1
NM 002953
LOC100131303
NM 001282442
ZNF14
NM 021030


RPS6KA2
NM 021135
LRRC69
NM 001129890
ZNF182
NM 006962


RPS6KA2
NM_001006932
LRRFIP2
NM_006309
ZNF267
NM_003414


RPS6KA3
NM 004586
LSM4
NM 012321
ZNF30
NM 194325


RPS6KA4
NM_003942
LSMEM1
NM_182597
ZNF302
NM_001289191


RPS6KA5
NM 004755
LSP1
NM 001013253
ZNF471
NM 020813


RPS6KA6
NM 014496
LSP1
NM 001289005
ZNF486
NM 052852


RPS6KB1
NM 003161
LYG2
NM 175735
ZNF497
NM 001207009


RPS6KB2
NM 003952
LYVE1
NM 006691
ZNF560
NM 152476


RPS6KC1
NM_001136138
MACROD1
NM_014067
ZNF576
NM_024327


RPS6KL1
NM 031464
MACROD2
NM 080676
ZNF653
NM 138783


RPS7
NM 001011
MAGEA4
NM 001011549
ZNF710
NM 198526


RPS8
NM 001012
MAGEA4
NM 001011550
ZNF728
NM 001267716


RPS9
NM 001013
MAGEB17
NM 001277307
ZNF766
NM 001010851


RPSA
NM_002295
MANEA
NM_024641
ZNF81
NM_007137


RPSA
NM 001012321
MAP3K7CL
NM 001286624
ZNF827
NM 178835




MAP3K7CL
NM_001286634
















TABLE 3A







FDR of the CRISPRa acute screening results. Gene targets are in ranked order.


Gene names, RefSeq IDs, and estimated FDR using negative control genes (see


Methods) for each of the top 1000 genes in the screening bioreps are listed.














Acute no
Acute
Acute no
Acute




T cells
T cells
T cells
T cells


Gene
id
biorep 1
biorep 1
biorep 2
biorep 2





CYB5D2
NM_001254755
0.00000
0.00000
0.00000
0.00322


ISLR
NM_201526
0.00322
0.00322
0.00000
0.00000


CD274
NM_014143
0.00000
0.00322
0.00643
0.00000


AHR
NM_001621
0.00643
0.00965
0.00322
0.00322


WRAP53
NM_001143991
0.02251
0.00322
0.00322
0.00000


MCL1
NM_021960
0.00000
0.00643
0.00000
0.02251


MAGED2
NM_014599
0.00000
0.00965
0.01608
0.00965


KCNQ2
NM_004518
0.00000
0.01608
0.00000
0.02251


GNAL
NM_001142339
0.03215
0.00965
0.00000
0.00000


MYBL1
NM_001144755
0.00000
0.03859
0.00000
0.00322


SCMH1
NM_001172222
0.00322
0.00965
0.01929
0.00965


C1R
NM_001733
0.00322
0.00965
0.01929
0.00965


SDC2
NM_002998
0.01286
0.00643
0.02251
0.00322


ZBTB10
NM_001277145
0.00000
0.00965
0.00000
0.04180


CYP2S1
NM_030622
0.01286
0.00965
0.01929
0.00965


TBC1D9B
NM_015043
0.00643
0.01608
0.01608
0.01608


SREK1IP1
NM_173829
0.00000
0.01286
0.04180
0.00322


JADE3
NM_001077445
0.00322
0.02894
0.01608
0.00965


KCTD18
NM_152387
0.01286
0.00965
0.03215
0.00322


LMNA
NM_001257374
0.01286
0.04502
0.00000
0.00322


JMJD1C
NM_001282948
0.00965
0.01608
0.00322
0.03215


EGR3
NM_004430
0.02572
0.01286
0.00643
0.01608


RPS7
NM_001011
0.00965
0.00322
0.02572
0.02894


STAG2
NM_001042749
0.01286
0.02251
0.01929
0.01286


JUNB
NM_002229
0.00000
0.00000
0.05788
0.00965


HIST3H2BB
NM_175055
0.01286
0.02251
0.01286
0.01929


LGALS9C
NM_001040078
0.00000
0.00643
0.01929
0.05466


C12orf73
NM_001135570
0.03215
0.03859
0.00000
0.00965


GRIP1
NM_001178074
0.00000
0.00322
0.06752
0.01608


COMMD4
NM_017828
0.06431
0.00965
0.00643
0.00643


TBX20
NM_001077653
0.02251
0.00965
0.01929
0.03537


CENPE
NM_001813
0.02251
0.02894
0.02251
0.01608


MEIS2
NM_172315
0.00965
0.01286
0.07395
0.00965


HIST1H2BI
NM_003525
0.00965
0.02572
0.03537
0.04180


TLE2
NM_001144761
0.02251
0.09003
0.00000
0.00000


DHX33
NM_001199699
0.05788
0.03859
0.01608
0.00000


RABEPK
NM_001174153
0.05466
0.06431
0.00000
0.00000


RREB1
NM_001003699
0.00643
0.09003
0.00322
0.02251


COX14
NM_001257134
0.00000
0.00322
0.06752
0.05466


CGREF1
NM_001166241
0.00965
0.09003
0.00643
0.02251


MFSD12
NM_174983
0.04180
0.02251
0.02251
0.04180


TSPY1
NM_001197242
0.08360
0.04180
0.00322
0.00322


CXCL5
NM_002994
0.00000
0.00322
0.05466
0.07395


BCAR1
NM_001170719
0.06431
0.01286
0.02251
0.03215


IL34
NM_001172772
0.00965
0.01286
0.00643
0.10932


SYNCRIP
NM_001159673
0.07717
0.00322
0.00000
0.05788


ANXA8
NM_001271702
0.03215
0.10611
0.00000
0.00000


DSC1
NM_004948
0.00000
0.04502
0.06752
0.02572


CDK19
NM_015076
0.00000
0.00643
0.10611
0.02572


SLC35G4
NM_001282300
0.00643
0.00965
0.07074
0.05466


LAMC3
NM_006059
0.04180
0.04180
0.00643
0.05145


FLNA
NM_001110556
0.05145
0.04180
0.01608
0.03537


KIF21A
NM_001173463
0.04180
0.08039
0.02251
0.00000


KCNK6
NM_004823
0.05788
0.00643
0.03215
0.04823


TCF23
NM_175769
0.00000
0.00965
0.13505
0.00322


CDO1
NM_001801
0.00000
0.00322
0.03215
0.11254


PRKACB
NM_002731
0.06431
0.08039
0.00643
0.00000


STARD13
NM_178006
0.11576
0.02572
0.00643
0.00322


TMEM19
NM_018279
0.03859
0.03859
0.01929
0.05466


EPHA1
NM_005232
0.00965
0.00965
0.04180
0.09646


TMEM87B
NM_032824
0.03859
0.09646
0.01286
0.00965


FLCN
NM_144997
0.06109
0.09646
0.00000
0.00000


RABGGTA
NM_182836
0.06109
0.08360
0.00643
0.00965


PPIC
NM_000943
0.00322
0.00965
0.07074
0.07717


TRIM58
NM_015431
0.00965
0.09003
0.02251
0.04180


ZNF583
NM_152478
0.14148
0.02251
0.00000
0.00000


CSTB
NM_000100
0.08039
0.05466
0.01608
0.01608


DCST2
NM_144622
0.03859
0.00965
0.10611
0.01286


BCL2L1
NM_001191
0.04180
0.03859
0.08682
0.00322


REG4
NM_001159352
0.08360
0.00965
0.00322
0.07395


RNF166
NM_001171816
0.03859
0.07074
0.00965
0.05466


RNLS
NM_018363
0.02251
0.00965
0.11576
0.02572


ZBTB7B
NM_001252406
0.06431
0.07395
0.01608
0.02251


RASA2
NM_006506
0.06431
0.02251
0.01608
0.07717


ST8SIA5
NM_013305
0.05466
0.08039
0.04180
0.00643


ACYP1
NM_001107
0.01286
0.00965
0.12862
0.03537


DUS4L
NM_181581
0.00965
0.04502
0.04180
0.09003


NXNL1
NM_138454
0.07074
0.08360
0.00965
0.02251


PCNA
NM_182649
0.00965
0.01286
0.06109
0.10289


TCTE3
NM_174910
0.05466
0.09646
0.00643
0.03215


C7orf76
NM_001201451
0.08360
0.08360
0.00322
0.02251


SYCE1
NM_001143764
0.00322
0.04823
0.09003
0.05466


PPP1R1B
NM_032192
0.00965
0.00965
0.12219
0.05466


CSTF1
NM_001033522
0.06431
0.08039
0.04180
0.00965


RARRES3
NM_004585
0.04180
0.09325
0.05788
0.00322


SNX20
NM_001144972
0.04180
0.11576
0.03215
0.00965


NLRP2
NM_001174081
0.08360
0.02572
0.01608
0.07395


SLC1A1
NM_004170
0.03859
0.14791
0.00000
0.01286


AMZ1
NM_001284355
0.04180
0.08682
0.03215
0.04180


NACC1
NM_052876
0.09968
0.08360
0.00322
0.01608


SRBD1
NM_018079
0.05466
0.06752
0.01286
0.07074


METRN
NM_024042
0.00000
0.00322
0.17685
0.02572


MYL4
NM_001002841
0.05145
0.09003
0.01608
0.05145


ERMP1
NM_024896
0.03215
0.04502
0.11576
0.01608


TBC1D2
NM_001267572
0.00643
0.06109
0.08682
0.05466


STK4
NM_006282
0.02572
0.02572
0.08039
0.07717


AKR1C1
NM_001353
0.02251
0.00965
0.15434
0.02572


PRICKLE1
NM_153026
0.01286
0.02894
0.11897
0.05466


NAV3
NM_014903
0.00322
0.03859
0.07395
0.09968


GNPDA2
NM_138335
0.14148
0.00965
0.05788
0.00643


ZNF281
NM_001281294
0.00965
0.00965
0.14791
0.05145


MYO15A
NM_016239
0.14791
0.00965
0.00643
0.05466


FOXC1
NM_001453
0.04180
0.06431
0.08682
0.02572


GSTCD
NM_024751
0.08360
0.05145
0.03215
0.05466


CATSPERB
NM_024764
0.05466
0.06431
0.02894
0.07395


RAB27A
NM_183234
0.06752
0.09968
0.01286
0.04180


ACVRL1
NM_001077401
0.01608
0.02572
0.01286
0.17042


LIPT1
NM_145198
0.08682
0.03859
0.08682
0.01286


MAGEA11
NM_005366
0.05145
0.08039
0.07074
0.02251


TYK2
NM_003331
0.03215
0.07395
0.02572
0.09325


HES1
NM_005524
0.00000
0.00965
0.11576
0.10289


TAAR2
NM_014626
0.03859
0.02251
0.07717
0.09003


YY1AP1
NM_001198903
0.06109
0.08039
0.08682
0.00322


TRIM39
NM_021253
0.10289
0.12540
0.00000
0.00322


C1QTNF9B-
NM_001014442
0.02251
0.06752
0.06752
0.07395


AS1


UBA3
NM_003968
0.03859
0.02572
0.12862
0.04180


CPXCR1
NM_033048
0.02251
0.03859
0.01608
0.16077


C20orf197
NM_173644
0.08360
0.02572
0.02572
0.10289


ARNT
NM_001668
0.11576
0.10932
0.01608
0.00000


PRKAG1
NM_002733
0.08360
0.13826
0.01608
0.00322


NOTCH2
NM_024408
0.09968
0.11576
0.01608
0.00965


ARMCX5
NM_001168480
0.14148
0.09325
0.00643
0.00322


SOCS2
NM_001270468
0.00965
0.02572
0.11897
0.09003


PHF21A
NM_016621
0.14148
0.06431
0.02894
0.00965


SMIM13
NM_001135575
0.12219
0.06752
0.01608
0.04180


MRPL23
NM_021134
0.03215
0.05788
0.10611
0.05466


TRAF3
NM_001199427
0.03859
0.09003
0.01286
0.11254


SMIM12
NM_138428
0.07395
0.12540
0.04180
0.01286


HPSE2
NM_001166244
0.06752
0.09003
0.01929
0.07717


GOS2
NM_015714
0.06109
0.01608
0.07074
0.10932


OTOP1
NM_177998
0.08360
0.08360
0.01608
0.07717


OR4C11
NM_001004700
0.16399
0.06431
0.02251
0.00965


ZNF385B
NM_001113398
0.10611
0.10289
0.01608
0.03537


PREPL
NM_006036
0.08360
0.13826
0.02251
0.01608


UBE2NL
NM_001012989
0.03859
0.05466
0.01929
0.15113


BCL6
NM_001706
0.04180
0.03215
0.02251
0.16720


HIST1H4J
NM_021968
0.04180
0.02572
0.18006
0.01608


PROSC
NM_007198
0.12540
0.11254
0.01608
0.01608


COL9A3
NM_001853
0.12540
0.10289
0.00643
0.03537


ZNF763
NM_001012753
0.13183
0.09325
0.00643
0.04180


DEFB127
NM_139074
0.11576
0.15756
0.00000
0.00000


ALS2CL
NM_001190707
0.06431
0.08039
0.02894
0.09968


RPS3A
NM_001006
0.05145
0.05466
0.01608
0.15434


CST4
NM_001899
0.00000
0.00322
0.25723
0.01608


DPP6
NM_001039350
0.06752
0.03215
0.00643
0.17042


CELF2
NM_001083591
0.03859
0.12540
0.02251
0.09003


KRT31
NM_002277
0.11576
0.15434
0.00322
0.00322


ATXNIL
NM_001137675
0.16077
0.08360
0.01929
0.01608


CUZD1
NM_022034
0.13183
0.08360
0.02251
0.04180


SFMBT2
NM_001018039
0.10611
0.16720
0.00322
0.00322


FBXO9
NM_033481
0.09968
0.09968
0.01286
0.06752


RPS27A
NM_001135592
0.10932
0.15113
0.00643
0.01608


ARL4A
NM_001195396
0.09968
0.11576
0.04180
0.02572


TAF1
NM_001286074
0.08360
0.03859
0.01608
0.14791


SRSF9
NM_003769
0.12540
0.16077
0.00000
0.00000


GPBAR1
NM_170699
0.14148
0.00965
0.08682
0.04823


COLEC11
NM_001255988
0.14469
0.03859
0.06752
0.03537


TRIM64C
NM_001206631
0.06752
0.00965
0.01608
0.19614


CXorf57
NM_018015
0.07717
0.09325
0.01608
0.10289


RECK
NM_021111
0.05145
0.21865
0.01608
0.00322


HGD
NM_000187
0.17685
0.08360
0.01929
0.00965


PRDM8
NM_020226
0.15434
0.10932
0.00322
0.02251


SMIM19
NM_138436
0.09646
0.00322
0.11576
0.07395


STK25
NM_001271978
0.00000
0.02572
0.18650
0.07717


KLHL25
NM_022480
0.19936
0.00965
0.06752
0.01608


CYP1A2
NM_000761
0.12540
0.09003
0.00643
0.07074


TMEM116
NM_001193453
0.16399
0.12219
0.00322
0.00322


DEFA3
NM_005217
0.08682
0.06431
0.08682
0.05466


ACOT6
NM_001037162
0.13826
0.15434
0.00000
0.00000


PPFIBP2
NM_003621
0.03215
0.02894
0.03215
0.19936


COMMD1
NM_152516
0.04180
0.03215
0.14148
0.07717


AVEN
NM_020371
0.01286
0.08360
0.14469
0.05466


MBD3L3
NM_001164425
0.01286
0.02572
0.08682
0.17042


MGAT5
NM_002410
0.07395
0.08039
0.06752
0.07395


ZNF675
NM_138330
0.14469
0.07074
0.03215
0.04823


BBS5
NM_152384
0.03215
0.04180
0.07074
0.15113


LIN54
NM_001115007
0.16399
0.08360
0.01608
0.03537


F8
NM_000132
0.14148
0.08039
0.04180
0.03537


C18orf21
NM_001201476
0.00000
0.00965
0.25723
0.03215


CDC20
NM_001255
0.15113
0.14791
0.00000
0.00000


PRAF2
NM_007213
0.10289
0.09325
0.02251
0.08039


ZFP62
NM_152283
0.07395
0.13826
0.03215
0.05466


TSEN34
NM_001282333
0.16077
0.08360
0.01608
0.04180


FRAT2
NM_012083
0.01286
0.00643
0.08682
0.19614


FAM78A
NM_033387
0.14148
0.08360
0.02251
0.05466


P2RX5
NM_001204519
0.16077
0.13826
0.00000
0.00322


GPHN
NM_020806
0.03859
0.06752
0.00643
0.18971


LSMEM2
NM_153215
0.08682
0.03215
0.09325
0.09325


TCEAL2
NM_080390
0.06109
0.01608
0.06752
0.16077


PFKFB2
NM_006212
0.12219
0.08360
0.02251
0.07717


GPT2
NM_001142466
0.10289
0.15113
0.01286
0.04180


SPATA31A6
NM_001145196
0.00965
0.21543
0.01608
0.06752


COMTD1
NM_144589
0.03215
0.08360
0.02251
0.17042


MAP3K13
NM_001242317
0.07395
0.08360
0.09968
0.05466


EIF1AD
NM_001242484
0.05466
0.06431
0.08360
0.10932


JADE3
NM_014735
0.19936
0.03859
0.03215
0.04180


TMX1
NM_030755
0.00000
0.00322
0.08360
0.22508


MYO1B
NM_001161819
0.03215
0.03859
0.11897
0.12219


FBXO42
NM_018994
0.16399
0.11576
0.01929
0.01608


TBX21
NM_013351
0.10289
0.01286
0.05788
0.14148


LINC01272
NM_001278655
0.00965
0.02251
0.16077
0.12540


TMEM256
NM_152766
0.11897
0.11576
0.06752
0.01608


HTR6
NM_000871
0.09968
0.09646
0.08682
0.03537


ZNF667
NM_022103
0.11576
0.07395
0.06752
0.06109


PCDHA12
NM_018903
0.00965
0.00965
0.17042
0.13183


LNX2
NM_153371
0.09003
0.04502
0.01929
0.16720


KRTAP10-2
NM_198693
0.04180
0.08360
0.01608
0.18006


SLC16A11
NM_153357
0.17685
0.13826
0.00322
0.00322


C18orf8
NM_001276342
0.23151
0.05466
0.02251
0.01608


FKBP2
NM_004470
0.12540
0.11576
0.01608
0.06752


TES
NM_152829
0.12219
0.15434
0.00643
0.04180


POC5
NM_001099271
0.10289
0.10932
0.08682
0.02572


ANO3
NM_031418
0.09968
0.03215
0.04180
0.15113


ARSF
NM_001201538
0.20900
0.09003
0.01929
0.00965


ALKBH6
NM_032878
0.06752
0.05466
0.20257
0.00322


SHROOM2
NM_001649
0.01286
0.01286
0.27010
0.03215


PHF1
NM_002636
0.06752
0.16077
0.06431
0.03537


TCEAL4
NM_024863
0.19614
0.08682
0.02251
0.02251


PABPC4L
NM_001114734
0.03215
0.02251
0.09646
0.17685


SNX27
NM_030918
0.11576
0.03215
0.01608
0.16720


HAPLN4
NM_023002
0.24759
0.01929
0.03215
0.03215


KCNQ5
NM_001160130
0.09968
0.09003
0.07074
0.07395


INTS10
NM_018142
0.00000
0.00965
0.07395
0.25080


TMEM234
NM_019118
0.14148
0.07395
0.04180
0.07717


RORC
NM_005060
0.11576
0.14469
0.04180
0.03215


MSH6
NM_001281494
0.01286
0.00965
0.23473
0.08039


IMP3
NM_018285
0.08360
0.04502
0.01608
0.19293


OR7A5
NM_017506
0.00000
0.00965
0.07395
0.25402


SLC35C1
NM_018389
0.06752
0.08360
0.10932
0.07717


ATAD3B
NM_031921
0.04180
0.07395
0.08360
0.13826


AMPD1
NM_000036
0.10289
0.10289
0.08039
0.05145


UBE2J1
NM_016021
0.08360
0.24116
0.00643
0.00965


GUCY1A3
NM_001130684
0.01608
0.03859
0.15756
0.12862


SLFNL1
NM_001168247
0.15756
0.11576
0.01286
0.05466


FAM115A
NM_001206938
0.01286
0.00965
0.08682
0.23151


OR9Q1
NM_001005212
0.14148
0.16077
0.02251
0.01608


C1orf27
NM_001164246
0.03859
0.05466
0.12862
0.12219


SLC4A8
NM_001258403
0.00965
0.03859
0.12540
0.17042


ATF7IP
NM_018179
0.05145
0.15756
0.02572
0.11254


MAP2K2
NM_030662
0.12540
0.00965
0.18971
0.02251


DNASE1L1
NM_006730
0.09968
0.11897
0.08682
0.04180


LYVE1
NM_006691
0.20900
0.12540
0.00643
0.00965


MTHFD2
NM_006636
0.08360
0.18328
0.01608
0.06752


PDF
NM_022341
0.01608
0.00965
0.01929
0.30547


KDELC1
NM_024089
0.16077
0.09003
0.09646
0.00322


MBD3L2
NM_144614
0.00322
0.00965
0.10611
0.23151


EPHA6
NM_001278300
0.06431
0.11576
0.12862
0.04180


BCL7B
NM_001707
0.00643
0.08039
0.01929
0.24437


SLFNL1
NM_144990
0.04180
0.11897
0.02251
0.16720


ZNF664-
NM_001204299
0.14148
0.10289
0.09325
0.01608


FAM101A


MASP2
NM_006610
0.16399
0.09003
0.03215
0.06752


UNKL
NM_001276414
0.11576
0.08360
0.01608
0.13826


SEPP1
NM_005410
0.10289
0.10289
0.09325
0.05466


CHERP
NM_006387
0.12540
0.09003
0.02572
0.11254


ITM2C
NM_030926
0.00000
0.00322
0.08360
0.26688


MARVELD3
NM_052858
0.16077
0.07395
0.08360
0.03537


SH2D1B
NM_053282
0.09003
0.02572
0.09003
0.14791


ISLR2
NM_001130137
0.04180
0.02572
0.03215
0.25402


OPRK1
NM_000912
0.06109
0.12540
0.02894
0.13826


PIP5K1C
NM_012398
0.11576
0.06431
0.02251
0.15113


UBAC2
NM_001144072
0.16077
0.07395
0.07395
0.04823


BCAT1
NM_001178093
0.16077
0.15113
0.04180
0.00322


BAHD1
NM_014952
0.16077
0.15756
0.02251
0.01608


MTA2
NM_004739
0.19614
0.10611
0.02572
0.02894


ASL
NM_001024943
0.20900
0.09325
0.05466
0.00322


CERKL
NM_001160277
0.16077
0.10932
0.04180
0.04823


MFNG
NM_001166343
0.04180
0.00965
0.08682
0.22186


NGFR
NM_002507
0.10289
0.08039
0.01608
0.16077


ZKSCAN3
NM_024493
0.03215
0.02572
0.20900
0.09325


CDKNIA
NM_001220778
0.03215
0.02572
0.05788
0.24437


HYAL4
NM_012269
0.05145
0.02894
0.02251
0.25723


OLFM1
NM_001282612
0.27653
0.02572
0.01286
0.04823


CDK16
NM_033018
0.03859
0.10611
0.20257
0.01608


CACNB2
NM_201596
0.15434
0.09003
0.01608
0.10289


ZSCAN26
NM_152736
0.00965
0.04180
0.02251
0.28939


DEFB130
NM_001037804
0.08360
0.00965
0.22186
0.05145


CORO6
NM_032854
0.23473
0.12540
0.00322
0.00322


CETN2
NM_004344
0.15113
0.16077
0.01608
0.04180


CXCL1
NM_001511
0.11576
0.24437
0.00643
0.00322


SATB2
NM_015265
0.13183
0.19614
0.01608
0.02572


CORO1B
NM_020441
0.18971
0.16077
0.00322
0.01608


OLIG1
NM_138983
0.16077
0.19614
0.00000
0.01286


SMPDL3B
NM_001009568
0.03215
0.04180
0.01608
0.27974


KCNQ3
NM_004519
0.04180
0.03859
0.09325
0.19614


TMEM261
NM_033428
0.04180
0.05466
0.19614
0.07717


PANK1
NM_138316
0.05145
0.04823
0.02251
0.24759


SMC4
NM_001288753
0.03859
0.06109
0.06431
0.20579


PLEKHF1
NM_024310
0.04180
0.00965
0.08682
0.23473


ZAN
NM_003386
0.23151
0.13183
0.00643
0.00643


ZNF214
NM_013249
0.16077
0.16077
0.01608
0.03859


TBL1X
NM_001139467
0.04180
0.05466
0.16720
0.11254


CFC1
NM_032545
0.16077
0.18650
0.01608
0.01286


STAT3
NM_213662
0.08360
0.10611
0.01608
0.17042


PWWP2B
NM_138499
0.10289
0.22508
0.00643
0.04180


TAL2
NM_005421
0.04180
0.10611
0.17363
0.05466


NLRC4
NM_021209
0.06109
0.19936
0.07395
0.04180


LPPR5
NM_001037317
0.11576
0.23151
0.01608
0.01608


DNAH14
NM_144989
0.04180
0.05466
0.15113
0.13183


ST6GALNAC2
NM_006456
0.02894
0.21543
0.11897
0.01608


ANXA2
NM_001136015
0.04180
0.00322
0.14148
0.19293


C11orf70
NM_001195005
0.10289
0.02251
0.08682
0.16720


RING1
NM_002931
0.21865
0.12219
0.00322
0.03537


NOV
NM_002514
0.17363
0.09646
0.06752
0.04180


ZMYM4
NM_005095
0.02251
0.03859
0.09646
0.22186


FUT6
NM_000150
0.14148
0.24116
0.00000
0.00000


C15orf41
NM_001130010
0.11576
0.09003
0.09646
0.08039


ARPC4
NM_001024960
0.14148
0.01286
0.09003
0.13826


PQBP1
NM_001167990
0.11576
0.12540
0.10611
0.03537


URB1
NM_014825
0.06109
0.09003
0.20579
0.02572


LHX9
NM_020204
0.00322
0.06431
0.08360
0.23151


CASKIN2
NM_001142643
0.07717
0.09325
0.08360
0.13183


HSF1
NM_005526
0.08360
0.19936
0.03215
0.07074


CBL
NM_005188
0.11576
0.21543
0.02251
0.03215


SPTBN1
NM_003128
0.08360
0.00322
0.23473
0.07074


DPP6
NM_001290253
0.16399
0.06431
0.08682
0.07717


CTRL
NM_001907
0.09003
0.15113
0.05788
0.09325


SMAD4
NM_005359
0.24759
0.10611
0.00000
0.03859


COQ2
NM_015697
0.05145
0.03859
0.20257
0.09968


BIN3
NM_018688
0.11576
0.27010
0.00322
0.00322


LMOD1
NM_012134
0.18650
0.15113
0.01929
0.03537


H2AFY2
NM_018649
0.14469
0.11576
0.09325
0.04180


FAM175A
NM_139076
0.09003
0.07395
0.07074
0.16077


ANKRD66
NM_001162435
0.11576
0.03859
0.05788
0.18650


HEY2
NM_012259
0.18328
0.14469
0.01929
0.05145


SNCA
NM_000345
0.11897
0.08360
0.10932
0.09003


RNF121
NM_018320
0.17042
0.21543
0.01286
0.00322


SLC45A3
NM_033102
0.19936
0.13826
0.02251
0.04180


MNAT1
NM_002431
0.10289
0.02572
0.03215
0.24116


HNRNPCL1
NM_001013631
0.16077
0.00322
0.15113
0.09003


UQCRHL
NM_001089591
0.07074
0.09325
0.03215
0.20900


C9orf50
NM_199350
0.00643
0.01608
0.12540
0.25723


AMMECR1L
NM_031445
0.08360
0.23151
0.01286
0.07717


PLEKHG5
NM_001042665
0.03859
0.02894
0.17685
0.16077


OR5R1
NM_001004744
0.04180
0.13826
0.15113
0.07395


TRHDE
NM_013381
0.18328
0.21543
0.00322
0.00322


CHST5
NM_024533
0.17042
0.08360
0.08682
0.06752


TTC38
NM_017931
0.16077
0.17363
0.01929
0.05466


ZNF750
NM_024702
0.21543
0.12219
0.06109
0.00965


IMMP1L
NM_144981
0.14148
0.15113
0.01608
0.09968


MAPKAPK3
NM_004635
0.06109
0.18006
0.09003
0.07717


COL4A5
NM_000495
0.08360
0.09325
0.16077
0.07395


NMU
NM_006681
0.11576
0.24759
0.01608
0.03215


SERPINB12
NM_080474
0.19293
0.16077
0.02251
0.03537


CHMP1A
NM_001083314
0.00000
0.00322
0.13826
0.27010


USP5
NM_001098536
0.20900
0.13505
0.04180
0.02572


TDRD3
NM_001146070
0.11576
0.21543
0.01286
0.06752


CAPG
NM_001256139
0.08039
0.13826
0.17042
0.02251


RARRES2
NM_002889
0.19936
0.17363
0.02251
0.01608


ECI2
NM_006117
0.10289
0.21543
0.08360
0.00965


ELAC2
NM_001165962
0.26045
0.09003
0.01929
0.04180


COL11A1
NM_001190709
0.14469
0.09003
0.16720
0.01286


CASC1
NM_001204102
0.16077
0.13183
0.08682
0.03537


SOS1
NM_005633
0.11576
0.09003
0.04180
0.16720


PNLIPRP1
NM_006229
0.00000
0.00322
0.12862
0.28296


GABARAPL2
NM_007285
0.18650
0.09003
0.12219
0.01608


KIAA1217
NM_001098500
0.23794
0.09968
0.03537
0.04180


XRCC6BP1
NM_033276
0.04180
0.02572
0.27331
0.07395


DMPK
NM_001081563
0.29582
0.02572
0.05788
0.03537


AMER3
NM_001105193
0.24759
0.16077
0.00322
0.00643


TMEM95
NM_198154
0.19614
0.17042
0.01608
0.03537


KCNIP4
NM_001035004
0.06109
0.18328
0.07074
0.10289


NXPE3
NM_001134456
0.27653
0.08360
0.00643
0.05466


CLN6
NM_017882
0.15434
0.09003
0.01286
0.16399


MAGEE1
NM_020932
0.00965
0.04180
0.11897
0.25080


BCAS1
NM_003657
0.03859
0.08682
0.25723
0.04180


IFNA7
NM_021057
0.00000
0.00322
0.15113
0.27010


ZNF395
NM_018660
0.09968
0.00322
0.27010
0.05145


PTGES3
NM_006601
0.09968
0.15756
0.12862
0.04180


SEPTIN1
NM_052838
0.09003
0.25080
0.07074
0.01608


FAM195B
NM_001288799
0.01608
0.08039
0.02572
0.30547


MAZ
NM_002383
0.11576
0.09325
0.08039
0.13826


ALS2
NM_020919
0.02251
0.00965
0.30868
0.08682


SEBOX
NM_001080837
0.02251
0.02572
0.36977
0.00965


GON4L
NM_001282856
0.20900
0.08360
0.08360
0.05466


CXorf23
NM_198279
0.16077
0.17042
0.08682
0.01286


CNTNAP3B
NM_001201380
0.12219
0.04502
0.06752
0.19614


HIST1H4F
NM_003540
0.19936
0.21543
0.00000
0.01608


NKG7
NM_005601
0.03215
0.03859
0.28617
0.07395


EXOC5
NM_006544
0.03215
0.09003
0.14791
0.16077


PACRG
NM_001080378
0.16720
0.10289
0.08360
0.07717


SIPA1L1
NM_001284245
0.14469
0.15434
0.08360
0.04823


NUS1
NM_138459
0.16077
0.09003
0.04180
0.13826


SETD1A
NM_014712
0.14791
0.23473
0.04180
0.00965


NACAD
NM_001146334
0.32476
0.09646
0.00322
0.00965


OSGIN2
NM_004337
0.11576
0.12540
0.11576
0.07717


PAICS
NM_006452
0.20579
0.02572
0.01286
0.18971


TOR1A
NM_000113
0.19936
0.12219
0.01929
0.09325


TLE3
NM_020908
0.18650
0.09325
0.04180
0.11254


C16orf93
NM_001014979
0.06752
0.00965
0.11254
0.24759


KLF7
NM_001270942
0.03859
0.00965
0.18006
0.20900


BTBD7
NM_001289133
0.09003
0.09003
0.07074
0.18650


FBXW12
NM_207102
0.17363
0.16720
0.08682
0.00965


CEACAM1
NM_001024912
0.09968
0.07395
0.07074
0.19293


PTRH2
NM_016077
0.10289
0.07395
0.23473
0.02572


KLK7
NM_005046
0.25080
0.15434
0.02251
0.00965


MAML1
NM_014757
0.07395
0.02251
0.11897
0.22186


ARID1B
NM_020732
0.11576
0.28939
0.02251
0.00965


SPP2
NM_006944
0.14469
0.12862
0.12540
0.04180


PHACTR4
NM_023923
0.00965
0.00322
0.17042
0.25723


ASB2
NM_001202429
0.14148
0.08039
0.18650
0.03215


HIST1H2BH
NM_003524
0.06109
0.08360
0.26367
0.03215


KRTAP26-1
NM_203405
0.02251
0.03859
0.09003
0.28939


CAMKK2
NM_172226
0.11576
0.09003
0.22830
0.00965


NGLY1
NM_001145294
0.11576
0.15113
0.07395
0.10289


MLPH
NM_001281473
0.00965
0.02572
0.30547
0.10289


HDLBP
NM_005336
0.10289
0.13826
0.16720
0.03537


SEC22A
NM_012430
0.27010
0.09968
0.03215
0.04180


MRPS7
NM_015971
0.23151
0.14469
0.04502
0.02251


CCDC116
NM_152612
0.02251
0.02894
0.02251
0.36977


TBC1D4
NM_014832
0.16077
0.15756
0.07395
0.05466


NKX2-1
NM_001079668
0.08682
0.08360
0.00643
0.27010


ANKRD37
NM_181726
0.04823
0.07074
0.09646
0.23151


OR2Z1
NM_001004699
0.13505
0.11576
0.09325
0.10289


MAPK1
NM_002745
0.06431
0.06431
0.21865
0.09968


PRMT8
NM_001256536
0.14148
0.20900
0.04502
0.05466


PDE1B
NM_001165975
0.16077
0.16720
0.02251
0.09968


CCNC
NM_005190
0.14148
0.17363
0.09325
0.04180


PM20D2
NM_001010853
0.00965
0.08360
0.01929
0.33762


ATP1A1
NM_001160233
0.04180
0.02894
0.30868
0.07074


HMCES
NM_020187
0.23794
0.16077
0.03215
0.01929


C8orf76
NM_032847
0.31190
0.13826
0.00000
0.00000


TBC1D10C
NM_198517
0.10289
0.09646
0.21543
0.03537


FAM65C
NM_080829
0.01286
0.09003
0.12862
0.22186


PCOLCE2
NM_013363
0.04180
0.10289
0.14148
0.16720


TMEM213
NM_001085429
0.16720
0.23151
0.01929
0.03537


LRRC29
NM_001004055
0.24759
0.18971
0.00322
0.01608


EML2
NM_001193269
0.05466
0.08360
0.14791
0.17042


MUC22
NM_001198815
0.02251
0.09003
0.02251
0.32154


NTF3
NM_001102654
0.19614
0.09968
0.02251
0.13826


PCGF5
NM_032373
0.11897
0.09003
0.08039
0.17042


DNAJA4
NM_001130183
0.16720
0.20257
0.08682
0.00322


CTSK
NM_000396
0.09968
0.09003
0.08682
0.18328


PAX6
NM_001258463
0.18650
0.12540
0.04180
0.10611


ACADVL
NM_001270447
0.23473
0.15434
0.02251
0.04823


LOC100131303
NM_001282442
0.00000
0.00322
0.08682
0.36977


FUT4
NM_002033
0.03859
0.03859
0.09003
0.29260


FBLIM1
NM_017556
0.03859
0.08360
0.02572
0.31190


MED31
NM_016060
0.04180
0.08360
0.17042
0.16720


BTN2A1
NM_001197234
0.07074
0.08360
0.10289
0.20579


HERC1
NM_003922
0.03215
0.07395
0.08682
0.27010


SLAIN2
NM_020846
0.14469
0.15756
0.11897
0.04180


ANP32E
NM_001136479
0.02572
0.02251
0.16077
0.25402


PNPLA6
NM_001166111
0.14148
0.10932
0.17685
0.03537


CARD11
NM_032415
0.10289
0.08360
0.21222
0.06431


C1orf35
NM_024319
0.08039
0.09325
0.08360
0.20900


MYO1C
NM_033375
0.00000
0.01286
0.17685
0.27653


CPNE9
NM_153635
0.05466
0.00965
0.06752
0.33441


ZNF354C
NM_014594
0.06752
0.03859
0.27331
0.08682


SLITRK3
NM_014926
0.17042
0.28939
0.00322
0.00322


GNAI2
NM_002070
0.10289
0.21865
0.11576
0.02894


HOXB13
NM_006361
0.06109
0.02572
0.30225
0.07717


PRDM13
NM_021620
0.04180
0.02251
0.18006
0.22186


C16orf13
NM_032366
0.10289
0.15434
0.02251
0.18650


NFKBIE
NM_004556
0.01608
0.42122
0.00000
0.03215


TMEM201
NM_001010866
0.11576
0.16077
0.10611
0.08682


FGF22
NM_020637
0.03859
0.11897
0.21865
0.09325


VNIR5
NM_173858
0.16077
0.03215
0.10932
0.16720


XRCC2
NM_005431
0.09003
0.06431
0.22830
0.08682


GBP4
NM_052941
0.01608
0.02572
0.25723
0.17042


VCX
NM_013452
0.14148
0.12862
0.17685
0.02251


NTF4
NM_006179
0.11576
0.21543
0.08682
0.05466


SUMO2
NM_006937
0.09003
0.21543
0.08682
0.08039


ZFP28
NM_020828
0.00000
0.00322
0.38907
0.08039


BIRC5
NM_001168
0.10289
0.00965
0.17042
0.18971


TMUB2
NM_177441
0.14148
0.16077
0.07074
0.09968


N4BP2L2
NM_033111
0.06431
0.10611
0.07074
0.23151


OLFM1
NM_006334
0.23151
0.21865
0.01608
0.00965


FBLIM1
NM_001024216
0.09003
0.11576
0.04180
0.22830


DEGS1
NM_003676
0.12540
0.07395
0.20257
0.07395


GJB6
NM_006783
0.05466
0.07395
0.24437
0.10289


OR12D2
NM_013936
0.12540
0.22508
0.01286
0.11254


PBRM1
NM_018313
0.20579
0.21543
0.00000
0.05466


FSD1
NM_024333
0.26367
0.19936
0.01286
0.00000


GH2
NM_022556
0.16077
0.25080
0.02251
0.04180


CDKN2A
NM_000077
0.25080
0.21543
0.00643
0.00322


TSTD1
NM_001113207
0.11576
0.04180
0.21865
0.09968


ACSL6
NM_001205251
0.16077
0.18328
0.02251
0.10932


HPR
NM_020995
0.02251
0.09325
0.17685
0.18328


DEDD
NM_001039712
0.29260
0.15756
0.01286
0.01608


FARS2
NM_006567
0.16399
0.11576
0.15756
0.04180


CLEC4E
NM_014358
0.20579
0.21543
0.01608
0.04180


SMARCAD1
NM_001254949
0.01608
0.05466
0.11897
0.28939


NOTCH1
NM_017617
0.05466
0.19936
0.01929
0.20579


TMEM47
NM_031442
0.15434
0.08360
0.09325
0.14791


ATG3
NM_022488
0.26367
0.21543
0.00000
0,00000


ZFX
NM_001178086
0.00000
0.00322
0.07074
0.40514


STAM
NM_003473
0.13505
0.20257
0.03215
0.10932


C6orf223
NM_153246
0.06109
0.19293
0.01929
0.20579


ARHGAP29
NM_004815
0.08360
0.02251
0.06431
0.30868


PHF8
NM_001184898
0.08360
0.17042
0.09646
0.13183


SLC15A1
NM_005073
0.08360
0.16077
0.01608
0.22186


BAMBI
NM_012342
0.11576
0.08360
0.11576
0.16720


NOP14
NM_003703
0.02251
0.03215
0.15756
0.27010


PHPT1
NM_001287343
0.04180
0.24116
0.18650
0.01608


SAMD3
NM_001258275
0.00643
0.01286
0.14148
0.32476


LILRB4
NM_001278427
0.03537
0.08360
0.19614
0.17042


LSM7
NM_016199
0.08039
0.20900
0.03537
0.16077


SLC2A6
NM_001145099
0.14469
0.13826
0.04180
0.16077


IQCJ-SCHIP1
NM_001197113
0.02251
0.02251
0.16077
0.27974


PHLPP2
NM_001289003
0.09968
0.11897
0.08682
0.18006


CELA2B
NM_015849
0.00000
0.00322
0.06752
0.41479


MAFA
NM_201589
0.29582
0.09968
0.01608
0.07395


RRM2
NM_001165931
0.13505
0.00965
0.22830
0.11254


LOC81691
NM_001199053
0.14148
0.09968
0.17685
0.06752


C1orf228
NM_001145636
0.16077
0.14791
0.05466
0.12540


C4orf26
NM_001257072
0.05145
0.24116
0.18650
0.00965


HOXC13
NM_017410
0.11576
0.09325
0.10932
0.17042


HIF3A
NM_152794
0.01608
0.03215
0.17042
0.27010


CLEC12A
NM_201623
0.07717
0.08039
0.17042
0.16077


RBFOX1
NM_001142333
0.19614
0.21543
0.04180
0.03537


MXRA8
NM_001282583
0.23794
0.08360
0.09968
0.06752


GATA1
NM_002049
0.14148
0.30868
0.02251
0.01608


WNT5B
NM_030775
0.10289
0.16077
0.08682
0.13826


PDZD4
NM_032512
0.05788
0.01286
0.25080
0.16720


MAST3
NM_015016
0.07717
0.03859
0.18650
0.18650


SLC25A37
NM_016612
0.08360
0.13826
0.12862
0.13826


PRPF38A
NM_032864
0.05466
0.04823
0.11576
0.27331


KIAA1549L
NM_012194
0.16077
0.23794
0.02251
0.07074


SLC7A5
NM_003486
0.27010
0.19614
0.02251
0.00322


CUEDC2
NM_024040
0.27010
0.13826
0.00322
0.08039


HOXA4
NM_002141
0.18006
0.26688
0.01929
0.02572


YOD1
NM_018566
0.16077
0.17042
0.07074
0.09325


ANAPC11
NM_001002245
0.00643
0.00965
0.14148
0.33762


HOOK2
NM_001100176
0.18328
0.19293
0.07074
0.04823


MED14
NM_004229
0.13183
0.06431
0.26367
0.03537


ALDOA
NM_001243177
0.36977
0.06752
0.02251
0.03537


BCKDHB
NM_000056
0.18650
0.08360
0.04180
0.18650


TRPM3
NM_001007471
0.14469
0.13826
0.02251
0.19293


SLCO1B3
NM_019844
0.17042
0.20900
0.06752
0.05466


CCNA1
NM_001111047
0.15113
0.11576
0.06752
0.16720


LRP4
NM_002334
0.14148
0.21543
0.09325
0.05145


HAND2
NM_021973
0.10289
0.12540
0.06752
0.20579


C17orf100
NM_001105520
0.34405
0.08360
0.01929
0.05466


OR5K4
NM_001005517
0.10289
0.06431
0.06431
0.27010


CHCHD4
NM_001098502
0.05145
0.06431
0.12540
0.26367


PRR35
NM_145270
0.16077
0.18971
0.12862
0.02572


ODF3L2
NM_182577
0.10289
0.11576
0.07717
0.20900


UTP6
NM_018428
0.11576
0.23151
0.08682
0.07074


MAGEC3
NM_138702
0.14148
0.10611
0.09646
0.16077


ESRRB
NM_004452
0.18006
0.21543
0.03215
0.07717


RNASEH2A
NM_006397
0.29260
0.10611
0.09646
0.00965


SBSN
NM_001166034
0.19936
0.24116
0.01286
0.05466


PUM2
NM_001282791
0.08360
0.17363
0.05466
0.19614


SMAD1
NM_005900
0.17042
0.21543
0.09003
0.03215


CDK16
NM_006201
0.16720
0.21543
0.04180
0.08360


EPPK1
NM_031308
0.17363
0.16077
0.09325
0.08039


MID1
NM_001193277
0.08360
0.10289
0.02572
0.29582


BTF3
NM_001037637
0.16077
0.25080
0.01608
0.08360


STEAP2
NM_001040666
0.04180
0.16077
0.12862
0.18006


PSMA6
NM_001282234
0.13183
0.09968
0.09325
0.18650


EMP1
NM_001423
0.16077
0.12540
0.01929
0.20579


SLC18A1
NM_003053
0.12540
0.02894
0.18650
0.17042


KRTAP21-2
NM_181617
0.19936
0.13826
0.09325
0.08039


HRASLS5
NM_054108
0.14148
0.14791
0.06431
0.15756


CCDC22
NM_014008
0.18006
0.24437
0.01929
0.06752


HSBP1
NM_001537
0.12540
0.25402
0.04180
0.09325


IFT81
NM_014055
0.17685
0.32154
0.00322
0.01286


NLGN4Y
NM_001206850
0.14148
0.05466
0.12862
0.18971


RNF8
NM_003958
0.09003
0.08360
0.11897
0.22186


APOLD1
NM_030817
0.15113
0.18971
0.12219
0.05145


NOSTRIN
NM_001039724
0.06431
0.19936
0.01929
0.23151


IRX3
NM_024336
0.14148
0.16077
0.10932
0.10289


OR2AG2
NM_001004490
0.09003
0.09003
0.12862
0.20900


SDHB
NM_003000
0.15756
0.27974
0.06431
0.01608


MORN3
NM_173855
0.03859
0.08360
0.12540
0.27010


KRTAP13-2
NM_181621
0.06752
0.18650
0.09325
0.17042


CTDSP1
NM_001206878
0.03859
0.23151
0.05788
0.18971


HIST1H4G
NM_003547
0.09968
0.02572
0.11897
0.27331


BTBD2
NM_017797
0.11576
0.25080
0.08682
0.06431


ATP8B2
NM_020452
0.05466
0.09968
0.18006
0.18328


OR5AN1
NM_001004729
0.00322
0.01608
0.39228
0.10932


AASDHPPT
NM_015423
0.20900
0.07717
0.09646
0.13826


TMEM11
NM_003876
0.17685
0.13183
0.18650
0.02572


TDO2
NM_005651
0.17685
0.16720
0.09646
0.08039


NOS1AP
NM_014697
0.29260
0.16720
0.02572
0.03537


KCNA3
NM_002232
0.13183
0.23794
0.11576
0.03859


KHDC1L
NM_001126063
0.05466
0.06752
0.34727
0.05466


GABPA
NM_001197297
0.16077
0.35048
0.00322
0.00965


URGCP-
NM_001204871
0.19614
0.32476
0.00000
0.00322


MRPS24


NFAT5
NM_001113178
0.15434
0.21543
0.04180
0.11254


LOC100129520
NM_001195272
0.17685
0.11576
0.02251
0.20900


MINPP1
NM_001178118
0.15434
0.32476
0.01929
0.02572


MB21D2
NM_178496
0.03859
0.02572
0.22830
0.23151


MTUS1
NM_001001931
0.27010
0.13183
0.02251
0.10289


EFCAB3
NM_001144933
0.09003
0.13183
0.27331
0.03537


SLC19A1
NM_001205207
0.23151
0.19293
0.08360
0.02251


SECISBP2
NM_001282690
0.14469
0.26367
0.00965
0.11254


LIN7A
NM_004664
0.09968
0.09003
0.16077
0.18006


TBL2
NM_012453
0.06752
0.02572
0.16720
0.27010


USP53
NM_019050
0.08360
0.11576
0.13505
0.19614


OSR1
NM_145260
0.08360
0.08360
0.05788
0.30547


DYNLT3
NM_006520
0.01608
0.02251
0.22186
0.27010


BLOC1S1
NM_001487
0.13505
0.09646
0.11897
0.18006


KLF11
NM_001177716
0.13183
0.04180
0.09003
0.27010


HIST1H3A
NM_003529
0.11576
0.20900
0.08682
0.12219


APLP1
NM_005166
0.09003
0.08360
0.22830
0.13183


CXCL13
NM_006419
0.23794
0.27010
0.01608
0.00965


BCL2A1
NM_001114735
0.00000
0.00322
0.11897
0.41158


SLC35F2
NM_017515
0.13505
0.11576
0.15756
0.12540


C1orf21
NM_030806
0.31511
0.21543
0.00322
0.00000


S100A13
NM_001024210
0.18328
0.02572
0.06752
0.25723


LAMTOR2
NM_001145264
0.06752
0.13183
0.08360
0.25402


FGR
NM_001042747
0.14148
0.10289
0.08682
0.20579


CCDC30
NM_001080850
0.09003
0.17363
0.06431
0.20900


PRELP
NM_002725
0.16077
0.34084
0.02572
0.00965


PIGS
NM_033198
0.14791
0.07395
0.09325
0.22186


DGCR6L
NM_033257
0.14148
0.12540
0.22830
0.04180


IP6K3
NM_054111
0.10289
0.33119
0.05466
0.04823


PTPRB
NM_001109754
0.04823
0.09968
0.10611
0.28296


RAB4A
NM_001271998
0.27010
0.08682
0.04180
0.13826


SECISBP2
NM_024077
0.23151
0.11576
0.01929
0.17042


ZNF491
NM_152356
0.05788
0.07717
0.25723
0.14469


CHST8
NM_001127895
0.25080
0.15434
0.05788
0.07395


MGRN1
NM_001142291
0.17685
0.15113
0.08039
0.13183


LPAR6
NM_001162497
0.14469
0.10289
0.20579
0.08682


SLC12A1
NM_001184832
0.14148
0.21543
0.01608
0.16720


PSME2
NM_002818
0.17685
0.22508
0.08360
0.05466


NAT16
NM_198571
0.08360
0.27010
0.08682
0.09968


AKAP3
NM_001278309
0.05466
0.13183
0.12540
0.23151


ECHS1
NM_004092
0.11576
0.10289
0.11897
0.20579


STAG3
NM_012447
0.19936
0.23151
0.02251
0.09003


RANBP10
NM_020850
0.06752
0.11576
0.08360
0.27653


ZNF182
NM_001178099
0.31511
0.01286
0.00000
0.21543


FAM64A
NM_001195228
0.15756
0.13505
0.15756
0.09325


PTPN14
NM_005401
0.05145
0.14148
0.12862
0.22186


ARRDC2
NM_015683
0.01608
0.09003
0.14791
0.28939


AZIN1
NM_015878
0.16399
0.11576
0.18650
0.07717


ASZ1
NM_130768
0.12540
0.03859
0.18006
0.19936


RFC4
NM_181573
0.01286
0.00965
0.41801
0.10289


CD247
NM_198053
0.10289
0.10932
0.08360
0.24759


SLC25A35
NM_201520
0.02251
0.01286
0.20257
0.30547


MAP3K3
NM_203351
0.19293
0.30868
0.00965
0.03215


KCND1
NM_004979
0.13183
0.13183
0.04180
0.24116


GPR174
NM_032553
0.04180
0.09325
0.17042
0.24116


RIIAD1
NM_001144956
0.32476
0.21543
0.00322
0.00322


NFS1
NM_001198989
0.10289
0.15434
0.08682
0.20257


NLRC4
NM_001199139
0.11576
0.08682
0.20579
0.13826


CNP
NM_033133
0.05466
0.06431
0.22186
0.20579


EMP3
NM_001425
0.32797
0.08039
0.09646
0.04180


NXF1
NM_001081491
0.06752
0.02572
0.08039
0.37299


GLIPR2
NM_001287013
0.02251
0.05466
0.06109
0.40836


SEMA4B
NM_020210
0.20900
0.28296
0.01608
0.04180


SLC39A13
NM_001128225
0.16720
0.12540
0.08682
0.17042


ETFB
NM_001985
0.21543
0.31190
0.00643
0.01608


PRSS1
NM_002769
0.16077
0.03859
0.33762
0.01286


LHX3
NM_014564
0.04180
0.02572
0.28617
0.19614


PRPF38B
NM_018061
0.11576
0.09325
0.11897
0.22186


LMF1
NM_022773
0.00000
0.00322
0.27010
0.27653


ANKRD24
NM_133475
0.14469
0.04502
0.31833
0.04180


ARHGAP11A
NM_014783
0.19614
0.24116
0.03215
0.08039


STX1B
NM_052874
0.20900
0.09003
0.24437
0.00965


PKD2L2
NM_001258449
0.31511
0.14791
0.01608
0.07395


R3HDM1
NM_001282799
0.00643
0.00965
0.26688
0.27010


ARHGEF10
NM_014629
0.12540
0.21543
0.17042
0.04180


PQBP1
NM_001167989
0.25080
0.30225
0.00000
0.00000


FADD
NM_003824
0.17042
0.09646
0.10611
0.18006


RPL5
NM_000969
0.08039
0.08039
0.30225
0.09325


CYB5RL
NM_001031672
0.28617
0.21543
0.02251
0.03215


DOK7
NM_173660
0.25080
0.22186
0.06752
0.01608


MAFF
NM_001161573
0.18328
0.31833
0.01608
0.04180


BTN3A2
NM_001197249
0.23794
0.21543
0.09003
0.01608


SBDS
NM_016038
0.40514
0.01286
0.01608
0.12540


FRMPD3
NM_032428
0.01608
0.01608
0.29582
0.23151


MORF4L1
NM_206839
0.19936
0.26367
0.01608
0.08039


GPRASP1
NM_001099411
0.52090
0.03859
0.00000
0.00000


ANKRD35
NM_001280799
0.03215
0.02894
0.33762
0.16077


ZMYM2
NM_001190965
0.16077
0.11576
0.11576
0.17042


CISH
NM_013324
0.16720
0.13826
0.08682
0.17042


RSL1D1
NM_015659
0.05145
0.08360
0.10611
0.32154


EXOC6
NM_019053
0.19936
0.09003
0.07395
0.19936


OR4F29
NM_001005221
0.16077
0.29260
0.01929
0.09003


CBX1
NM_001127228
0.36334
0.15434
0.02572
0.01929


ACAA1
NM_001607
0.30868
0.21543
0.02251
0.01608


CUL5
NM_003478
0.03215
0.03859
0.27010
0.22186


MLYCD
NM_012213
0.15113
0.35691
0.01929
0.03537


CEP68
NM_015147
0.06109
0.07717
0.12862
0.29582


S100A4
NM_019554
0.27010
0.19936
0.01929
0.07395


SLCO1B7
NM_001009562
0.16077
0.24116
0.08682
0.07717


RPS27A
NM_001177413
0.16720
0.11897
0.04823
0.23151


SIGLEC5
NM_003830
0.16399
0.09003
0.12862
0.18328


CLUH
NM_015229
0.07395
0.02894
0.39228
0.07074


KIAA1033
NM_015275
0.16077
0.17363
0.12862
0.10289


ARHGAP21
NM_020824
0.15434
0.16077
0.03215
0.21865


MRPL55
NM_181456
0.11576
0.10932
0.29904
0.04180


RPN2
NM_001135771
0.39550
0.16399
0.00000
0.00965


UBA5
NM_198329
0.23794
0.30868
0.00643
0.01608


ARHGAP27
NM_001282290
0.02894
0.01929
0.24437
0.27653


STAP2
NM_017720
0.11576
0.22186
0.08039
0.15113


OR5H6
NM_001005479
0.00000
0.00965
0.18650
0.37299


RNF222
NM_001146684
0.27010
0.24116
0.01608
0.04502


AATF
NM_012138
0.08360
0.13183
0.08682
0.27010


C2orf50
NM_182500
0.20579
0.24116
0.04180
0.08360


DLX1
NM_178120
0.36334
0.19614
0.00322
0.00965


TMCO2
NM_001008740
0.09968
0.16077
0.11576
0.19614


FNDC3A
NM_001079673
0.26367
0.25080
0.01608
0.04180


NRG1
NM_001159996
0.05466
0.13826
0.01929
0.36013


SEPTIN9
NM_001113495
0.14469
0.32154
0.01929
0.08682


PTPMT1
NM_001143984
0.03859
0.06431
0.28617
0.18328


DPT
NM_001937
0.08682
0.17042
0.17685
0.13826


RSPRY1
NM_133368
0.02251
0.00965
0.16720
0.37299


KANSL1L
NM_152519
0.04180
0.13826
0.09325
0.29904


SNX32
NM_152760
0.32476
0.21543
0.00322
0.02894


TXLNA
NM_175852
0.03859
0.00965
0.21865
0.30547


KRTAP8-1
NM_175857
0.17363
0.23151
0.11254
0.05466


CLIC6
NM_053277
0.14148
0.18650
0.22186
0.02251


EXOSC8
NM_181503
0.16077
0.31833
0.04180
0.05466


OR9G4
NM_001005284
0.27974
0.15113
0.07395
0.07074


SEPTIN5
NM_001009939
0.03859
0.21543
0.03537
0.28617


VAT1L
NM_020927
0.13183
0.21543
0.11897
0.10932


TEX11
NM_031276
0.05145
0.09968
0.26367
0.16077


WDR7
NM_052834
0.30868
0.13826
0.08682
0.04180


C9orf169
NM_199001
0.11576
0.06431
0.26367
0.13183


UGT2B15
NM_001076
0.18328
0.13826
0.06752
0.18650


LRRC43
NM_001098519
0.13826
0.09325
0.18006
0.16720


CHID1
NM_001142675
0.16077
0.12540
0.21543
0.07717


ELAVL4
NM_001144775
0.31833
0.21543
0.01286
0.03215


MBNL3
NM_001170701
0.23151
0.08360
0.08360
0.18006


TET3
NM_001287491
0.11897
0.32154
0.03859
0.09968


DIRAS2
NM_017594
0.15113
0.09003
0.08360
0.25402


KCNN2
NM_170775
0.21865
0.10932
0.08039
0.17042


MOBP
NM_182935
0.00965
0.01286
0.21865
0.33762


LSP1
NM_001242932
0.27010
0.19936
0.03215
0.07717


RUNDC3A
NM_006695
0.30868
0.21865
0.02251
0.02894


TDRD10
NM_182499
0.26688
0.28296
0.01608
0.01608


ID1
NM_181353
0.19936
0.35048
0.01929
0.01286


REPS1
NM_001128617
0.11576
0.16077
0.14791
0.15756


TMED5
NM_001167830
0.15434
0.19614
0.09325
0.13826


ZC4H2
NM_001178033
0.21222
0.32154
0.01608
0.03215


ETV6
NM_001987
0.16720
0.13826
0.08360
0.19293


PIK3C2A
NM_002645
0.19936
0.23151
0.09646
0.05466


HS3ST4
NM_006040
0.14469
0.09003
0.06109
0.28617


SAC3D1
NM_013299
0.12540
0.10932
0.04180
0.30547


CHST6
NM_021615
0.25723
0.25723
0.01286
0.05466


LCE1F
NM_178354
0.27010
0.23794
0.03215
0.04180


VSX2
NM_182894
0.03215
0.00965
0.27010
0.27010


SULF2
NM_198596
0.08682
0.09325
0.14791
0.25402


TRAK1
NM_001265609
0.16077
0.12219
0.07074
0.23151


ALDH8A1
NM_022568
0.09003
0.21865
0.11576
0.16077


C20orf173
NM_001145350
0.23794
0.33119
0.01286
0.00322


CFLAR
NM_001202517
0.27010
0.29582
0.00322
0.01608


METTL21A
NM_145280
0.08360
0.40836
0.01608
0.07717


RIN2
NM_001242581
0.07074
0.04180
0.10611
0.36656


PSMC1
NM_002802
0.07074
0.08360
0.02251
0.40836


TSPY2
NM_022573
0.08039
0.14791
0.29582
0.06109


TTC24
NM_001105669
0.27010
0.26688
0.01286
0.03859


SLC6A8
NM_005629
0.13183
0.42122
0.01929
0.01608


RGL3
NM_001035223
0.26045
0.20900
0.08682
0.03215


CCDC104
NM_001282761
0.08360
0.19614
0.23473
0.07395


CAST
NM_001284212
0.03859
0.03215
0.39228
0.12540


PLN
NM_002667
0.03859
0.08360
0.24437
0.22186


NAIP
NM_004536
0.02251
0.16077
0.23473
0.17042


IVL
NM_005547
0.23151
0.21543
0.08682
0.05466


MITD1
NM_138798
0.04180
0.11576
0.18650
0.24437


NR1H4
NM_001206993
0.04502
0.02894
0.26367
0.25080


NUDT10
NM_153183
0.15113
0.25080
0.08682
0.09968


ADCYAPIR1
NM_001199637
0.06752
0.09003
0.22830
0.20579


MAP2K5
NM_001206804
0.13183
0.19614
0.05788
0.20579


DLAT
NM_001931
0.26045
0.24759
0.04180
0.04180


MAP3K11
NM_002419
0.16720
0.09003
0.06431
0.27010


FIGF
NM_004469
0.23151
0.27010
0.08682
0.00322


GGN
NM_152657
0.00000
0.00965
0.27010
0.31190


DNAJC17
NM_018163
0.13183
0.09003
0.17363
0.19614


FGD6
NM_018351
0.10289
0.12219
0.15756
0.20900


DNAJC25-
NM_004125
0.11897
0.10289
0.17685
0.19293


GNG10


LRRC36
NM_001161575
0.32154
0.24116
0.01608
0.01608


GALK2
NM_001001556
0.08360
0.08360
0.15756
0.27010


FAM213B
NM_001195736
0.16077
0.13826
0.12540
0.17042


SERF2
NM_001199878
0.00000
0.00322
0.44051
0.15113


ACP6
NM_016361
0.31511
0.27010
0.00643
0.00322


ANKRD13C
NM_030816
0.20900
0.08360
0.03215
0.27010


KIAA1958
NM_133465
0.31833
0.16720
0.07395
0.03537


TIGD6
NM_001243253
0.14148
0.06752
0.09646
0.28939


BIVM-ERCC5
NM_001204425
0.00000
0.01286
0.26367
0.32154


OSBPL8
NM_020841
0.27974
0.08039
0.08682
0.15113


TANC2
NM_025185
0.16077
0.09003
0.23473
0.11254


OR6K6
NM_001005184
0.39228
0.20257
0.00000
0.00322


CREM
NM_182724
0.23473
0.21543
0.00965
0.13826


MRPL30
NM_145212
0.07074
0.18006
0.17363
0.17363


SPATA13
NM_153023
0.17685
0.17363
0.07074
0.17685


METTL20
NM_001135863
0.17685
0.08682
0.28617
0.05145


DEFB133
NM_001166478
0.10289
0.08682
0.08682
0.32476


HN1
NM_001288609
0.18650
0.05466
0.27331
0.08682


CD36
NM_001289908
0.24759
0.32476
0.00322
0.02572


IL13
NM_002188
0.15756
0.44051
0.00322
0.00000


WBSCR16
NM_148842
0.39228
0.17042
0.01286
0.02572


EBPL
NM_001278636
0.10289
0.13183
0.16077
0.20579


FAM9C
NM_174901
0.23794
0.21543
0.06752
0.08039


METTL13
NM_015935
0.24759
0.21543
0.12540
0.01608


OXR1
NM_001198532
0.02251
0.01286
0.40836
0.16077


MDH1
NM_001199112
0.14148
0.09003
0.27010
0.10289


CARD8
NM_014959
0.25080
0.30868
0.00643
0.03859


FCRL6
NM_001004310
0.04180
0.05466
0.21865
0.28939


QTRTD1
NM_024638
0.10289
0.19614
0.12540
0.18006


PSMB1
NM_002793
0.16077
0.15434
0.01608
0.27653


APOL2
NM_030882
0.16077
0.11576
0.31833
0.01286


OR2M5
NM_001004690
0.14148
0.10289
0.09325
0.27010


EIF2AK2
NM_001135652
0.11897
0.15756
0.14791
0.18328


AQP8
NM_001169
0.16077
0.42122
0.00322
0.02251


DEF8
NM_001242821
0.35691
0.15756
0.01929
0.07395


CLEC19A
NM_001256720
0.11576
0.13826
0.01608
0.33762


TMED2
NM_006815
0.08360
0.09646
0.12862
0.29904


TAC1
NM_013997
0.16077
0.09646
0.10611
0.24437


TOLLIP
NM_019009
0.25080
0.12219
0.14148
0.09325


ARHGAP18
NM_033515
0.01286
0.02251
0.38585
0.18650


TMEM255B
NM_182614
0.19936
0.35691
0.02251
0.02894


KIAA1456
NM_001099677
0.27010
0.30868
0.00322
0.02572


PLK3
NM_004073
0.25723
0.30868
0.00643
0.03537


KIAA0368
NM_001080398
0.14148
0.17363
0.07074
0.22186


FAM163B
NM_001080515
0.14469
0.09003
0.15434
0.22186


DTNA
NM_001198944
0.15434
0.21543
0.20257
0.03859


CBFA2T3
NM_005187
0.02251
0.00965
0.11897
0.45981


STAMBP
NM_006463
0.00000
0.00000
0.10289
0.50804


ASB17
NM_080868
0.31511
0.25080
0.00322
0.04180


KIAA1804
NM_032435
0.10611
0.21543
0.18650
0.10289


AK3
NM_001199853
0.14469
0.12219
0.07074
0.27653


MDM2
NM_002392
0.12540
0.21543
0.02572
0.24759


SRM
NM_003132
0.06109
0.12540
0.18328
0.24437


PAIP2B
NM_020459
0.06109
0.07395
0.28617
0.19293


EN1
NM_001426
0.27974
0.32476
0.00000
0.01286


ATP11C
NM_173694
0.36334
0.23473
0.00643
0.01286


HTR2A
NM_001165947
0.03537
0.16077
0.22830
0.19293


OSBPL3
NM_145322
0.12219
0.11576
0.21865
0.16077


PHF21B
NM_001135862
0.30868
0.23151
0.04180
0.03537


PSMB4
NM_002796
0.01929
0.04502
0.28296
0.27010


EIF4EBP1
NM_004095
0.08360
0.23151
0.28939
0.01286


FRMPD4
NM_014728
0.08682
0.12540
0.08682
0.32154


PCDHGB3
NM_018924
0.06752
0.10289
0.12540
0.32476


LXN
NM_020169
0.07074
0.16720
0.09325
0.28939


OR2T1
NM_030904
0.00965
0.06109
0.30868
0.24116


C17orf62
NM_001193655
0.31511
0.29260
0.00322
0.01286


FOXP1
NM_001244813
0.18971
0.10289
0.17042
0.16077


SUPT4H1
NM_003168
0.14791
0.23151
0.22830
0.01608


PDE4D
NM_006203
0.27010
0.26688
0.01608
0.07074


MAL
NM_022440
0.00000
0.01286
0.44373
0.16720


PDC
NM_022576
0.03859
0.08360
0.06752
0.43408


MEF2C
NM_001193349
0.14148
0.10611
0.08682
0.28939


IL36RN
NM_173170
0.13505
0.12862
0.07074
0.28939


NSMCE2
NM_173685
0.32476
0.24437
0.01608
0.04180


MBOAT7
NM_001146056
0.16077
0.09003
0.12540
0.25080


ALDH18A1
NM_002860
0.08360
0.09003
0.26367
0.18971


MARCHF1
NM_017923
0.31511
0.21543
0.01608
0.08039


MS4A2
NM_001256916
0.16077
0.30868
0.02572
0.13183


SCML4
NM_001286409
0.03859
0.09003
0.36013
0.13826


KLRC2
NM_002260
0.00643
0.04180
0.30868
0.27010


FBXL12
NM_017703
0.30868
0.31833
0.00000
0,00000


AMPD2
NM_001257360
0.09968
0.15756
0.08039
0.28939


USP5
NM_003481
0.08360
0.13826
0.14791
0.25723


TSPAN5
NM_005723
0.11576
0.35048
0.02251
0.13826


CNBD1
NM_173538
0.26367
0.22830
0.11576
0.01929


MMP11
NM_005940
0.13183
0.13505
0.30868
0.05466


EBF2
NM_022659
0.00965
0.08360
0.12862
0.40836


MXI1
NM_130439
0.32154
0.30868
0.00000
0.00000


CERS2
NM_181746
0.15434
0.35048
0.09003
0.03537


SPATS2L
NM_001282735
0.00643
0.07395
0.13505
0.41479


CASKIN1
NM_020764
0.41479
0.16077
0.02251
0.03215


ZNF200
NM_003454
0.09646
0.06752
0.19614
0.27010


CYP3A43
NM_057096
0.14469
0.22830
0.06431
0.19293


ZEB1
NM_001174094
0.24759
0.35691
0.01286
0.01608


MYADM
NM_001020818
0.16077
0.21865
0.09325
0.16077


RAB41
NM_001032726
0.12540
0.13183
0.18006
0.19614


GPR149
NM_001038705
0.32154
0.27010
0.00643
0.03537


KLHL3
NM_001257194
0.03859
0.09325
0.11576
0.38585


MYRF
NM_013279
0.16077
0.07395
0.31833
0.08039


TMEM141
NM_032928
0.18328
0.28296
0.00000
0.16720


ACPT
NM_033068
0.19614
0.38264
0.01608
0.03859


HAUS8
NM_033417
0.31511
0.13826
0.12540
0.05466


FBLIM1
NM_001024215
0.22830
0.24116
0.15434
0.00965


SHFM1
NM_006304
0.09003
0.11576
0.17685
0.25080


FGD3
NM_033086
0.14148
0.18650
0.17685
0.12862


PEX11B
NM_003846
0.16399
0.21543
0.08682
0.17042


WDR1
NM_017491
0.10289
0.30868
0.01608
0.20900


SLC25A36
NM_018155
0.09003
0.26688
0.09325
0.18650


DDRGK1
NM_023935
0.03859
0.08682
0.23473
0.27653


CDC26
NM_139286
0.31833
0.19614
0.08682
0.03537


ATP6V1H
NM_213620
0.12540
0.10289
0.17685
0.23151


GOLGA8J
NM_001282472
0.19936
0.33119
0.00643
0.09968


PDCL3
NM_024065
0.19936
0.21543
0.05788
0.16399


CD36
NM_001289909
0.23151
0.30868
0.06109
0.03537


ALG10
NM_032834
0.08360
0.18650
0.22830
0.13826


KCNC3
NM_004977
0.16077
0.16077
0.12540
0.19293


TRIL
NM_014817
0.14148
0.31190
0.01608
0.17042


PIH1D1
NM_017916
0.23151
0.18971
0.08682
0.13183


MGAT5B
NM_001199172
0.32476
0.30868
0.00643
0.00000


MARCHF5
NM_017824
0.23794
0.20579
0.18006
0.01608


TM7SF2
NM_001277233
0.30868
0.21865
0.07074
0.04180


OARD1
NM_145063
0.25723
0.19936
0.06752
0.11576


IL18BP
NM_001145057
0.14148
0.05466
0.09646
0.34727


EEF1A2
NM_001958
0.14148
0.06431
0.12862
0.30547


SIDT1
NM_017699
0.27010
0.08360
0.10611
0.18006


KIRREL
NM_018240
0.23151
0.15113
0.22830
0.02894


MAK16
NM_032509
0.16077
0.09003
0.02251
0.36656


SSX5
NM_175723
0.15113
0.22830
0.15756
0.10289


TOX
NM_014729
0.16077
0.03215
0.16399
0.28617


CIRH1A
NM_032830
0.26367
0.19614
0.12862
0.05466


RICTOR
NM_152756
0.27010
0.35691
0.01286
0.00322


PNLIPRP3
NM_001011709
0.27653
0.10932
0.07074
0.18650


CXorf27
NM_012274
0.14469
0.14791
0.04180
0.30868


CABYR
NM_153770
0.10611
0.03859
0.41158
0.08682


GLB1
NM_001135602
0.23794
0.18328
0.04180
0.18006


MCAM
NM_006500
0.11576
0.08360
0.41801
0.02572


ZBTB25
NM_006977
0.26045
0.23794
0.02251
0.12219


ZDHHC1
NM_013304
0.13826
0.24116
0.04180
0.22186


ULBP2
NM_025217
0.17363
0.13826
0.16077
0.17042


FOXN1
NM_003593
0.23151
0.36013
0.04180
0.01286


PLA2G2C
NM_001105572
0.16077
0.34727
0.08682
0.05145


BMPR2
NM_001204
0.16720
0.23151
0.00643
0.24116


C18orf54
NM_001288982
0.31833
0.24116
0.07074
0.01608


GBP6
NM_198460
0.11897
0.09003
0.27010
0.16720


TRIM60
NM_001258025
0.09003
0.42122
0.06752
0.06752


ACADM
NM_001286043
0.31511
0.27010
0.01929
0.04180


EIF3H
NM_003756
0.18328
0.27010
0.07395
0.11897


TPP1
NM_000391
0.07717
0.07074
0.07074
0.42765


SPARCL1
NM_001128310
0.00000
0.00965
0.45016
0.18650


SLC39A1
NM_001271958
0.19293
0.18650
0.08682
0.18006


HLA-DMA
NM_006120
0.00000
0.01929
0.32154
0.30547


HMHA1
NM_012292
0.02251
0.00965
0.20579
0.40836


BPIFB2
NM_025227
0.02251
0.00643
0.45016
0.16720


PKHD1
NM_138694
0.05466
0.02572
0.10611
0.45981


DPYSL3
NM_001387
0.17685
0.13826
0.27010
0.06109


ACADL
NM_001608
0.10289
0.17363
0.07074
0.29904


AIFM3
NM_001146288
0.24759
0.36334
0.02251
0.01608


ZNF548
NM_001172773
0.00643
0.00322
0.39228
0.24759


TRPV1
NM_080704
0.23151
0.16077
0.08682
0.17042


MROH7
NM_001039464
0.30868
0.26688
0.03215
0.04180


SMIM5
NM_001162995
0.15434
0.04502
0.11576
0.33441


CCDC93
NM_019044
0.09968
0.07395
0.27010
0.20579


PRELID2
NM_138492
0.06431
0.13183
0.15756
0.29582


IGJ
NM_144646
0.11576
0.30868
0.03215
0.19293


ELL2
NM_012081
0.14469
0.30225
0.17685
0.02572


NCBP1
NM_002486
0.32476
0.19293
0.08682
0.04823


PID1
NM_017933
0.17042
0.09325
0.12862
0.26045


RBMS3
NM_001177711
0.25080
0.09003
0.08360
0.22830


STX10
NM_001271609
0.32154
0.15434
0.14469
0.03215


EPB41L3
NM_001281535
0.17363
0.16077
0.27010
0.04823


SECTM1
NM_003004
0.16399
0.12862
0.25723
0.10289


PTPRO
NM_030667
0.15113
0.14791
0.26367
0.09003


ZNF566
NM_032838
0.27010
0.24116
0.09968
0.04180


ABCA2
NM_212533
0.15434
0.18328
0.09325
0.22186


OPRM1
NM_001145287
0.23151
0.34727
0.02251
0.05145


CEP83
NM_001042399
0.11576
0.11576
0.09003
0.33441


FAM156B
NM_001099684
0.16720
0.30868
0.04180
0.13826


RNF19B
NM_001127361
0.09003
0.01929
0.22186
0.32476


APC
NM_001127510
0.16720
0.21543
0.00322
0.27010


TRAPPC3
NM_001270895
0.25402
0.09003
0.11897
0.19293


NGDN
NM_015514
0.23151
0.17363
0.11897
0.13183


IFT140
NM_014714
0.10611
0.29582
0.18006
0.07395


ZNF518A
NM_014803
0.01286
0.00965
0.08682
0.54984


DGCR6
NM_005675
0.13183
0.05466
0.26688
0.20579


STS
NM_000351
0.26367
0.17363
0.01608
0.20579


DPP9
NM_139159
0.27010
0.30547
0.01608
0.06752


KLRC1
NM_002259
0.00965
0.01608
0.26688
0.36656


IPO5
NM_002271
0.20900
0.17363
0.12862
0.14791


WNT5B
NM_032642
0.27653
0.38264
0.00000
0.00000


ARHGEF1
NM_199002
0.16077
0.22830
0.21543
0.05466


KCNAB3
NM_004732
0.13826
0.22508
0.14791
0.14791


KIAA1024
NM_015206
0.15756
0.13826
0.14148
0.22186


HEATR2
NM_017802
0.19614
0.02251
0.06752
0.37299


SLAIN1
NM_001242868
0.20900
0.17042
0.19614
0.08682


CD84
NM_001184879
0.09003
0.08360
0.36013
0.12862


PACS2
NM_001243127
0.31511
0.19936
0.09325
0.05466


BDKRB1
NM_000710
0.14148
0.09003
0.20257
0.22830


C6orf58
NM_001010905
0.03859
0.08360
0.27010
0.27010


SULF1
NM_001128205
0.11897
0.07395
0.22830
0.24116


CIZ1
NM_001131015
0.31511
0.09003
0.17685
0.08039


TEX33
NM_001163857
0.19614
0.04823
0.22508
0.19293


GHR
NM_001242406
0.18650
0.42122
0.00643
0.04823


NME3
NM_002513
0.32154
0.26688
0.02572
0.04823


KLC1
NM_005552
0.01286
0.00965
0.18006
0.45981


RASGRF2
NM_006909
0.11576
0.09003
0.07074
0.38585


MPHOSPH8
NM_017520
0.16720
0.18328
0.14148
0.17042


PCDHGA4
NM_018917
0.08360
0.02572
0.36013
0.19293


CARF
NM_024744
0.18971
0.25080
0.01608
0.20579


BMP2K
NM_198892
0.03859
0.00965
0.34084
0.27331


SCAP
NM_012235
0.27010
0.35691
0.00643
0.02894


PHTF1
NM_006608
0.14469
0.11576
0.06752
0.33441


PTRH1
NM_001002913
0.19614
0.20900
0.09325
0.16720


GRIN2A
NM_001134408
0.12540
0.08360
0.18006
0.27653


KCNH1
NM_002238
0.01286
0.09003
0.19614
0.36656


NUP188
NM_015354
0.01608
0.00643
0.37621
0.26688


WRNIP1
NM_130395
0.04180
0.08039
0.15113
0.39228


LTA4H
NM_001256643
0.23794
0.16720
0.18328
0.07717


UBIAD1
NM_013319
0.35691
0.21222
0.09325
0.00322


CDKN1A
NM_078467
0.02894
0.04502
0.20257
0.38907


RNF165
NM_152470
0.33762
0.27010
0.00643
0.05145


TMEM233
NM_001136534
0.06752
0.10289
0.32797
0.16720


CCSER1
NM_207491
0.10289
0.10289
0.37942
0.08039


LOC200726
NM_001102659
0.23151
0.27010
0.12540
0.04180


DDX19B
NM_001257173
0.32154
0.08039
0.16720
0.09968


SBNO2
NM_014963
0.01286
0.01608
0.21865
0.42122


SSX7
NM_173358
0.27010
0.36013
0.01608
0.02251


LRRC27
NM_001143757
0.16720
0.01608
0.18006
0.30547


PHACTR3
NM_001199505
0.00965
0.08360
0.28617
0.28939


NDUFAB1
NM_005003
0.39550
0.26688
0.00643
0.00000


APBB1IP
NM_019043
0.04180
0.07395
0.30868
0.24437


TENC1
NM_198316
0.23794
0.09646
0.08682
0.24759


OGN
NM_014057
0.27974
0.34727
0.00643
0.03537


UTP3
NM_020368
0.06109
0.08360
0.23473
0.28939


TSHZ1
NM_005786
0.10289
0.09003
0.17685
0.29904


PPIP5K2
NM_015216
0.16077
0.06431
0.22186
0.22186


PSMB8
NM_148919
0.25080
0.34727
0.01929
0.05145
















TABLE 3B







FDR of the CRISPRa chronic screening results. Gene targets are in ranked order.


Gene names, RefSeq IDs, and estimated FDR using negative control genes (see


Methods) for each of the top 1000 genes in the screening bioreps are listed.
















Chronic
Chronic
Chronic
Chronic
Chronic
Chronic




Round 1
Round 1
Round 2
Round 2
Round 3
Round 3


Gene
id
biorep 1
biorep 2
biorep 1
biorep 2
biorep 1
biorep 2

















B3GNT2
NM_006577
0.00322
0.00000
0.00000
0.00000
0.00000
0.00000


JUNB
NM_002229
0.00000
0.00322
0.00000
0.00965
0.00000
0.01286


INO80
NM_017553
0.00000
0.00965
0.00000
0.00965
0.03537
0.00965


F8A2
NM_001007523
0.00965
0.00965
0.00000
0.01608
0.00643
0.02572


STK40
NM_032017
0.00965
0.01286
0.00000
0.01286
0.01929
0.01286


C2orf88
NM_001042520
0.00000
0.01608
0.00643
0.00965
0.05466
0.00965


KRBA1
NM_001290187
0.00000
0.05145
0.00000
0.02894
0.00000
0.02894


DKK2
NM_014421
0.00000
0.02894
0.00000
0.04823
0.00000
0.03859


ITLN1
NM_017625
0.01929
0.05145
0.00000
0.02572
0.00000
0.03537


IQSEC3
NM_015232
0.02251
0.02894
0.02251
0.02572
0.01608
0.02251


NIPAL1
NM_207330
0.00965
0.01286
0.03859
0.00965
0.06109
0.01286


FEZ2
NM_005102
0.00000
0.09646
0.00000
0.02572
0.01286
0.01286


WDR76
NM_001167941
0.00000
0.09003
0.00000
0.02572
0.03537
0.01286


ZNF497
NM_001207009
0.00322
0.02894
0.03537
0.03537
0.06109
0.01286


CIDEC
NM_001199623
0.09325
0.00322
0.04823
0.00965
0.01608
0.00965


KCNF1
NM_002236
0.02894
0.05145
0.02251
0.01286
0.04180
0.02251


RINT1
NM_021930
0.06752
0.00322
0.03859
0.00965
0.04823
0.01608


LGALS14
NM_203471
0.04823
0.00322
0.07717
0.00965
0.05466
0.01286


ATP2A2
NM_170665
0.00000
0.11897
0.00965
0.03537
0.01286
0.03537


TMEM55B
NM_144568
0.04823
0.01286
0.06431
0.01608
0.05788
0.01608


CHRND
NM_001256657
0.10289
0.01929
0.03859
0.00965
0.03537
0.01286


LHX2
NM_004789
0.10289
0.00322
0.04180
0.00965
0.04823
0.01608


ZNF576
NM_024327
0.02894
0.13505
0.00322
0.02894
0.01286
0.01608


CCBL2
NM_001008661
0.00965
0.09003
0.03859
0.02572
0.05466
0.00965


GABBR1
NM_021904
0.00000
0.17042
0.00000
0.01608
0.01929
0.02251


GOLGA8M
NM_001282468
0.01286
0.02894
0.09646
0.00965
0.07717
0.00643


CCDC160
NM_001101357
0.00965
0.09646
0.00000
0.05466
0.00000
0.07395


RBPMS2
NM_194272
0.03859
0.13826
0.01286
0.00965
0.02894
0.01286


CMTM3
NM_144601
0.05788
0.00643
0.07395
0.02894
0.05788
0.02251


KCNH7
NM_033272
0.00000
0.06431
0.02251
0.03859
0.00965
0.11897


YY1AP1
NM_001198902
0.16399
0.00000
0.05788
0.00965
0.01608
0.00965


ASXL3
NM_030632
0.02894
0.02572
0.02572
0.06431
0.02251
0.09003


RCAN2
NM_001251974
0.01929
0.07717
0.00000
0.06431
0.00000
0.09968


ADAMTS12
NM_030955
0.08360
0.00322
0.04823
0.06431
0.00965
0.05466


SGPP2
NM_152386
0.02251
0.07717
0.01286
0.05145
0.05466
0.04502


CCDC66
NM_001141947
0.07717
0.02572
0.08039
0.00965
0.06109
0.01286


JUN
NM_002228
0.01929
0.00322
0.09646
0.03537
0.09968
0.01608


ACTG1
NM_001199954
0.07074
0.07717
0.03537
0.05466
0.01608
0.02251


MBD3L3
NM_001164425
0.02894
0.04502
0.03859
0.07395
0.03859
0.05145


MAGEA4
NM_001011549
0.00000
0.13183
0.00000
0.04823
0.00000
0.09968


RPS11
NM_001015
0.06431
0.02572
0.05788
0.02894
0.08360
0.01929


POP1
NM_015029
0.09003
0.02894
0.06109
0.02894
0.06431
0.01286


SMIM12
NM_001164825
0.05145
0.14791
0.01286
0.01608
0.03859
0.02251


RPUSD4
NM_032795
0.00000
0.05466
0.00000
0.07717
0.01608
0.14148


SCN11A
NM_014139
0.06752
0.00322
0.07717
0.03537
0.05466
0.05466


FLI1
NM_001167681
0.09325
0.00643
0.01286
0.06431
0.01608
0.09968


FAM118A
NM_017911
0.00000
0.27010
0.00000
0.00965
0.00322
0.00965


PCYT2
NM_001184917
0.01929
0.09646
0.00000
0.07395
0.00322
0.09968


CALD1
NM_033140
0.07074
0.07717
0.03859
0.04502
0.03859
0.02572


SSX4B
NM_001034832
0.04180
0.11576
0.03859
0.03537
0.04502
0.02251


NELFA
NM_005663
0.03537
0.03859
0.03859
0.06752
0.05466
0.06431


CDKN2A
NM_000077
0.00965
0.05145
0.08039
0.01608
0.11576
0.02894


STYX
NM_001130701
0.03215
0.01929
0.06752
0.03215
0.06109
0.09003


ZBTB22
NM_001145338
0.10289
0.00965
0.10611
0.00965
0.06431
0.01286


ATG16L2
NM_033388
0.05466
0.00643
0.03859
0.04502
0.05466
0.10932


CD109
NM_001159587
0.11254
0.00643
0.12219
0.00965
0.05466
0.00643


ACTA1
NM_001100
0.04823
0.08039
0.09325
0.02894
0.05466
0.01286


BEX2
NM_001168401
0.00965
0.07717
0.00322
0.04502
0.03537
0.14791


SHROOM3
NM_020859
0.00000
0.20257
0.00000
0.04823
0.00000
0.06752


ERMN
NM_001009959
0.01929
0.19293
0.00000
0.03537
0.00000
0.07395


SRC
NM_198291
0.05788
0.20579
0.00643
0.02894
0.00965
0.01608


TACR3
NM_001059
0.09003
0.00322
0.09968
0.00965
0.11576
0.00643


NYNRIN
NM_025081
0.14469
0.09325
0.00000
0.04502
0.00643
0.03537


FCER1A
NM_002001
0.02894
0.10611
0.03859
0.05466
0.03859
0.05788


EFCAB1
NM_001142857
0.03537
0.04502
0.08039
0.02894
0.12862
0.01608


CYB5R3
NM_001171661
0.04502
0.09646
0.06752
0.04502
0.06752
0.01608


PPP2R2C
NM_001206995
0.03537
0.00322
0.09325
0.02572
0.16077
0.02251


MCRS1
NM_006337
0.13505
0.07717
0.03859
0.03215
0.05466
0.01608


LRFN1
NM_020862
0.07717
0.09646
0.07074
0.03215
0.05466
0.02894


EFNA1
NM_004428
0.12540
0.13183
0.03859
0.02572
0.01608
0.02572


MACROD2
NM_001033087
0.08360
0.16077
0.01929
0.03215
0.01286
0.05466


NSL1
NM_015471
0.00322
0.11576
0.00000
0.11576
0.00965
0.11897


HGC6.3
NM_001129895
0.05466
0.02894
0.03859
0.05788
0.01929
0.16399


C11orf83
NM_001085372
0.11576
0.02894
0.09968
0.03215
0.06431
0.02251


CPEB1
NM_030594
0.00322
0.06431
0.02251
0.07717
0.05466
0.15113


RPL13
NM_001243130
0.11576
0.07395
0.01608
0.03859
0.03859
0.09325


RBBP8
NM_002894
0.14791
0.04180
0.10611
0.00965
0.06109
0.01286


CMTM4
NM_181521
0.00965
0.01929
0.04180
0.07395
0.09968
0.13505


ABCA4
NM_000350
0.06752
0.08039
0.08039
0.03215
0.06431
0.05788


RPL15
NM_001253384
0.10289
0.04180
0.08682
0.00643
0.14791
0.00322


SF3A2
NM_007165
0.01929
0.22508
0.07074
0.00965
0.05466
0.00965


REM1
NM_014012
0.17685
0.01929
0.03859
0.05145
0.01286
0.09003


LTN1
NM_015565
0.05788
0.13183
0.07074
0.06431
0.03537
0.02894


DISP2
NM_033510
0.00000
0.22508
0.00000
0.07395
0.00000
0.09325


NSG1
NM_001287763
0.00000
0.08039
0.00643
0.16077
0.05788
0.09003


TMEM147
NM_032635
0.00000
0.20257
0.00965
0.04823
0.06109
0.07717


FAM47A
NM_203408
0.00000
0.27010
0.00322
0.03215
0.04502
0.04823


EXOC3L1
NM_178516
0.04823
0.06109
0.10611
0.05145
0.06109
0.07074


LITAF
NM_004862
0.04823
0.11576
0.08039
0.01608
0.13183
0.01286


ZIC5
NM_033132
0.00000
0.11576
0.03859
0.07074
0.08039
0.09968


CCDC169
NM_001144984
0.09003
0.05145
0.08039
0.03537
0.09968
0.05145


SATB1
NM_001195470
0.00000
0.12219
0.00643
0.09646
0.03537
0.14791


EXOC4
NM_021807
0.10932
0.09003
0.03859
0.05788
0.04823
0.06431


HMGB2
NM_001130689
0.00000
0.20257
0.09646
0.00965
0.10289
0.00322


ESRRG
NM_001134285
0.07074
0.07717
0.09325
0.00965
0.16077
0.00643


LTBR
NM_002342
0.03859
0.00322
0.18971
0.00965
0.16720
0.00965


CLDN4
NM_001305
0.00965
0.07717
0.00322
0.11254
0.02894
0.18650


ECHDC1
NM_018479
0.19936
0.00643
0.09646
0.02894
0.06109
0.02894


WBP1L
NM_017787
0.04823
0.05466
0.10611
0.03215
0.15113
0.03537


KCNQ4
NM_004700
0.10289
0.02894
0.13183
0.02572
0.06431
0.07395


NSUN3
NM_022072
0.02251
0.04502
0.03859
0.07395
0.07074
0.17685


TMEM132A
NM_017870
0.09003
0.07717
0.08360
0.01608
0.15113
0.01286


DVL3
NM_004423
0.05466
0.09003
0.14148
0.06431
0.06431
0.01608


SLC25A35
NM_201520
0.00965
0.03215
0.09646
0.07395
0.16720
0.05145


MX1
NM_001178046
0.00965
0.14469
0.03859
0.07717
0.05466
0.10932


KLK10
NM_002776
0.09325
0.13183
0.03859
0.09325
0.01929
0.05788


CD97
NM_078481
0.02894
0.00965
0.11897
0.03537
0.15113
0.09003


ATG16L1
NM_017974
0.08360
0.07717
0.08039
0.06431
0.10289
0.02572


TMPRSS5
NM_030770
0.03537
0.05466
0.00965
0.09646
0.05466
0.18650


SPATA31A5
NM_001113541
0.05466
0.03859
0.10932
0.05788
0.13183
0.04823


CD151
NM_139030
0.15434
0.15756
0.03859
0.00965
0.05466
0.02572


PLEC
NM_201382
0.07074
0.10611
0.12219
0.04823
0.07074
0.02251


CELF2
NM_006561
0.00322
0.18328
0.00965
0.13826
0.05466
0.05466


DUSP10
NM_144728
0.12540
0.15434
0.09646
0.02251
0.01286
0.03537


MEPE
NM_001291183
0.15434
0.02251
0.07395
0.05788
0.04823
0.09003


LOC113230
NM_001291291
0.07717
0.01286
0.14791
0.02572
0.16077
0.02251


MYL6B
NM_002475
0.09003
0.03215
0.07074
0.07717
0.03537
0.14148


KCNV1
NM_014379
0.00965
0.03215
0.09325
0.06752
0.14148
0.10289


CNN3
NM_001839
0.03859
0.07717
0.09646
0.06431
0.09968
0.07074


KIF3A
NM_007054
0.12219
0.02894
0.10932
0.02894
0.09968
0.05788


NOL12
NM_024313
0.08360
0.00643
0.07717
0.03215
0.16077
0.09003


SLC25A1
NM_005984
0.04823
0.18328
0.04502
0.03537
0.04180
0.09646


UBE2T
NM_014176
0.08682
0.04502
0.10611
0.02572
0.13505
0.05145


FAM155A
NM_001080396
0.00965
0.07717
0.08039
0.11254
0.05466
0.11897


DAPL1
NM_001017920
0.03859
0.21543
0.04502
0.04502
0.06109
0.05145


NFE2
NM_001136023
0.00000
0.17042
0.00000
0.17363
0.01286
0.09968


PKIG
NM_001281444
0.00000
0.06431
0.01286
0.17685
0.05466
0.14791


CCDC109B
NM_017918
0.16399
0.11897
0.05788
0.04502
0.04823
0.02251


TGFBR1
NM_001130916
0.12219
0.05145
0.08039
0.04180
0.06431
0.10289


C1orf158
NM_152290
0.12219
0.11576
0.12862
0.01608
0.05788
0.02251


ZFAT
NM_001289394
0.15756
0.01286
0.09325
0.07074
0.06431
0.06752


TRIM7
NM_203293
0.15434
0.00322
0.13505
0.00965
0.15756
0.00965


MTRR
NM_024010
0.02251
0.11897
0.00322
0.17685
0.01608
0.13505


TAP1
NM_000593
0.09003
0.05466
0.05466
0.05788
0.08682
0.13826


SHE
NM_001010846
0.06752
0.00322
0.16399
0.00965
0.22508
0.01286


TRIM50
NM_001281451
0.00322
0.09003
0.09646
0.06752
0.14148
0.08360


MPP2
NM_001278375
0.15434
0.08682
0.12219
0.00965
0.10289
0.00965


MIER1
NM_001146112
0.18971
0.05788
0.06752
0.05788
0.05788
0.05466


EDC3
NM_025083
0.00000
0.24759
0.00322
0.07395
0.03537
0.12862


GSC
NM_173849
0.12540
0.06109
0.04180
0.09003
0.06109
0.10932


NPY5R
NM_006174
0.02894
0.05145
0.00643
0.17042
0.01929
0.21222


HHATL
NM_020707
0.00000
0.00322
0.06431
0.16399
0.01929
0.24116


TAAR8
NM_053278
0.11576
0.07717
0.12540
0.01608
0.14791
0.01286


ASB8
NM_024095
0.07717
0.08039
0.10932
0.00965
0.20900
0.01286


TTLL10
NM_001130045
0.20579
0.04180
0.08039
0.05788
0.06431
0.04823


ABCG4
NM_022169
0.00965
0.11254
0.10932
0.03537
0.17042
0.06109


BCL11B
NM_138576
0.03859
0.17685
0.08039
0.07717
0.06109
0.06431


USP10
NM_001272075
0.10289
0.06431
0.13505
0.02572
0.14791
0.02251


TMEM182
NM_144632
0.23794
0.09003
0.09325
0.01608
0.05145
0.01286


VAMP2
NM_014232
0.08360
0.07717
0.03859
0.12862
0.05466
0.11897


ZNF135
NM_001289401
0.08360
0.16720
0.09325
0.03537
0.06431
0.05788


AP1S1
NM_001283
0.06431
0.09003
0.09646
0.05788
0.08360
0.10932


DSEL
NM_032160
0.00000
0.22508
0.00000
0.12862
0.00322
0.14791


LDLRAD3
NM_174902
0.27974
0.00322
0.06431
0.02894
0.10289
0.02572


EIF5A
NM_001143760
0.13505
0.11254
0.06109
0.08039
0.03537
0.08360


GNG11
NM_004126
0.13826
0.02251
0.17685
0.04180
0.07074
0.05788


MBNL3
NM_133486
0.06752
0.09646
0.11254
0.06109
0.10289
0.06752


UIMC1
NM_001199297
0.36334
0.11576
0.01286
0.00965
0.00000
0.00965


GCNT2
NM_145649
0.03859
0.28617
0.03859
0.04823
0.08682
0.01608


SHD
NM_020209
0.00965
0.23151
0.00000
0.16399
0.00000
0.10932


SULT2B1
NM_177973
0.09003
0.08039
0.17685
0.01608
0.11576
0.03537


SRP54
NM_003136
0.09003
0.07717
0.07395
0.09325
0.05466
0.12862


ZNF605
NM_001164715
0.00000
0.17363
0.00000
0.09325
0.00965
0.24116


C9orf84
NM_173521
0.02251
0.13505
0.03859
0.05466
0.24116
0.02572


ADCYAP1
NM_001099733
0.12540
0.14148
0.07074
0.07074
0.05466
0.05788


ORIN1
NM_012363
0.03537
0.07395
0.13505
0.07074
0.16077
0.04502


SEPTIN9
NM_001113496
0.09003
0.03859
0.19936
0.00965
0.17363
0.01286


HAVCR1
NM_001173393
0.07717
0.14148
0.09325
0.05788
0.10289
0.05466


C3orf80
NM_001168214
0.04502
0.09646
0.03859
0.18006
0.06109
0.10611


TTC37
NM_014639
0.00000
0.10289
0.00322
0.06431
0.01929
0.33762


DDX43
NM_018665
0.01286
0.02251
0.06752
0.10289
0.10932
0.21222


ZNF277
NM_021994
0.00000
0.34405
0.03537
0.04502
0.07074
0.03859


AP3M1
NM_207012
0.33441
0.02251
0.03859
0.03215
0.06752
0.03859


TNFAIP8L2-
NM_001204848
0.19936
0.17042
0.08039
0.02572
0.04823
0.01608


SCNM1


SMPDL3B
NM_001009568
0.03859
0.15756
0.11254
0.07717
0.06431
0.09003


CORO1C
NM_001105237
0.13826
0.01929
0.15113
0.04502
0.12862
0.05788


CDK2AP2
NM_001271849
0.04180
0.03859
0.17042
0.00965
0.27331
0.00965


RIMKLB
NM_020734
0.09003
0.00322
0.19293
0.00000
0.25402
0.00322


TNS3
NM_022748
0.44051
0.00643
0.06431
0.00965
0.01929
0.00322


GATC
NM_176818
0.08360
0.14469
0.09646
0.08682
0.10289
0.02894


SOCS3
NM_003955
0.08360
0.07395
0.12540
0.13183
0.07717
0.05466


C10orf105
NM_001164375
0.03537
0.16077
0.12540
0.03215
0.10932
0.08360


SSH3
NM_017857
0.09003
0.14791
0.02572
0.06431
0.03537
0.18650


LSP1
NM_001289005
0.00000
0.22186
0.00000
0.19936
0.02251
0.10932


YPEL5
NM_001127400
0.25080
0.07717
0.04823
0.05788
0.06431
0.05466


OBP2A
NM_014582
0.11576
0.14148
0.07395
0.09325
0.04180
0.09003


TRIM5
NM_033092
0.11576
0.02894
0.15434
0.03537
0.20900
0.01286


SMIM24
NM_001136503
0.02572
0.13826
0.04180
0.15756
0.09325
0.09968


IL1RL2
NM_003854
0.14148
0.09646
0.09325
0.09325
0.06431
0.06752


KIF13A
NM_001105568
0.15434
0.04180
0.08039
0.03537
0.12862
0.11897


IRX1
NM_024337
0.00965
0.00643
0.17363
0.03537
0.28296
0.05145


CD81
NM_004356
0.04823
0.15756
0.10289
0.02894
0.17363
0.04823


AHCYL1
NM_001242674
0.09003
0.24116
0.03859
0.06431
0.03859
0.09003


GPR26
NM_153442
0.30547
0.19614
0.03859
0.00965
0.00322
0.00965


RPL6
NM_000970
0.14791
0.00322
0.25402
0.00965
0.14148
0.00643


OR4C11
NM_001004700
0.13505
0.05145
0.13505
0.08360
0.06431
0.09325


ZNF408
NM_001184751
0.08360
0.07717
0.07074
0.15756
0.06752
0.10611


SLC26A8
NM_001193476
0.25402
0.00643
0.08039
0.07717
0.04180
0.10289


FMO3
NM_006894
0.06752
0.06752
0.16077
0.03215
0.22186
0.01286


HNRNPR
NM_001102398
0.09325
0.06431
0.18971
0.02894
0.17363
0.01608


TPRN
NM_001128228
0.10289
0.02894
0.12219
0.04502
0.15113
0.11576


CACNA2D2
NM_001174051
0.02572
0.14148
0.09325
0.05788
0.13826
0.10932


EFHC1
NM_001172420
0.06752
0.00322
0.18971
0.00965
0.28939
0.00965


TEC
NM_003215
0.01929
0.07395
0.13505
0.04502
0.24437
0.05145


MSRB1
NM_016332
0.07717
0.23151
0.10611
0.03215
0.06431
0.06109


ZNF248
NM_001267606
0.03859
0.03215
0.15113
0.03859
0.24116
0.07395


PELP1
NM_014389
0.29260
0.07717
0.10611
0.00965
0.07717
0.01286


PROC
NM_000312
0.13826
0.17042
0.07074
0.07717
0.06109
0.05788


NPB
NM_148896
0.11576
0.13505
0.12540
0.02572
0.14791
0.02572


LTF
NM_001199149
0.00322
0.18006
0.03859
0.15756
0.05466
0.14791


FBXO33
NM_203301
0.09003
0.08682
0.09968
0.06752
0.14791
0.09003


ZEB1
NM_001174096
0.24437
0.13183
0.04180
0.06431
0.01929
0.08039


MCL1
NM_021960
0.00000
0.20257
0.00000
0.17685
0.02894
0.17685


FOPNL
NM_144600
0.09968
0.30547
0.03859
0.07074
0.01286
0.05788


UBE2L3
NM_001256355
0.04502
0.00643
0.09325
0.11254
0.16077
0.17042


SMARCA2
NM_001289397
0.01286
0.00643
0.00000
0.17363
0.01608
0.37942


TRIM62
NM_018207
0.02894
0.14148
0.07717
0.09968
0.05466
0.18650


UBXN7
NM_015562
0.04502
0.16077
0.19614
0.01286
0.16077
0.01608


ATF7IP
NM_018179
0.04180
0.07717
0.04180
0.11897
0.03537
0.27653


ABI1
NM_001178116
0.08360
0.08682
0.11254
0.07074
0.13826
0.09968


EEFSEC
NM_021937
0.09325
0.05145
0.14469
0.04823
0.20257
0.05466


USP7
NM_003470
0.07717
0.20579
0.08682
0.03215
0.14148
0.05145


TMPRSS9
NM_182973
0.16399
0.05466
0.09003
0.13505
0.07074
0.08039


C9orf92
NM_001271829
0.22830
0.00643
0.19293
0.00965
0.14791
0.01286


SAMD8
NM_144660
0.21865
0.01286
0.10611
0.05788
0.11576
0.08682


ZNF766
NM_001010851
0.12540
0.00965
0.19614
0.00965
0.25402
0.00643


DNAH5
NM_001369
0.12540
0.03215
0.19293
0.03537
0.18971
0.02572


GPS2
NM_004489
0.10289
0.19614
0.07074
0.07395
0.04823
0.10932


NFIC
NM_205843
0.16399
0.00965
0.06752
0.11254
0.06109
0.18650


TERF2
NM_005652
0.41479
0.02894
0.09325
0.00965
0.04823
0.00965


HNRNPF
NM_004966
0.15113
0.03537
0.20579
0.03215
0.11576
0.06431


NPFF
NM_003717
0.02572
0.11576
0.03859
0.17685
0.06109
0.18650


CST4
NM_001899
0.07074
0.00643
0.22830
0.00965
0.28296
0.00965


FLOT2
NM_004475
0.16720
0.04502
0.00000
0.18650
0.00000
0.20900


PPP3R2
NM_147180
0.39871
0.02251
0.10611
0.00965
0.05466
0.01608


PLA2G4B
NM_001114633
0.01929
0.20257
0.03859
0.13505
0.04823
0.16399


PGAP2
NM_001256235
0.06752
0.09646
0.08039
0.09646
0.13826
0.12862


ADRA2A
NM_000681
0.08360
0.13183
0.09325
0.04502
0.14791
0.10932


C7orf26
NM_024067
0.03537
0.16720
0.11254
0.16077
0.06109
0.07395


AMER1
NM_152424
0.00000
0.29582
0.00000
0.13505
0.03215
0.14791


EOMES
NM_005442
0.03537
0.04502
0.17685
0.07074
0.23794
0.04823


CYB5D2
NM_144611
0.08360
0.13183
0.09646
0.09968
0.09325
0.10932


RCOR3
NM_001136223
0.10289
0.20257
0.10932
0.02572
0.14791
0.02572


TBP
NM_001172085
0.10289
0.04180
0.13505
0.02572
0.25723
0.05145


SLURP1
NM_020427
0.11576
0.05145
0.09003
0.15113
0.09325
0.11576


PLAG1
NM_001114635
0.01929
0.29904
0.00000
0.13826
0.00000
0.16077


ELP3
NM_018091
0.04180
0.29582
0.02572
0.09646
0.05788
0.09968


CTDNEP1
NM_001143775
0.02572
0.07717
0.03859
0.11897
0.15113
0.20900


PPAT
NM_002703
0.31833
0.02894
0.08039
0.02894
0.15113
0.01286


RAPGEF6
NM_016340
0.18971
0.02894
0.18006
0.00965
0.20257
0.00965


TOP3B
NM_001282113
0.09325
0.06109
0.08039
0.15434
0.06431
0.17042


MTARC2
NM_017898
0.03859
0.09003
0.02572
0.18971
0.05466
0.22508


ITGB1BP2
NM_012278
0.12540
0.18328
0.13183
0.04502
0.09003
0.05145


PLAA
NM_001031689
0.01929
0.40514
0.02251
0.07717
0.05466
0.04823


ATP7A
NM_000052
0.06752
0.13826
0.07074
0.13826
0.10289
0.10932


GDA
NM_001242506
0.00643
0.45981
0.01286
0.04502
0.05466
0.05145


MPHOSPH8
NM_017520
0.12862
0.00643
0.19293
0.04502
0.23151
0.02572


TLE3
NM_020908
0.12540
0.00643
0.19936
0.00000
0.29904
0.00000


ADH5
NM_000671
0.06109
0.05788
0.10611
0.10932
0.13183
0.16399


RPS15A
NM_001019
0.19936
0.03215
0.06752
0.10932
0.00643
0.21543


SH2D4B
NM_001145719
0.09003
0.19293
0.03859
0.13826
0.06109
0.10932


SMARCAD1
NM_001254949
0.00322
0.14148
0.03859
0.17042
0.08682
0.19293


ALAS1
NM_199166
0.15434
0.00643
0.20900
0.03215
0.21865
0.01286


ATP6V0D2
NM_152565
0.03859
0.31833
0.04180
0.07074
0.05466
0.10932


IL20RB
NM_144717
0.13505
0.03859
0.17363
0.00965
0.26367
0.01286


SOCS2
NM_001270467
0.39871
0.01929
0.08039
0.05145
0.04823
0.03859


MBD3L2
NM_144614
0.02572
0.02894
0.12540
0.05466
0.23794
0.16399


MTX3
NM_001167741
0.05466
0.07717
0.09325
0.14469
0.14791
0.11897


HIST1H2BK
NM_080593
0.09325
0.14469
0.10611
0.03537
0.17363
0.08360


CTBP1
NM_001012614
0.10289
0.00322
0.22830
0.00000
0.29582
0.00643


KBTBD7
NM_032138
0.33441
0.08039
0.10611
0.03215
0.05788
0.02572


DNPEP
NM_012100
0.00000
0.04502
0.00000
0.24759
0.00000
0.34727


EIF2B2
NM_014239
0.15756
0.18328
0.07395
0.05145
0.12540
0.04823


LRIT1
NM_015613
0.17685
0.13183
0.12540
0.06431
0.10289
0.03859


PACRG
NM_001080378
0.02894
0.33441
0.04180
0.11254
0.05145
0.07074


LARP6
NM_001286679
0.29260
0.14148
0.08039
0.04502
0.05466
0.02572


MOB4
NM_015387
0.27653
0.01286
0.15113
0.02894
0.14791
0.02251


HAUS4
NM_001166269
0.32476
0.00643
0.16399
0.03215
0.06752
0.04823


RALGDS
NM_001271774
0.39871
0.03859
0.02572
0.06431
0.04823
0.06752


ENY2
NM_001193557
0.03215
0.03859
0.19293
0.07395
0.20257
0.10289


HSD17B1
NM_000413
0.11576
0.03859
0.29904
0.05466
0.07717
0.05788


PAAF1
NM_001267803
0.06752
0.05466
0.04823
0.17363
0.05466
0.24759


THOP1
NM_003249
0.23794
0.13183
0.17685
0.00965
0.08039
0.00965


EXOC3L2
NM_138568
0.09325
0.07395
0.09968
0.03859
0.12862
0.21222


PRDX1
NM_001202431
0.00000
0.22508
0.00000
0.17363
0.03537
0.21222


BACE1
NM_138971
0.09325
0.23473
0.09646
0.02572
0.16077
0.03859


DYNC1I1
NM_001135556
0.37942
0.08039
0.09968
0.02894
0.03859
0.02251


FAM178B
NM_001172667
0.06752
0.01929
0.25080
0.03215
0.24437
0.03537


PHKB
NM_000293
0.03859
0.41479
0.01286
0.07395
0.04502
0.06752


TCF7L2
NM_001198529
0.00965
0.38264
0.03859
0.10611
0.01608
0.09968


CSAG1
NM_153478
0.07074
0.29260
0.11254
0.05788
0.09325
0.02572


AKAP6
NM_004274
0.18650
0.24759
0.09646
0.05466
0.05466
0.01608


POLD3
NM_006591
0.00965
0.23473
0.03859
0.17042
0.05466
0.14791


PCDHGB1
NM_018922
0.20579
0.06752
0.10611
0.06752
0.16077
0.05145


COL9A3
NM_001853
0.00000
0.06109
0.09968
0.07074
0.32154
0.10611


PMM1
NM_002676
0.06431
0.03859
0.17685
0.06752
0.24437
0.06752


TTLL3
NM_001025930
0.08360
0.14148
0.09325
0.17042
0.04823
0.12540


C6orf48
NM_001287484
0.16720
0.07717
0.16399
0.03537
0.15113
0.06752


SHCBP1
NM_024745
0.03859
0.07717
0.15113
0.07717
0.15756
0.16077


PLEKHM3
NM_001080475
0.16077
0.02894
0.17042
0.02572
0.24116
0.03537


BTK
NM_000061
0.10932
0.07717
0.08360
0.15756
0.07717
0.16077


YES1
NM_005433
0.00000
0.09003
0.01286
0.25402
0.05466
0.25402


EIF4EBP1
NM_004095
0.06752
0.08039
0.16720
0.07717
0.10289
0.17042


DMPK
NM_001081563
0.17363
0.00643
0.12219
0.06752
0.06109
0.23473


LMO2
NM_001142316
0.18650
0.17363
0.05466
0.13826
0.05466
0.05788


GHRHR
NM_000823
0.04823
0.06752
0.03859
0.25402
0.04823
0.21222


ABHD8
NM_024527
0.01929
0.14148
0.03859
0.22186
0.05466
0.19293


RCN2
NM_002902
0.04180
0.08039
0.03859
0.21222
0.00322
0.29260


KIAA0247
NM_014734
0.09968
0.01286
0.36334
0.00965
0.17363
0.01286


EPC1
NM_001282391
0.00965
0.30547
0.11254
0.10932
0.06109
0.07395


VSIG10L
NM_001163922
0.09968
0.02894
0.09325
0.16399
0.08039
0.20900


NBR1
NM_001291571
0.01286
0.09003
0.03859
0.17685
0.05466
0.30225


LZTR1
NM_006767
0.15434
0.29260
0.07717
0.04502
0.05466
0.05145


CA7
NM_005182
0.02572
0.19614
0.00000
0.18971
0.00965
0.25402


ACOT7
NM_181864
0.02572
0.11897
0.08039
0.17042
0.06109
0.21865


ATP2C1
NM_001199181
0.13505
0.07717
0.08682
0.15434
0.10289
0.11897


CD274
NM_014143
0.07717
0.00643
0.18971
0.02572
0.36334
0.01608


LEMD2
NM_181336
0.46624
0.03215
0.01286
0.04502
0.00000
0.12219


CLDN19
NM_001185117
0.14469
0.11576
0.15113
0.05788
0.17363
0.03537


ZNF728
NM_001267716
0.29904
0.18006
0.00000
0.07395
0.00000
0.12862


IHH
NM_002181
0.03859
0.35691
0.07395
0.05788
0.10289
0.05145


RREB1
NM_001003699
0.08360
0.02572
0.19936
0.04502
0.25402
0.07717


CLCN3
NM_001243374
0.04823
0.30547
0.08039
0.13505
0.06431
0.05145


RNF150
NM_020724
0.32476
0.15434
0.03859
0.05788
0.03537
0.07395


CDC27
NM_001114091
0.04823
0.07717
0.11254
0.07074
0.32154
0.05788


IFIT3
NM_001549
0.02894
0.29260
0.04502
0.15756
0.04823
0.11576


POU2F3
NM_014352
0.12219
0.14791
0.12219
0.07395
0.15113
0.07074


KCNMA1
NM_001271518
0.18971
0.03215
0.17363
0.05788
0.14791
0.08682


HUS1B
NM_148959
0.16720
0.03215
0.28296
0.00965
0.18650
0.01286


WARS2
NM_015836
0.00000
0.13183
0.00000
0.17685
0.00000
0.38264


KRT18
NM_199187
0.07074
0.22186
0.18971
0.03537
0.15756
0.01608


FAM217B
NM_001190826
0.13505
0.17042
0.08039
0.13826
0.05466
0.11254


LYPD5
NM_001288763
0.29260
0.16077
0.12540
0.03537
0.05466
0.02251


CHMP2B
NM_014043
0.00965
0.29260
0.03859
0.16720
0.06431
0.11897


AICDA
NM_020661
0.03537
0.22508
0.03859
0.17685
0.03537
0.18006


EDARADD
NM_080738
0.07074
0.09003
0.24116
0.05788
0.21865
0.01608


ZNF239
NM_005674
0.15434
0.03859
0.17685
0.04823
0.20257
0.07395


COQ6
NM_182480
0.25080
0.07717
0.16077
0.00643
0.18971
0.00965


RFPL2
NM_001098527
0.02572
0.19614
0.11254
0.13826
0.14791
0.07395


CCNI
NM_006835
0.06431
0.14148
0.10611
0.13183
0.15113
0.09968


SPEG
NM_001173476
0.12540
0.29260
0.14148
0.01608
0.10932
0.01286


FBXO15
NM_001142958
0.28939
0.00000
0.13183
0.00965
0.25402
0.01286


PHF3
NM_001290260
0.12219
0.09003
0.08360
0.15756
0.10289
0.14148


OR2C3
NM_198074
0.00965
0.29904
0.00643
0.22186
0.01286
0.14791


GNB4
NM_021629
0.03859
0.03859
0.22508
0.03537
0.30868
0.05145


HIST1H3G
NM_003534
0.08360
0.14148
0.18006
0.03215
0.23473
0.02572


FXN
NM_001161706
0.06752
0.07717
0.08039
0.17685
0.04823
0.25080


PIANP
NM_001244015
0.08682
0.11576
0.00000
0.24116
0.00000
0.26045


PIGZ
NM_025163
0.19936
0.02251
0.27974
0.00965
0.18650
0.00643


ANKRD45
NM_198493
0.08682
0.12219
0.18006
0.00965
0.29904
0.00643


MRPS15
NM_031280
0.13826
0.17363
0.07074
0.12219
0.09003
0.10932


SLC39A1
NM_001271960
0.26688
0.16399
0.07395
0.06752
0.06431
0.07074


KAZALD1
NM_030929
0.06431
0.14148
0.03859
0.17363
0.05466
0.23473


DDX1
NM_004939
0.09003
0.08682
0.19614
0.06431
0.22508
0.04823


WNT2B
NM_004185
0.09003
0.03859
0.10932
0.24437
0.10289
0.12862


CTXN3
NM_001048252
0.08360
0.09646
0.15113
0.03537
0.30868
0.03859


GSN
NM_001258030
0.33762
0.05145
0.09646
0.06752
0.07074
0.09003


USP22
NM_015276
0.38907
0.14148
0.08682
0.02572
0.04823
0.02251


LGALS9B
NM_001042685
0.04180
0.06109
0.18971
0.08682
0.22508
0.10932


MSRB3
NM_001193460
0.03859
0.34405
0.09325
0.08039
0.08682
0.07395


ZNF354A
NM_005649
0.16720
0.15756
0.16399
0.02572
0.18650
0.01608


TMEM184C
NM_018241
0.03859
0.05145
0.18971
0.11254
0.19614
0.12862


PHF19
NM_001286840
0.27653
0.02251
0.09646
0.05466
0.18650
0.08039


P2RX1
NM_002558
0.12540
0.17042
0.06752
0.06752
0.18971
0.09646


CORO6
NM_032854
0.07074
0.13183
0.05788
0.17363
0.05466
0.22830


SLC7A6
NM_001076785
0.12862
0.03859
0.17685
0.07395
0.18971
0.11254


NDRG4
NM_022910
0.00322
0.30225
0.03859
0.15756
0.05788
0.16077


SLC16A3
NM_004207
0.16399
0.17042
0.12540
0.06431
0.13826
0.05788


MOSPD1
NM_019556
0.03859
0.03215
0.05788
0.27653
0.06752
0.24759


ASB4
NM_016116
0.25402
0.02894
0.18006
0.04823
0.15113
0.05788


PPM1G
NM_177983
0.05466
0.24759
0.04502
0.18328
0.05145
0.14148


SERPINB8
NM_001276490
0.29260
0.00322
0.20579
0.01286
0.18650
0.02251


MROH6
NM_001100878
0.14469
0.22186
0.12219
0.12862
0.06431
0.04180


LTBP1
NM_001166266
0.15756
0.00643
0.17363
0.07395
0.09646
0.21543


SLCO5A1
NM_001146008
0.02251
0.02894
0.09325
0.20257
0.23794
0.14148


SOSTDC1
NM_015464
0.12862
0.00322
0.25402
0.02572
0.27974
0.03537


TVP23B
NM_016078
0.00965
0.08039
0.00000
0.27974
0.01929
0.33762


IQCF2
NM_203424
0.14791
0.13183
0.19293
0.05788
0.14791
0.04823


CES3
NM_001185176
0.10289
0.22508
0.13505
0.05788
0.11576
0.09003


POU4F1
NM_006237
0.31190
0.17042
0.09646
0.03859
0.09968
0.01286


CCNT2
NM_058241
0.15756
0.03215
0.15113
0.06752
0.20900
0.11254


NDUFA5
NM_001282419
0.03859
0.24759
0.02572
0.23473
0.07717
0.10611


ZNF443
NM_005815
0.27653
0.14148
0.07717
0.06752
0.06109
0.10611


OCLN
NM_001205255
0.00000
0.13183
0.08039
0.19614
0.05145
0.27331


PPP1R37
NM_019121
0.03537
0.39871
0.03859
0.09325
0.05466
0.11254


NKX2-1
NM_003317
0.01286
0.07717
0.27653
0.07395
0.22186
0.07074


ZNF283
NM_181845
0.19614
0.19614
0.17685
0.02894
0.08039
0.05466


PCDH1
NM_001278613
0.15113
0.08682
0.19936
0.03215
0.25402
0.01286


DCP1A
NM_001290204
0.00322
0.16077
0.00000
0.27974
0.00000
0.29260


MXRA8
NM_001282582
0.25723
0.06752
0.12219
0.11897
0.07074
0.09968


INA
NM_032727
0.01929
0.18650
0.00000
0.22186
0.00000
0.30868


CPEB1
NM_001079533
0.17685
0.21543
0.09646
0.06431
0.12540
0.05788


OR2D3
NM_001004684
0.04823
0.24759
0.03537
0.10932
0.05466
0.24437


KIAA1109
NM_015312
0.00965
0.14148
0.07074
0.15434
0.23151
0.13183


DPM3
NM_153741
0.32476
0.02894
0.17685
0.00965
0.18971
0.00965


ARL1
NM_001177
0.03537
0.18006
0.07717
0.19293
0.06752
0.18650


TMTC2
NM_152588
0.06431
0.11576
0.08039
0.16720
0.06109
0.25080


DAZAP2
NM_001136269
0.18971
0.17042
0.06431
0.15756
0.09325
0.06752


ART1
NM_004314
0.28939
0.00643
0.17685
0.05466
0.09325
0.12219


NMT2
NM_004808
0.00643
0.22508
0.00643
0.27653
0.01608
0.21222


TIMM23B
NM_001290117
0.01286
0.04502
0.03859
0.25402
0.09968
0.29260


TDRD9
NM_153046
0.08360
0.33441
0.09968
0.06752
0.04823
0.10932


PTDSS2
NM_030783
0.03537
0.17042
0.01286
0.23473
0.04823
0.24437


ZNF764
NM_001172679
0.32476
0.02894
0.19293
0.03537
0.11576
0.04823


DEFB127
NM_139074
0.11576
0.34405
0.03859
0.07074
0.05466
0.12219


CNTN1
NM_001256064
0.15434
0.07717
0.18971
0.06752
0.19293
0.06431


PRKRA
NM_001139518
0.52733
0.03859
0.10611
0.00965
0.05466
0.01286


HMMR
NM_012484
0.40836
0.00643
0.20900
0.00965
0.10289
0.01286


ROPN1
NM_017578
0.01929
0.19614
0.00965
0.24437
0.04180
0.23794


MCF2L
NM_001112732
0.06431
0.03215
0.15113
0.09646
0.15756
0.24759


NCDN
NM_001014839
0.02572
0.27010
0.08039
0.16720
0.14148
0.06752


USP2
NM_001243759
0.14791
0.09646
0.19936
0.04823
0.19293
0.06752


KCNK2
NM_001017424
0.02894
0.37299
0.03859
0.13826
0.05466
0.11897


ATP6V0C
NM_001694
0.03859
0.00322
0.25723
0.06431
0.28296
0.10611


SPTBN4
NM_025213
0.02251
0.34405
0.02572
0.17685
0.06431
0.11897


ITGB4
NM_001005619
0.03859
0.13826
0.11897
0.08682
0.24437
0.12862


RNF24
NM_001134338
0.09003
0.00643
0.23473
0.03215
0.33441
0.05788


NLGN4Y
NM_014893
0.32476
0.14148
0.04180
0.11254
0.03537
0.10289


TRIM73
NM_198924
0.09003
0.16077
0.12540
0.13826
0.10289
0.14148


ELP2
NM_001242875
0.01929
0.16720
0.09646
0.16720
0.17363
0.13505


YTHDF1
NM_017798
0.00965
0.48232
0.07395
0.06752
0.06109
0.06431


CHD4
NM_001273
0.42444
0.02251
0.07717
0.06752
0.05145
0.11897


SOCS1
NM_003745
0.11576
0.09646
0.19614
0.05788
0.24116
0.05466


C20orf196
NM_152504
0.30547
0.03859
0.16399
0.05145
0.13826
0.06431


NMNAT2
NM_170706
0.28296
0.04502
0.09646
0.10611
0.10932
0.12219


AWAT2
NM_001002254
0.08682
0.03215
0.20579
0.01608
0.33441
0.09003


SLITRK1
NM_052910
0.08682
0.35370
0.18971
0.04823
0.07395
0.01286


TBX1
NM_080646
0.16077
0.07717
0.21543
0.01608
0.28617
0.00965


SLC28A3
NM_022127
0.04502
0.03859
0.12219
0.17042
0.13826
0.25080


NRG3
NM_001165973
0.02894
0.24759
0.10611
0.22186
0.07717
0.08682


RHOB
NM_004040
0.42765
0.08039
0.15113
0.03537
0.03859
0.03537


PPCS
NM_001287506
0.29260
0.07717
0.13505
0.07717
0.09646
0.09003


INHBC
NM_005538
0.00000
0.17042
0.03859
0.24116
0.05466
0.26688


TOE1
NM_025077
0.10289
0.01286
0.19293
0.12862
0.16720
0.16720


LDHA
NM_001165414
0.12862
0.13183
0.17363
0.13505
0.12862
0.07395


NAE1
NM_003905
0.29260
0.05145
0.15434
0.05788
0.16077
0.05788


COG4
NM_015386
0.28617
0.04502
0.08039
0.04502
0.24759
0.07395


DAO
NM_001917
0.25402
0.23473
0.03859
0.07074
0.05145
0.12862


RNASEH2B
NM_024570
0.27974
0.06752
0.19293
0.03537
0.18650
0.01608


NTRK3
NM_002530
0.24437
0.22508
0.12540
0.03215
0.13826
0.01286


TLX2
NM_016170
0.04502
0.24759
0.15434
0.03215
0.23794
0.06431


HTR5A
NM_024012
0.12862
0.01929
0.20579
0.04502
0.24437
0.13826


GJB3
NM_001005752
0.18971
0.02251
0.09325
0.15756
0.10932
0.21222


CAV1
NM_001172896
0.15756
0.17363
0.09325
0.18971
0.07074
0.09968


ELMO1
NM_014800
0.27653
0.14148
0.10611
0.12219
0.01929
0.11897


LMO3
NM_001243610
0.13505
0.03215
0.19293
0.05466
0.28296
0.09003


EXOSC1
NM_016046
0.11576
0.17042
0.13505
0.07074
0.16720
0.12862


PRDM8
NM_020226
0.05466
0.32154
0.03859
0.06752
0.05466
0.25080


EPG5
NM_020964
0.04180
0.29260
0.04502
0.15756
0.10289
0.14791


ARSH
NM_001011719
0.03859
0.25723
0.15434
0.07717
0.18650
0.07395


DEDD
NM_001039711
0.03859
0.20257
0.03859
0.25723
0.03859
0.21222


DUSP22
NM_020185
0.10289
0.06431
0.13183
0.07395
0.18971
0.22508


KCNH2
NM_172056
0.02251
0.13826
0.04502
0.28939
0.07717
0.21543


TOX2
NM_001098797
0.11576
0.08682
0.08039
0.10611
0.28296
0.11897


PCDH11X
NM_001168360
0.00965
0.20257
0.01286
0.25402
0.06109
0.25080


SPEN
NM_015001
0.00000
0.22508
0.03859
0.22186
0.05466
0.25080


NSD1
NM_172349
0.02894
0.31190
0.12219
0.10932
0.13826
0.08039


EGR1
NM_001964
0.02572
0.33119
0.03859
0.17685
0.02572
0.19293


C16orf72
NM_014117
0.06431
0.26367
0.08360
0.17685
0.10289
0.09968


TBCCD1
NM_018138
0.10289
0.27010
0.14148
0.06431
0.07395
0.13826


WDR54
NM_032118
0.01929
0.11897
0.02251
0.26045
0.08039
0.28939


TENM3
NM_001080477
0.01929
0.17363
0.07074
0.13505
0.13826
0.25402


PIP4K2B
NM_003559
0.16720
0.32154
0.15434
0.03537
0.10289
0.01286


LIN7C
NM_018362
0.44051
0.03859
0.10611
0.04502
0.05466
0.10932


PCDP1
NM_001271049
0.19293
0.24759
0.12540
0.05788
0.07074
0.09968


NDUFS6
NM_004553
0.14148
0.32154
0.08360
0.07074
0.10289
0.07395


IQCA1
NM_001270585
0.03859
0.44373
0.07717
0.09646
0.06431
0.07395


GAR1
NM_032993
0.17685
0.33119
0.13183
0.06431
0.06431
0.02572


ZNF274
NM_133502
0.28617
0.09003
0.14469
0.01608
0.24759
0.01286


CACNA1B
NM_001243812
0.15434
0.17042
0.15756
0.14469
0.12219
0.04823


DPH5
NM_015958
0.37299
0.07717
0.15434
0.03215
0.11576
0.04502


IL18RAP
NM_003853
0.15756
0.35370
0.00322
0.16720
0.02894
0.09003


KBTBD12
NM_207335
0.09325
0.19614
0.18971
0.04502
0.24116
0.03537


PNOC
NM_001284244
0.09003
0.02894
0.15434
0.25402
0.06431
0.20900


NFE2L2
NM_006164
0.27653
0.05788
0.18006
0.01608
0.24437
0.02572


F13B
NM_001994
0.10289
0.08682
0.08039
0.18650
0.14148
0.20579


EXO1
NM_003686
0.38585
0.02251
0.13505
0.02894
0.18650
0.04502


HEY1
NM_001282851
0.17363
0.02894
0.19614
0.06752
0.27331
0.06431


CBLC
NM_012116
0.14148
0.33441
0.00000
0.16720
0.06109
0.09968


VWA2
NM_001272046
0.08360
0.21865
0.17363
0.07717
0.16077
0.09325


ALDH3B2
NM_001031615
0.00643
0.29582
0.01286
0.17685
0.07074
0.24437


ZNF81
NM_007137
0.01929
0.22508
0.00000
0.27010
0.00000
0.29260


C10orf82
NM_144661
0.11576
0.09646
0.22508
0.15756
0.06431
0.14791


ENAH
NM_018212
0.10289
0.05788
0.29260
0.03215
0.29904
0.02251


OR51A7
NM_001004749
0.35048
0.04180
0.19614
0.01608
0.16720
0.03859


CKAP5
NM_001008938
0.08682
0.16399
0.17685
0.07074
0.24437
0.06752


PHKA1
NM_001172436
0.00965
0.16077
0.00000
0.25402
0.01608
0.36977


RAI14
NM_001145520
0.09003
0.32797
0.03859
0.17685
0.05466
0.12219


SBSN
NM_001166034
0.00643
0.16077
0.06752
0.23473
0.09646
0.24437


SHCBP1L
NM_030933
0.12219
0.18650
0.11254
0.04502
0.26367
0.08039


NUDT7
NM_001243661
0.01929
0.50804
0.07717
0.06431
0.06752
0.07395


KCNIP2
NM_173193
0.11576
0.24116
0.15113
0.08360
0.10289
0.11897


CCDC84
NM_198489
0.41479
0.00322
0.18006
0.02894
0.16077
0.02572


SMIM13
NM_001135575
0.36334
0.00643
0.18971
0.00965
0.23794
0.00965


OR2T33
NM_001004695
0.05466
0.33119
0.12219
0.07395
0.16077
0.07395


DPPA5
NM_001025290
0.08039
0.04502
0.07074
0.27653
0.05466
0.28939


VDAC1
NM_003374
0.13826
0.13826
0.19614
0.04502
0.24437
0.05466


DNTTIP2
NM_014597
0.06431
0.08039
0.16077
0.10932
0.26367
0.13826


LYPLA1
NM_001279356
0.10932
0.22508
0.18971
0.04502
0.23794
0.01286


DEFB125
NM_153325
0.32154
0.03859
0.19614
0.07074
0.13183
0.06109


TEAD4
NM_003213
0.00000
0.34405
0.00322
0.18971
0.01929
0.26367


QARS
NM_005051
0.00000
0.16077
0.03859
0.18650
0.14148
0.29260


SGCB
NM_000232
0.00000
0.24759
0.00000
0.28296
0.00000
0.29260


YBEY
NM_058181
0.12219
0.16077
0.06109
0.21543
0.05466
0.20900


TUSC5
NM_172367
0.09003
0.07717
0.19936
0.07395
0.31511
0.06752


TUSC3
NM_006765
0.11576
0.11897
0.22830
0.06431
0.25723
0.03859


SP100
NM_001206704
0.32476
0.01286
0.20900
0.02894
0.19293
0.05788


ADCK3
NM_020247
0.08360
0.16077
0.08039
0.03215
0.38264
0.08682


TCP11L1
NM_001145541
0.06752
0.22508
0.06752
0.18650
0.05466
0.22508


PODN
NM_001199081
0.02251
0.29904
0.04180
0.22186
0.05466
0.18650


UBE2E1
NM_001202476
0.34405
0.01286
0.18006
0.06431
0.15113
0.07395


ZNF627
NM_145295
0.59164
0.01286
0.14148
0.02572
0.02894
0.02572


SYT15
NM_181519
0.13826
0.09646
0.19293
0.16399
0.05466
0.18006


PRMT7
NM_001290018
0.18650
0.18328
0.09646
0.11254
0.03537
0.21222


TAF6
NM_139315
0.48553
0.01286
0.17042
0.02572
0.12219
0.01286


APRT
NM_000485
0.15434
0.13505
0.16720
0.09646
0.12862
0.14791


TNPO2
NM_001136195
0.42122
0.00643
0.22830
0.00000
0.17363
0.00000


Clorf100
NM_001276349
0.18328
0.33441
0.13505
0.06752
0.07074
0.03859


TMEM179
NM_001286389
0.01286
0.14469
0.03859
0.25402
0.06109
0.32154


AGPAT4
NM_020133
0.02572
0.14148
0.10611
0.16399
0.16720
0.22830


PLXDC2
NM_001282736
0.29582
0.23473
0.18006
0.02894
0.07074
0.02251


LDB3
NM_001171610
0.37299
0.19293
0.13183
0.07395
0.04823
0.01608


IER3
NM_003897
0.03859
0.09646
0.09325
0.27010
0.09968
0.24116


OR2J2
NM_030905
0.01929
0.03859
0.09646
0.16720
0.28296
0.23473


Clorf162
NM_174896
0.28296
0.05145
0.22830
0.02572
0.22508
0.02572


HBD
NM_000519
0.12219
0.18328
0.07074
0.17685
0.14791
0.13826


NKIRAS2
NM_001144927
0.05466
0.24116
0.08039
0.18971
0.03859
0.23794


ADAL
NM_001159280
0.06752
0.02251
0.15756
0.16720
0.24116
0.18650


PLS3
NM_001172335
0.02894
0.07717
0.10611
0.18650
0.24759
0.19614


FAM151B
NM_205548
0.19293
0.17363
0.12219
0.18328
0.06109
0.10932


SH3TC1
NM_018986
0.04823
0.22508
0.03859
0.15756
0.05466
0.32154


LRP10
NM_014045
0.12540
0.07717
0.09646
0.18328
0.05466
0.30868


WARS
NM_173701
0.09003
0.22508
0.10611
0.07717
0.16077
0.18650


KRT79
NM_175834
0.04823
0.07717
0.03859
0.30225
0.05788
0.32154


PRR5
NM_001017528
0.13826
0.39871
0.09325
0.06431
0.10289
0.04823


SERF2
NM_001199877
0.02572
0.29260
0.02572
0.25402
0.05466
0.19293


C9orf57
NM_001128618
0.18971
0.24759
0.05466
0.20579
0.05466
0.09646


ZNF711
NM_021998
0.00965
0.50161
0.00000
0.21543
0.00322
0.11897


PLCG1
NM_002660
0.02572
0.19614
0.15756
0.11254
0.28296
0.07395


SFRP2
NM_003013
0.25402
0.14148
0.24759
0.03215
0.15756
0.01608


TXLNA
NM_175852
0.10932
0.02894
0.29582
0.02572
0.37621
0.01286


PRAC1
NM_032391
0.19293
0.20257
0.10611
0.03215
0.28939
0.02572


CNOT10
NM_001256742
0.09003
0.16720
0.13505
0.18328
0.14791
0.12862


SRY
NM_003140
0.21865
0.00643
0.31190
0.04502
0.16077
0.10932


MBD2
NM_003927
0.18971
0.24759
0.18006
0.05145
0.16077
0.02251


EVL
NM_016337
0.01286
0.20257
0.08039
0.22186
0.10932
0.22508


UBE4A
NM_001204077
0.14791
0.11897
0.20900
0.07074
0.25402
0.05466


LAD1
NM_005558
0.08039
0.02894
0.07395
0.27653
0.08682
0.30868


REP15
NM_001029874
0.19936
0.16399
0.10611
0.12862
0.14148
0.11576


GNGT2
NM_001198754
0.03537
0.24759
0.08039
0.18006
0.07717
0.23473


IRGC
NM_019612
0.38264
0.14148
0.19614
0.01608
0.10289
0.01608


TACR1
NM_001058
0.10289
0.22508
0.19293
0.15756
0.06431
0.11254


CRISP3
NM_001190986
0.03215
0.14148
0.00000
0.34084
0.01929
0.32154


POTEH
NM_001136213
0.10289
0.29260
0.09968
0.14148
0.07717
0.14148


ZNF668
NM_024706
0.16720
0.19293
0.24759
0.01286
0.23151
0.00643


TACR2
NM_001057
0.03859
0.30547
0.07074
0.12862
0.18650
0.12862


FAM222B
NM_001288633
0.15434
0.19614
0.10611
0.11576
0.08039
0.20579


GSDMB
NM_001042471
0.28939
0.34405
0.06752
0.06431
0.04180
0.05145


ROS1
NM_002944
0.00322
0.19614
0.01286
0.29904
0.01929
0.32797


MAMSTR
NM_001130915
0.08360
0.35691
0.07717
0.11254
0.09646
0.13505


SHISA5
NM_001272066
0.31833
0.09646
0.10611
0.07717
0.16077
0.10289


TRAF3IP1
NM_015650
0.07717
0.00322
0.22830
0.04502
0.37942
0.13183


PAM16
NM_016069
0.00000
0.16720
0.03859
0.24116
0.06109
0.35691


ATG4B
NM_178326
0.02894
0.31511
0.03859
0.27974
0.05466
0.14791


ACKR1
NM_001122951
0.18971
0.06109
0.15756
0.14791
0.16077
0.14791


THOC7
NM_025075
0.17363
0.07717
0.20257
0.06431
0.25723
0.09003


RAB2A
NM_002865
0.09325
0.24759
0.07074
0.23473
0.06109
0.16077


HNRNPF
NM_001098204
0.02572
0.05788
0.09003
0.27974
0.06109
0.35370


SPRR1B
NM_003125
0.36656
0.11576
0.19936
0.05145
0.06752
0.06752


RUNDC3B
NM_138290
0.24437
0.28617
0.08360
0.10611
0.07717
0.07395


SPTBN2
NM_006946
0.09968
0.44373
0.04180
0.17685
0.05466
0.05466


AGK
NM_018238
0.27974
0.16077
0.05788
0.15756
0.06752
0.14791


PTPRR
NM_001207015
0.10932
0.08682
0.10611
0.21222
0.13826
0.21865


UGT1A9
NM_021027
0.00000
0.24759
0.04180
0.25723
0.09325
0.23473


ALPPL2
NM_031313
0.13826
0.04502
0.28617
0.07395
0.24116
0.09003


FOXI1
NM_012188
0.00000
0.37621
0.03859
0.15756
0.05145
0.25080


UHRF1BP1L
NM_015054
0.03859
0.14148
0.01286
0.36977
0.03537
0.27653


EMC4
NM_001286420
0.28939
0.15756
0.15756
0.02572
0.22186
0.02251


SLC7A13
NM_138817
0.00000
0.22186
0.00643
0.28939
0.06431
0.29260


HABP4
NM_014282
0.43408
0.13183
0.19293
0.02572
0.07717
0.01608


LHX3
NM_178138
0.04502
0.18328
0.08039
0.24437
0.05466
0.27331


NREP
NM_001142482
0.22830
0.10611
0.03537
0.20900
0.04180
0.26045


TAAR5
NM_003967
0.17363
0.25723
0.18971
0.07717
0.13183
0.05145


FAM69A
NM_001252271
0.05466
0.24759
0.13505
0.18650
0.18650
0.07395


KDM2A
NM_001256405
0.16399
0.36656
0.22830
0.04502
0.05466
0.02572


GTF2B
NM_001514
0.12540
0.13826
0.16399
0.07395
0.28296
0.09968


PCDHB15
NM_018935
0.19936
0.13183
0.24759
0.00965
0.28296
0.01608


DUT
NM_001025249
0.00000
0.22508
0.03859
0.28939
0.05466
0.27974


LRRC30
NM_001105581
0.30225
0.19293
0.20579
0.02251
0.14791
0.01608


NREP
NM_001142483
0.29260
0.33441
0.00643
0.12862
0.00322
0.12219


KIAA0586
NM_001244189
0.34727
0.14148
0.07717
0.11897
0.05466
0.14791


AES
NM_198969
0.17685
0.22508
0.10611
0.06431
0.27653
0.03859


COL11A1
NM_001190709
0.03215
0.33119
0.09646
0.13826
0.14148
0.14791


LSMEM2
NM_153215
0.13826
0.23151
0.05466
0.20257
0.05466
0.20900


CD72
NM_001782
0.15756
0.09646
0.07395
0.19614
0.22508
0.14148


IFNA10
NM_002171
0.12540
0.36334
0.08039
0.15756
0.04823
0.11897


MFSD5
NM_001170790
0.44051
0.07395
0.19293
0.00965
0.16720
0.01286


RBMXL2
NM_014469
0.10289
0.07717
0.27653
0.00965
0.42122
0.00965


OR5M3
NM_001004742
0.03859
0.36334
0.03859
0.21543
0.05466
0.18650


SCNN1G
NM_001039
0.11576
0.11897
0.10611
0.25402
0.08682
0.21543


VHLL
NM_001004319
0.34405
0.13183
0.06431
0.13826
0.05788
0.16077


VSIG4
NM_001100431
0.15434
0.44373
0.10611
0.07395
0.06431
0.05466


SOWAHC
NM_023016
0.02251
0.13183
0.18006
0.22186
0.18650
0.15434


LMX1B
NM_001174147
0.27653
0.00643
0.35048
0.00965
0.24437
0.01286


EBP
NM_006579
0.05466
0.13183
0.00643
0.33441
0.01929
0.35370


NALCN
NM_052867
0.06109
0.46624
0.00965
0.13826
0.01608
0.20900


WNK4
NM_032387
0.05466
0.35370
0.09646
0.13826
0.14791
0.10932


PANX1
NM_015368
0.04180
0.30547
0.03859
0.26688
0.06109
0.18650


AGPAT1
NM_032741
0.16399
0.14148
0.11576
0.10932
0.19293
0.17685


RPL26
NM_000987
0.04502
0.26688
0.04180
0.22508
0.07074
0.25402


PPP1R27
NM_001007533
0.28617
0.14148
0.15756
0.06752
0.07074
0.18006


GPBP1
NM_001127236
0.38585
0.04502
0.21543
0.02894
0.17363
0.05466


PLEC
NM_201378
0.09003
0.08682
0.23473
0.10611
0.22186
0.16720


LARS
NM_020117
0.30547
0.00322
0.19614
0.00965
0.37942
0.01286


HSF4
NM_001538
0.15756
0.07717
0.17685
0.10611
0.23794
0.15113


ARFGAP2
NM_032389
0.12219
0.08039
0.15434
0.17685
0.16077
0.21222


FAM96B
NM_016062
0.14469
0.00643
0.29582
0.06431
0.25723
0.13826


NKX2-2
NM_002509
0.21865
0.09003
0.08039
0.19293
0.09325
0.23473


MEFV
NM_001198536
0.43730
0.17042
0.17685
0.04502
0.03537
0.04502


TMEM56
NM_001199679
0.26045
0.00322
0.28617
0.06431
0.24116
0.05466


FZR1
NM_016263
0.08360
0.02251
0.21543
0.03859
0.38264
0.16720


TMEM170A
NM_145254
0.32797
0.05466
0.17363
0.13826
0.09325
0.12219


OR2B2
NM_033057
0.44051
0.00322
0.28617
0.00965
0.16077
0.01286


ZNF331
NM_001079906
0.01286
0.13183
0.08039
0.27974
0.15756
0.25080


PGBD2
NM_170725
0.04823
0.30547
0.03859
0.24437
0.03859
0.23794


ARFIP2
NM_012402
0.29582
0.04502
0.19936
0.03537
0.28296
0.05466


EBF1
NM_024007
0.18971
0.24759
0.08039
0.12862
0.05466
0.21222


PRM1
NM_002761
0.00000
0.16077
0.10611
0.17363
0.35691
0.11576


ARHGAP26
NM_015071
0.22830
0.13183
0.12219
0.14148
0.15113
0.13826


AASDH
NM_181806
0.15113
0.14148
0.19614
0.07395
0.29904
0.05145


CLN3
NM_001286104
0.28296
0.14148
0.17685
0.09646
0.14791
0.06752


PEX26
NM_001127649
0.00965
0.36334
0.07074
0.20257
0.14469
0.12540


ECSCR
NM_001077693
0.02572
0.13183
0.17363
0.04502
0.49518
0.04502


ASGR2
NM_080913
0.38264
0.14148
0.19614
0.02572
0.12219
0.04823


MPPED2
NM_001584
0.11254
0.16077
0.19293
0.09646
0.21865
0.13505


FBXO7
NM_012179
0.05788
0.36977
0.03859
0.20257
0.03537
0.21222


CNGB3
NM_019098
0.29582
0.14148
0.08039
0.17685
0.04823
0.17363


GKAP1
NM_001135953
0.27653
0.09003
0.22830
0.04502
0.25723
0.02251


ITIH1
NM_001166434
0.15434
0.26367
0.08682
0.18006
0.09325
0.14148


C1QTNF3
NM_181435
0.01286
0.39871
0.02572
0.25402
0.05466
0.17363


FAM170A
NM_182761
0.44051
0.06109
0.22830
0.05788
0.08682
0.04502


PHYHIP
NM_001099335
0.14791
0.09646
0.29582
0.07395
0.20900
0.09646


PCTP
NM_021213
0.10289
0.14148
0.09325
0.23151
0.13826
0.21222


OR5P2
NM_153444
0.09003
0.04502
0.32154
0.05466
0.35370
0.05788


ASIC3
NM_004769
0.08360
0.20257
0.27010
0.13183
0.17685
0.05788


SYNE3
NM_152592
0.51447
0.17685
0.12862
0.02572
0.06109
0.01608


NAT16
NM_198571
0.38264
0.07717
0.19293
0.05788
0.16077
0.05145


YOD1
NM_001276320
0.01929
0.34727
0.02572
0.20257
0.03537
0.29260


MANEA
NM_024641
0.00000
0.37299
0.00000
0.25723
0.00000
0.29260


LTV1
NM_032860
0.34405
0.04502
0.26688
0.04502
0.18650
0.03859


ADAMTSL1
NM_001040272
0.02572
0.06431
0.00643
0.33762
0.01608
0.47588


AMER2
NM_152704
0.09003
0.34405
0.10611
0.08682
0.11576
0.18650


OR2W5
NM_001004698
0.24437
0.03215
0.22830
0.04502
0.34084
0.03859


PARP15
NM_001113523
0.09003
0.17042
0.03859
0.29582
0.04180
0.29260


PIK3C2G
NM_001288772
0.10289
0.16399
0.08360
0.31190
0.05466
0.21222


LY6E
NM_002346
0.47910
0.05145
0.29904
0.02572
0.05788
0.01608


PPT1
NM_000310
0.44373
0.03215
0.15756
0.03537
0.20257
0.05788


UPP1
NM_003364
0.12862
0.33119
0.17363
0.06431
0.19614
0.03537


ZBTB49
NM_145291
0.25080
0.22508
0.08039
0.17685
0.05466
0.14148


LOXL1
NM_005576
0.04823
0.31190
0.15756
0.11897
0.20900
0.08682


C17orf49
NM_001142798
0.39228
0.00322
0.27331
0.02572
0.18971
0.04823


DDX47
NM_016355
0.45659
0.02894
0.19936
0.00965
0.22508
0.01286


SERINC1
NM_020755
0.05788
0.22508
0.03859
0.31511
0.05788
0.23794


SP5
NM_001003845
0.03859
0.18006
0.03859
0.28939
0.05466
0.33119


FOXP3
NM_014009
0.12219
0.07717
0.17363
0.13505
0.17363
0.25080


PHF19
NM_001286843
0.08682
0.14148
0.12219
0.21543
0.20900
0.16077


SYNGR4
NM_012451
0.08682
0.46302
0.03859
0.18006
0.01286
0.15434


BTBD3
NM_014962
0.09968
0.23151
0.20579
0.08682
0.21865
0.09325


AATK
NM_001080395
0.04823
0.35691
0.10611
0.15756
0.11897
0.14791


GPR128
NM_032787
0.23151
0.11576
0.08039
0.16399
0.15113
0.19293


ETFDH
NM_001281738
0.02894
0.13826
0.04823
0.25723
0.06752
0.39550


ASB15
NM_080928
0.18650
0.20257
0.17363
0.07717
0.18650
0.10932


FOXP1
NM_001244808
0.15756
0.34727
0.08039
0.13826
0.06431
0.14791


CCDC34
NM_030771
0.04823
0.08682
0.28939
0.06431
0.33441
0.11576


CACFD1
NM_017586
0.12540
0.22186
0.03859
0.29260
0.04823
0.21222


RMDN1
NM_001286719
0.06431
0.21543
0.19293
0.07717
0.28296
0.10932


OPRL1
NM_000913
0.02251
0.14469
0.02572
0.28296
0.06109
0.40514


ZNF540
NM_152606
0.03859
0.36334
0.00000
0.22186
0.00000
0.32154


IQCD
NM_138451
0.05145
0.56913
0.03859
0.13505
0.06752
0.08360


FAM9B
NM_205849
0.11576
0.34405
0.08360
0.21222
0.08682
0.10289


ARHGAP25
NM_001166277
0.32797
0.16077
0.12540
0.14469
0.05788
0.12862


STC1
NM_003155
0.12219
0.11576
0.20579
0.02894
0.42765
0.04823


PPP2R2C
NM_181876
0.34084
0.03859
0.22830
0.04502
0.24437
0.05145


CDRT1
NM_001282540
0.03859
0.39871
0.14791
0.11254
0.18971
0.06109


STK32B
NM_018401
0.08682
0.19614
0.18328
0.13826
0.24437
0.09968


P2RY10
NM_014499
0.08360
0.11897
0.14791
0.24437
0.13183
0.22508


P2RX5
NM_001204519
0.01929
0.68489
0.05466
0.07395
0.10289
0.01608


B4GALT2
NM_003780
0.32797
0.08682
0.08039
0.17685
0.07717
0.20257


C16orf59
NM_025108
0.03859
0.42122
0.06752
0.18006
0.04823
0.19614


FOXD4
NM_207305
0.02251
0.32154
0.08039
0.21543
0.15113
0.16077


RPL10L
NM_080746
0.06109
0.09646
0.05466
0.33762
0.02572
0.37621


PLS1
NM_001145319
0.09325
0.32797
0.03859
0.27974
0.05466
0.16077


GALE
NM_001127621
0.07717
0.37942
0.03859
0.17685
0.04180
0.24116


RAB9B
NM_016370
0.52090
0.00322
0.30225
0.01286
0.10289
0.01286


CREG2
NM_153836
0.37942
0.05788
0.22508
0.00322
0.28296
0.00643


MTFP1
NM_016498
0.09003
0.17042
0.19614
0.07717
0.30225
0.12219


GP1BB
NM_000407
0.02251
0.35691
0.01286
0.43730
0.04823
0.08039


FLYWCH2
NM_001142499
0.17363
0.13183
0.08039
0.26367
0.04823
0.26045


MPI
NM_002435
0.09003
0.16077
0.12219
0.21865
0.11576
0.25080


ZFP36L2
NM_006887
0.42444
0.03215
0.12540
0.13505
0.09325
0.14791


KCNJ15
NM_170736
0.10932
0.19293
0.08039
0.19936
0.15113
0.22508


KIF17
NM_001122819
0.02894
0.29582
0.04180
0.23473
0.06431
0.29260


SNRPB2
NM_003092
0.02894
0.32154
0.06431
0.29582
0.09968
0.14791


THBD
NM_000361
0.12219
0.17042
0.15113
0.13826
0.18650
0.19293


TOMM34
NM_006809
0.00965
0.26045
0.03859
0.42444
0.06431
0.16399


PPARG
NM_015869
0.11576
0.04502
0.15756
0.17363
0.30225
0.16720


GNG7
NM_052847
0.21865
0.45659
0.07395
0.07395
0.04823
0.09003


TMEM125
NM_144626
0.02251
0.30225
0.03859
0.28296
0.05466
0.26045


PSTK
NM_153336
0.30225
0.13826
0.15756
0.05788
0.19614
0.10932


AMPD2
NM_001257361
0.23151
0.13183
0.18006
0.13183
0.08039
0.20900


ZNF648
NM_001009992
0.04823
0.29260
0.07395
0.25723
0.05466
0.23794


ETFA
NM_001127716
0.29582
0.27010
0.12219
0.05145
0.16077
0.06431


ZMYM3
NM_001171162
0.41801
0.29582
0.09646
0.04502
0.05466
0.05466


ZNF827
NM_178835
0.06752
0.19293
0.35048
0.03215
0.28296
0.03859


SPAG8
NM_172312
0.00000
0.32797
0.00000
0.28939
0.01608
0.33119


PDIA6
NM_001282705
0.37942
0.24759
0.12540
0.07717
0.05466
0.08360


NTNG1
NM_001113228
0.34727
0.08039
0.08360
0.19614
0.04823
0.21222


SLC1A5
NM_001145145
0.10289
0.19293
0.09968
0.17042
0.24437
0.15756


ZC3H15
NM_018471
0.02894
0.01286
0.12540
0.26688
0.03537
0.50161


MRPL22
NM_014180
0.11897
0.03859
0.15434
0.27331
0.10932
0.27653


ORC6
NM_014321
0.04180
0.30547
0.03859
0.26688
0.05466
0.26367


HSPB7
NM_014424
0.09325
0.34405
0.17363
0.05145
0.29582
0.01286


IKZF4
NM_022465
0.03537
0.45659
0.17042
0.05466
0.22508
0.02894


FAM49A
NM_030797
0.07717
0.23473
0.15434
0.03537
0.43087
0.03859


TBC1D16
NM_019020
0.09003
0.33441
0.19293
0.15756
0.09646
0.09968


C12orf77
NM_001101339
0.11576
0.02251
0.20900
0.15113
0.31511
0.16077


RAPGEF1
NM_198679
0.65273
0.09646
0.12540
0.03215
0.05145
0.01608


STEAP1B
NM_207342
0.37621
0.16720
0.18971
0.00965
0.22186
0.00965


POLR3H
NM_001018052
0.25402
0.05466
0.18006
0.11897
0.22186
0.14469


SHOC2
NM_007373
0.10289
0.16077
0.28939
0.03215
0.30225
0.08682


ECHDC2
NM_018281
0.10289
0.14148
0.14791
0.24437
0.07074
0.26688


KRTAP4-7
NM_033061
0.52090
0.14469
0.19936
0.02894
0.05466
0.02572


HELZ2
NM_033405
0.02251
0.30225
0.08039
0.18006
0.13826
0.25080


PDK2
NM_001199900
0.00965
0.04502
0.22830
0.07074
0.55949
0.06431


TBC1D21
NM_153356
0.29582
0.23151
0.13826
0.07717
0.16077
0.07395


GFPT2
NM_005110
0.02894
0.09325
0.17363
0.17685
0.25080
0.25402


MEX3A
NM_001093725
0.28617
0.36013
0.03859
0.06752
0.14148
0.08682


PPP1R10
NM_002714
0.05466
0.33119
0.08039
0.23473
0.10932
0.17042


GPATCH3
NM_022078
0.38264
0.13183
0.19614
0.02894
0.20257
0.03859


SMIM14
NM_174921
0.00965
0.06752
0.03859
0.32476
0.06431
0.47588


MEF2A
NM_005587
0.33762
0.22186
0.11897
0.03215
0.22186
0.04823


ZNF609
NM_015042
0.08360
0.17363
0.27010
0.07395
0.27331
0.10611


KIAA1377
NM_020802
0.37942
0.02894
0.27653
0.03215
0.24116
0.02251


RLTPR
NM_001013838
0.02251
0.35691
0.04180
0.18650
0.06431
0.30868


GGA3
NM_001291642
0.27974
0.20257
0.12540
0.10611
0.16077
0.10932


ANK1
NM_001142446
0.44373
0.05145
0.31190
0.03215
0.12862
0.01608


SLC15A4
NM_145648
0.37942
0.07717
0.22186
0.00965
0.28296
0.01286


TMEM52
NM_178545
0.31833
0.22186
0.17042
0.05145
0.14791
0.07395


RTN2
NM_206900
0.42765
0.09003
0.19936
0.02894
0.22508
0.01286


RASGRP1
NM_001128602
0.06752
0.17042
0.11254
0.25723
0.14791
0.22830


YWHAZ
NM_001135699
0.00965
0.33441
0.00000
0.35370
0.03537
0.25080


PRRX1
NM_006902
0.06431
0.11576
0.03859
0.40836
0.05466
0.30225


EFCAB2
NM_032328
0.37299
0.13183
0.03859
0.18650
0.06109
0.19293


ZNF185
NM_001178113
0.44695
0.07717
0.35048
0.02572
0.07395
0.00965


SP100
NM_003113
0.37621
0.36334
0.07395
0.06752
0.01608
0.09003


NCBP1
NM_002486
0.58199
0.11576
0.19293
0.01608
0.05466
0.02572


ASNSD1
NM_019048
0.31190
0.18328
0.27010
0.00965
0.20257
0.00965


SFT2D3
NM_032740
0.38264
0.07717
0.20900
0.02894
0.23794
0.05145


CYBB
NM_000397
0.15756
0.22508
0.17042
0.18650
0.06109
0.18650


ST20-
NM_001199760
0.29260
0.07717
0.29904
0.00965
0.29260
0.01608


MTHFS


GABARAP
NM_007278
0.10289
0.00322
0.36977
0.04823
0.41158
0.05145


KIF25
NM_030615
0.41158
0.22186
0.18971
0.07395
0.05466
0.03537


CNTNAP4
NM_033401
0.29260
0.02894
0.28939
0.00965
0.35370
0.01286


EPHA3
NM_182644
0.00000
0.20579
0.09325
0.27974
0.05466
0.35691


FIBP
NM_004214
0.15756
0.22186
0.19293
0.11897
0.22508
0.07395


SLC7A11
NM_014331
0.10289
0.00322
0.36977
0.02894
0.43730
0.04823


MRPS17
NM_015969
0.34084
0.15113
0.14148
0.09646
0.13826
0.12219


FAM83B
NM_001010872
0.09003
0.30547
0.04502
0.25402
0.04502
0.25402


BCOR
NM_001123384
0.34405
0.06752
0.19936
0.13826
0.12219
0.12219


NKX3-2
NM_001189
0.42765
0.16720
0.08039
0.11254
0.06431
0.14148


CLTCL1
NM_001835
0.10289
0.08039
0.17042
0.21543
0.10289
0.32154


HOXB13
NM_006361
0.37942
0.14148
0.15756
0.07074
0.18650
0.05788


SLITRK6
NM_032229
0.01286
0.31190
0.03859
0.18006
0.05466
0.39871


VNN1
NM_004666
0.44373
0.05145
0.19293
0.07395
0.08682
0.14791


C9orf117
NM_001012502
0.04823
0.22186
0.24116
0.07717
0.33441
0.07395


RHPN1
NM_052924
0.03859
0.11576
0.03859
0.29582
0.10289
0.40514


VWA5A
NM_014622
0.34405
0.00643
0.29582
0.03537
0.28939
0.02572


VEGFA
NM_001171630
0.09003
0.16399
0.12540
0.32476
0.09968
0.19614


TMEM225
NM_001013743
0.10289
0.13183
0.12219
0.25402
0.14469
0.24437


INPP4B
NM_003866
0.37942
0.16077
0.16399
0.04502
0.18650
0.06431


EID1
NM_014335
0.08360
0.11576
0.17685
0.11897
0.34727
0.15756


CDH19
NM_021153
0.05788
0.24759
0.10932
0.22186
0.12219
0.24116


COX6B2
NM_144613
0.12540
0.01286
0.34084
0.05788
0.42122
0.04180


SS18L1
NM_198935
0.29260
0.13183
0.13183
0.11897
0.13826
0.18650


CDKN2B
NM_004936
0.14791
0.24759
0.15113
0.13826
0.22186
0.09325


ECHDC3
NM_024693
0.36656
0.08682
0.23151
0.06431
0.18971
0.06109


RIOK2
NM_018343
0.38907
0.15434
0.10611
0.06431
0.14791
0.13826


IGFBP4
NM_001552
0.27653
0.07395
0.08682
0.18971
0.09325
0.28296


TAF7L
NM_024885
0.24437
0.17042
0.18971
0.11897
0.23151
0.04823


KRT83
NM_002282
0.27653
0.37299
0.08039
0.09325
0.07074
0.10932


HRH1
NM_001098212
0.44695
0.07717
0.13183
0.12862
0.06109
0.15756


PIN4
NM_001170747
0.41801
0.01286
0.19614
0.03537
0.28939
0.05145


CHRD
NM_003741
0.14791
0.19293
0.20900
0.15434
0.18650
0.11254


PABPN1
NM_004643
0.18971
0.07717
0.17685
0.17685
0.21865
0.16399


TSSK3
NM_052841
0.04180
0.00322
0.45981
0.01608
0.43087
0.05466


OAF
NM_178507
0.04823
0.34405
0.09325
0.27974
0.05466
0.18650


SPINK8
NM_001080525
0.28617
0.09325
0.19614
0.15756
0.09646
0.17685


CAPN1
NM_005186
0.12862
0.05145
0.29582
0.17685
0.24437
0.10932


HIGD1B
NM_016438
0.02572
0.00643
0.29582
0.00965
0.65916
0.00965


TM7SF3
NM_016551
0.37621
0.20257
0.17042
0.02894
0.19293
0.03537


SYNCRIP
NM_006372
0.03859
0.16077
0.13505
0.23473
0.14791
0.28939


OR4S2
NM_001004059
0.03859
0.13183
0.01286
0.38907
0.01608
0.42122


SLC2A8
NM_014580
0.28617
0.32154
0.22186
0.00965
0.16077
0.00965


MAGEB17
NM_001277307
0.13183
0.13183
0.09646
0.20579
0.28296
0.16077


PLA2G7
NM_001168357
0.37299
0.24759
0.08039
0.06752
0.04823
0.19293


PLK4
NM_001190799
0.02572
0.13505
0.03859
0.35048
0.09646
0.36334


HAUS6
NM_001270890
0.12540
0.21543
0.17685
0.11897
0.23794
0.13505


PEX3
NM_003630
0.15756
0.42122
0.15756
0.13505
0.06109
0.07717


PDXDC1
NM_001285448
0.00965
0.30547
0.04823
0.17042
0.16077
0.31833


NIPA1
NM_001142275
0.07074
0.41801
0.03859
0.22186
0.05466
0.20900


NFATC3
NM_173165
0.07074
0.30547
0.09325
0.24437
0.04823
0.25080


CAPN3
NM_173088
0.19936
0.06431
0.07395
0.25402
0.06109
0.36013


ZNF385B
NM_001282725
0.03859
0.22508
0.19936
0.05466
0.43408
0.06431


ANAPC1
NM_022662
0.29260
0.13183
0.19614
0.11254
0.16077
0.12219


AKAP13
NM_001270546
0.29260
0.09646
0.04180
0.26367
0.03537
0.28617


C17orf67
NM_001085430
0.05145
0.16399
0.13183
0.25402
0.19293
0.22508


PHTF2
NM_001127358
0.04502
0.12219
0.15756
0.17685
0.24116
0.27653


SETDB2
NM_001160308
0.10289
0.33441
0.00322
0.38907
0.00322
0.18650


NBL1
NM_001278166
0.07717
0.30547
0.21543
0.06752
0.31833
0.03537


C6orf15
NM_014070
0.00000
0.53698
0.04180
0.22186
0.09646
0.12219


PLCB2
NM_001284297
0.02572
0.33441
0.18006
0.16720
0.17363
0.13826


CDK5RAP1
NM_016082
0.41801
0.13826
0.22186
0.03537
0.13826
0.06752


FBXO6
NM_018438
0.29260
0.30547
0.17042
0.05145
0.14791
0.05466


HIST1H1D
NM_005320
0.46624
0.16077
0.18650
0.02894
0.12219
0.05788


FAM124B
NM_024785
0.43730
0.07395
0.18971
0.06752
0.14148
0.11254


KRR1
NM_007043
0.15434
0.28617
0.01286
0.28939
0.01929
0.26045


ZNF93
NM_031218
0.22186
0.13826
0.22186
0.08682
0.22508
0.12862


ABHD13
NM_032859
0.08360
0.30547
0.13505
0.16399
0.18650
0.14791


DZIP1L
NM_173543
0.69132
0.03859
0.14791
0.03537
0.06109
0.04823


HCRTR2
NM_001526
0.10611
0.00322
0.29582
0.05788
0.48553
0.07395


CUTC
NM_015960
0.12540
0.22508
0.09325
0.25402
0.09325
0.23473


TRIM48
NM_024114
0.54984
0.07717
0.19614
0.02894
0.15756
0.01608


FBXO36
NM_174899
0.44051
0.16399
0.22830
0.06431
0.09003
0.03859


PIWIL2
NM_001135721
0.37621
0.19614
0.03859
0.17363
0.00000
0.24116


AKR1C1
NM_001353
0.06431
0.06431
0.15756
0.12862
0.39550
0.21543


TCP10L
NM_144659
0.22186
0.22508
0.28939
0.03215
0.24437
0.01286


HNRNPL
NM_001533
0.13505
0.36977
0.17685
0.07395
0.11576
0.15434


C2orf42
NM_017880
0.34084
0.13826
0.15113
0.13826
0.09968
0.15756


TMEM14B
NM_001286489
0.43730
0.16399
0.19293
0.03215
0.18971
0.01286


TET2
NM_017628
0.07074
0.32154
0.12540
0.20257
0.12219
0.18650


ZNF233
NM_001207005
0.16399
0.02251
0.08039
0.31190
0.07074
0.37942


ARAP2
NM_015230
0.12219
0.14469
0.07395
0.26688
0.06752
0.35370


CCDC122
NM_144974
0.19614
0.14148
0.20900
0.07395
0.29904
0.10932


REC8
NM_001048205
0.11576
0.32476
0.00322
0.18006
0.01286
0.39550


TULP2
NM_003323
0.01929
0.23151
0.00322
0.35370
0.00000
0.42444


CD83
NM_004233
0.00965
0.49196
0.03859
0.20257
0.09646
0.19293


TAF3
NM_031923
0.12862
0.11897
0.19936
0.15756
0.28296
0.14791


TGFB1I1
NM_001042454
0.04502
0.07717
0.12219
0.11254
0.49839
0.18006


DMXL1
NM_005509
0.25080
0.16077
0.19293
0.06431
0.24437
0.12219


ART5
NM_001079536
0.04823
0.41801
0.10611
0.18650
0.07395
0.20257


URI1
NM_001252641
0.09003
0.30547
0.13505
0.14791
0.19614
0.16077


AHCYL2
NM_001130722
0.37621
0.00643
0.29582
0.05788
0.22508
0.07395


HIST1H3A
NM_003529
0.01929
0.03215
0.00322
0.35370
0.06431
0.56270


KREMEN1
NM_032045
0.39871
0.10289
0.22186
0.03537
0.25402
0.02251


RB1CC1
NM_014781
0.07074
0.05466
0.23473
0.26688
0.16077
0.25080


UBA5
NM_024818
0.00000
0.24759
0.00643
0.26045
0.03537
0.48875


FAM65C
NM_080829
0.01286
0.35691
0.10611
0.19936
0.15113
0.21222


ATP5A1
NM_001001937
0.28617
0.16077
0.18328
0.12862
0.20900
0.07395


UHRF1
NM_001290050
0.57235
0.01286
0.12219
0.07395
0.13183
0.12862


CPNE4
NM_153429
0.39228
0.03859
0.31833
0.03537
0.24116
0.01608


RASSF3
NM_178169
0.05466
0.20257
0.27010
0.01608
0.47267
0.02572


PARP12
NM_022750
0.07074
0.57556
0.03859
0.15756
0.05145
0.14791


CCT4
NM_001256721
0.17685
0.19293
0.16399
0.04502
0.28296
0.18006


LMNA
NM_001257374
0.00000
0.14148
0.00000
0.42122
0.00000
0.47910


RPN1
NM_002950
0.17363
0.22508
0.09325
0.15756
0.14791
0.24437


ZNF718
NM_001039127
0.23151
0.09003
0.12862
0.18006
0.21865
0.19293


PLP1
NM_001128834
0.06431
0.21222
0.09646
0.30225
0.07717
0.28939


MED23
NM_001270521
0.29260
0.05466
0.32154
0.01608
0.33441
0.02572


PSMA5
NM_001199774
0.17685
0.11576
0.28617
0.04502
0.38264
0.03859


HCFC1R1
NM_001288668
0.06431
0.24437
0.10611
0.21543
0.05466
0.36013


RNF31
NM_017999
0.10289
0.16077
0.18971
0.15756
0.21543
0.21865


NTRK2
NM_001018064
0.02572
0.15434
0.13505
0.27653
0.17363
0.27974


ZIC1
NM_003412
0.06431
0.47910
0.08039
0.17363
0.06109
0.18650


MME
NM_007287
0.01286
0.22508
0.18971
0.17685
0.25402
0.18650


IFIT3
NM_001289759
0.46945
0.17042
0.11897
0.09646
0.10289
0.09003


ORC4
NM_002552
0.04180
0.35691
0.18971
0.16720
0.21222
0.08039


DMD
NM_004006
0.05466
0.20257
0.08039
0.32797
0.03537
0.34727


KRI1
NM_023008
0.10289
0.17042
0.20900
0.17685
0.24437
0.14469


ZNF813
NM_001004301
0.18971
0.01286
0.33119
0.03537
0.44051
0.03859


HOXA10
NM_018951
0.10289
0.14148
0.26688
0.04823
0.41801
0.07074


SEH1L
NM_031216
0.53055
0.02894
0.19293
0.00965
0.26367
0.02251


COMMD9
NM_014186
0.20579
0.33441
0.16399
0.04502
0.21865
0.08360


GLYATL1
NM_001220494
0.24437
0.07717
0.19614
0.10289
0.34727
0.08360


RBBP9
NM_006606
0.38264
0.00322
0.19293
0.03537
0.34727
0.09003


AXIN1
NM_003502
0.10289
0.02894
0.02251
0.36977
0.05145
0.47588


OBSL1
NM_015311
0.05788
0.51125
0.00000
0.23151
0.00000
0.25080


HACE1
NM_020771
0.14469
0.00322
0.44695
0.00965
0.43730
0.01286


MAB21L2
NM_006439
0.02251
0.36977
0.00322
0.26367
0.00322
0.39228


SARDH
NM_007101
0.07717
0.48875
0.09646
0.17042
0.06752
0.15434


HTR2B
NM_000867
0.10289
0.24437
0.10611
0.25723
0.09968
0.24437


PLS1
NM_002670
0.03859
0.29904
0.11897
0.23473
0.10289
0.26045


PCP4
NM_006198
0.06431
0.17363
0.11897
0.29582
0.15113
0.25080


LRP4
NM_002334
0.15434
0.16399
0.19614
0.17363
0.26367
0.10611


ZNF432
NM_014650
0.06431
0.48232
0.17685
0.07395
0.20900
0.05145


FAM114A2
NM_018691
0.05788
0.28617
0.00322
0.36656
0.05145
0.29260


ARMC7
NM_024585
0.08360
0.09646
0.12540
0.18650
0.35370
0.21222


MFN1
NM_033540
0.07074
0.04502
0.18971
0.20257
0.28939
0.26045


C12orf74
NM_001178097
0.17363
0.02251
0.40193
0.02894
0.41801
0.01286


PTCH1
NM_000264
0.10932
0.07717
0.18006
0.17042
0.40193
0.12219


PELI1
NM_020651
0.25080
0.09003
0.20579
0.16720
0.20900
0.13826


RPS10
NM_001203245
0.08682
0.55949
0.01286
0.23151
0.01929
0.15113


ISYNA1
NM_016368
0.12540
0.20579
0.18971
0.17042
0.24437
0.12862


QRSL1
NM_018292
0.34084
0.03215
0.31190
0.01608
0.34727
0.01608


PNPLA1
NM_001145717
0.12862
0.33441
0.09646
0.17042
0.15756
0.17685


CDC42SE2
NM_001038702
0.08360
0.08039
0.24116
0.10611
0.34084
0.21222


FER1L6
NM_001039112
0.02894
0.42122
0.00322
0.27974
0.02894
0.30225


BSG
NM_198589
0.00000
0.23151
0.00000
0.38907
0.00000
0.44373


KIF21B
NM_001252100
0.27653
0.13505
0.11254
0.13826
0.14791
0.25402


RNF19A
NM_183419
0.13505
0.21543
0.10611
0.23151
0.06431
0.31190


ZSWIM7
NM_001042698
0.16720
0.07717
0.19614
0.07717
0.43087
0.11897


KIAA0020
NM_014878
0.29582
0.13183
0.13183
0.20257
0.10289
0.20257


BCL2A1
NM_001114735
0.18971
0.03215
0.17685
0.16399
0.15113
0.35370


RBMX
NM_001164803
0.00965
0.14148
0.12540
0.29904
0.12540
0.36656


ARHGEF26
NM_001251963
0.38585
0.02894
0.35691
0.02894
0.25402
0.01286


MLLT10
NM_004641
0.27653
0.07717
0.15113
0.13505
0.14791
0.27974


AGAP11
NM_133447
0.12540
0.29260
0.20900
0.18971
0.10289
0.14791


ZNF260
NM_001166037
0.42444
0.16720
0.09325
0.13505
0.09003
0.16077


SPPL2C
NM_175882
0.18650
0.05145
0.27010
0.05145
0.44051
0.07074


COL8A1
NM_001850
0.08360
0.41801
0.01286
0.29260
0.01286
0.25080


RCAN1
NM_001285392
0.15434
0.17042
0.17685
0.22186
0.16077
0.18650


TNFRSF10A
NM_003844
0.25723
0.13183
0.13505
0.12862
0.23151
0.18650


ERCC5
NM_000123
0.05145
0.17042
0.13183
0.27974
0.18971
0.25080


MTFR1
NM_001145839
0.29582
0.07717
0.03859
0.28296
0.01608
0.36334


MSL2
NM_001145417
0.11254
0.30547
0.19614
0.03537
0.23794
0.18650


PLAC1
NM_021796
0.39228
0.03859
0.31511
0.02572
0.28939
0.01286


MS4A6E
NM_139249
0.33441
0.22508
0.20257
0.06431
0.16077
0.08682


ATP8B3
NM_138813
0.25080
0.53055
0.03859
0.07717
0.02894
0.14791


LSP1
NM_001013253
0.44373
0.00322
0.32154
0.00965
0.28617
0.01286


TNNT1
NM_003283
0.71061
0.01286
0.19293
0.00965
0.13826
0.01286


C11orf45
NM_145013
0.23794
0.07395
0.19936
0.15756
0.24437
0.16399


CRIM1
NM_016441
0.29582
0.04180
0.18006
0.15756
0.16720
0.23473


SLC35G6
NM_001102614
0.13826
0.22508
0.09003
0.28296
0.04823
0.29260


TRMT12
NM_017956
0.18650
0.29260
0.22830
0.05788
0.22508
0.08682


ADO
NM_032804
0.02572
0.14791
0.07395
0.45338
0.08682
0.28939


SUPT3H
NM_001261823
0.27653
0.11576
0.16077
0.17042
0.20900
0.14791


POU6F1
NM_002702
0.03537
0.05145
0.15434
0.27653
0.28296
0.27974


SLC29A1
NM_001078176
0.02894
0.16077
0.03859
0.42444
0.05466
0.37299


C1QTNF7
NM_001135170
0.04180
0.34405
0.10611
0.22186
0.07717
0.28939


ST3GAL4
NM_006278
0.12540
0.03215
0.28617
0.04823
0.42122
0.17042


OSTF1
NM_012383
0.32476
0.05145
0.03859
0.27974
0.06431
0.32476


ZNF215
NM_013250
0.06431
0.14791
0.01286
0.33762
0.16077
0.36013


DCAF15
NM_138353
0.29582
0.16077
0.20579
0.07074
0.30225
0.04823


ZFP41
NM_173832
0.08360
0.13826
0.24437
0.18650
0.24437
0.18650


GRHL3
NM_021180
0.02894
0.23151
0.03859
0.29260
0.07074
0.42122


MMS19
NM_022362
0.37299
0.05788
0.28939
0.04502
0.24437
0.07395


SMAD7
NM_001190822
0.03859
0.39871
0.08039
0.18650
0.09325
0.28939


BORA
NM_001286746
0.10289
0.23473
0.20257
0.13826
0.24437
0.16399


C6orf1
NM_001287397
0.27653
0.13183
0.19936
0.13505
0.25402
0.09003


PSME2
NM_002818
0.12540
0.32476
0.15113
0.20257
0.07074
0.21222


CCL17
NM_002987
0.62701
0.20257
0.10611
0.02894
0.05466
0.06752


SYT17
NM_016524
0.00000
0.57878
0.00000
0.25723
0.00000
0.25080


FBXL19
NM_001282351
0.44695
0.13183
0.20579
0.06431
0.17363
0.06431


C2CD4C
NM_001136263
0.33762
0.09003
0.29904
0.08360
0.11576
0.16399


ALDOC
NM_005165
0.04823
0.31511
0.14469
0.18006
0.16720
0.23473


SDF2L1
NM_022044
0.15434
0.23151
0.22830
0.07395
0.23794
0.16399


SMIM11
NM_058182
0.27653
0.24759
0.04180
0.20257
0.09968
0.22186


MRAS
NM_001085049
0.13505
0.14791
0.31190
0.03537
0.41158
0.04823


ZNF469
NM_001127464
0.06431
0.16399
0.15113
0.17685
0.38585
0.14791


KIAA0391
NM_001256678
0.14469
0.06431
0.27653
0.18328
0.28296
0.13826


HSFX2
NM_001164415
0.28617
0.17685
0.20900
0.11897
0.17363
0.12862


PSMA5
NM_001199773
0.00000
0.42765
0.00000
0.53376
0.01286
0.11897


VNN3
NM_001291702
0.03859
0.54662
0.03859
0.24116
0.06431
0.16399


WDR47
NM_014969
0.27974
0.00965
0.26688
0.07395
0.35370
0.10932


SOD1
NM_000454
0.03537
0.16077
0.19614
0.23794
0.18971
0.27331


TADA2A
NM_001166105
0.15434
0.02894
0.22830
0.23473
0.25402
0.19293


SMARCA2
NM_001289396
0.08360
0.60772
0.03859
0.24437
0.01929
0.09968


FOXP1
NM_001012505
0.32797
0.17042
0.22830
0.13826
0.13826
0.09003


CAPG
NM_001747
0.03537
0.02894
0.04180
0.44373
0.04823
0.49518


NAT8
NM_003960
0.02572
0.06431
0.03859
0.43730
0.04180
0.48553


TRIM52
NM_032765
0.00965
0.11576
0.17363
0.18650
0.25080
0.35691


SHANK3
NM_033517
0.02251
0.49196
0.08039
0.25723
0.05466
0.18650


ZNF92
NM_152626
0.10289
0.22508
0.04180
0.33762
0.01929
0.36656


CELF6
NM_001172684
0.08682
0.35691
0.17042
0.18006
0.18650
0.11576


MRPS30
NM_016640
0.04180
0.32476
0.15113
0.18650
0.30547
0.08682


VAMP7
NM_005638
0.15113
0.22186
0.19936
0.17685
0.16077
0.18650


SLC8A2
NM_015063
0.04180
0.16720
0.17685
0.25402
0.20257
0.25402


C10orf25
NM_001039380
0.76206
0.17042
0.08039
0.04502
0.01608
0.02572


EHHADH
NM_001966
0.10289
0.24759
0.13505
0.26688
0.16077
0.18650


TIAF1
NM_004740
0.24437
0.06109
0.34084
0.03215
0.39550
0.02572


DOCK10
NM_014689
0.12862
0.26367
0.29582
0.05788
0.24437
0.10932


NTPCR
NM_032324
0.10289
0.34405
0.09325
0.21865
0.19293
0.14791


ABCC12
NM_033226
0.44373
0.00643
0.34405
0.03537
0.22508
0.04502


SIRT1
NM_001142498
0.25402
0.03215
0.20257
0.03537
0.47910
0.09968


ZDHHC8
NM_013373
0.03537
0.45016
0.16077
0.17685
0.16720
0.11254


PUM2
NM_015317
0.12540
0.22186
0.15756
0.10932
0.23473
0.25402


DCDC2B
NM_001099434
0.11576
0.05145
0.28939
0.09646
0.44051
0.10932


RIOK1
NM_031480
0.13826
0.09003
0.27331
0.12862
0.29904
0.17363


IFI44L
NM_006820
0.14469
0.24759
0.10611
0.19614
0.20900
0.20257


TP53AIP1
NM_001195194
0.43408
0.11254
0.12540
0.20257
0.06431
0.16720


TONSL
NM_013432
0.44051
0.15756
0.18971
0.00965
0.29582
0.01286


MAEL
NM_001286377
0.38907
0.02251
0.28617
0.03537
0.31511
0.05788


HCRTR1
NM_001525
0.02894
0.14148
0.00000
0.40193
0.02894
0.50482


SLC7A10
NM_019849
0.15434
0.07717
0.18971
0.18650
0.19614
0.30225


C8orf33
NM_023080
0.01929
0.21543
0.10611
0.34727
0.08039
0.33762


RGS12
NM_198227
0.37942
0.14148
0.19614
0.13826
0.14148
0.10932


SPTB
NM_001024858
0.03537
0.44373
0.02572
0.29904
0.04180
0.26045


LYL1
NM_005583
0.00000
0.46302
0.10611
0.24116
0.15756
0.14148


CPA1
NM_001868
0.15756
0.19614
0.19614
0.13826
0.30225
0.11897


C12orf4
NM_020374
0.41801
0.00322
0.35370
0.02572
0.28296
0.02572


NFIX
NM_001271043
0.32476
0.07717
0.24759
0.04823
0.36013
0.05466









Pharmaceutical Formulations and Administration

Also described herein are pharmaceutical formulations that can contain an amount, effective amount, and/or least effective amount, and/or therapeutically effective amount of one or more of the small molecules, RNAi therapeutics, vectors, recombinant polypeptides, gene editing systems, conjugated-antibodies, or engineered cells as described above, or a combination thereof (which are also referred to as the primary active agent or ingredient elsewhere herein) described in greater detail elsewhere herein a pharmaceutically acceptable carrier or excipient. As used herein, “pharmaceutical formulation” refers to the combination of an active agent, compound, or ingredient with a pharmaceutically acceptable carrier or excipient, making the composition suitable for diagnostic, therapeutic, or preventive use in vitro, in vivo, or ex vivo. As used herein, “pharmaceutically acceptable carrier or excipient” refers to a carrier or excipient that is useful in preparing a pharmaceutical formulation that is generally safe, non-toxic, and is neither biologically or otherwise undesirable, and includes a carrier or excipient that is acceptable for veterinary use as well as human pharmaceutical use. A “pharmaceutically acceptable carrier or excipient” as used in the specification and claims includes both one and more than one such carrier or excipient. When present, the compound can optionally be present in the pharmaceutical formulation as a pharmaceutically acceptable salt.


In some embodiments, the active ingredient is present as a pharmaceutically acceptable salt of the active ingredient. As used herein, “pharmaceutically acceptable salt” refers to any acid or base addition salt whose counter-ions are non-toxic to the subject to which they are administered in pharmaceutical doses of the salts. Suitable salts include, hydrobromide, iodide, nitrate, bisulfate, phosphate, isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, camphorsulfonate, napthalenesulfonate, propionate, malonate, mandelate, malate, phthalate, and pamoate.


The pharmaceutical formulations described herein can be administered to a subject in need thereof via any suitable method or route to a subject in need thereof. Suitable administration routes can include, but are not limited to auricular (otic), buccal, conjunctival, cutaneous, dental, electro-osmosis, endocervical, endosinusial, endotracheal, enteral, epidural, extra-amniotic, extracorporeal, hemodialysis, infiltration, interstitial, intra-abdominal, intra-amniotic, intra-arterial, intra-articular, intrabiliary, intrabronchial, intrabursal, intracardiac, intracartilaginous, intracaudal, intracavernous, intracavitary, intracerebral, intracisternal, intracorneal, intracoronal (dental), intracoronary, intracorporus cavernosum, intradermal, intradiscal, intraductal, intraduodenal, intradural, intraepidermal, intraesophageal, intragastric, intragingival, intraileal, intralesional, intraluminal, intralymphatic, intramedullary, intrameningeal, intramuscular, intraocular, intraovarian, intrapericardial, intraperitoneal, intrapleural, intraprostatic, intrapulmonary, intrasinal, intraspinal, intrasynovial, intratendinous, intratesticular, intrathecal, intrathoracic, intratubular, intratumor, intratympanic, intrauterine, intravascular, intravenous, intravenous bolus, intravenous drip, intraventricular, intravesical, intravitreal, iontophoresis, irrigation, laryngeal, nasal, nasogastric, occlusive dressing technique, ophthalmic, oral, oropharyngeal, other, parenteral, percutaneous, periarticular, peridural, perineural, periodontal, rectal, respiratory (inhalation), retrobulbar, soft tissue, subarachnoid, subconjunctival, subcutaneous, sublingual, submucosal, topical, transdermal, transmucosal, transplacental, transtracheal, transtympanic, ureteral, urethral, and/or vaginal administration, and/or any combination of the above administration routes, which typically depends on the disease to be treated and/or the active ingredient(s).


Where appropriate, compounds, molecules, compositions, vectors, vector systems, cells, or a combination thereof described in greater detail elsewhere herein can be provided to a subject in need thereof as an ingredient, such as an active ingredient or agent, in a pharmaceutical formulation. As such, also described are pharmaceutical formulations containing one or more of the compounds and salts thereof, or pharmaceutically acceptable salts thereof described herein. Suitable salts include, hydrobromide, iodide, nitrate, bisulfate, phosphate, isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, camphorsulfonate, napthalenesulfonate, propionate, malonate, mandelate, malate, phthalate, and pamoate.


In some embodiments, the subject in need thereof has or is suspected of having a Type-2 Diabetes or a symptom thereof. In some embodiments, the subject in need thereof has or is suspected of having, a metabolic disease or disorder, insulin resistance, or glucose intolerance, or a combination thereof. As used herein, “agent” refers to any substance, compound, molecule, and the like, which can be biologically active or otherwise can induce a biological and/or physiological effect on a subject to which it is administered to. As used herein, “active agent” or “active ingredient” refers to a substance, compound, or molecule, which is biologically active or otherwise, induces a biological or physiological effect on a subject to which it is administered to. In other words, “active agent” or “active ingredient” refers to a component or components of a composition to which the whole or part of the effect of the composition is attributed. An agent can be a primary active agent, or in other words, the component(s) of a composition to which the whole or part of the effect of the composition is attributed. An agent can be a secondary agent, or in other words, the component(s) of a composition to which an additional part and/or other effect of the composition is attributed.


Pharmaceutically Acceptable Carriers and Secondary Ingredients and Agents

The pharmaceutical formulation can include a pharmaceutically acceptable carrier. Suitable pharmaceutically acceptable carriers include, but are not limited to water, salt solutions, alcohols, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelatin, carbohydrates such as lactose, amylose or starch, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid esters, hydroxy methylcellulose, and polyvinyl pyrrolidone, which do not deleteriously react with the active composition.


The pharmaceutical formulations can be sterilized, and if desired, mixed with agents, such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances, and the like which do not deleteriously react with the active compound.


Effective Amounts

In some embodiments, the amount of the primary active agent and/or optional secondary agent can be an effective amount, least effective amount, and/or therapeutically effective amount. As used herein, “effective amount” refers to the amount of the primary and/or optional secondary agent included in the pharmaceutical formulation that achieve one or more therapeutic effects or desired effect. As used herein, “least effective” amount refers to the lowest amount of the primary and/or optional secondary agent that achieves the one or more therapeutic or other desired effects. As used herein, “therapeutically effective amount” refers to the amount of the primary and/or optional secondary agent included in the pharmaceutical formulation that achieves one or more therapeutic effects.


The effective amount, least effective amount, and/or therapeutically effective amount of the primary and optional secondary active agent described elsewhere herein contained in the pharmaceutical formulation can range from about 0 to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, 1000 pg, ng, μg, mg, or g or be any numerical value with any of these ranges.


In some embodiments, the effective amount, least effective amount, and/or therapeutically effective amount can be an effective concentration, least effective concentration, and/or therapeutically effective concentration, which can each range from about 0 to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, 1000 pM, nM, μM, mM, or M or be any numerical value with any of these ranges.


In other embodiments, the effective amount, least effective amount, and/or therapeutically effective amount of the primary and optional secondary active agent can range from about 0 to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, 1000 IU or be any numerical value with any of these ranges.


In some embodiments, the primary and/or the optional secondary active agent present in the pharmaceutical formulation can range from about 0 to 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.9, to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9% w/w, v/v, or w/v of the pharmaceutical formulation.


In some embodiments where a cell population is present in the pharmaceutical formulation (e.g., as a primary and/or or secondary active agent), the effective amount of cells can range from about 2 cells to 1×101/mL, 1×1020/mL or more, such as about 1×101/mL, 1×102/mL, 1×103/mL, 1×104/mL, 1×105/mL, 1×106/mL, 1×107/mL, 1×108/mL, 1×109/mL, 1×1010/mL, 1×1011/mL, 1×1012/mL, 1×1013/mL, 1×1014/mL, 1×1015/mL, 1×1016/mL, 1×1017/mL, 1×1018/mL, 1×1019/mL, to/or about 1×1020/mL.


In some embodiments, the amount or effective amount, particularly where an infective particle is being delivered (e.g. a virus particle having the primary or secondary agent as a cargo), the effective amount of virus particles can be expressed as a titer (plaque forming units per unit of volume) or as a MOI (multiplicity of infection). In some embodiments, the effective amount can be 1×101 particles per pL, nL, μL, mL, or L to 1×1020/particles per pL, nL, μL, mL, or L or more, such as about 1×101, 1×102, 1×103, 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, 1×1016, 1×1017, 1×1018, 1×1019, to/or about 1×1020 particles per pL, nL, μL, mL, or L. In some embodiments, the effective titer can be about 1×101 transforming units per pL, nL, μL, mL, or L to 1×1020/transforming units per pL, nL, μL, mL, or L or more, such as about 1×101, 1×102, 1×103, 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, 1×1016, 1×1017, 1×1018, 1×1019, to/or about 1×1020 transforming units per pL, nL, μL, mL, or L. In some embodiments, the MOI of the pharmaceutical formulation can range from about 0.1 to 10 or more, such as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10 or more.


In some embodiments, the amount or effective amount of the one or more of the active agent(s) described herein contained in the pharmaceutical formulation can range from about 1 μg/kg to about 10 mg/kg based upon the bodyweight of the subject in need thereof or average bodyweight of the specific patient population to which the pharmaceutical formulation can be administered.


In embodiments where there is a secondary agent contained in the pharmaceutical formulation, the effective amount of the secondary active agent will vary depending on the secondary agent, the primary agent, the administration route, subject age, disease, stage of disease, among other things, which will be one of ordinary skill in the art.


When optionally present in the pharmaceutical formulation, the secondary active agent can be included in the pharmaceutical formulation or can exist as a stand-alone compound or pharmaceutical formulation that can be administered contemporaneously or sequentially with the compound, derivative thereof, or pharmaceutical formulation thereof.


In some embodiments, the effective amount of the secondary active agent can range from about 0 to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9% w/w, v/v, or w/v of the total secondary active agent in the pharmaceutical formulation. In additional embodiments, the effective amount of the secondary active agent can range from about 0 to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9% w/w, v/v, or w/v of the total pharmaceutical formulation.


Dosage Forms

In some embodiments, the pharmaceutical formulations described herein can be provided in a dosage form. The dosage form can be administered to a subject in need thereof. The dosage form can be effective generate specific concentration, such as an effective concentration, at a given site in the subject in need thereof. As used herein, “dose,” “unit dose,” or “dosage” can refer to physically discrete units suitable for use in a subject, each unit containing a predetermined quantity of the primary active agent, and optionally present secondary active ingredient, and/or a pharmaceutical formulation thereof calculated to produce the desired response or responses in association with its administration. In some embodiments, the given site is proximal to the administration site. In some embodiments, the given site is distal to the administration site. In some cases, the dosage form contains a greater amount of one or more of the active ingredients present in the pharmaceutical formulation than the final intended amount needed to reach a specific region or location within the subject to account for loss of the active components such as via first and second pass metabolism.


The dosage forms can be adapted for administration by any appropriate route. Appropriate routes include, but are not limited to, oral (including buccal or sublingual), rectal, intraocular, inhaled, intranasal, topical (including buccal, sublingual, or transdermal), vaginal, parenteral, subcutaneous, intramuscular, intravenous, internasal, and intradermal. Other appropriate routes are described elsewhere herein. Such formulations can be prepared by any method known in the art.


Dosage forms adapted for oral administration can discrete dosage units such as capsules, pellets or tablets, powders or granules, solutions, or suspensions in aqueous or non-aqueous liquids; edible foams or whips, or in oil-in-water liquid emulsions or water-in-oil liquid emulsions. In some embodiments, the pharmaceutical formulations adapted for oral administration also include one or more agents which flavor, preserve, color, or help disperse the pharmaceutical formulation. Dosage forms prepared for oral administration can also be in the form of a liquid solution that can be delivered as a foam, spray, or liquid solution. The oral dosage form can be administered to a subject in need thereof. Where appropriate, the dosage forms described herein can be microencapsulated.


The dosage form can also be prepared to prolong or sustain the release of any ingredient. In some embodiments, compounds, molecules, compositions, vectors, vector systems, cells, or a combination thereof described herein can be the ingredient whose release is delayed. In some embodiments the primary active agent is the ingredient whose release is delayed. In some embodiments, an optional secondary agent can be the ingredient whose release is delayed. Suitable methods for delaying the release of an ingredient include, but are not limited to, coating or embedding the ingredients in material in polymers, wax, gels, and the like. Delayed release dosage formulations can be prepared as described in standard references such as “Pharmaceutical dosage form tablets,” eds. Liberman et. al. (New York, Marcel Dekker, Inc., 1989), “Remington—The science and practice of pharmacy”, 20th ed., Lippincott Williams & Wlkins, Baltimore, M D, 2000, and “Pharmaceutical dosage forms and drug delivery systems”, 6th Edition, Ansel et al., (Media, PA: Wlliams and Wlkins, 1995). These references provide information on excipients, materials, equipment, and processes for preparing tablets and capsules and delayed release dosage forms of tablets and pellets, capsules, and granules. The delayed release can be anywhere from about an hour to about 3 months or more.


Examples of suitable coating materials include, but are not limited to, cellulose polymers such as cellulose acetate phthalate, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxypropyl methylcellulose phthalate, and hydroxypropyl methylcellulose acetate succinate; polyvinyl acetate phthalate, acrylic acid polymers and copolymers, and methacrylic resins that are commercially available under the trade name EUDRAGIT® (Roth Pharma, Westerstadt, Germany), zein, shellac, and polysaccharides.


Coatings may be formed with a different ratio of water-soluble polymer, water insoluble polymers, and/or pH dependent polymers, with or without water insoluble/water soluble non-polymeric excipient, to produce the desired release profile. The coating is either performed on the dosage form (matrix or simple) which includes, but is not limited to, tablets (compressed with or without coated beads), capsules (with or without coated beads), beads, particle compositions, “ingredient as is” formulated as, but not limited to, suspension form or as a sprinkle dosage form.


Where appropriate, the dosage forms described herein can be a liposome. In these embodiments, primary active ingredient(s), and/or optional secondary active ingredient(s), and/or pharmaceutically acceptable salt thereof where appropriate are incorporated into a liposome. In embodiments where the dosage form is a liposome, the pharmaceutical formulation is thus a liposomal formulation. The liposomal formulation can be administered to a subject in need thereof.


Dosage forms adapted for topical administration can be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols, or oils. In some embodiments for treatments of the eye or other external tissues, for example the mouth or the skin, the pharmaceutical formulations are applied as a topical ointment or cream. When formulated in an ointment, a primary active ingredient, optional secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate can be formulated with a paraffinic or water-miscible ointment base. In other embodiments, the primary and/or secondary active ingredient can be formulated in a cream with an oil-in-water cream base or a water-in-oil base. Dosage forms adapted for topical administration in the mouth include lozenges, pastilles, and mouth washes.


Dosage forms adapted for nasal or inhalation administration include aerosols, solutions, suspension drops, gels, or dry powders. In some embodiments, a primary active ingredient, optional secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate can be in a dosage form adapted for inhalation is in a particle-size-reduced form that is obtained or obtainable by micronization. In some embodiments, the particle size of the size reduced (e.g. micronized) compound or salt or solvate thereof, is defined by a D50 value of about 0.5 to about 10 microns as measured by an appropriate method known in the art. Dosage forms adapted for administration by inhalation also include particle dusts or mists. Suitable dosage forms wherein the carrier or excipient is a liquid for administration as a nasal spray or drops include aqueous or oil solutions/suspensions of an active (primary and/or secondary) ingredient, which may be generated by various types of metered dose pressurized aerosols, nebulizers, or insufflators. The nasal/inhalation formulations can be administered to a subject in need thereof.


In some embodiments, the dosage forms are aerosol formulations suitable for administration by inhalation. In some of these embodiments, the aerosol formulation contains a solution or fine suspension of a primary active ingredient, secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate and a pharmaceutically acceptable aqueous or non-aqueous solvent. Aerosol formulations can be presented in single or multi-dose quantities in sterile form in a sealed container. For some of these embodiments, the sealed container is a single dose or multi-dose nasal or an aerosol dispenser fitted with a metering valve (e.g. metered dose inhaler), which is intended for disposal once the contents of the container have been exhausted.


Where the aerosol dosage form is contained in an aerosol dispenser, the dispenser contains a suitable propellant under pressure, such as compressed air, carbon dioxide, or an organic propellant, including but not limited to a hydrofluorocarbon. The aerosol formulation dosage forms in other embodiments are contained in a pump-atomizer. The pressurized aerosol formulation can also contain a solution or a suspension of a primary active ingredient, optional secondary active ingredient, and/or pharmaceutically acceptable salt thereof. In further embodiments, the aerosol formulation also contains co-solvents and/or modifiers incorporated to improve, for example, the stability and/or taste and/or fine particle mass characteristics (amount and/or profile) of the formulation. Administration of the aerosol formulation can be once daily or several times daily, for example 2, 3, 4, or 8 times daily, in which 1, 2, 3 or more doses are delivered each time. The aerosol formulations can be administered to a subject in need thereof.


For some dosage forms suitable and/or adapted for inhaled administration, the pharmaceutical formulation is a dry powder inhalable-formulations. In addition to a primary active agent, optional secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate, such a dosage form can contain a powder base such as lactose, glucose, trehalose, manitol, and/or starch. In some of these embodiments, a primary active agent, secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate is in a particle-size reduced form. In further embodiments, a performance modifier, such as L-leucine or another amino acid, cellobiose octaacetate, and/or metals salts of stearic acid, such as magnesium or calcium stearate. In some embodiments, the aerosol formulations are arranged so that each metered dose of aerosol contains a predetermined amount of an active ingredient, such as the one or more of the compositions, compounds, vector(s), molecules, cells, and combinations thereof described herein.


Dosage forms adapted for vaginal administration can be presented as pessaries, tampons, creams, gels, pastes, foams, or spray formulations. Dosage forms adapted for rectal administration include suppositories or enemas. The vaginal formulations can be administered to a subject in need thereof.


Dosage forms adapted for parenteral administration and/or adapted for injection can include aqueous and/or non-aqueous sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, solutes that render the composition isotonic with the blood of the subject, and aqueous and non-aqueous sterile suspensions, which can include suspending agents and thickening agents. The dosage forms adapted for parenteral administration can be presented in a single-unit dose or multi-unit dose containers, including but not limited to sealed ampoules or vials. The doses can be lyophilized and re-suspended in a sterile carrier to reconstitute the dose prior to administration. Extemporaneous injection solutions and suspensions can be prepared in some embodiments, from sterile powders, granules, and tablets. The parenteral formulations can be administered to a subject in need thereof.


For some embodiments, the dosage form contains a predetermined amount of a primary active agent, secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate per unit dose. In an embodiment, the predetermined amount of primary active agent, secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate can be an effective amount, a least effect amount, and/or a therapeutically effective amount. In other embodiments, the predetermined amount of a primary active agent, secondary active agent, and/or pharmaceutically acceptable salt thereof where appropriate, can be an appropriate fraction of the effective amount of the active ingredient.


Co-Therapies and Combination Therapies

In some embodiments, the pharmaceutical formulation(s) described herein can be part of a combination treatment or combination therapy. The combination treatment can include the pharmaceutical formulation described herein and an additional treatment modality. The additional treatment modality can be a chemotherapeutic, a biological therapeutic, surgery, radiation, diet modulation, environmental modulation, a physical activity modulation, and combinations thereof.


Administration of the Pharmaceutical Formulations

The pharmaceutical formulations or dosage forms thereof described herein can be administered one or more times hourly, daily, monthly, or yearly (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more times hourly, daily, monthly, or yearly). In some embodiments, the pharmaceutical formulations or dosage forms thereof described herein can be administered continuously over a period of time ranging from minutes to hours to days. Devices and dosages forms are known in the art and described herein that are effective to provide continuous administration of the pharmaceutical formulations described herein. In some embodiments, the first one or a few initial amount(s) administered can be a higher dose than subsequent doses. This is typically referred to in the art as a loading dose or doses and a maintenance dose, respectively. In some embodiments, the pharmaceutical formulations can be administered such that the doses over time are tapered (increased or decreased) overtime so as to wean a subject gradually off of a pharmaceutical formulation or gradually introduce a subject to the pharmaceutical formulation.


As previously discussed, the pharmaceutical formulation can contain a predetermined amount of a primary active agent, secondary active agent, and/or pharmaceutically acceptable salt thereof where appropriate. In some of these embodiments, the predetermined amount can be an appropriate fraction of the effective amount of the active ingredient. Such unit doses may therefore be administered once or more than once a day, month, or year (e.g. 1, 2, 3, 4, 5, 6, or more times per day, month, or year). Such pharmaceutical formulations may be prepared by any of the methods well known in the art.


Where co-therapies or multiple pharmaceutical formulations are to be delivered to a subject, the different therapies or formulations can be administered sequentially or simultaneously. Sequential administration is administration where an appreciable amount of time occurs between administrations, such as more than about 15, 20, 30, 45, 60 minutes or more. The time between administrations in sequential administration can be on the order of hours, days, months, or even years, depending on the active agent present in each administration. Simultaneous administration refers to administration of two or more formulations at the same time or substantially at the same time (e.g. within seconds or just a few minutes apart), where the intent is that the formulations be administered together at the same time.


Viral Vector Formulation, Dosage, and Delivery

Compositions of the invention may be formulated for delivery to human subjects, as well as to animals for veterinary purposes (e.g. livestock (cattle, pigs, others)), and other non-human mammalian subjects. The dosage of the formulation can be measured or calculated as viral particles or as genome copies (“GC”)/viral genomes (“vg”). Any method known in the art can be used to determine the genome copy (GC) number of the viral compositions of the invention. In one example embodiment, the viral compositions can be formulated in dosage units to contain an amount of viral vectors that is in the range of about 1.0×109 GC to about 1.0×1015 GC (to treat an average subject of 70 kg in body weight), and preferably 1.0×1012 GC to 1.0×1014 GC for a human patient. Preferably, the dose of virus in the formulation is 1.0×109 GC, 5.0×109 GC, 1.0×1010 GC, 5.0×1010 GC, 1.0×1011GC, 5.0×1011 GC, 1.0×1012 GC, 5.0×1012 GC, or 1.0×1013 GC, 5.0×1013 GC, 1.0×1014 GC, 5.0×1014 GC, or 1.0×1015 GC.


The viral vectors can be formulated in a conventional manner using one or more physiologically acceptable carriers or excipients. The viral vectors may be formulated for parenteral administration by injection (e.g. by bolus injection or continuous infusion). Formulations for injection may be presented in unit dosage form (e.g. in ampoules or in multi-dose containers) with an added preservative. The viral compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing, or dispersing agents. Liquid preparations of the viral vector formulations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g. sorbitol syrup, cellulose derivatives or hydrogenated edible fats), emulsifying agents (e.g. lecithin or acacia), non-aqueous vehicles (e.g. almond oil, oily esters, ethyl alcohol or fractionated vegetable oils), and preservatives (e.g. methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts. Alternatively, the compositions may be in powder form for constitution with a suitable vehicle (e.g. sterile pyrogen-free water) before use.


Recombinant Protein Formulation, Dosage, and Delivery

In one example embodiment, virus like particles (VLPs) are used to facilitate intracellular recombinant protein therapy (see, e.g., WO2020252455A1, U.S. Ser. No. 10/577,397B2). In certain embodiments, VLPs include a Gag-COBLL1 fusion protein. The Gag-COBLL1 fusion protein may include a matrix protein, a capsid protein, and/or a nucleocapsid protein covalently linked to COBLL1. In certain embodiments, the VLPs include a membrane comprising a phospholipid bilayer with one or more human endogenous retrovirus (HERV) derived ENV/glycoprotein(s) on the external side; a HERV-derived GAG protein in the VLP core, and a COBLL1 fusion protein on the inside of the membrane, wherein COBLL1 is fused to a human-endogenous GAG or other plasma membrane recruitment domain (see, e.g., WO2020252455A1). Fusion proteins can be obtained using standard recombinant protein technology.


In one example embodiment, cell-penetrating peptides (CPPs) are used to facilitate intracellular recombinant protein therapy (see, e.g., Dinca A, Chien W-M, Chin M T. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease. International Journal of Molecular Sciences. 2016; 17(2):263). In certain embodiments, cell-penetrating peptides can be conjugated to COBLL1, for example, using standard recombinant protein technology. In certain embodiments, cell-penetrating peptides can be concurrently delivered with recombinant COBLL1.


In one example embodiment, nanocarriers are used to facilitate intracellular recombinant protein therapy (see, e.g., Lee Y W, Luther D C, Kretzmann J A, Burden A, Jeon T, Zhai S, Rotello V M. Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers. Theranostics 2019; 9(11):3280-3292). Non-limiting nanocarriers include, but are not limited to nanoparticles (e.g., silica, gold), polymers, lipid based (e.g., cationic lipid within a polymer shell, lipid-like nanoparticles).


The pharmaceutical composition of the invention may be administered locally or systemically. In a preferred embodiment, the pharmaceutical composition is administered near the tissue whose cells are to be transduced. In a particular embodiment, the pharmaceutical composition of the invention is administered locally to the subcutaneous adipose tissue, which is composed of varying amounts of the two different types of adipose tissue: white adipose tissue (WAT) that stores energy in the form of triacylglycerol (TAG) and brown adipose tissue (BAT) that dissipates energy as heat, “burning” fatty acids to maintain body temperature. In one example embodiment, the pharmaceutical composition of the invention is administered in the white adipose tissue (WAT) and/or in the brown adipose tissue (BAT) by intra-WAT or intra-BAT injection. In another preferred embodiment, the pharmaceutical composition of the invention is administered systemically.


The “adeno-associated virus” (AAV) can be formulated with a physiologically acceptable carrier for use in gene transfer and gene therapy applications. The dosage of the formulation can be measured or calculated as viral particles or as genome copies (“GC”)/viral genomes (“vg”). Any method known in the art can be used to determine the genome copy (GC) number of the viral compositions of the invention. One method for performing AAV GC number titration is as follows: purified AAV vector samples are first treated with DNase to eliminate un-encapsulated AAV genome DNA or contaminating plasmid DNA from the production process. The DNase resistant particles are then subjected to heat treatment to release the genome from the capsid. The released genomes are then quantitated by real-time PCR using primer/probe sets targeting specific region of the viral genome.


In any of the described methods the one or more vectors may be comprised in a delivery system. In any of the described methods the vectors may be delivered via liposomes, particles (e.g., nanoparticles), exosomes, microvesicles, a gene-gun. In any of the described methods viral vectors may be delivered by transduction of viral particles. The delivery systems may be administered systemically or by localized administration (e.g., direct injection). The term “systemically administered” and “systemic administration”, as used herein, means that the polynucleotides, vectors, polypeptides, or pharmaceutical compositions of the invention are administered to a subject in a non-localized manner. The systemic administration of the polynucleotides, vectors, polypeptides, or pharmaceutical compositions of the invention may reach several organs or tissues throughout the body of the subject or may reach specific organs or tissues of the subject. For example, the intravenous administration of a pharmaceutical composition of the invention may result in the transduction of more than one tissue or organ in a subject. The term “transduce” or “transduction”, as used herein, refers to the process whereby a foreign nucleotide sequence is introduced into a cell via a viral vector. The term “transfection”, as used herein, refers to the introduction of DNA into a recipient eukaryotic cell.


Recombinant protein compositions described herein may be administered systemically (e.g., intravenously) or administered locally to adipose tissue (e.g., injection). In preferred embodiments, the recombinant protein compositions are administered with an appropriate carrier to be administered to a mammal, especially a human, preferably a pharmaceutically acceptable composition. A “pharmaceutically acceptable composition” refers to a non-toxic semisolid, liquid, or aerosolized filler, diluent, encapsulating material, colloidal suspension or formulation auxiliary of any type. Preferably, this composition is suitable for injection. These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and similar solutions or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.


CRISPR-Cas Delivery

The CRISPR-Cas systems disclosed herein may be delivered using vectors comprising polynucleotides encoding the Cas polypeptide and the guide molecule. For HDR based embodiments, the donor template may also be encoded on a vector. Vectors, dosages, and adipocyte-specific configurations suitable for delivery of these components include those discussed above.


The vector(s) can include regulatory element(s), e.g., promoter(s). The vector(s) can comprise Cas encoding sequences, and/or a single, but possibly also can comprise at least 3 or 8 or 16 or 32 or 48 or 50 guide RNA(s) (e.g., sgRNAs) encoding sequences, such as 1-2, 1-3, 1-4 1-5, 3-6, 3-7, 3-8, 3-9, 3-10, 3-8, 3-16, 3-30, 3-32, 3-48, 3-50 RNA(s) (e.g., sgRNAs). In a single vector there can be a promoter for each RNA (e.g., sgRNA), advantageously when there are up to about 16 RNA(s); and, when a single vector provides for more than 16 RNA(s), one or more promoter(s) can drive expression of more than one of the RNA(s), e.g., when there are 32 RNA(s), each promoter can drive expression of two RNA(s), and when there are 48 RNA(s), each promoter can drive expression of three RNA(s). By simple arithmetic and well-established cloning protocols and the teachings in this disclosure one skilled in the art can readily practice the invention as to the RNA(s) for a suitable exemplary vector such as AAV, and a suitable promoter such as the U6 promoter. For example, the packaging limit of AAV is ˜4.7 kb. The length of a single U6-gRNA (plus restriction sites for cloning) is 361 bp. Therefore, the skilled person can readily fit about 12-16, e.g., 13 U6-gRNA cassettes in a single vector. This can be assembled by any suitable means, such as a golden gate strategy used for TALE assembly (genome-engineering.org/taleffectors/). The skilled person can also use a tandem guide strategy to increase the number of U6-gRNAs by approximately 1.5 times, e.g., to increase from 12-16, e.g., 13 to approximately 18-24, e.g., about 19 U6-gRNAs. Therefore, one skilled in the art can readily reach approximately 18-24, e.g., about 19 promoter-RNAs, e.g., U6-gRNAs in a single vector, e.g., an AAV vector. A further means for increasing the number of promoters and RNAs in a vector is to use a single promoter (e.g., U6) to express an array of RNAs separated by cleavable sequences. And an even further means for increasing the number of promoter-RNAs in a vector is to express an array of promoter-RNAs separated by cleavable sequences in the intron of a coding sequence or gene; and, in this instance, it is advantageous to use a polymerase II promoter, which can have increased expression and enable the transcription of long RNA in a tissue specific manner. (See, e.g., Chung K H, Hart C C, Al-Bassam S, et al. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res. 2006; 34(7):e53). In an advantageous embodiment, AAV may package U6 tandem gRNA targeting up to about 50 genes. Accordingly, from the knowledge in the art and the teachings in this disclosure the skilled person can readily make and use vector(s), e.g., a single vector, expressing multiple RNAs or guides under the control or operatively or functionally linked to one or more promoters, especially as to the numbers of RNAs or guides discussed herein, without any undue experimentation.


The Cas polypeptide and guide molecule (and donor) may also be delivered as a pre-formed ribonucleoprotein complex (RNP). Delivery methods for delivery RNPs include virus like particles, cell-penetrating peptides, and nanocarriers discussed above.


Delivery mechanisms for CRISPRa systems include virus like particles, cell-penetrating peptides, and nanocarriers discussed above for CRISPR-Cas systems.


Base Editing Delivery

Base editing systems may deliver on one or more vectors encoding the Cas-nucleobase deaminase and guide sequence. Vector systems suitable for this purpose includes those discussed above. Alternatively, base editing systems may be delivered as pre-complex Ribonucleoprotein complex (RNP. Systems for delving RNPs include the protein delivery systems: virus like particles; cell-penetrating peptides; and nanocarriers, discuss above.


A further example method for delivery of base-editing systems may include use of a split-intein approach to divide CBE and ABE into reconstitutable halves, is described in Levy et al. Nature Biomedical Engineering doi.org/10.1038/s41441-019-0505-5 (2019), which is incorporated herein by reference.


Diagnostic and Theranostic Methods
Methods of Predicting Response to Immunotherapy

Provided herein are methods for determining if a subject will be responsive to an immunotherapy comprising detecting expression of one or more biomarkers from Table 2. Table 2 includes the list of 576 candidate genes and Gene Refseq accession numbers for each candidate gene. The candidate genes were enriched in the top 1% across at least two screening replicates for the MAGeCK (Table 1) and FDR (Table 3) analyses in either the acute or chronic screens. The biomarkers in Table 2 were identified as having increased expression in tumors that did not respond to immunotherapy. As used herein, the term “responder” refers to a subject that receives a benefit from an immunotherapy. As used herein, the term “non-responder” refers to a subject that does not receive a benefit from an immunotherapy. Responders and non-responders can also be determined based on progression (non-responder) or regression (responder) of a tumor in response to an immunotherapy. Responders and non-responders can be based on radiologic tumor assessments of progression or regression. Responders and non-responders can also be determined based on RECIST criteria: complete response (CR) and partial response (PR) for responders, or stable disease (SD) and progressive disease (PD) for non-responders (see, e.g., Eisenhauer, E. A. et al., 2009, New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45, 228-247). “Immunotherapy” in this context is as defined at to above. “Biomarkers” in the context of the present invention encompasses, without limitation nucleic acids, proteins, reaction products, and metabolites, together with their polymorphisms, mutations, variants, modifications, subunits, fragments, and other analytes or sample-derived measures. In certain embodiments, biomarkers include the signature genes or signature gene products, and/or cells as described herein. By means of further explanation and without limitation the term “diagnosis” generally refers to the process or act of recognizing, deciding on or concluding on a disease or condition in a subject on the basis of symptoms and signs and/or from results of various diagnostic procedures (such as, for example, from knowing the presence, absence and/or quantity of one or more biomarkers characteristic of the diagnosed disease or condition).


The terms “prognosing” or “prognosis” generally refer to an anticipation on the progression of a disease or condition and the prospect (e.g., the probability, duration, and/or extent) of recovery. A good prognosis of the diseases or conditions taught herein may generally encompass anticipation of a satisfactory partial or complete recovery from the diseases or conditions, preferably within an acceptable time period. A good prognosis of such may more commonly encompass anticipation of not further worsening or aggravating of such, preferably within a given time period. A poor prognosis of the diseases or conditions as taught herein may generally encompass anticipation of a substandard recovery and/or unsatisfactorily slow recovery, or to substantially no recovery or even further worsening of such. In the context of the embodiments disclosed herein, the prognosis may refer to whether the subject will be a responder or non-responder.


Applicants have identified that MCL1, BCL2A1, JUNB, B3GNT2 increase in expression in response to an immunotherapy. In an example embodiment, MCL1, BCL2A1, JUNB, B3GNT2 and/or alternate immune evasion targets in Table 2 increase in expression upon treatment with an immunotherapy and can be used to monitor the efficacy of an immunotherapy. The increased expression may indicate that the tumor is evading an anti-tumor immune response and the tumor may not respond to further immunotherapy. Thus, in certain embodiments, one or more of the targets is used as a biomarker for monitoring the efficacy of an immunotherapy and guiding further treatment as described herein. An increase in expression can be determined by comparing expression from samples obtained from a subject before and during treatment.


In an example embodiment, is disclosed a method determining if a subject is an immunotherapy responder and non-responder comprises detecting in a tumor obtained from the subject the expression or activity of 576 genes, of 500 to 575 genes, of 400 to 500 genes, of 300 to 400 genes, of 200 to 300 genes, of 100 to 200 genes, of 50 to 100 genes, of 25 to 50 genes, of 10 to 25 genes, of 5 to 10 genes or of 1 to 5 genes selected from candidate genes in Table 2, wherein if the expression of the genes is higher than a reference value the subject is an immunotherapy non-responder and if the one or more genes is lower than a reference value then the subject is an immunotherapy responder; and treating the subject, wherein if the subject is a responder, administering an immunotherapy. In preferred embodiments, one or more of B3GNT2, MCL1, BCL2A, and/or JUNB is detected, wherein elevated expression relative to a reference value indicates the subject is an immunotherapy non-responder.


The reference value may be indicated inter alia as an absolute value, range or statistics, or may be indicated relative to a suitable control subject or subject population (such as, e.g., relative to a general, normal or healthy subject or subject population). Hence, the probability, that a subject will be an immunotherapy responder or non-responder may be advantageously indicated as increased or decreased, or as fold-increased or fold-decreased relative to a suitable control subject or subject population. Methods may rely on comparing the quantity of biomarkers, or gene or gene product signatures measured in samples from patients with reference values, wherein said reference values represent known predictions, diagnoses and/or prognoses of diseases or conditions as taught herein.


For example, distinct reference values may represent the prediction of a risk (e.g., an abnormally elevated risk) of having a given disease or condition as taught herein vs. the prediction of no or normal risk of having said disease or condition. In another example, distinct reference values may represent predictions of differing degrees of risk of having such disease or condition.


Such comparison may generally include any means to determine the presence or absence of at least one difference and optionally of the size of such difference between values being compared. A comparison may include a visual inspection, an arithmetical or statistical comparison of measurements. Such statistical comparisons include, but are not limited to, applying a rule.


Reference values may be established according to known procedures previously employed for other cell populations, biomarkers and gene or gene product signatures. For example, a reference value may be established in an individual or a population of individuals characterized by a particular diagnosis, prediction and/or prognosis of responding to an immunotherapy or not responding to immunotherapy (i.e., for whom said diagnosis, prediction and/or prognosis of the disease or condition holds true). Such population may comprise without limitation 2 or more, 10 or more, 100 or more, or even several hundred or more individuals.


In one example embodiment, a reference value can be determined by the evaluation of the expression of candidate genes listed in Table 2 in an annotated database of tumor samples that provides gene expression and clinical outcome. For example, by analyzing the transcriptomes of 310 patients collected prior to immune checkpoint blockade therapy and determining whether the subject was responsive or non-responsive a reference value can be established. Example databases have been described (see, e.g., Auslander et al., 2018; Braun et al., 2020; Gide et al., 2019; Hugo et al., 2016; Pender et al., 2021; Riaz et al., 2017 and the Cancer Genome Atlas website (www.genome.gov/Funded-Programs-Projects/Cancer-Genome-Atlas)).


A “deviation” of a first value from a second value may generally encompass any direction (e.g., increase: first value>second value; or decrease: first value<second value) and any extent of alteration.


For example, a deviation may encompass a decrease in a first value by, without limitation, at least about 10% (about 0.9-fold or less), or by at least about 20% (about 0.8-fold or less), or by at least about 30% (about 0.7-fold or less), or by at least about 40% (about 0.6-fold or less), or by at least about 50% (about 0.5-fold or less), or by at least about 60% (about 0.4-fold or less), or by at least about 70% (about 0.3-fold or less), or by at least about 80% (about 0.2-fold or less), or by at least about 90% (about 0.1-fold or less), relative to a second value with which a comparison is being made.


For example, a deviation may encompass an increase of a first value by, without limitation, at least about 10% (about 1.1-fold or more), or by at least about 20% (about 1.2-fold or more), or by at least about 30% (about 1.3-fold or more), or by at least about 40% (about 1.4-fold or more), or by at least about 50% (about 1.5-fold or more), or by at least about 60% (about 1.6-fold or more), or by at least about 70% (about 1.7-fold or more), or by at least about 80% (about 1.8-fold or more), or by at least about 90% (about 1.9-fold or more), or by at least about 100% (about 2-fold or more), or by at least about 150% (about 2.5-fold or more), or by at least about 200% (about 3-fold or more), or by at least about 500% (about 6-fold or more), or by at least about 700% (about 8-fold or more), or like, relative to a second value with which a comparison is being made.


Preferably, a deviation may refer to a statistically significant observed alteration. For example, a deviation may refer to an observed alteration which falls outside of error margins of reference values in a given population (as expressed, for example, by standard deviation or standard error, or by a predetermined multiple thereof, e.g., ±1×SD or ±2×SD or ±3×SD, or ±1×SE or ±2×SE or ±3×SE). Deviation may also refer to a value falling outside of a reference range defined by values in a given population (for example, outside of a range which comprises ≥40%, ≥50%, ≥60%, ≥70%, ≥75% or ≥80% or ≥85% or ≥90% or ≥95% or even ≥100% of values in said population).


In a further embodiment, a deviation may be concluded if an observed alteration is beyond a given threshold or cut-off. Such threshold or cut-off may be selected as generally known in the art to provide for a chosen sensitivity and/or specificity of the prediction methods, e.g., sensitivity and/or specificity of at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 85%, or at least 90%, or at least 95%.


For example, receiver-operating characteristic (ROC) curve analysis can be used to select an optimal cut-off value of the quantity of a given immune cell population, biomarker or gene or gene product signatures, for clinical use of the present diagnostic tests, based on acceptable sensitivity and specificity, or related performance measures which are well-known per se, such as positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), negative likelihood ratio (LR—), Youden index, or similar.


Theranostic Methods

Methods of determining if a subject is an immunotherapy responder or non-responder may also be integrated into method of treatments to guide appropriate treatment regimens. In one example embodiment, a method of treating cancer comprising determining if the subject is an immunotherapy non-responder or an immunotherapy responder as described above, and treating the subject with one or more of the methods of enhancing anti-tumor immunity described in the sections above, if the subject is an immune non-responder, and treating the subject with an immunotherapy if the subject is an immunotherapy responder.


Detection of Biomarkers

In one embodiment, the signature genes, biomarkers, and/or cells expressing biomarkers may be detected or isolated by immunofluorescence, immunohistochemistry (IHC), fluorescence activated cell sorting (FACS), mass spectrometry (MS), mass cytometry (CyTOF), sequencing, WGS (described herein), WES (described herein), RNA-seq, single cell RNA-seq (described herein), quantitative RT-PCR, single cell qPCR, FISH, RNA-FISH, MERFISH (multiplex (in situ) RNA FISH) and/or by in situ hybridization. Other methods including absorbance assays and colorimetric assays are known in the art and may be used herein. Detection may comprise primers and/or probes or fluorescently bar-coded oligonucleotide probes for hybridization to RNA (see e.g., Geiss G K, et al., Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008 March; 26(3):317-25). In certain embodiments, cancer is diagnosed, prognosed, or monitored. For example, a tissue sample may be obtained and analyzed for specific cell markers (IHC) or specific transcripts (e.g., RNA-FISH). In one embodiment, tumor cells are stained for cell subtype specific signature genes (e.g., responder or non-responder). In one embodiment, the cells are fixed. In another embodiment, the cells are formalin fixed and paraffin embedded. Not being bound by a theory, the presence of the tumor subtypes indicate outcome and personalized treatments.


The present invention also may comprise a kit with a detection reagent that binds to one or more biomarkers or can be used to detect one or more biomarkers.


MS Methods

Biomarker detection may also be evaluated using mass spectrometry methods. A variety of configurations of mass spectrometers can be used to detect biomarker values. Several types of mass spectrometers are available or can be produced with various configurations. In general, a mass spectrometer has the following major components: a sample inlet, an ion source, a mass analyzer, a detector, a vacuum system, and instrument-control system, and a data system. Difference in the sample inlet, ion source, and mass analyzer generally define the type of instrument and its capabilities. For example, an inlet can be a capillary-column liquid chromatography source or can be a direct probe or stage such as used in matrix-assisted laser desorption. Common ion sources are, for example, electrospray, including nanospray and microspray or matrix-assisted laser desorption. Common mass analyzers include a quadrupole mass filter, ion trap mass analyzer and time-of-flight mass analyzer. Additional mass spectrometry methods are well known in the art (see Burlingame et al., Anal. Chem. 70:647 R-716R (1998); Kinter and Sherman, New York (2000)).


Protein biomarkers and biomarker values can be detected and measured by any of the following: electrospray ionization mass spectrometry (ESI-MS), ESI-MS/MS, ESI-MS/(MS)n, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS), desorption/ionization on silicon (DIOS), secondary ion mass spectrometry (SIMS), quadrupole time-of-flight (Q-TOF), tandem time-of-flight (TOF/TOF) technology, called ultraflex III TOF/TOF, atmospheric pressure chemical ionization mass spectrometry (APCI-MS), APCI-MS/MS, APCI-(MS).sup.N, atmospheric pressure photoionization mass spectrometry (APPI-MS), APPI-MS/MS, and APPI-(MS).sup.N, quadrupole mass spectrometry, Fourier transform mass spectrometry (FTMS), quantitative mass spectrometry, and ion trap mass spectrometry.


Sample preparation strategies are used to label and enrich samples before mass spectroscopic characterization of protein biomarkers and determination biomarker values. Labeling methods include but are not limited to isobaric tag for relative and absolute quantitation (iTRAQ) and stable isotope labeling with amino acids in cell culture (SILAC). Capture reagents used to selectively enrich samples for candidate biomarker proteins prior to mass spectroscopic analysis include but are not limited to aptamers, antibodies, nucleic acid probes, chimeras, small molecules, an F(ab′)2 fragment, a single chain antibody fragment, an Fv fragment, a single chain Fv fragment, a nucleic acid, a lectin, a ligand-binding receptor, affibodies, nanobodies, ankyrins, domain antibodies, alternative antibody scaffolds (e.g. diabodies etc.) imprinted polymers, avimers, peptidomimetics, peptoids, peptide nucleic acids, threose nucleic acid, a hormone receptor, a cytokine receptor, and synthetic receptors, and modifications and fragments of these.


Immunoassays

Immunoassay methods are based on the reaction of an antibody to its corresponding target or analyte and can detect the analyte in a sample depending on the specific assay format. To improve specificity and sensitivity of an assay method based on immunoreactivity, monoclonal antibodies are often used because of their specific epitope recognition. Polyclonal antibodies have also been successfully used in various immunoassays because of their increased affinity for the target as compared to monoclonal antibodies Immunoassays have been designed for use with a wide range of biological sample matrices Immunoassay formats have been designed to provide qualitative, semi-quantitative, and quantitative results.


Quantitative results may be generated through the use of a standard curve created with known concentrations of the specific analyte to be detected. The response or signal from an unknown sample is plotted onto the standard curve, and a quantity or value corresponding to the target in the unknown sample is established.


Numerous immunoassay formats have been designed. ELISA or EIA can be quantitative for the detection of an analyte/biomarker. This method relies on attachment of a label to either the analyte or the antibody and the label component includes, either directly or indirectly, an enzyme. ELISA tests may be formatted for direct, indirect, competitive, or sandwich detection of the analyte. Other methods rely on labels such as, for example, radioisotopes (I125) or fluorescence. Additional techniques include, for example, agglutination, nephelometry, turbidimetry, Western blot, immunoprecipitation, immunocytochemistry, immunohistochemistry, flow cytometry, Luminex assay, and others (see ImmunoAssay: A Practical Guide, edited by Brian Law, published by Taylor & Francis, Ltd., 2005 edition).


Exemplary assay formats include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay, fluorescent, chemiluminescence, and fluorescence resonance energy transfer (FRET) or time resolved-FRET (TR-FRET) immunoassays. Examples of procedures for detecting biomarkers include biomarker immunoprecipitation followed by quantitative methods that allow size and peptide level discrimination, such as gel electrophoresis, capillary electrophoresis, planar electrochromatography, and the like.


Methods of detecting and/or quantifying a detectable label or signal generating material depend on the nature of the label. The products of reactions catalyzed by appropriate enzymes (where the detectable label is an enzyme; see above) can be, without limitation, fluorescent, luminescent, or radioactive or they may absorb visible or ultraviolet light. Examples of detectors suitable for detecting such detectable labels include, without limitation, x-ray film, radioactivity counters, scintillation counters, spectrophotometers, colorimeters, fluorometers, luminometers, and densitometers.


Any of the methods for detection can be performed in any format that allows for any suitable preparation, processing, and analysis of the reactions. This can be, for example, in multi-well assay plates (e.g., 96 wells or 384 wells) or using any suitable array or microarray. Stock solutions for various agents can be made manually or robotically, and all subsequent pipetting, diluting, mixing, distribution, washing, incubating, sample readout, data collection and analysis can be done robotically using commercially available analysis software, robotics, and detection instrumentation capable of detecting a detectable label.


Hybridization Assays

Such applications are hybridization assays in which a nucleic acid that displays “probe” nucleic acids for each of the genes to be assayed/profiled in the profile to be generated is employed. In these assays, a sample of target nucleic acids is first prepared from the initial nucleic acid sample being assayed, where preparation may include labeling of the target nucleic acids with a label, e.g., a member of a signal producing system. Following target nucleic acid sample preparation, the sample is contacted with the array under hybridization conditions, whereby complexes are formed between target nucleic acids that are complementary to probe sequences attached to the array surface. The presence of hybridized complexes is then detected, either qualitatively or quantitatively. Specific hybridization technology which may be practiced to generate the expression profiles employed in the subject methods includes the technology described in U.S. Pat. Nos. 5,143,854; 5,288,644; 5,324,633; 5,432,049; 5,470,710; 5,492,806; 5,503,980; 5,510,270; 5,525,464; 5,547,839; 5,580,732; 5,661,028; 5,800,992; the disclosures of which are herein incorporated by reference; as well as WO 95/21265; WO 96/31622; WO 97/10365; WO 97/27317; EP 373 203; and EP 785 280. In these methods, an array of “probe” nucleic acids that includes a probe for each of the biomarkers whose expression is being assayed is contacted with target nucleic acids as described above. Contact is carried out under hybridization conditions, e.g., stringent hybridization conditions as described above, and unbound nucleic acid is then removed. The resultant pattern of hybridized nucleic acids provides information regarding expression for each of the biomarkers that have been probed, where the expression information is in terms of whether or not the gene is expressed and, typically, at what level, where the expression data, i.e., expression profile, may be both qualitative and quantitative.


Optimal hybridization conditions will depend on the length (e.g., oligomer vs. polynucleotide greater than 200 bases) and type (e.g., RNA, DNA, PNA) of labeled probe and immobilized polynucleotide or oligonucleotide. General parameters for specific (i.e., stringent) hybridization conditions for nucleic acids are described in Sambrook et al., supra, and in Ausubel et al., “Current Protocols in Molecular Biology”, Greene Publishing and Wiley-interscience, NY (1987), which is incorporated in its entirety for all purposes. When the cDNA microarrays are used, typical hybridization conditions are hybridization in 5×SSC plus 0.2% SDS at 65C for 4 hours followed by washes at 25° C. in low stringency wash buffer (1×SSC plus 0.2% SDS) followed by 10 minutes at 25° C. in high stringency wash buffer (0.1SSC plus 0.2% SDS) (see Shena et al., Proc. Natl. Acad. Sci. USA, Vol. 93, p. 10614 (1996)). Useful hybridization conditions are also provided in, e.g., Tijessen, Hybridization With Nucleic Acid Probes”, Elsevier Science Publishers B.V. (1993) and Kricka, “Nonisotopic DNA Probe Techniques”, Academic Press, San Diego, Calif. (1992).


In certain embodiments, a subject can be categorized based on signature genes or gene programs expressed by a tissue sample obtained from the subject. In certain embodiments, the tissue sample is analyzed by bulk sequencing. In certain embodiments, subtypes can be determined by determining the percentage of specific cell subtypes expressing the identified interacting genetic variants in the sample that contribute to the phenotype. In certain embodiments, gene expression associated with the cells are determined from bulk sequencing reads by deconvolution of the sample. For example, deconvoluting bulk gene expression data obtained from a tumor containing both malignant and non-malignant cells can include defining the relative frequency of a set of cell types in the tumor from the bulk gene expression data using cell type specific gene expression (e.g., cell types may be T cells, fibroblasts, macrophages, mast cells, B/plasma cells, endothelial cells, myocytes and dendritic cells); and defining a linear relationship between the frequency of the non-malignant cell types and the expression of a set of genes, wherein the set of genes comprises genes highly expressed by malignant cells and at most two non-malignant cell types, wherein the set of genes are derived from gene expression analysis of single cells in the tumor or the same tumor type, and wherein the residual of the linear relationship defines the malignant cell-specific (MCS) expression profile (see, e.g., WO 2018/191553; and Puram et al., Cell. 2017 Dec. 14; 171(7):1611-1624.e24).


Sequencing

In certain embodiments, sequencing is used to identify expression of genes or transcriptomes in single cells. In certain embodiments, sequencing comprises high-throughput (formerly “next-generation”) technologies to generate sequencing reads. Methods for constructing sequencing libraries are known in the art (see, e.g., Head et al., Library construction for next-generation sequencing: Overviews and challenges. Biotechniques. 2014; 56(2): 61-77). A “library” or “fragment library” may be a collection of nucleic acid molecules derived from one or more nucleic acid samples, in which fragments of nucleic acid have been modified, generally by incorporating terminal adapter sequences comprising one or more primer binding sites and identifiable sequence tags. In certain embodiments, the library members (e.g., cDNA) may include sequencing adaptors that are compatible with use in, e.g., Illumina's reversible terminator method, long read nanopore sequencing, Roche's pyrosequencing method (454), Life Technologies' sequencing by ligation (the SOLID platform) or Life Technologies' Ion Torrent platform. Examples of such methods are described in the following references: Margulies et al (Nature 2005 437: 376-80); Schneider and Dekker (Nat Biotechnol. 2012 Apr. 10; 30(4):326-8); Ronaghi et al (Analytical Biochemistry 1996 242: 84-9); Shendure et al (Science 2005 309: 1728-32); Imelfort et al (Brief Bioinform. 2009 10:609-18); Fox et al (Methods Mol. Biol. 2009; 553:79-108); Appleby et al (Methods Mol. Biol. 2009; 513:19-39); and Morozova et al (Genomics. 2008 92:255-64), which are incorporated by reference for the general descriptions of the methods and the particular steps of the methods, including all starting products, reagents, and final products for each of the steps.


As used herein the term “transcriptome” refers to the set of transcript molecules. In some embodiments, transcript refers to RNA molecules, e.g., messenger RNA (mRNA) molecules, small interfering RNA (siRNA) molecules, transfer RNA (tRNA) molecules, ribosomal RNA (rRNA) molecules, and complimentary sequences, e.g., cDNA molecules. In some embodiments, a transcriptome refers to a set of mRNA molecules. In some embodiments, a transcriptome refers to a set of cDNA molecules. In some embodiments, a transcriptome refers to one or more of mRNA molecules, siRNA molecules, tRNA molecules, rRNA molecules, in a sample, for example, a single cell or a population of cells. In some embodiments, a transcriptome refers to cDNA generated from one or more of mRNA molecules, siRNA molecules, tRNA molecules, rRNA molecules, in a sample, for example, a single cell or a population of cells. In some embodiments, a transcriptome refers to 25%, 50%, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.9, or 100% of transcripts from a single cell or a population of cells. In some embodiments, transcriptome not only refers to the species of transcripts, such as mRNA species, but also the amount of each species in the sample. In some embodiments, a transcriptome includes each mRNA molecule in the sample, such as all the mRNA molecules in a single cell.


In certain embodiments, the invention involves single cell RNA sequencing (see, e.g., Kalisky, T., Blainey, P. & Quake, S. R. Genomic Analysis at the Single-Cell Level. Annual review of genetics 45, 431-445, (2011); Kalisky, T. & Quake, S. R. Single-cell genomics. Nature Methods 8, 311-314 (2011); Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Research, (2011); Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nature Protocols 5, 516-535, (2010); Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods 6, 377-382, (2009); Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology 30, 777-782, (2012); and Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Reports, Cell Reports, Volume 2, Issue 3, p666-673, 2012).


In certain embodiments, the present invention involves single cell RNA sequencing (scRNA-seq). In certain embodiments, the invention involves plate based single cell RNA sequencing (see, e.g., Picelli, S. et al., 2014, “Full-length RNA-seq from single cells using Smart-seq2” Nature protocols 9, 171-181, doi: 10.1038/nprot.2014.006).


In certain embodiments, the invention involves high-throughput single-cell RNA-seq where the RNAs from different cells are tagged individually, allowing a single library to be created while retaining the cell identity of each read. In this regard reference is made to Macosko et al., 2015, “Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets” Cell 161, 1202-1214; International patent application number PCT/US2015/049178, published as WO2016/040476 on Mar. 17, 2016; Klein et al., 2015, “Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells” Cell 161, 1187-1201; International patent application number PCT/US2016/027734, published as WO2016168584A1 on Oct. 20, 2016; Zheng, et al., 2016, “Haplotyping germline and cancer genomes with high-throughput linked-read sequencing” Nature Biotechnology 34, 303-311; Zheng, et al., 2017, “Massively parallel digital transcriptional profiling of single cells” Nat. Commun. 8, 14049 doi: 10.1038/ncomms14049; International patent publication number WO2014210353A2; Zilionis, et al., 2017, “Single-cell barcoding and sequencing using droplet microfluidics” Nat Protoc. January; 12(1):44-73; Cao et al., 2017, “Comprehensive single cell transcriptional profiling of a multicellular organism by combinatorial indexing” bioRxiv preprint first posted online Feb. 2, 2017, doi: dx.doi.org/10.1101/104844; Rosenberg et al., 2017, “Scaling single cell transcriptomics through split pool barcoding” bioRxiv preprint first posted online Feb. 2, 2017, doi: dx.doi.org/10.1101/105163; Rosenberg et al., “Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding” Science 15 Mar. 2018; Vitak, et al., “Sequencing thousands of single-cell genomes with combinatorial indexing” Nature Methods, 14(3):302-308, 2017; Cao, et al., Comprehensive single-cell transcriptional profiling of a multicellular organism. Science, 357(6352):661-667, 2017; Gierahn et al., “Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput” Nature Methods 14, 395-398 (2017); and Hughes, et al., “Highly Efficient, Massively-Parallel Single-Cell RNA-Seq Reveals Cellular States and Molecular Features of Human Skin Pathology” bioRxiv 689273; doi: doi.org/10.1101/689273, all the contents and disclosure of each of which are herein incorporated by reference in their entirety.


In certain embodiments, the invention involves single nucleus RNA sequencing. In this regard reference is made to Swiech et al., 2014, “In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9” Nature Biotechnology Vol. 33, pp. 102-106; Habib et al., 2016, “Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons” Science, Vol. 353, Issue 6302, pp. 925-928; Habib et al., 2017, “Massively parallel single-nucleus RNA-seq with DroNc-seq” Nat Methods. 2017 October; 14(10):955-958; International Patent Application No. PCT/US2016/059239, published as WO2017164936 on Sep. 28, 2017; International Patent Application No. PCT/US2018/060860, published as WO/2019/094984 on May 16, 2019; International Patent Application No. PCT/US2019/055894, published as WO/2020/077236 on Apr. 16, 2020; and Drokhlyansky, et al., “The enteric nervous system of the human and mouse colon at a single-cell resolution,” bioRxiv 746743; doi: doi.org/10.1101/746743, which are herein incorporated by reference in their entirety.


Methods for Screening for Agents Capable of Decreasing Poly-LacNac on Tumor Surface

A further aspect of the invention relates to a method for identifying an agent capable of decreasing poly-lacnac on the tumor surface, comprising: contacting a population of tumor cells having upregulated B3GNT2 with an agent; and detecting binding of one or more proteins to the tumor cells selected from the group consisting of CD2, 4-1BB, TREML2 (TLT2), NKG2D, and an antibody specific for an HLA class I bound tumor antigen, wherein increased binding indicates reduced poly-LacNAc. Applicants further describe changes in binding of these proteins to cells dependent upon glycosylation (see, examples). In a specific embodiment, the assay uses one or more of the proteins, such that the proteins are labeled with a detectable marker. Thus, in certain embodiments, the screen can be a high throughput assay. The detectable marker can be any fluorescent marker known in the art.


Further embodiments are illustrated in the following Examples, which are given for illustrative purposes only and are not intended to limit the scope of the invention.


EXAMPLES
Example 1—Identification of Novel Checkpoint Inhibitor Targets Using a CRISPR Activation Screen

Applicants first established a T cell cytotoxicity assay for measuring immunotherapy resistance. Applicants transduced human primary CD4+ and CD8+ T cells with a T cell receptor (TCR) specific for the NY-ESO-1 antigen (NY-ESO-1:157-165 epitope) presented in an HLA-A*02-restricted manner (ESO T cells) (Robbins et al., 2008). When A375 (NY-ESO-1+, HLA-A2+) human melanoma cells were exposed to ESO T cells, Applicants observed cytotoxicity that was specific to the presence of the NY-ESO-1 antigen and NY-ESO-1 TCR (FIG. 1a-c). Cytotoxicity correlated with the effector to target (E:T) ratio (FIG. 1b-c). Applicants then transduced A375 cells with a genome-scale CRISPRa single-guide RNA (sgRNA) library consisting of 70,290 sgRNAs targeting every coding isoform from the RefSeq database (23,430 isoforms) to systematically identify genes that enable tumors to evade T cell killing upon upregulation (Konermann et al., 2015). Applicants tested two T cell exposure strategies: acute (E:T ratio of 3 for 18 hours) and chronic (E:T ratio of 2 for 3 days with 3 rounds of screening selection), in independent screens (FIG. 2a). Applicants deep sequenced the sgRNA library distribution in the surviving cells with or without ESO T cell exposure (FIG. 1d,g). In the chronic exposure screen, Applicants observed that the skew of the distribution increased after each round of screening selection (FIG. 1e,g).


Applicants performed MAGeCK (Li et al., 2014) and FDR analyses to identify candidate genes that were enriched in cells cultured with ESO T cells relative to control (FIG. 2b, and Tables 1-3). Pathway analysis on 576 genes prioritized by MAGeCK (top 1% of multiple screening replicates combining the acute and chronic screens) revealed pathways were significantly enriched (FDR<0.05) within these top candidates, including some that have been previously shown to be important for tumor immune evasion, such as lipopolysaccharide response, extrinsic apoptosis signaling, NF-κB activation, JAK-STAT signaling, and antigen presentation (Lawson et al., 2020; Manguso et al., 2017; Pan et al., 2018; Patel et al., 2017; Vredevoogd et al., 2019) (FIG. 2c and Table 4). This analysis also highlighted pathways with previously underappreciated roles in regulating tumor response to T cell cytotoxicity, including glycosaminoglycan metabolism and Wnt signaling, perhaps due to the different screening perturbation (FIG. 2c and Table 4). To assess whether expression of these candidate genes was associated with local immune cytolytic activity in patient tumors (quantified using granzyme A and perforin bulk transcriptome data) (Patel et al., 2017; Rooney et al., 2015), Applicants analyzed gene expression of 33 tumor types from The Cancer Genome Atlas (TCGA). Applicants found that expression of many candidate genes positively correlated (FDR<0.05) with cytolytic activity across tumor types, similar to known immunotherapy resistance mediators, as high cytolytic activity selects for emergence of evading tumor subclones (FIG. 2d, FIG. 3a-d) (Rooney et al., 2015). MAGeCK analysis for genes that generally affect A375 cell growth in the absence of ESO T cell co-culture showed that the MYC pathway governs growth, with MYC and its antagonist MXI1 as the top genes promoting growth and death respectively (FIG. 3e-f). Out of 576 candidate genes, 5 generally drive A375 cell growth and 19 repress it (ranking in the top 1%).


Applicants sought to evaluate whether expression of candidate genes is associated with clinical outcome by analyzing 310 patient transcriptomes collected prior to immune checkpoint blockade therapy (Auslander et al., 2018; Braun et al., 2020; Gide et al., 2019; Hugo et al., 2016; Pender et al., 2021; Riaz et al., 2017). In this analysis, Applicants found expression of candidate genes was significantly higher in non-responders (FIG. 2e).



FIG. 2f. shows the cell survival of A375 cells transduced with ORFs encoding candidate genes against ESO T cell cytotoxicity at different effector to target (E:T) ratios. Cell survival was measured using a luminescent cell viability assay and normalized to paired control cells that were not cultured with T cells. T cells were derived from donors used in the CRISPRa screen.


To narrow the focus for further analysis, Applicants selected the two most enriched genes from each screening strategy: CD274 and MCL1 from the acute screen, and JUNB and B3GNT2 from the chronic exposure screen (FIG. 1j-k). Of these four candidates, CD274 (PD-L1) is known to play a role in immune evasion, and it is currently the focus of immune checkpoint blockade therapies, supporting the design of this study (Reck et al., 2016). Applicants validated the four candidate genes by individually expressing three sgRNAs targeting each gene in A375 cells. For each candidate gene, at least two sgRNAs significantly increased survival against ESO T cells (P<0.05; FIG. 4g-h), verifying the screening results. For JUNB and B3GNT2, sgRNAs that produced higher target gene expression were more enriched in the screen and conferred more resistance, suggesting that these genes are dose-dependent (FIG. 4g-h). Overexpression of ORFs encoding each of the four candidate genes increased survival against T cell cytotoxicity, excluding the possibility of potential CRISPRa off-target genes contributing to resistance (FIG. 5e).


Applicants sought to assess the clinical relevance of candidate genes by examining patient tumor samples from TCGA. Applicants found that expression of B3GNT2 was significantly higher than matched normal samples for 9 out of 31 types of cancer (FIG. 6a). Copy number gain of MCL1 and B3GNT2 occurred more frequently than losses, in 95% and 81% of total cases respectively (FIG. 4b). In melanoma patients treated with PD-1 immunotherapy, higher B3GNT2 expression was associated with poorer clinical response (FIG. 4c) (Hugo et al., 2016). A different patient cohort showed that expression of CD274 and MCL1 significantly increased after treatment in patients that did not respond to immunotherapy (FIG. 4d) (Riaz et al., 2017). Expression of all four candidate genes significantly correlated with cytolytic activity (FIG. 4e) (Riaz et al., 2017). Together, these results suggest that the effects of MCL1 and B3GNT2 overexpression on immune evasion may be more common and clinically relevant than that of JUNB.


Next, Applicants evaluated whether the screening results were generalizable to other contexts by testing different T cells and co-culture conditions. Overexpression of all candidate genes in A375 cells conferred resistance against ESO T cells from two additional donors that were not used in the CRISPRa screens (FIG. 6a). Applicants verified that candidate gene overexpression promoted resistance over time in an alternative T cell cytotoxicity assay based on secreted Gaussia luciferase (FIG. 6b). In the absence of T cell cytotoxicity, upregulation of candidate genes did not consistently affect cell proliferation across the two cytotoxicity assays (FIG. 6c-d). Applicants investigated how expression level affects resistance by titrating the expression of candidate genes and found that expression correlated with resistance at lower levels of induction (FIG. 6e). The expression threshold above which Applicants observed increased resistance corresponded to the baseline expression of 5-31% of cell lines from the Cancer Cell Line Encyclopedia (Barretina et al., 2012), which suggested that the expression threshold for resistance is physiologically relevant (FIG. 6f). Applicants tested whether resistance conferred by candidate genes was specific to CD4+ or CD8+ T cells and found that candidate genes conferred resistance to both types of T cells (FIG. 6g). To determine whether resistance against T cells expressing the NY-ESO-1 TCR also applies to those expressing chimeric antigen receptors (CARs), Applicants introduced candidate gene ORFs into A375 (AXL+) cells and co-cultured the cells with AXL-targeting CAR T cells (Cho et al., 2018). Overexpression of each of the four candidate genes increased resistance against AXL-targeting CAR T cell cytotoxicity (FIG. 6h). These results show that candidate genes confer resistance against different cytotoxic T cells and across co-culture conditions.


Next, Applicants evaluated whether the screening results were generalizable to other types of cancers. Applicants assayed candidate genes in 7 additional cancer cell lines derived from 5 additional tissues [H1793 (NY-ESO-1+, HLA-A2) and H1299 (NY-ESO-1+, HLA-A2) non-small cell lung carcinomas, SW1417 (NY-ESO-1, HLA-A2) colorectal adenocarcinoma, OAW28 (NY-ESO-1+, HLA-A2) ovarian cystadenocarcinoma, A2058 (NY-ESO-1, HLA-A2) melanoma, LN-18 (NY-ESO-1+, HLA-A2+) glioblastoma, and SK-N-AS (NY-ESO-1+, HLA-A2) neuroblastoma]. Five of these cell lines expressed the NY-ESO-1 antigen endogenously, at varying levels (FIG. 7a), and those that did not naturally express HLA-A2 or NY-ESO-1 were transduced with the appropriate expression vectors. Applicants found that ORF overexpression of all four candidate genes significantly increased survival against T cell cytotoxicity in at least two additional cancer types (FIG. 5a-b and FIG. 7b-h). Overexpression of CD274 was not universally protective and did not confer resistance in cell lines with higher baseline expression, despite robust upregulation (FIG. 5b and FIG. 7h). The effects of MCL1 and B3GNT2 overexpression could be generalized to 6 and 7 of the additional cell lines respectively, demonstrating the broad applicability of these candidate genes to other cancer types and supporting the patient tumor analyses (FIG. 4a-b).


To test the relevance of candidate genes for immunotherapy in vivo, Applicants transduced A375 melanoma cells with dox-inducible candidate genes and subcutaneously engrafted these cells in immunocompromised NSG mice (FIG. 5c). At 2 days after subcutaneous tumor injection, Applicants induced overexpression of candidate genes, and at 7 days Applicants treated A375 xenografts with adoptive transfer of ESO T cells (FIG. 5c). In untreated control mice, Applicants did not observe significant differences in tumor growth or host survival between the candidate genes and GFP control (FIG. 7i-j). However, in mice treated with ESO T cells, overexpression of all four candidate genes significantly diminished the efficacy of adoptive cell transfer as measured by tumor growth and host survival (FIG. 5d-e). JUNB overexpression resulted in largely ineffective treatment, as JUNB-overexpressing xenografts displayed similar growth kinetics with and without ESO T cell treatment (FIG. 5d-e and FIG. 7i-j).


Applicants proceeded to investigate the mechanisms by which the candidate genes conferred resistance. As CD274 has been extensively studied (Reck et al., 2016), Applicants focused the mechanistic studies on the other three candidate genes. MCL1 is a BCL-2 family protein that inhibits apoptosis by regulating mitochondrial outer membrane permeabilization, and MCL1 overexpression is generally correlated with poor prognosis and resistance to most cancer therapeutics (Czabotar et al., 2014; Xiang et al., 2018). JUNB is a transcription factor that has been previously shown to downregulate an NKG2D ligand and mediate resistance against natural killer cells in mice (Nausch et al., 2006). B3GNT2 is a beta-1,3-N-acetylglucosaminyltransferase involved in poly-N-acetyllactosamine (poly-LacNAc) synthesis that has been suggested to glycosylate PD-1 in T cells to affect T cell activation (Sun et al., 2020). Moreover, B3GNT2 knockout mice have lower poly-LacNAc on B and T cells, resulting in hyperactivity (Togayachi et al., 2010). To begin to understand the pathways related to each candidate gene, Applicants performed RNA sequencing (RNA-seq) on A375 cells overexpressing each gene to characterize transcriptome changes. JUNB overexpression resulted in 632 differentially expressed genes with an absolute log fold change >1, compared to <15 genes for the other candidate genes, which is consistent with the role of JUNB in transcriptional regulation (FIG. 8a and Table 5). As the targets of JUNB and B3GNT2 are relatively unknown compared to MCL1, Applicants generated FLAG-tagged ORFs of both genes for immunoprecipitation assays (FIG. 8b). Chromatin immunoprecipitation sequencing (ChIP-seq) of JUNB and co-immunoprecipitation (co-IP) of B3GNT2 followed by mass spectrometry nominated 3,517 and 414 targets, respectively (Tables 6 and 7).


To narrow down the possible pathways to those that affect tumor immune evasion, Applicants assayed the effects of candidate gene overexpression on secretion and sensing of various cytokines involved in T cell cytotoxicity. Applicants quantified IFNγ released by T cells in the cytotoxicity assay using ELISA and found that upregulation of CD274 and B3GNT2 reduced IFNγ secretion by T cells (FIG. 8c). Overexpression of CD274 reduced the tumor response to IFNγ, as indicated by phosphorylation of STAT1, potentially resulting from a negative feedback mechanism (FIG. 8d) (Garcia-Diaz et al., 2017). Applicants challenged A375 cells overexpressing each of the candidate genes with cytokines that mediate cytotoxicity, FasL, TRAIL, or TNFα. Applicants found that MCL1 and JUNB overexpression significantly increased survival against FasL- and TRAIL-induced cell death (FIG. 9a and FIG. 10a-b).


Applicants examined components of the FasL and TRAIL signaling pathways that could contribute to MCL1- and JUNB-mediated resistance. For MCL1, the potential interaction partners involved in FasL and TRAIL resistance have been identified in previous studies (Czabotar et al., 2014). Applicants induced expression of these interaction partners in MCL1-overexpressing A375 cells and measured survival against T cell cytotoxicity. Induction of genes that more directly interact with MCL1, such as BID, PMAIP1 (NOXA), and BAX, could offset resistance conferred by MCL1 (FIG. 9b and FIG. 10c). For JUNB, the extensive list of target genes overlapping the ChIP- and RNA-seq datasets (Table 6) suggests there could be multiple components involved, necessitating a more systematic approach. Applicants first assayed cell surface expression of FasL and TRAIL receptors and found that JUNB overexpression significantly reduced expression of both receptors, FAS and TNFRSF10B (FIG. 9c). Applicants found that the JUNB target gene BCL2A1, an anti-apoptotic BCL-2 family protein that operates in parallel to MCL1 (Czabotar et al., 2014), was upregulated 45-fold and enriched in the set of 576 candidate genes from the CRISPRa screen, suggesting that BCL2A1 may also contribute to FasL and TRAIL resistance (Tables 2 and 6). CRISPR inhibition (CRISPRi) knockdown of BCL2A1 in JUNB-overexpressing cells significantly decreased survival against cytotoxicity induced by FasL, TRAIL, and T cells (FIG. 9d and FIG. 10d-f). In addition, JUNB alters expression of many different genes to activate the NF-κB pathway, including components of the NF-κB complex (RELA, RELB, NEKB1, and NFKB2), NF-κB activators (IKBKB and IKBKE), and NF-κB inhibitors (IFRD1) (Hoesel and Schmid, 2013; Liu et al., 2017; Tummers et al., 2015) (FIG. 9e). Perturbation of these genes by JI/NB results in activation of the NF-κB pathway, as indicated by phosphorylation of p65 (RELA) (FIG. 9f). Similar to JUNB, NF-κB activation upregulates BCL2A1, thus creating a feed forward loop for BCL2A1 upregulation (Grumont et al., 1999; Zong et al., 1999). The results show that MCL1 and JUNB counteract FasL- and TRAIL-induced cell death by inhibiting the mitochondrial apoptosis pathway, further supporting the importance of the death receptor signaling pathway in immunotherapy (Dufva et al., 2020; Singh et al., 2020) (FIG. 9g).


Next, Applicants turned to the resistance mechanism for B3GNT2. B3GNT2 overexpression in A375 cells increased intra- and extra-cellular poly-LacNAc as measured by tomato lectin staining (FIG. 11a). Pretreating cells with either N- or O-linked glycosylation inhibitors, kifunensine or benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside (BAG) respectively, reduced poly-LacNAc added by B3GNT2 in a dosage-dependent manner (FIG. 11a). As T cells that were co-cultured with B3GNT2-overexpressing A375 cells secreted less IFNγ (FIG. 8c), Applicants tested whether glycosylation inhibition could restore T cell activation. Applicants found that pretreating B3GNT2-overexpressing A375 cells with both glycosylation inhibitors reversed the effects of B3GNT2 overexpression, resulting in increased T cell IFNγ secretion and reduced A375 survival, with kifunensine having a stronger effect (FIG. 12a and FIG. 11b). As interaction between T cell and tumor cell surface ligands and receptors triggers IFNγ secretion, Applicants assayed the ligands and receptors that were highly expressed in A375 for modifications by B3GNT2. Applicants found that many of these proteins showed higher and broader ranges of molecular weights on Western blots, potentially indicating increased presence of poly-LacNAc (FIG. 11c-d). Enzymatic deglycosylation of the proteins confirmed that the increased molecular weights represented glycosylation, not other post-translational modifications (FIG. 11d). Pretreating A375 cells overexpressing B3GNT2 with either kifunensine or BAG showed that the 10 ligands and receptors modified by B3GNT2 (CD276, CD70, CD58, NECTIN2, HLA-A, TNFRSF1A, IFNGR2, FAS, IFNAR1, MICB) are primarily N-glycosylated, aligning with the finding that kifunensine treatment had a stronger effect on T cell IFNγ secretion and tumor cell survival (FIG. 12b). Applicants found that these 10 ligands and receptors had increased presence of poly-LacNAc at baseline in SW1417 colorectal adenocarcinoma cells, which express higher levels of endogenous B3GNT2 than A375 cells (FIG. 11e). Co-IP of B3GNT2 verified that these ligands and receptors are B3GNT2 targets (FIG. 11f).


Applicants sought to determine whether increased poly-LacNAc on the B3GNT2 targets affected ligand-receptor interactions between tumor and T cells that facilitate T cell activation and subsequent cytotoxicity. By measuring binding of a panel of 10 recombinant T cell proteins to A375 cells overexpressing B3GNT2, Applicants found that binding of 5 T cell proteins [CD2, 4-1BB, TREML2 (TLT2), NKG2D, and an antibody specific for HLA-A2:NY-ESO-1] was significantly reduced (FIG. 13a). Treating B3GNT2-overexpressing A375 cells with kifunensine or BAG rescued the reduction in T cell protein binding (FIG. 12c). In the case of HLA-A2:NY-ESO-1 antibody binding, kifunensine further reduced binding, potentially because antigen presentation was disrupted (FIG. 13b). For T cell proteins CD2, NKG2D, and HLA-A2:NY-ESO-1 antibody, Applicants have demonstrated that their known tumor interaction partners, CD58, MICB, and HLA-A respectively, are B3GNT2 target proteins (Shaw et al., 1986; Steinle et al., 2001) (FIG. 12b-c and FIG. 14c). However, for 4-1BB, the mechanism was not immediately clear because its known interaction partner, 4-1BBL, was not modified by B3GNT2 (Alderson et al., 1994) (FIG. 14b). Applicants confirmed that that 4-1BB bound to 4-1BBL in the assay using CRISPR knockout (FIG. 13c-e). These results suggest two possibilities: 1) increased poly-LacNAc on other cell surface ligands and receptors targeted by B3GNT2 disrupts the 4-1BB/4-1BBL binding; 2) 4-1BB binds to other unknown ligands that are targeted by B3GNT2. For TREML2, though some studies have suggested that TREML2 interacts with the B3GNT2 target protein CD276 (Hashiguchi et al., 2008), CRISPR knockdown of CD276 did not affect binding to TREML2 (FIG. 13f-h). The finding aligns with a previous study showing that the interaction between TREML2 and CD276 does not occur in humans (Leitner et al., 2009). Taken together, Applicants have shown that B3GNT2 mediates resistance to T cell cytotoxicity by adding poly-LacNAc on numerous proteins to interfere with ligand-receptor interactions between tumor and T cells (FIG. 12d).


To test whether inhibition of candidate genes could produce the opposite effect and render tumors more susceptible to T cell cytotoxicity, Applicants designed CRISPR sgRNAs to knock down or knock out the four candidate genes and measured tumor survival against T cell killing (FIG. 13a-b). In SW1417 colorectal adenocarcinoma cells, which express relatively high levels of the candidate genes (FIG. 13a), knockdown of all four candidate genes significantly decreased cell survival when cells were co-cultured with HER2 CAR or ESO T cells (FIG. 15 and FIG. 13c). In A375 melanoma cells, knockdown of CD274, MCL1, and JUNB decreased cell survival, and in OAW28 ovarian cystadenocarcinoma cells, knockdown of MCL1 and JUNB decreased cell survival (FIG. 10d-e). Knockdown of B3GNT2 did not affect survival in A375 and OAW28 cell lines, potentially because B3GNT2 is expressed at relatively low levels in these cell lines (FIG. 13a). Applicants observed comparable results for candidate gene knockout in SW1417 and A375 cells (FIG. 13f-h). In addition to CRISPR perturbation, Applicants tested chemical inhibition of MCL1 and B3GNT2. Selective MCL1 inhibitors are already undergoing testing in clinical trials (Xiang et al., 2018) and the dosage of these inhibitors could be adjusted to preferentially target MCL1-dependent tumor cells. The resistance mechanism of B3GNT2 suggests that inhibition of extracellular poly-LacNAc could bolster immunotherapy. Applicants therefore inhibited MCL1 using selective small molecule inhibitors and B3GNT2 using kifunensine to generally inhibit N-linked glycosylation. Both chemical inhibition approaches reduced survival of A375 and SW1417 cells, as well as primary patient-derived melanoma and pancreatic adenocarcinoma models, against T cell cytotoxicity (FIG. 15b-e and FIG. 13i-j). The CRISPR and chemical inhibition results indicate that inhibition of candidate genes in tumor cells enhances T cell killing and can be combined with current immunotherapy strategies to improve efficacy.


More generally, the results suggest that inhibition of B3GNT2 and BCL-2 family proteins, MCL1 and BCL2A1, could enhance the efficacy of immunotherapy and improve patient response. The high cross-validation rate of MCL1 and B3GNT2 across different cancer cell types and their frequency in patient tumor types suggest that the resistance effects are relatively cell type independent. The distinct pathways of the candidate genes may have contributed to their respective differences in resistance to TCR and CAR T cell cytotoxicity. MCL1 and JUNB overexpression may result in higher resistance against CAR-expressing T cell cytotoxicity because CAR-mediated killing may rely more on the mitochondrial apoptosis pathway for cytotoxicity (Dufva et al., 2020; Singh et al., 2020). By contrast, B3GNT2 overexpression produces higher resistance against T cells expressing TCR than CAR because B3GNT2 confers resistance by disrupting interactions between tumor and T cells to reduce T cell activation. As the CAR design includes multiple intracellular co-stimulatory domains that promote T cell activation (Cho et al., 2018), CAR function is not as affected by these disruptions. Characterizing resistance mechanisms thus helps inform the choice between TCR- and CAR-based immunotherapy.


CONCLUSIONS

Applicants have shown that genome-scale, gain-of-function genetic screens can discover genes involved in different biological processes that confer resistance to T cell cytotoxicity. Overexpression of candidate genes conferred resistance in diverse types of cancers. Mechanistic investigation revealed that MCL1 and JUNB overexpression mediate resistance to FasL- and TRAIL-induced cell death through the mitochondrial apoptosis pathway. JUNB downregulates FasL and TRAIL receptors, upregulates BCL2A1, and activates the NF-κB pathway. B3GNT2 promotes resistance through an orthogonal pathway by increasing poly-LacNAc on at least 10 tumor ligands and receptors to reduce T cell activation, highlighting the importance of poly-LacNAc in immuno-oncology. Furthermore, inhibition of these genes sensitized both tumor cell lines and primary patient-derived tumor models to T cell killing. This study complements results from previous loss-of-function screens and advances our understanding of the pathways that govern tumor immunotherapy.









TABLE 4







Pathway analysis of the 576 candidate genes. Pathways were ranked by FDR and pathways that overlapped


(>30% of genes) with another pathway that had lower FDR were removed to identify distinct pathways.
















negative








log10_of




adjusted
adjusted
term
intersection


term_name
term_id
p_value
p_value
size
size
intersections
















nucleic acid phosphodiester
GO:0090305
  3.52E−07
6.453115912
151
12
NOL9,HMGB2,CDKN2A,EXOSC9,RPA1,


bond hydrolysis





POP7,OGG1,RPS27A,RFC2,XRN1,


negative regulation of Wnt
GO:0030178
2.93349E−05
4.532615968
194
11
APC, PRICKLE1, NFATC1, AMER1,


signaling pathway





TMEM170B, TLE3, TLE2, MDK, DKK2,








DAB2IP, PSMF1


glycosaminoglycan metabolic
GO:0030203
5.21503E−05
4.282743425
132
9
DSEL, LYVE1, B3GAT1, DCN, B3GNT2,


process





SDC2, CHST13, SLC9A1, HMMR


negative regulation of cellular
GO:1903363
  7.63E−05
4.117475546
75
7
TRIM39, CDKN2A, UBE2J1, FURIN,


protein catabolic process





DAB2IP, EFNA1, PSMF1


cell-matrix adhesion
GO:0007160
0.000101361
3.994127445
183
10
LYVE1, CD36, ADAMTS13, ADAMTS12,








SRC, CDKN2A, PTK2, SLC9A1,








SEMA3E, MAP4K4


response to lipopolysaccharide
GO:0032496
0.000188756
3.724099352
198
10
HMGB2, CD36, JUNB, CD14, IL1A,








TNIP2, TNIP3, CD274, IFNAR1, DAB2IP


cytokinesis
GO:0000910
0.000208771
3.680328845
160
9
APC, CALM1, FLCN, EFHC1, SPTBN1,








CDC14A, FSD1, STAMBP, SEPTIN9


carbohydrate catabolic process
GO:0016052
0.000293472
3.532433089
168
9
PGM2L1, PRKAG1, CALM1, ENO2,








FUT6, ARNT, FUT10, GALK2, TREH


establishment or maintenance
GO:0007163
0.00033168
3.479280796
171
9
CD3G, FSCN3, LMNA, PTK2, FLOT2,


of cell polarity





CDC42BPB, AQP1, SLC9A1, ARFGEF1


negative regulation of cellular
GO:0090288
0.000577538
3.238419431
144
8
TGFBR2, DCN, ADAMTS12, NBL1,


response to growth factor





VEPH1, RBPMS2, RPS27A, DAB2IP


stimulus


cellular response to hypoxia
GO:0071456
0.001132026
2.946143415
161
8
LMNA, SUV39H1, ARNT, AQP1, TERT,








RPS27A, NFE2L2, PSMF1


epithelial tube morphogenesis
GO:0060562
0.001218181
2.914288095
163
8
TGFBR2, ADAMTS12, PRICKLE1,








BMP5, SETDB2, SEMA3E, HES1, MDK


extrinsic apoptotic signaling
GO:0097191
0.001357028
2.867411158
166
8
BCL2A1, SRC, BMP5, MCL1, IL1A,


pathway





TERT, GABARAP, DAB2IP


negative regulation of
GO:2001251
0.001685043
2.773388953
130
7
CTBP1, APC, SRC, CDC20, BCOR,


chromosome organization





TERF2IP, XRN1


cell-cell adhesion via plasma-
GO:0098742
0.002463362
2.608471773
184
8
TGFBR2, BSG, CLDN14, CLDN17,


membrane adhesion molecules





MPZL2, CLDN8, ATP2C1, CDH18


cold-induced thermogenesis
GO:0106106
0.002878731
2.540798977
144
7
APC, CD36, FLCN, ACSL1, ESRRG,








TLE3, TSHR


calcium-mediated signaling
GO:0019722
0.00303933
2.517222177
191
8
ATP2A2, CALM1, P2RX5, NFATC1,








SLC9A1, RCAN2, MCU, CCR4


positive regulation of
GO:0050679
0.003822073
2.417700976
152
7
HMGB2, BMP5, NME1, NME2, ARNT,


epithelial cell proliferation





GATA2, MDK


cellular response to radiation
GO:0071478
0.003947548
2.403672563
153
7
CALM1, INO80, CDKN1A, AQP1,








XRCC6, POLD3, GNGT1


spindle organization
GO:0007051
0.004197215
2.377038798
155
7
EFHC1, INO80, HAUS4, NEK6,








MAPRE2, FSD1, DCTN2


protein complex
GO:0051259
0.004745874
2.323683798
159
7
ITLN1, TIFA, SLC9A1, MPP2, ACACA,


oligomerization





TDO2, MCU


mitochondrial gene expression
GO:0140053
0.00503924
2.297634934
161
7
IARS2, RPUSD4, MRPL15, MRPL53,








WARS2, FASTKD2, CHCHD10


regulation of signal
GO:1901796
0.005838568
2.233693662
167
7
PRKAG1, MAPK11, PTTG1IP, RPA1,


transduction by p53 class





RBBP8, RFC2, L3MBTL1


mediator


platelet degranulation
GO:0002576
0.006328537
2.198696707
124
6
CHID1, CD36, CALM1, ISLR, PCYOX1L,








APLP2


positive regulation of I-
GO:0043123
0.006472052
2.188957982
171
7
IL1A, TERF2IP, NEK6, TIFA, TNIP2,


kappaB kinase/NF-kappaB





ATP2C1, PLEKHG5


signaling


chromatin assembly
GO:0031497
0.007366838
2.132718855
176
7
HMGB2, MBD3L2, MBD3L3, CDKN2A,








SETDB2, HIST1H2BB, SUV39H1


translational initiation
GO:0006413
0.007741206
2.111191367
178
7
YTHDF3, RPLP1, EIF4G3, RPL6, RPL15,








EIF2B3, RPS27A


negative regulation of binding
GO:0051100
0.008240855
2.084027708
133
6
ATP2A2, ARHGAP28, PCSK9, CDKN1A,








BTAF1, PLN


activation of innate immune
GO:0002218
0.009265525
2.033129953
137
6
PQBP1, SRC, KRAS, PRKACB, XRCC6,


response





PSMF1


negative regulation of
GO:1901343
0.01079629
1.966725447
192
7
COL4A3, DCN, NFATC1, ANGPTL7,


vasculature development





CARD10, SEMA3E, DAB2IP


potassium ion transmembrane
GO:0071805
0.011311093
1.946495423
194
7
KCNH6, KCNF1, NEDD4L, KCNQ2,


transport





SLC9A1, SLC12A6, ABCC8


receptor signaling pathway via
GO:0007259
0.011348946
1.945044479
144
6
SOCS2, GHR, STAMBP, IFNAR1, HES1,


JAK-STAT





IFNA7


transcription initiation from
GO:0006367
0.01157489
1.936483114
195
7
TCF4, CCNC, ESRRG, CDKNIA, RXRG,


RNA polymerase II promoter





RXRA, TEAD4


keratinization
GO:0031424
0.01237825
1.907340752
198
7
KLK14, KRTAP5-6, KRT31, KRT17,








KRT14, FURIN, KRTAP20-2


protein acylation
GO:0043543
0.012702172
1.896122014
199
7
CTBP1, CLIP3, FLCN, TERF2IP, HHATL,








CDYL, YEATS4


cellular response to external
GO:0071496
0.012959226
1.887420931
200
7
FLCN, PDK2, PCSK9, CDKN1A, AQP1,


stimulus





SLC9A1, GABARAP


nucleotide biosynthetic
GO:0009165
0.012959226
1.887420931
200
7
FLCN, PDK2, ACSL1, VPS9D1, ACACA,


process





RNLS, DUT


protein import
GO:0017038
0.015216647
1.817681045
155
6
PAM16, PRICKLE1, PTTG1IP, IPO7,








TNPO2, NXT2


phosphatidylinositol metabolic
GO:0046488
0.017834966
1.748727716
162
6
PIGO, PIGZ, SOCS2, TPTE2, BMX, DPM3


process


response to steroid hormone
GO:0048545
0.023257859
1.633430274
174
6
SRC, CATSPERG, UBA5, GRIP1, AQP1,








STRN3


regulation of protein
GO:0032271
0.028341083
1.547583559
183
6
CLIP3, ARHGAP28, ACTR2, IQGAP2,


polymerization





ARFGEF1, PLEKHG2


antigen processing and
GO:0048002
0.031622848
1.499999013
189
6
CD36, AP1B1, TAPBPL, DCTN2, PSMF1,


presentation of peptide antigen





PDIA3
















TABLE 5





RNA-seq analysis of differentially expressed genes for candidate ORF overexpression. Genes with > 1-fold change shown.







JUNB Genes




















Isoform
Fold
Pval
Padj
Isoform
Fold
Pval
Padj
Isoform
Fold
Pval
Padj







LCE1F
279.05
1.63E−10
9.33E−07
NOMO2
1.46
3.75E−05
2.80E−04
BTBD7
1.25
5.63E−04
1.85E−03



LRRC38
161.85
2.04E−10
9.33E−07
TRIM58
1.74
3.77E−05
2.81E−04
DAAM2
1.19
5.63E−04
1.85E−03



LRFN5
25.73
1.58E−09
3.61E−06
COPA
1.17
3.82E−05
2.84E−04
ANKRD10
1.52
5.63E−04
1.85E−03



CD24
29.87
2.02E−09
3.69E−06
ZNF385A
1.53
3.84E−05
2.85E−04
SLC18B1
1.64
5.64E−04
1.85E−03



KRT6B
9.32
3.71E−09
4.23E−06
GNB2
1.15
3.98E−05
2.91E−04
ADCY7
1.35
5.65E−04
1.85E−03



TGFBI
7.91
3.47E−09
4.23E−06
SYT11
2.01
3.98E−05
2.91E−04
ZDHHC9
1.35
5.65E−04
1.85E−03



CYB5R2
5.20
8.57E−09
7.11E−06
PCSK1N
2.14
4.00E−05
2.91E−04
DAB2IP
1.27
5.72E−04
1.87E−03



PPIF
1.79
8.05E−09
7.11E−06
ARHGEF12
1.24
4.03E−05
2.92E−04
PPP2R1B
1.41
5.77E−04
1.88E−03



HAS2
47.21
1.47E−08
8.56E−06
PLS1
2.23
4.08E−05
2.95E−04
LRFN4
1.43
5.78E−04
1.89E−03



ACAN
46.27
1.70E−08
8.62E−06
MICA
1.20
4.10E−05
2.96E−04
CSNK1A1
1.16
5.78E−04
1.89E−03



JUNB
33.09
1.89E−08
8.62E−06
RASD2
6.50
4.10E−05
2.96E−04
KCTD5
1.17
5.83E−04
1.90E−03



COL22A1
72.60
2.62E−08
9.89E−06
OSBPL3
1.39
4.12E−05
2.97E−04
STX6
1.42
5.83E−04
1.90E−03



FERMT1
38.24
2.46E−08
9.89E−06
PTPRU
1.64
4.12E−05
2.97E−04
IFFO2
1.38
5.87E−04
1.91E−03



MSN
1.66
2.71E−08
9.89E−06
SQRDL
3.91
4.16E−05
2.99E−04
BACH1
1.26
5.88E−04
1.91E−03



ARNTL2
6.30
3.14E−08
1.05E−05
GPR158
3.44
4.20E−05
3.00E−04
OBFC1
1.36
5.91E−04
1.92E−03



HLA-B
1.95
3.45E−08
1.05E−05
RASSF3
1.30
4.20E−05
3.00E−04
ARHGAP1
1.33
5.93E−04
1.92E−03



LAMB3
7.45
3.19E−08
1.05E−05
SLC38A2
1.41
4.22E−05
3.01E−04
RAPGEF1
1.27
5.94E−04
1.92E−03



PDPN
110.29
3.36E−08
1.05E−05
RIPK4
1.85
4.23E−05
3.01E−04
KIF16B
1.35
5.97E−04
1.93E−03



MAST4
13.70
3.67E−08
1.08E−05
SALL1
1.37
4.22E−05
3.01E−04
PAFAH2
1.08
5.97E−04
1.93E−03



S100A16
2.51
3.80E−08
1.08E−05
HBEGF
2.76
4.28E−05
3.04E−04
C16orf58
1.09
6.00E−04
1.93E−03



NREP
3.21
4.18E−08
1.16E−05
ZMAT3
1.38
4.29E−05
3.04E−04
OSTF1
1.49
6.04E−04
1.95E−03



ALK
6.65
6.04E−08
1.25E−05
SULT1B1
15.01
4.31E−05
3.04E−04
DNAJC10
1.27
6.10E−04
1.97E−03



ANPEP
3.38
6.64E−08
1.25E−05
FAM168A
1.46
4.36E−05
3.07E−04
RPS3
1.08
6.15E−04
1.98E−03



BMP6
11.58
6.45E−08
1.25E−05
ASAH1
1.57
4.37E−05
3.08E−04
HAPLN3
1.58
6.16E−04
1.98E−03



CD59
2.39
5.19E−08
1.25E−05
TRIM21
2.00
4.37E−05
3.08E−04
CHMP5
1.27
6.19E−04
1.99E−03



ESM1
22.77
6.42E−08
1.25E−05
MAPKBP1
1.40
4.43E−05
3.10E−04
ERRFI1
1.13
6.36E−04
2.03E−03



FURIN
1.86
6.48E−08
1.25E−05
CANX
1.08
4.65E−05
3.22E−04
KLHL36
1.25
6.37E−04
2.03E−03



GAP43
5.92
6.04E−08
1.25E−05
ENDOD1
2.38
4.66E−05
3.23E−04
DALRD3
1.15
6.38E−04
2.03E−03



HLA-A
2.24
7.14E−08
1.25E−05
RPS20
1.08
4.70E−05
3.25E−04
KLHL5
1.48
6.38E−04
2.03E−03



IGFBP3
7.10
6.57E−08
1.25E−05
SSR3
1.18
4.73E−05
3.26E−04
WASF2
1.14
6.40E−04
2.04E−03



INHBA
7.51
6.79E−08
1.25E−05
TCAF1
1.25
4.73E−05
3.26E−04
ERCC5
1.38
6.45E−04
2.05E−03



JAG1
3.94
5.88E−08
1.25E−05
ZBTB38
1.33
4.73E−05
3.26E−04
SLK
1.24
6.45E−04
2.05E−03



KIAA0040
9.87
5.99E−08
1.25E−05
SAT1
2.51
4.76E−05
3.26E−04
MNT
1.25
6.46E−04
2.05E−03



KLHL21
2.48
7.01E−08
1.25E−05
SERPIND1
3.83
4.76E−05
3.27E−04
ZPR1
1.20
6.54E−04
2.07E−03



STRA6
2.68
7.38E−08
1.25E−05
FXYD5
1.32
4.78E−05
3.27E−04
TAP1
1.32
6.58E−04
2.08E−03



TAGLN2
1.82
5.22E−08
1.25E−05
XIAP
1.25
4.80E−05
3.27E−04
MGST1
1.24
6.59E−04
2.08E−03



VCAN
14.73
5.96E−08
1.25E−05
RAB22A
1.43
4.81E−05
3.28E−04
PBXIP1
1.31
6.63E−04
2.09E−03



ZNF611
3.71
6.53E−08
1.25E−05
AKAP13
1.19
4.87E−05
3.31E−04
FBXW4
1.27
6.67E−04
2.10E−03



KCNG1
3.26
8.83E−08
1.37E−05
LINC00623
1.81
4.88E−05
3.31E−04
YKT6
1.17
6.69E−04
2.11E−03



FLRT2
10.17
9.30E−08
1.41E−05
RGS19
1.73
4.92E−05
3.32E−04
C16orf45
1.23
6.75E−04
2.12E−03



ATP6V0A4
9.02
9.76E−08
1.41E−05
TLDC1
2.10
4.91E−05
3.32E−04
CREG1
1.15
6.79E−04
2.13E−03



RHOC
1.90
1.19E−07
1.62E−05
TRAPPC1
1.30
4.91E−05
3.32E−04
INTS7
1.15
6.79E−04
2.13E−03



S100A10
1.83
1.17E−07
1.62E−05
NAGK
1.61
5.00E−05
3.36E−04
SLC33A1
1.52
6.80E−04
2.13E−03



CDYL2
3.29
1.24E−07
1.67E−05
SLFN5
2.56
5.03E−05
3.38E−04
ZC3HAV1
1.24
6.90E−04
2.15E−03



BTBD11
16.62
1.29E−07
1.69E−05
PDE4A
1.47
5.05E−05
3.38E−04
FKBP9
1.16
6.93E−04
2.16E−03



LEMD1
6.37
1.37E−07
1.69E−05
QSOX1
1.46
5.09E−05
3.40E−04
ANXA4
1.34
6.98E−04
2.17E−03



PAPSS2
3.19
1.37E−07
1.69E−05
DNAJC5
1.13
5.20E−05
3.46E−04
CYLD
1.38
6.99E−04
2.17E−03



PI3
45.17
1.36E−07
1.69E−05
EEF2
1.21
5.30E−05
3.50E−04
SMIM3
1.94
6.99E−04
2.17E−03



STEAP3
2.33
1.34E−07
1.69E−05
MAP4K4
1.13
5.30E−05
3.50E−04
TMEM208
1.17
7.01E−04
2.18E−03



TFPI2
4.76
1.30E−07
1.69E−05
ATXN10
1.23
5.36E−05
3.53E−04
LOC102723724
1.24
7.02E−04
2.18E−03



ACOT7
1.71
1.59E−07
1.73E−05
KYNU
1.35
5.37E−05
3.54E−04
RALGPS2
1.49
7.05E−04
2.19E−03



CDKN1A
1.95
1.48E−07
1.73E−05
CDIPT
1.32
5.39E−05
3.55E−04
FLT3LG
1.66
7.06E−04
2.19E−03



COL6A3
4.73
1.53E−07
1.73E−05
RNF182
2.34
5.39E−05
3.55E−04
LIX1L
1.21
7.07E−04
2.19E−03



IL24
4.20
1.59E−07
1.73E−05
MED13
1.46
5.40E−05
3.55E−04
PLPPR2
1.28
7.07E−04
2.19E−03



OPTN
2.90
1.49E−07
1.73E−05
SETD7
1.34
5.52E−05
3.61E−04
COX6B1
1.14
7.09E−04
2.19E−03



CD55
3.45
1.66E−07
1.75E−05
MGST3
2.15
5.53E−05
3.61E−04
TMEM245
1.17
7.10E−04
2.19E−03



RPS4X
1.25
1.65E−07
1.75E−05
RRM2B
1.38
5.61E−05
3.65E−04
PYGL
1.13
7.14E−04
2.20E−03



C1orf21
3.83
1.75E−07
1.82E−05
ARPC5L
1.17
5.65E−05
3.67E−04
TMEM259
1.13
7.14E−04
2.20E−03



SERPINB2
41.26
1.78E−07
1.83E−05
SQSTM1
1.27
5.69E−05
3.69E−04
TMEM102
1.53
7.15E−04
2.20E−03



DUSP5
3.01
1.82E−07
1.84E−05
TNIP1
1.63
5.70E−05
3.69E−04
IKBKE
1.31
7.17E−04
2.21E−03



NRP1
3.02
1.90E−07
1.88E−05
SNX8
1.28
5.71E−05
3.70E−04
EHBP1L1
1.13
7.18E−04
2.21E−03



TTPAL
1.49
1.96E−07
1.92E−05
DNER
8.39
5.72E−05
3.70E−04
PRDX5
1.27
7.20E−04
2.21E−03



CHMP4C
4.70
2.01E−07
1.95E−05
PPP1R14B
1.42
5.78E−05
3.73E−04
ISG20
1.11
7.21E−04
2.21E−03



MMP14
2.79
2.12E−07
2.02E−05
FRMD3
2.09
5.84E−05
3.76E−04
GRIPAP1
1.27
7.25E−04
2.22E−03



B3GNT2
2.68
2.22E−07
2.06E−05
DNM3
2.38
5.86E−05
3.76E−04
ZBED1
1.36
7.25E−04
2.22E−03



PDZRN3
9.28
2.20E−07
2.06E−05
LRRC8A
1.24
5.87E−05
3.76E−04
ZFAND1
1.33
7.25E−04
2.22E−03



MCL1
1.53
2.30E−07
2.12E−05
NDUFB8
1.35
5.87E−05
3.76E−04
MICAL1
1.41
7.27E−04
2.23E−03



TMCC2
6.66
2.33E−07
2.12E−05
ARPC5
1.24
5.94E−05
3.80E−04
ATRAID
1.08
7.28E−04
2.23E−03



AMOTL1
2.17
2.42E−07
2.12E−05
KLF5
1.65
5.96E−05
3.81E−04
NSMAF
1.18
7.28E−04
2.23E−03



KDM6B
2.19
2.44E−07
2.12E−05
FLOT1
1.46
5.97E−05
3.81E−04
CBFB
1.21
7.33E−04
2.24E−03



FBXO27
2.95
2.52E−07
2.13E−05
ANKRD13A
1.35
6.04E−05
3.84E−04
NR3C1
1.32
7.35E−04
2.24E−03



TAGLN3
7.21
2.52E−07
2.13E−05
EAF1
1.21
6.06E−05
3.85E−04
UFC1
1.30
7.37E−04
2.25E−03



BCL2A1
32.36
2.56E−07
2.14E−05
ATP6V1G1
1.24
6.07E−05
3.86E−04
NBPF14
1.24
7.40E−04
2.25E−03



PMEPA1
2.22
2.61E−07
2.15E−05
LINC01057
1.62
6.08E−05
3.86E−04
LINC00504
1.15
7.42E−04
2.26E−03



ITGA2
7.39
2.71E−07
2.17E−05
DLX2
2.24
6.13E−05
3.88E−04
FAM114A1
1.26
7.46E−04
2.27E−03



PLEKHG5
3.50
2.66E−07
2.17E−05
VEGFB
1.28
6.17E−05
3.89E−04
DGCR2
1.13
7.47E−04
2.27E−03



SCEL
26.37
2.71E−07
2.17E−05
EFL1
1.57
6.18E−05
3.90E−04
RPS28
1.07
7.50E−04
2.28E−03



TMEM158
15.72
2.78E−07
2.17E−05
KIF13A
1.88
6.39E−05
3.99E−04
SLC1A1
1.60
7.56E−04
2.29E−03



CLMP
7.17
3.15E−07
2.21E−05
COL9A3
1.31
6.44E−05
4.01E−04
FRMD4A
1.20
7.57E−04
2.29E−03



CXCL14
33.95
3.13E−07
2.21E−05
RNF213
1.23
6.45E−05
4.02E−04
PARP12
1.73
7.68E−04
2.32E−03



LAMC1
1.40
3.10E−07
2.21E−05
APLP1
2.35
6.47E−05
4.03E−04
CEP170
1.15
7.70E−04
2.32E−03



MMP1
16.55
3.04E−07
2.21E−05
EDNRB
2.41
6.54E−05
4.06E−04
STX2
1.34
7.72E−04
2.32E−03



MYH9
1.87
2.98E−07
2.21E−05
FHOD1
1.17
6.55E−05
4.07E−04
MAGED2
1.33
7.75E−04
2.33E−03



MYO1D
3.73
2.93E−07
2.21E−05
CACNB3
1.46
6.57E−05
4.07E−04
CERCAM
1.27
7.78E−04
2.34E−03



NRCAM
4.15
2.99E−07
2.21E−05
GLRX
1.62
6.59E−05
4.07E−04
MIR100HG
1.19
7.80E−04
2.34E−03



PHLDB3
2.49
3.01E−07
2.21E−05
FAM127A
1.48
6.60E−05
4.07E−04
CLDND1
1.25
7.81E−04
2.34E−03



RTL1
7.42
3.08E−07
2.21E−05
NIPA1
1.22
6.67E−05
4.11E−04
TM9SF3
1.25
7.83E−04
2.35E−03



S100A6
1.71
2.87E−07
2.21E−05
MROH1
1.76
6.77E−05
4.17E−04
PNPLA8
1.22
7.90E−04
2.37E−03



MMP10
43.42
3.22E−07
2.25E−05
MFHAS1
1.55
6.83E−05
4.18E−04
LGMN
1.67
7.97E−04
2.38E−03



NTSR1
4.74
3.48E−07
2.29E−05
SNX29
1.35
6.83E−05
4.18E−04
IL10RB
1.21
7.99E−04
2.38E−03



TRPV2
2.00
3.46E−07
2.29E−05
DBN1
1.42
6.84E−05
4.19E−04
PLK3
1.32
8.01E−04
2.39E−03



CTSS
15.14
3.65E−07
2.32E−05
TPBG
1.42
6.84E−05
4.19E−04
DNAJC4
1.27
8.07E−04
2.40E−03



S100A1
2.18
3.64E−07
2.32E−05
RAI14
1.60
6.89E−05
4.21E−04
CHIC2
1.26
8.14E−04
2.41E−03



SDC1
3.19
3.67E−07
2.32E−05
RAP2B
2.06
6.89E−05
4.21E−04
TIPARP
1.25
8.23E−04
2.44E−03



SETBP1
4.44
3.68E−07
2.32E−05
IFI30
1.43
7.03E−05
4.26E−04
IL1RAPL1
1.61
8.27E−04
2.44E−03



TMEM2
3.18
3.68E−07
2.32E−05
MORF4L2
1.13
7.04E−05
4.26E−04
ZBTB4
1.25
8.29E−04
2.45E−03



NR4A1
2.01
3.78E−07
2.35E−05
MYSM1
1.62
7.05E−05
4.26E−04
ACO1
1.12
8.31E−04
2.45E−03



WNT5A
2.66
3.75E−07
2.35E−05
RCN1
1.33
7.05E−05
4.26E−04
TMEM258
1.24
8.33E−04
2.46E−03



ERGIC1
2.14
3.91E−07
2.36E−05
SHROOM4
1.70
7.04E−05
4.26E−04
NOL9
1.27
8.35E−04
2.46E−03



KIAA1549L
2.41
3.87E−07
2.36E−05
SVIL
1.50
7.05E−05
4.26E−04
TMEM127
1.28
8.51E−04
2.50E−03



SLC1A6
50.01
3.92E−07
2.36E−05
CD96
1.33
7.11E−05
4.29E−04
C6orf1
1.19
8.56E−04
2.51E−03



NCAM1
6.18
4.02E−07
2.40E−05
FSCN1
1.22
7.14E−05
4.30E−04
PLEC
1.21
8.56E−04
2.51E−03



ABHD2
1.95
4.44E−07
2.46E−05
SOX10
1.30
7.15E−05
4.30E−04
ARL4C
1.49
8.60E−04
2.52E−03



ABR
1.63
4.46E−07
2.46E−05
SERINCS
2.02
7.19E−05
4.31E−04
GOLT1B
1.27
8.60E−04
2.52E−03



BRINP2
14.54
4.41E−07
2.46E−05
PPP1R26
1.29
7.26E−05
4.33E−04
STT3A
1.08
8.60E−04
2.52E−03



CCL3
26.58
4.30E−07
2.46E−05
KCNN4
1.69
7.27E−05
4.34E−04
ZCCHC6
1.31
8.62E−04
2.52E−03



FYN
1.65
4.48E−07
2.46E−05
RAB11FIP1
1.47
7.48E−05
4.44E−04
KMT2D
1.09
8.63E−04
2.52E−03



NMNAT2
2.95
4.47E−07
2.46E−05
LIMS1
1.28
7.50E−05
4.44E−04
POPDC3
1.30
8.67E−04
2.53E−03



TBX2
3.15
4.39E−07
2.46E−05
PLD3
1.53
7.50E−05
4.44E−04
YAP1
1.25
8.68E−04
2.53E−03



ATOX1
1.90
4.62E−07
2.47E−05
LOC101929959
1.14
7.55E−05
4.46E−04
ARF4
1.17
8.77E−04
2.56E−03



FHL2
2.54
4.63E−07
2.47E−05
SH2D2A
3.93
7.61E−05
4.48E−04
TRIM11
1.15
8.84E−04
2.57E−03



NT5E
2.78
4.65E−07
2.47E−05
MARVELD1
1.38
7.65E−05
4.50E−04
MAPKAPK2
1.26
8.84E−04
2.57E−03



ULK1
3.14
4.60E−07
2.47E−05
SCAF11
1.09
7.70E−05
4.52E−04
RANGAP1
1.12
8.93E−04
2.59E−03



CDCP1
13.40
4.68E−07
2.47E−05
ZFYVE16
1.71
7.76E−05
4.55E−04
NTM
1.81
8.95E−04
2.60E−03



PFDN2
1.41
4.76E−07
2.50E−05
DPP3
1.23
7.80E−05
4.57E−04
STUB1
1.14
8.96E−04
2.60E−03



ADAM19
2.25
4.84E−07
2.51E−05
SLC52A2
1.38
7.80E−05
4.57E−04
LAMB2
1.25
8.97E−04
2.60E−03



LYPD1
3.41
4.97E−07
2.53E−05
DSG2
1.26
7.83E−05
4.58E−04
FAM222B
1.17
9.00E−04
2.61E−03



MYL6
1.58
4.94E−07
2.53E−05
SRPK1
1.07
7.91E−05
4.61E−04
ENC1
1.15
9.02E−04
2.61E−03



MET
1.88
5.12E−07
2.56E−05
GNB1
1.19
7.93E−05
4.61E−04
FBXO28
1.20
9.03E−04
2.62E−03



PKIA
3.71
5.07E−07
2.56E−05
PDGFC
2.62
7.95E−05
4.62E−04
IDUA
1.52
9.04E−04
2.62E−03



S100A2
3.12
5.24E−07
2.60E−05
FAM89B
1.49
8.05E−05
4.66E−04
DYNLRB1
1.10
9.11E−04
2.63E−03



PTGFRN
2.01
5.52E−07
2.68E−05
PRKCDBP
2.28
8.05E−05
4.66E−04
NORAD
1.13
9.37E−04
2.70E−03



LPXN
3.52
5.61E−07
2.68E−05
SLC35C1
1.51
8.12E−05
4.68E−04
FMN2
1.59
9.43E−04
2.71E−03



PLA2G4A
8.02
5.58E−07
2.68E−05
TATDN2
1.27
8.17E−05
4.71E−04
TAX1BP3
1.23
9.43E−04
2.71E−03



DSP
3.92
5.79E−07
2.71E−05
PARP3
1.51
8.18E−05
4.71E−04
PNPLA2
1.14
9.43E−04
2.71E−03



SLAMF9
16.53
6.00E−07
2.78E−05
PPTC7
1.42
8.22E−05
4.72E−04
HIST1H2AC
1.97
9.47E−04
2.72E−03



LCE1E
290.24
6.29E−07
2.84E−05
TLE3
1.38
8.28E−05
4.75E−04
SAGE1
1.25
9.48E−04
2.72E−03



NFKB2
2.35
6.28E−07
2.84E−05
IGSF8
1.90
8.30E−05
4.75E−04
NOV
1.63
9.51E−04
2.73E−03



TIMP3
2.06
6.27E−07
2.84E−05
AES
1.25
8.38E−05
4.79E−04
LOC102723728
1.36
9.55E−04
2.74E−03



MPZL1
1.46
6.34E−07
2.85E−05
ARRDC2
1.38
8.45E−05
4.83E−04
TMEM64
1.27
9.57E−04
2.74E−03



LGALS1
1.30
6.37E−07
2.85E−05
IMPDH1
1.28
8.48E−05
4.84E−04
XBP1
1.15
9.66E−04
2.76E−03



TIMP1
4.53
6.45E−07
2.87E−05
AKR1C2
2.34
8.56E−05
4.87E−04
REEP5
1.19
9.70E−04
2.77E−03



CXCL8
8.05
6.64E−07
2.93E−05
PORCN
2.11
8.57E−05
4.88E−04
RELT
1.52
9.70E−04
2.77E−03



WSCD1
6.36
6.76E−07
2.95E−05
FOXN2
1.59
8.63E−05
4.90E−04
RPRD1A
1.50
9.77E−04
2.79E−03



KCNS3
3.22
6.82E−07
2.97E−05
FAM107B
2.32
8.70E−05
4.93E−04
CHMP3
1.24
9.78E−04
2.79E−03



A4GALT
6.11
6.97E−07
3.00E−05
PICALM
1.30
8.78E−05
4.96E−04
PGPEP1
1.43
9.86E−04
2.81E−03



DUSP1
10.47
6.96E−07
3.00E−05
GALNT7
1.53
8.79E−05
4.97E−04
HM13
1.10
9.96E−04
2.84E−03



BIRC2
2.89
7.23E−07
3.07E−05
LOC105372663
6.01
8.83E−05
4.98E−04
YIPF5
1.26
9.98E−04
2.84E−03



LIF
4.55
7.21E−07
3.07E−05
TBX3
1.36
8.97E−05
5.05E−04
PLPP5
1.32
1.00E−03
2.85E−03



ANXA2
1.58
7.31E−07
3.07E−05
VPS9D1
1.25
8.98E−05
5.05E−04
EPN2
1.29
1.00E−03
2.85E−03



HIVEP2
2.16
7.42E−07
3.09E−05
HIGD1A
1.20
9.02E−05
5.07E−04
SHARPIN
1.23
1.01E−03
2.86E−03



FN1
1.36
7.50E−07
3.10E−05
RELA
1.39
9.06E−05
5.08E−04
SDE2
1.21
1.01E−03
2.87E−03



USP43
6.71
7.66E−07
3.12E−05
RRAS
1.66
9.07E−05
5.08E−04
ABAT
1.51
1.01E−03
2.87E−03



AKAP12
1.74
7.74E−07
3.13E−05
TTC14
1.31
9.09E−05
5.08E−04
POGK
1.24
1.01E−03
2.87E−03



S100A13
1.54
7.96E−07
3.17E−05
CD82
1.95
9.13E−05
5.10E−04
DAPK3
1.23
1.02E−03
2.87E−03



LCE3E
106.45
8.10E−07
3.19E−05
TMEM8A
1.69
9.13E−05
5.10E−04
PITPNM2
1.56
1.02E−03
2.87E−03



BMP2
12.05
8.50E−07
3.30E−05
GLIS3
1.68
9.14E−05
5.10E−04
ADGRES
1.17
1.02E−03
2.88E−03



BIRC3
10.78
8.77E−07
3.39E−05
ATP6V1A
1.17
9.16E−05
5.11E−04
NADSYN1
1.38
1.02E−03
2.88E−03



MBOAT2
3.19
8.95E−07
3.43E−05
RAB7A
1.26
9.23E−05
5.14E−04
EEF2KMT
1.25
1.03E−03
2.89E−03



AGTRAP
1.57
9.66E−07
3.63E−05
LOC101927120
12.44
9.24E−05
5.14E−04
TMEM189
1.14
1.03E−03
2.90E−03



ETHE1
3.10
9.66E−07
3.63E−05
MSL2
1.18
9.27E−05
5.15E−04
TRPM4
1.57
1.03E−03
2.91E−03



KLF7
3.68
9.90E−07
3.66E−05
CRCT1
15.56
9.29E−05
5.16E−04
C14orf159
1.62
1.04E−03
2.93E−03



NFASC
3.74
9.89E−07
3.66E−05
H6PD
1.28
9.29E−05
5.16E−04
RNF13
1.15
1.04E−03
2.93E−03



CST1
186.40
1.06E−06
3.86E−05
UCA1
2.72
9.37E−05
5.20E−04
WFS1
1.26
1.05E−03
2.94E−03



EPAS1
10.90
1.07E−06
3.88E−05
TCF7L2
1.51
9.53E−05
5.27E−04
SLC9B2
1.32
1.05E−03
2.95E−03



FAM19A2
7.06
1.09E−06
3.92E−05
AP1B1
1.18
9.55E−05
5.27E−04
ZNF707
1.16
1.05E−03
2.95E−03



ANGPTL2
3.13
1.11E−06
3.95E−05
FBN1
1.38
9.60E−05
5.29E−04
LMF2
1.41
1.05E−03
2.95E−03



OPRL1
18.22
1.13E−06
3.98E−05
FEM1C
1.30
9.62E−05
5.29E−04
LOC100507377
1.33
1.06E−03
2.97E−03



GEM
4.40
1.19E−06
4.10E−05
10-Sep
1.30
9.61E−05
5.29E−04
TSPAN3
1.32
1.06E−03
2.97E−03



MYADM
1.68
1.20E−06
4.11E−05
TM4SF19
1.71
9.60E−05
5.29E−04
DENNDSA
1.29
1.07E−03
2.98E−03



STC1
5.09
1.20E−06
4.11E−05
CYFIP2
1.98
9.62E−05
5.29E−04
PPP2R5B
1.29
1.07E−03
3.00E−03



ALDH1A3
1.30
1.23E−06
4.17E−05
IRS2
1.36
9.63E−05
5.29E−04
CDC37
1.07
1.08E−03
3.00E−03



PITPNC1
3.14
1.28E−06
4.28E−05
HS3ST3B1
5.60
9.66E−05
5.30E−04
TSHZ1
1.25
1.08E−03
3.00E−03



TMBIM1
2.26
1.28E−06
4.28E−05
NFE2L1
1.14
9.82E−05
5.37E−04
ATP6V0B
1.15
1.09E−03
3.02E−03



SPANXB1
3.12
1.29E−06
4.29E−05
RNF215
1.57
9.82E−05
5.37E−04
TCEAL1
2.07
1.10E−03
3.04E−03



IFNGR1
2.14
1.31E−06
4.29E−05
VIM
1.18
9.83E−05
5.37E−04
NECAP2
1.23
1.12E−03
3.09E−03



TPM4
1.42
1.30E−06
4.29E−05
CYTH2
1.31
9.86E−05
5.37E−04
TMEM63B
1.28
1.12E−03
3.09E−03



CIT
2.60
1.38E−06
4.42E−05
TRPS1
1.66
9.89E−05
5.38E−04
ZFP36
1.52
1.12E−03
3.10E−03



NRP2
1.96
1.36E−06
4.42E−05
STARD13
1.70
1.00E−04
5.45E−04
CDR2L
1.51
1.13E−03
3.11E−03



SPOCK1
2.78
1.36E−06
4.42E−05
STEAP1B
1.42
1.01E−04
5.48E−04
MAPKAP1
1.18
1.13E−03
3.11E−03



ST3GAL1
2.10
1.37E−06
4.42E−05
SPAG9
1.44
1.01E−04
5.48E−04
EMC10
1.48
1.13E−03
3.12E−03



ITGAS
2.24
1.39E−06
4.43E−05
SYVN1
1.38
1.01E−04
5.48E−04
SDF2
1.16
1.13E−03
3.13E−03



PERP
1.86
1.40E−06
4.43E−05
ARAP1
1.33
1.02E−04
5.51E−04
EEF1A1
1.08
1.14E−03
3.13E−03



TMBIM6
1.16
1.39E−06
4.43E−05
MAFG
1.50
1.02E−04
5.53E−04
B3GAT3
1.22
1.15E−03
3.15E−03



WNT9A
8.21
1.40E−06
4.43E−05
GADD45B
1.80
1.02E−04
5.54E−04
CD164
1.20
1.16E−03
3.18E−03



FAT3
5.84
1.46E−06
4.60E−05
DMKN
2.57
1.03E−04
5.54E−04
DPP9
1.11
1.16E−03
3.18E−03



HMOX1
4.62
1.49E−06
4.62E−05
C7orf43
1.36
1.03E−04
5.54E−04
PGRMC1
1.14
1.16E−03
3.19E−03



LCE1C
79.96
1.49E−06
4.62E−05
DUSP7
1.29
1.04E−04
5.60E−04
WDFY2
1.61
1.16E−03
3.19E−03



RNF19B
3.91
1.49E−06
4.62E−05
UBA6-AS1
1.78
1.05E−04
5.60E−04
PPP4R1
1.42
1.18E−03
3.22E−03



TOMM34
1.90
1.49E−06
4.62E−05
GALNT6
2.73
1.05E−04
5.61E−04
FAM199X
1.12
1.18E−03
3.23E−03



ADIPOR1
1.45
1.55E−06
4.67E−05
KCNC4
4.83
1.06E−04
5.64E−04
BCAS3
1.67
1.18E−03
3.23E−03



BPGM
3.63
1.53E−06
4.67E−05
PLOD1
1.26
1.06E−04
5.64E−04
C6orf89
1.17
1.18E−03
3.23E−03



TM4SF1
3.11
1.56E−06
4.67E−05
SZT2
1.16
1.06E−04
5.64E−04
NDN
1.25
1.18E−03
3.23E−03



DIP2B
3.61
1.60E−06
4.74E−05
MMP9
6.53
1.06E−04
5.65E−04
GPN1
1.26
1.19E−03
3.24E−03



CD93
11.75
1.62E−06
4.75E−05
CALCOCO1
1.42
1.07E−04
5.65E−04
PAQR4
1.20
1.19E−03
3.24E−03



SREK1IP1
2.09
1.61E−06
4.75E−05
UBL3
1.52
1.07E−04
5.65E−04
SLCO4A1-AS1
1.47
1.19E−03
3.24E−03



STIM1
2.05
1.62E−06
4.75E−05
SLC20A1
1.19
1.08E−04
5.68E−04
UHMK1
1.19
1.19E−03
3.24E−03



TLN2
3.95
1.63E−06
4.75E−05
MLXIP
1.40
1.09E−04
5.74E−04
YIPF3
1.12
1.19E−03
3.24E−03



GRB10
3.48
1.66E−06
4.77E−05
ABI1
1.39
1.09E−04
5.75E−04
PAFAH1B2
1.25
1.19E−03
3.24E−03



GPRC5A
1.95
1.70E−06
4.78E−05
TMEM87A
1.37
1.10E−04
5.76E−04
SMAD7
2.17
1.20E−03
3.27E−03



LRIG1
4.18
1.69E−06
4.78E−05
CEP170B
1.57
1.10E−04
5.78E−04
C11orf68
1.39
1.21E−03
3.28E−03



PFKFB4
2.37
1.68E−06
4.78E−05
LOC102724122
1.61
1.10E−04
5.78E−04
C9orf72
1.70
1.21E−03
3.28E−03



PLAUR
2.45
1.67E−06
4.78E−05
ITM2B
1.11
1.11E−04
5.78E−04
TPM3
1.11
1.21E−03
3.28E−03



HMGA2
2.09
1.71E−06
4.79E−05
HES1
1.72
1.11E−04
5.80E−04
TRIM35
1.55
1.22E−03
3.29E−03



ACPP
24.20
1.72E−06
4.80E−05
MAGEA10
1.69
1.11E−04
5.81E−04
COX1
1.16
1.24E−03
3.34E−03



TMSB10
1.60
1.73E−06
4.82E−05
CCNDBP1
1.58
1.11E−04
5.81E−04
RNASEK
1.31
1.24E−03
3.35E−03



MYD88
3.03
1.74E−06
4.83E−05
ZNF267
1.85
1.12E−04
5.82E−04
TMEM134
1.42
1.25E−03
3.37E−03



CCDC71L
1.84
1.76E−06
4.85E−05
B2M
1.29
1.12E−04
5.82E−04
ZFAND6
1.20
1.26E−03
3.39E−03



GALNT9
13.43
1.78E−06
4.85E−05
AHRR
1.39
1.12E−04
5.82E−04
HLA-F
1.82
1.26E−03
3.39E−03



KRTAP2-3
6.40
1.78E−06
4.85E−05
CALD1
1.39
1.12E−04
5.82E−04
MEX3C
1.18
1.26E−03
3.40E−03



PHLDA1
1.58
1.77E−06
4.85E−05
SMAP1
1.25
1.12E−04
5.82E−04
BET1L
1.12
1.27E−03
3.41E−03



ACTG1
1.35
1.78E−06
4.85E−05
MAN2B1
1.40
1.13E−04
5.83E−04
FBXO11
1.19
1.29E−03
3.45E−03



RGMB
3.23
1.79E−06
4.85E−05
MDGA1
5.88
1.14E−04
5.87E−04
PCBD1
1.30
1.29E−03
3.46E−03



ACOT9
1.92
1.81E−06
4.89E−05
FGFR1
1.43
1.15E−04
5.89E−04
BHLHE40
1.39
1.29E−03
3.46E−03



PTPRZ1
33.73
1.85E−06
4.95E−05
FLOT2
1.38
1.15E−04
5.89E−04
GNAI1
1.47
1.30E−03
3.47E−03



TRNP1
2.20
1.85E−06
4.95E−05
NPDC1
1.90
1.15E−04
5.89E−04
NDEL1
1.22
1.32E−03
3.51E−03



FEZ1
1.50
1.97E−06
5.14E−05
CENPM
1.65
1.15E−04
5.89E−04
SMIM19
1.23
1.32E−03
3.52E−03



SMTN
2.09
1.97E−06
5.14E−05
ABLIM1
1.93
1.15E−04
5.91E−04
UHRF2
1.42
1.33E−03
3.54E−03



C1orf198
3.14
2.07E−06
5.32E−05
GAK
1.40
1.16E−04
5.91E−04
PTTG1IP
1.18
1.34E−03
3.57E−03



KPRP
54.25
2.06E−06
5.32E−05
CTHRC1
2.10
1.17E−04
5.98E−04
SMARCA2
1.27
1.34E−03
3.57E−03



NUP50
1.87
2.07E−06
5.32E−05
RPL10
1.12
1.17E−04
5.98E−04
DPY19L3
1.33
1.34E−03
3.57E−03



IGF2R
1.16
2.17E−06
5.42E−05
TERF2IP
1.18
1.17E−04
5.98E−04
HYAL3
1.59
1.35E−03
3.57E−03



NUAK2
7.22
2.15E−06
5.42E−05
ZNF275
1.62
1.17E−04
5.98E−04
HS3ST3A1
1.22
1.35E−03
3.58E−03



SEL1L3
2.22
2.15E−06
5.42E−05
MYO10
1.78
1.19E−04
6.06E−04
PRCP
1.27
1.35E−03
3.58E−03



GRN
1.61
2.19E−06
5.45E−05
DHRS1
1.81
1.21E−04
6.12E−04
FAM134C
1.17
1.37E−03
3.61E−03



MAP1B
2.08
2.20E−06
5.45E−05
EIF1
1.20
1.21E−04
6.13E−04
ADO
1.40
1.37E−03
3.62E−03



TMCC3
2.82
2.24E−06
5.50E−05
CTSB
1.24
1.22E−04
6.16E−04
SP100
1.47
1.37E−03
3.62E−03



LINC00941
3.78
2.28E−06
5.53E−05
SLC2A13
2.67
1.23E−04
6.22E−04
ZNF444
1.20
1.37E−03
3.62E−03



ATG101
1.23
2.30E−06
5.55E−05
NOP9
1.14
1.24E−04
6.24E−04
SLC35F2
1.39
1.38E−03
3.63E−03



S100A11
1.85
2.36E−06
5.67E−05
ARHGEF4
2.31
1.24E−04
6.26E−04
NENF
1.14
1.38E−03
3.63E−03



JOSD1
1.67
2.37E−06
5.68E−05
ENTPD7
1.57
1.25E−04
6.27E−04
EDEM3
1.17
1.38E−03
3.64E−03



GAS6
1.81
2.39E−06
5.70E−05
KIF1C
1.15
1.25E−04
6.27E−04
SLC4A3
1.39
1.38E−03
3.64E−03



ARPC1B
1.61
2.41E−06
5.74E−05
RAB6A
1.33
1.25E−04
6.27E−04
EDEM2
1.17
1.39E−03
3.65E−03



LRRFIP1
1.73
2.48E−06
5.82E−05
REST
1.27
1.25E−04
6.28E−04
MYO1E
1.12
1.39E−03
3.66E−03



MVP
1.81
2.48E−06
5.82E−05
ACTB
1.08
1.25E−04
6.29E−04
FAM214A
1.23
1.39E−03
3.66E−03



PSAP
1.61
2.48E−06
5.82E−05
MAP3K4
1.43
1.26E−04
6.30E−04
INSIG1
1.21
1.39E−03
3.66E−03



ZNF536
3.88
2.46E−06
5.82E−05
POLD4
1.48
1.27E−04
6.32E−04
ELK4
1.31
1.40E−03
3.66E−03



MAP1S
1.79
2.49E−06
5.83E−05
VAT1L
1.78
1.27E−04
6.32E−04
ARPP19
1.15
1.40E−03
3.67E−03



ARSB
5.08
2.52E−06
5.85E−05
CSRP1
1.33
1.27E−04
6.34E−04
KRT15
1.38
1.41E−03
3.69E−03



HGS
1.41
2.52E−06
5.85E−05
ALDH9A1
1.23
1.27E−04
6.34E−04
LGALS3BP
1.14
1.41E−03
3.69E−03



PDLIM7
2.22
2.54E−06
5.86E−05
PDLIM4
1.24
1.27E−04
6.35E−04
ARHGAP31
1.39
1.42E−03
3.71E−03



HLA-C
1.34
2.55E−06
5.86E−05
CAP1
1.18
1.28E−04
6.36E−04
CSTB
1.26
1.43E−03
3.75E−03



CDK5R1
1.75
2.63E−06
5.95E−05
SEC61A1
1.14
1.28E−04
6.37E−04
FAM234A
1.17
1.44E−03
3.77E−03



PRRT4
15.52
2.66E−06
5.99E−05
GALNT1
1.32
1.28E−04
6.37E−04
KDELC1
1.31
1.45E−03
3.78E−03



CCDC80
2.95
2.69E−06
6.02E−05
GM2A
1.41
1.28E−04
6.37E−04
CMAS
1.23
1.45E−03
3.78E−03



UBA1
1.17
2.74E−06
6.08E−05
ISCA1
1.48
1.30E−04
6.42E−04
PDPK1
1.19
1.47E−03
3.82E−03



WLS
1.53
2.77E−06
6.11E−05
NDFIP1
1.23
1.30E−04
6.42E−04
SLC25A4
1.14
1.47E−03
3.82E−03



GIPC1
1.30
2.79E−06
6.13E−05
PRR12
1.12
1.31E−04
6.46E−04
EIF2AK1
1.16
1.48E−03
3.85E−03



BLACAT1
2.56
2.80E−06
6.14E−05
MAFK
1.66
1.31E−04
6.47E−04
MGC72080
1.31
1.48E−03
3.85E−03



USP11
1.53
2.84E−06
6.19E−05
RASAL2
1.22
1.32E−04
6.50E−04
SIK3
1.32
1.48E−03
3.85E−03



GALNT12
9.13
2.85E−06
6.19E−05
ANKRA2
1.63
1.34E−04
6.56E−04
UHRF1BP1L
1.22
1.48E−03
3.85E−03



CD9
2.43
2.89E−06
6.19E−05
COPZ2
1.62
1.34E−04
6.57E−04
WIPI1
1.36
1.49E−03
3.86E−03



CUEDC1
1.41
2.87E−06
6.19E−05
FRYL
1.38
1.34E−04
6.57E−04
STXBP3
1.25
1.50E−03
3.90E−03



LCE1D
183.66
2.88E−06
6.19E−05
PRKCD
1.36
1.35E−04
6.61E−04
CD81
1.18
1.51E−03
3.91E−03



NPC1
1.52
2.90E−06
6.19E−05
SLC1A4
1.42
1.36E−04
6.66E−04
PTRH1
1.50
1.53E−03
3.95E−03



PNP
1.84
2.89E−06
6.19E−05
CORO1B
1.22
1.36E−04
6.66E−04
BLOC1S6
1.13
1.53E−03
3.96E−03



ND3
1.26
2.91E−06
6.19E−05
C7orf73
1.34
1.37E−04
6.68E−04
IFI27L2
1.59
1.54E−03
3.97E−03



G3BP1
1.23
2.96E−06
6.25E−05
ICAM1
1.43
1.37E−04
6.68E−04
DYRK3
1.16
1.54E−03
3.97E−03



ID1
2.35
2.96E−06
6.25E−05
PIKFYVE
1.36
1.38E−04
6.72E−04
SNX30
1.29
1.55E−03
4.00E−03



CXCL1
3.12
3.01E−06
6.32E−05
DNAJB9
1.67
1.40E−04
6.79E−04
SIRPB1
2.12
1.55E−03
4.00E−03



MYO5A
2.62
3.03E−06
6.34E−05
PLPP4
1.87
1.40E−04
6.79E−04
HTT
1.11
1.56E−03
4.01E−03



CCND1
1.23
3.05E−06
6.38E−05
KLF6
1.82
1.41E−04
6.81E−04
GZF1
1.80
1.56E−03
4.01E−03



FBXO32
2.47
3.08E−06
6.38E−05
LTBP3
1.20
1.41E−04
6.81E−04
RAB18
1.31
1.57E−03
4.05E−03



MELTF
1.81
3.08E−06
6.38E−05
WBP1L
1.42
1.41E−04
6.82E−04
UBL5
1.07
1.59E−03
4.08E−03



PIEZO1
1.60
3.09E−06
6.38E−05
ELK3
1.07
1.42E−04
6.82E−04
ATG13
1.05
1.60E−03
4.09E−03



CAPN1
1.58
3.13E−06
6.44E−05
PTPRM
2.41
1.42E−04
6.82E−04
DNASE1L1
1.54
1.60E−03
4.10E−03



AREG
9.92
3.14E−06
6.45E−05
TUBB3
1.27
1.42E−04
6.82E−04
CLPTM1
1.10
1.61E−03
4.10E−03



ARIDSA
3.00
3.14E−06
6.45E−05
BCAS4
1.51
1.42E−04
6.84E−04
LKAAEAR1
7.81
1.60E−03
4.10E−03



SLC39A6
1.74
3.20E−06
6.54E−05
HIST1H2BK
2.47
1.43E−04
6.84E−04
KCTD11
1.52
1.62E−03
4.12E−03



RHOB
1.83
3.23E−06
6.57E−05
GRINA
1.23
1.44E−04
6.89E−04
FAM50A
1.12
1.62E−03
4.13E−03



PARP4
1.31
3.25E−06
6.59E−05
ANKRD36BP1
1.78
1.44E−04
6.89E−04
RCAN3
1.35
1.62E−03
4.13E−03



BTG1
1.49
3.28E−06
6.63E−05
PHKA1
1.52
1.44E−04
6.90E−04
TEX30
1.51
1.63E−03
4.15E−03



SORBS2
2.08
3.31E−06
6.64E−05
PTHLH
2.23
1.45E−04
6.91E−04
LOC100506548
1.28
1.63E−03
4.15E−03



CYBA
1.41
3.35E−06
6.68E−05
PSEN2
1.55
1.45E−04
6.94E−04
ACTR3
1.12
1.65E−03
4.18E−03



C3orf67
3.51
3.39E−06
6.69E−05
GPR161
1.80
1.46E−04
6.95E−04
MAVS
1.11
1.65E−03
4.18E−03



PYGB
1.29
3.38E−06
6.69E−05
TBC1D9B
1.11
1.48E−04
7.05E−04
DUSP23
1.23
1.66E−03
4.20E−03



TWF1
1.88
3.39E−06
6.69E−05
TBC1D9
1.88
1.49E−04
7.08E−04
SLCO4A1
1.28
1.66E−03
4.22E−03



LCE3D
107.08
3.43E−06
6.75E−05
VPS13C
1.31
1.49E−04
7.09E−04
RPS6KA4
1.18
1.67E−03
4.24E−03



PARM1
5.09
3.46E−06
6.77E−05
RECQL
1.21
1.50E−04
7.10E−04
BICD1
1.23
1.68E−03
4.24E−03



IL1A
4.03
3.69E−06
7.09E−05
TNFRSF25
2.66
1.50E−04
7.12E−04
PCGF3
1.09
1.68E−03
4.25E−03



OXSR1
1.62
3.71E−06
7.10E−05
RNF149
3.14
1.50E−04
7.12E−04
ZNF598
1.16
1.68E−03
4.25E−03



UCN2
3.37
3.77E−06
7.17E−05
IL11
1.55
1.51E−04
7.14E−04
WDR13
1.22
1.71E−03
4.30E−03



HMCN2
35.09
3.88E−06
7.29E−05
ZCCHC14
1.53
1.52E−04
7.17E−04
NOMO1
1.15
1.71E−03
4.31E−03



PMP22
1.36
4.12E−06
7.62E−05
ANKS6
1.49
1.52E−04
7.18E−04
ITPKB
1.44
1.71E−03
4.31E−03



FKBP10
1.41
4.18E−06
7.69E−05
LINC00467
1.22
1.53E−04
7.23E−04
SETD1B
1.11
1.73E−03
4.34E−03



PROSER2
3.15
4.21E−06
7.71E−05
IFT80
1.52
1.54E−04
7.24E−04
TRPC4AP
1.07
1.73E−03
4.34E−03



CDK17
2.28
4.23E−06
7.73E−05
SERGEF
1.49
1.54E−04
7.26E−04
SLC6A8
1.05
1.73E−03
4.34E−03



IRAK2
3.73
4.32E−06
7.81E−05
FAM134A
1.34
1.56E−04
7.33E−04
TGOLN2
1.05
1.73E−03
4.35E−03



FKBP1A
1.28
4.47E−06
7.96E−05
CNKSR3
1.69
1.58E−04
7.37E−04
DECR1
1.44
1.74E−03
4.36E−03



HIST2H2AA3
2.63
4.46E−06
7.96E−05
TACC1
1.25
1.58E−04
7.37E−04
DOCK7
1.34
1.74E−03
4.37E−03



HIST2H2AA4
2.63
4.46E−06
7.96E−05
GDNF
2.20
1.58E−04
7.38E−04
NCSTN
1.12
1.75E−03
4.37E−03



IKZF2
6.86
4.50E−06
7.98E−05
KRT14
1.21
1.58E−04
7.38E−04
GMIP
1.28
1.75E−03
4.38E−03



SYNJ2
2.13
4.50E−06
7.98E−05
SGK1
1.40
1.59E−04
7.39E−04
ZNFX1
1.25
1.76E−03
4.40E−03



TAC1
20.39
4.49E−06
7.98E−05
HGSNAT
1.30
1.59E−04
7.40E−04
AHNAK
1.16
1.77E−03
4.41E−03



NDRG1
1.73
4.54E−06
8.01E−05
SPSB1
1.96
1.60E−04
7.42E−04
NUDT22
1.24
1.77E−03
4.42E−03



ETS1
2.42
4.67E−06
8.19E−05
SYNGR2
1.37
1.60E−04
7.43E−04
PELI1
1.40
1.77E−03
4.42E−03



LOC100996740
2.10
4.69E−06
8.19E−05
PBX3
1.24
1.60E−04
7.44E−04
MESDC1
1.40
1.78E−03
4.42E−03



TRIO
1.77
4.69E−06
8.19E−05
RGP1
1.19
1.62E−04
7.50E−04
MTAP
1.06
1.78E−03
4.43E−03



RNF144A
1.72
4.82E−06
8.31E−05
TMEM54
1.57
1.62E−04
7.51E−04
AIG1
1.59
1.79E−03
4.45E−03



TRPV4
1.89
4.81E−06
8.31E−05
UBE2Z
1.27
1.63E−04
7.54E−04
UGGT1
1.06
1.79E−03
4.45E−03



PTGS2
14.30
4.90E−06
8.38E−05
GNAI2
1.36
1.65E−04
7.60E−04
LINC00622
1.75
1.80E−03
4.47E−03



PRNP
1.92
4.92E−06
8.40E−05
MYL12A
1.31
1.65E−04
7.62E−04
CHTF8
1.06
1.80E−03
4.47E−03



ADGRE2
2.23
4.94E−06
8.43E−05
TAPBP
1.51
1.65E−04
7.62E−04
CD47
1.20
1.81E−03
4.49E−03



FAS
2.13
4.96E−06
8.44E−05
APOD
2.35
1.66E−04
7.63E−04
MKRN1
1.16
1.82E−03
4.50E−03



ADK
2.22
5.09E−06
8.59E−05
TAF4B
1.41
1.66E−04
7.63E−04
UBE2L6
1.22
1.84E−03
4.53E−03



TRIB1
1.61
5.09E−06
8.59E−05
NR1D2
1.31
1.66E−04
7.64E−04
SESN2
1.21
1.84E−03
4.54E−03



BTBD10
1.57
5.11E−06
8.61E−05
SKAP2
1.46
1.67E−04
7.65E−04
CPTP
1.48
1.85E−03
4.56E−03



RAPH1
3.40
5.15E−06
8.65E−05
AGPAT2
1.35
1.67E−04
7.67E−04
TMEM184B
1.15
1.86E−03
4.59E−03



PLD5
18.93
5.18E−06
8.67E−05
SMG7
1.26
1.68E−04
7.71E−04
PLEKHA3
1.27
1.88E−03
4.63E−03



ITGB1
1.33
5.24E−06
8.68E−05
MFSD1
1.30
1.69E−04
7.71E−04
PLBD2
1.26
1.89E−03
4.64E−03



LRP10
1.56
5.24E−06
8.68E−05
TPT1
1.14
1.69E−04
7.73E−04
CITED4
1.43
1.89E−03
4.65E−03



DBNDD1
2.02
5.30E−06
8.71E−05
RNF14
1.13
1.70E−04
7.74E−04
EXOC2
1.17
1.90E−03
4.67E−03



PLOD3
1.24
5.40E−06
8.78E−05
ADD2
1.59
1.70E−04
7.75E−04
ACBD5
1.28
1.91E−03
4.69E−03



RASA3
1.66
5.39E−06
8.78E−05
NUCB1
1.16
1.70E−04
7.75E−04
P4HB
1.05
1.92E−03
4.71E−03



CORO1C
1.88
5.48E−06
8.84E−05
RNASET2
1.45
1.71E−04
7.77E−04
TRIM24
1.17
1.94E−03
4.73E−03



MXRA7
1.93
5.52E−06
8.88E−05
SGPL1
1.36
1.71E−04
7.77E−04
PTPN12
1.12
1.98E−03
4.81E−03



ADAMTS1
2.65
5.56E−06
8.93E−05
SLC11A2
1.33
1.71E−04
7.77E−04
CDK16
1.11
1.98E−03
4.82E−03



SASH1
1.79
5.67E−06
9.09E−05
PLEKHM1
1.33
1.71E−04
7.78E−04
ASNS
1.26
1.98E−03
4.82E−03



MANBA
2.24
5.70E−06
9.11E−05
FYCO1
1.47
1.72E−04
7.79E−04
CC2D1B
1.15
1.99E−03
4.83E−03



DLGAP4
1.83
5.76E−06
9.19E−05
AIDA
1.55
1.72E−04
7.79E−04
CRIPT
1.29
1.99E−03
4.85E−03



TJP1
1.76
5.83E−06
9.25E−05
GPAT3
1.26
1.72E−04
7.79E−04
HEBP2
1.49
2.01E−03
4.88E−03



CAMK1
6.99
5.93E−06
9.35E−05
TMEM120A
1.30
1.74E−04
7.85E−04
SLC22A4
1.58
2.02E−03
4.90E−03



UBE2R2
1.36
5.99E−06
9.38E−05
NPR2
1.26
1.75E−04
7.88E−04
TBC1D19
1.65
2.05E−03
4.95E−03



RPS6KA2
3.55
6.02E−06
9.41E−05
ARG2
2.24
1.75E−04
7.89E−04
SNAPC2
1.38
2.06E−03
4.97E−03



DSTYK
1.45
6.20E−06
9.53E−05
CASC10
1.83
1.75E−04
7.89E−04
HPS6
1.24
2.06E−03
4.98E−03



LYPD3
12.82
6.18E−06
9.53E−05
OS9
1.28
1.76E−04
7.89E−04
MAEA
1.15
2.08E−03
5.00E−03



HSPG2
2.20
6.23E−06
9.56E−05
SND1
1.18
1.76E−04
7.92E−04
MXD4
1.39
2.08E−03
5.01E−03



DCBLD2
1.50
6.33E−06
9.68E−05
SMARCAL1
1.13
1.78E−04
7.96E−04
ADCK2
1.20
2.08E−03
5.01E−03



SPRY2
1.61
6.35E−06
9.68E−05
MAN2B2
1.70
1.79E−04
7.99E−04
MAFF
1.42
2.09E−03
5.02E−03



ZEB1
1.48
6.35E−06
9.68E−05
MTMR1
1.56
1.81E−04
8.06E−04
COG3
1.31
2.09E−03
5.03E−03



SATB1
2.61
6.37E−06
9.68E−05
RGS20
2.62
1.81E−04
8.06E−04
TFRC
1.12
2.11E−03
5.07E−03



GK
7.46
6.51E−06
9.85E−05
MMP16
1.27
1.82E−04
8.08E−04
MARK2
1.09
2.11E−03
5.08E−03



RAB11FIP5
1.97
6.52E−06
9.85E−05
CREM
2.19
1.82E−04
8.11E−04
PIP4K2C
1.24
2.12E−03
5.09E−03



SH3PXD2B
1.83
6.58E−06
9.89E−05
ADAMTS15
2.02
1.85E−04
8.20E−04
TLCD1
1.39
2.12E−03
5.09E−03



PLAT
3.65
6.65E−06
9.96E−05
BMP2K
2.08
1.85E−04
8.21E−04
CYSTM1
1.58
2.12E−03
5.10E−03



TRAM2
1.57
6.71E−06
1.00E−04
KIFAP3
1.46
1.86E−04
8.24E−04
SLC39A8
1.54
2.12E−03
5.10E−03



ADAMTSL1
6.17
7.10E−06
1.05E−04
NR1H2
1.20
1.87E−04
8.26E−04
RTCB
1.10
2.15E−03
5.16E−03



PARVB
1.46
7.30E−06
1.07E−04
MGAT4B
1.26
1.87E−04
8.26E−04
LOC107985004
1.45
2.16E−03
5.16E−03



IL13RA1
1.90
7.37E−06
1.08E−04
GNB5
1.14
1.89E−04
8.32E−04
PEA15
1.05
2.16E−03
5.16E−03



PRR9
587.37
7.42E−06
1.08E−04
SERINC1
1.33
1.89E−04
8.33E−04
PMAIP1
1.24
2.16E−03
5.16E−03



IL4R
2.76
7.46E−06
1.08E−04
LINC00869
1.99
1.90E−04
8.35E−04
SPCS3
1.19
2.16E−03
5.16E−03



NFKBIZ
2.08
7.46E−06
1.08E−04
RAET1L
7.06
1.91E−04
8.38E−04
VIMP
1.33
2.16E−03
5.17E−03



ABRACL
1.73
7.53E−06
1.09E−04
ELMOD1
4.19
1.93E−04
8.44E−04
HTR7
1.29
2.17E−03
5.18E−03



SYNC
4.98
7.54E−06
1.09E−04
BRSK1
1.21
1.94E−04
8.46E−04
PODXL2
1.62
2.17E−03
5.19E−03



TXN
1.16
7.70E−06
1.10E−04
CHPF2
1.40
1.94E−04
8.48E−04
NOMO3
1.30
2.18E−03
5.21E−03



FOXC1
2.77
7.79E−06
1.11E−04
TTC17
1.37
1.95E−04
8.49E−04
PDE4DIP
1.35
2.19E−03
5.21E−03



NFKB1
1.71
7.82E−06
1.11E−04
SH3BGRL3
1.34
1.95E−04
8.49E−04
PPM1A
1.16
2.20E−03
5.23E−03



FAM3C
1.29
7.95E−06
1.13E−04
NXPH4
2.53
1.95E−04
8.50E−04
SLMAP
1.22
2.25E−03
5.33E−03



GJB1
1.52
7.95E−06
1.13E−04
ATG12
1.36
1.96E−04
8.52E−04
RC3H2
1.17
2.25E−03
5.33E−03



TMEM154
3.26
7.93E−06
1.13E−04
HIPK3
1.43
1.96E−04
8.52E−04
ATP6V1F
1.15
2.25E−03
5.34E−03



APC
2.11
8.04E−06
1.13E−04
CRYL1
2.49
1.97E−04
8.55E−04
ERLEC1
1.17
2.27E−03
5.37E−03



SEZ6L2
1.60
8.02E−06
1.13E−04
SLC39A13
1.56
1.97E−04
8.56E−04
P3H4
1.13
2.27E−03
5.37E−03



PLP2
1.38
8.13E−06
1.14E−04
TVP23B
1.20
1.98E−04
8.56E−04
PFKP
1.11
2.28E−03
5.38E−03



LINC01570
66.53
8.15E−06
1.14E−04
UGGT2
1.29
1.98E−04
8.56E−04
LOC100129434
1.12
2.28E−03
5.38E−03



LOC107984449
2.21
8.17E−06
1.14E−04
IERS
1.43
1.99E−04
8.60E−04
B4GALT7
1.24
2.28E−03
5.40E−03



PGK1
1.30
8.21E−06
1.14E−04
AGA
1.37
2.00E−04
8.61E−04
HPRT1
1.32
2.29E−03
5.41E−03



ARPCIA
1.27
8.29E−06
1.15E−04
CMTM3
1.42
1.99E−04
8.61E−04
HSDL1
1.14
2.30E−03
5.42E−03



GNG2
2.57
8.30E−06
1.15E−04
TNFRSF12A
1.36
1.99E−04
8.61E−04
MAP3K11
1.18
2.30E−03
5.42E−03



MAP4
1.17
8.31E−06
1.15E−04
9-Mar
1.54
2.01E−04
8.65E−04
SPATA20
1.38
2.30E−03
5.43E−03



EDEM1
1.56
8.33E−06
1.15E−04
WDR47
1.44
2.02E−04
8.67E−04
COPE
1.11
2.31E−03
5.44E−03



NFIB
1.93
8.44E−06
1.16E−04
LOC101928143
3.10
2.03E−04
8.74E−04
SPRYD3
1.46
2.32E−03
5.46E−03



SLC14A1
4.53
8.60E−06
1.17E−04
NOL3
1.38
2.06E−04
8.82E−04
PLCB3
1.51
2.32E−03
5.47E−03



CAPN2
1.30
8.71E−06
1.18E−04
ATP6AP2
1.24
2.08E−04
8.89E−04
HMGCL
1.33
2.34E−03
5.49E−03



SERPINE1
7.62
8.68E−06
1.18E−04
CHST7
1.58
2.11E−04
8.97E−04
TNIP2
1.20
2.34E−03
5.49E−03



C15orf48
11.76
8.77E−06
1.18E−04
GUCD1
1.35
2.13E−04
9.00E−04
SOCS2
1.78
2.37E−03
5.56E−03



ODC1
2.44
8.92E−06
1.20E−04
ARHGEF1
1.19
2.13E−04
9.01E−04
LINC00506
1.12
2.39E−03
5.60E−03



AHNAK2
4.25
8.96E−06
1.20E−04
TMEM9B
1.21
2.14E−04
9.04E−04
TBCEL
1.15
2.40E−03
5.60E−03



SEMA3A
2.40
9.00E−06
1.20E−04
ARHGAP22
3.29
2.15E−04
9.04E−04
CD109
1.10
2.40E−03
5.61E−03



KDM5B
1.21
9.03E−06
1.20E−04
MTRNR2L2
1.32
2.15E−04
9.05E−04
TESK1
1.27
2.40E−03
5.61E−03



TMX3
1.41
9.23E−06
1.22E−04
DNAJB2
1.40
2.19E−04
9.19E−04
ACOT8
1.11
2.41E−03
5.64E−03



ALPK1
2.94
9.51E−06
1.25E−04
DESI2
1.16
2.20E−04
9.21E−04
TRIM3
1.35
2.41E−03
5.64E−03



PIK3CD
1.89
9.67E−06
1.27E−04
WDTC1
1.26
2.21E−04
9.26E−04
G6PC3
1.11
2.44E−03
5.68E−03



CTSL
1.94
9.73E−06
1.27E−04
PPP1CB
1.26
2.25E−04
9.35E−04
PIP4K2B
1.13
2.44E−03
5.68E−03



CORO2B
1.62
9.79E−06
1.27E−04
SAR1B
1.29
2.25E−04
9.36E−04
YIF1A
1.17
2.44E−03
5.69E−03



MAP1LC3B
1.53
9.79E−06
1.27E−04
CPE
1.12
2.25E−04
9.37E−04
NAT6
1.56
2.45E−03
5.71E−03



MLLT4
2.10
9.90E−06
1.28E−04
SPTBN1
1.16
2.29E−04
9.47E−04
TNKS
1.15
2.46E−03
5.74E−03



TMEM132A
1.99
9.98E−06
1.29E−04
MAML2
1.51
2.29E−04
9.48E−04
PRUNE
1.10
2.47E−03
5.75E−03



IRF2BP2
1.70
1.01E−05
1.30E−04
LRAT
2.39
2.30E−04
9.49E−04
ARSA
1.83
2.53E−03
5.85E−03



ITGB8
2.01
1.01E−05
1.30E−04
CTTN
1.22
2.30E−04
9.50E−04
MDFIC
1.52
2.53E−03
5.87E−03



B3GNT5
4.34
1.02E−05
1.30E−04
SNHG6
1.15
2.33E−04
9.61E−04
SPRED2
1.18
2.54E−03
5.88E−03



FLNA
1.34
1.02E−05
1.30E−04
KHNYN
1.46
2.34E−04
9.62E−04
LOC100507460
1.16
2.55E−03
5.89E−03



PANX1
1.96
1.02E−05
1.30E−04
MOB3C
1.50
2.34E−04
9.63E−04
EVIS
1.41
2.56E−03
5.90E−03



ARHGAP21
1.59
1.03E−05
1.30E−04
TRPT1
1.51
2.35E−04
9.67E−04
TMEM62
1.31
2.58E−03
5.94E−03



RGS2
4.86
1.03E−05
1.30E−04
KLHDC2
1.21
2.36E−04
9.71E−04
MTRNR2L8
1.25
2.58E−03
5.94E−03



SDC2
2.08
1.03E−05
1.30E−04
ESRG
1.82
2.38E−04
9.77E−04
ATP6V1H
1.12
2.58E−03
5.95E−03



UBE2Q2
1.51
1.03E−05
1.30E−04
CLU
1.47
2.38E−04
9.78E−04
HOMER1
1.10
2.60E−03
5.98E−03



EFNB2
1.53
1.05E−05
1.31E−04
PGM3
1.92
2.42E−04
9.90E−04
C12orf49
1.12
2.62E−03
6.02E−03



WDR45
1.35
1.05E−05
1.31E−04
GAS5
1.33
2.46E−04
1.00E−03
TMEM255B
2.40
2.63E−03
6.04E−03



C2CD2L
1.37
1.05E−05
1.31E−04
ZER1
1.21
2.46E−04
1.00E−03
FAM58A
1.09
2.64E−03
6.06E−03



TOR1AIP1
1.18
1.05E−05
1.31E−04
RPLPO
1.11
2.50E−04
1.02E−03
CAPRIN2
1.86
2.64E−03
6.06E−03



CPEB4
1.69
1.07E−05
1.33E−04
LOC729348
1.19
2.51E−04
1.02E−03
CTSF
1.20
2.64E−03
6.06E−03



SRSF8
1.51
1.09E−05
1.35E−04
TPP1
1.21
2.51E−04
1.02E−03
BCR
1.15
2.65E−03
6.07E−03



PPARD
3.38
1.09E−05
1.35E−04
KLHL2
1.32
2.51E−04
1.02E−03
ZADH2
1.27
2.67E−03
6.10E−03



FMNL3
1.51
1.11E−05
1.36E−04
UBALD2
1.59
2.52E−04
1.02E−03
TMEM219
1.35
2.67E−03
6.11E−03



KCNK1
8.77
1.11E−05
1.36E−04
TNFRSF1A
1.20
2.53E−04
1.02E−03
UBR1
1.22
2.68E−03
6.13E−03



PLXNA3
2.20
1.11E−05
1.36E−04
FAT1
1.18
2.55E−04
1.03E−03
PTK2
1.14
2.70E−03
6.16E−03



TUFT1
1.34
1.11E−05
1.36E−04
TMC7
3.12
2.58E−04
1.04E−03
FAM127B
1.12
2.71E−03
6.19E−03



B3GAT1
4.19
1.12E−05
1.37E−04
UPRT
1.45
2.58E−04
1.04E−03
RPS19
1.09
2.72E−03
6.20E−03



NCS1
1.76
1.13E−05
1.37E−04
LAP3
1.49
2.59E−04
1.04E−03
ATP6V1D
1.22
2.75E−03
6.26E−03



STAT6
1.36
1.13E−05
1.38E−04
KLC2
1.27
2.60E−04
1.04E−03
ABCC10
1.31
2.76E−03
6.28E−03



LARP6
1.52
1.14E−05
1.38E−04
MANEAL
1.45
2.61E−04
1.05E−03
ERAP1
1.18
2.77E−03
6.29E−03



RPS12
1.22
1.15E−05
1.40E−04
LOC105369340
2.98
2.61E−04
1.05E−03
FAH
1.19
2.78E−03
6.31E−03



SERPINB8
1.62
1.15E−05
1.40E−04
MLLT3
1.87
2.62E−04
1.05E−03
KBTBD2
1.18
2.78E−03
6.31E−03



RELB
2.39
1.16E−05
1.40E−04
INPP5A
1.55
2.65E−04
1.06E−03
ID3
1.16
2.79E−03
6.33E−03



TRIM8
1.59
1.16E−05
1.40E−04
VAMP3
1.30
2.65E−04
1.06E−03
UTRN
1.23
2.80E−03
6.34E−03



MINPP1
1.33
1.18E−05
1.42E−04
MICALL1
1.14
2.67E−04
1.06E−03
CAPN10
1.30
2.82E−03
6.39E−03



PTDSS1
1.24
1.19E−05
1.42E−04
RIN2
2.01
2.68E−04
1.07E−03
TMEM59
1.19
2.83E−03
6.39E−03



RIPK2
1.89
1.19E−05
1.42E−04
FAM102A
1.35
2.69E−04
1.07E−03
TUBB4A
1.32
2.83E−03
6.39E−03



TNFRSF10B
1.43
1.20E−05
1.43E−04
NRBP1
1.20
2.69E−04
1.07E−03
URGCP
1.08
2.83E−03
6.39E−03



ZKSCAN1
1.29
1.21E−05
1.43E−04
PIGM
1.30
2.69E−04
1.07E−03
METTL23
1.16
2.83E−03
6.39E−03



DENNDIA
1.46
1.25E−05
1.47E−04
HIST3H2A
1.93
2.69E−04
1.07E−03
ACOX2
1.29
2.84E−03
6.42E−03



MACF1
1.28
1.27E−05
1.48E−04
STIM2
1.40
2.69E−04
1.07E−03
RAB40B
1.84
2.85E−03
6.43E−03



RPSAP52
6.43
1.27E−05
1.48E−04
CLCF1
1.54
2.70E−04
1.07E−03
TPD52L2
1.18
2.86E−03
6.46E−03



LTBP4
1.88
1.28E−05
1.48E−04
LOC105372580
1.87
2.70E−04
1.07E−03
DOK4
1.40
2.87E−03
6.49E−03



SPRR2D
4.23
1.29E−05
1.49E−04
2-Mar
1.25
2.70E−04
1.07E−03
LOC105370333
1.06
2.94E−03
6.59E−03



NET1
1.93
1.30E−05
1.49E−04
CLDN12
1.33
2.71E−04
1.07E−03
RAB29
1.12
2.94E−03
6.61E−03



PLSCR3
1.62
1.30E−05
1.49E−04
MSANTD3
1.60
2.72E−04
1.07E−03
GALNS
1.34
2.96E−03
6.65E−03



SCYL2
1.24
1.31E−05
1.49E−04
ETV3
1.40
2.72E−04
1.07E−03
DEAF1
1.25
2.97E−03
6.65E−03



CES2
1.27
1.31E−05
1.50E−04
RAP1GAP2
1.58
2.73E−04
1.07E−03
YWHAG
1.09
2.98E−03
6.67E−03



KDM1B
1.60
1.32E−05
1.50E−04
FUT8
1.47
2.74E−04
1.08E−03
SELK
1.32
2.98E−03
6.67E−03



HDAC9
2.39
1.33E−05
1.51E−04
MCOLN1
1.29
2.74E−04
1.08E−03
JADE1
1.19
2.99E−03
6.67E−03



RP2
2.05
1.34E−05
1.52E−04
TLE1
1.37
2.74E−04
1.08E−03
ARPC2
1.11
3.00E−03
6.69E−03



CALB1
14.55
1.38E−05
1.55E−04
EXOC7
1.24
2.74E−04
1.08E−03
RAP1B
1.17
3.00E−03
6.69E−03



BIVM
1.51
1.41E−05
1.57E−04
RNA45S5
1.39
2.74E−04
1.08E−03
VANGL1
1.11
3.01E−03
6.72E−03



CARMIL2
3.32
1.42E−05
1.57E−04
CCDC93
1.21
2.75E−04
1.08E−03
FAM213A
1.35
3.02E−03
6.74E−03



RABAC1
1.90
1.44E−05
1.57E−04
NKILA
2.27
2.76E−04
1.08E−03
ARNT
1.25
3.03E−03
6.76E−03



CERS2
1.32
1.45E−05
1.58E−04
TXNIP
1.69
2.77E−04
1.09E−03
HRAS
1.07
3.07E−03
6.84E−03



MYO9B
1.21
1.46E−05
1.58E−04
GLTP
1.34
2.78E−04
1.09E−03
NT5DC3
1.36
3.13E−03
6.96E−03



STX1A
1.92
1.46E−05
1.58E−04
DLX1
1.36
2.79E−04
1.09E−03
TM7SF3
1.11
3.16E−03
7.00E−03



PRKCA
1.75
1.47E−05
1.59E−04
FADD
1.25
2.80E−04
1.10E−03
TP53I13
1.49
3.17E−03
7.01E−03



APAF1
1.71
1.49E−05
1.60E−04
SBF1
1.24
2.85E−04
1.11E−03
IRF1
1.32
3.17E−03
7.03E−03



ZCCHC9
1.73
1.50E−05
1.61E−04
SMAGP
1.32
2.87E−04
1.12E−03
NAGLU
1.23
3.18E−03
7.03E−03



MYH16
4.80
1.51E−05
1.61E−04
UBA6
1.92
2.88E−04
1.12E−03
MOV10
1.19
3.18E−03
7.05E−03



DIEXF
1.89
1.52E−05
1.62E−04
GAGE12H
4.22
2.89E−04
1.12E−03
MFSD2A
1.21
3.20E−03
7.08E−03



NRIP3
3.24
1.53E−05
1.63E−04
PITRM1
1.20
2.90E−04
1.12E−03
CASC4
1.07
3.20E−03
7.08E−03



TAF9B
1.81
1.53E−05
1.63E−04
LOC105376382
2.64
2.90E−04
1.13E−03
LOC100507002
2.46
3.21E−03
7.10E−03



SNX9
1.83
1.54E−05
1.63E−04
DEFB103A
14.24
2.90E−04
1.13E−03
RGS16
1.31
3.22E−03
7.11E−03



FIBP
1.14
1.54E−05
1.64E−04
GRIK2
1.33
2.90E−04
1.13E−03
SNAP23
1.15
3.24E−03
7.14E−03



CLSTN1
1.58
1.55E−05
1.64E−04
HIPK1
1.24
2.91E−04
1.13E−03
HTATIP2
1.18
3.24E−03
7.14E−03



INPPL1
1.15
1.55E−05
1.64E−04
CACYBP
1.18
2.91E−04
1.13E−03
MIA3
1.15
3.26E−03
7.17E−03



CD68
2.20
1.57E−05
1.65E−04
CMTM4
1.60
2.93E−04
1.13E−03
ULK3
1.24
3.26E−03
7.17E−03



NIT1
1.83
1.58E−05
1.66E−04
KDSR
1.27
2.93E−04
1.13E−03
STARD3
1.13
3.26E−03
7.18E−03



SERINC3
1.54
1.58E−05
1.66E−04
NFE2L3
1.32
2.94E−04
1.14E−03
CD276
1.11
3.26E−03
7.18E−03



CERK
1.34
1.60E−05
1.67E−04
GBA
1.26
2.97E−04
1.14E−03
KLHL42
1.27
3.27E−03
7.18E−03



DGKQ
1.64
1.60E−05
1.67E−04
TMED9
1.12
2.98E−04
1.15E−03
WASL
1.20
3.27E−03
7.18E−03



ELOVL1
1.39
1.60E−05
1.67E−04
OSGIN2
1.30
3.00E−04
1.15E−03
CTNNA1
1.09
3.30E−03
7.24E−03



EXT2
1.39
1.60E−05
1.67E−04
SUMF1
1.32
2.99E−04
1.15E−03
PHRF1
1.11
3.30E−03
7.25E−03



FAM214B
1.93
1.59E−05
1.67E−04
TCP11L1
1.27
3.00E−04
1.15E−03
FBXO31
1.09
3.31E−03
7.27E−03



ZSWIM4
1.69
1.60E−05
1.67E−04
GUK1
1.28
3.02E−04
1.16E−03
C9orf16
1.21
3.33E−03
7.29E−03



UAP1
1.69
1.61E−05
1.67E−04
PDZD11
1.29
3.07E−04
1.17E−03
CSGALNACT2
1.33
3.34E−03
7.31E−03



ARL8A
1.90
1.62E−05
1.67E−04
GPAA1
1.14
3.09E−04
1.18E−03
RHOG
1.25
3.36E−03
7.35E−03



RRBP1
1.20
1.63E−05
1.68E−04
SLC30A9
1.20
3.11E−04
1.18E−03
TRIM4
1.31
3.36E−03
7.35E−03



ID2
2.58
1.63E−05
1.68E−04
SMYD2
1.57
3.11E−04
1.18E−03
POLG
1.24
3.37E−03
7.36E−03



ACAA1
1.76
1.64E−05
1.68E−04
PTPN23
1.11
3.13E−04
1.19E−03
CDK5RAP2
1.12
3.40E−03
7.41E−03



PARP8
1.78
1.64E−05
1.68E−04
LINC00704
2.81
3.15E−04
1.19E−03
JAK1
1.06
3.40E−03
7.41E−03



F2RL2
2.18
1.65E−05
1.68E−04
YPEL3
1.50
3.16E−04
1.20E−03
MSRA
1.29
3.40E−03
7.42E−03



FOXD1
1.56
1.66E−05
1.68E−04
HECTD3
1.22
3.18E−04
1.20E−03
ARHGDIA
1.07
3.42E−03
7.43E−03



FGFRL1
1.37
1.68E−05
1.70E−04
CDC42SE2
1.34
3.20E−04
1.21E−03
PPIB
1.05
3.43E−03
7.45E−03



ZDHHC24
1.50
1.70E−05
1.71E−04
KIF21A
1.48
3.21E−04
1.21E−03
RERE
1.08
3.43E−03
7.45E−03



CCNA1
3.55
1.71E−05
1.72E−04
PPP1R21
1.74
3.21E−04
1.21E−03
TMEM50A
1.24
3.46E−03
7.50E−03



COL9A2
1.94
1.72E−05
1.72E−04
NAPG
1.18
3.26E−04
1.23E−03
TOLLIP
1.22
3.46E−03
7.50E−03



FOXF1
3.18
1.72E−05
1.72E−04
SLC48A1
1.31
3.30E−04
1.24E−03
DBNL
1.14
3.47E−03
7.53E−03



NOTCH2
1.24
1.72E−05
1.72E−04
ZSWIM6
1.27
3.30E−04
1.24E−03
PLPP6
1.33
3.48E−03
7.54E−03



PABPC1
1.07
1.72E−05
1.72E−04
PJA1
1.80
3.31E−04
1.24E−03
MIA
1.16
3.49E−03
7.57E−03



CXCL3
10.57
1.74E−05
1.73E−04
USP12
1.34
3.34E−04
1.25E−03
IKBIP
1.16
3.49E−03
7.57E−03



HIST2H2BE
2.90
1.74E−05
1.73E−04
ARSD
1.59
3.37E−04
1.26E−03
PART1
1.58
3.50E−03
7.58E−03



ALKBH8
1.51
1.75E−05
1.74E−04
AQP3
2.19
3.38E−04
1.26E−03
CD63
1.06
3.53E−03
7.63E−03



GAS2L1
1.98
1.75E−05
1.74E−04
GRAMD1A
1.35
3.38E−04
1.26E−03
ZBTB7A
1.22
3.54E−03
7.63E−03



SWAP70
1.46
1.75E−05
1.74E−04
MLLT11
1.29
3.41E−04
1.27E−03
TGIF1
1.26
3.54E−03
7.64E−03



ELL2
2.99
1.78E−05
1.75E−04
ITGAV
1.29
3.44E−04
1.28E−03
KIDINS220
1.14
3.57E−03
7.68E−03



SOX4
2.17
1.80E−05
1.76E−04
PTBP3
1.24
3.45E−04
1.28E−03
TIMM10B
1.15
3.58E−03
7.70E−03



ECM1
1.82
1.81E−05
1.77E−04
PACS1
1.24
3.45E−04
1.28E−03
BCORL1
1.43
3.61E−03
7.75E−03



GDI1
1.67
1.81E−05
1.77E−04
UPP1
1.51
3.47E−04
1.29E−03
HERC4
1.22
3.61E−03
7.75E−03



AGAP2-AS1
1.68
1.81E−05
1.77E−04
EIF2S3
1.11
3.51E−04
1.30E−03
AKIRIN2
1.17
3.61E−03
7.75E−03



SLC22A18
1.38
1.82E−05
1.77E−04
KIAA0754
1.25
3.52E−04
1.30E−03
GLB1
1.11
3.63E−03
7.78E−03



ATP2B4
1.45
1.83E−05
1.78E−04
DHRS7
1.98
3.56E−04
1.31E−03
IGF1R
1.09
3.63E−03
7.79E−03



RASA1
2.47
1.83E−05
1.78E−04
NFIL3
1.36
3.60E−04
1.33E−03
LOC283788
1.25
3.67E−03
7.86E−03



NUMB
1.44
1.84E−05
1.78E−04
PLGRKT
1.45
3.60E−04
1.33E−03
MFSD10
1.13
3.67E−03
7.86E−03



CLASP1
1.53
1.88E−05
1.80E−04
TPMT
1.42
3.62E−04
1.33E−03
PLD2
1.22
3.70E−03
7.91E−03



TMEM121
1.70
1.88E−05
1.80E−04
SLC35E1
1.16
3.64E−04
1.34E−03
ZSWIM8
1.12
3.71E−03
7.92E−03



ADGRG6
3.19
1.89E−05
1.81E−04
SIPA1L1
1.84
3.65E−04
1.34E−03
PDCD10
1.17
3.74E−03
7.98E−03



ANTXR2
2.69
1.92E−05
1.83E−04
EIF4EBP2
1.13
3.67E−04
1.35E−03
FAM177A1
1.44
3.74E−03
7.98E−03



MLC1
10.91
1.92E−05
1.83E−04
GPR107
1.23
3.72E−04
1.36E−03
STK4
1.16
3.77E−03
8.02E−03



NFKBIA
2.87
1.97E−05
1.87E−04
ENO2
1.42
3.72E−04
1.36E−03
STX7
1.32
3.79E−03
8.06E−03



BTC
9.15
1.99E−05
1.87E−04
CMTM6
1.14
3.72E−04
1.36E−03
FBXO17
1.21
3.84E−03
8.15E−03



ITPR3
1.54
1.99E−05
1.87E−04
SAMD9
1.80
3.72E−04
1.36E−03
EVI5L
1.25
3.85E−03
8.17E−03



CST3
1.69
2.00E−05
1.87E−04
GNG10
1.23
3.73E−04
1.36E−03
SERTAD1
1.46
3.87E−03
8.20E−03



CAPS
1.55
2.01E−05
1.88E−04
CAST
1.20
3.73E−04
1.36E−03
ERBIN
1.16
3.87E−03
8.21E−03



CD99
1.29
2.02E−05
1.89E−04
P4HA2
1.58
3.74E−04
1.36E−03
CHCHD2
1.09
3.89E−03
8.23E−03



EEF1A2
1.49
2.05E−05
1.91E−04
SEMA7A
1.17
3.77E−04
1.37E−03
ERP44
1.20
3.91E−03
8.28E−03



LAMC2
7.02
2.06E−05
1.91E−04
ATL3
1.40
3.81E−04
1.38E−03
PPIC
1.29
3.92E−03
8.29E−03



CFL1
1.15
2.08E−05
1.92E−04
IRF9
3.03
3.83E−04
1.39E−03
NUDCD3
1.11
3.93E−03
8.32E−03



IGSF9B
3.19
2.09E−05
1.93E−04
OPHN1
1.32
3.83E−04
1.39E−03
ATP6V0E1
1.19
3.94E−03
8.33E−03



EFNB1
2.33
2.10E−05
1.94E−04
ABTB1
1.86
3.87E−04
1.40E−03
AMACR
1.26
3.97E−03
8.38E−03



EVC
2.54
2.11E−05
1.94E−04
CYB5R3
1.15
3.87E−04
1.40E−03
ICA1
1.45
3.99E−03
8.41E−03



DVL1
1.68
2.12E−05
1.94E−04
LRP1
1.36
3.88E−04
1.40E−03
CDKN1B
1.14
3.99E−03
8.42E−03



EPB41L3
13.86
2.13E−05
1.95E−04
SEC14L2
1.46
3.88E−04
1.40E−03
ESRRA
1.16
4.00E−03
8.43E−03



GJB3
2.74
2.12E−05
1.95E−04
HOMER2
2.08
3.90E−04
1.40E−03
TMEM14A
1.44
4.01E−03
8.43E−03



AKR1C1
2.20
2.14E−05
1.95E−04
AP3S1
1.33
3.90E−04
1.40E−03
IGBP1
1.19
4.01E−03
8.43E−03



RPL3
1.14
2.16E−05
1.97E−04
BAG1
1.13
3.91E−04
1.41E−03
PCNX3
1.19
4.02E−03
8.45E−03



CAPG
1.34
2.18E−05
1.98E−04
SLC35G2
1.48
3.95E−04
1.42E−03
NRAS
1.04
4.03E−03
8.47E−03



STK17B
2.10
2.19E−05
1.99E−04
CYTB
1.29
3.98E−04
1.43E−03
INPP5K
1.17
4.04E−03
8.49E−03



FRMD4B
2.02
2.20E−05
2.00E−04
CYBRD1
1.33
3.99E−04
1.43E−03
KAT14
1.21
4.04E−03
8.49E−03



ARRDC1
1.68
2.22E−05
2.01E−04
DNAJC3
1.18
4.04E−04
1.45E−03
KDELR1
1.16
4.06E−03
8.52E−03



ACSL1
1.98
2.24E−05
2.02E−04
TMED4
1.21
4.06E−04
1.45E−03
MAPK8IP1
1.25
4.10E−03
8.59E−03



FZD8
1.65
2.24E−05
2.02E−04
TNK2
1.17
4.07E−04
1.45E−03
C1orf122
1.23
4.10E−03
8.59E−03



CHPF
1.61
2.25E−05
2.02E−04
DPY19L1
1.17
4.09E−04
1.46E−03
GHDC
1.22
4.10E−03
8.59E−03



IRGQ
1.66
2.26E−05
2.03E−04
FLJ20021
2.15
4.09E−04
1.46E−03
MORC3
1.22
4.11E−03
8.60E−03



TMEM117
2.91
2.27E−05
2.04E−04
SSR4
1.36
4.09E−04
1.46E−03
NIN
1.17
4.11E−03
8.60E−03



PRB1
12.87
2.29E−05
2.05E−04
MFGE8
1.56
4.10E−04
1.46E−03
TRAM1
1.08
4.14E−03
8.66E−03



TNFAIP3
2.11
2.30E−05
2.05E−04
SDSL
1.65
4.13E−04
1.47E−03
LRRC75A-AS1
1.12
4.15E−03
8.67E−03



DUSP10
1.66
2.31E−05
2.05E−04
ARF1
1.09
4.16E−04
1.48E−03
GNB4
1.28
4.15E−03
8.67E−03



CUX1
1.42
2.32E−05
2.06E−04
FOXC2
2.17
4.16E−04
1.48E−03
CREB3
1.24
4.16E−03
8.69E−03



OSBPL8
1.33
2.33E−05
2.06E−04
ECE1
1.12
4.19E−04
1.48E−03
EIF3F
1.08
4.16E−03
8.69E−03



KLF13
1.97
2.34E−05
2.07E−04
YPEL5
1.51
4.20E−04
1.49E−03
TBC1D8
1.16
4.16E−03
8.69E−03



LOC79160
3.78
2.34E−05
2.07E−04
TANGO2
1.51
4.23E−04
1.50E−03
LOC107984717
1.13
4.19E−03
8.72E−03



RPLP1
1.17
2.34E−05
2.07E−04
RASA2
1.72
4.28E−04
1.51E−03
TDRKH
1.24
4.21E−03
8.77E−03



EYA3
1.37
2.38E−05
2.09E−04
UNC13B
1.63
4.29E−04
1.51E−03
ZNF252P
1.19
4.22E−03
8.78E−03



VLDLR
2.35
2.37E−05
2.09E−04
PLIN3
1.20
4.30E−04
1.51E−03
ASAP2
1.09
4.24E−03
8.81E−03



IER2
1.38
2.38E−05
2.09E−04
LARP1
1.11
4.38E−04
1.54E−03
GYG1
1.12
4.25E−03
8.83E−03



RUNX1
1.84
2.40E−05
2.10E−04
RPL13A
1.09
4.42E−04
1.55E−03
TMCO4
1.26
4.25E−03
8.84E−03



EBLN3
1.28
2.41E−05
2.10E−04
LRP8
1.23
4.42E−04
1.55E−03
RNF146
1.23
4.26E−03
8.84E−03



TGFBR1
1.63
2.41E−05
2.10E−04
SPATA13
1.30
4.43E−04
1.55E−03
TPRG1L
1.38
4.27E−03
8.86E−03



BCAP31
1.32
2.42E−05
2.10E−04
TMC01
1.16
4.46E−04
1.56E−03
PRMT2
1.17
4.28E−03
8.88E−03



AJAP1
2.80
2.43E−05
2.11E−04
DOCK5
1.43
4.48E−04
1.57E−03
JRKL
1.27
4.29E−03
8.89E−03



STK17A
1.97
2.43E−05
2.11E−04
TAF13
1.28
4.49E−04
1.57E−03
AKT1
1.17
4.31E−03
8.92E−03



AHCYL2
1.89
2.45E−05
2.13E−04
PML
1.34
4.50E−04
1.57E−03
RNF4
1.13
4.32E−03
8.93E−03



IL1RL1
3.62
2.50E−05
2.15E−04
LRPAP1
1.14
4.51E−04
1.57E−03
IKBKB
1.18
4.35E−03
8.98E−03



JARID2
1.90
2.53E−05
2.17E−04
DNTTIP1
1.30
4.51E−04
1.57E−03
DCAF12
1.11
4.37E−03
9.02E−03



PCBP4
1.31
2.53E−05
2.17E−04
TRIM56
1.24
4.56E−04
1.59E−03
MTRNR2L1
1.21
4.38E−03
9.04E−03



SFT2D2
1.86
2.55E−05
2.18E−04
EEF1G
1.05
4.59E−04
1.59E−03
CDC42
1.10
4.39E−03
9.05E−03



F11R
1.95
2.58E−05
2.21E−04
SUCO
1.25
4.61E−04
1.60E−03
HIPK2
1.12
4.39E−03
9.05E−03



DSC2
5.72
2.64E−05
2.24E−04
TICAM1
1.58
4.63E−04
1.61E−03
ATP6V0C
1.15
4.40E−03
9.07E−03



USP36
1.27
2.64E−05
2.24E−04
C11orf24
1.12
4.65E−04
1.61E−03
AMPD2
1.13
4.41E−03
9.08E−03



SLC6A15
1.43
2.65E−05
2.24E−04
PIGT
1.14
4.66E−04
1.62E−03
INF2
1.18
4.42E−03
9.10E−03



PPP3CA
1.99
2.67E−05
2.26E−04
TUG1
1.20
4.69E−04
1.62E−03
CTTNBP2NL
1.33
4.43E−03
9.12E−03



RNPEPL1
2.58
2.68E−05
2.26E−04
LOC105371453
1.25
4.72E−04
1.63E−03
LCMT2
1.16
4.45E−03
9.14E−03



C12orf75
1.86
2.71E−05
2.28E−04
CLDN4
1.52
4.72E−04
1.63E−03
EXOC4
1.09
4.47E−03
9.18E−03



OSTM1
1.37
2.73E−05
2.29E−04
PSEN1
1.44
4.72E−04
1.63E−03
PRDX2
1.11
4.48E−03
9.19E−03



ABCA2
1.45
2.76E−05
2.30E−04
TGFB1I1
1.72
4.73E−04
1.63E−03
LOC101927374
1.30
4.50E−03
9.23E−03



ACTN4
1.19
2.85E−05
2.37E−04
ACTA2
1.59
4.77E−04
1.64E−03
CTBP1-AS2
1.11
4.51E−03
9.23E−03



HOMER3
1.66
2.88E−05
2.39E−04
EFCAB14
1.30
4.76E−04
1.64E−03
HIST2H4A
1.51
4.54E−03
9.28E−03



TGFB1
1.62
2.92E−05
2.41E−04
PCYOX1
1.07
4.78E−04
1.64E−03
HIST2H4B
1.51
4.54E−03
9.28E−03



MOAP1
1.30
2.94E−05
2.42E−04
PHLDB1
1.29
4.86E−04
1.67E−03
YIPF2
1.10
4.55E−03
9.30E−03



SLC24A3
1.58
2.94E−05
2.42E−04
TRHDE-AS1
1.53
4.87E−04
1.67E−03
EPM2AIP1
1.12
4.56E−03
9.32E−03



SP3
1.50
2.95E−05
2.42E−04
MEIS3
2.11
4.90E−04
1.68E−03
MED15
1.15
4.57E−03
9.32E−03



AP1S2
1.55
2.98E−05
2.43E−04
PTPN9
1.20
4.92E−04
1.68E−03
RPL28
1.07
4.57E−03
9.32E−03



TCN2
3.18
3.00E−05
2.45E−04
EMP1
1.25
4.92E−04
1.68E−03
SEMA3B
1.12
4.57E−03
9.32E−03



SLC9A3R2
1.65
3.01E−05
2.45E−04
PCOLCE2
2.27
4.95E−04
1.69E−03
RFWD2
1.22
4.59E−03
9.36E−03



SLC25A30
1.66
3.06E−05
2.48E−04
CRLF1
2.92
4.96E−04
1.69E−03
ZNF697
1.20
4.59E−03
9.36E−03



SHC4
1.92
3.08E−05
2.50E−04
SPHK1
1.55
4.96E−04
1.69E−03
FLYWCH1
1.15
4.60E−03
9.36E−03



SMPD1
2.09
3.11E−05
2.51E−04
NEK7
1.17
4.99E−04
1.70E−03
SEC23B
1.09
4.60E−03
9.37E−03



CEND1
1.95
3.11E−05
2.51E−04
PINK1
1.74
4.99E−04
1.70E−03
ACVR1
1.13
4.60E−03
9.37E−03



CDH6
12.48
3.12E−05
2.52E−04
LYPLA2
1.16
5.01E−04
1.70E−03
CMIP
1.20
4.61E−03
9.38E−03



EMP3
1.34
3.13E−05
2.52E−04
ATP6AP1
1.17
5.03E−04
1.71E−03
HELZ2
2.58
4.63E−03
9.42E−03



SPSB4
3.58
3.15E−05
2.53E−04
RPL39
1.09
5.03E−04
1.71E−03
PCSK7
1.15
4.65E−03
9.44E−03



APBB2
1.78
3.15E−05
2.53E−04
UGDH-AS1
1.20
5.04E−04
1.71E−03
MAST3
1.19
4.68E−03
9.49E−03



PSMD2
1.35
3.17E−05
2.54E−04
FLII
1.12
5.06E−04
1.71E−03
FANCE
1.32
4.70E−03
9.52E−03



CD151
1.31
3.19E−05
2.54E−04
FOXK1
1.31
5.08E−04
1.72E−03
MCFD2
1.10
4.72E−03
9.56E−03



PRDM2
1.65
3.20E−05
2.55E−04
CANT1
1.28
5.10E−04
1.72E−03
KDM5C
1.13
4.73E−03
9.58E−03



ROBO4
2.04
3.21E−05
2.55E−04
TCIRG1
1.45
5.12E−04
1.73E−03
RMND5B
1.27
4.74E−03
9.58E−03



STXBP1
1.44
3.24E−05
2.56E−04
CDS2
1.31
5.13E−04
1.73E−03
C4orf48
1.15
4.75E−03
9.59E−03



TMCO3
1.38
3.28E−05
2.58E−04
CTSA
1.23
5.16E−04
1.73E−03
MC1R
1.21
4.76E−03
9.61E−03



C3orf52
2.64
3.30E−05
2.60E−04
FBRS
1.10
5.16E−04
1.73E−03
AP5Z1
1.15
4.78E−03
9.65E−03



APLP2
1.56
3.38E−05
2.64E−04
CPPED1
1.30
5.18E−04
1.74E−03
COMMD6
1.21
4.79E−03
9.67E−03



TMED7
1.14
3.39E−05
2.64E−04
YRDC
1.14
5.23E−04
1.75E−03
HEXA
1.17
4.82E−03
9.72E−03



IL37
7.41
3.45E−05
2.67E−04
TMUB2
1.27
5.29E−04
1.77E−03
LOC652276
1.29
4.82E−03
9.72E−03



MIR4697HG
2.74
3.48E−05
2.68E−04
APMAP
1.22
5.36E−04
1.79E−03
PARP10
1.38
4.83E−03
9.73E−03



SEC24D
1.67
3.51E−05
2.69E−04
TP53BP2
1.17
5.39E−04
1.79E−03
ENOX2
1.24
4.84E−03
9.74E−03



CSNK1E
1.29
3.52E−05
2.70E−04
H3F3B
1.14
5.41E−04
1.80E−03
AGPAT3
1.17
4.85E−03
9.77E−03



TDRD7
2.15
3.53E−05
2.70E−04
RAB38
1.30
5.42E−04
1.80E−03
ELFN1-AS1
1.22
4.86E−03
9.77E−03



FRMD8
1.38
3.56E−05
2.71E−04
WASF3
1.30
5.43E−04
1.80E−03
FAM96B
1.07
4.86E−03
9.78E−03



ASB1
1.54
3.57E−05
2.71E−04
AGFG1
1.24
5.45E−04
1.81E−03
TRIM32
1.12
4.88E−03
9.82E−03



FAM83G
1.46
3.58E−05
2.72E−04
MPP6
1.20
5.45E−04
1.81E−03
STK25
1.04
4.89E−03
9.83E−03



LINC00707
1.96
3.61E−05
2.72E−04
NUP50-AS1
2.34
5.51E−04
1.82E−03
INO80C
1.41
4.91E−03
9.87E−03



SNX25
1.70
3.62E−05
2.73E−04
NCEH1
1.19
5.52E−04
1.83E−03
DRAM1
1.16
4.92E−03
9.87E−03



APPL2
1.52
3.64E−05
2.74E−04
STX16
1.09
5.53E−04
1.83E−03
GOLGA1
1.19
4.92E−03
9.88E−03



KCNMA1
5.17
3.65E−05
2.74E−04
SKIL
1.46
5.55E−04
1.83E−03
FKBP2
1.30
4.93E−03
9.89E−03



XYLT1
5.93
3.73E−05
2.79E−04
PURB
1.14
5.59E−04
1.84E−03
CCPG1
1.15
4.96E−03
9.94E−03



NR2F2
1.51
3.75E−05
2.80E−04
ITPKC
1.22
5.60E−04
1.84E−03
RAP1GDS1
1.15
4.97E−03
9.95E−03











CD274 Genes












Isoform
Fold
Pval
Padj







ALKBH8
1.15
5.75E−06
5.57E−03



ANGPTL2
1.51
2.71E−05
8.81E−03



CD274
1773.14
7.55E−07
2.20E−03



CSGALNACT1
1.30
1.54E−05
8.24E−03



FDCSP
2.70
3.36E−05
9.83E−03



LRRC45
1.10
2.65E−06
5.29E−03



PMEPA1
1.55
6.05E−07
2.20E−03



PXYLP1
1.25
2.56E−05
8.81E−03



TMX4
1.26
1.89E−05
8.24E−03











B3GNT2 Genes












Isoform
Fold
Pval
Padj







ADAM19
2.01
1.10E−06
2.15E−03



ATOX1
1.45
2.38E−06
2.15E−03



B3GNT2
215.39
5.62E−07
2.15E−03



DNAJC3
1.38
1.84E−06
2.15E−03



DUSP10
1.65
1.53E−06
2.15E−03



GPNMB
1.98
2.18E−06
2.15E−03



IL24
2.89
3.44E−06
2.15E−03



SQSTM1
2.25
8.26E−07
2.15E−03



ST3GAL4
1.26
3.06E−06
2.15E−03



TGFBI
1.50
2.50E−06
2.15E−03



TTC17
1.58
1.95E−06
2.15E−03



TXNRD1
1.41
3.29E−06
2.15E−03



CANX
1.28
6.07E−06
2.95E−03



P4HB
1.20
5.44E−06
2.95E−03



DUSP4
1.31
1.27E−05
3.54E−03



KANK1
1.33
1.04E−05
3.54E−03



NRP2
1.49
1.08E−05
3.54E−03



PMEPA1
1.28
9.37E−06
3.54E−03



CALR
1.23
1.44E−05
3.76E−03



FTH1
1.43
1.52E−05
3.76E−03



LRRC59
1.14
1.59E−05
3.76E−03



SCD
1.22
2.19E−05
4.45E−03



RHOQ
1.27
2.43E−05
4.72E−03



SLC37A2
1.45
2.58E−05
4.79E−03



ATP6V0B
1.25
3.11E−05
4.98E−03



ATP6V1E1
1.22
3.01E−05
4.98E−03



LIF
1.51
2.86E−05
4.98E−03



NGFR
1.37
3.27E−05
4.98E−03



TKT
1.13
3.30E−05
4.98E−03



ARHGEF4
1.90
4.00E−05
5.37E−03



FGFR1
1.31
3.77E−05
5.37E−03



PKM
1.06
3.75E−05
5.37E−03



FKBP1A
1.12
4.26E−05
5.65E−03



INSIG1
1.73
4.36E−05
5.68E−03



GSR
1.16
4.74E−05
6.00E−03



CXCL8
1.71
5.07E−05
6.15E−03



KYNU
1.52
5.01E−05
6.15E−03



CD63
1.19
5.56E−05
6.39E−03



GJB1
1.69
5.86E−05
6.41E−03



MAP1B
1.24
5.77E−05
6.41E−03



WNT9A
2.11
5.87E−05
6.41E−03



FERMT1
1.33
5.95E−05
6.42E−03



CITED1
3.93
6.17E−05
6.49E−03



RPN1
1.13
6.16E−05
6.49E−03



PLIN2
1.21
6.66E−05
6.69E−03



ATP6V0A4
2.46
7.56E−05
7.04E−03



MCF2L
1.39
8.47E−05
7.04E−03



PHLDA1
1.22
8.24E−05
7.04E−03



SEC61A1
1.17
8.44E−05
7.04E−03



SURF4
1.18
7.83E−05
7.04E−03



TFRC
1.28
7.86E−05
7.04E−03



UAP1L1
2.03
7.72E−05
7.04E−03



MGAT4B
1.42
9.24E−05
7.41E−03



NEFL
1.75
9.74E−05
7.47E−03



CAPN1
1.10
9.97E−05
7.51E−03



ALDOA
1.10
1.01E−04
7.52E−03



C3
1.59
1.05E−04
7.69E−03



ASAH1
1.41
1.07E−04
7.76E−03



SLC7A11
1.66
1.08E−04
7.81E−03



EPT1
1.12
1.19E−04
8.25E−03



OAF
1.14
1.18E−04
8.25E−03



TBC1D14
1.24
1.19E−04
8.25E−03



SND1
1.10
1.20E−04
8.27E−03



MLEC
1.17
1.25E−04
8.38E−03



CHST11
1.48
1.27E−04
8.41E−03



PDIA4
1.22
1.29E−04
8.46E−03



FTL
1.19
1.32E−04
8.51E−03



SAT2
1.21
1.34E−04
8.54E−03



EDEM1
1.38
1.36E−04
8.56E−03



FDCSP
2.17
1.37E−04
8.56E−03



MPI
1.12
1.37E−04
8.56E−03



ITPR3
1.35
1.41E−04
8.76E−03



APOBEC3G
1.80
1.44E−04
8.78E−03



ENO2
1.52
1.63E−04
8.93E−03



FBXO27
1.49
1.63E−04
8.93E−03



HSPA5
1.16
1.60E−04
8.93E−03



LMNA
1.08
1.54E−04
8.93E−03



MANF
1.23
1.56E−04
8.93E−03



MGST1
1.35
1.51E−04
8.93E−03



NOV
2.55
1.54E−04
8.93E−03



DPY19L1
1.17
1.67E−04
8.94E−03



MMP14
1.19
1.69E−04
8.96E−03



NEU1
1.22
1.72E−04
9.04E−03



CREB3L2
1.35
1.77E−04
9.16E−03



SLC7A5
1.17
1.78E−04
9.16E−03



PDIA6
1.20
1.88E−04
9.19E−03



TPP1
1.15
1.93E−04
9.35E−03



RGS16
1.57
2.08E−04
9.84E−03



USP12
1.13
2.07E−04
9.84E−03



G6PD
1.15
2.13E−04
9.96E−03



HS1BP3
1.57
2.14E−04
9.96E−03











MCL1 Genes












Isoform
Fold
Pval
Padj







MCL1
8.65
5.89E−10
2.58E−06



TIMP1
1.72
2.96E−10
2.58E−06



HLA-B
1.54
1.73E−07
3.02E−04



HLA-C
1.40
2.19E−07
3.02E−04



RAMP1
1.60
2.34E−07
3.02E−04



CD74
1.25
4.14E−07
4.03E−04



GRN
1.27
4.99E−07
4.37E−04



LTBP4
1.15
2.27E−06
1.25E−03



SOD3
2.52
2.17E−06
1.25E−03



PMEPA1
1.33
3.68E−06
1.58E−03



IRS2
1.14
5.42E−06
1.91E−03



ITGB3
1.19
6.09E−06
1.91E−03



SDC2
1.55
5.77E−06
1.91E−03



S100A1
1.77
6.55E−06
1.98E−03



HAPLN1
1.69
9.96E−06
2.50E−03



S100A13
1.22
9.85E−06
2.50E−03



SCAND1
1.25
1.02E−05
2.50E−03



INHBA
1.60
1.07E−05
2.53E−03



DHCR24
1.17
1.17E−05
2.54E−03



GALNT2
1.19
1.15E−05
2.54E−03



EEF1A2
1.41
1.24E−05
2.58E−03



LGALS3BP
1.17
1.30E−05
2.65E−03



SPARC
1.15
1.44E−05
2.72E−03



CSPG4
1.29
1.68E−05
2.80E−03



HLA-A
1.30
1.61E−05
2.80E−03



ISG20
1.20
1.71E−05
2.80E−03



PDE3A
2.14
1.58E−05
2.80E−03



EPHA3
1.24
2.01E−05
3.04E−03



GPR153
1.49
2.68E−05
3.40E−03



PCSK1
1.81
2.51E−05
3.40E−03



SFRP1
1.22
2.59E−05
3.40E−03



TCN1
1.65
2.84E−05
3.46E−03



PYGB
1.20
2.99E−05
3.59E−03



TRPV4
1.34
3.43E−05
3.90E−03



VAT1L
1.42
3.53E−05
3.96E−03



ARNT2
1.41
3.62E−05
3.96E−03



MIA
1.27
3.60E−05
3.96E−03



EEF1G
1.07
3.74E−05
4.04E−03



ATG101
1.08
4.04E−05
4.11E−03



CUX1
1.12
3.94E−05
4.11E−03



RPL10A
1.06
4.03E−05
4.11E−03



TESC
1.63
3.90E−05
4.11E−03



VGF
1.73
3.98E−05
4.11E−03



SLC24A3
1.73
4.32E−05
4.25E−03



CEMIP
1.41
4.50E−05
4.27E−03



IGFBP3
1.58
4.54E−05
4.27E−03



AMACR
1.31
5.12E−05
4.41E−03



CST3
1.18
5.75E−05
4.41E−03



FAM210B
1.28
5.54E−05
4.41E−03



NR4A1
1.16
5.70E−05
4.41E−03



PAPSS2
1.56
5.51E−05
4.41E−03



PRAF2
1.07
5.61E−05
4.41E−03



TGFA
1.17
5.25E−05
4.41E−03



GNAS
1.28
5.90E−05
4.45E−03



CSGALNACT1
1.43
6.22E−05
4.62E−03



HLA-DRB1
1.27
6.21E−05
4.62E−03



PLD3
1.22
6.44E−05
4.64E−03



RPL10
1.03
6.35E−05
4.64E−03



SERPINA3
1.78
6.47E−05
4.64E−03



NES
1.12
6.76E−05
4.71E−03



PLOD3
1.18
6.84E−05
4.71E−03



SNHG6
1.04
6.74E−05
4.71E−03



TFPI2
1.34
6.94E−05
4.71E−03



CHPF
1.30
7.72E−05
5.11E−03



EYA1
1.45
7.88E−05
5.11E−03



SOX10
1.16
7.82E−05
5.11E−03



CXCL8
1.77
8.34E−05
5.29E−03



HTRA1
1.70
8.48E−05
5.35E−03



LAMA4
1.41
9.17E−05
5.50E−03



RIPK4
1.37
9.11E−05
5.50E−03



TSPAN13
1.26
9.39E−05
5.55E−03



ACSL3
1.16
9.77E−05
5.63E−03



ABCA2
1.28
1.02E−04
5.67E−03



PTPRU
1.47
1.02E−04
5.67E−03



UGGT2
1.08
1.02E−04
5.67E−03



COL9A3
1.16
1.04E−04
5.67E−03



ADGRL1
1.29
1.06E−04
5.70E−03



ATOX1
1.14
1.06E−04
5.70E−03



HLA-DQB1
1.33
1.06E−04
5.70E−03



COL6A2
1.28
1.09E−04
5.74E−03



PXYLP1
1.27
1.09E−04
5.74E−03



KIAA0040
1.24
1.11E−04
5.76E−03



SPRY4
1.30
1.12E−04
5.76E−03



ABHD17C
1.34
1.15E−04
5.87E−03



FABP6
1.52
1.21E−04
6.02E−03



NR4A2
1.29
1.23E−04
6.05E−03



LRPAP1
1.15
1.30E−04
6.24E−03



AREG
1.83
1.34E−04
6.35E−03



B3GNT7
1.43
1.35E−04
6.35E−03



ACY1
1.21
1.36E−04
6.36E−03



QSOX1
1.16
1.38E−04
6.41E−03



SEZ6L2
1.26
1.46E−04
6.70E−03



SLC25A23
1.27
1.47E−04
6.70E−03



HLA-DRA
1.19
1.51E−04
6.80E−03



RPLPO
1.06
1.52E−04
6.81E−03



RPS3
1.10
1.55E−04
6.83E−03



CTNNA1
1.08
1.62E−04
6.87E−03



PRKCSH
1.11
1.60E−04
6.87E−03



RPL3
1.09
1.61E−04
6.87E−03



BSG
1.10
1.79E−04
6.91E−03



EEF2
1.11
1.79E−04
6.91E−03



FCRLA
1.45
1.74E−04
6.91E−03



FKBP10
1.19
1.70E−04
6.91E−03



ID1
1.15
1.70E−04
6.91E−03



PLPP4
1.42
1.76E−04
6.91E−03



PSKH1
1.17
1.71E−04
6.91E−03



RPS5
1.09
1.79E−04
6.91E−03



SEPN1
1.14
1.64E−04
6.91E−03



SLC1A4
1.67
1.70E−04
6.91E−03



VAMP5
1.20
1.77E−04
6.91E−03



APRT
1.08
1.90E−04
6.99E−03



SLC26A2
1.09
1.87E−04
6.99E−03



TMEM2
1.21
1.83E−04
6.99E−03



DBNDD1
1.38
1.98E−04
7.18E−03



PSAP
1.25
1.99E−04
7.22E−03



HLA-DRB4
1.22
2.07E−04
7.24E−03



LTBP3
1.21
2.04E−04
7.24E−03



RPS14
1.11
2.15E−04
7.37E−03



ST6GAL1
1.42
2.24E−04
7.53E−03



GSK3B
1.25
2.26E−04
7.56E−03



SCARB1
1.11
2.26E−04
7.56E−03



MARCKSL1
1.24
2.35E−04
7.76E−03



ACTN1
1.11
2.38E−04
7.80E−03



MELTF
1.30
2.38E−04
7.80E−03



FAM234A
1.28
2.46E−04
7.81E−03



PITPNCA
1.35
2.43E−04
7.81E−03



SYTL5
1.25
2.43E−04
7.81E−03



TLR4
1.11
2.45E−04
7.81E−03



WIPI1
1.30
2.53E−04
7.88E−03



CYBA
1.20
2.55E−04
7.91E−03



RPLP1
1.08
2.59E−04
7.97E−03



HMCN1
1.44
2.66E−04
8.08E−03



P3H4
1.17
2.66E−04
8.08E−03



SCARA5
1.50
2.70E−04
8.11E−03



FDCPS
2.79
2.95E−04
8.57E−03



HLA-DPA1
1.16
2.97E−04
8.57E−03



SPTBN2
1.13
2.94E−04
8.57E−03



COL18A1
1.34
3.13E−04
8.86E−03



ICAM
1.37
3.13E−04
8.86E−03



MEGF8
1.20
3.17E−04
8.91E−03



SLC25A6
1.10
3.19E−04
8.91E−03



ABHD2
1.13
3.24E−04
8.99E−03



PNPLA2
1.18
3.31E−04
9.12E−03



LY6E
1.10
3.35E−04
9.19E−03



ANKH
1.45
3.48E−04
9.40E−03



IGSF8
1.32
3.48E−04
9.40E−03



PRDX2
1.14
3.48E−04
9.40E−03



CTHRC1
1.49
3.53E−04
9.44E−03



PTGFRN
1.14
3.54E−04
9.44E−03



TFAP2B
1.59
3.66E−04
9.68E−03



GAA
1.40
3.74E−04
9.79E−03



LOC102724122
1.46
3.84E−04
9.97E−03

















TABLE 6







ChIP-seq characterization of JUNB target genes. Only genes


with JUNB ChIP-seq peaks that were significantly differentially


expressed as measured by RNA-seq are listed.










Isoform
Fold
Pval
Padj













GALNT9
12426667.67
1.78E−06
4.85E−05


KPRP
404795
2.06E−06
5.32E−05


PRR9
249944
7.42E−06
1.08E−04


PLD5
1363.40
5.18E−06
8.67E−05


PDPN
807.85
3.36E−08
1.05E−05


COL22A1
510.96
2.62E−08
9.89E−06


LOC101927120
441.36
9.24E−05
5.14E−04


PRRT4
350.61
2.66E−06
5.99E−05


LCE1D
272.05
2.88E−06
6.19E−05


SERPINB2
218.85
1.78E−07
1.83E−05


HMCN2
217.73
3.88E−06
7.29E−05


SCEL
191.82
2.71E−07
2.17E−05


CCL3
189.83
4.30E−07
2.46E−05


CXCL14
153.02
3.13E−07
2.21E−05


MMP10
146.03
3.22E−07
2.25E−05


HAS2
132.26
1.47E−08
8.56E−06


PI3
108.57
1.36E−07
1.69E−05


LRFN5
97.76
1.58E−09
3.61E−06


ACAN
79.24
1.70E−08
8.62E−06


CDH6
78.69
3.12E−05
2.52E−04


OPRL1
50.72
1.13E−06
3.98E−05


CD24
49.60
2.02E−09
3.69E−06


BCL2A1
44.67
2.56E−07
2.14E−05


FERMT1
39.66
2.46E−08
9.89E−06


JUNB
33.35
1.89E−08
8.62E−06


CTSS
32.74
3.65E−07
2.32E−05


BRINP2
31.46
4.41E−07
2.46E−05


BTBD11
31.21
1.29E−07
1.69E−05


CALB1
30.50
1.38E−05
1.55E−04


ESM1
26.97
6.42E−08
1.25E−05


PTGS2
26.54
4.90E−06
8.38E−05


TAC1
23.46
4.49E−06
7.98E−05


VCAN
21.32
5.96E−08
1.25E−05


CD93
21.10
1.62E−06
4.75E−05


C15orf48
19.95
8.77E−06
1.18E−04


MAST4
19.76
3.67E−08
1.08E−05


SLAMF9
19.53
6.00E−07
2.78E−05


MMP1
18.96
3.04E−07
2.21E−05


EPAS1
18.84
1.07E−06
3.88E−05


RAET1L
16.57
1.91E−04
8.38E−04


FLRT2
15.64
9.30E−08
1.41E−05


DNER
14.07
5.72E−05
3.70E−04


LYPD3
13.96
6.18E−06
9.53E−05


GALNT12
13.81
2.85E−06
6.19E−05


BIRC3
13.78
8.77E−07
3.39E−05


ALK
13.46
6.04E−08
1.25E−05


CXCL3
12.81
1.74E−05
1.73E−04


MMP9
12.62
1.06E−04
5.65E−04


GK
12.31
6.51E−06
9.85E−05


SERPINE1
12.25
8.68E−06
1.18E−04


IKZF2
11.42
4.50E−06
7.98E−05


DUSP1
11.09
6.96E−07
3.00E−05


WSCD1
10.99
6.76E−07
2.95E−05


PDZRN3
10.47
2.20E−07
2.06E−05


KRT6B
10.44
3.71E−09
4.23E−06


NCAM1
10.30
4.02E−07
2.40E−05


DSC2
10.29
2.64E−05
2.24E−04


KIAA0040
10.25
5.99E−08
1.25E−05


FAT3
9.68
1.46E−06
4.60E−05


RPSAP52
9.34
1.27E−05
1.48E−04


MDGA1
9.29
1.14E−04
5.87E−04


HS3ST3B1
9.21
9.66E−05
5.30E−04


WNT9A
9.08
1.40E−06
4.43E−05


TMCC2
8.48
2.33E−07
2.12E−05


FAM19A2
8.41
1.09E−06
3.92E−05


CXCL8
8.37
6.64E−07
2.93E−05


LOC105372663
8.33
8.83E−05
4.98E−04


KRTAP2-3
8.06
1.78E−06
4.85E−05


USP43
7.95
7.66E−07
3.12E−05


TGFBI
7.94
3.47E−09
4.23E−06


LAMB3
7.86
3.19E−08
1.05E−05


ITGA2
7.77
2.71E−07
2.17E−05


CLMP
7.69
3.15E−07
2.21E−05


MYH16
7.64
1.51E−05
1.61E−04


INHBA
7.57
6.79E−08
1.25E−05


LEMD1
7.52
1.37E−07
1.69E−05


ARNTL2
7.49
3.14E−08
1.05E−05


PARM1
7.46
3.46E−06
6.77E−05


IGFBP3
7.21
6.57E−08
1.25E−05


XYLT1
7.16
3.73E−05
2.79E−04


GAP43
7.05
6.04E−08
1.25E−05


A4GALT
6.74
6.97E−07
3.00E−05


SYNC
6.73
7.54E−06
1.09E−04


SETBP1
6.61
3.68E−07
2.32E−05


KCNC4
5.83
1.06E−04
5.64E−04


CHMP4C
5.62
2.01E−07
1.95E−05


AHNAK2
5.55
8.96E−06
1.20E−04


ARSB
5.50
2.52E−06
5.85E−05


COL6A3
5.41
1.53E−07
1.73E−05


ZNF536
5.32
2.46E−06
5.82E−05


KCNMA1
5.31
3.65E−05
2.74E−04


NRCAM
5.19
2.99E−07
2.21E−05


LRIG1
5.05
1.69E−06
4.78E−05


TLN2
5.05
1.63E−06
4.75E−05


SLC14A1
4.99
8.60E−06
1.17E−04


SH2D2A
4.99
7.61E−05
4.48E−04


RGS2
4.98
1.03E−05
1.30E−04


SQRDL
4.88
4.16E−05
2.99E−04


GEM
4.85
1.19E−06
4.10E−05


HMOX1
4.79
1.49E−06
4.62E−05


LIF
4.70
7.21E−07
3.07E−05


B3GAT1
4.67
1.12E−05
1.37E−04


PKIA
4.63
5.07E−07
2.56E−05


KLF7
4.60
9.90E−07
3.66E−05


C3orf67
4.58
3.39E−06
6.69E−05


TIMP1
4.53
6.45E−07
2.87E−05


SPSB4
4.49
3.15E−05
2.53E−04


IL1RL1
4.46
2.50E−05
2.15E−04


DSP
4.45
5.79E−07
2.71E−05


SPRR2D
4.34
1.29E−05
1.49E−04


MYO1D
4.28
2.93E−07
2.21E−05


IL24
4.26
1.59E−07
1.73E−05


ARHGAP22
4.25
2.15E−04
9.04E−04


NFASC
4.11
9.89E−07
3.66E−05


TMEM154
4.05
7.93E−06
1.13E−04


RNF19B
4.04
1.49E−06
4.62E−05


NRIP3
4.02
1.53E−05
1.63E−04


LINC00941
4.02
2.28E−06
5.53E−05


GPR158
3.89
4.20E−05
3.00E−04


BPGM
3.84
1.53E−06
4.67E−05


GRB10
3.83
1.66E−06
4.77E−05


TMC7
3.72
2.58E−04
1.04E−03


DIP2B
3.72
1.60E−06
4.74E−05


PLAT
3.68
6.65E−06
9.96E−05


CDYL2
3.68
1.24E−07
1.67E−05


RAPH1
3.64
5.15E−06
8.65E−05


IGSF9B
3.63
2.09E−05
1.93E−04


PPARD
3.61
1.09E−05
1.35E−04


PLEKHG5
3.60
2.66E−07
2.17E−05


LPXN
3.57
5.61E−07
2.68E−05


ARIDSA
3.52
3.14E−06
6.45E−05


CCDC80
3.51
2.69E−06
6.02E−05


LYPD1
3.47
4.97E−07
2.53E−05


CD55
3.47
1.66E−07
1.75E−05


MBOAT2
3.47
8.95E−07
3.43E−05


LOC101928143
3.44
2.03E−04
8.74E−04


RGMB
3.41
1.79E−06
4.85E−05


UCN2
3.40
3.77E−06
7.17E−05


TMEM117
3.40
2.27E−05
2.04E−04


ADGRG6
3.37
1.89E−05
1.81E−04


HIST2H2BE
3.36
1.74E−05
1.73E−04


ALPK1
3.34
9.51E−06
1.25E−04


LINC00704
3.33
3.15E−04
1.19E−03


PITPNC1
3.32
1.28E−06
4.28E−05


KCNG1
3.31
8.83E−08
1.37E−05


ANGPTL2
3.27
1.11E−06
3.95E−05


NREP
3.27
4.18E−08
1.16E−05


SDC1
3.25
3.67E−07
2.32E−05


C1orf198
3.25
2.07E−06
5.32E−05


TBX2
3.24
4.39E−07
2.46E−05


IRF9
3.21
3.83E−04
1.39E−03


CXCL1
3.20
3.01E−06
6.32E−05


ELL2
3.19
1.78E−05
1.75E−04


SPANXB1
3.18
1.29E−06
4.29E−05


TMCC3
3.17
2.24E−06
5.50E−05


S100A2
3.14
5.24E−07
2.60E−05


TM4SF1
3.13
1.56E−06
4.67E−05


ETHE1
3.12
9.66E−07
3.63E−05


RGS20
3.10
1.81E−04
8.06E−04


MYD88
3.09
1.74E−06
4.83E−05


ANTXR2
3.06
1.92E−05
1.83E−04


LOC105369340
3.06
2.61E−04
1.05E−03


NRP1
3.06
1.90E−07
1.88E−05


FBXO27
3.02
2.52E−07
2.13E−05


IL4R
3.01
7.46E−06
1.08E−04


AJAP1
2.99
2.43E−05
2.11E−04


PDGFC
2.97
7.95E−05
4.62E−04


HBEGF
2.97
4.28E−05
3.04E−04


BIRC2
2.95
7.23E−07
3.07E−05


ID2
2.92
1.63E−05
1.68E−04


ADAMTS1
2.91
5.56E−06
8.93E−05


SATB1
2.91
6.37E−06
9.68E−05


FOXC1
2.90
7.79E−06
1.11E−04


LOC105376382
2.89
2.90E−04
1.13E−03


SLC2A13
2.87
1.23E−04
6.22E−04


GJB3
2.86
2.12E−05
1.95E−04


NT5E
2.84
4.65E−07
2.47E−05


LOC100507002
2.84
3.21E−03
7.10E−03


SPOCK1
2.83
1.36E−06
4.42E−05


WNT5A
2.76
3.75E−07
2.35E−05


HELZ2
2.75
4.63E−03
9.42E−03


PTPRM
2.72
1.42E−04
6.82E−04


VLDLR
2.72
2.37E−05
2.09E−04


HDAC9
2.71
1.33E−05
1.51E−04


STRA6
2.71
7.38E−08
1.25E−05


TMEM255B
2.71
2.63E−03
6.04E−03


CIT
2.68
1.38E−06
4.42E−05


HIST2H2AA3
2.66
4.46E−06
7.96E−05


RNPEPL1
2.66
2.68E−05
2.26E−04


GNG2
2.64
8.30E−06
1.15E−04


CRYL1
2.64
1.97E−04
8.55E−04


AKR1C2
2.62
8.56E−05
4.87E−04


PHLDB3
2.61
3.01E−07
2.21E−05


EFNB1
2.57
2.10E−05
1.94E−04


FHL2
2.57
4.63E−07
2.47E−05


APOD
2.56
1.66E−04
7.63E−04


SAT1
2.54
4.76E−05
3.26E−04


ARHGEF4
2.54
1.24E−04
6.26E−04


ADGRE2
2.53
4.94E−06
8.43E−05


RASA1
2.52
1.83E−05
1.78E−04


S100A16
2.52
3.80E−08
1.08E−05


RNF182
2.51
5.39E−05
3.55E−04


EDNRB
2.51
6.54E−05
4.06E−04


STEAP3
2.51
1.34E−07
1.69E−05


SEMA3A
2.50
9.00E−06
1.20E−04


HIST1H2BK
2.50
1.43E−04
6.84E−04


ETS1
2.47
4.67E−06
8.19E−05


PLAUR
2.46
1.67E−06
4.78E−05


ENDOD1
2.46
4.66E−05
3.23E−04


NKILA
2.45
2.76E−04
1.08E−03


RELB
2.45
1.16E−05
1.40E−04


FAM107B
2.44
8.70E−05
4.93E−04


CD59
2.40
5.19E−08
1.25E−05


F2RL2
2.40
1.65E−05
1.68E−04


PCOLCE2
2.39
4.95E−04
1.69E−03


PFKFB4
2.39
1.68E−06
4.78E−05


MANBA
2.39
5.70E−06
9.11E−05


HIVEP2
2.38
7.42E−07
3.09E−05


CDK17
2.38
4.23E−06
7.73E−05


NFKB2
2.38
6.28E−07
2.84E−05


PLS1
2.37
4.08E−05
2.95E−04


FLJ20021
2.37
4.09E−04
1.46E−03


GDNF
2.36
1.58E−04
7.38E−04


ID1
2.36
2.96E−06
6.25E−05


TNFAIP3
2.34
2.30E−05
2.05E−04


DLX2
2.34
6.13E−05
3.88E−04


TDRD7
2.34
3.53E−05
2.70E−04


PLXNA3
2.34
1.11E−05
1.36E−04


SMAD7
2.34
1.20E−03
3.27E−03


PTHLH
2.32
1.45E−04
6.91E−04


ARG2
2.32
1.75E−04
7.89E−04


FOXC2
2.31
4.16E−04
1.48E−03


AQP3
2.31
3.38E−04
1.26E−03


SOX4
2.30
1.80E−05
1.76E−04


TMBIM1
2.29
1.28E−06
4.28E−05


ADAM19
2.29
4.84E−07
2.51E−05


PRKCDBP
2.29
8.05E−05
4.66E−04


NFKBIZ
2.28
7.46E−06
1.08E−04


ADK
2.27
5.09E−06
8.59E−05


SREK1IP1
2.26
1.61E−06
4.75E−05


ITGAS
2.26
1.39E−06
4.43E−05


FAS
2.25
4.96E−06
8.44E−05


HSPG2
2.25
6.23E−06
9.56E−05


IFNGR1
2.24
1.31E−06
4.29E−05


KDM6B
2.24
2.44E−07
2.12E−05


FRMD3
2.23
5.84E−05
3.76E−04


CREM
2.23
1.82E−04
8.11E−04


PMEPA1
2.23
2.61E−07
2.15E−05


CD68
2.23
1.57E−05
1.65E−04


SERINCS
2.22
7.19E−05
4.31E−04


TRNP1
2.22
1.85E−06
4.95E−05


SYNJ2
2.21
4.50E−06
7.98E−05


RAP2B
2.20
6.89E−05
4.21E−04


HOMER2
2.19
3.90E−04
1.40E−03


S100A1
2.19
3.64E−07
2.32E−05


AMOTL1
2.18
2.42E−07
2.12E−05


APC
2.18
8.04E−06
1.13E−04


LOC100996740
2.18
4.69E−06
8.19E−05


MGST3
2.17
5.53E−05
3.61E−04


TLDC1
2.17
4.91E−05
3.32E−04


PORCN
2.16
8.57E−05
4.88E−04


SMPD1
2.16
3.11E−05
2.51E−04


RIN2
2.15
2.68E−04
1.07E−03


MAP1B
2.15
2.20E−06
5.45E−05


FRMD4B
2.15
2.20E−05
2.00E−04


ERGIC1
2.14
3.91E−07
2.36E−05


STIM1
2.13
1.62E−06
4.75E−05


SORBS2
2.13
3.31E−06
6.64E−05


SDC2
2.13
1.03E−05
1.30E−04


CTHRC1
2.13
1.17E−04
5.98E−04


CEND1
2.12
3.11E−05
2.51E−04


SMTN
2.12
1.97E−06
5.14E−05


KLF13
2.10
2.34E−05
2.07E−04


ABLIM1
2.09
1.15E−04
5.91E−04


F11R
2.08
2.58E−05
2.21E−04


LINC00707
2.08
3.61E−05
2.72E−04


DBNDD1
2.05
5.30E−06
8.71E−05


ITGB8
2.04
1.01E−05
1.30E−04


COL9A2
2.04
1.72E−05
1.72E−04


DHRS7
2.03
3.56E−04
1.31E−03


RAB11FIP5
2.03
6.52E−06
9.85E−05


ACSL1
2.03
2.24E−05
2.02E−04


NR4A1
2.02
3.78E−07
2.35E−05


AHCYL2
2.02
2.45E−05
2.13E−04


TMEM132A
2.02
9.98E−06
1.29E−04


SHC4
2.02
3.08E−05
2.50E−04


PANX1
2.02
1.02E−05
1.30E−04


HIST1H2AC
2.02
9.47E−04
2.72E−03


MLLT3
2.01
2.62E−04
1.05E−03


CD82
2.01
9.13E−05
5.10E−04


NFIB
2.01
8.44E−06
1.16E−04


STK17A
2.00
2.43E−05
2.11E−04


NRP2
1.99
1.36E−06
4.42E−05


ABHD2
1.99
4.44E−07
2.46E−05


SIPA1L1
1.98
3.65E−04
1.34E−03


PGM3
1.98
2.42E−04
9.90E−04


CAPRIN2
1.98
2.64E−03
6.06E−03


NTM
1.97
8.95E−04
2.60E−03


ARSA
1.97
2.53E−03
5.85E−03


FAM214B
1.96
1.59E−05
1.67E−04


UBA6
1.96
2.88E−04
1.12E−03


HIST3H2A
1.96
2.69E−04
1.07E−03


IL13RA1
1.96
7.37E−06
1.08E−04


TBC1D9
1.96
1.49E−04
7.08E−04


GPRC5A
1.96
1.70E−06
4.78E−05


KIF13A
1.95
6.39E−05
3.99E−04


MXRA7
1.95
5.52E−06
8.88E−05


NET1
1.95
1.30E−05
1.49E−04


CTSL
1.95
9.73E−06
1.27E−04


JARID2
1.95
2.53E−05
2.17E−04


RIPK2
1.95
1.19E−05
1.42E−04


PIK3CD
1.94
9.67E−06
1.27E−04


CCDC71L
1.93
1.76E−06
4.85E−05


PRNP
1.93
4.92E−06
8.40E−05


NPDC1
1.93
1.15E−04
5.89E−04


DIEXF
1.93
1.52E−05
1.62E−04


PLPP4
1.92
1.40E−04
6.79E−04


TRPV4
1.92
4.81E−06
8.31E−05


ABTB1
1.92
3.87E−04
1.40E−03


LTBP4
1.91
1.28E−05
1.48E−04


SOCS2
1.91
2.37E−03
5.56E−03


TOMM34
1.91
1.49E−06
4.62E−05


RABAC1
1.91
1.44E−05
1.57E−04


MET
1.91
5.12E−07
2.56E−05


LINC00623
1.90
4.88E−05
3.31E−04


ATOX1
1.90
4.62E−07
2.47E−05


RHOC
1.90
1.19E−07
1.62E−05


GAS6
1.90
2.39E−06
5.70E−05


MYO10
1.89
1.19E−04
6.06E−04


TWF1
1.89
3.39E−06
6.69E−05


RIPK4
1.89
4.23E−05
3.01E−04


SH3PXD2B
1.89
6.58E−06
9.89E−05


NUP50
1.89
2.07E−06
5.32E−05


CORO1C
1.89
5.48E−06
8.84E−05


GPR161
1.89
1.46E−04
6.95E−04


CDK5R1
1.88
2.63E−06
5.95E−05


PERP
1.88
1.40E−06
4.43E−05


MYH9
1.88
2.98E−07
2.21E−05


GZF1
1.88
1.56E−03
4.01E−03


MROH1
1.88
6.77E−05
4.17E−04


APBB2
1.87
3.15E−05
2.53E−04


SNX9
1.87
1.54E−05
1.63E−04


UBA6-AS1
1.87
1.05E−04
5.60E−04


FURIN
1.87
6.48E−08
1.25E−05


KLF6
1.87
1.41E−04
6.81E−04


RUNX1
1.87
2.40E−05
2.10E−04


DHRS1
1.86
1.21E−04
6.12E−04


ECM1
1.85
1.81E−05
1.77E−04


S100A11
1.85
2.36E−06
5.67E−05


PARP8
1.85
1.64E−05
1.68E−04


GADD45B
1.85
1.02E−04
5.54E−04


DLGAP4
1.84
5.76E−06
9.19E−05


TAF9B
1.84
1.53E−05
1.63E−04


VAT1L
1.84
1.27E−04
6.32E−04


RHOB
1.84
3.23E−06
6.57E−05


SASH1
1.84
5.67E−06
9.09E−05


PPP1R21
1.82
3.21E−04
1.21E−03


MELTF
1.82
3.08E−06
6.38E−05


TAGLN2
1.82
5.22E−08
1.25E−05


RASA2
1.82
4.28E−04
1.51E−03


MAP1S
1.80
2.49E−06
5.83E−05


PRKCA
1.80
1.47E−05
1.59E−04


C9orf72
1.80
1.21E−03
3.28E−03


PPIF
1.80
8.05E−09
7.11E−06


TJP1
1.80
5.83E−06
9.25E−05


TRIO
1.79
4.69E−06
8.19E−05


APAF1
1.79
1.49E−05
1.60E−04


SHROOM4
1.78
7.04E−05
4.26E−04


ACAA1
1.78
1.64E−05
1.68E−04


ZFYVE16
1.77
7.76E−05
4.55E−04


TRIM58
1.77
3.77E−05
2.81E−04


PINK1
1.77
4.99E−04
1.70E−03


TBC1D19
1.76
2.05E−03
4.95E−03


TRPS1
1.76
9.89E−05
5.38E−04


RNF144A
1.76
4.82E−06
8.31E−05


CNKSR3
1.76
1.58E−04
7.37E−04


TM4SF19
1.76
9.60E−05
5.29E−04


SLC39A6
1.76
3.20E−06
6.54E−05


HES1
1.75
1.11E−04
5.80E−04


CPEB4
1.75
1.07E−05
1.33E−04


ABRACL
1.75
7.53E−06
1.09E−04


AKAP12
1.74
7.74E−07
3.13E−05


BCAS3
1.74
1.18E−03
3.23E−03


DNAJB9
1.74
1.40E−04
6.79E−04


NDRG1
1.74
4.54E−06
8.01E−05


ZSWIM4
1.74
1.60E−05
1.67E−04


SNX25
1.74
3.62E−05
2.73E−04


STARD13
1.74
1.00E−04
5.45E−04


PTPRU
1.74
4.12E−05
2.97E−04


IRGQ
1.73
2.26E−05
2.03E−04


NFKB1
1.72
7.82E−06
1.11E−04


AGAP2-AS1
1.71
1.81E−05
1.77E−04


ACOT7
1.71
1.59E−07
1.73E−05


TXNIP
1.71
2.77E−04
1.09E−03


NOV
1.71
9.51E−04
2.73E−03


ARRDC1
1.71
2.22E−05
2.01E−04


TMEM8A
1.71
9.13E−05
5.10E−04


PRDM2
1.71
3.20E−05
2.55E−04


SDSL
1.70
4.13E−04
1.47E−03


UAP1
1.70
1.61E−05
1.67E−04


KCNN4
1.70
7.27E−05
4.34E−04


JOSD1
1.69
2.37E−06
5.68E−05


DVL1
1.69
2.12E−05
1.94E−04


ANKRA2
1.69
1.34E−04
6.56E−04


MYADM
1.69
1.20E−06
4.11E−05


TGFBR1
1.69
2.41E−05
2.10E−04


DUSP10
1.69
2.31E−05
2.05E−04


UNC13B
1.68
4.29E−04
1.51E−03


FMN2
1.68
9.43E−04
2.71E−03


RRAS
1.68
9.07E−05
5.08E−04


C14orf159
1.68
1.04E−03
2.93E−03


MAFK
1.68
1.31E−04
6.47E−04


FZD8
1.68
2.24E−05
2.02E−04


GDI1
1.68
1.81E−05
1.77E−04


SLC18B1
1.68
5.64E−04
1.85E−03


FYN
1.67
4.48E−07
2.46E−05


LOC102724122
1.67
1.10E−04
5.78E−04


CHST7
1.67
2.11E−04
8.97E−04


CENPM
1.67
1.15E−04
5.89E−04


HOMER3
1.67
2.88E−05
2.39E−04


SLC22A4
1.67
2.02E−03
4.90E−03


ADD2
1.67
1.70E−04
7.75E−04


IL1RAPL1
1.66
8.27E−04
2.44E−03


AIG1
1.66
1.79E−03
4.45E−03


MSN
1.66
2.71E−08
9.89E−06


SLC9A3R2
1.66
3.01E−05
2.45E−04


CORO2B
1.66
9.79E−06
1.27E−04


ARSD
1.65
3.37E−04
1.26E−03


SLC1A1
1.65
7.56E−04
2.29E−03


HYAL3
1.65
1.35E−03
3.57E−03


TRIB1
1.65
5.09E−06
8.59E−05


SLC24A3
1.64
2.94E−05
2.42E−04


ENTPD7
1.64
1.25E−04
6.27E−04


SERPINB8
1.64
1.15E−05
1.40E−04


FOXN2
1.64
8.63E−05
4.90E−04


ABR
1.64
4.46E−07
2.46E−05


GLRX
1.64
6.59E−05
4.07E−04


PLSCR3
1.64
1.30E−05
1.49E−04


OXSR1
1.63
3.71E−06
7.10E−05


ACTA2
1.63
4.77E−04
1.64E−03


RAP1GAP2
1.63
2.73E−04
1.07E−03


NAGK
1.63
5.00E−05
3.36E−04


ARHGAP21
1.63
1.03E−05
1.30E−04


TGFB1
1.62
2.92E−05
2.41E−04


MFHAS1
1.62
6.83E−05
4.18E−04


RAI14
1.62
6.89E−05
4.21E−04


PITPNM2
1.62
1.02E−03
2.87E−03


SPRY2
1.62
6.35E−06
9.68E−05


CHPF
1.61
2.25E−05
2.02E−04


MSANTD3
1.61
2.72E−04
1.07E−03


SEZ6L2
1.61
8.02E−06
1.13E−04


GRN
1.61
2.19E−06
5.45E−05


ARPC1B
1.61
2.41E−06
5.74E−05


RNF215
1.61
9.82E−05
5.37E−04


TICAM1
1.61
4.63E−04
1.61E−03


PSAP
1.61
2.48E−06
5.82E−05


NAT6
1.61
2.45E−03
5.71E−03


EFL1
1.60
6.18E−05
3.90E−04


CEP170B
1.60
1.10E−04
5.78E−04


BTBD10
1.60
5.11E−06
8.61E−05


CCNDBP1
1.60
1.11E−04
5.81E−04


ASAH1
1.60
4.37E−05
3.08E−04


IFI27L2
1.60
1.54E−03
3.97E−03


TRIM35
1.60
1.22E−03
3.29E−03


TMSB10
1.60
1.73E−06
4.82E−05


P4HA2
1.59
3.74E−04
1.36E−03


UBALD2
1.59
2.52E−04
1.02E−03


CYSTM1
1.59
2.12E−03
5.10E−03


CLSTN1
1.59
1.55E−05
1.64E−04


TRAM2
1.59
6.71E−06
1.00E−04


SLC39A8
1.59
2.12E−03
5.10E−03


CAPN1
1.59
3.13E−06
6.44E−05


MTMR1
1.59
1.81E−04
8.06E−04


CLCF1
1.59
2.70E−04
1.07E−03


SMYD2
1.59
3.11E−04
1.18E−03


FOXD1
1.58
1.66E−05
1.68E−04


GALNT7
1.58
8.79E−05
4.97E−04


TMEM54
1.58
1.62E−04
7.51E−04


MYL6
1.58
4.94E−07
2.53E−05


INPP5A
1.58
2.65E−04
1.06E−03


DNASE1L1
1.58
1.60E−03
4.10E−03


SLC39A13
1.58
1.97E−04
8.56E−04


PHKA1
1.58
1.44E−04
6.90E−04


9-Mar
1.58
2.01E−04
8.65E−04


KCTD11
1.58
1.62E−03
4.12E−03


EDEM1
1.58
8.33E−06
1.15E−04


BCAS4
1.58
1.42E−04
6.84E−04


IFT80
1.58
1.54E−04
7.24E−04


MFGE8
1.57
4.10E−04
1.46E−03


SPHK1
1.57
4.96E−04
1.69E−03


LRP10
1.57
5.24E−06
8.68E−05


PSEN2
1.57
1.45E−04
6.94E−04


TMEM102
1.57
7.15E−04
2.20E−03


APLP2
1.56
3.38E−05
2.64E−04


ZCCHC14
1.56
1.52E−04
7.17E−04


IL11
1.56
1.51E−04
7.14E−04


ABAT
1.56
1.01E−03
2.87E−03


AIDA
1.56
1.72E−04
7.79E−04


EFNB2
1.56
1.05E−05
1.31E−04


AP1S2
1.56
2.98E−05
2.43E−04


CAPS
1.56
2.01E−05
1.88E−04


RELT
1.55
9.70E−04
2.77E−03


CLDN4
1.55
4.72E−04
1.63E−03


ZFP36
1.55
1.12E−03
3.10E−03


CLASP1
1.55
1.88E−05
1.80E−04


MDFIC
1.55
2.53E−03
5.87E−03


BIVM
1.55
1.41E−05
1.57E−04


UBL3
1.55
1.07E−04
5.65E−04


MAML2
1.55
2.29E−04
9.48E−04


GJB1
1.55
7.95E−06
1.13E−04


SLC33A1
1.55
6.80E−04
2.13E−03


NPC1
1.54
2.90E−06
6.19E−05


APPL2
1.54
3.64E−05
2.74E−04


SERINC3
1.54
1.58E−05
1.66E−04


GNAI1
1.54
1.30E−03
3.47E−03


KIF21A
1.54
3.21E−04
1.21E−03


WLS
1.54
2.77E−06
6.11E−05


PARP3
1.54
8.18E−05
4.71E−04


TEX30
1.54
1.63E−03
4.15E−03


RALGPS2
1.54
7.05E−04
2.19E−03


S100A13
1.54
7.96E−07
3.17E−05


MAP1LC3B
1.53
9.79E−06
1.27E−04


RAB11FIP1
1.53
7.48E−05
4.44E−04


PLD3
1.53
7.50E−05
4.44E−04


YPEL5
1.53
4.20E−04
1.49E−03


SLC35C1
1.53
8.12E−05
4.68E−04


NR2F2
1.53
3.75E−05
2.80E−04


USP11
1.53
2.84E−06
6.19E−05


CLU
1.53
2.38E−04
9.78E−04


TCF7L2
1.53
9.53E−05
5.27E−04


UBE2Q2
1.53
1.03E−05
1.30E−04


ANKRD10
1.53
5.63E−04
1.85E−03


FYCO1
1.53
1.72E−04
7.79E−04


ZEB1
1.53
6.35E−06
9.68E−05


SP3
1.53
2.95E−05
2.42E−04


SRSF8
1.53
1.09E−05
1.35E−04


HIST2H4A
1.53
4.54E−03
9.28E−03


HIST2H4B
1.53
4.54E−03
9.28E−03


YPEL3
1.53
3.16E−04
1.20E−03


ANKS6
1.52
1.52E−04
7.18E−04


SERGEF
1.52
1.54E−04
7.26E−04


RPRD1A
1.52
9.77E−04
2.79E−03


PTRH1
1.52
1.53E−03
3.95E−03


UPP1
1.52
3.47E−04
1.29E−03


TRPT1
1.52
2.35E−04
9.67E−04


TTPAL
1.52
1.96E−07
1.92E−05


HEBP2
1.52
2.01E−03
4.88E−03


SVIL
1.51
7.05E−05
4.26E−04


FEZ1
1.51
1.97E−06
5.14E−05


SLCO4A1-AS1
1.51
1.19E−03
3.24E−03


FUT8
1.51
2.74E−04
1.08E−03


OSTF1
1.50
6.04E−04
1.95E−03


LAP3
1.50
2.59E−04
1.04E−03


PDE4A
1.50
5.05E−05
3.38E−04


SLC35G2
1.50
3.95E−04
1.42E−03


UPRT
1.50
2.58E−04
1.04E−03


ISCA1
1.50
1.30E−04
6.42E−04


FAM177A1
1.50
3.74E−03
7.98E−03


SWAP70
1.49
1.75E−05
1.74E−04


DSTYK
1.49
6.20E−06
9.53E−05


SP100
1.49
1.37E−03
3.62E−03


DENND1A
1.49
1.25E−05
1.47E−04


SKAP2
1.49
1.67E−04
7.65E−04


SKIL
1.49
5.55E−04
1.83E−03


POLD4
1.49
1.27E−04
6.32E−04


SPRYD3
1.49
2.32E−03
5.46E−03


CACNB3
1.48
6.57E−05
4.07E−04


FAM83G
1.48
3.58E−05
2.72E−04


KHNYN
1.48
2.34E−04
9.62E−04


ABCA2
1.48
2.76E−05
2.30E−04


MED13
1.48
5.40E−05
3.55E−04


BCORL1
1.48
3.61E−03
7.75E−03


ITPKB
1.48
1.71E−03
4.31E−03


PARVB
1.48
7.30E−06
1.07E−04


FAM168A
1.47
4.36E−05
3.07E−04


KIFAP3
1.47
1.86E−04
8.24E−04


HIPK3
1.47
1.96E−04
8.52E−04


FLOT1
1.47
5.97E−05
3.81E−04


MAP3K4
1.47
1.26E−04
6.30E−04


SERTAD1
1.47
3.87E−03
8.20E−03


MANEAL
1.47
2.61E−04
1.05E−03


TCIRG1
1.47
5.12E−04
1.73E−03


PLGRKT
1.47
3.60E−04
1.33E−03


QSOX1
1.47
5.09E−05
3.40E−04


FGFR1
1.46
1.15E−04
5.89E−04


PSEN1
1.46
4.72E−04
1.63E−03


NOMO2
1.46
3.75E−05
2.80E−04


SPAG9
1.46
1.01E−04
5.48E−04


TMEM14A
1.46
4.01E−03
8.43E−03


NUMB
1.46
1.84E−05
1.78E−04


ATP2B4
1.46
1.83E−05
1.78E−04


EVIS
1.46
2.56E−03
5.90E−03


DECR1
1.46
1.74E−03
4.36E−03


ADIPOR1
1.45
1.55E−06
4.67E−05


MICAL1
1.45
7.27E−04
2.23E−03


PGPEP1
1.45
9.86E−04
2.81E−03


STXBP1
1.45
3.24E−05
2.56E−04


DOCK5
1.45
4.48E−04
1.57E−03


STEAP1B
1.44
1.01E−04
5.48E−04


SLC6A15
1.44
2.65E−05
2.24E−04


GM2A
1.44
1.28E−04
6.37E−04


CITED4
1.44
1.89E−03
4.65E−03


PPTC7
1.44
8.22E−05
4.72E−04


UHRF2
1.44
1.33E−03
3.54E−03


LRFN4
1.44
5.78E−04
1.89E−03


TMEM134
1.44
1.25E−03
3.37E−03


SLC1A4
1.44
1.36E−04
6.66E−04


IFI30
1.43
7.03E−05
4.26E−04


CALCOCO1
1.43
1.07E−04
5.65E−04


IER5
1.43
1.99E−04
8.60E−04


MAPKBP1
1.43
4.43E−05
3.10E−04


MAFF
1.43
2.09E−03
5.02E−03


CUX1
1.43
2.32E−05
2.06E−04


PPP4R1
1.43
1.18E−03
3.22E−03


WBP1L
1.43
1.41E−04
6.82E−04


ATL3
1.43
3.81E−04
1.38E−03


INO80C
1.43
4.91E−03
9.87E−03


PELI1
1.43
1.77E−03
4.42E−03


LMF2
1.43
1.05E−03
2.95E−03


PPP2R1B
1.43
5.77E−04
1.88E−03


ENO2
1.43
3.72E−04
1.36E−03


TPM4
1.43
1.30E−06
4.29E−05


DOK4
1.42
2.87E−03
6.49E−03


KRT15
1.42
1.41E−03
3.69E−03


STIM2
1.42
2.69E−04
1.07E−03


MLXIP
1.42
1.09E−04
5.74E−04


DBN1
1.42
6.84E−05
4.19E−04


ADO
1.42
1.37E−03
3.62E−03


CUEDC1
1.42
2.87E−06
6.19E−05


DNAJB2
1.42
2.19E−04
9.19E−04


ETV3
1.41
2.72E−04
1.07E−03


CYBA
1.41
3.35E−06
6.68E−05


OSBPL3
1.41
4.12E−05
2.97E−04


MESDC1
1.41
1.78E−03
4.42E−03


FKBP10
1.41
4.18E−06
7.69E−05


SGK1
1.41
1.59E−04
7.39E−04


CYLD
1.41
6.99E−04
2.17E−03


FRYL
1.41
1.34E−04
6.57E−04


GAK
1.41
1.16E−04
5.91E−04


FBN1
1.41
9.60E−05
5.29E−04


TLCD1
1.41
2.12E−03
5.09E−03


SLC22A18
1.40
1.82E−05
1.77E−04


MAN2B1
1.40
1.13E−04
5.83E−04


NT5DC3
1.40
3.13E−03
6.96E−03


NFIL3
1.40
3.60E−04
1.33E−03


SLC35F2
1.40
1.38E−03
3.63E−03


ARRDC2
1.40
8.45E−05
4.83E−04


MXD4
1.40
2.08E−03
5.01E−03


LAMC1
1.40
3.10E−07
2.21E−05


ERCC5
1.40
6.45E−04
2.05E−03


KIF16B
1.40
5.97E−04
1.93E−03


TRIM3
1.40
2.41E−03
5.64E−03


TPRG1L
1.40
4.27E−03
8.86E−03


TLE3
1.40
8.28E−05
4.75E−04


SNX29
1.40
6.83E−05
4.18E−04


CALD1
1.40
1.12E−04
5.82E−04


RELA
1.40
9.06E−05
5.08E−04


ELOVL1
1.39
1.60E−05
1.67E−04


SALL1
1.39
4.22E−05
3.01E−04


SYVN1
1.39
1.01E−04
5.48E−04


SNAPC2
1.39
2.06E−03
4.97E−03


NOL3
1.39
2.06E−04
8.82E−04


OSTM1
1.39
2.73E−05
2.29E−04


TMCO3
1.39
3.28E−05
2.58E−04


RRM2B
1.39
5.61E−05
3.65E−04


TLE1
1.39
2.74E−04
1.08E−03


PDE4DIP
1.39
2.19E−03
5.21E−03


PIKFYVE
1.39
1.38E−04
6.72E−04


FLOT2
1.39
1.15E−04
5.89E−04


EYA3
1.39
2.38E−05
2.09E−04


SPATA20
1.39
2.30E−03
5.43E−03


PLP2
1.39
8.13E−06
1.14E−04


AGA
1.38
2.00E−04
8.61E−04


MARVELD1
1.38
7.65E−05
4.50E−04


TTC17
1.38
1.95E−04
8.49E−04


ATG12
1.38
1.96E−04
8.52E−04


TMEM87A
1.38
1.10E−04
5.76E−04


FRMD8
1.38
3.56E−05
2.71E−04


DLX1
1.38
2.79E−04
1.09E−03


ZBED1
1.38
7.25E−04
2.22E−03


ADCY7
1.38
5.65E−04
1.85E−03


RCAN3
1.38
1.62E−03
4.13E−03


LRP1
1.37
3.88E−04
1.40E−03


OBFC1
1.37
5.91E−04
1.92E−03


TBX3
1.37
8.97E−05
5.05E−04


C7orf43
1.37
1.03E−04
5.54E−04


UBE2R2
1.37
5.99E−06
9.38E−05


FGFRL1
1.37
1.68E−05
1.70E−04


FN1
1.37
7.50E−07
3.10E−05


STAT6
1.37
1.13E−05
1.38E−04


PRKCD
1.37
1.35E−04
6.61E−04


PMP22
1.37
4.12E−06
7.62E−05


SSR4
1.37
4.09E−04
1.46E−03


ANKRD13A
1.36
6.04E−05
3.84E−04


SLC11A2
1.36
1.71E−04
7.77E−04


IRS2
1.36
9.63E−05
5.29E−04


FAM102A
1.36
2.69E−04
1.07E−03


DOCK7
1.36
1.74E−03
4.37E−03


CSGALNACT2
1.36
3.34E−03
7.31E−03


CDC42SE2
1.36
3.20E−04
1.21E−03


SLC9B2
1.36
1.05E−03
2.95E−03


GRAMD1A
1.36
3.38E−04
1.26E−03


FAM134A
1.36
1.56E−04
7.33E−04


TUFT1
1.36
1.11E−05
1.36E−04


USP12
1.36
3.34E−04
1.25E−03


FAM213A
1.36
3.02E−03
6.74E−03


GNAI2
1.36
1.65E−04
7.60E−04


NDUFB8
1.36
5.87E−05
3.76E−04


CERK
1.36
1.60E−05
1.67E−04


PSMD2
1.36
3.17E−05
2.54E−04


GRIK2
1.35
2.90E−04
1.13E−03


KYNU
1.35
5.37E−05
3.54E−04


AGPAT2
1.35
1.67E−04
7.67E−04


GUCD1
1.35
2.13E−04
9.00E−04


KLHL2
1.35
2.51E−04
1.02E−03


ACTG1
1.35
1.78E−06
4.85E−05


CTTNBP2NL
1.35
4.43E−03
9.12E−03


WDR45
1.35
1.05E−05
1.31E−04


PLPP6
1.35
3.48E−03
7.54E−03


PLEKHM1
1.35
1.71E−04
7.78E−04


GLTP
1.35
2.78E−04
1.09E−03


ANXA4
1.35
6.98E−04
2.17E−03


LOC100507377
1.35
1.06E−03
2.97E−03


HMGCL
1.35
2.34E−03
5.49E−03


IRF1
1.35
3.17E−03
7.03E−03


STX7
1.35
3.79E−03
8.06E−03


VPS13C
1.35
1.49E−04
7.09E−04


PLK3
1.35
8.01E−04
2.39E−03


ABCC10
1.35
2.76E−03
6.28E−03


CDS2
1.34
5.13E−04
1.73E−03


EMP3
1.34
3.13E−05
2.52E−04


OSBPL8
1.34
2.33E−05
2.06E−04


ARAP1
1.34
1.02E−04
5.51E−04


IKBKE
1.34
7.17E−04
2.21E−03


ZFAND1
1.34
7.25E−04
2.22E−03


CAPG
1.34
2.18E−05
1.98E−04


ARHGAP1
1.34
5.93E−04
1.92E−03


WASF3
1.34
5.43E−04
1.80E−03


SIK3
1.34
1.48E−03
3.85E−03


HGSNAT
1.34
1.59E−04
7.40E−04


ITGB1
1.34
5.24E−06
8.68E−05


SH3BGRL3
1.34
1.95E−04
8.49E−04


PLPP5
1.34
1.00E−03
2.85E−03


MINPP1
1.34
1.18E−05
1.42E−04


RAB6A
1.34
1.25E−04
6.27E−04


CPPED1
1.34
5.18E−04
1.74E−03


ZCCHC6
1.33
8.62E−04
2.52E−03


NR3C1
1.33
7.35E−04
2.24E−03


RAB18
1.33
1.57E−03
4.05E−03


SLC48A1
1.33
3.30E−04
1.24E−03


SERINC1
1.33
1.89E−04
8.33E−04


COG3
1.33
2.09E−03
5.03E−03


AP3S1
1.33
3.90E−04
1.40E−03


RGS16
1.33
3.22E−03
7.11E−03


FOXK1
1.33
5.08E−04
1.72E−03


CD96
1.33
7.11E−05
4.29E−04


VIMP
1.33
2.16E−03
5.17E−03


CSRP1
1.33
1.27E−04
6.34E−04


FEM1C
1.33
9.62E−05
5.29E−04


CAPN10
1.33
2.82E−03
6.39E−03


SMAGP
1.33
2.87E−04
1.12E−03


TRIM4
1.33
3.36E−03
7.35E−03


GASS
1.33
2.46E−04
1.00E−03


ELK4
1.33
1.40E−03
3.66E−03


OSGIN2
1.33
3.00E−04
1.15E−03


TSPAN3
1.33
1.06E−03
2.97E−03


LOC652276
1.32
4.82E−03
9.72E−03


CDIPT
1.32
5.39E−05
3.55E−04


KDELC1
1.32
1.45E−03
3.78E−03


RASSF3
1.32
4.20E−05
3.00E−04


EPN2
1.32
1.00E−03
2.85E−03


EFCAB14
1.32
4.76E−04
1.64E−03


FXYD5
1.32
4.78E−05
3.27E−04


NR1D2
1.32
1.66E−04
7.64E−04


UGGT2
1.32
1.98E−04
8.56E−04


SELK
1.32
2.98E−03
6.67E−03


BCAP31
1.32
2.42E−05
2.10E−04


PARP4
1.32
3.25E−06
6.59E−05


CERS2
1.32
1.45E−05
1.58E−04


PIGM
1.32
2.69E−04
1.07E−03


PPP2R5B
1.32
1.07E−03
3.00E−03


MYL12A
1.32
1.65E−04
7.62E−04


RNASEK
1.32
1.24E−03
3.35E−03


10-Sep
1.32
9.61E−05
5.29E−04


TMEM120A
1.31
1.74E−04
7.85E−04


MOAP1
1.31
2.94E−05
2.42E−04


PCBP4
1.31
2.53E−05
2.17E−04


CYTH2
1.31
9.86E−05
5.37E−04


SPATA13
1.31
4.43E−04
1.55E−03


SAR1B
1.31
2.25E−04
9.36E−04


MFSD1
1.31
1.69E−04
7.71E−04


SNX30
1.31
1.55E−03
4.00E−03


LOC100506548
1.31
1.63E−03
4.15E−03


POPDC3
1.31
8.67E−04
2.53E−03


MCOLN1
1.31
2.74E−04
1.08E−03


GNB4
1.31
4.15E−03
8.67E−03


PICALM
1.31
8.78E−05
4.96E−04


ALDH1A3
1.31
1.23E−06
4.17E−05


VAMP3
1.30
2.65E−04
1.06E−03


CAPN2
1.30
8.71E−06
1.18E−04


UFC1
1.30
7.37E−04
2.25E−03


ITGAV
1.30
3.44E−04
1.28E−03


ZKSCAN1
1.30
1.21E−05
1.43E−04


GIPC1
1.30
2.79E−06
6.13E−05


HTR7
1.30
2.17E−03
5.18E−03


DNTTIP1
1.30
4.51E−04
1.57E−03


ZADH2
1.30
2.67E−03
6.10E−03


GMIP
1.30
1.75E−03
4.38E−03


PGK1
1.30
8.21E−06
1.14E−04


TRAPPC1
1.30
4.91E−05
3.32E−04


PHLDB1
1.30
4.86E−04
1.67E−03


PPIC
1.30
3.92E−03
8.29E−03


SOX10
1.30
7.15E−05
4.30E−04


DUSP7
1.30
1.04E−04
5.60E−04


PLEKHA3
1.30
1.88E−03
4.63E−03


JRKL
1.30
4.29E−03
8.89E−03


MLLT11
1.30
3.41E−04
1.27E−03


CD99
1.30
2.02E−05
1.89E−04


TMEM64
1.30
9.57E−04
2.74E−03


H6PD
1.29
9.29E−05
5.16E−04


CSNK1E
1.29
3.52E−05
2.70E−04


TMEM63B
1.29
1.12E−03
3.09E−03


TMEM127
1.29
8.51E−04
2.50E−03


MACF1
1.29
1.27E−05
1.48E−04


PLPPR2
1.29
7.07E−04
2.19E−03


SNX8
1.29
5.71E−05
3.70E−04


EBLN3
1.29
2.41E−05
2.10E−04


FAM3C
1.29
7.95E−06
1.13E−04


RAPGEF1
1.29
5.94E−04
1.92E−03


VEGFB
1.29
6.17E−05
3.89E−04


REST
1.29
1.25E−04
6.28E−04


SLCO4A1
1.29
1.66E−03
4.22E−03


DAB2IP
1.29
5.72E−04
1.87E−03


B2M
1.29
1.12E−04
5.82E−04


LIMS1
1.29
7.50E−05
4.44E−04


ACBD5
1.29
1.91E−03
4.69E−03


DNAJC10
1.29
6.10E−04
1.97E−03


TMCO4
1.29
4.25E−03
8.84E−03


GOLT1B
1.29
8.60E−04
2.52E−03


TCP11L1
1.29
3.00E−04
1.15E−03


GUK1
1.28
3.02E−04
1.16E−03


IMPDH1
1.28
8.48E−05
4.84E−04


TATDN2
1.28
8.17E−05
4.71E−04


FKBP1A
1.28
4.47E−06
7.96E−05


NOL9
1.28
8.35E−04
2.46E−03


DNAJC4
1.28
8.07E−04
2.40E−03


TESK1
1.28
2.40E−03
5.61E−03


CANT1
1.28
5.10E−04
1.72E−03


PRCP
1.28
1.35E−03
3.58E−03


KLHL42
1.28
3.27E−03
7.18E−03


TMUB2
1.28
5.29E−04
1.77E−03


KDSR
1.28
2.93E−04
1.13E−03


RMND5B
1.28
4.74E−03
9.58E−03


MMP16
1.28
1.82E−04
8.08E−04


GRIPAP1
1.28
7.25E−04
2.22E−03


TAF13
1.28
4.49E−04
1.57E−03


SAGE1
1.28
9.48E−04
2.72E−03


UBE2Z
1.28
1.63E−04
7.54E−04


CERCAM
1.28
7.78E−04
2.34E−03


SMARCA2
1.28
1.34E−03
3.57E−03


FAM114A1
1.27
7.46E−04
2.27E−03


CES2
1.27
1.31E−05
1.50E−04


KLHL36
1.27
6.37E−04
2.03E−03


KLC2
1.27
2.60E−04
1.04E−03


NPR2
1.27
1.75E−04
7.88E−04


VPS9D1
1.27
8.98E−05
5.05E−04


TUBB3
1.27
1.42E−04
6.82E−04


CHIC2
1.27
8.14E−04
2.41E−03


EEF2KMT
1.27
1.03E−03
2.89E−03


2-Mar
1.27
2.70E−04
1.07E−03


PLBD2
1.27
1.89E−03
4.64E−03


MNT
1.27
6.46E−04
2.05E−03


TGIF1
1.27
3.54E−03
7.64E−03


ARPC1A
1.27
8.29E−06
1.15E−04


GPN1
1.27
1.19E−03
3.24E−03


CHMP5
1.27
6.19E−04
1.99E−03


WDTC1
1.27
2.21E−04
9.26E−04


XIAP
1.27
4.80E−05
3.27E−04


SQSTM1
1.27
5.69E−05
3.69E−04


ASNS
1.27
1.98E−03
4.82E−03


ARNT
1.27
3.03E−03
6.76E−03


KIAA0754
1.27
3.52E−04
1.30E−03


YIPF5
1.27
9.98E−04
2.84E−03


MAPKAPK2
1.27
8.84E−04
2.57E−03


PRDX5
1.27
7.20E−04
2.21E−03


GBA
1.27
2.97E−04
1.14E−03


PPP1CB
1.26
2.25E−04
9.35E−04


ZBTB4
1.26
8.29E−04
2.45E−03


GPAT3
1.26
1.72E−04
7.79E−04


STXBP3
1.26
1.50E−03
3.90E−03


TSHZ1
1.26
1.08E−03
3.00E−03


AMACR
1.26
3.97E−03
8.38E−03


SMG7
1.26
1.68E−04
7.71E−04


TCAF1
1.26
4.73E−05
3.26E−04


TIPARP
1.26
8.23E−04
2.44E−03


HIPK1
1.26
2.91E−04
1.13E−03


CSTB
1.26
1.43E−03
3.75E−03


TACC1
1.26
1.58E−04
7.37E−04


MGAT4B
1.26
1.87E−04
8.26E−04


DEAF1
1.26
2.97E−03
6.65E−03


YAP1
1.26
8.68E−04
2.53E−03


PLOD1
1.26
1.06E−04
5.64E−04


SUCO
1.26
4.61E−04
1.60E−03


TM9SF3
1.26
7.83E−04
2.35E−03


POLG
1.26
3.37E−03
7.36E−03


TRIM56
1.25
4.56E−04
1.59E−03


PMAIP1
1.25
2.16E−03
5.16E−03


AGFG1
1.25
5.45E−04
1.81E−03


EMP1
1.25
4.92E−04
1.68E−03


RPS4X
1.25
1.65E−07
1.75E−05


ZC3HAV1
1.25
6.90E−04
2.15E−03


SCYL2
1.25
1.31E−05
1.49E−04


TDRKH
1.25
4.21E−03
8.77E−03


B4GALT7
1.25
2.28E−03
5.40E−03


FAM214A
1.25
1.39E−03
3.66E−03


PTBP3
1.25
3.45E−04
1.28E−03


RHOG
1.25
3.36E−03
7.35E−03


PBX3
1.25
1.60E−04
7.44E−04


LAMB2
1.25
8.97E−04
2.60E−03


PACS1
1.25
3.45E−04
1.28E−03


ARHGEF12
1.25
4.03E−05
2.92E−04


ULK3
1.25
3.26E−03
7.17E−03


POGK
1.25
1.01E−03
2.87E−03


MTRNR2L8
1.25
2.58E−03
5.94E−03


HPS6
1.25
2.06E−03
4.98E−03


SLK
1.25
6.45E−04
2.05E−03


NUDT22
1.25
1.77E−03
4.42E−03


RNF146
1.25
4.26E−03
8.84E−03


LRRC8A
1.25
5.87E−05
3.76E−04


CHMP3
1.25
9.78E−04
2.79E−03


ATP6V1G1
1.25
6.07E−05
3.86E−04


UTRN
1.25
2.80E−03
6.34E−03


EXOC7
1.24
2.74E−04
1.08E−03


LOC102723724
1.24
7.02E−04
2.18E−03


TMEM50A
1.24
3.46E−03
7.50E−03


PLOD3
1.24
5.40E−06
8.78E−05


LINC00467
1.24
1.53E−04
7.23E−04


HERC4
1.24
3.61E−03
7.75E−03


SBF1
1.24
2.85E−04
1.11E−03


SMIM19
1.24
1.32E−03
3.52E−03


C16orf45
1.24
6.75E−04
2.12E−03


ARPC5
1.24
5.94E−05
3.80E−04


HS3ST3A1
1.24
1.35E−03
3.58E−03


MGST1
1.24
6.59E−04
2.08E−03


MORC3
1.24
4.11E−03
8.60E−03


CREB3
1.24
4.16E−03
8.69E−03


ITPKC
1.24
5.60E−04
1.84E−03


SHARPIN
1.24
1.01E−03
2.86E−03


ATP6AP2
1.24
2.08E−04
8.89E−04


CTSB
1.24
1.22E−04
6.16E−04


NOTCH2
1.24
1.72E−05
1.72E−04


CCDC93
1.24
2.75E−04
1.08E−03


NIPA1
1.24
6.67E−05
4.11E−04


PTDSS1
1.24
1.19E−05
1.42E−04


BICD1
1.24
1.68E−03
4.24E−03


CMAS
1.24
1.45E−03
3.78E−03


ALDH9A1
1.24
1.27E−04
6.34E−04


DPP3
1.24
7.80E−05
4.57E−04


ATG101
1.24
2.30E−06
5.55E−05


G3BP1
1.23
2.96E−06
6.25E−05


NECAP2
1.23
1.12E−03
3.09E−03


GPR107
1.23
3.72E−04
1.36E−03


CCND1
1.23
3.05E−06
6.38E−05


GRINA
1.23
1.44E−04
6.89E−04


ATXN10
1.23
5.36E−05
3.53E−04


UBR1
1.23
2.68E−03
6.13E−03


ZBTB7A
1.23
3.54E−03
7.63E−03


GNG10
1.23
3.73E−04
1.36E−03


MC1R
1.23
4.76E−03
9.61E−03


NDFIP1
1.23
1.30E−04
6.42E−04


SLMAP
1.23
2.25E−03
5.33E−03


DUSP23
1.23
1.66E−03
4.20E−03


C1orf122
1.23
4.10E−03
8.59E−03


RASAL2
1.23
1.32E−04
6.50E−04


TOLLIP
1.23
3.46E−03
7.50E−03


HECTD3
1.23
3.18E−04
1.20E−03


MPP6
1.23
5.45E−04
1.81E−03


UBE2L6
1.23
1.84E−03
4.53E−03


SESN2
1.23
1.84E−03
4.54E−03


ATP6V1D
1.22
2.75E−03
6.26E−03


BRSK1
1.22
1.94E−04
8.46E−04


APMAP
1.22
5.36E−04
1.79E−03


WDR13
1.22
1.71E−03
4.30E−03


TMEM9B
1.22
2.14E−04
9.04E−04


FBXO17
1.22
3.84E−03
8.15E−03


FSCN1
1.22
7.14E−05
4.30E−04


B3GAT3
1.22
1.15E−03
3.15E−03


CTTN
1.22
2.30E−04
9.50E−04


INSIG1
1.22
1.39E−03
3.66E−03


CORO1B
1.22
1.36E−04
6.66E−04


MYO9B
1.22
1.46E−05
1.58E−04


CBFB
1.22
7.33E−04
2.24E−03


KLHDC2
1.22
2.36E−04
9.71E−04


RPS12
1.22
1.15E−05
1.40E−04


ZER1
1.21
2.46E−04
1.00E−03


SDE2
1.21
1.01E−03
2.87E−03


NCEH1
1.21
5.52E−04
1.83E−03


RECQL
1.21
1.50E−04
7.10E−04


COMMD6
1.21
4.79E−03
9.67E−03


LIX1L
1.21
7.07E−04
2.19E−03


FBXO28
1.21
9.03E−04
2.62E−03


KDM5B
1.21
9.03E−06
1.20E−04


TMED4
1.21
4.06E−04
1.45E−03


CMIP
1.21
4.61E−03
9.38E−03


ZNF444
1.21
1.37E−03
3.62E−03


CTSF
1.21
2.64E−03
6.06E−03


TNIP2
1.21
2.34E−03
5.49E−03


JADE1
1.21
2.99E−03
6.67E−03


CD47
1.21
1.81E−03
4.49E−03


PLEC
1.21
8.56E−04
2.51E−03


EEF2
1.21
5.30E−05
3.50E−04


WASL
1.21
3.27E−03
7.18E−03


MAST3
1.21
4.68E−03
9.49E−03


ERP44
1.21
3.91E−03
8.28E−03


PITRM1
1.21
2.90E−04
1.12E−03


MICA
1.21
4.10E−05
2.96E−04


PLIN3
1.21
4.30E−04
1.51E−03


FRMD4A
1.20
7.57E−04
2.29E−03


TNFRSF1A
1.20
2.53E−04
1.02E−03


PTPN9
1.20
4.92E−04
1.68E−03


TUG1
1.20
4.69E−04
1.62E−03


LTBP3
1.20
1.41E−04
6.81E−04


TVP23B
1.20
1.98E−04
8.56E−04


NAPG
1.20
3.26E−04
1.23E−03


GOLGA1
1.20
4.92E−03
9.88E−03


CD164
1.20
1.16E−03
3.18E−03


FBXO11
1.20
1.29E−03
3.45E−03


RGP1
1.20
1.62E−04
7.50E−04


AKAP13
1.20
4.87E−05
3.31E−04


UGDH-AS1
1.20
5.04E−04
1.71E−03


ZPR1
1.20
6.54E−04
2.07E−03


CAST
1.20
3.73E−04
1.36E−03


SPCS3
1.20
2.16E−03
5.16E−03


NR1H2
1.20
1.87E−04
8.26E−04


RRBP1
1.20
1.63E−05
1.68E−04


C6orf1
1.20
8.56E−04
2.51E−03


IGBP1
1.20
4.01E−03
8.43E−03


REEP5
1.20
9.70E−04
2.77E−03


FAH
1.20
2.78E−03
6.31E−03


PDPK1
1.19
1.47E−03
3.82E−03


MOV10
1.19
3.18E−03
7.05E−03


SLC20A1
1.19
1.08E−04
5.68E−04


MSL2
1.19
9.27E−05
5.15E−04


IKBKB
1.19
4.35E−03
8.98E−03


NSMAF
1.19
7.28E−04
2.23E−03


ARHGEF1
1.19
2.13E−04
9.01E−04


TMEM59
1.19
2.83E−03
6.39E−03


SPRED2
1.19
2.54E−03
5.88E−03


GNB1
1.19
7.93E−05
4.61E−04


KBTBD2
1.19
2.78E−03
6.31E−03


FAT1
1.19
2.55E−04
1.03E−03


MEX3C
1.19
1.26E−03
3.40E−03


ERAP1
1.19
2.77E−03
6.29E−03


CACYBP
1.19
2.91E−04
1.13E−03


AP1B1
1.19
9.55E−05
5.27E−04


FAM222B
1.18
9.00E−04
2.61E−03


VIM
1.18
9.83E−05
5.37E−04


EXOC2
1.18
1.90E−03
4.67E−03


PTTG1IP
1.18
1.34E−03
3.57E−03


TERF2IP
1.18
1.17E−04
5.98E−04


C6orf89
1.18
1.18E−03
3.23E−03


CAP1
1.18
1.28E−04
6.36E−04


NIN
1.18
4.11E−03
8.60E−03


INF2
1.18
4.42E−03
9.10E−03


RPS6KA4
1.18
1.67E−03
4.24E−03


RC3H2
1.18
2.25E−03
5.33E−03


SND1
1.18
1.76E−04
7.92E−04


HTATIP2
1.18
3.24E−03
7.14E−03


NEK7
1.18
4.99E−04
1.70E−03


SSR3
1.18
4.73E−05
3.26E−04


DPY19L1
1.18
4.09E−04
1.46E−03


FAM234A
1.18
1.44E−03
3.77E−03


TNK2
1.18
4.07E−04
1.45E−03


SEMA7A
1.18
3.77E−04
1.37E−03


EDEM2
1.18
1.39E−03
3.65E−03


PPM1A
1.17
2.20E−03
5.23E−03


ATP6V1A
1.17
9.16E−05
5.11E−04


ZNF707
1.17
1.05E−03
2.95E−03


EDEM3
1.17
1.38E−03
3.64E−03


KCTD5
1.17
5.83E−04
1.90E−03


PDCD10
1.17
3.74E−03
7.98E−03


TMEM208
1.17
7.01E−04
2.18E−03


YKT6
1.17
6.69E−04
2.11E−03


HEXA
1.17
4.82E−03
9.72E−03


DYRK3
1.17
1.54E−03
3.97E−03


ARPC5L
1.17
5.65E−05
3.67E−04


DRAM1
1.17
4.92E−03
9.87E−03


ERLEC1
1.17
2.27E−03
5.37E−03


TBCEL
1.17
2.40E−03
5.60E−03


UBA1
1.17
2.74E−06
6.08E−05


ARF4
1.17
8.77E−04
2.56E−03


LCMT2
1.17
4.45E−03
9.14E−03


STK4
1.17
3.77E−03
8.02E−03


SLC35E1
1.17
3.64E−04
1.34E−03


YIF1A
1.17
2.44E−03
5.69E−03


RPLP1
1.17
2.34E−05
2.07E−04


COPA
1.17
3.82E−05
2.84E−04


TNKS
1.16
2.46E−03
5.74E−03


ESRRA
1.16
4.00E−03
8.43E−03


METTL23
1.16
2.83E−03
6.39E−03


DESI2
1.16
2.20E−04
9.21E−04


MKRN1
1.16
1.82E−03
4.50E−03


TMC01
1.16
4.46E−04
1.56E−03


MIA3
1.16
3.26E−03
7.17E−03


AP5Z1
1.16
4.78E−03
9.65E−03


LYPLA2
1.16
5.01E−04
1.70E−03


NUCB1
1.16
1.70E−04
7.75E−04


IGF2R
1.16
2.17E−06
5.42E−05


CCPG1
1.16
4.96E−03
9.94E−03


IKBIP
1.16
3.49E−03
7.57E−03


ERBIN
1.16
3.87E−03
8.21E−03


BCR
1.16
2.65E−03
6.07E−03


ZNF598
1.16
1.68E−03
4.25E−03


AHNAK
1.16
1.77E−03
4.41E−03


SPTBN1
1.16
2.29E−04
9.47E−04


TMBIM6
1.16
1.39E−06
4.43E−05


CSNK1A1
1.16
5.78E−04
1.89E−03


FLYWCH1
1.16
4.60E−03
9.36E−03


TIMM10B
1.16
3.58E−03
7.70E−03


CEP170
1.16
7.70E−04
2.32E−03


RAP1GDS1
1.16
4.97E−03
9.95E−03


DALRD3
1.16
6.38E−04
2.03E−03


ARPP19
1.16
1.40E−03
3.67E−03


RNF13
1.16
1.04E−03
2.93E−03


INTS7
1.16
6.79E−04
2.13E−03


SNAP23
1.16
3.24E−03
7.14E−03


CYB5R3
1.16
3.87E−04
1.40E−03


MIA
1.16
3.49E−03
7.57E−03


ATP6V0B
1.15
1.09E−03
3.02E−03


NOP9
1.15
1.24E−04
6.24E−04


SNHG6
1.15
2.33E−04
9.61E−04


TMEM184B
1.15
1.86E−03
4.59E−03


MED15
1.15
4.57E−03
9.32E−03


TRIM11
1.15
8.84E−04
2.57E−03


MAEA
1.15
2.08E−03
5.00E−03


INPPL1
1.15
1.55E−05
1.64E−04


GNB5
1.15
1.89E−04
8.32E−04


NOMO1
1.15
1.71E−03
4.31E−03


ATP6V0C
1.15
4.40E−03
9.07E−03


PURB
1.15
5.59E−04
1.84E−03


GNB2
1.15
3.98E−05
2.91E−04


PCSK7
1.15
4.65E−03
9.44E−03


WASF2
1.15
6.40E−04
2.04E−03


SLC25A4
1.15
1.47E−03
3.82E−03


TMED7
1.15
3.39E−05
2.64E−04


SMARCAL1
1.15
1.78E−04
7.96E−04


DBNL
1.15
3.47E−03
7.53E−03


KIDINS220
1.14
3.57E−03
7.68E−03


TMEM189
1.14
1.03E−03
2.90E−03


SEC61A1
1.14
1.28E−04
6.37E−04


PNPLA2
1.14
9.43E−04
2.71E−03


RPL3
1.14
2.16E−05
1.97E−04


CDKN1B
1.14
3.99E−03
8.42E−03


FIBP
1.14
1.54E−05
1.64E−04


NFE2L1
1.14
9.82E−05
5.37E−04


STUB1
1.14
8.96E−04
2.60E−03


PIGT
1.14
4.66E−04
1.62E−03


YRDC
1.14
5.23E−04
1.75E−03


MICALL1
1.14
2.67E−04
1.06E−03


TPT1
1.14
1.69E−04
7.73E−04


PTK2
1.14
2.70E−03
6.16E−03


ACVR1
1.14
4.60E−03
9.37E−03


NENF
1.14
1.38E−03
3.63E−03


GPAA1
1.14
3.09E−04
1.18E−03


RNF14
1.14
1.70E−04
7.74E−04


COX6B1
1.14
7.09E−04
2.19E−03


AMPD2
1.14
4.41E−03
9.08E−03


MFSD10
1.14
3.67E−03
7.86E−03


MAP4K4
1.14
5.30E−05
3.50E−04


BAG1
1.14
3.91E−04
1.41E−03


EPM2AIP1
1.14
4.56E−03
9.32E−03


EHBP1L1
1.14
7.18E−04
2.21E−03


RNF4
1.14
4.32E−03
8.93E−03


CPE
1.14
2.25E−04
9.37E−04


PYGL
1.14
7.14E−04
2.20E−03


P3H4
1.13
2.27E−03
5.37E−03


BLOC1S6
1.13
1.53E−03
3.96E−03


TMEM259
1.13
7.14E−04
2.20E−03


PIP4K2B
1.13
2.44E−03
5.68E−03


DNAJC5
1.13
5.20E−05
3.46E−04


NORAD
1.13
9.37E−04
2.70E−03


ERRFI1
1.13
6.36E−04
2.03E−03


STARD3
1.13
3.26E−03
7.18E−03


TRIM32
1.13
4.88E−03
9.82E−03


BET1L
1.13
1.27E−03
3.41E−03


MORF4L2
1.13
7.04E−05
4.26E−04


ATP6V1H
1.13
2.58E−03
5.95E−03


FAM199X
1.13
1.18E−03
3.23E−03


GYG1
1.13
4.25E−03
8.83E−03


ACTR3
1.13
1.65E−03
4.18E−03


PRR12
1.13
1.31E−04
6.46E−04


FAM127B
1.13
2.71E−03
6.19E−03


NCSTN
1.13
1.75E−03
4.37E−03


ECE1
1.12
4.19E−04
1.48E−03


C12orf49
1.12
2.62E−03
6.02E−03


MYO1E
1.12
1.39E−03
3.66E−03


C11orf24
1.12
4.65E−04
1.61E−03


CDK5RAP2
1.12
3.40E−03
7.41E−03


RANGAP1
1.12
8.93E−04
2.59E−03


ACO1
1.12
8.31E−04
2.45E−03


TMED9
1.12
2.98E−04
1.15E−03


LRRC75A-AS1
1.12
4.15E−03
8.67E−03


SEMA3B
1.12
4.57E−03
9.32E−03


YIPF3
1.12
1.19E−03
3.24E−03


FLII
1.12
5.06E−04
1.71E−03


CTBP1-AS2
1.12
4.51E−03
9.23E−03


VANGL1
1.12
3.01E−03
6.72E−03


RPL10
1.12
1.17E−04
5.98E−04


TFRC
1.12
2.11E−03
5.07E−03


GLB1
1.12
3.63E−03
7.78E−03


ACOT8
1.11
2.41E−03
5.64E−03


COPE
1.11
2.31E−03
5.44E−03


EIF2S3
1.11
3.51E−04
1.30E−03


DPP9
1.11
1.16E−03
3.18E−03


DCAF12
1.11
4.37E−03
9.02E−03


ISG20
1.11
7.21E−04
2.21E−03


CD276
1.11
3.26E−03
7.18E−03


PTPN23
1.11
3.13E−04
1.19E−03


PHRF1
1.11
3.30E−03
7.25E−03


MAVS
1.11
1.65E−03
4.18E−03


ITM2B
1.11
1.11E−04
5.78E−04


TPM3
1.11
1.21E−03
3.28E−03


LARP1
1.11
4.38E−04
1.54E−03


HOMER1
1.11
2.60E−03
5.98E−03


PFKP
1.11
2.28E−03
5.38E−03


G6PC3
1.11
2.44E−03
5.68E−03


CDK16
1.11
1.98E−03
4.82E−03


TM7SF3
1.11
3.16E−03
7.00E−03


NUDCD3
1.11
3.93E−03
8.32E−03


RPLPO
1.11
2.50E−04
1.02E−03


ARPC2
1.11
3.00E−03
6.69E−03


MCFD2
1.11
4.72E−03
9.56E−03


PRDX2
1.11
4.48E−03
9.19E−03


FBRS
1.11
5.16E−04
1.73E−03


YIPF2
1.10
4.55E−03
9.30E−03


CLPTM1
1.10
1.61E−03
4.10E−03


DYNLRB1
1.10
9.11E−04
2.63E−03


HM13
1.10
9.96E−04
2.84E−03


PRUNE
1.10
2.47E−03
5.75E−03


CD109
1.10
2.40E−03
5.61E−03


FBXO31
1.10
3.31E−03
7.27E−03


CDC42
1.10
4.39E−03
9.05E−03


SCAF11
1.10
7.70E−05
4.52E−04


SEC23B
1.10
4.60E−03
9.37E−03


ARF1
1.09
4.16E−04
1.48E−03


C16orf58
1.09
6.00E−04
1.93E−03


STX16
1.09
5.53E−04
1.83E−03


MARK2
1.09
2.11E−03
5.08E−03


RPL39
1.09
5.03E−04
1.71E−03


ASAP2
1.09
4.24E−03
8.81E−03


IGF1R
1.09
3.63E−03
7.79E−03


PAFAH2
1.09
5.97E−04
1.93E−03


URGCP
1.09
2.83E−03
6.39E−03


KMT2D
1.09
8.63E−04
2.52E−03


YWHAG
1.09
2.98E−03
6.67E−03


RERE
1.09
3.43E−03
7.45E−03


RPL13A
1.09
4.42E−04
1.55E−03


STT3A
1.08
8.60E−04
2.52E−03


ACTB
1.08
1.25E−04
6.29E−04


RPS20
1.08
4.70E−05
3.25E−04


TRAM1
1.08
4.14E−03
8.66E−03


EIF3F
1.08
4.16E−03
8.69E−03


ATRAID
1.08
7.28E−04
2.23E−03


CANX
1.08
4.65E−05
3.22E−04


RPS3
1.08
6.15E−04
1.98E−03


TRPC4AP
1.08
1.73E−03
4.34E−03


HRAS
1.07
3.07E−03
6.84E−03


RPS28
1.07
7.50E−04
2.28E−03


FAM96B
1.07
4.86E−03
9.78E−03


CASC4
1.07
3.20E−03
7.08E−03


PABPC1
1.07
1.72E−05
1.72E−04


ELK3
1.07
1.42E−04
6.82E−04


CDC37
1.07
1.08E−03
3.00E−03


CD63
1.06
3.53E−03
7.63E−03


JAK1
1.06
3.40E−03
7.41E−03


MTAP
1.06
1.78E−03
4.43E−03


UGGT1
1.06
1.79E−03
4.45E−03


CHTF8
1.06
1.80E−03
4.47E−03


TGOLN2
1.05
1.73E−03
4.35E−03


PEA15
1.05
2.16E−03
5.16E−03


PPIB
1.05
3.43E−03
7.45E−03


P4HB
1.05
1.92E−03
4.71E−03


ATG13
1.05
1.60E−03
4.09E−03


SLC6A8
1.05
1.73E−03
4.34E−03


NRAS
1.04
4.03E−03
8.47E−03


STK25
1.04
4.89E−03
9.83E−03


RPL17
0.96
2.46E−03
5.74E−03


RGL2
0.96
3.76E−03
8.01E−03


NDUFB11
0.96
3.07E−03
6.83E−03


EIF4A1
0.96
5.09E−04
1.72E−03


HMGXB3
0.96
9.41E−05
5.21E−04


MCAM
0.95
5.65E−04
1.85E−03


ATP2A2
0.95
1.00E−03
2.85E−03


RPL4
0.95
3.19E−04
1.20E−03


RPL7
0.95
2.38E−03
5.57E−03


RPSA
0.95
4.45E−03
9.14E−03


EIF3A
0.95
3.88E−03
8.22E−03


LDOCIL
0.95
4.18E−03
8.71E−03


PSMD8
0.95
4.26E−03
8.85E−03


LETM1
0.95
4.48E−03
9.19E−03


GAPDH
0.95
1.12E−03
3.09E−03


EIF3G
0.95
2.92E−03
6.56E−03


FAU
0.94
3.64E−03
7.80E−03


PFN1
0.94
4.79E−04
1.65E−03


ATP5H
0.94
2.70E−03
6.16E−03


AHSA1
0.94
2.10E−04
8.95E−04


DDX23
0.94
2.85E−03
6.44E−03


2-Sep
0.94
1.32E−03
3.51E−03


RPS7
0.94
8.49E−04
2.49E−03


SLC25A3
0.94
6.46E−04
2.05E−03


EIF4H
0.94
1.34E−04
6.56E−04


EIF1AX
0.94
4.83E−03
9.74E−03


COPS6
0.93
2.43E−03
5.67E−03


PRKCI
0.93
1.46E−03
3.81E−03


TAF7
0.93
1.29E−03
3.45E−03


B4GALT5
0.93
4.40E−03
9.07E−03


PAIP1
0.93
2.12E−03
5.09E−03


RPL18
0.93
3.64E−03
7.80E−03


ACTRIA
0.93
2.57E−03
5.93E−03


COPS8
0.93
2.91E−04
1.13E−03


HINT1
0.93
4.98E−05
3.35E−04


DCTN1
0.93
1.81E−03
4.49E−03


DIAPH1
0.93
3.67E−03
7.85E−03


ZMYM4
0.93
1.18E−03
3.22E−03


LRRC59
0.93
3.35E−05
2.63E−04


GNPAT
0.93
1.08E−03
3.01E−03


C6orf106
0.93
1.04E−03
2.93E−03


BCAR1
0.93
3.49E−04
1.29E−03


CHERP
0.93
2.74E−03
6.24E−03


EIF5
0.93
4.62E−03
9.40E−03


RPS24
0.93
1.61E−04
7.48E−04


LDHB
0.93
2.64E−03
6.06E−03


C11orf58
0.93
3.56E−03
7.66E−03


ARFGAP1
0.92
1.37E−04
6.68E−04


RETSAT
0.92
2.12E−03
5.09E−03


DTD1
0.92
3.44E−04
1.28E−03


PDIA3
0.92
1.42E−03
3.72E−03


RPL30
0.92
3.36E−04
1.26E−03


TMEM230
0.92
1.00E−03
2.85E−03


CD74
0.92
3.99E−05
2.91E−04


CTDNEP1
0.92
4.42E−03
9.09E−03


HDLBP
0.92
6.99E−05
4.25E−04


PDIA6
0.92
9.91E−04
2.82E−03


GTF3C1
0.92
3.72E−04
1.36E−03


CLOCK
0.92
1.44E−03
3.76E−03


BRD2
0.92
2.78E−03
6.32E−03


RNH1
0.92
4.54E−03
9.29E−03


KAT6A
0.92
4.78E−03
9.65E−03


CSDE1
0.92
1.87E−03
4.60E−03


ACP2
0.92
3.73E−04
1.36E−03


PRPF6
0.92
1.79E−04
8.00E−04


CCDC97
0.92
2.64E−03
6.06E−03


RPN1
0.92
8.01E−04
2.39E−03


C1orf159
0.92
3.22E−03
7.11E−03


RPL6
0.92
6.47E−05
4.03E−04


CIAO1
0.92
1.63E−03
4.15E−03


PSMA7
0.92
2.69E−04
1.07E−03


CUL4A
0.92
2.65E−03
6.07E−03


MAGEA3
0.92
3.14E−03
6.97E−03


BAD
0.92
4.53E−03
9.27E−03


NCK2
0.92
3.41E−03
7.43E−03


NHP2
0.92
2.15E−04
9.04E−04


YTHDF2
0.92
2.26E−03
5.36E−03


ATN1
0.92
6.51E−04
2.06E−03


ESYT1
0.92
4.56E−05
3.17E−04


AKAP1
0.92
9.19E−04
2.65E−03


CCNY
0.92
2.58E−03
5.94E−03


TRAFD1
0.91
9.85E−04
2.81E−03


CIZ1
0.91
1.37E−03
3.61E−03


RPL15
0.91
2.18E−04
9.17E−04


NOLC1
0.91
4.59E−03
9.36E−03


PRELID1
0.91
3.16E−04
1.20E−03


CCT7
0.91
9.63E−05
5.29E−04


ATF4
0.91
4.85E−03
9.76E−03


RPL23A
0.91
1.08E−04
5.69E−04


MRPL10
0.91
1.01E−04
5.49E−04


DAP3
0.91
2.02E−03
4.90E−03


SMG5
0.91
4.86E−03
9.78E−03


GCN1
0.91
5.85E−05
3.76E−04


PDCD11
0.91
4.41E−05
3.10E−04


LAMP1
0.91
7.60E−05
4.48E−04


CPT2
0.91
3.38E−03
7.38E−03


MRPS7
0.91
2.95E−03
6.61E−03


DYRK1B
0.91
3.96E−03
8.36E−03


NCOA4
0.91
2.48E−03
5.76E−03


NIPA2
0.91
4.61E−03
9.38E−03


CHMP7
0.91
8.01E−04
2.39E−03


ZNF638
0.91
1.66E−03
4.20E−03


PITPNM1
0.91
6.21E−04
1.99E−03


CIAPIN1
0.91
1.31E−03
3.50E−03


NELFB
0.91
1.44E−03
3.75E−03


TUFM
0.91
1.08E−03
3.02E−03


WDR83OS
0.91
1.21E−03
3.29E−03


HCFC1
0.91
3.37E−03
7.36E−03


USP14
0.91
1.60E−03
4.10E−03


CASC3
0.91
2.98E−04
1.15E−03


SDHC
0.91
2.06E−03
4.98E−03


RCC2
0.91
4.21E−03
8.77E−03


FEM1B
0.90
7.01E−04
2.18E−03


NCAPH2
0.90
3.89E−03
8.24E−03


CCAR2
0.90
1.96E−03
4.79E−03


LAMTOR1
0.90
1.76E−03
4.39E−03


CYCS
0.90
2.18E−03
5.20E−03


DNM2
0.90
3.99E−03
8.42E−03


AXL
0.90
1.71E−03
4.30E−03


USP22
0.90
1.34E−03
3.56E−03


SH3GL1
0.90
8.86E−04
2.58E−03


SYNCRIP
0.90
1.08E−03
3.01E−03


BSG
0.90
1.89E−03
4.65E−03


RBM4
0.90
5.52E−04
1.83E−03


CEP250
0.90
3.34E−06
6.66E−05


KIAA0141
0.90
4.45E−03
9.14E−03


ALDOA
0.90
9.24E−05
5.14E−04


SBNO1
0.90
4.83E−03
9.73E−03


RABL6
0.90
1.38E−05
1.55E−04


PLEKHO2
0.90
4.74E−03
9.58E−03


HEXB
0.90
4.21E−03
8.76E−03


EID1
0.90
1.69E−03
4.26E−03


NDUFA11
0.90
2.49E−03
5.77E−03


NUP214
0.90
1.88E−03
4.62E−03


UBAP2L
0.90
2.54E−03
5.87E−03


ABCD1
0.90
3.73E−03
7.96E−03


ATAD3A
0.90
4.75E−05
3.26E−04


SNRPN
0.90
1.45E−03
3.78E−03


HUWE1
0.90
5.13E−05
3.42E−04


BZW1
0.90
3.34E−03
7.31E−03


ATP1A1
0.90
1.16E−04
5.91E−04


PTGES2
0.90
1.32E−03
3.53E−03


TMEM261
0.90
2.07E−03
4.99E−03


PC
0.90
1.88E−03
4.63E−03


FUBP3
0.90
2.28E−03
5.40E−03


RPL24
0.90
2.07E−04
8.85E−04


ZMYND8
0.90
2.06E−03
4.98E−03


NACA
0.90
2.54E−04
1.03E−03


CPSF1
0.90
2.92E−03
6.56E−03


TARS2
0.90
4.18E−03
8.72E−03


PARK7
0.90
4.29E−03
8.89E−03


H1F0
0.90
2.88E−03
6.49E−03


PQBP1
0.90
3.25E−03
7.16E−03


SF3B2
0.90
2.20E−03
5.24E−03


KDM3B
0.90
3.69E−04
1.35E−03


STAG2
0.90
1.68E−03
4.24E−03


EIF3I
0.90
5.59E−07
2.68E−05


SNRNP200
0.90
2.66E−04
1.06E−03


CDK2AP1
0.90
4.29E−03
8.90E−03


PPM1G
0.90
5.42E−04
1.80E−03


GHITM
0.90
3.68E−04
1.35E−03


KMT2C
0.90
4.12E−03
8.62E−03


ARIH2
0.90
5.53E−05
3.61E−04


VKORC1
0.90
4.66E−03
9.46E−03


KPNA3
0.89
3.29E−05
2.59E−04


ANO8
0.89
3.43E−03
7.45E−03


TDG
0.89
1.03E−03
2.89E−03


BUB3
0.89
1.79E−03
4.46E−03


MRPS2
0.89
2.75E−03
6.26E−03


PAIP2
0.89
2.46E−03
5.74E−03


SLC39A1
0.89
4.66E−04
1.62E−03


OSBPL9
0.89
2.71E−03
6.17E−03


SH3KBP1
0.89
2.98E−03
6.66E−03


C20orf24
0.89
1.10E−03
3.06E−03


PPP6R3
0.89
1.95E−04
8.49E−04


ACSL3
0.89
2.12E−04
8.98E−04


ADD1
0.89
2.47E−03
5.75E−03


ZMIZ2
0.89
4.50E−03
9.22E−03


HEG1
0.89
4.99E−03
1.00E−02


PWP1
0.89
1.04E−03
2.92E−03


PPP4C
0.89
2.12E−04
8.98E−04


LRRFIP2
0.89
3.05E−03
6.78E−03


OPA1
0.89
3.92E−03
8.30E−03


MEN1
0.89
1.26E−03
3.39E−03


RSAD1
0.89
3.49E−03
7.56E−03


MFN2
0.89
2.88E−04
1.12E−03


TFE3
0.89
3.48E−05
2.68E−04


DNAJA2
0.89
7.06E−04
2.19E−03


HNRNPUL2
0.89
1.74E−03
4.35E−03


EZR
0.89
3.54E−03
7.63E−03


CDK8
0.89
1.25E−03
3.38E−03


LIPA
0.89
3.75E−03
7.99E−03


VARS
0.89
3.96E−03
8.36E−03


ACOX1
0.89
4.41E−03
9.09E−03


RNPS1
0.89
6.85E−04
2.14E−03


CHEK1
0.89
7.77E−04
2.33E−03


VGF
0.89
1.11E−03
3.07E−03


MAGEA6
0.89
3.43E−03
7.45E−03


MRPL3
0.89
1.82E−03
4.50E−03


EIF2S1
0.89
9.90E−04
2.82E−03


TOMM5
0.89
2.67E−03
6.11E−03


LOC101927556
0.89
6.80E−04
2.13E−03


SARIA
0.89
7.51E−04
2.28E−03


CISD3
0.89
8.35E−04
2.46E−03


DARS
0.89
2.72E−04
1.07E−03


SRA1
0.89
2.33E−03
5.47E−03


AZI2
0.89
1.92E−03
4.70E−03


GPS1
0.89
3.53E−03
7.63E−03


TMEM214
0.89
3.27E−03
7.19E−03


CARHSP1
0.89
1.34E−03
3.57E−03


HSP90AB1
0.89
7.43E−06
1.08E−04


CSNK1G2
0.89
1.93E−03
4.73E−03


LRWD1
0.89
4.81E−03
9.70E−03


PHB2
0.89
4.46E−03
9.15E−03


GSS
0.89
1.41E−03
3.69E−03


PPP1R37
0.89
8.65E−04
2.53E−03


SUMO2
0.89
1.21E−03
3.28E−03


STK3
0.89
4.38E−03
9.04E−03


CPSF7
0.89
2.97E−03
6.65E−03


CHP1
0.88
2.40E−05
2.10E−04


SFRP1
0.88
6.41E−04
2.04E−03


PSMD4
0.88
9.87E−04
2.81E−03


TOP1MT
0.88
2.18E−03
5.21E−03


CHCHD3
0.88
7.46E−04
2.27E−03


NADK
0.88
7.45E−04
2.26E−03


SPOP
0.88
2.28E−04
9.46E−04


AAGAB
0.88
3.14E−03
6.97E−03


CLTC
0.88
2.24E−05
2.02E−04


DNAJA1
0.88
1.91E−03
4.68E−03


RPL36AL
0.88
2.77E−03
6.29E−03


CAPRIN1
0.88
4.62E−05
3.21E−04


FUZ
0.88
4.65E−03
9.45E−03


DNAJB6
0.88
2.34E−03
5.51E−03


DR1
0.88
3.44E−04
1.28E−03


ATP5B
0.88
1.91E−05
1.82E−04


CREB3L2
0.88
2.22E−03
5.27E−03


APP
0.88
2.11E−05
1.94E−04


HDAC3
0.88
1.60E−03
4.10E−03


IQCE
0.88
3.85E−04
1.39E−03


SNTB2
0.88
2.88E−03
6.49E−03


EML3
0.88
3.01E−04
1.15E−03


SMARCC2
0.88
9.86E−04
2.81E−03


UXT
0.88
8.64E−04
2.52E−03


RAD23B
0.88
2.22E−03
5.28E−03


MED16
0.88
4.38E−03
9.04E−03


MCM3AP
0.88
3.13E−05
2.52E−04


EIF4G1
0.88
6.37E−04
2.03E−03


PCBP1
0.88
3.20E−05
2.55E−04


RBM28
0.88
3.79E−03
8.07E−03


AGAP3
0.88
3.68E−03
7.87E−03


EGLN1
0.88
2.01E−03
4.88E−03


PSMD11
0.88
2.06E−03
4.98E−03


PIGS
0.88
8.30E−04
2.45E−03


CDC42BPA
0.88
2.84E−03
6.41E−03


UTP6
0.88
1.96E−04
8.51E−04


POLR2B
0.88
2.08E−04
8.89E−04


MCTS1
0.88
4.91E−03
9.86E−03


WDR61
0.88
2.30E−03
5.42E−03


SRP72
0.88
1.93E−03
4.73E−03


ADNP2
0.88
4.63E−03
9.42E−03


NRDC
0.88
7.00E−04
2.17E−03


DPYSL2
0.88
2.38E−03
5.57E−03


NUBP1
0.88
8.38E−04
2.47E−03


HNRNPUL1
0.88
4.64E−05
3.22E−04


SLIRP
0.88
3.16E−03
7.01E−03


USP16
0.87
2.71E−03
6.17E−03


GTF3C2
0.87
4.92E−03
9.88E−03


SON
0.87
1.65E−03
4.18E−03


FAM136A
0.87
4.01E−03
8.43E−03


RAB8A
0.87
4.28E−03
8.87E−03


CCSAP
0.87
2.95E−03
6.61E−03


SRSF9
0.87
7.65E−04
2.31E−03


UBE2G2
0.87
8.03E−04
2.39E−03


HMG20A
0.87
3.32E−03
7.28E−03


SCAMP4
0.87
1.44E−04
6.88E−04


TFCP2
0.87
2.14E−03
5.13E−03


COPB2
0.87
8.94E−04
2.60E−03


MTCH2
0.87
3.27E−03
7.18E−03


CNBP
0.87
1.57E−04
7.36E−04


HIRA
0.87
1.16E−03
3.18E−03


PLPP2
0.87
2.29E−04
9.48E−04


SPAG7
0.87
4.98E−03
9.98E−03


SRM
0.87
4.18E−04
1.48E−03


OAZ2
0.87
1.35E−03
3.59E−03


CLIC1
0.87
7.25E−04
2.22E−03


U2AF2
0.87
8.75E−05
4.95E−04


CYC1
0.87
2.11E−04
8.95E−04


ENSA
0.87
4.51E−03
9.23E−03


IGF2BP2
0.87
3.41E−03
7.43E−03


KARS
0.87
1.36E−04
6.67E−04


MRPL51
0.87
2.88E−03
6.49E−03


PSENEN
0.87
3.03E−03
6.75E−03


TRAK1
0.87
2.90E−03
6.53E−03


ZNF207
0.87
1.96E−05
1.86E−04


PKM
0.87
1.51E−05
1.61E−04


CNPY2
0.87
3.24E−04
1.22E−03


BBS4
0.87
2.02E−03
4.90E−03


USP10
0.87
3.39E−03
7.38E−03


TRIP10
0.87
6.96E−04
2.17E−03


FBXO21
0.87
5.24E−04
1.75E−03


PLAA
0.87
2.90E−03
6.54E−03


VPRBP
0.87
1.47E−03
3.82E−03


DDX20
0.87
4.02E−03
8.45E−03


FAM120A
0.87
2.00E−05
1.87E−04


SAMM50
0.87
1.52E−03
3.93E−03


SENP3
0.87
6.50E−04
2.06E−03


ADCY6
0.87
4.51E−03
9.24E−03


GDE1
0.87
8.67E−04
2.53E−03


PSMD13
0.87
1.98E−04
8.57E−04


CSNK2A1
0.87
5.30E−04
1.77E−03


EIF2AK4
0.87
8.38E−04
2.47E−03


PHF20
0.87
3.99E−05
2.91E−04


ATP2B1
0.87
3.55E−03
7.64E−03


C11orf31
0.87
8.26E−05
4.74E−04


TUT1
0.87
2.39E−03
5.59E−03


NOC2L
0.87
7.37E−05
4.39E−04


C14orf166
0.87
1.55E−03
3.99E−03


HMGA1
0.87
2.59E−05
2.21E−04


CUL1
0.87
5.87E−04
1.91E−03


UPF3A
0.87
2.69E−03
6.15E−03


GSPT1
0.87
2.37E−03
5.56E−03


PSMB1
0.87
4.96E−06
8.44E−05


AHCYL1
0.87
3.83E−04
1.39E−03


ESYT2
0.87
2.86E−05
2.38E−04


VDAC1
0.87
2.99E−04
1.15E−03


GNG12
0.87
5.71E−07
2.69E−05


RPL5
0.87
3.87E−05
2.86E−04


RARS
0.87
1.95E−03
4.76E−03


PPM1B
0.87
3.00E−04
1.15E−03


DDX3X
0.87
6.85E−04
2.14E−03


SUMO1
0.87
2.29E−03
5.40E−03


TNPO3
0.87
1.40E−03
3.68E−03


PIK3R1
0.87
7.13E−04
2.20E−03


C5orf15
0.87
1.56E−03
4.01E−03


ARFGAP2
0.87
3.35E−04
1.25E−03


G6PD
0.87
4.43E−05
3.10E−04


PAM
0.87
1.49E−03
3.87E−03


SERPINB6
0.87
3.24E−03
7.14E−03


RNF40
0.86
2.86E−05
2.38E−04


MRPS34
0.86
4.45E−03
9.14E−03


SLC4A2
0.86
7.92E−04
2.37E−03


ARL2
0.86
2.73E−03
6.22E−03


ELP2
0.86
2.72E−03
6.21E−03


YY1
0.86
9.61E−04
2.75E−03


HNRNPA1
0.86
9.70E−05
5.32E−04


WDR43
0.86
1.00E−03
2.85E−03


DUT
0.86
1.38E−03
3.63E−03


RPS26
0.86
1.86E−04
8.24E−04


ZNF395
0.86
4.16E−03
8.68E−03


MSTO1
0.86
4.31E−03
8.91E−03


PPHLN1
0.86
2.47E−03
5.74E−03


KIAA1429
0.86
1.19E−03
3.24E−03


CREBBP
0.86
2.23E−03
5.29E−03


EIF1B
0.86
2.31E−03
5.45E−03


CHRAC1
0.86
1.16E−03
3.18E−03


PHLDA3
0.86
2.51E−04
1.02E−03


REPIN1
0.86
1.56E−03
4.02E−03


SHFM1
0.86
3.49E−03
7.57E−03


COX20
0.86
4.95E−03
9.92E−03


POLR2K
0.86
2.38E−03
5.57E−03


NFATC3
0.86
4.24E−04
1.50E−03


MGA
0.86
2.98E−03
6.66E−03


ENTPD6
0.86
2.01E−04
8.64E−04


RNASEH2C
0.86
2.80E−03
6.34E−03


C17orf80
0.86
2.12E−03
5.09E−03


TRA2A
0.86
2.79E−03
6.32E−03


UBE2N
0.86
1.28E−04
6.37E−04


TNRC18
0.86
2.48E−03
5.76E−03


EI24
0.86
8.07E−04
2.40E−03


ABCD3
0.86
1.60E−03
4.09E−03


IARS
0.86
1.64E−05
1.68E−04


UBE20
0.86
1.40E−03
3.67E−03


SUPT7L
0.86
1.73E−03
4.34E−03


GOT2
0.86
1.16E−05
1.40E−04


PSMA6
0.86
1.01E−03
2.87E−03


COPS2
0.86
1.81E−03
4.48E−03


PSMC1
0.86
2.20E−03
5.23E−03


DDX50
0.86
2.08E−03
5.00E−03


SLBP
0.86
2.04E−03
4.93E−03


TEAD1
0.86
3.30E−03
7.24E−03


GPBP1
0.86
1.04E−04
5.59E−04


CNP
0.86
1.41E−05
1.57E−04


CLUH
0.86
5.99E−04
1.93E−03


APIS
0.86
2.24E−04
9.34E−04


UBE2M
0.86
7.96E−04
2.38E−03


CCDC47
0.86
2.22E−03
5.28E−03


FXR1
0.86
3.80E−03
8.08E−03


RPUSD2
0.86
2.53E−03
5.86E−03


CAND1
0.86
5.56E−04
1.83E−03


SHMT2
0.86
2.54E−04
1.03E−03


COLGALT1
0.86
6.62E−05
4.08E−04


DHX40
0.86
7.68E−04
2.32E−03


TRMT10C
0.86
8.70E−04
2.54E−03


PHF14
0.86
2.40E−03
5.62E−03


ZNF106
0.86
3.35E−04
1.25E−03


CS
0.86
2.64E−04
1.05E−03


PSMD7
0.86
4.55E−04
1.58E−03


URM1
0.86
3.26E−03
7.17E−03


LSM12
0.86
1.82E−05
1.77E−04


TRUB2
0.86
2.95E−03
6.61E−03


LONP1
0.86
1.87E−04
8.26E−04


MED1
0.86
8.25E−04
2.44E−03


PLCD3
0.86
1.63E−03
4.15E−03


TRIM28
0.86
4.44E−05
3.11E−04


ATP5G1
0.86
4.91E−03
9.86E−03


ATP50
0.86
2.69E−04
1.07E−03


SDHA
0.86
2.87E−04
1.12E−03


NF1
0.86
3.15E−03
6.98E−03


UBE2K
0.86
1.76E−04
7.91E−04


PRKACA
0.86
9.75E−04
2.79E−03


NDUFB9
0.86
3.45E−05
2.67E−04


YME1L1
0.86
6.81E−04
2.13E−03


CPNE1
0.86
4.33E−03
8.94E−03


NELFA
0.86
2.06E−04
8.82E−04


MICU1
0.86
1.04E−03
2.92E−03


GPI
0.85
1.21E−04
6.12E−04


TOP1
0.85
1.44E−05
1.57E−04


ARMC8
0.85
3.62E−03
7.76E−03


GEMIN4
0.85
5.10E−04
1.72E−03


COPG2
0.85
3.52E−03
7.61E−03


ATP5G2
0.85
2.45E−04
1.00E−03


YBX1
0.85
3.78E−06
7.17E−05


DDX54
0.85
2.08E−04
8.88E−04


RRN3
0.85
2.08E−04
8.89E−04


WAC
0.85
6.15E−04
1.98E−03


RYK
0.85
8.09E−05
4.67E−04


CPSF6
0.85
5.05E−05
3.38E−04


PSMD1
0.85
4.40E−03
9.06E−03


TPRKB
0.85
5.35E−04
1.78E−03


PDIA4
0.85
8.41E−05
4.81E−04


CT45A1
0.85
4.93E−03
9.89E−03


TBRG4
0.85
5.74E−05
3.71E−04


TCAIM
0.85
2.64E−03
6.06E−03


BYSL
0.85
3.76E−04
1.37E−03


7-Sep
0.85
1.82E−03
4.50E−03


PSMA5
0.85
1.55E−04
7.29E−04


PCCB
0.85
2.52E−03
5.84E−03


INO80
0.85
1.29E−03
3.46E−03


CSTF2T
0.85
4.72E−03
9.56E−03


TOMM70
0.85
1.09E−03
3.04E−03


PHC1
0.85
1.00E−03
2.84E−03


IPO8
0.85
8.48E−04
2.49E−03


MDH2
0.85
3.91E−05
2.88E−04


ZNF664
0.85
2.88E−04
1.12E−03


DHX29
0.85
1.93E−03
4.73E−03


TCTA
0.85
2.88E−03
6.50E−03


SEC11A
0.85
7.46E−05
4.43E−04


OBSL1
0.85
2.17E−03
5.18E−03


TPGS2
0.85
7.16E−04
2.21E−03


NUP153
0.85
2.25E−03
5.34E−03


SRRM1
0.85
1.36E−03
3.61E−03


ASF1A
0.85
2.55E−03
5.89E−03


DNAJA3
0.85
7.14E−04
2.20E−03


DOCK1
0.85
1.31E−03
3.50E−03


GTF2A2
0.85
1.32E−03
3.53E−03


WBSCR22
0.85
2.32E−03
5.47E−03


HNRNPK
0.85
9.85E−07
3.66E−05


SOX5
0.85
8.86E−04
2.58E−03


MRPS24
0.85
1.17E−03
3.21E−03


HNRNPAO
0.85
1.98E−04
8.58E−04


URB2
0.85
6.91E−04
2.16E−03


IGF2BP1
0.85
3.87E−05
2.86E−04


COMMD4
0.85
2.87E−05
2.38E−04


NOL6
0.85
1.42E−04
6.83E−04


RBBP7
0.85
6.59E−04
2.08E−03


UCHLS
0.85
2.82E−03
6.39E−03


C12orf10
0.85
8.89E−04
2.58E−03


PRKAR2A
0.85
3.08E−04
1.18E−03


ADI1
0.85
2.47E−03
5.74E−03


ENO1
0.85
2.63E−06
5.95E−05


PSMA1
0.85
1.08E−03
3.01E−03


COQ5
0.85
1.83E−03
4.51E−03


CBX5
0.85
1.37E−04
6.69E−04


SF1
0.85
3.39E−03
7.40E−03


GPHN
0.85
1.49E−03
3.86E−03


USP7
0.85
2.26E−04
9.40E−04


PELP1
0.85
2.38E−04
9.77E−04


SEC23IP
0.85
3.45E−04
1.28E−03


VKORC1L1
0.85
5.50E−04
1.82E−03


KHDRBS1
0.85
2.97E−04
1.15E−03


THOP1
0.85
6.84E−04
2.14E−03


SLC30A5
0.85
1.06E−03
2.98E−03


BTF3
0.85
5.47E−04
1.81E−03


CSTF1
0.85
1.73E−03
4.34E−03


GATC
0.85
1.68E−03
4.25E−03


AASDHPPT
0.85
4.74E−03
9.59E−03


AAR2
0.84
1.29E−04
6.38E−04


EIF2B5
0.84
3.34E−03
7.31E−03


SLC50A1
0.84
7.76E−05
4.55E−04


MCCC2
0.84
1.30E−04
6.42E−04


DHX30
0.84
5.62E−06
9.02E−05


MFSD14A
0.84
1.54E−03
3.97E−03


UMPS
0.84
3.30E−04
1.24E−03


RBM10
0.84
2.00E−03
4.86E−03


FAM118B
0.84
3.35E−03
7.32E−03


NOC4L
0.84
7.95E−04
2.38E−03


TRMT5
0.84
2.65E−03
6.08E−03


ADAM9
0.84
1.37E−03
3.62E−03


PAGR1
0.84
2.13E−04
9.00E−04


FAM63B
0.84
2.46E−03
5.74E−03


CCT8
0.84
1.20E−03
3.25E−03


NDUFB10
0.84
2.39E−03
5.58E−03


NDUFAB1
0.84
7.96E−04
2.38E−03


NUTF2
0.84
5.61E−04
1.84E−03


SNRPD2
0.84
4.02E−05
2.92E−04


NOB1
0.84
4.17E−04
1.48E−03


AKT2
0.84
1.42E−03
3.73E−03


MRPL34
0.84
4.87E−04
1.67E−03


USP6NL
0.84
5.95E−04
1.93E−03


ICE1
0.84
1.44E−03
3.75E−03


MAZ
0.84
1.16E−03
3.19E−03


LAMP2
0.84
1.21E−03
3.28E−03


PTBP1
0.84
5.08E−05
3.40E−04


THOC5
0.84
1.15E−03
3.15E−03


KIF3B
0.84
1.41E−04
6.81E−04


POM121C
0.84
1.04E−05
1.30E−04


GULP1
0.84
1.81E−03
4.48E−03


AHCTF1
0.84
9.30E−04
2.68E−03


HNRNPL
0.84
2.51E−05
2.16E−04


SERBP1
0.84
3.46E−05
2.68E−04


SRSF10
0.84
4.15E−03
8.67E−03


POM121
0.84
7.93E−04
2.37E−03


ATPSE
0.84
2.67E−04
1.06E−03


ETF1
0.84
2.39E−05
2.10E−04


ARNT2
0.84
1.68E−03
4.24E−03


DHX15
0.84
1.95E−03
4.76E−03


MRPL15
0.84
2.16E−03
5.16E−03


ZMIZ1
0.84
1.96E−04
8.52E−04


NSUN2
0.84
4.44E−03
9.13E−03


STOML2
0.84
4.09E−04
1.46E−03


CXorf56
0.84
1.45E−03
3.79E−03


MDN1
0.84
1.20E−04
6.08E−04


PTPN2
0.84
1.87E−03
4.60E−03


SF3B1
0.84
1.41E−04
6.80E−04


CHTOP
0.84
7.92E−04
2.37E−03


MSANTD4
0.84
8.03E−04
2.39E−03


DKC1
0.84
6.18E−04
1.98E−03


BAZ1B
0.84
4.84E−05
3.29E−04


RBM25
0.84
1.86E−03
4.58E−03


CCT2
0.84
9.67E−05
5.30E−04


AKT1S1
0.84
2.26E−04
9.37E−04


ELOF1
0.84
1.34E−04
6.58E−04


MED26
0.84
8.43E−04
2.48E−03


XPO7
0.84
1.68E−03
4.25E−03


NFXL1
0.84
1.07E−03
2.99E−03


COPZ1
0.84
4.33E−04
1.52E−03


LOC100288778
0.84
2.23E−03
5.29E−03


HNRNPAB
0.84
5.39E−04
1.79E−03


CUL3
0.84
6.93E−04
2.16E−03


SNRPD3
0.84
2.50E−03
5.79E−03


RAVER1
0.84
3.20E−05
2.55E−04


PDPR
0.84
1.58E−04
7.38E−04


HSPA8
0.84
1.54E−06
4.67E−05


MAP4K5
0.84
1.89E−03
4.65E−03


EPS15L1
0.84
1.10E−03
3.04E−03


CYB561
0.84
1.53E−03
3.96E−03


DSTN
0.84
4.97E−05
3.35E−04


THUMPD1
0.84
3.03E−03
6.76E−03


SLC39A14
0.84
2.31E−05
2.05E−04


CHD4
0.84
4.71E−06
8.20E−05


FANCG
0.84
3.43E−03
7.45E−03


CLK2
0.84
4.05E−03
8.49E−03


TYW1
0.84
4.82E−03
9.72E−03


PTOV1
0.84
3.53E−03
7.63E−03


CDC123
0.84
3.43E−04
1.28E−03


ING1
0.84
8.06E−04
2.40E−03


SRRM2
0.84
7.82E−05
4.57E−04


PRMT3
0.84
1.99E−03
4.85E−03


LOC613037
0.84
3.31E−03
7.26E−03


ACADVL
0.84
6.41E−04
2.04E−03


MSH6
0.84
7.52E−04
2.28E−03


PIK3R4
0.84
4.80E−05
3.27E−04


TOMM6
0.84
5.93E−04
1.92E−03


PDHB
0.84
1.70E−05
1.71E−04


MRPS27
0.84
1.86E−03
4.58E−03


ABHD12
0.84
1.04E−03
2.93E−03


HIF1A
0.84
1.23E−05
1.45E−04


BCKDHA
0.84
3.96E−03
8.36E−03


CASP7
0.84
7.41E−04
2.26E−03


SIKE1
0.84
4.28E−03
8.88E−03


VAV2
0.84
2.14E−04
9.04E−04


CLPB
0.84
2.20E−03
5.24E−03


AIMP1
0.84
3.71E−04
1.36E−03


PON2
0.84
7.08E−04
2.19E−03


NEMF
0.84
4.74E−03
9.59E−03


SRSF5
0.84
1.71E−03
4.30E−03


TUBB4B
0.84
1.87E−05
1.80E−04


CARM1
0.84
9.56E−04
2.74E−03


YY1AP1
0.83
2.64E−03
6.06E−03


DDX27
0.83
4.76E−04
1.64E−03


E2F1
0.83
4.79E−04
1.65E−03


RFX5
0.83
2.31E−04
9.53E−04


RPS6KA3
0.83
6.13E−05
3.88E−04


ATP5G3
0.83
4.84E−04
1.66E−03


CCNJL
0.83
1.01E−03
2.87E−03


UBN1
0.83
7.04E−05
4.26E−04


GTF2F1
0.83
2.24E−04
9.35E−04


PIP5K1A
0.83
1.20E−03
3.26E−03


NEK4
0.83
9.83E−04
2.81E−03


B4GAT1
0.83
3.13E−03
6.94E−03


TFDP2
0.83
2.54E−03
5.87E−03


CCT3
0.83
2.11E−04
8.95E−04


PI4KB
0.83
1.69E−04
7.71E−04


ERLIN1
0.83
8.16E−04
2.42E−03


HMGN1
0.83
4.25E−04
1.50E−03


SLC44A1
0.83
3.61E−03
7.76E−03


GCLC
0.83
3.33E−03
7.30E−03


BABAM1
0.83
1.08E−04
5.68E−04


CBX3
0.83
7.67E−04
2.32E−03


NOP58
0.83
1.67E−04
7.65E−04


BCS1L
0.83
1.30E−04
6.42E−04


SLC1A5
0.83
5.20E−04
1.74E−03


DRG1
0.83
2.34E−03
5.49E−03


ATG4B
0.83
1.26E−03
3.39E−03


TXNRD2
0.83
2.20E−03
5.23E−03


KEAP1
0.83
2.04E−03
4.94E−03


SLX1A
0.83
1.68E−03
4.24E−03


SLX1B
0.83
1.68E−03
4.24E−03


NOL10
0.83
3.62E−03
7.77E−03


DERA
0.83
1.42E−05
1.57E−04


NIP7
0.83
7.17E−04
2.21E−03


GMPR2
0.83
2.45E−03
5.71E−03


SMPD4
0.83
9.55E−04
2.74E−03


MAPK1IP1L
0.83
9.16E−04
2.64E−03


DHX33
0.83
7.81E−04
2.34E−03


RAF1
0.83
5.36E−04
1.79E−03


C16orf13
0.83
2.47E−05
2.14E−04


RBM8A
0.83
5.81E−05
3.74E−04


USP34
0.83
6.57E−05
4.07E−04


PEX26
0.83
2.36E−03
5.54E−03


PTP4A2
0.83
1.08E−03
3.00E−03


ENY2
0.83
2.84E−03
6.42E−03


RAP1A
0.83
4.20E−04
1.49E−03


USP24
0.83
8.11E−04
2.41E−03


GNG5
0.83
3.06E−03
6.81E−03


CEBPZ
0.83
3.15E−04
1.20E−03


PSMC3
0.83
4.90E−05
3.32E−04


SRP9
0.83
3.05E−04
1.17E−03


PAPOLA
0.83
8.08E−04
2.40E−03


SPCS1
0.83
1.33E−04
6.54E−04


IRAK1
0.83
6.02E−05
3.84E−04


H2AFX
0.83
3.82E−03
8.12E−03


EWSR1
0.83
6.52E−05
4.05E−04


NCOA3
0.83
2.08E−05
1.92E−04


KIAA1143
0.83
1.89E−03
4.64E−03


HSP90B1
0.83
1.90E−04
8.33E−04


PSMD5
0.83
2.91E−04
1.13E−03


DDX18
0.83
9.63E−04
2.76E−03


RSL24D1
0.83
1.65E−03
4.18E−03


NFIC
0.83
3.16E−04
1.20E−03


PSMB3
0.83
1.30E−04
6.42E−04


TBK1
0.83
8.52E−04
2.50E−03


TRIAP1
0.83
1.81E−03
4.48E−03


SRGAP2B
0.83
4.35E−03
8.98E−03


TNKS1BP1
0.83
6.78E−05
4.17E−04


PUSL1
0.83
4.48E−04
1.57E−03


SDHB
0.83
9.61E−04
2.75E−03


RPAP3
0.83
1.17E−03
3.21E−03


FDX1
0.83
5.33E−04
1.78E−03


TIMP2
0.83
1.97E−04
8.53E−04


ANKRD40
0.83
4.12E−03
8.62E−03


CDC5L
0.83
3.56E−03
7.67E−03


CALR
0.83
9.78E−06
1.27E−04


PIM2
0.83
1.01E−03
2.87E−03


MRM3
0.83
3.55E−03
7.64E−03


CNOT1
0.83
2.63E−04
1.05E−03


CDK4
0.83
2.13E−05
1.95E−04


ORAI2
0.83
4.29E−04
1.51E−03


POLDIP2
0.83
6.60E−05
4.07E−04


MAPK8IP3
0.83
3.05E−03
6.79E−03


UTP11
0.83
2.49E−04
1.01E−03


FAM49B
0.83
2.91E−03
6.54E−03


CACUL1
0.83
2.64E−03
6.06E−03


POLDIP3
0.83
1.00E−03
2.84E−03


NBPF1
0.83
1.69E−03
4.26E−03


C1orf123
0.82
1.67E−04
7.65E−04


MTG2
0.82
7.21E−05
4.31E−04


SEC13
0.82
3.22E−04
1.21E−03


HDGF
0.82
2.53E−04
1.02E−03


ALKBH1
0.82
1.42E−03
3.71E−03


BDP1
0.82
2.32E−03
5.46E−03


MARCKSL1
0.82
1.81E−05
1.77E−04


RBFOX2
0.82
6.52E−04
2.06E−03


HEIH
0.82
2.29E−04
9.47E−04


ADGRL2
0.82
3.61E−05
2.72E−04


SMARCC1
0.82
1.08E−05
1.34E−04


CNTROB
0.82
9.14E−05
5.10E−04


CLTB
0.82
4.30E−03
8.90E−03


NFYC
0.82
1.50E−03
3.88E−03


C19orf53
0.82
5.42E−04
1.80E−03


PHB
0.82
2.43E−04
9.94E−04


ERH
0.82
1.57E−05
1.66E−04


TIMM8B
0.82
1.38E−03
3.64E−03


EPRS
0.82
2.28E−06
5.53E−05


PNPLA6
0.82
8.36E−05
4.79E−04


NSD1
0.82
4.94E−05
3.33E−04


PRPF40A
0.82
2.29E−05
2.05E−04


AFG3L2
0.82
1.44E−03
3.77E−03


DCLRE1A
0.82
4.00E−03
8.42E−03


SLC31A1
0.82
2.22E−04
9.26E−04


ILVBL
0.82
1.43E−05
1.57E−04


POLR2J
0.82
5.53E−04
1.83E−03


MED13L
0.82
2.69E−04
1.07E−03


NUP155
0.82
2.54E−03
5.87E−03


EMC4
0.82
2.42E−05
2.10E−04


RIF1
0.82
2.29E−03
5.40E−03


CCT4
0.82
1.41E−04
6.82E−04


WDR77
0.82
2.73E−04
1.08E−03


C5orf22
0.82
1.37E−03
3.61E−03


ELF2
0.82
5.38E−04
1.79E−03


FOXRED1
0.82
4.92E−05
3.32E−04


TAF1C
0.82
4.99E−04
1.70E−03


ARPIN
0.82
5.42E−04
1.80E−03


POLRIB
0.82
2.61E−04
1.05E−03


CHMP2B
0.82
3.64E−03
7.80E−03


ORC5
0.82
1.23E−03
3.32E−03


FIP1L1
0.82
1.77E−03
4.42E−03


DNMBP
0.82
3.83E−03
8.14E−03


GMPS
0.82
3.63E−04
1.34E−03


CLIC4
0.82
1.38E−04
6.70E−04


KIF22
0.82
2.64E−03
6.06E−03


FANCI
0.82
1.25E−03
3.38E−03


EIF2B1
0.82
9.45E−07
3.58E−05


MAPRE2
0.82
8.88E−04
2.58E−03


UBR5
0.82
1.25E−03
3.37E−03


SUMO3
0.82
7.96E−04
2.38E−03


PPAT
0.82
7.62E−04
2.30E−03


GPX4
0.82
9.24E−04
2.66E−03


TRNT1
0.82
1.56E−05
1.65E−04


LDHA
0.82
1.27E−05
1.48E−04


HMGCS1
0.82
5.11E−04
1.72E−03


FAF1
0.82
1.61E−03
4.11E−03


AHR
0.82
1.71E−04
7.76E−04


ANXA11
0.82
2.95E−05
2.42E−04


EPB41L1
0.82
3.96E−05
2.90E−04


TRUB1
0.82
4.06E−03
8.52E−03


PTPRS
0.82
2.86E−04
1.12E−03


GRWD1
0.82
1.88E−04
8.30E−04


COPS3
0.82
3.61E−05
2.72E−04


UBTF
0.82
1.55E−03
4.00E−03


SLC4A7
0.82
3.64E−03
7.79E−03


MRPL14
0.82
1.88E−03
4.63E−03


STMN1
0.82
4.44E−04
1.55E−03


BAG3
0.82
4.64E−04
1.61E−03


PGAM1
0.82
5.43E−05
3.56E−04


ZNF317
0.82
1.92E−03
4.72E−03


AIP
0.82
2.22E−03
5.28E−03


FOXP4
0.82
1.01E−03
2.85E−03


IL13RA2
0.82
1.68E−04
7.71E−04


ARMC6
0.82
4.24E−05
3.01E−04


BCLAF1
0.82
2.79E−05
2.33E−04


RBM39
0.82
5.22E−04
1.75E−03


NCBP1
0.82
6.37E−04
2.03E−03


NFAT5
0.82
4.54E−03
9.29E−03


NLE1
0.82
1.14E−04
5.88E−04


CEP350
0.82
7.69E−04
2.32E−03


ZC3H7A
0.82
9.97E−04
2.84E−03


AARS2
0.82
3.53E−03
7.63E−03


ZMAT2
0.82
1.12E−04
5.82E−04


MLEC
0.82
1.12E−04
5.82E−04


ELAVL1
0.82
3.70E−04
1.36E−03


MRPL12
0.82
2.94E−03
6.60E−03


PSMB2
0.82
2.06E−04
8.82E−04


PCBP2
0.82
2.45E−05
2.13E−04


CHUK
0.82
8.41E−05
4.81E−04


TMX4
0.82
3.93E−05
2.89E−04


XPO5
0.82
9.86E−04
2.81E−03


PRAME
0.82
3.32E−04
1.25E−03


C19orf54
0.81
2.73E−03
6.22E−03


ELOVL5
0.81
1.13E−04
5.83E−04


POLR2E
0.81
3.32E−03
7.27E−03


COPRS
0.81
2.09E−03
5.03E−03


FMN1
0.81
1.49E−03
3.87E−03


DDX56
0.81
2.06E−04
8.83E−04


BOP1
0.81
1.87E−05
1.80E−04


PIGO
0.81
4.69E−04
1.62E−03


MTA2
0.81
1.16E−04
5.94E−04


PGM2
0.81
5.40E−04
1.80E−03


RASSF1
0.81
2.19E−04
9.20E−04


AKAP8L
0.81
2.25E−04
9.36E−04


FARSA
0.81
1.05E−04
5.61E−04


MASTL
0.81
1.04E−03
2.93E−03


SUN2
0.81
5.80E−04
1.89E−03


WWC2
0.81
4.39E−03
9.05E−03


BAG4
0.81
3.21E−03
7.08E−03


TMEM161A
0.81
2.96E−03
6.64E−03


MMADHC
0.81
1.18E−05
1.42E−04


NF2
0.81
6.15E−04
1.98E−03


PPP4R2
0.81
3.48E−04
1.29E−03


NDRG3
0.81
6.13E−05
3.88E−04


CNOT6
0.81
3.43E−03
7.45E−03


SPIDR
0.81
3.97E−03
8.38E−03


NMRAL1
0.81
2.57E−03
5.93E−03


FTSJ3
0.81
2.77E−04
1.09E−03


EMG1
0.81
2.36E−04
9.70E−04


RBM19
0.81
4.29E−03
8.90E−03


GGCT
0.81
4.22E−03
8.77E−03


EIFSB
0.81
1.79E−03
4.46E−03


MRPL19
0.81
1.20E−04
6.08E−04


EIF2B3
0.81
9.30E−04
2.68E−03


KAT7
0.81
7.19E−05
4.31E−04


ZNF511
0.81
1.09E−03
3.04E−03


EIF3J
0.81
1.13E−03
3.11E−03


PRPF4
0.81
7.99E−05
4.63E−04


NDUFA10
0.81
4.45E−03
9.14E−03


MFAP2
0.81
1.60E−03
4.10E−03


HAX1
0.81
1.70E−05
1.71E−04


GARS
0.81
8.20E−05
4.72E−04


CTCF
0.81
1.72E−04
7.79E−04


AGPS
0.81
3.75E−06
7.16E−05


GTF3C4
0.81
1.89E−04
8.32E−04


FKTN
0.81
2.27E−03
5.37E−03


MADD
0.81
3.41E−03
7.42E−03


ZW10
0.81
3.04E−03
6.78E−03


MCAT
0.81
1.18E−03
3.23E−03


TBL3
0.81
3.79E−03
8.07E−03


UQCRFS1
0.81
8.93E−04
2.59E−03


ARGLU1
0.81
3.48E−04
1.29E−03


TARDBP
0.81
2.40E−05
2.10E−04


PSMC6
0.81
1.08E−04
5.68E−04


RHOA
0.81
1.76E−05
1.74E−04


IREB2
0.81
1.31E−03
3.50E−03


DDX10
0.81
2.91E−03
6.54E−03


TRIOBP
0.81
3.51E−04
1.30E−03


SEMA4C
0.81
3.76E−04
1.37E−03


NUDT5
0.81
3.38E−05
2.64E−04


TMTC3
0.81
5.13E−04
1.73E−03


NARS
0.81
4.55E−04
1.58E−03


NXF1
0.81
1.21E−03
3.27E−03


PRKDC
0.81
3.96E−06
7.38E−05


GADD45GIP1
0.81
2.00E−03
4.86E−03


ZWILCH
0.81
1.01E−03
2.85E−03


UBA2
0.81
1.87E−05
1.80E−04


AOR
0.81
7.62E−04
2.30E−03


KIF7
0.81
1.51E−03
3.91E−03


IRF2BP1
0.81
1.04E−04
5.58E−04


CCT6A
0.81
1.40E−05
1.56E−04


IPO4
0.81
4.98E−05
3.35E−04


NOP56
0.81
9.90E−05
5.39E−04


IWS1
0.81
3.94E−05
2.89E−04


GART
0.81
2.48E−04
1.01E−03


RAD21
0.81
4.32E−06
7.81E−05


SUV39H1
0.81
2.25E−04
9.36E−04


ETV6
0.81
3.83E−03
8.13E−03


PHTF1
0.81
2.81E−03
6.37E−03


STOM
0.81
1.98E−05
1.87E−04


TCERG1
0.81
1.19E−03
3.25E−03


GFM2
0.81
2.40E−04
9.84E−04


IMPDH2
0.81
6.80E−05
4.17E−04


THYN1
0.81
4.86E−03
9.78E−03


TSTD2
0.81
6.24E−04
2.00E−03


PHTF2
0.81
1.31E−03
3.50E−03


GDI2
0.81
1.99E−05
1.87E−04


ELP6
0.81
7.71E−04
2.32E−03


CNOT2
0.81
3.38E−03
7.38E−03


CTNND1
0.81
1.76E−05
1.74E−04


SLC4A1AP
0.81
2.00E−03
4.87E−03


RNASEH1
0.81
2.40E−04
9.82E−04


MATR3
0.81
1.07E−04
5.66E−04


SCO1
0.81
1.60E−04
7.43E−04


FAM208B
0.81
5.58E−05
3.63E−04


ZFP36L1
0.81
1.39E−04
6.74E−04


MRPS23
0.81
1.16E−03
3.18E−03


PSME3
0.81
2.84E−05
2.36E−04


SNRNP27
0.80
7.20E−04
2.21E−03


KPNA2
0.80
2.62E−05
2.23E−04


MRPS31
0.80
8.21E−04
2.43E−03


BRIX1
0.80
1.66E−03
4.21E−03


TRIM37
0.80
1.75E−03
4.38E−03


TXNDC5
0.80
4.61E−05
3.21E−04


SNHG7
0.80
6.19E−04
1.99E−03


POC5
0.80
1.12E−03
3.10E−03


MRPS18A
0.80
6.32E−04
2.02E−03


ARHGAP17
0.80
2.64E−04
1.05E−03


UBE4B
0.80
2.44E−03
5.70E−03


CTNNB1
0.80
8.37E−06
1.15E−04


C15orf57
0.80
9.22E−04
2.66E−03


NUP43
0.80
4.93E−03
9.89E−03


TOMM40
0.80
3.14E−05
2.52E−04


DDX1
0.80
4.40E−06
7.90E−05


ILKAP
0.80
1.64E−03
4.17E−03


DIABLO
0.80
2.33E−03
5.49E−03


NDUFC2
0.80
3.38E−04
1.26E−03


NOP2
0.80
3.89E−04
1.40E−03


CDK11A
0.80
5.11E−04
1.72E−03


LEO1
0.80
1.34E−03
3.57E−03


TIMM10
0.80
7.19E−04
2.21E−03


EDRF1
0.80
3.75E−03
7.99E−03


UGCG
0.80
3.64E−03
7.79E−03


UTP4
0.80
6.92E−04
2.16E−03


SF3A1
0.80
4.16E−05
2.99E−04


DPH2
0.80
6.77E−04
2.13E−03


ZBTB11
0.80
1.79E−03
4.46E−03


PPIL3
0.80
4.78E−04
1.65E−03


TAF9
0.80
4.68E−04
1.62E−03


INTS4
0.80
1.05E−03
2.95E−03


AGBL5
0.80
1.77E−03
4.41E−03


RECQL4
0.80
3.29E−03
7.23E−03


CLNS1A
0.80
6.26E−05
3.94E−04


IER3
0.80
1.30E−06
4.29E−05


SUPT16H
0.80
8.63E−06
1.17E−04


TMCO6
0.80
2.09E−03
5.02E−03


CLPP
0.80
8.42E−04
2.48E−03


TOP2B
0.80
3.14E−04
1.19E−03


BRMS1
0.80
2.65E−04
1.06E−03


WNK1
0.80
2.67E−05
2.26E−04


ZCCHC3
0.80
3.82E−03
8.12E−03


EIF3B
0.80
1.21E−06
4.11E−05


UTP15
0.80
6.93E−04
2.16E−03


WDR75
0.80
2.73E−05
2.29E−04


RFC1
0.80
2.70E−03
6.16E−03


SMARCAS
0.80
4.98E−04
1.70E−03


CPSF3
0.80
3.75E−04
1.37E−03


BCAS2
0.80
4.05E−04
1.45E−03


DNAJC9
0.80
2.70E−03
6.16E−03


SNRPB
0.80
1.81E−05
1.77E−04


MRPL42
0.80
4.55E−03
9.30E−03


TRIP13
0.80
1.11E−03
3.08E−03


RPL26L1
0.80
5.04E−04
1.71E−03


RBPJ
0.80
3.88E−03
8.23E−03


DUSP6
0.80
1.05E−04
5.62E−04


FAM98B
0.80
2.42E−07
2.12E−05


ZC3HC1
0.80
9.86E−04
2.81E−03


CNOT7
0.80
2.69E−05
2.27E−04


PES1
0.80
5.80E−04
1.89E−03


NABP2
0.80
1.31E−03
3.51E−03


PCNT
0.80
1.96E−03
4.77E−03


LOC102723897
0.80
3.42E−05
2.66E−04


DCUN1D5
0.80
7.58E−04
2.29E−03


EXOSC2
0.80
1.60E−03
4.09E−03


SIPA1L2
0.80
3.18E−03
7.03E−03


RCC1L
0.80
1.99E−04
8.61E−04


METAP2
0.80
1.75E−04
7.89E−04


PMPCB
0.80
1.26E−04
6.31E−04


MGAT5
0.80
6.51E−04
2.06E−03


C17orf53
0.80
4.76E−03
9.61E−03


RHOT1
0.80
3.41E−03
7.42E−03


PNO1
0.80
4.35E−03
8.98E−03


PSMD3
0.80
3.51E−04
1.30E−03


COMMD2
0.80
1.46E−04
6.96E−04


APIP
0.80
2.90E−03
6.54E−03


PHKG2
0.80
1.17E−03
3.20E−03


SIK2
0.80
8.53E−04
2.50E−03


TOMM22
0.80
3.59E−05
2.72E−04


SFSWAP
0.80
4.77E−04
1.64E−03


ARL6IP1
0.80
5.77E−04
1.88E−03


DCPS
0.80
2.08E−04
8.88E−04


RPA2
0.80
1.21E−04
6.12E−04


PRPF3
0.80
4.32E−04
1.52E−03


MAP2K3
0.80
1.12E−03
3.10E−03


LSM3
0.79
1.68E−03
4.25E−03


MKLN1
0.79
2.55E−03
5.89E−03


PELO
0.79
1.17E−03
3.21E−03


MAML3
0.79
1.48E−03
3.85E−03


TMEM123
0.79
4.95E−04
1.69E−03


GLO1
0.79
1.39E−04
6.74E−04


COL4A3BP
0.79
4.63E−03
9.42E−03


PRMT7
0.79
7.20E−04
2.21E−03


DDX47
0.79
3.51E−04
1.30E−03


CD44
0.79
4.50E−05
3.14E−04


SMARCAD1
0.79
6.01E−04
1.94E−03


YWHAE
0.79
5.41E−06
8.78E−05


PTCD1
0.79
2.74E−03
6.24E−03


ALKBH7
0.79
1.09E−03
3.04E−03


CLN6
0.79
1.41E−04
6.81E−04


LCTL
0.79
1.59E−03
4.08E−03


RBM7
0.79
1.70E−04
7.74E−04


IMMT
0.79
1.08E−04
5.71E−04


SAP18
0.79
8.93E−04
2.59E−03


ANKH
0.79
1.41E−03
3.70E−03


HSPH1
0.79
8.83E−06
1.19E−04


MSANTD2
0.79
1.21E−04
6.12E−04


RNASEH2A
0.79
2.14E−04
9.03E−04


NPM1
0.79
8.22E−06
1.14E−04


TCP1
0.79
2.76E−05
2.30E−04


IPO9
0.79
1.67E−05
1.69E−04


MCMBP
0.79
7.46E−05
4.43E−04


PHIP
0.79
6.95E−04
2.17E−03


GLYR1
0.79
2.00E−03
4.87E−03


SEMA4D
0.79
4.13E−04
1.47E−03


TCTN3
0.79
2.15E−03
5.14E−03


PSMA2
0.79
2.73E−05
2.29E−04


ELP5
0.79
4.98E−04
1.70E−03


GBAS
0.79
1.34E−03
3.57E−03


MED25
0.79
3.22E−03
7.10E−03


LARP1B
0.79
2.91E−03
6.55E−03


CAPN15
0.79
1.65E−03
4.18E−03


ASXL1
0.79
7.99E−04
2.38E−03


SNU13
0.79
8.13E−04
2.41E−03


ACAD9
0.79
1.51E−03
3.90E−03


HIRIP3
0.79
2.66E−03
6.09E−03


HNRNPF
0.79
1.73E−04
7.81E−04


TARBP2
0.79
1.93E−04
8.46E−04


HAUS4
0.79
2.24E−03
5.31E−03


CASKIN2
0.79
6.95E−04
2.17E−03


PCMT1
0.79
3.05E−03
6.79E−03


ILF2
0.79
2.31E−05
2.05E−04


C20orf27
0.79
4.36E−05
3.07E−04


ZCCHC11
0.79
4.74E−03
9.59E−03


TIAL1
0.79
4.34E−04
1.52E−03


MRPS26
0.79
6.89E−04
2.15E−03


TMEM183A
0.79
6.85E−05
4.19E−04


MRPL16
0.79
1.89E−04
8.32E−04


RXRA
0.79
2.81E−03
6.36E−03


SNRPA
0.79
2.08E−04
8.89E−04


HNRNPH1
0.79
3.97E−05
2.90E−04


CDK6
0.79
1.30E−05
1.49E−04


ZDHHC7
0.79
1.84E−04
8.15E−04


PPP6C
0.79
2.38E−03
5.57E−03


DCTPP1
0.79
3.77E−03
8.02E−03


DHX35
0.79
2.06E−03
4.97E−03


MPP5
0.79
4.57E−04
1.59E−03


DDX39A
0.79
1.50E−04
7.10E−04


KIAA1524
0.79
3.15E−04
1.19E−03


FAN1
0.79
8.17E−04
2.42E−03


TCHP
0.79
3.51E−03
7.60E−03


CDK12
0.79
1.85E−04
8.20E−04


DST
0.79
1.27E−03
3.42E−03


PRPF19
0.79
3.82E−04
1.39E−03


SET
0.79
1.04E−05
1.30E−04


RRP1
0.79
6.56E−05
4.07E−04


GUF1
0.79
2.09E−04
8.92E−04


FKBP4
0.79
4.73E−06
8.22E−05


MED20
0.79
2.42E−03
5.65E−03


DNAJC11
0.79
7.42E−04
2.26E−03


NOC3L
0.79
1.13E−03
3.11E−03


MRPL38
0.79
5.19E−04
1.74E−03


C1QBP
0.79
2.63E−06
5.95E−05


PUM3
0.79
4.53E−04
1.58E−03


PPME1
0.79
6.34E−04
2.03E−03


LSG1
0.79
1.10E−03
3.05E−03


ARHGEF2
0.79
2.12E−04
8.98E−04


RNF166
0.79
8.34E−04
2.46E−03


FAM53C
0.79
7.55E−04
2.29E−03


CDCA5
0.79
1.71E−04
7.77E−04


ZNF778
0.79
4.42E−03
9.10E−03


ACOX3
0.79
6.80E−05
4.17E−04


DEK
0.79
4.24E−05
3.01E−04


ZFYVE9
0.79
2.94E−03
6.61E−03


POLR1E
0.79
6.08E−06
9.46E−05


VWA9
0.79
1.77E−04
7.93E−04


CENPH
0.79
1.96E−03
4.78E−03


TUBGCP3
0.79
9.82E−05
5.37E−04


BRD8
0.79
3.53E−03
7.63E−03


MRPS18C
0.78
3.76E−03
8.02E−03


ERI3
0.78
3.52E−03
7.61E−03


MAT2A
0.78
1.00E−05
1.29E−04


COA7
0.78
4.25E−04
1.50E−03


ASUN
0.78
4.81E−04
1.65E−03


UTP14A
0.78
7.16E−04
2.21E−03


POLE3
0.78
4.03E−05
2.92E−04


TXNL4B
0.78
1.87E−04
8.26E−04


TUBG2
0.78
3.56E−03
7.66E−03


KNSTRN
0.78
1.72E−04
7.79E−04


POFUT1
0.78
3.54E−05
2.70E−04


DHX34
0.78
6.40E−04
2.04E−03


RPL7L1
0.78
4.24E−04
1.50E−03


SART3
0.78
1.74E−03
4.35E−03


ITPRIP
0.78
4.52E−04
1.57E−03


SLC2A4RG
0.78
1.01E−03
2.85E−03


ZRANB1
0.78
1.68E−03
4.25E−03


CCDC124
0.78
8.09E−04
2.40E−03


MRPL47
0.78
1.63E−03
4.15E−03


NUP98
0.78
1.56E−03
4.01E−03


PSMC4
0.78
3.14E−05
2.52E−04


SGTA
0.78
1.29E−04
6.40E−04


SH3PXD2A
0.78
2.97E−05
2.43E−04


NELFCD
0.78
3.45E−05
2.67E−04


SRSF4
0.78
1.01E−05
1.30E−04


LMO4
0.78
2.49E−04
1.01E−03


CTNNBL1
0.78
6.51E−05
4.05E−04


LRP5
0.78
3.72E−03
7.95E−03


ESF1
0.78
7.69E−04
2.32E−03


NRF1
0.78
4.15E−03
8.67E−03


YARS
0.78
6.03E−05
3.84E−04


CCT5
0.78
8.61E−06
1.17E−04


PSMG1
0.78
1.65E−03
4.18E−03


LRPPRC
0.78
2.01E−04
8.65E−04


ADAM10
0.78
4.24E−05
3.01E−04


HDAC1
0.78
4.09E−05
2.96E−04


WDR5
0.78
3.57E−04
1.32E−03


NOL8
0.78
4.62E−04
1.60E−03


PDAP1
0.78
2.27E−06
5.53E−05


CWC25
0.78
2.03E−03
4.93E−03


SRSF1
0.78
6.23E−07
2.84E−05


NCKIPSD
0.78
3.48E−05
2.68E−04


MSMO1
0.78
1.20E−03
3.27E−03


UBAC1
0.78
1.57E−04
7.35E−04


HNRNPUL2-BSCL2
0.78
2.77E−03
6.30E−03


CDC25A
0.78
1.46E−03
3.82E−03


LUC7L2
0.78
1.57E−03
4.05E−03


MTA3
0.78
5.60E−04
1.84E−03


TFDP1
0.78
5.29E−04
1.77E−03


PPIE
0.78
3.29E−04
1.24E−03


PRKCZ
0.78
6.77E−04
2.13E−03


PDSS1
0.78
3.83E−04
1.39E−03


MBD3
0.78
1.06E−03
2.96E−03


CHMP4A
0.78
2.99E−04
1.15E−03


NME1
0.78
2.90E−05
2.40E−04


C2CD5
0.78
3.05E−03
6.79E−03


PPP1CC
0.78
7.91E−05
4.61E−04


KTN1
0.78
5.13E−07
2.56E−05


RCOR3
0.78
1.80E−03
4.47E−03


SNHG19
0.78
1.98E−03
4.82E−03


WDR74
0.78
3.68E−05
2.76E−04


NDUFA9
0.78
2.30E−03
5.42E−03


CLPX
0.78
6.59E−04
2.08E−03


C12orf4
0.78
1.42E−04
6.82E−04


STRAP
0.78
3.74E−05
2.79E−04


SLF1
0.78
3.57E−03
7.69E−03


PSMA4
0.78
1.27E−04
6.32E−04


ZNF446
0.78
1.41E−03
3.70E−03


DDX21
0.78
3.51E−05
2.69E−04


PDHX
0.78
1.74E−04
7.86E−04


NCAPG2
0.78
3.45E−03
7.49E−03


MSL3
0.78
7.89E−04
2.36E−03


RAD18
0.78
4.28E−03
8.87E−03


TAF15
0.78
1.72E−05
1.72E−04


SMC6
0.78
2.18E−04
9.17E−04


WRAP53
0.77
8.26E−04
2.44E−03


SAAL1
0.77
8.16E−04
2.42E−03


MRPL30
0.77
1.69E−04
7.71E−04


TWISTNB
0.77
8.85E−04
2.58E−03


WDR73
0.77
8.14E−04
2.41E−03


TMA7
0.77
7.66E−06
1.10E−04


U2SURP
0.77
4.83E−05
3.29E−04


AK2
0.77
5.21E−04
1.75E−03


UVRAG
0.77
2.47E−04
1.00E−03


LZTS2
0.77
2.34E−04
9.62E−04


METTL16
0.77
1.68E−03
4.25E−03


IKBKAP
0.77
7.68E−04
2.32E−03


PRPF4B
0.77
1.18E−04
6.03E−04


COQ4
0.77
1.68E−03
4.25E−03


GORASP1
0.77
1.76E−04
7.92E−04


GSTP1
0.77
4.43E−05
3.10E−04


GFM1
0.77
3.92E−04
1.41E−03


TCTN1
0.77
4.30E−03
8.91E−03


UGP2
0.77
1.94E−03
4.75E−03


TMSB4X
0.77
1.93E−03
4.73E−03


GATB
0.77
2.69E−03
6.14E−03


PPP5C
0.77
6.94E−05
4.23E−04


PRDX6
0.77
8.46E−06
1.16E−04


MRPL2
0.77
7.57E−04
2.29E−03


PPID
0.77
2.52E−03
5.85E−03


COPS4
0.77
1.38E−03
3.63E−03


TTC19
0.77
8.64E−04
2.52E−03


POLR1C
0.77
1.19E−03
3.25E−03


QTRT1
0.77
3.35E−04
1.25E−03


GGPS1
0.77
3.85E−04
1.39E−03


PTTG1
0.77
2.22E−03
5.28E−03


SNRPB2
0.77
1.82E−04
8.10E−04


CDC26
0.77
3.99E−03
8.41E−03


PATZ1
0.77
1.70E−03
4.27E−03


EFTUD2
0.77
3.41E−05
2.66E−04


SMNDC1
0.77
4.31E−03
8.92E−03


CSTF3
0.77
2.96E−04
1.14E−03


LPCAT1
0.77
1.15E−03
3.17E−03


GTF3C6
0.77
2.52E−03
5.85E−03


CDK10
0.77
3.75E−03
8.00E−03


THAP9-AS1
0.77
3.59E−03
7.73E−03


SRSF6
0.77
2.79E−04
1.09E−03


CD70
0.77
9.31E−04
2.68E−03


DSN1
0.77
2.53E−03
5.85E−03


PHF5A
0.77
1.43E−04
6.85E−04


CLASP2
0.77
4.52E−05
3.15E−04


GTF3C3
0.77
1.18E−03
3.22E−03


ADH5
0.77
7.37E−04
2.25E−03


ASNSD1
0.77
3.51E−03
7.59E−03


TMEM63A
0.77
2.13E−04
9.00E−04


TACO1
0.77
3.01E−03
6.72E−03


LATS2
0.77
2.55E−03
5.89E−03


FGFR1OP2
0.77
3.98E−03
8.40E−03


PACSIN2
0.77
2.23E−03
5.29E−03


TSN
0.77
1.34E−03
3.57E−03


AK6
0.77
7.29E−04
2.23E−03


PSIP1
0.77
1.36E−04
6.66E−04


ENKD1
0.77
6.88E−04
2.15E−03


IDH3B
0.77
4.78E−05
3.27E−04


ETV5
0.77
1.08E−03
3.01E−03


SH2B3
0.77
1.54E−04
7.26E−04


KDM4A
0.77
2.04E−04
8.74E−04


ARL3
0.77
6.20E−04
1.99E−03


UBE2S
0.77
7.52E−05
4.45E−04


SRSF11
0.77
5.40E−05
3.55E−04


PODXL
0.77
1.38E−03
3.63E−03


MRPL21
0.77
7.71E−04
2.32E−03


DPYSL3
0.77
1.64E−03
4.17E−03


ATF7IP
0.77
4.23E−03
8.80E−03


ZNF217
0.77
3.88E−05
2.86E−04


PNMAL1
0.77
3.29E−03
7.22E−03


GRAMD1B
0.77
9.84E−05
5.37E−04


MTF2
0.77
1.94E−04
8.48E−04


ACIN1
0.77
2.56E−04
1.03E−03


BUD31
0.76
1.59E−05
1.67E−04


EPB41L2
0.76
7.53E−04
2.28E−03


COA6
0.76
8.09E−04
2.40E−03


RBMX
0.76
3.65E−06
7.05E−05


KRR1
0.76
1.03E−03
2.90E−03


KIAA0753
0.76
4.19E−03
8.73E−03


SNX2
0.76
8.49E−04
2.49E−03


ZNF330
0.76
6.87E−04
2.15E−03


IFRD2
0.76
1.03E−04
5.54E−04


UPF3B
0.76
1.28E−03
3.43E−03


NOP14
0.76
3.60E−05
2.72E−04


METTL12
0.76
4.52E−03
9.25E−03


PTMS
0.76
9.52E−05
5.27E−04


PNRC2
0.76
1.85E−04
8.20E−04


SSBP1
0.76
2.74E−05
2.29E−04


PEX5
0.76
2.59E−04
1.04E−03


HSPA5
0.76
1.62E−06
4.75E−05


SREBF2
0.76
1.69E−06
4.78E−05


RBM23
0.76
7.20E−05
4.31E−04


SNHG17
0.76
9.29E−04
2.68E−03


COX11
0.76
3.98E−03
8.40E−03


IDE
0.76
3.01E−04
1.15E−03


SRGAP2C
0.76
2.35E−03
5.52E−03


PDCD4
0.76
3.11E−04
1.18E−03


SNRPE
0.76
1.21E−04
6.12E−04


TAF11
0.76
1.13E−03
3.13E−03


DHX9
0.76
7.11E−06
1.05E−04


DNMT1
0.76
9.23E−06
1.22E−04


GPATCH4
0.76
1.77E−04
7.93E−04


CAD
0.76
4.03E−05
2.92E−04


WDR36
0.76
7.18E−04
2.21E−03


CYB5D1
0.76
4.64E−03
9.42E−03


RBM26
0.76
3.88E−04
1.40E−03


JMJD8
0.76
2.16E−04
9.10E−04


EXOSC1
0.76
4.11E−03
8.60E−03


H1FX
0.76
9.86E−06
1.28E−04


GEMIN5
0.76
4.92E−04
1.68E−03


UTP18
0.76
7.20E−04
2.21E−03


NAA25
0.76
1.93E−03
4.73E−03


TMEM97
0.76
1.61E−03
4.10E−03


INTS6
0.76
5.00E−04
1.70E−03


DDX11
0.76
1.60E−03
4.09E−03


RAE1
0.76
2.63E−05
2.24E−04


UIMC1
0.76
3.36E−03
7.34E−03


ZNF593
0.76
4.23E−03
8.80E−03


PTCD2
0.76
1.55E−03
3.99E−03


PGD
0.76
2.23E−06
5.50E−05


LMNA
0.76
4.81E−06
8.31E−05


NAE1
0.76
1.55E−03
3.99E−03


BCL2L2-PABPN1
0.76
1.28E−03
3.44E−03


PPIH
0.76
3.36E−03
7.35E−03


SNX1
0.76
4.01E−04
1.44E−03


PRPF31
0.76
1.56E−04
7.33E−04


SYDE1
0.76
1.83E−04
8.13E−04


DDX51
0.76
3.88E−05
2.86E−04


NUP205
0.76
1.75E−05
1.74E−04


PTMA
0.76
4.59E−06
8.09E−05


TUBGCP4
0.76
6.57E−04
2.08E−03


TIMELESS
0.76
2.45E−04
1.00E−03


SMC3
0.76
3.91E−04
1.41E−03


XYLB
0.76
1.22E−03
3.31E−03


APITD1
0.76
3.34E−03
7.32E−03


ABCF2
0.76
3.00E−04
1.15E−03


NAP1L1
0.76
6.60E−06
9.90E−05


PARN
0.76
5.14E−04
1.73E−03


CKAP5
0.76
1.01E−04
5.48E−04


ZNF608
0.76
3.49E−05
2.68E−04


HNRNPM
0.76
1.32E−05
1.51E−04


MTERF3
0.76
7.08E−04
2.19E−03


SF3B3
0.76
2.47E−05
2.14E−04


MTMR2
0.76
1.66E−04
7.65E−04


SFPQ
0.76
1.42E−04
6.82E−04


USP28
0.76
1.65E−04
7.63E−04


HMGCR
0.75
2.06E−05
1.91E−04


NDST1
0.75
1.39E−05
1.56E−04


MY019
0.75
6.81E−04
2.13E−03


AKR7A2
0.75
1.81E−04
8.06E−04


DZIP1
0.75
2.98E−04
1.15E−03


ZNF266
0.75
3.65E−03
7.82E−03


GTF2I
0.75
2.10E−04
8.95E−04


NPM3
0.75
2.33E−04
9.59E−04


LINC01029
0.75
1.73E−03
4.34E−03


ZNF692
0.75
9.05E−04
2.62E−03


SNHG15
0.75
1.25E−03
3.38E−03


ASAP1
0.75
3.50E−03
7.57E−03


VPS37B
0.75
1.09E−04
5.75E−04


ATP5F1
0.75
5.20E−05
3.46E−04


HEATR1
0.75
1.58E−05
1.66E−04


N4BP2L2
0.75
3.84E−03
8.14E−03


STIL
0.75
9.90E−04
2.82E−03


ARHGAP29
0.75
2.65E−03
6.07E−03


SNRPG
0.75
5.58E−04
1.84E−03


PRMT1
0.75
4.62E−07
2.47E−05


ANKRD54
0.75
1.78E−04
7.97E−04


SRSF2
0.75
3.52E−05
2.70E−04


NOL11
0.75
5.77E−04
1.88E−03


PRKACB
0.75
4.33E−03
8.95E−03


LINC00998
0.75
1.72E−03
4.32E−03


GLI3
0.75
3.34E−04
1.25E−03


GNPTAB
0.75
2.33E−05
2.06E−04


U2AF1
0.75
7.08E−04
2.19E−03


DDX46
0.75
8.62E−04
2.52E−03


MRPS15
0.75
3.36E−04
1.26E−03


LYAR
0.75
1.00E−05
1.29E−04


WDR18
0.75
1.59E−04
7.41E−04


AMOTL2
0.75
1.02E−05
1.30E−04


NFYB
0.75
1.77E−03
4.42E−03


MTHFD1L
0.75
4.87E−04
1.67E−03


EIF2S2
0.75
7.23E−05
4.32E−04


GLT8D1
0.75
1.05E−04
5.61E−04


MCCC1
0.75
4.37E−04
1.53E−03


RRP1B
0.75
2.70E−04
1.07E−03


MARS
0.75
8.90E−05
5.01E−04


C3orf14
0.75
2.81E−04
1.10E−03


CCP110
0.75
9.08E−04
2.62E−03


CENPE
0.75
4.94E−04
1.69E−03


DYNLL1
0.75
2.11E−06
5.36E−05


ARHGAP5
0.75
2.02E−03
4.89E−03


NPRL3
0.75
2.22E−04
9.26E−04


RBBP4
0.75
2.81E−05
2.34E−04


PTGES3
0.75
4.07E−05
2.95E−04


PLEKHAS
0.75
3.51E−03
7.59E−03


C1orf112
0.75
4.51E−04
1.57E−03


PYCR1
0.75
8.77E−04
2.56E−03


ATAD2
0.75
4.06E−06
7.53E−05


NUDT21
0.75
1.97E−04
8.55E−04


MLH1
0.75
9.08E−04
2.62E−03


CCDC86
0.75
6.90E−05
4.21E−04


TAF2
0.75
1.86E−06
4.95E−05


SPATS2
0.75
7.47E−04
2.27E−03


SLC25A20
0.75
2.34E−03
5.51E−03


MRPL33
0.75
1.13E−04
5.84E−04


CAMK4
0.75
2.79E−03
6.32E−03


JAGN1
0.75
2.18E−03
5.20E−03


COPS5
0.75
3.65E−04
1.34E−03


OSER1
0.74
1.17E−03
3.20E−03


TMEM50B
0.74
2.42E−04
9.90E−04


MTHFD2
0.74
1.33E−03
3.54E−03


PRIM2
0.74
1.17E−03
3.20E−03


RPP30
0.74
7.20E−04
2.21E−03


RBM12
0.74
3.16E−05
2.53E−04


KCTD20
0.74
3.40E−04
1.27E−03


CYTH1
0.74
1.93E−03
4.73E−03


SRSF3
0.74
3.23E−05
2.56E−04


ERBB2
0.74
1.76E−05
1.74E−04


WBP11
0.74
1.45E−04
6.94E−04


PNN
0.74
6.32E−04
2.02E−03


LENG8
0.74
3.23E−04
1.22E−03


NCL
0.74
4.82E−07
2.51E−05


IFT122
0.74
6.24E−04
2.00E−03


LAS1L
0.74
1.93E−04
8.46E−04


CENPO
0.74
4.06E−03
8.51E−03


LINC01578
0.74
5.97E−04
1.93E−03


POLA1
0.74
1.20E−03
3.26E−03


MGLL
0.74
3.94E−05
2.89E−04


EXOG
0.74
1.26E−03
3.39E−03


BTAF1
0.74
6.48E−04
2.06E−03


B3GALNT2
0.74
2.49E−03
5.79E−03


GPN3
0.74
2.93E−03
6.59E−03


KIF14
0.74
6.70E−04
2.11E−03


MED27
0.74
4.95E−04
1.69E−03


CHAF1A
0.74
5.27E−04
1.76E−03


FAM111B
0.74
3.09E−03
6.87E−03


TCEA2
0.74
1.03E−04
5.54E−04


INTS8
0.74
4.23E−03
8.80E−03


PCNX1
0.74
4.19E−03
8.74E−03


CDKN2C
0.74
5.10E−04
1.72E−03


RAD51C
0.74
6.51E−04
2.06E−03


TNPO1
0.74
1.45E−05
1.58E−04


APEX1
0.74
2.65E−04
1.06E−03


TRMT61B
0.74
2.08E−03
5.01E−03


KHSRP
0.74
2.58E−07
2.14E−05


SNRNP70
0.74
4.68E−05
3.24E−04


CBX6
0.74
3.04E−04
1.16E−03


NUP133
0.74
6.20E−06
9.53E−05


RILPL2
0.74
7.90E−04
2.37E−03


MDC1
0.74
7.38E−04
2.25E−03


IFT22
0.74
2.59E−05
2.21E−04


TULP3
0.74
1.88E−04
8.27E−04


ADCK4
0.74
1.83E−03
4.51E−03


TRAP1
0.74
3.08E−04
1.18E−03


MRTO4
0.74
1.87E−05
1.80E−04


ECD
0.74
4.35E−03
8.98E−03


RANBP1
0.74
3.79E−04
1.38E−03


DARS2
0.74
3.87E−04
1.40E−03


MRPL1
0.74
1.86E−04
8.25E−04


IDI1
0.74
1.65E−03
4.18E−03


HAUSS
0.74
8.29E−04
2.45E−03


CDKN2AIPNL
0.74
6.55E−04
2.07E−03


MAGOH
0.74
1.16E−03
3.19E−03


SNRPD1
0.74
6.38E−05
3.99E−04


SOX11
0.74
1.85E−05
1.79E−04


SKIV2L2
0.74
1.97E−05
1.86E−04


DDX19B
0.74
5.14E−04
1.73E−03


NAT10
0.74
5.56E−05
3.62E−04


TRIP6
0.74
5.11E−04
1.72E−03


EPHA2
0.74
6.25E−06
9.58E−05


TDRD3
0.74
2.85E−03
6.43E−03


SS18L2
0.74
3.90E−03
8.25E−03


SUZ12
0.74
1.91E−04
8.39E−04


ARHGAP12
0.74
7.65E−05
4.50E−04


PPP1R7
0.74
3.17E−04
1.20E−03


USP1
0.74
6.27E−05
3.94E−04


NUP107
0.74
1.20E−03
3.27E−03


ADGRL1
0.74
5.51E−04
1.82E−03


COQ7
0.73
9.09E−04
2.62E−03


NARS2
0.73
1.74E−03
4.37E−03


PTPN3
0.73
3.09E−03
6.87E−03


NRSN2
0.73
1.05E−04
5.61E−04


ENG
0.73
1.25E−04
6.27E−04


EXOSC3
0.73
3.88E−04
1.40E−03


ELMSAN1
0.73
1.62E−05
1.67E−04


PCDH1
0.73
1.41E−05
1.57E−04


THOC2
0.73
3.19E−05
2.54E−04


DNAJB11
0.73
1.82E−04
8.08E−04


NME7
0.73
1.36E−03
3.61E−03


ALDH1B1
0.73
7.06E−05
4.26E−04


EEF1AKMT1
0.73
4.63E−03
9.42E−03


ST3GAL4
0.73
2.18E−05
1.98E−04


NAA15
0.73
8.17E−06
1.14E−04


PCAT7
0.73
4.45E−03
9.14E−03


MAD2L1
0.73
6.05E−05
3.85E−04


AP2S1
0.73
1.91E−05
1.82E−04


RFX1
0.73
2.27E−04
9.40E−04


ZRANB2
0.73
1.02E−03
2.87E−03


POP4
0.73
4.76E−04
1.64E−03


HNRNPA2B1
0.73
2.62E−05
2.23E−04


XPO4
0.73
1.50E−03
3.90E−03


CMTM7
0.73
7.25E−05
4.33E−04


NOP16
0.73
2.63E−04
1.05E−03


HSPA9
0.73
2.47E−06
5.82E−05


EX01
0.73
1.63E−04
7.52E−04


RIOK1
0.73
1.96E−03
4.78E−03


WDR12
0.73
1.47E−03
3.83E−03


INTS12
0.73
2.00E−04
8.64E−04


LUC7L
0.73
2.76E−04
1.08E−03


TIA1
0.73
4.17E−04
1.48E−03


ETAA1
0.73
1.30E−05
1.49E−04


NUP93
0.73
5.31E−06
8.71E−05


LARS
0.73
2.70E−06
6.04E−05


MAD2L2
0.73
4.36E−04
1.53E−03


HMCES
0.73
7.67E−04
2.32E−03


SDHD
0.73
7.52E−04
2.28E−03


PPP2R4
0.73
1.36E−05
1.54E−04


SRSF7
0.73
5.77E−05
3.72E−04


MKNK2
0.73
5.17E−04
1.74E−03


SF3A3
0.73
9.50E−05
5.26E−04


H2AFV
0.73
2.00E−05
1.87E−04


SEH1L
0.73
4.80E−05
3.27E−04


SAPCD2
0.73
1.93E−03
4.72E−03


TGS1
0.73
6.97E−05
4.24E−04


PSPC1
0.73
7.92E−05
4.61E−04


NAA38
0.73
4.22E−04
1.49E−03


FJX1
0.73
1.69E−03
4.25E−03


CBX1
0.73
5.23E−04
1.75E−03


MKKS
0.73
2.75E−03
6.25E−03


ACP6
0.73
1.10E−03
3.04E−03


PCDHA6
0.73
4.18E−03
8.71E−03


RAPGEF6
0.72
1.19E−03
3.25E−03


DTYMK
0.72
7.25E−04
2.22E−03


MRPL13
0.72
1.19E−04
6.04E−04


UBXN2A
0.72
4.04E−04
1.45E−03


NACC1
0.72
1.15E−05
1.40E−04


C16orf59
0.72
4.21E−03
8.77E−03


MBNL1
0.72
1.89E−04
8.32E−04


SNRNP40
0.72
9.99E−06
1.29E−04


FAM126A
0.72
4.02E−03
8.45E−03


ECSIT
0.72
6.10E−05
3.87E−04


MCM5
0.72
2.49E−04
1.01E−03


OSGEP
0.72
7.63E−04
2.31E−03


PRPF38A
0.72
2.11E−04
8.97E−04


THOC1
0.72
1.62E−03
4.13E−03


CYP51A1
0.72
1.30E−04
6.42E−04


CENPL
0.72
1.45E−03
3.78E−03


TIMM9
0.72
3.79E−03
8.06E−03


FUBP1
0.72
2.59E−04
1.04E−03


KHDRBS3
0.72
1.84E−03
4.54E−03


LIMA1
0.72
5.53E−04
1.83E−03


AIMP2
0.72
6.23E−05
3.92E−04


DNAAF5
0.72
7.08E−05
4.27E−04


PGAM5
0.72
2.15E−05
1.96E−04


CHSY1
0.72
1.74E−04
7.86E−04


GNL3
0.72
1.55E−04
7.28E−04


METTL17
0.72
7.73E−04
2.33E−03


ZNF146
0.72
1.20E−04
6.09E−04


NOM1
0.72
1.24E−03
3.36E−03


PCGF6
0.72
3.36E−04
1.26E−03


CDK2
0.72
5.18E−04
1.74E−03


ING3
0.72
1.29E−03
3.46E−03


CALM3
0.72
3.66E−06
7.07E−05


EIF4A3
0.72
2.92E−05
2.41E−04


POLE
0.72
2.22E−03
5.28E−03


TSPAN4
0.72
1.57E−03
4.05E−03


CEP85
0.72
2.14E−04
9.04E−04


APOBEC3G
0.72
2.98E−03
6.66E−03


FUS
0.72
1.39E−05
1.56E−04


LYRM1
0.72
3.48E−04
1.29E−03


DBF4
0.72
1.11E−03
3.07E−03


PKP4
0.72
6.59E−04
2.08E−03


NUP88
0.72
1.67E−07
1.75E−05


CDT1
0.72
1.49E−04
7.09E−04


TTC27
0.72
2.82E−04
1.10E−03


NEDD4
0.72
5.89E−04
1.91E−03


LTV1
0.72
1.07E−03
3.00E−03


DDX55
0.72
1.80E−03
4.47E−03


IQSEC1
0.72
9.04E−05
5.07E−04


PRDX3
0.72
2.32E−05
2.06E−04


FAM133B
0.72
1.94E−04
8.48E−04


RBMXL1
0.71
7.86E−05
4.59E−04


NUP85
0.71
7.96E−04
2.38E−03


CSE1L
0.71
2.73E−05
2.29E−04


MTRR
0.71
5.76E−04
1.88E−03


GGA2
0.71
3.45E−04
1.28E−03


TAPT1
0.71
8.77E−04
2.56E−03


THEM4
0.71
1.81E−03
4.48E−03


HSPE1
0.71
1.41E−04
6.81E−04


SUPV3L1
0.71
5.74E−04
1.88E−03


SNUPN
0.71
3.76E−04
1.37E−03


ALDH18A1
0.71
3.73E−05
2.79E−04


SLC25A25
0.71
1.12E−04
5.82E−04


PA2G4
0.71
1.64E−06
4.75E−05


RRM1
0.71
2.05E−04
8.79E−04


GABPA
0.71
3.38E−04
1.26E−03


TECR
0.71
5.21E−04
1.75E−03


PKMYT1
0.71
3.60E−03
7.74E−03


SUV39H2
0.71
8.40E−04
2.47E−03


NEAT1
0.71
2.18E−03
5.21E−03


KDM1A
0.71
5.41E−05
3.55E−04


MRPL4
0.71
8.11E−04
2.41E−03


NUDCD2
0.71
3.04E−04
1.16E−03


USP39
0.71
1.72E−04
7.79E−04


AARSD1
0.71
2.52E−04
1.02E−03


GTPBP6
0.71
1.02E−03
2.88E−03


SMC4
0.71
1.37E−04
6.69E−04


PUS7
0.71
3.05E−04
1.17E−03


SLC5A6
0.71
9.86E−05
5.37E−04


SHISA4
0.71
1.94E−04
8.48E−04


ILF3
0.71
2.68E−06
6.02E−05


ZNF274
0.71
5.33E−04
1.78E−03


PNPT1
0.71
3.21E−03
7.10E−03


NTMT1
0.71
2.32E−04
9.58E−04


NCAPG
0.71
1.54E−06
4.67E−05


ZNF362
0.71
1.05E−03
2.95E−03


TIMM50
0.71
1.03E−04
5.55E−04


CTSC
0.71
2.03E−05
1.89E−04


FOXRED2
0.71
3.51E−04
1.30E−03


KPTN
0.71
2.12E−04
8.98E−04


CCNL1
0.71
7.32E−04
2.24E−03


MRPL11
0.71
1.35E−03
3.58E−03


FCF1
0.71
3.86E−04
1.40E−03


ASF1B
0.71
8.55E−05
4.87E−04


RBL1
0.71
1.26E−03
3.39E−03


TRA2B
0.71
2.97E−05
2.43E−04


HSPD1
0.71
4.48E−05
3.13E−04


GPD2
0.71
2.21E−04
9.24E−04


PFN2
0.71
7.50E−05
4.44E−04


KIF20B
0.71
6.27E−04
2.01E−03


SLC25A33
0.71
2.04E−03
4.95E−03


ANAPC7
0.71
2.21E−04
9.25E−04


FBXO5
0.71
4.27E−04
1.51E−03


SNRNP25
0.71
3.18E−05
2.54E−04


PAXBP1
0.71
3.87E−04
1.40E−03


CENPN
0.71
1.78E−03
4.43E−03


KNTC1
0.71
1.98E−03
4.81E−03


ABTB2
0.71
6.57E−05
4.07E−04


XPNPEP3
0.71
1.09E−03
3.02E−03


GCSH
0.70
1.37E−03
3.62E−03


IFT52
0.70
4.52E−04
1.58E−03


RND3
0.70
3.90E−04
1.40E−03


GPSM3
0.70
7.69E−04
2.32E−03


RUVBL1
0.70
1.02E−05
1.30E−04


SPARC
0.70
6.13E−07
2.83E−05


HNRNPH3
0.70
1.45E−04
6.91E−04


SRRD
0.70
5.90E−04
1.91E−03


MPDZ
0.70
9.07E−04
2.62E−03


CWF19L1
0.70
2.56E−04
1.03E−03


RPIA
0.70
4.44E−03
9.14E−03


TYMS
0.70
5.10E−05
3.40E−04


THADA
0.70
3.66E−03
7.82E−03


KBTBD6
0.70
1.03E−03
2.90E−03


STAG1
0.70
1.65E−03
4.18E−03


CASC5
0.70
5.18E−05
3.44E−04


FAM171A1
0.70
1.35E−03
3.58E−03


HJURP
0.70
7.92E−05
4.61E−04


RBM17
0.70
1.50E−04
7.12E−04


FADS1
0.70
4.08E−05
2.95E−04


PCNA
0.70
1.04E−05
1.30E−04


PROSER3
0.70
1.84E−03
4.54E−03


RITA1
0.70
6.61E−05
4.08E−04


KIFC1
0.70
4.98E−05
3.35E−04


NCAPD3
0.70
7.77E−06
1.11E−04


FHL3
0.70
3.13E−04
1.19E−03


POLR3B
0.70
2.93E−04
1.13E−03


NUDT3
0.70
4.46E−03
9.15E−03


TTLL4
0.70
2.05E−03
4.95E−03


CCNE2
0.70
4.67E−03
9.47E−03


VRK1
0.70
3.22E−03
7.11E−03


KIAA0101
0.70
1.13E−04
5.83E−04


NT5C2
0.70
2.09E−05
1.93E−04


NECTIN2
0.70
3.29E−04
1.24E−03


PNISR
0.70
1.98E−03
4.82E−03


SSRP1
0.70
4.33E−06
7.81E−05


LRR1
0.70
1.59E−03
4.09E−03


CARS
0.70
4.14E−05
2.98E−04


LOC105369205
0.70
2.80E−05
2.33E−04


RUVBL2
0.70
1.04E−05
1.30E−04


CPSF4
0.70
1.82E−03
4.51E−03


POLR3K
0.70
1.03E−04
5.55E−04


DONSON
0.70
1.96E−03
4.78E−03


HADH
0.70
1.07E−04
5.65E−04


HSPBP1
0.70
9.03E−05
5.07E−04


HNRNPD
0.70
1.31E−06
4.29E−05


ETFA
0.70
8.68E−06
1.18E−04


TTC31
0.70
1.99E−05
1.87E−04


CDON
0.69
1.66E−04
7.64E−04


NOL4L
0.69
7.36E−04
2.25E−03


POLD1
0.69
8.12E−05
4.68E−04


ETV4
0.69
2.63E−04
1.05E−03


ANO6
0.69
2.65E−06
5.98E−05


TYSND1
0.69
6.48E−04
2.06E−03


C7orf50
0.69
4.94E−05
3.33E−04


NR2F6
0.69
1.59E−04
7.41E−04


APOBEC3B
0.69
3.41E−03
7.42E−03


ANXA6
0.69
1.47E−05
1.59E−04


MVK
0.69
2.48E−04
1.01E−03


JUND
0.69
1.79E−04
8.00E−04


KPNB1
0.69
1.11E−05
1.36E−04


LIG3
0.69
7.35E−05
4.38E−04


SNAI1
0.69
1.07E−04
5.67E−04


RAD54L
0.69
8.71E−05
4.93E−04


ZNF227
0.69
1.47E−03
3.83E−03


NLGN2
0.69
4.46E−07
2.46E−05


SMC2
0.69
2.39E−05
2.09E−04


NFIX
0.69
1.66E−05
1.68E−04


TAF1D
0.69
3.14E−04
1.19E−03


CENPW
0.69
1.58E−03
4.07E−03


MRPS30
0.69
2.56E−04
1.03E−03


GTF2H3
0.69
3.92E−05
2.89E−04


SHC1
0.69
7.35E−07
3.08E−05


MAGED1
0.69
4.74E−06
8.23E−05


JUN
0.69
6.49E−04
2.06E−03


NUP160
0.69
5.43E−06
8.80E−05


TAB3
0.69
4.97E−04
1.69E−03


MELK
0.69
5.94E−04
1.92E−03


NSMCE4A
0.69
7.78E−04
2.34E−03


CADM1
0.69
9.99E−05
5.43E−04


GINS1
0.69
3.65E−04
1.34E−03


FMNL2
0.69
8.53E−06
1.17E−04


FOXM1
0.68
6.16E−05
3.89E−04


TPCN1
0.68
7.05E−04
2.18E−03


FASTKD3
0.68
4.69E−03
9.51E−03


PARP1
0.68
4.21E−07
2.46E−05


PFAS
0.68
3.73E−05
2.79E−04


PIDD1
0.68
6.40E−04
2.04E−03


PCID2
0.68
1.15E−03
3.16E−03


SUFU
0.68
7.28E−04
2.23E−03


HSPB1
0.68
4.39E−05
3.09E−04


LMNB2
0.68
1.19E−05
1.42E−04


TSEN2
0.68
3.75E−03
8.00E−03


RAB34
0.68
1.30E−04
6.42E−04


EARS2
0.68
1.26E−03
3.39E−03


TCF12
0.68
4.31E−05
3.05E−04


PRIM1
0.68
2.58E−03
5.94E−03


CBWD5
0.68
3.50E−04
1.30E−03


RTKN
0.68
1.10E−04
5.78E−04


MCM8
0.68
1.13E−03
3.13E−03


SRGAP2
0.68
5.21E−06
8.68E−05


DNAJC2
0.68
3.77E−05
2.81E−04


ARHGAP5-AS1
0.68
2.76E−03
6.28E−03


HMGB1
0.68
2.76E−07
2.17E−05


GCLM
0.68
3.31E−04
1.24E−03


CCNC
0.68
2.91E−03
6.55E−03


WDR90
0.68
2.06E−03
4.97E−03


DPYSL5
0.68
3.58E−04
1.32E−03


RPA3
0.68
3.20E−03
7.08E−03


RRAS2
0.68
1.17E−04
5.99E−04


GPX8
0.68
2.65E−03
6.08E−03


CCDC59
0.68
1.59E−04
7.42E−04


PREP
0.68
3.79E−06
7.17E−05


CTU2
0.68
4.54E−03
9.28E−03


HN1
0.68
9.54E−05
5.27E−04


STAG3L2
0.68
4.75E−03
9.60E−03


CSPP1
0.68
6.98E−04
2.17E−03


ANP32E
0.68
1.36E−05
1.54E−04


EXOSC7
0.68
1.03E−03
2.91E−03


PKP3
0.68
2.43E−05
2.11E−04


LPIN1
0.68
1.30E−04
6.42E−04


XPO1
0.67
4.69E−05
3.25E−04


EFHD2
0.67
1.70E−04
7.74E−04


NUP37
0.67
5.05E−04
1.71E−03


GALNT2
0.67
2.14E−06
5.42E−05


GORAB
0.67
1.59E−03
4.07E−03


FH
0.67
2.06E−05
1.91E−04


FAM210A
0.67
3.52E−03
7.60E−03


COQ2
0.67
7.76E−05
4.55E−04


VOPP1
0.67
5.89E−04
1.91E−03


LPIN2
0.67
1.33E−05
1.51E−04


SRRT
0.67
6.69E−06
9.99E−05


ANK3
0.67
7.14E−05
4.30E−04


GLUD1
0.67
2.56E−06
5.86E−05


COASY
0.67
2.29E−04
9.47E−04


ZNF706
0.67
1.25E−03
3.36E−03


SH3TC1
0.67
9.49E−04
2.73E−03


TP53
0.67
1.60E−04
7.43E−04


TIPIN
0.67
3.34E−03
7.30E−03


ALDH7A1
0.67
5.39E−06
8.78E−05


CHAC2
0.67
7.94E−05
4.61E−04


PXYLP1
0.67
6.97E−05
4.24E−04


ESPL1
0.67
3.48E−04
1.29E−03


PAK1IP1
0.67
3.83E−04
1.39E−03


ALYREF
0.67
1.24E−04
6.26E−04


LOC107987001
0.67
3.34E−03
7.31E−03


HSF2
0.67
8.35E−04
2.46E−03


TSEN15
0.67
1.04E−03
2.93E−03


MCM2
0.67
6.27E−05
3.94E−04


DLEU2L
0.67
1.19E−03
3.25E−03


NDC1
0.67
2.99E−04
1.15E−03


SGO2
0.67
2.74E−04
1.08E−03


DNAJC6
0.67
4.00E−05
2.91E−04


PRMT5
0.66
3.78E−04
1.37E−03


CEP55
0.66
7.42E−05
4.41E−04


L1CAM
0.66
2.95E−05
2.42E−04


CCDC58
0.66
1.38E−04
6.72E−04


SLC30A1
0.66
7.96E−05
4.62E−04


CCDC88A
0.66
5.73E−05
3.71E−04


NDUFAF7
0.66
1.04E−04
5.58E−04


9-Sep
0.66
3.45E−06
6.77E−05


NUP54
0.66
2.27E−03
5.37E−03


PLK4
0.66
3.17E−03
7.03E−03


MRPL57
0.66
6.98E−04
2.17E−03


ANP32B
0.66
5.94E−06
9.35E−05


SEPHS1
0.66
5.25E−04
1.76E−03


RFC2
0.66
7.08E−04
2.19E−03


SKA2
0.66
9.09E−05
5.08E−04


TRIM74
0.66
2.58E−04
1.04E−03


LRP6
0.66
3.93E−06
7.37E−05


AARS
0.66
9.65E−06
1.27E−04


ECI1
0.66
1.05E−04
5.61E−04


SHTN1
0.66
8.24E−04
2.44E−03


ABI2
0.66
3.67E−04
1.35E−03


NOL12
0.66
1.89E−03
4.65E−03


NEDD4L
0.66
1.13E−04
5.82E−04


TACC3
0.66
5.87E−05
3.76E−04


BAGE2
0.66
6.50E−04
2.06E−03


MAGOHB
0.66
2.54E−03
5.87E−03


CYB5B
0.66
2.96E−05
2.43E−04


HIBADH
0.66
2.32E−05
2.06E−04


RHPN2
0.66
2.70E−04
1.07E−03


HSP90AA1
0.66
4.37E−06
7.86E−05


TIMM44
0.66
6.82E−06
1.01E−04


CCNG1
0.66
1.49E−06
4.62E−05


ZNF473
0.65
3.55E−05
2.71E−04


FRMD6
0.65
6.31E−05
3.96E−04


NUF2
0.65
2.46E−06
5.82E−05


ST3GAL2
0.65
1.71E−05
1.72E−04


RIMKLB
0.65
7.01E−04
2.18E−03


FBXL5
0.65
5.04E−05
3.38E−04


ALDH3B1
0.65
2.21E−03
5.26E−03


IFITM3
0.65
5.47E−06
8.84E−05


CDC45
0.65
1.01E−03
2.86E−03


EXOSC8
0.65
5.53E−04
1.83E−03


PACSIN3
0.65
1.28E−06
4.28E−05


FAM188B
0.65
2.64E−03
6.06E−03


SOCS5
0.65
1.20E−05
1.42E−04


HELLS
0.65
1.10E−04
5.78E−04


TOB1
0.65
6.36E−04
2.03E−03


FAM64A
0.65
6.92E−05
4.22E−04


TKT
0.65
7.66E−07
3.12E−05


CDCA8
0.65
4.83E−06
8.32E−05


AKR1C3
0.65
8.97E−04
2.60E−03


STK11IP
0.65
7.14E−05
4.30E−04


SLC6A6
0.65
2.47E−03
5.74E−03


CKS2
0.65
5.18E−05
3.44E−04


DAB2
0.65
6.52E−04
2.06E−03


WDR62
0.65
4.35E−05
3.07E−04


BRCA1
0.65
2.84E−04
1.11E−03


MRC2
0.65
3.41E−04
1.27E−03


GINS4
0.65
1.07E−04
5.66E−04


OIP5
0.65
1.34E−03
3.57E−03


DTWD1
0.64
2.47E−03
5.74E−03


GDF11
0.64
1.15E−04
5.91E−04


MMAB
0.64
7.40E−04
2.25E−03


NAT14
0.64
1.78E−03
4.43E−03


ENAH
0.64
1.19E−05
1.42E−04


KDELC2
0.64
1.84E−04
8.17E−04


RFC4
0.64
6.38E−04
2.03E−03


EZH2
0.64
1.93E−04
8.45E−04


ROCK2
0.64
2.98E−06
6.27E−05


ZNF286A
0.64
5.47E−04
1.81E−03


SLC26A2
0.64
2.34E−07
2.12E−05


PRELID3B
0.64
2.37E−05
2.09E−04


PARP2
0.64
4.52E−04
1.58E−03


CIITA
0.64
1.27E−05
1.48E−04


KANK1
0.64
4.25E−05
3.02E−04


DEPDC1B
0.64
1.89E−07
1.88E−05


WDR4
0.64
2.67E−05
2.26E−04


OSMR
0.64
1.89E−03
4.65E−03


TSPAN14
0.64
6.17E−05
3.89E−04


CDCA2
0.64
2.83E−06
6.18E−05


ZNF254
0.64
1.77E−03
4.42E−03


RBBP8
0.64
5.67E−04
1.86E−03


SMG1P2
0.64
4.05E−03
8.49E−03


ECT2
0.64
2.18E−04
9.18E−04


HIST1H4C
0.64
6.89E−04
2.15E−03


DHRS11
0.64
1.66E−04
7.63E−04


ARHGEF39
0.63
4.15E−03
8.67E−03


CENPU
0.63
1.39E−04
6.75E−04


CDCA3
0.63
1.83E−04
8.13E−04


TYRO3
0.63
1.27E−05
1.48E−04


MFSD12
0.63
1.58E−05
1.66E−04


TMA16
0.63
1.96E−05
1.86E−04


CCNH
0.63
2.11E−04
8.95E−04


PRC1
0.63
4.85E−06
8.34E−05


POU2F1
0.63
2.99E−03
6.69E−03


LINC00839
0.63
3.76E−03
8.00E−03


C6orf120
0.63
1.36E−05
1.54E−04


LAPTM4B
0.63
2.61E−06
5.95E−05


GNAQ
0.63
1.67E−04
7.65E−04


MCM7
0.63
2.08E−07
2.00E−05


EGR3
0.63
5.99E−04
1.93E−03


XAGE1B
0.63
1.65E−05
1.68E−04


XAGE1E
0.63
1.65E−05
1.68E−04


ZNF326
0.63
4.75E−04
1.64E−03


SLC2A1
0.63
1.50E−05
1.61E−04


NXPE3
0.63
3.26E−05
2.57E−04


ITPK1
0.63
8.34E−06
1.15E−04


ATAD3B
0.63
1.45E−05
1.58E−04


OMA1
0.63
1.80E−03
4.47E−03


HSD17B4
0.63
1.64E−05
1.68E−04


CMSS1
0.63
4.00E−03
8.42E−03


PLEKHH3
0.63
4.36E−04
1.53E−03


DYRK2
0.63
2.08E−04
8.89E−04


PTEN
0.63
2.23E−06
5.50E−05


MKI67
0.63
1.46E−05
1.58E−04


CSGALNACT1
0.63
1.38E−05
1.55E−04


PARPBP
0.63
2.85E−04
1.11E−03


CEP95
0.63
5.89E−04
1.91E−03


PTPN14
0.63
7.67E−06
1.10E−04


PAICS
0.63
9.06E−06
1.20E−04


KIF18B
0.62
5.90E−05
3.78E−04


ARRB2
0.62
2.98E−03
6.66E−03


CENPK
0.62
4.01E−03
8.43E−03


RACGAP1
0.62
5.23E−06
8.68E−05


BCCIP
0.62
6.21E−05
3.91E−04


NOTCH1
0.62
2.56E−06
5.86E−05


TMPO
0.62
2.55E−05
2.19E−04


MT2A
0.62
3.48E−05
2.68E−04


SLFN12
0.62
2.00E−04
8.61E−04


CXXC5
0.62
6.46E−06
9.81E−05


DGKD
0.62
8.46E−05
4.83E−04


PHGDH
0.62
2.08E−06
5.34E−05


RHBDF1
0.62
1.43E−05
1.57E−04


MMP2
0.62
3.48E−05
2.68E−04


HOXB3
0.62
1.95E−04
8.51E−04


SPAG5
0.62
2.56E−04
1.03E−03


HOXC13
0.62
7.07E−05
4.27E−04


MSH2
0.62
2.72E−05
2.29E−04


NDRG4
0.62
2.26E−04
9.40E−04


KIF23
0.62
7.67E−05
4.51E−04


CNN2
0.62
3.36E−07
2.27E−05


CCNF
0.62
2.92E−05
2.41E−04


TENM3
0.62
5.91E−06
9.34E−05


NCAPD2
0.62
2.32E−08
9.89E−06


HOXA5
0.62
4.70E−04
1.63E−03


PER1
0.61
4.92E−05
3.32E−04


SLC7A5
0.61
1.55E−06
4.67E−05


LOC101927809
0.61
2.65E−03
6.07E−03


MRPL39
0.61
2.01E−04
8.65E−04


TRIT1
0.61
1.20E−04
6.07E−04


AURKB
0.61
1.06E−04
5.65E−04


ITGA3
0.61
6.12E−06
9.48E−05


ITGB5
0.61
3.85E−06
7.27E−05


MTERF1
0.61
2.17E−03
5.18E−03


ARL13B
0.61
1.42E−05
1.57E−04


ORC1
0.61
3.55E−04
1.31E−03


C11orf71
0.61
5.03E−04
1.71E−03


RBMS2
0.61
1.81E−03
4.48E−03


PLEKHO1
0.61
1.80E−04
8.02E−04


FDFT1
0.61
6.24E−05
3.92E−04


GTSE1
0.61
8.02E−05
4.64E−04


POLD3
0.61
3.19E−03
7.07E−03


MIR548XHG
0.61
2.26E−04
9.40E−04


THEM6
0.61
2.60E−04
1.04E−03


FASN
0.61
2.79E−06
6.13E−05


ARHGEF40
0.61
2.02E−05
1.89E−04


PCDH10
0.61
8.11E−04
2.41E−03


HMGN2
0.61
3.57E−05
2.71E−04


SLC7A1
0.61
1.53E−06
4.67E−05


MAPILC3A
0.60
3.60E−03
7.74E−03


RAD51AP1
0.60
6.28E−04
2.01E−03


SNHG4
0.60
1.78E−03
4.42E−03


ARHGAP19
0.60
5.08E−05
3.40E−04


DAP
0.60
9.97E−07
3.67E−05


CDC42EP4
0.60
6.31E−05
3.96E−04


SMAD3
0.60
1.59E−08
8.56E−06


TRIM16L
0.60
5.06E−04
1.71E−03


CSPG4
0.60
3.76E−06
7.17E−05


TBL1X
0.60
3.20E−06
6.54E−05


TEAD4
0.60
1.54E−04
7.26E−04


PSAT1
0.60
1.23E−05
1.46E−04


SCLY
0.60
3.18E−04
1.20E−03


SLC3A2
0.60
1.62E−05
1.67E−04


SSBP4
0.60
2.11E−04
8.96E−04


MEX3A
0.60
4.11E−04
1.46E−03


PTPRJ
0.60
1.70E−04
7.74E−04


PBK
0.60
9.52E−04
2.73E−03


FANCD2
0.60
1.14E−04
5.88E−04


GOT1
0.59
3.03E−05
2.46E−04


IFT81
0.59
2.00E−06
5.19E−05


CENPF
0.59
2.10E−06
5.36E−05


MBNL2
0.59
4.16E−04
1.48E−03


HMMR
0.59
1.56E−04
7.31E−04


B9D1
0.59
9.32E−05
5.17E−04


TGFBR2
0.59
8.25E−05
4.74E−04


ZFP36L2
0.59
4.30E−05
3.04E−04


HMG20B
0.59
3.00E−05
2.45E−04


CDCA7L
0.59
1.25E−05
1.47E−04


TAF5
0.59
4.70E−05
3.25E−04


PPT2
0.59
5.68E−04
1.86E−03


TSPAN12
0.59
2.03E−03
4.92E−03


TSPYL2
0.59
8.43E−07
3.29E−05


SAV1
0.59
7.85E−07
3.14E−05


SIDT2
0.59
1.94E−05
1.84E−04


UACA
0.59
3.10E−05
2.51E−04


BUB1
0.59
6.40E−05
4.00E−04


HPCAL1
0.59
7.53E−07
3.10E−05


CDH19
0.59
5.76E−04
1.88E−03


HPDL
0.59
1.26E−04
6.30E−04


MYH10
0.59
1.75E−06
4.84E−05


COL4A2
0.59
5.44E−07
2.66E−05


RNF157
0.59
2.36E−05
2.08E−04


KIF2C
0.58
1.42E−05
1.57E−04


TRAF1
0.58
1.12E−04
5.82E−04


CT45A3
0.58
3.19E−03
7.06E−03


IFRD1
0.58
4.06E−04
1.45E−03


SHB
0.58
3.14E−04
1.19E−03


C8orf58
0.58
4.47E−05
3.13E−04


KRT8
0.58
6.79E−05
4.17E−04


NLK
0.58
4.49E−05
3.14E−04


NDC80
0.58
2.47E−03
5.75E−03


HOXB6
0.58
3.53E−05
2.70E−04


BLMH
0.58
3.22E−05
2.55E−04


SNX5
0.58
3.34E−05
2.62E−04


MTSS1L
0.58
1.18E−04
5.99E−04


FBXW9
0.58
2.01E−04
8.65E−04


RHOBTB3
0.58
2.28E−05
2.04E−04


CDC25B
0.58
1.12E−06
3.95E−05


ZFP42
0.58
1.36E−03
3.61E−03


KIAA0586
0.58
3.67E−04
1.35E−03


RAI1
0.58
5.30E−06
8.71E−05


MIS18BP1
0.58
2.25E−03
5.33E−03


ADARB1
0.58
2.47E−04
1.00E−03


IFT172
0.58
7.98E−04
2.38E−03


OSBPL10
0.57
7.53E−06
1.09E−04


PXMP2
0.57
6.44E−05
4.01E−04


STK40
0.57
1.33E−05
1.51E−04


SKA3
0.57
8.04E−04
2.39E−03


SPDL1
0.57
1.60E−04
7.43E−04


TGIF2
0.57
1.91E−04
8.39E−04


SOD3
0.57
5.22E−05
3.46E−04


PHF19
0.57
4.14E−04
1.47E−03


METTL7B
0.57
9.95E−05
5.41E−04


LMNB1
0.57
8.93E−05
5.02E−04


AMIGO2
0.57
8.23E−06
1.14E−04


HKR1
0.57
5.34E−04
1.78E−03


PXDC1
0.57
9.21E−05
5.13E−04


PDK4
0.57
1.01E−04
5.48E−04


NEK2
0.57
1.14E−06
3.99E−05


DHCR7
0.57
1.79E−04
8.00E−04


SPATS2L
0.57
1.03E−05
1.30E−04


TPX2
0.57
2.88E−06
6.19E−05


LRIG3
0.57
5.29E−05
3.50E−04


P3H3
0.57
1.03E−05
1.30E−04


NEK6
0.57
1.08E−04
5.69E−04


TK1
0.56
1.08E−05
1.34E−04


SPC24
0.56
2.20E−06
5.45E−05


ECH1
0.56
3.32E−06
6.64E−05


INPP5F
0.56
1.04E−06
3.80E−05


BCAT1
0.56
2.01E−04
8.66E−04


AKR1B1
0.56
1.66E−05
1.68E−04


TSPAN13
0.56
3.32E−05
2.61E−04


SLMO2-ATP5E
0.56
2.98E−03
6.67E−03


SOGA1
0.56
1.67E−05
1.69E−04


PLK1
0.56
1.04E−05
1.30E−04


SSB
0.56
5.33E−05
3.51E−04


PLTP
0.56
3.47E−05
2.68E−04


SERTAD4-AS1
0.56
6.01E−05
3.83E−04


GEMIN2
0.55
1.88E−03
4.62E−03


FAM92A1
0.55
7.69E−04
2.32E−03


VEGFC
0.55
6.85E−04
2.14E−03


DHCR24
0.55
5.07E−07
2.56E−05


BTBD3
0.55
4.03E−05
2.92E−04


SGCE
0.55
3.01E−03
6.72E−03


ADM
0.55
2.37E−03
5.56E−03


FARP1
0.55
7.91E−05
4.61E−04


TMPRSS5
0.55
1.55E−03
4.00E−03


KIF11
0.55
7.29E−07
3.07E−05


TWIST1
0.55
8.79E−04
2.56E−03


CCNA2
0.55
3.45E−05
2.67E−04


TPD52L1
0.55
1.55E−03
4.00E−03


TFB1M
0.55
4.29E−04
1.51E−03


NES
0.54
1.03E−06
3.76E−05


LOC105369647
0.54
1.44E−04
6.90E−04


CENPA
0.54
5.48E−05
3.59E−04


GNAS
0.54
7.69E−07
3.12E−05


ARHGEF3
0.54
3.42E−05
2.66E−04


MYO1B
0.54
1.28E−05
1.48E−04


BTD
0.54
8.68E−04
2.53E−03


ZFPM2-AS1
0.54
1.80E−03
4.48E−03


TACC2
0.54
4.17E−05
2.99E−04


ZBTB18
0.54
5.40E−06
8.78E−05


CUTC
0.54
1.69E−04
7.73E−04


NUSAP1
0.54
1.44E−05
1.58E−04


RCAN1
0.54
2.10E−05
1.93E−04


CTNNBIP1
0.53
4.78E−05
3.27E−04


SNX10
0.53
1.13E−04
5.84E−04


SSFA2
0.53
9.17E−06
1.21E−04


BAG2
0.53
1.06E−04
5.63E−04


EGR1
0.53
9.90E−05
5.39E−04


TNFRSF19
0.53
1.65E−05
1.68E−04


WWP2
0.53
1.61E−05
1.67E−04


DEPDC1
0.53
1.10E−04
5.77E−04


QKI
0.53
2.87E−04
1.12E−03


CCNB2
0.53
2.50E−05
2.15E−04


HSDL2
0.53
5.89E−06
9.32E−05


ACSS2
0.53
3.90E−05
2.88E−04


AKAP2
0.52
5.78E−05
3.73E−04


STAG3L5P-PVRIG2P-
0.52
5.64E−04
1.85E−03


PILRB


DOCK4
0.52
5.18E−05
3.44E−04


FNBP1L
0.52
1.66E−05
1.69E−04


GPC1
0.52
3.67E−05
2.76E−04


VEGFA
0.52
1.28E−04
6.37E−04


KIF15
0.52
1.12E−04
5.82E−04


ELMO1
0.52
8.90E−05
5.01E−04


PHC2
0.52
1.70E−06
4.78E−05


TMEM135
0.52
8.62E−05
4.90E−04


PCDH7
0.52
1.39E−04
6.74E−04


TNFRSF21
0.52
2.73E−06
6.08E−05


BMP8B
0.52
2.49E−04
1.01E−03


SNHG1
0.52
4.75E−04
1.64E−03


ST5
0.51
2.19E−04
9.20E−04


STX3
0.51
2.66E−04
1.06E−03


COL4A1
0.51
2.62E−08
9.89E−06


PSRC1
0.51
2.75E−06
6.08E−05


PFKFB3
0.51
2.28E−05
2.04E−04


FAM84B
0.51
1.16E−05
1.40E−04


TNC
0.51
4.25E−06
7.73E−05


CDH2
0.51
5.80E−06
9.21E−05


NECTIN3
0.51
2.48E−05
2.14E−04


DOK1
0.50
8.82E−05
4.98E−04


CDKN3
0.50
3.14E−03
6.97E−03


GAS7
0.50
5.98E−07
2.78E−05


ASB9
0.50
2.24E−05
2.02E−04


SREBF1
0.50
3.57E−06
6.94E−05


ANKRD50
0.50
7.31E−06
1.07E−04


KIF20A
0.50
7.43E−06
1.08E−04


FTH1
0.50
2.47E−07
2.12E−05


CDC20
0.50
4.25E−06
7.73E−05


LINC00923
0.50
5.59E−04
1.84E−03


ACACA
0.49
1.06E−07
1.51E−05


IGF2BP3
0.49
5.25E−06
8.68E−05


RARA
0.49
1.93E−04
8.46E−04


NR1H3
0.49
4.69E−04
1.62E−03


AURKA
0.49
1.17E−05
1.41E−04


ETNK2
0.49
9.46E−06
1.25E−04


PTX3
0.49
8.56E−04
2.51E−03


SNHG12
0.49
4.11E−04
1.46E−03


CEP70
0.49
8.49E−04
2.49E−03


ME1
0.48
1.45E−05
1.58E−04


PALLD
0.48
7.73E−05
4.54E−04


COL12A1
0.48
5.43E−07
2.66E−05


TPM1
0.48
3.47E−06
6.78E−05


ITGA1
0.48
1.19E−05
1.42E−04


LEF1
0.48
1.23E−04
6.19E−04


WDR35
0.48
4.29E−05
3.04E−04


SLC2A3
0.48
4.76E−05
3.26E−04


RASSF8
0.48
2.77E−07
2.17E−05


CAMK2D
0.48
5.28E−05
3.49E−04


SPON2
0.48
8.68E−05
4.92E−04


TNS2
0.48
8.20E−05
4.72E−04


SMAD6
0.47
1.37E−04
6.67E−04


HACL1
0.47
3.54E−06
6.88E−05


TTC8
0.47
3.15E−03
6.99E−03


TGFA
0.47
7.99E−07
3.17E−05


DDIT3
0.47
5.55E−04
1.83E−03


FZD2
0.47
8.75E−05
4.95E−04


SYTL5
0.47
1.21E−05
1.43E−04


DNM1
0.47
5.23E−06
8.68E−05


DHRS3
0.47
1.37E−06
4.42E−05


SCD
0.46
3.65E−07
2.32E−05


RUNX3
0.46
7.06E−06
1.04E−04


MARCKS
0.46
5.47E−05
3.58E−04


LOXL2
0.46
3.46E−07
2.29E−05


HR
0.46
6.49E−06
9.84E−05


TNFSF9
0.46
4.19E−04
1.48E−03


SHROOM2
0.46
1.64E−06
4.75E−05


IERSL
0.46
1.42E−05
1.57E−04


CDCA7
0.45
1.54E−04
7.26E−04


PDE1C
0.45
1.55E−06
4.67E−05


LBR
0.45
1.03E−05
1.30E−04


NOX4
0.45
3.08E−04
1.18E−03


ZNF92
0.45
1.07E−04
5.67E−04


LOC101929322
0.45
5.70E−05
3.69E−04


NCOA7
0.45
8.92E−06
1.20E−04


PLA2G16
0.44
2.94E−05
2.42E−04


LPCAT3
0.44
1.32E−05
1.50E−04


PRSS23
0.44
1.56E−06
4.67E−05


CPT1A
0.44
8.10E−05
4.68E−04


RAMP1
0.44
1.49E−05
1.60E−04


FTL
0.44
3.12E−07
2.21E−05


CLIP2
0.44
7.00E−07
3.00E−05


LY6K
0.43
5.96E−06
9.37E−05


CNN3
0.43
6.52E−07
2.89E−05


UQCC1
0.43
5.64E−05
3.67E−04


SPATA6
0.43
5.05E−04
1.71E−03


COL5A2
0.42
1.70E−06
4.79E−05


TLE4
0.42
3.62E−05
2.73E−04


MYOF
0.42
4.13E−07
2.43E−05


SYNM
0.42
1.70E−05
1.71E−04


GALNT10
0.42
3.97E−05
2.90E−04


ITGA6
0.42
4.07E−07
2.42E−05


ZEB2
0.42
4.45E−04
1.56E−03


COL6A1
0.42
8.29E−06
1.15E−04


NO01
0.42
2.92E−06
6.19E−05


FOSL2
0.41
2.31E−05
2.05E−04


DNAH9
0.41
1.25E−04
6.27E−04


AK4
0.41
3.41E−05
2.66E−04


ERO1B
0.41
2.22E−04
9.26E−04


WWTR1
0.41
1.58E−08
8.56E−06


ACAA2
0.41
8.76E−06
1.18E−04


LOC105369782
0.41
2.43E−03
5.67E−03


B3GNT7
0.41
4.19E−05
3.00E−04


TBC1D4
0.41
3.68E−06
7.09E−05


MDK
0.40
3.07E−06
6.38E−05


ERBB3
0.40
1.10E−05
1.35E−04


MIR4435-2HG
0.40
8.52E−05
4.86E−04


MEIS2
0.40
5.09E−06
8.59E−05


SYNPO
0.40
1.43E−05
1.57E−04


MGAT5B
0.40
1.25E−05
1.47E−04


ZCCHC24
0.40
1.68E−06
4.78E−05


LINC00152
0.39
1.57E−04
7.34E−04


SEMA3C
0.39
7.49E−07
3.10E−05


IMPA2
0.39
1.03E−04
5.55E−04


RHOF
0.39
3.42E−05
2.66E−04


CNTRL
0.39
1.12E−06
3.95E−05


S100B
0.39
4.17E−05
2.99E−04


PYROXD2
0.39
4.08E−04
1.45E−03


TRIM62
0.38
5.44E−06
8.81E−05


USP53
0.38
1.26E−05
1.48E−04


FLRT3
0.37
3.08E−06
6.38E−05


PPP2R3A
0.37
6.72E−06
1.00E−04


MICAL3
0.36
8.02E−07
3.17E−05


ANXA1
0.36
3.27E−08
1.05E−05


SOCS3
0.36
1.40E−05
1.56E−04


DDIT4
0.36
1.57E−07
1.73E−05


TLR4
0.36
1.46E−08
8.56E−06


NID1
0.36
8.81E−07
3.39E−05


KIRREL
0.36
7.65E−08
1.25E−05


TANC2
0.36
2.24E−05
2.02E−04


FAM129A
0.36
1.19E−06
4.10E−05


ARHGAP23
0.36
5.26E−06
8.68E−05


TPT1-AS1
0.36
1.39E−04
6.74E−04


LOC105371703
0.35
1.36E−03
3.60E−03


KIF21B
0.35
3.38E−06
6.69E−05


EMP2
0.35
1.84E−05
1.78E−04


NFATC2
0.35
1.63E−06
4.75E−05


EPHB3
0.35
1.85E−05
1.79E−04


HOXB9
0.35
3.61E−05
2.72E−04


SNCA
0.34
1.56E−05
1.65E−04


AIM1
0.34
6.10E−06
9.47E−05


TIAM1
0.34
3.25E−06
6.59E−05


LMCD1
0.34
1.42E−05
1.57E−04


TINAGL1
0.34
1.48E−07
1.73E−05


BCAR3
0.33
7.03E−06
1.04E−04


SERPINE2
0.33
2.17E−06
5.42E−05


KIAA1217
0.33
2.51E−06
5.85E−05


PCDHGC3
0.33
7.93E−06
1.13E−04


EXTL1
0.33
1.82E−06
4.92E−05


HIVEP3
0.33
3.97E−06
7.38E−05


IL1RAP
0.32
8.94E−06
1.20E−04


AJUBA
0.32
4.35E−08
1.17E−05


TGM2
0.31
1.10E−06
3.92E−05


PIR
0.31
1.22E−05
1.44E−04


PLEKHA4
0.31
6.07E−06
9.46E−05


C1orf106
0.30
1.52E−04
7.18E−04


POU3F2
0.30
4.73E−05
3.26E−04


EYA1
0.30
4.43E−06
7.94E−05


SDC3
0.30
1.85E−06
4.95E−05


COTL1
0.29
1.41E−07
1.71E−05


MAF
0.29
4.51E−06
7.98E−05


FAM46B
0.29
1.27E−05
1.48E−04


PDP1
0.29
5.98E−06
9.38E−05


GPNMB
0.29
8.05E−06
1.13E−04


CNTNAP3B
0.29
1.10E−06
3.92E−05


ADAMTS12
0.29
1.51E−05
1.62E−04


FOXD3
0.28
3.25E−05
2.56E−04


RAB20
0.28
1.49E−05
1.60E−04


TRIB2
0.27
9.23E−07
3.51E−05


PTPRF
0.26
3.36E−07
2.27E−05


GDF15
0.26
1.26E−04
6.29E−04


CDC42EP3
0.26
1.53E−09
3.61E−06


TESC
0.26
1.25E−05
1.47E−04


DMRT2
0.24
4.15E−05
2.98E−04


PTGES
0.24
4.53E−07
2.47E−05


AFAP1
0.23
2.38E−07
2.12E−05


KRT80
0.23
1.56E−06
4.67E−05


S100A3
0.23
6.46E−04
2.05E−03


C10orf90
0.22
3.25E−05
2.56E−04


WNK4
0.22
9.75E−08
1.41E−05


THBS1
0.22
8.67E−08
1.36E−05


LOXL3
0.21
4.70E−08
1.23E−05


LINC00473
0.20
3.96E−05
2.90E−04


KLF9
0.20
8.42E−07
3.29E−05


MEOX2
0.19
3.30E−06
6.64E−05


PLK2
0.19
1.16E−06
4.05E−05


MOXD1
0.19
7.58E−06
1.09E−04


FAM20C
0.18
5.36E−07
2.64E−05


LZTS1
0.17
2.93E−06
6.20E−05


ABCC2
0.17
5.14E−06
8.64E−05


SERPINA3
0.16
4.19E−06
7.69E−05


TNS3
0.16
1.21E−08
8.56E−06


ADORA2B
0.16
1.18E−07
1.62E−05


CPA4
0.14
3.22E−05
2.55E−04


F2R
0.13
1.54E−07
1.73E−05


EPS8
0.13
4.47E−07
2.46E−05


LIMCH1
0.13
1.28E−06
4.28E−05


AGMO
0.13
4.29E−06
7.79E−05


ANKRD1
0.12
1.79E−05
1.76E−04


MGAM2
0.11
1.84E−08
8.62E−06


CDKN1C
0.11
2.99E−07
2.21E−05


LOXL4
0.10
6.14E−06
9.50E−05


FST
0.07
2.55E−06
5.86E−05


LOC102723854
0.07
2.70E−04
1.07E−03


HAPLN1
0.05
5.87E−09
5.95E−06


NGFR
0.04
7.56E−08
1.25E−05


SEMA6B
0.04
8.98E−07
3.43E−05


NNMT
0.03
6.72E−07
2.95E−05


LOC105372338
0.03
2.13E−05
1.95E−04
















TABLE 7







Co-IP followed by mass spectrometry characterization of B3GNT2 target genes.





















Alternate
MW
N-term
N-term
C-term
C-term

Alternate
MW
N-term
N-term
C-term
C-term


Accession Number
ID
kDa
IgG
FLAG
IgG
flag
Accession Number
ID
kDa
IgG
FLAG
IgG
flag























NP_006568.2
B3GNT2
46
0
130
0
132
NP_001265398.1 (+7)
MON2
186
0
0
0
3


NP_006077.2
TUBB3
50
0
115
0
82
NP_872590.1
PCNA
29
0
3
0
0


NP_001060.1
TUBB2A
50
0
128
0
0
NP_001180499.1 (+1)
CSRP1
20
0
0
0
3


NP_001290453.1
TUBB6
50
0
63
0
42
NP_002262.4 (+1)
IPO5
124
0
0
0
3


NP_003312.3
TUFM
50
0
56
0
26
NP_066964.1
XRCC5
83
0
0
0
3


NP_006073.2
TUBA1B
50
0
76
0
0
NP_006861.1
DSTN
19
0
0
0
3


NP_003290.1
HSP90B1
92
0
9
0
56
NP_002782.1
PSMA6
27
0
3
0
0


NP_733765.1
ATP2A2
115
0
8
0
45
NP_002800.2
PSMD3
61
0
3
0
0


NP_005304.3
PDIA3
57
0
14
0
24
NP_006494.1
PSMC4
47
0
3
0
0


NP_006614.2
PHGDH
57
0
29
0
7
NP_004658.3 (+3)
HERC2
527
0
0
0
3


NP_006079.1
TUBB4B
50
0
161
13
119
NP_001120869.1 (+2)
ERLEC1
52
0
0
0
3


NP_008835.5
PRKDC
469
0
24
0
11
NP_001350685.1 (+3)
ECPAS
204
0
3
0
0


NP_001627.2
SLC25A6
33
0
15
0
19
XP_011541145.1
ATM
334
0
3
0
0


NP_817092.1
PPM1G
59
0
9
0
22
NP_005207.2
DDOST
51
0
0
0
3


NP_060555.2
IPO9
116
0
6
0
24
NP_001307539.1 (+3)
CHCHD6
27
0
0
0
3


NP_006380.1 (+1)
HYOU1
111
0
0
0
27
NP_001153682.1 (+5)
SLC25A13
74
0
3
0
0


NP_001269241.1
FAM3A
25
0
9
0
18
NP_006088.2
MYL9
20
0
3
0
0


NP_004334.1
CALR
48
0
6
0
20
NP_002793.2
PSMC1
49
0
3
0
0


NP_000909.2
P4HB
57
0
3
0
23
NP_001035933.3 (+2)
SUMF2
34
0
0
0
3


NP_001035109.1
FAM3C
25
0
2
0
23
NP_001000.2
RPS5
23
3
4
0
6


NP_821133.1
TUBB
50
10
164
10
117
NP_005800.3
PRDX2
22
5
9
0
5


NP_001186600.1 (+1)
CALU
38
0
10
0
13
NP_859048.1
PRDX1
22
5
8
0
6


NP_000692.2 (+2)
ATP1A1
113
0
11
0
12
NP_003236.3
TGM3
77
2
9
3
5


NP_001258766.1 (+1)
RCN2
39
0
7
0
16
NP_001269091.1
CAPZB
34
2
2
0
5


NP_001142.2
SLC25A4
33
0
9
0
14
NP_002643.1
PIP
17
0
4
2
3


NP_057226.1 (+1)
HSD17B12
34
0
10
0
10
NP_001009.1
RPS15
17
5
7
2
11


NP_078934.3
IPO4
119
0
3
0
17
NP_000977.1
RPL24
18
4
4
3
14


NP_006450.2
ERLIN1
39
0
11
0
9
NP_001007.2
RPS12
15
0
3
4
8


NP_001269633.1 (+4)
PDIA6
54
0
5
0
14
NP_036246.1
CASP14
28
3
8
4
9


NP_006827.1
GCN1
293
0
14
0
4
NP_000997.1
RPS3A
30
9
12
10
29


NP_003891.1
SQSTM1
48
0
3
3
43
NP_001030168.1
RPL14
23
7
11
8
21


NP_036555.1
RPL13A
24
0
4
0
13
NP_000980.1
RPL30
13
6
8
4
14


NP_001349807.1
ERLIN2
38
0
8
0
9
NP_000967.1
RPL12
18
4
9
5
11


NP_001350924.1
CANX
71
0
6
0
11
NP_001002.1
RPS7
22
2
8
5
8


NP_003357.2
UQCRC2
48
0
13
0
4
NP_000975.2
RPL23A
18
3
6
4
10


NP_006816.2
CKAP4
66
0
2
0
14
NP_001004.2
RPS9
23
3
2
0
6


NP_000993.1
RPLPO
34
0
6
0
10
NP_006187.2
PCBP1
37
0
4
3
4


NP_001530.1
DNAJA1
45
0
6
0
10
NP_006126.1 (+1)
CAPZA1
33
0
2
0
0


NP_068758.3 (+1)
FKBP10
64
0
0
0
16
NP_002323.2 (+1)
LRP1
505
0
2
0
0


NP_005338.1
HSPA5
72
9
70
12
130
NP_009175.2
PRR4
15
0
2
0
0


NP_000971.1
RPL18A
21
0
3
0
12
NP_001026854.1 (+1)
SRSF7
27
0
2
0
0


NP_001273432.1 (+3)
HSPH1
92
0
8
0
7
NP_002924.1
RNASE1
18
0
0
0
2


NP_001130000.1 (+1)
SERPINE2
44
0
4
0
11
XP_016858423.1
CEP170
176
0
0
0
2


NP_001888.2
CSPG4
251
0
2
0
12
NP_004516.2
LRP2
522
0
0
0
2


NP_005879.1 (+1)
SLC25A3
40
0
4
0
9
NP_005900.2
MAP1B
271
0
0
0
2


NP_001243463.1
SLC25A1
35
0
5
0
8
NP_002777.1 (+1)
PSMA1
30
0
2
0
0


NP_115587.6 (+1)
LOXL4
84
0
5
0
8
NP_002130.2
RBMX
42
0
0
0
2


NP_001317145.1 (+1)
CNP
45
0
5
0
7
NP_001292553.1
CALM2
22
0
0
0
2


NP_001017958.1 (+3)
OS9
74
0
3
0
9
NP_001230106.1 (+1)
ALDOA
45
0
2
0
0


NP_005753.1 (+1)
TRIM28
89
0
4
0
8
XP_016873867.1
RAB1B
26
0
0
0
2


NP_001303963.1 (+3)
DPM1
33
0
4
0
8
NP_536350.2 (+3)
GNAS
111
0
0
0
2


NP_001284644.1 (+3)
SMN1
30
0
10
2
14
NP_690601.1
ARPC2
34
0
0
0
2


NP_573566.2 (+1)
LRPPRC
158
0
2
0
9
NP_000282.1
PGK1
45
0
0
0
2


NP_064508.3 (+1)
TM9SF3
68
0
0
0
11
NP_056009.1 (+1)
MYO1D
116
0
0
0
2


NP_005372.2
NCL
77
0
0
0
11
NP_001263347.1 (+15)
SEC16A
249
0
2
0
0


NP_001257817.1 (+1)
SLC25A10
32
0
5
0
6
NP_001020262.1 (+1)
ABCF1
96
0
0
0
2


NP_002151.2 (+4)
TNC
241
0
0
0
10
NP_002780.1
PSMA4
29
0
2
0
0


NP_000983.1 (+1)
RPL29
18
0
4
0
6
NP_002282.2 (+1)
LAMB1
198
0
0
0
2


XP_024308303.1
HLA-A
48
0
6
0
4
NP_000933.1
PPIB
24
0
0
0
2


NP_002256.2
KPNB1
97
0
3
0
7
NP_006808.1
ERP29
29
0
2
0
0


NP_004199.1 (+1)
AIFM1
67
0
5
0
5
NP_112233.2
SFXN3
36
0
0
0
2


NP_001341088.1
ACSL3
80
0
5
0
5
NP_001177990.1
SLC25A22
34
0
0
0
2


NP_001290043.1 (+2)
TUBA1C
58
8
76
14
63
NP_001191791.1
ELOC
12
0
0
0
2


NP_001240312.1
RPL15
24
0
6
2
15
NP_001316381.1 (+2)
NTPCR
21
0
0
0
2


NP_001258901.1 (+1)
HSP90AB1
82
0
10
2
11
NP_001306165.1
RPL34
13
0
0
0
2


NP_001001.2
RPS6
29
2
11
2
20
NP_001128582.1 (+1)
DNAJA3
50
0
0
0
2


NP_612510.1 (+2)
TECR
36
0
0
0
9
NP_002781.2
PSMA5
26
0
2
0
0


NP_001164014.1 (+1)
PGAM5
32
0
4
0
5
NP_001339250.1 (+6)
LARP4
63
0
0
0
2


NP_001158886.1 (+1)
LDHA
40
0
5
0
4
NP_002794.1
PSMC2
49
0
2
0
0


NP_002892.1
RCN1
39
0
0
0
9
NP_001193496.1 (+3)
IFI16
83
0
0
0
2


NP_001164006.1 (+2)
ATAD3A
66
0
0
0
9
NP_001001520.1 (+4)
HDGFL2
74
0
0
0
2


NP_060908.1
FBXO6
34
0
4
0
5
NP_001070151.1 (+3)
UBTF
85
0
0
0
2


NP_006382.1
IPO7
120
0
0
0
9
NP_006017.1
H1FX
22
0
0
0
2


XP_006716248.1
PDIA4
73
0
0
0
9
NP_002787.2
PSMB4
29
0
2
0
0


NP_001352542.1
RRBP1
152
0
2
2
16
XP_006719595.1 (+5)
PXN
121
0
2
0
0


NP_001952.1
EEF2
95
0
3
0
5
NP_001072989.1 (+5)
KTN1
156
0
0
0
2


NP_005446.2
ZRANB2
36
0
5
0
3
NP_055866.1
ERP44
47
0
0
0
2


NP_002789.1
PSMB6
25
0
5
0
3
NP_006691.1
TRAFD1
65
0
0
0
2


NP_001309856.1 (+1)
STAU1
56
0
2
0
6
NP_000024.2
ABCD1
83
0
0
0
2


NP_938148.1 (+1)
GANAB
107
0
0
0
8
NP_001157852.1 (+4)
STAU2
63
0
0
0
2


NP_001021.1
RPS27
9
0
2
0
6
NP_055634.3
PJA2
78
0
0
0
2


NP_001407.1
EIF4A1
46
0
2
0
6
NP_001243028.1 (+1)
CTHRC1
25
0
0
0
2


XP_005268045.1
SEL1L
87
0
3
0
5
NP_001138586.1 (+4)
RRP12
137
0
0
0
2


NP_001651.1
ARF4
21
0
4
0
4
NP_000173.2
HADHA
83
0
0
0
2


NP_001341935.1 (+1)
NPM1
33
0
0
0
8
NP_001185771.1 (+1)
CCT2
53
0
0
0
2


NP_001143.2
SLC25A5
33
6
19
3
30
NP_004981.2
MARS
101
0
2
0
0


NP_002147.2
HSPD1
61
0
10
2
6
NP_001243.1
CD70
21
0
0
0
2


NP_002435.1 (+2)
MSN
68
0
3
0
4
NP_055467.3
IPO13
108
0
0
0
2


NP_001074419.1
MYO1C
120
0
4
0
3
NP_001159757.1 (+1)
CCT7
55
0
0
0
2


NP_001007074.1
RPL32
16
0
0
0
7
XP_024306583.1 (+1)
ARHGEF2
104
0
0
0
2


NP_001186757.1
SPRR1A
10
0
4
0
3
NP_115497.4
MAGT1
42
0
0
0
2


NP_036350.2 (+2)
ILF3
95
0
2
0
5
NP_005085.2
SLC27A4
72
0
0
0
2


NP_001350420.1
ZC3HAV1
114
0
3
0
4
NP_001278795.1 (+1)
GALNT2
61
0
0
0
2


NP_001020092.1 (+1)
RPL9
22
0
0
0
7
NP_001336864.1 (+1)
TOR1AIP2
51
0
0
0
2


NP_057260.2 (+2)
SDF4
42
0
0
0
7
NP_001317621.1 (+1)
PSMD4
41
0
2
0
0


NP_002635.2
PIGR
83
0
2
0
5
NP_002878.2
RARS
75
0
0
0
2


NP_004437.2
EPRS
171
0
3
0
4
NP_000978.1
RPL26
17
5
7
4
12


NP_064505.1 (+3)
UGGT1
177
0
2
0
5
NP_001344872.1 (+1)
GAPDH
34
11
18
6
16


NP_057390.1
DNAJB11
41
0
3
0
4
NP_000998.1
RPS4X
30
12
14
7
23


NP_002941.1
RPN1
69
0
0
0
7
XP_016882687.1
UBA52
22
5
4
7
20


NP_009109.3
STRAP
38
0
4
0
3
NP_000230.1
LYZ
17
4
3
0
6


NP_003135.2
SSR1
32
0
3
0
4
NP_001025180.1
RPS15A
15
2
3
2
6


XP_016875611.1 (+1)
YBX3
40
0
0
0
7
NP_001419.1
ENO1
47
2
5
2
4


NP_000995.1
RPLP2
12
3
6
0
13
NP_002955.2
S100A8
11
4
15
5
3


NP_002956.1
S100A9
13
0
18
5
9
NP_001019380.2
SPRR2E
8
3
16
5
0


NP_009035.3
RPL10A
25
4
6
0
16
NP_112420.1
HNRNPA1
39
4
7
4
9


NP_001435.1
FABP5
15
2
6
0
8
NP_000549.1
HBA1
15
3
3
0
4


NP_066357.3
RPL36A
12
2
3
0
11
NP_001900.1
CTSD
45
3
3
0
4


NP_001254792.1 (+1)
SLIRP
12
0
0
0
6
NP_001091676.1
HNRNPF
46
0
0
3
7


NP_000984.1 (+2)
RPL31
14
0
0
0
6
NP_000973.2
RPL21
19
5
8
5
11


NP_066953.1
PPIA
18
0
6
0
0
NP_001186731.1
RPL11
20
3
5
3
7


NP_001294857.1 (+3)
SERPINB12
48
0
4
0
2
NP_001611.1
AHNAK
629
0
3
2
2


NP_663723.1
YWHAZ
28
0
2
0
4
NP_000356.1 (+2)
TPI1
27
2
3
0
2


NP_000987.2
RPL35A
13
0
0
0
6
NP_001006.1
RPS11
18
8
13
9
18


NP_378669.1
RPL36
12
0
0
0
6
NP_001393.1
EEF1A1
50
8
13
5
11


NP_001238978.1 (+3)
PCMT1
30
0
4
0
2
NP_009176.2
ATXN2L
113
3
5
2
5


NP_003132.2
TRIM21
54
0
6
0
0
NP_001264069.1 (+1)
ACTR3
42
3
3
2
7


NP_001677.2
ATP5F1B
57
0
2
0
4
NP_001012.1
RPS17
16
3
5
5
10


NP_061185.1
RCC2
56
0
0
0
6
NP_001308051.1
LTF
77
6
8
2
7


NP_009135.4
DDX20
92
0
0
0
6
NP_001308412.1
RPS19
16
5
5
3
10


NP_001291972.1
TMEM59
36
0
6
0
0
NP_001003.1
RPS8
24
7
6
6
17


NP_002783.1
PSMA7
28
0
4
0
2
NP_003008.1
SRSF3
19
4
6
3
7


NP_005871.1
DNAJA2
46
0
3
0
3
NP_000989.1
RPL37A
10
4
6
3
7


XP_011518263.1
MTCH2
30
0
4
0
2
NP_001001414.1
NCCRP1
31
4
4
0
4


NP_003137.1 (+3)
SSRP1
81
0
0
0
6
NP_001278086.1
EIF4G1
171
2
2
2
6


NP_000960.2
RPL5
34
0
0
0
6
NP_002943.2
RPS2
31
10
13
12
24


NP_000203.2
ITGB3
87
0
3
0
3
NP_005498.1
CFL1
19
3
5
3
6


NP_001350066.1 (+2)
MTDH
67
0
0
0
6
NP_000036.2 (+1)
ARG1
35
4
8
4
6


NP_001304663.1 (+2)
PBXIP1
78
0
2
0
4
NP_001107018.1 (+1)
LIMA1
85
3
4
0
2


NP_000981.1
RPL27A
17
3
7
0
10
NP_003320.2
TXN
12
3
3
0
3


NP_000958.1
RPL3
46
3
8
5
25
NP_072045.1
RPS18
18
11
15
9
18


NP_000972.1 (+1)
RPL19
23
2
8
2
11
NP_001016.1
RPS23
16
6
9
9
16


NP_114032.2
HNRNPU
91
2
0
0
12
NP_001011.1
RPS16
16
10
9
8
20


NP_009140.1
RPL35
15
2
7
0
5
NP_005208.1 (+1)
DEFA3
10
3
5
5
8


NP_005312.1
HIST1H1E
22
2
6
0
6
NP_008855.1
SRSF1
28
5
4
3
9


NP_001255.4
CDSN
52
0
5
0
0
NP_203754.2
TNKS1BP1
182
4
2
2
8


NP_000974.1
RPL22
15
0
0
0
5
NP_001531.1
HSPB1
23
4
3
0
4


NP_001001522.1
TAGLN
23
0
2
0
3
NP_001008.1
RPS13
17
2
3
2
4


NP_001294869.1 (+2)
POF1B
69
0
5
0
0
NP_000108.1
EMD
29
0
2
2
2


NP_061865.1
KCTD5
26
0
2
0
3
NP_005608.1
RPS14
16
9
11
10
18


NP_000168.1 (+9)
GSN
86
0
2
0
3
NP_000990.1
RPL38
8
5
9
6
8


NP_000631.1
IL13RA2
44
0
3
0
2
NP_001093639.1 (+3)
IMMT
84
17
23
16
26


NP_001348.2
DHX9
141
0
0
0
5
NP_705935.1
TPM3
29
5
6
2
5


XP_011532005.1 (+6)
MAP4
248
0
0
0
5
NP_001035972.1
LGALS7B
15
4
7
3
4


NP_056536.2 (+2)
GEMIN4
120
0
0
0
5
NP_004930.1
DDX1
82
2
7
5
4


NP_008977.1
EMILIN1
107
0
2
0
3
NP_001304106.1 (+1)
CHCHD3
27
10
16
11
15


NP_001185845.1 (+1)
PPFIBP1
110
0
2
0
3
NP_002007.1
FLG
435
20
29
15
22


NP_057195.2 (+1)
TELO2
92
0
2
0
3
NP_002954.2
S100A7
11
2
3
3
5


NP_036585.1
TBL2
50
0
0
0
5
NP_001153148.1 (+1)
SYNCRIP
63
6
2
4
13


NP_005989.3
CCT3
61
0
0
0
5
XP_011516977.1
LCN1
32
9
11
6
11


NP_006089.1
RACK1
35
0
2
0
3
NP_003741.1
EIF3A
167
3
2
0
3


NP_001339204.1 (+4)
RHOT2
68
0
3
0
2
NP_057342.2
YTHDF2
62
4
5
2
4


NP_001186307.1 (+13)
GBF1
206
0
0
0
5
NP_001170884.1
RPS27A
18
11
8
14
27


NP_001304711.1
RPL8
28
3
10
3
15
NP_000969.1
RPL23
15
5
7
4
6


NP_000962.2
RPL7
29
5
10
3
21
NP_005959.2 (+1)
HNRNPM
78
5
6
5
8


NP_001350626.1
RPL28
19
3
8
3
16
NP_663780.2
SYNM
173
5
5
2
5


NP_001020.2
RPS26
13
4
6
0
11
NP_001193725.1 (+3)
PKM
66
2
3
2
3


NP_008850.1
SERPINB3
45
3
10
2
9
XP_016864497.1
SYNPO
122
4
4
4
7


NP_059118.2
CALML5
16
0
0
0
4
NP_004550.2
YBX1
36
3
2
5
9


NP_001288155.1
TPM2
33
0
0
0
4
NP_00159506.1 (+2)
SBSN
61
25
27
15
25


NP_000509.1
HBB
16
0
4
0
0
NP_000350.1
TGM1
90
9
17
10
8


NP_004986.1
MMP14
66
0
2
0
2
NP_001317259.1 (+2)
LUC7L3
58
2
4
3
3


NP_002779.1 (+1)
PSMA3
28
0
4
0
0
NP_001135757.1
RPS24
32
4
0
2
8


NP_002284.3
LAMC1
178
0
0
0
4
NP_001186273.1 (+1)
RPL17
21
0
3
2
0


NP_001296372.1 (+1)
SPARC
35
0
0
0
4
NP_005850.1
PURA
35
2
0
0
3


NP_002788.1
PSMB5
28
0
4
0
0
P0AA25.2
NA
12
3
7
8
7


NP_001294853.1 (+1)
NAP1L1
45
0
0
0
4
NP_055987.2 (+10)
PRRC2C
309
11
6
6
15


NP_001116307.2 (+5)
TTC13
91
0
0
0
4
NP_001129512.1 (+5)
CPSF7
52
8
12
9
9


NP_000293.2 (+1)
PLOD1
84
0
0
0
4
P01837.1
NA
12
87
89
108
146


NP_006657.1
RUVBL2
51
0
0
0
4
NP_006266.2
SRSF6
40
3
6
5
4


NP_009166.2
XPOT
110
0
2
0
2
NP_001339702.1
JUP
82
39
47
36
43


NP_001276332.1 (+9)
MMS19
108
0
4
0
0
NP_001180345.1 (+1)
DDX3X
73
19
18
15
23


NP_001352606.1 (+3)
P4HA2
61
0
0
0
4
NP_001014.1 (+1)
RPS20
13
4
4
5
7


NP_001027017.1 (+3)
CPT1A
86
0
2
0
2
NP_001091974.1
DDX17
80
23
23
22
30


NP_004362.2
COPA
138
0
2
0
2
NP_001351158.1 (+2)
HNRNPH1
51
11
11
11
15


NP_003391.1 (+3)
XPO1
123
0
2
0
2
NP_016868724.1
PUF60
63
5
6
5
6


NP_001014842.1 (+1)
TM9SF1
55
0
0
0
4
NP_005711.1
ARPC1B
41
2
0
2
5


NP_000963.1
RPL7A
30
4
8
5
22
XP_006319.1
RBM14
69
4
3
0
2


NP_001307067.1
RPL6
33
5
10
4
20
NP_001275582.1 (+2)
CLTC
192
6
6
5
7


NP_001019850.1
C1orf68
26
0
13
4
2
NP_001305115.1 (+1)
HNRNPK
49
8
9
10
12


NP_000959.2
RPL4
48
11
15
6
36
NP_00546.2
KRT6B
60
316
370
295
331


NP_006588.1
HSPA8
71
16
41
15
49
NP_001743.1
CAT
60
2
6
3
0


NP_002263.3
KRT4
56
21
22
0
37
NP_002128.1 (+1)
HNRNPA2B1
36
4
7
9
8


NP_000970.1
RPL18
22
5
11
7
24
NP_002810.1 (+4)
PRBP1
60
7
6
6
9


NP_001290554.1
RPL10
25
3
4
3
15
NP_733821.1
LMNA
74
11
11
18
22


NP_000968.2
RPL13
24
6
15
8
23
NP_004629.3 (+1)
PRRC2A
229
3
2
3
5


NP_689557.1
LSM12
22
2
4
0
4
NP_002964.3
ATXN2
140
3
4
3
3


NP_006251.1 (+4)
DNAJC3
58
0
0
0
3
NP_001273001.1 (+1)
MOV10
107
3
4
3
3


NP_001123910.1 (+10)
SPTAN1
285
0
0
0
3
NP_003925.1 (+2)
FUBP3
62
8
8
7
9


NP_076956.1
GGCT
21
0
3
0
0
NP_001307526.1
DDX5
69
18
16
16
22


NP_056195.3
SAMM50
52
0
3
0
0
NP_065823.1
NUFIP2
76
3
3
4
5


NP_056988.3
EIF5B
139
0
0
0
3
NP_055662.3 (+3)
UBAP2L
115
20
20
15
19


NP_00108494.1 (+1)
PUM1
127
0
0
0
3
NP_005745.1
G3BP1
52
29
27
25
33


NP_001022.1
RPS28
8
0
0
0
3
NP_001310351.1 (+3)
RBM39
56
5
4
3
5


NP_001243064.1 (+2)
CSE1L
104
0
0
0
3
NP_001035202.1 (+4)
MYH11
224
3
2
5
7


NP_000174.1 (+3)
HADHB
51
0
0
0
3
NP_001243731.1 (+1)
RPS3
27
13
10
17
23


NP_001609.2
PARP1
113
0
0
0
3
NP_001018077.1 (+1)
SERBP1
45
4
0
5
10


NP_001185709.1 (+1)
ARPC4
22
0
0
0
3
NP_001186883.1
ACTG1
42
103
82
71
107


NP_113584.3 (+11)
HUWE1
482
0
3
0
0
NP_001988.1
FAU
14
6
5
5
7


NP_009123.1 (+1)
SUPT16H
120
0
0
0
3
NP_002559.2
PABPC1
71
37
31
30
41


NP_003192.1
TFAM
29
0
0
0
3
NP_005889.3 (+1)
CAPRIN1
78
6
7
6
6


NP_003748.1
EIF3I
37
0
0
0
3
NP_001287876.1 (+3)
CPSF6
63
28
30
33
35


NP_803182.1
MAGED2
65
0
0
0
3
NP_003478.1 (+1)
TAF15
62
10
5
4
10


NP_003125.3
SRP14
15
0
0
0
3
NP_006550.1
KHDRBS1
48
10
9
7
9


NP_031385.2
CASC3
76
0
3
0
0
NP_001604.1 (+2)
ACTA2
42
77
64
63
81


NP_000353.1
TIMP3
24
0
0
0
3
NP_003371.2
VIM
54
452
402
337
411


NP_110379.2
TCP1
60
0
0
0
3
NP_001002858.1 (+1)
ANXA2
40
15
17
16
15









Methods
Sequences and Cloning

The plasmids lenti dCAS-VP64_Blast (Addgene 61425), lenti sgRNA(MS2)_zeo backbone (Addgene 61427), and lentiMPHv2 (Addgene 89308) were used for CRISPR-Cas9 activation. The human SAM CRISPR activation library (Addgene 1000000057) was used for CRISPR-Cas9 activation screening. LentiCRISPRv2 (Addgene 52961) was used for CRISPR-Cas9 knockout. The Cas9 in lentiCRISPRv2 was replaced with dCas9-KRAB (Addgene 46911) and the Puromycin resistance gene was replaced with Blasticidin resistance gene (Addgene 75112) for CRISPR-Cas9 knockdown. Single guide RNA (sgRNA) spacer sequences used in this study are listed in Table 8, and were cloned into the respective vectors as previously described (Joung et al., 2017). The NY-ESO-1 T cell receptor (TCR) clone 1G4 (Robbins et al., 2008), AXL chimeric antigen receptor (CAR) (Cho et al., 2018), and HER2 CAR (Cho et al., 2018) were synthesized and cloned into the pHR TCR vector (Addgene 89347). The respective ORFs of candidate genes [CD274 (NM_014143), MCL1 (NM_021960), JUNB (NM_002229), and B3GNT2 (NM_006577)] were synthesized and cloned into the plasmid pLX_TRC209 (Broad Genetic Perturbation Platform) for overexpression. HLA-A2 (Addgene 85162), ESO:HLA-A2, and Gaussia luciferase were cloned into pLX_TRC209 for stable expression. For dox-inducible upregulation, the EF1a promoter in pLX_TRC209 was replaced with the pTight promoter (Addgene 31877) and the plasmid pUltra-puro-RTTA3 (Addgene 58750) was used for rtTA.









TABLE 8







List of sgRNAs used in the study.


sgRNA ID, perturbation, target


sequences, and target genes.










Target
sgRNA

Target sequence


gene
ID
Perturbation
(5′ to 3′)





CTAG1A/B
sg1
knockout
GCGGGGTCCGCATGGCGGCG





(SEQ ID NO: 20)





CTAG1A/B
sg2
knockout
CAGAATACAACTCAAGCAGG





(SEQ ID NO: 21)





CTAG1A/B
sg3
knockout
GAATGGATGCTGCAGATGCG





(SEQ ID NO: 22)





CD274
sg1
activation
CTGACCTTCGGTGAAATCGG





(SEQ ID NO: 23)





CD274
sg2
activation
TCAGTTTAGGTATCTAGTGT





(SEQ ID NO: 24)





CD274
sg3
activation
CTATACACAGCTTTATTCCT





(SEQ ID NO: 25)





MCL1
sg1
activation
CATGGAAAGAGCTCGAGCCC





(SEQ ID NO: 26)





MCL1
sg2
activation
CACTCAGAGCCTCCGAAGAC





(SEQ ID NO: 27)





MCL1
sg3
activation
CGGAGCCGCCGTTACGTAAC





(SEQ ID NO: 28)





JUNB
sg1
activation
CCCCTCCTCGAGCGTGGGGA





(SEQ ID NO: 29)





JUNB
sg2
activation
AGGCGGCTCGCGTCACTGTC





(SEQ ID NO: 30)





JUNB
sg3
activation
GCGCGTGTCCTTGTAAACAG





(SEQ ID NO: 31)





B3GNT2
sg1
activation
GCCGCAGGGAGCGCGGGCCC





(SEQ ID NO: 32)





B3GNT2
sg2
activation
GTGGGTCCTGGTACCGGGTG





(SEQ ID NO: 33)





B3GNT2
sg3
activation
CGGAACCCTCCCAAAACTTG





(SEQ ID NO: 34)





CD274
sg1
knockdown
AGCAGCTGGCGCGTCCCGCG





(SEQ ID NO: 35)





CD274
sg2
knockdown
TCGGGAAGCTGCGCAGAACT





(SEQ ID NO: 36)





MCL1
sg1
knockdown
AGCTTCCGGAGGGTTGCGCA





(SEQ ID NO: 37)





MCL1
sg2
knockdown
CCTTTATCACGGTTTTAGGG





(SEQ ID NO: 38)





JUNB
sg1
knockdown
CTGGGACCTTGAGAGCGGCC





(SEQ ID NO: 39)





JUNB
sg2
knockdown
TATCGCGCCAGAGAGGGCGA





(SEQ ID NO: 40)





B3GNT2
sg1
knockdown
CTGCGCCTCACTCCAGGCTC





(SEQ ID NO: 41)





B3GNT2
sg2
knockdown
GGAGTGAGGCGCAGCGGCAG





(SEQ ID NO: 42)





BCL2A1
sg1
knockdown
TACGCACGAAAGTGACTAGG





(SEQ ID NO: 43)





BCL2A1
sg2
knockdown
ACATGATGATACATGGAGGC





(SEQ ID NO: 44)





BCL2A1
sg3
knockdown
GGCTCACCTTGAAGCTGTTG





(SEQ ID NO: 45)





BCL2A1
sg4
knockdown
TCAAGACTTTGCTCTCCACC





(SEQ ID NO: 46)





CD276
sg1
knockdown
GCGGCTCCGGTGCGTCCCTG





(SEQ ID NO: 47)





CD276
sg2
knockdown
GCGTCCCTGAGTCCCAGAGT





(SEQ ID NO: 48)





CD274
sg1
knockout
ACATGTCAGTTCATGTTCAG





(SEQ ID NO: 49)





CD274
sg2
knockout
GGTTCCCAAGGACCTATATG





(SEQ ID NO: 50)





MCL1
sg1
knockout
AGTCGCTGGAGATTATCTCT





(SEQ ID NO: 51)





MCL1
sg2
knockout
CCAAAAGTCGCCCTCCCGGG





(SEQ ID NO: 52)





JUNB
sg1
knockout
CCGGAGTCTCAAAGCGCCTG





(SEQ ID NO: 53)





JUNB
sg2
knockout
GGGTAAAAGTACTGTCCCGG





(SEQ ID NO: 54)





B3GNT2
sg1
knockout
CAACGCAGGGAACCAAACGG





(SEQ ID NO: 55)





B3GNT2
sg2
knockout
GGTTCCAGTATGCCTCGGGA





(SEQ ID NO: 56)





TNFSF9
sg1
knockout
CCCATCGATCAGCAGAACTG





(SEQ ID NO: 57)





TNFSF9
sg2
knockout
GCCAGCCCGAGACTCCGCGA





(SEQ ID NO: 58)





TNFSF9
sg3
knockout
GGGGGGCCTGAGCTACAAAG





(SEQ ID NO: 59)





TNFSF9
sg4
knockout
TCAACTAGAGCTGCGGCGCG





(SEQ ID NO: 60)





Non-
sg1

CTGAAAAAGGAAGGAGTTGA


targeting


(SEQ ID NO: 61)





Non-
sg2

AAGATGAAAGGAAAGGCGTT


targeting


(SEQ ID NO: 62)









Cell Culture

HEK293FT cells (Thermo Fisher Scientific R70007) were maintained in high-glucose DMEM with GlutaMax and pyruvate (Thermo Fisher Scientific 10569010) supplemented with 10% fetal bovine serum (VWR 97068-085) and 1% penicillin/streptomycin (Thermo Fisher Scientific 15140122). Cells were passaged every other day at a ratio of 1:4 or 1:5 using TrypLE Express (Thermo Fisher Scientific 12604021).


All cancer cell lines [A375 melanoma (NY-ESO-1+, HLA-A2+; Millipore Sigma 88113005-1VL), H1793 non-small cell lung adenocarcinoma (NY-ESO-1+, HLA-A2-; ATCC CRL-5896), H1299 non-small cell lung carcinoma (NY-ESO-1+, HLA-A2; ATCC CRL-5803), LN-18 glioblastoma (NY-ESO-1+, HLA-A2+; ATCC CRL-2610), SK-N-AS neuroblastoma (NY-ESO-1+, HLA-A2; ATCC CRL-2137), A2058 melanoma (NY-ESO-1+, HLA-A2; ATCC CRL-11147), OAW28 ovarian cystadenocarcinoma (NY-ESO-1+, HLA-A2; Millipore Sigma 85101601-1VL), and SW1417 colorectal adenocarcinoma (NY-ESO-1, HLA-A2; ATCC CCL-238)] were maintained in RPMI 1640 with Glutamax (Thermo Fisher Scientific 61870127) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. Cells were passaged every other day at a ratio of 1:3 to 1:6 using TrypLE Express.


Leukopaks from anonymous healthy normal donors (purchased from MGH under an IRB-exempt protocol) are processed using the Ficoll-based RosetteSep Human T Cell Enrichment Cocktail (StemCell Technologies 15061). Isolated CD4+ and CD8+ T cells were frozen in FBS with 10% DMSO with 20-50×106 cells per vial. Once thawed, T cells were maintained in RPMI 1640 with Glutamax (Thermo Fisher Scientific 61870127) supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, and 20 IU/mL IL-2 (Stemcell Technologies 78036.3). T cells were activated and expanded for 1 week using CD3/CD28 Dynabeads (Thermo Fisher Scientific 11132D). Beads were removed with 2 rounds of magnetic separation and T cells were frozen down (for in vitro cytotoxicity assays) or cultured for 1 week without beads (for adoptive cell transfer). CD4+ or CD8+ T cells were further purified using EasySep selection kits (StemCell Technologies 17852 and 17853 respectively) to assess the resistance of candidate genes against cytotoxicity produced from each T cell type. Each experiment with T cells was performed using T cells derived from 2-4 unique donors.


Lentivirus Production and Transduction

One day prior to transfection, HEK293FT cells were seeded at ˜40% confluency in T25, T75, or T225 flasks (Thermo Fisher Scientific 156367, 156499, or 159934). Cells were transfected the next day at ˜90-99% confluency. For each T25 flask, 3.4 μg of plasmid containing the vector of interest, 2.6 μg of psPAX2 (Addgene 12260), and 1.7 μg of pMD2.G (Addgene 12259) were transfected using 17.5 μL of Lipofectamine 3000 (Thermo Fisher Scientific L3000150), 15 μL of P3000 Enhancer (Thermo Fisher Scientific L3000150), and 1.25 mL of Opti-MEM (Thermo Fisher Scientific 31985070). Transfection parameters were scaled up linearly with flask area for T75 and T225 flasks. Media was changed 5 h after transfection. Virus supernatant was harvested 48 h post-transfection, filtered with a 0.45 μm PVDF filter (MilliporeSigma SLHV013SL), and concentrated as described previously when necessary (Joung et al., 2017). Virus supernatant was then aliquoted and stored at −80° C.


Cancer cell lines were transduced by spinfection or mixing as described previously (Joung et al., 2017). For mixing, 3×106 cells were seeded in a T75 flask with 8 μg/mL Polybrene (Millipore Sigma TR-1003-G) and the appropriate volume in lentivirus. After 1 day, media was refreshed with the appropriate antibiotic and cells were maintained under antibiotic selection for 5 days. Concentrations for selection agents were determined using a kill curve: 300 μg/mL Hygromycin (Thermo Fisher Scientific 10687010), 10 μg/mL Blasticidin (Thermo Fisher Scientific A1113903), 300 μg/mL Zeocin (Thermo Fisher Scientific R25001), and 1 μg/mL Puromycin (Thermo Fisher Scientific A1113803). T cells were transduced after 1 day of activation by mixing 1×106 cells in 1 mL media with 8 μg/mL Polybrene and lentivirus in each well of a 24-well plate (Millipore Sigma CLS3527-100EA). Transduction efficiency of T cells was measured by sorting 1×106 cells for GFP expression on the TCR vector after 7 days of activation. T cells used for experiments had transduction efficiencies of 80-90%.


T Cell Cytotoxicity Assays

Expanded T cells were thawed and maintained in culture media for 8-10 h before incubation with cancer cells. Cancer cells were seeded in 96-well plates and allowed to attach for 3-4 h before T cells were added at the appropriate effector to target cell (E:T) ratio. Paired controls with no T cells added were included for each condition. After 18 h, cancer cells were washed twice with PBS to remove T cells, passaged, and cultured for 2 days. Primary patient-derived cell models were not passaged after T cell co-culture. Viability was measured using CellTiter-Glo (Promega G7571). For each E:T ratio, percent survival was calculated as viability of the cells incubated with T cells divided by viability of the paired control that was not incubated with T cells. For example, CD274-overexpressing melanoma cells that were co-cultured with ESO T cells were compared to CD274-overexpressing melanoma cells that were cultured without T cells in parallel. As an alternative cytotoxicity assay, A375 cells stably expressing Gaussia luciferase were co-cultured with ESO T cells. At each time point, 10% of cell culture media was used for the Gaussia luciferase assay (Targeting Systems GAR-2B) to directly measure cytotoxicity.


CRISPRa Screen for Resistance to T Cell Cytotoxicity

The CRISPRa screen was performed as described previously (Joung et al., 2017) using A375 melanoma cells. For the acute exposure screen, A375 cells transduced with the genome-scale human CRISPR activation library components were co-cultured with T cells expressing the NY-ESO-1 TCR, unmodified T cells, or no T cells at E:T ratio of 3. Each screen contained two replicates with T cells from different donors. After 18 h of co-culture, cells were washed twice with PBS to remove T cells, passaged, and cultured for 2 days before genomic DNA was harvested. For the chronic exposure screen, A375 cells were co-cultured with T cells expressing the NY-ESO-1 TCR or no T cells at E:T ratio of 2. Screening replicates used T cells from the same donor and each round of screening selection used T cells from different donors. After 3 days of co-culture, cells were washed twice with PBS to remove T cells, passaged, and cultured for 2 days before seeding for the next round of screening selection. After 3 rounds of screening selection, genomic DNA was harvested. MAGeCK RRA analysis (Li et al., 2014) was used to analyze the screens and identify candidate genes. A set of 576 candidate genes that ranked in the top 1% and overlapped at least two screening replicates (combining the acute and chronic exposure screens) were used for pathway and cytolytic activity analyses. The FDR of screening results was estimated using a set of 311 negative control housekeeping genes consisting of ribosomal proteins, RNA polymerases, translation factors, mitochondrial ribosomal proteins, GAPDH, and ACTB (Table 2). For each screening replicate, the FDR of each candidate gene was measured as the fraction of negative control genes with higher average sgRNA enrichment than the candidate gene. To validate the top four candidate genes from the screens, sgRNAs targeting candidate genes from the genome-scale library were individually cloned and transduced into A375 cells. Validation was performed using T cell cytotoxic assays at an E:T ratio of 3 as described above.


Pathway Enrichment Analysis

Pathway enrichment analysis of the top 576 candidate genes was performed using g:Profiler (Raudvere et al., 2019). GO:BP pathways with between 5 and 200 genes that were significantly enriched (FDR<0.05) were included. To identify non-overlapping pathways, the enriched pathways were sorted by FDR and any pathway that had more than 30% genes overlapping a different pathway with lower FDR was excluded.


The Cancer Genome Atlas (TCGA) Analysis

TCGA copy number variation and RNA-seq data was downloaded from the Firehose Broad GDAC (gdac.broadinstitute.org/) using the TCGA2STAT package for R (Wan et al., 2016). The RNA-seq data was normalized using RSEM and log 2 transformed. Local tumor immune cytolytic activity was determined as the geometric mean of granzyme A (GZMA) and perforin 1 (PRF1) RNA-seq expression was used to assess cytolytic activity as described previously (Patel et al., 2017; Rooney et al., 2015). For each gene in the TCGA RNA-seq dataset, the Pearson's correlation between cytolytic activity and expression was calculated. Significance was evaluated using Fisher transformation of Pearson's correlation followed by Benjamini-Hochberg procedure to determine the FDR. For visualization, heatmaps with hierarchical clustering using Ward's linkage were generated using Python's Seaborn clustermap (github.com/mwaskom/seaborn/).


For prevalence of increased expression and copy number of the top four candidate genes, TCGA RNA-seq data (https://www.cancer.gov/tcga) was analyzed using GEPIA (Tang et al., 2017). TCGA tumor samples were matched with TCGA normal and GTEx data and filtered for |log 2(fold change)|≥1. Genes were considered significantly differentially expressed if the p-value was greater than 0.05 FDR correction. Copy number variation was reported using the NCI Genomic Data Commons (Grossman et al., 2016).


Indel Analysis

Cells plated in 96-well plates were grown to 60-80% confluency and assessed for indel rates as previously described (Joung et al., 2017). Genomic DNA was harvested from cells using QuickExtract DNA Extraction kit (Lucigen QE09050). The genomic region flanking the site of interest was amplified using NEBNext High Fidelity 2×PCR Master Mix (New England BioLabs M0541L), first with region-specific primers (Table 9) for 15 cycles and then with barcoded primers for 15 cycles as previously described. PCR products were sequenced on the Illumina MiSeq platform (>10,000 reads per condition), and indel analysis was performed as previously described (Joung et al., 2017).









TABLE 9







Primers for indel amplification and quantification.










Target gene
sgRNA ID
Primer
Sequence (5′ to 3′)





CTAG1A/B
sg1
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTGGGCAGCAAG





GGCCTC (SEQ ID NO: 63)





CTAG1A/B
sg1
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCTCTC





CGGCCCCCT (SEQ ID NO: 64)





CTAG1A/B
sg2
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTTCAGGGCTGA





ATGGATGCTG (SEQ ID NO: 65)





CTAG1A/B
sg2
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGCCCT





CCCCATCTCCC (SEQ ID NO: 66)





CTAG1A/B
sg3
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTGGGCAGCAAG





GGCCTC (SEQ ID NO: 67)





CTAG1A/B
sg3
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCCCC





ACCTCGCCA (SEQ ID NO: 68)





CD274
sg1
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTTGTTTATGTC





CTAGCCCCATAC (SEQ ID NO: 69)





CD274
sg1
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTTGAT





GGTCACTGCTTGTCC (SEQ ID NO: 70)





CD274
sg2
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTAAACGCTGTG





CCAATTTTGTAAATG (SEQ ID NO: 71)





CD274
sg2
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGACAAT





TAGTGCAGCCAGGTCTA (SEQ ID NO: 72)





MCL1
sg1
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTGGAGTTGGTC





GGGGAATCTG (SEQ ID NO: 73)





MCL1
sg1
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAACCC





GTCGTAAGGTCTCC (SEQ ID NO: 74)





MCL1
sg2
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTAAAAGAAACG





CGGTAATCGGAC (SEQ ID NO: 75)





MCL1
sg2
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCGCTT





CCGCCAATCAC (SEQ ID NO: 76)





JUNB
sg1
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTGGCCTCTCTC





TACACGACTAC (SEQ ID NO: 77)





JUNB
sg1
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGCTC





CGAAGAGGCGAG (SEQ ID NO: 78)





JUNB
sg2
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTATTGTCCCCA





ACAGCAACGG (SEQ ID NO: 79)





JUNB
sg2
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTGTGC





AGATCGTCCAGGGC (SEQ ID NO: 80)





B3GNT2
sg1
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTTGCTGGCGAT





TAAGTCCCTC (SEQ ID NO: 81)





B3GNT2
sg1
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTATCTGA





AAGGTCGGGGTGGT (SEQ ID NO: 82)





B3GNT2
sg2
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTTCTCCAAAAG





CAGTAGCCAAG (SEQ ID NO: 83)





B3GNT2
sg2
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTTATATT





GGAGAGCCTGCCCG (SEQ ID NO: 84)





TNFSF9
sg1
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTTCTTTTCTCC





CAGGGCTGC (SEQ ID NO: 85)





TNFSF9
sg1
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTTTGT





AGCTCAGGCCCCC (SEQ ID NO: 86)





TNFSF9
sg2
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTTTCCTCGCCT





GCCCCT (SEQ ID NO: 87)





TNFSF9
sg2
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCGCA





GGTCCAAGAGG (SEQ ID NO: 88)





TNFSF9
sg3
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTACAAAGAGGA





CACGAAGGAGC (SEQ ID NO: 89)





TNFSF9
sg3
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCCCAG





CAGCAGAGCG (SEQ ID NO: 90)





TNFSF9
sg4
Fwd
CTTTCCCTACACGACGCTCTTCCGATCTTTTCCTCCCA





CAGTTCTGCTGAT (SEQ ID NO: 91)





TNFSF9
sg4
Rev
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGCAGC





TCTAGTTGAAAGAAGACA (SEQ ID NO: 92)










qPCR Quantification of Transcript Expression


Cells were seeded in 96-well plates and grown to 60-90% confluency before RNA was reverse transcribed for qPCR as described previously (Joung et al., 2017). TaqMan qPCR was performed with custom [B3GNT2-Fwd (GGGCAGGCTCTCCAATATAAG (SEQ ID NO: 93)), B3GNT2-probe (/56-FAM/TGAACTACT/Zen/GCGAACCTGACCTGA/3IABKFQ/(SEQ ID NO: 94)), B3GNT2-Rev (GGCATCTCAAATACAGCAGAAAG (SEQ ID NO: 95))] or readymade probes from Thermo Fisher Scientific [CD274 (Hs00204257_m1), MCL1 (Hs01050896_ml), JUNB (Hs00357891_s1), BID (Hs00609632_m1), PMAIP1 (Hs00560402_m1), BBC3 (Hs00248075_m1), BAD (Hs00188930_m1), BAX (Hs00180269_m1), BAKI (Hs00832876_g1), BCL2A1 (Hs06637394_s1), CD276 (Hs00987207_m1)].


Adoptive Cell Transfer and In Vivo Validation

The designs of animal studies and procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of the Broad Institute. Ethical compliance with IACUC protocols and institute standards was maintained. Specific pathogen-free facilities at the Broad Institute was used for the storage and care of all mice. Female NSG mice (strain 005557) aged 4-6 weeks were purchased from The Jackson Laboratory and used for tumor induction experiments. A375 cells were transduced with dox-inducible candidate genes. NSG mice were subcutaneously injected with 1×106 A375 cells. After 2 days of tumor xenograft implantation, mice were switched to 1,000 mg/kg doxycycline diet (Envigo TD.05298). At 7 days after tumor implantation, for the adoptive cell transfer conditions, 2×107 ESO T cells were intravenously injected in a blinded manner. Each tumor was measured every 2 days beginning on day 7 after ACT until the survival endpoint was reached. Measurements were assessed manually using the longest dimension (length) and the longest perpendicular dimension (width). Tumor volume was estimated with the formula: (L×W2)/2. Mice with tumor volumes greater than 2,000 mm3 were euthanized. CO2 inhalation was used to euthanize mice. No statistical methods were used to predetermine sample size. Sample size was determined based on prior knowledge of the variability of experiments with ACT. Animals were randomized before treatment and no blinding was performed for tumor measurements.


Bulk RNA Sequencing and Data Analysis

RNA from cells plated in 24-well plates and grown to 60-90% confluency was harvested using the RNeasy Plus Mini Kit (Qiagen 74134). RNA-seq libraries were prepared using NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs E7530S) and deep sequenced on the Illumina NextSeq platform (>9 million reads per biological replicate). Bowtie (Langmead et al., 2009) index was created based on the human hg38 UCSC genome and RefSeq transcriptome. Next, RSEM v1.3.1 (Li and Dewey, 2011) was run with command line options “--estimate-rspd--bowtie-chunkmbs 512--paired-end” to align paired-end reads directly to this index using Bowtie and estimate expression levels in transcripts per million (TPM) based on the alignments.


To identify genes that were differentially expressed as a result of ORF overexpression, RSEM's TPM estimates for each transcript were transformed to log-space by taking log 2(TPM+1). Transcripts were considered detected if their expression level was equal to or above 10. All genes detected in at least three libraries were used to find differentially expressed genes. The Student's t-test was performed on the TF ORF overexpression condition against GFP control condition. Only genes that were significant (p-value pass 0.01 FDR correction) were reported.


Chromatin Immunoprecipitation with Sequencing (ChIP-Seq)


Cells were plated in 10-cm cell culture dishes and grown to 60-80% confluency. For each condition, two biological replicates were harvested for ChIP-seq. Formaldehyde (Millipore Sigma 252549) was added directly to the growth media for a final concentration of 1% and cells were incubated at 37° C. for 10 mins to initiate chromatin fixation. Fixation was quenched by adding 2.5 M glycine (Millipore Sigma G7126) in PBS for a final concentration of 125 mM glycine and incubated at room temperature for 5 mins. Cells were then washed with ice-cold PBS, scraped, and pelleted at 1,000×g for 5 mins.


Cell pellets were prepared for ChIP-seq using the Epigenomics Alternative Mag Bead ChIP Protocol v2.0 (Consortium, 2004). Briefly, cell pellets were resuspended in 100 μL of lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCL pH 8.1) containing protease inhibitor cocktail (Millipore Sigma 05892791001) and incubated for 10 mins at 4° C. Then 400 μL of dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.1, and 167 mM NaCl) containing protease inhibitor cocktail was added. Samples were pulse sonicated with 2 rounds of 10 mins (30s on-off cycles, high frequency) in a rotating water bath sonicator (Diagenode Bioruptor) with 5 mins on ice between each round. 10 μL of sonicated sample was set aside as input control. Then 500 μL of dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.1, and 167 mM NaCl) containing protease inhibitor cocktail and 1 μL of anti-FLAG (Millipore Sigma F3165-1MG) was added to the sonicated sample. ChIP samples were rotated end over end overnight at 4° C.


For each ChIP, 50 μL of Protein A/G Magnetic Beads (Thermo Fisher Scientific 88802) was washed with 1 mL of blocking buffer (0.5% TWEEN and 0.5% BSA in PBS) containing protease inhibitor cocktail twice before resuspending in 100 μL of blocking buffer. ChIP samples were transferred to the beads and rotated end over end for 1 h at 4° C. ChIP supernatant was then removed and the beads were washed twice with 200 μL of RIPA low salt buffer (0.1% SDS, 1% Triton x-100, 1 mM EDTA, 20 mM Tris-HCl pH 8.1, 140 mM NaCl, 0.1% DOC), twice with 200 μL of RIPA high salt buffer (0.1% SDS, 1% Triton x-100, 1 mM EDTA, 20 mM Tris-HCl pH 8.1, 500 mM NaCl, 0.1% DOC), twice with 200 μL of LiCI wash buffer (250 mM LiCl, 1% NP40, 1% DOC, 1 mM EDTA, 10 mM Tris-HCl pH 8.1), and twice with 200 μL of TE (10 mM Tris-HCl pH8.0, 1 mM EDTA pH 8.0). ChIP samples were eluted with 50 μL of elution buffer (10 mM Tris-HCl pH 8.0, 5 mM EDTA, 300 mM NaCl, 0.1% SDS). 40 μL of water was added to the input control samples. 8 μL of reverse cross-linking buffer (250 mM Tris-HCl pH 6.5, 62.5 mM EDTA pH 8.0, 1.25 M NaCl, 5 mg/ml Proteinase K, 62.5 μg/ml RNAse A) was added to the ChIP and input control samples and then incubated at 65ºC for 5 h. After reverse crosslinking, samples were purified using 116 μL of SPRIselect Reagent (Beckman Coulter B23318).


ChIP samples were prepared for NGS with NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs E7645S) and deep-sequenced on the Illumina NextSeq platform (>60 million reads per condition). Bowtie (Langmead et al., 2009) was used to align paired-end reads to the human hg38 UCSC genome with command line options q-X 300—sam —chunkmbs 512″. Next, biological replicates were merged and Model-based Analysis of ChIP-seq (MACS) (Feng et al., 2012) was run with command line options “-g hs-B-S—mfold 6,30” to identify TF peaks. HOMER (Heinz et al., 2010) was used to discover motifs in the TF peak regions identified by MACS. TFs were considered potential regulators of a candidate gene if the TF peak region identified by MACS overlapped with the 20 kb region centered around the transcriptional start site of the candidate gene based on RefSeq annotations.


Co-Immunoprecipitation (Co-IP) and Mass Spectrometry

Cells were plated in 10-cm cell culture dishes and grown to 60-80% confluency. For each condition, two biological replicates were harvested for co-IP. Cells were washed with PBS and 4 mL of lysis buffer (20 mM HEPES, 1% Triton X-100, 150 mM NaCl, 1 mM EDTA, and 10% glycerol) containing protease inhibitor cocktail was added. Cells were scraped and lysate was incubated at 4° C. under rotary agitation for 1 h. Lysate was centrifuged at 14,000×g for 10 min at 4° C. Supernatant was transferred to a new tube and an aliquot was taken as the input. The remaining lysate was split into two tubes for the FLAG and IgG control conditions. For mass spectrometry, 10 μg/mL Mouse Anti-FLAG (Millipore Sigma F3165-1MG) and IgG control (Millipore Sigma 12-371) were added to the respective conditions. For Western blots, 10 μg/mL Chicken Anti-FLAG (Aves labs ET-DY100) and IgY control (R&D Systems AB-101-C) antibodies were biotinylated (Thermo Fisher Scientific 90407) and added to the respective conditions. Lysates with antibodies were incubated at 4° C. under rotary agitation overnight. For each mL of lysate, 50 μL of Pierce Protein A/G Magnetic Beads (Mass spectrometry; Thermo Fisher Scientific 88803) or Pierce Streptavidin Magnetic Beads (Western blot; Thermo Fisher Scientific 88817) was washed twice with lysis buffer. Lysates with antibodies were added to the beads and incubated at 4° C. under rotary agitation for 4 h. Beads were washed with lysis buffer 3 times and resuspended in lysis buffer for storage.


Magnetic beads were resuspended in 100 mM Tris pH 7.8, reduced, alkylated and digested with trypsin at 37° ° C. overnight. This solution was subjected to solid phase extraction to concentrate the peptides and remove unwanted reagents followed by injection onto a Shimadzu HPLC with fraction collector. Eight fractions were collected and after concentration were injected on a Waters NanoAcquity HPLC equipped with a self-packed Aeris 3 μm C18 analytical column 0.075 mm by 20 cm, (Phenomenex). Peptides were eluted using standard reverse-phase gradients. The effluent from the column was analyzed using a Thermo Orbitrap Elite mass spectrometer (nanospray configuration) operated in a data dependent manner for 54 minutes. The resulting fragmentation spectra were correlated against the known database using Proteome Discover 1.4 (Thermo Fisher Scientific). Scaffold Q+S (Proteome Software) was used to provide consensus reports for the identified proteins.


Cytokine Assays

To challenge cells with cytokines, cells were incubated with Interferon-γ (IFNγ; Cell Signaling Technology 80385S), FasL (AdipoGen AG-40B-0130-3010), TRAIL (R&D Systems 375-TL-010), or TNF-α (AdipoGen AG-40B-0019-3010) for 24 h. TRAIL was crosslinked by incubating with anti-His Tag antibody (Thermo Fisher Scientific MA121315, 1:500) for 15 min at room temperature. Cell viability was measured using CellTiter-Glo (Promega G7571) and protein was harvested for Western blots. For evaluating Caspase 8 activity, cells were incubated with FasL or crosslinked TRAIL for 3 h and harvested for Western blot or Caspase 8 colorimetric assay (R&D Systems K113-100). IFNγ in the cell culture media of the T cell cytotoxic assay was quantified using an ELISA kit (Thermo Fisher Scientific KHC4021).


Small Molecule Inhibition

For glycosylation inhibition, cells were treated with 20 μg/mL Kifunensine (Cayman Chemical 10009437) or 2 mM Benzyl 2-acetamido-2-deoxy-alpha-D-galactopyranoside (BAG; Millipore Sigma B4894-100MG) for 48 h to inhibit N- and O-glycosylation respectively unless otherwise indicated. For MCL1 inhibition, cells were treated with 1-10 μM of S63845 (Selleck Chemicals S8383) or AZD5991 (Selleck Chemicals S8643) for 4 h before incubation with T cells. Both glycosylation and MCL1 inhibitors were maintained at indicated concentrations during co-culture with T cells.


Western Blot

Protein lysates were harvested with RIPA lysis buffer (Cell Signaling Technologies 9806S) containing protease inhibitor cocktail (MilliporeSigma 05892791001). Samples were standardized for protein concentration using the Pierce BCA protein assay (VWR 23227), and incubated at 70ºC for 10 mins under reducing conditions. To determine presence of glycosylation, samples were treated with Protein Deglycosylation Mix II (O- and N-deglycosylation; New England Biolabs P6044S) or PNGase F (N-deglycosylation; New England Biolabs P0704L). After denaturation, samples were separated by Bolt 4-12% Bis-Tris Plus Gels (Thermo Fisher Scientific NW04125BOX) and transferred onto a PVDF membrane using iBlot Transfer Stacks (Thermo Fisher Scientific IB401001).


Blots were blocked with 5% BLOT-QuickBlocker (G Biosciences 786-011) in TBST for 1 h at room temperature. Blots were then probed with different primary antibodies [phospho-NF-κB p65 Ser536 (Cell Signaling Technology 3033S, 1:1,000), NF-κB p65 (Santa Cruz Biotechnology sc-8008, 1:200), phospho-STAT1 Tyr701 (Cell Signaling Technology 9167S, 1:1,000), STAT1 (Cell Signaling Technology 9172S, 1:1,000), CD276 (R&D Systems AF1027, 1:200), CD70 (Santa Cruz Biotechnology sc-365539, 1:200), CD58 (Thermo Fisher Scientific MA5800, 1:200), NECTIN2 (R&D Systems AF2229, 1:2,000), HLAA (Abcam ab52922, 1:5,000), TNFRSF1A (Santa Cruz Biotechnology sc-8436, 1:200), IFNGR2 (R&D Systems AF773, 1:200), FAS (Santa Cruz Biotechnology sc-8009, 1:200), IFNARI (Santa Cruz Biotechnology sc-7391, 1:100), TNFRSF10B (Novus Biologicals NB100-56618, 1:200), MICB (R&D Systems MAB1599-100, 1:500), TNFRSF10A (R&D Systems AF347, 1:200), PVR (R&D Systems MAB25301, 1:500), MICA (R&D Systems MAB1300-100, 1:500), HMGB1 (Abcam ab18256, 1:1,000), 4-1BBL (TNFSF9; R&D Systems AF2295, 1:200), NT5E (Abcam ab175396, 1:1,000), ULBP2 (R&D Systems AF1298, 1:2,000), IFNGR1 (R&D Systems MAB6731, 1:500), ULBP3 (R&D Systems AF1517, 1:2,000), CD39 (Abcam ab108248, 1:1,000), FLAG (Millipore Sigma F7425, 1:1,000), or GAPDH (Cell Signaling Technology 2118L, 1:1,000)] in 2.5% BLOT-QuickBlocker (G Biosciences 786-011) in TBST overnight at 4° C. Blots were washed with TBST before incubation with secondary antibodies [Anti-rabbit IgG, HRP-linked (Cell Signaling Technology 7074S, 1:5,000), Anti-mouse IgG, HRP-linked (Cell Signaling Technology 7076S, 1:5,000), anti-goat IgG-HRP (Santa Cruz Biotechnology sc-2354, 1:5,000)] in 2.5% BLOT-QuickBlocker (G Biosciences 786-011) in TBST for 1 h at room temperature. Blots were washed with TBST and imaged using chemiluminescent substrate [Pierce ECL (Thermo Fisher Scientific 32209), SuperSignal West Pico PLUS (Thermo Fisher Scientific 34577), or SuperSignal West Femto (Thermo Fisher Scientific 34096)] on the ChemiDox XRS+ (Bio-Rad).


Caspase 8 blots were transferred onto a PVDF membrane with traditional wet transfer at 50V for 1 h. Blots were blocked with 5% bovine serum albumin (BSA; Millipore Sigma A9418) in TBST for 2 h at room temperature before probing with Caspase 8 primary antibody (Cell Signaling Technology 9746S, 1:1,000) in 5% BSA in TBST overnight at 4° C. Blots were washed with TBST before incubation with anti-mouse IgG, HRP-linked secondary antibody in 5% BSA in TBST for 1 h at room temperature. Blots were washed with TBST and imaged as described above.


Flow Cytometry Assays

Per condition, 5×105 cells were pelleted at 200×g for 5 min and washed once with PBS. Cell were fixed in 4% Formaldehyde in PBS at 4° C. for 10 mins. Cells were washed twice with PBS and resuspended in PBS with 25 μg/mL recombinant Fc chimera proteins [PVRIG (R&D Systems 9365-PV-050), CD226 (R&D Systems 666-DN-050), NKG2D (R&D 1299-NK-050), TREML2 (R&D Systems 3259-TL-050), CD2 (R&D Systems 1856-CD-050), CD96 (R&D Systems 9360-CD-050), TIGIT (BPS Bioscience 71186), CD27 (BPS Bioscience 71176), or 4-1BB (TNFRSF9; Sino Bio 10041-H03H)], 0.1 μg/mL HLA-A2:NY-ESO-1 Fab (Stewart-Jones et al., 2009), 5 μg/mL Fas antibody (Millipore Sigma 05-201), 25 μg/mL TNFRSF10B antibody (Novus Biologicals NB100-56618, 1:200), or Dylight 649 labeled Tomato Lectin (Vector Laboratories DL-1178, 1:100). Cells were incubated at 4° C. for 1 h. Cells were washed twice with PBS and resuspended in PBS with the appropriate secondary antibody [IgG Fc PE (Thermo Fisher Scientific 12-4998-82, 1:50), His Tag Alexa Fluor 647 (Thermo Fisher Scientific MA121315A647), mouse Alexa Fluor 568 (Thermo Fisher Scientific A-11031), or rabbit Alexa Fluor 647 (Thermo Fisher Scientific A-21244)]. Cells stained with Tomato Lectin were not incubated with additional secondary antibodies. Cells were incubated at 4 ºC for 30 mins. Cells were washed twice with PBS. For each sample, 10,000 cells were analyzed on a CytoFLEX Flow Cytometer (Beckman Coulter) and quantified with FlowJo (FlowJo). For each experiment, median fluorescence values for 3 biological replicates were compared to determine statistical significance.


Primary Patient-Derived Cell Models

CCLF_MELM_0011_T melanoma tumor tissue and CCLF_PANC_0014_T pancreatic tumor tissue were obtained from Dana-Farber Cancer Institute hospital with informed consent and the cancer cell model line generation was approved by the ethical committee. Both tumor tissues were freshly received into the lab, rinsed with 95-100% ethanol very quickly and 1×PBS twice. Tissue was transferred to a sterile petri dish and the tissue was minced into small 1-2 mm fragments. Dissected tissues were dissociated in a collagenase/hyaluronidase (StemCell technologies 07912) medium for 1 hour. The red blood cells were further depleted by adding Ammonium Chloride Solution (StemCell technologies 07800). CCLF_MELM_0011_T dissociated cells were plated with smooth muscle growing medium-2 (Lonza CC-3181) into a six well plate, media was changed every 2-3 days and cells were split when a confluency of 80% was reached. A 1:3 ratio was used when splitting CCLF_MELM_0011_T. CCLF_PANC_0014_T dissociated cells were plated into a twenty-four well plate with a 50:50 mix of Clevers pancreas organoid media (Sato et al., 2011): Propagenix Conditioned media (Propagenix 256-100) and split when a confluency of 80% was reached. Media was changed every 3-4 days. A 1:2 ratio was used when splitting CCLF_PANC_0014_T which is a mixed population of suspension and adherent cells. Both lines were passaged 5 times before a pellet was taken for sequencing verification. The confirmed melanoma cell model and confirmed pancreatic adenocarcinoma cell model were propagated for another 10-15 passages and their cryovials preserved. CCLF_MELM_0011_T passage 11 cells and CCLF_PANC_0014_T passage 20 cells were used for this study.


Single-Sample Gene Set Enrichment Analysis (ssGSEA)


A total of 310 unique patient tumor transcriptomes that were collected prior to immunotherapy were used for ssGSEA (Auslander et al., 2018; Braun et al., 2020; Gide et al., 2019; Hugo et al., 2016; Pender et al., 2021; Riaz et al., 2017). As processed data was not available for the Gide et al. 2019 dataset (Gide et al., 2019), fastq files were downloaded and expression levels were estimated using RSEM v1.3.1 (Li and Dewey, 2011) as described below. Expression values for replicates from the same patient were averaged. ssGSEA (Barbie et al., 2009) as implemented by GSEAPY v0.10.4 was performed on each sample using default parameters to determine the normalized enrichment score of the 576 candidate genes. The z-score of the normalized enrichment scores was calculated on each dataset and aggregated. Patients were classified as responders (i.e., RECIST categories of complete response or partial response, clinical benefit, and no tumor progression) or non-responders (i.e., RECIST categories of stable disease or progressive disease, no clinical benefit, and tumor progression) based on the reported response to subsequent anti-PD-1 or anti-CTLA-4 checkpoint blockade therapy.


Statistics

Statistical tests were applied with the sample size listed in the text and figure legends. Sample size represents the number of independent biological replicates. Data supporting main conclusions represents results from at least two independent experiments. All graphs with error bars report mean±s.e.m. values. Two-tailed 1-tests were performed unless otherwise indicated. Mantel-Cox log-rank tests were performed for host survival analyses. PRISM was used for basic statistical analysis and plotting (www.graphpad.com), and the R language and programming environment (www.r-project.org) was used for the remainder of the statistical analysis. Multiple hypothesis testing correction was applied where indicated.


REFERENCES



  • Alderson, M. R., Smith, C. A., Tough, T. W., Davis-Smith, T., Armitage, R. J., Falk, B., Roux, E., Baker, E., Sutherland, G. R., and Din, W. S. (1994). Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol 24, 2219-2227.

  • Auslander, N., Zhang, G., Lee, J. S., Frederick, D. T., Miao, B., Moll, T., Tian, T., Wei, Z., Madan, S., Sullivan, R. J., et al. (2018). Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med 24, 1545-1549.

  • Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E., Dunn, I. F., Schinzel, A. C., Sandy, P., Meylan, E., Scholl, C., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108-112.

  • Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehar, J., Kryukov, G. V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607.

  • Braun, D. A., Hou, Y., Bakouny, Z., Ficial, M., Sant'Angelo, M., Forman, J., Ross-Macdonald, P., Berger, A. C., Jegede, O. A., Elagina, L., et al. (2020). Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat Med 26, 909-918.

  • Chen, D. S., and Mellman, I. (2017). Elements of cancer immunity and the cancer-immune set point. Nature 541, 321-330.

  • Cho, J. H., Collins, J. J., and Wong, W. W. (2018). Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. Cell 173, 1426-1438 e1411.

  • Czabotar, P. E., Lessene, G., Strasser, A., and Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15, 49-63.

  • Decker, C. E., Young, T., Pasnikowski, E., Chiu, J., Song, H., Wei, Y., Thurston, G., and Daly, C. (2019). Genome-scale CRISPR activation screen uncovers tumor-intrinsic modulators of CD3 bispecific antibody efficacy. Sci Rep 9, 20068.

  • Doench, J. G. (2018). Am I ready for CRISPR? A user's guide to genetic screens. Nat Rev Genet 19, 67-80.

  • Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., Roche, P. C., Lu, J., Zhu, G., Tamada, K., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8, 793-800.

  • Dufva, O., Koski, J., Maliniemi, P., Ianevski, A., Klievink, J., Leitner, J., Polonen, P., Hohtari, H., Saeed, K., Hannunen, T., et al. (2020). Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood 135, 597-609.

  • Feng, J., Liu, T., Qin, B., Zhang, Y., and Liu, X. S. (2012). Identifying ChIP-seq enrichment using MACS. Nat Protoc 7, 1728-1740.

  • Garcia-Diaz, A., Shin, D. S., Moreno, B. H., Saco, J., Escuin-Ordinas, H., Rodriguez, G. A., Zaretsky, J. M., Sun, L., Hugo, W., Wang, X., et al. (2017). Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep 19, 1189-1201.

  • Gide, T. N., Quek, C., Menzies, A. M., Tasker, A. T., Shang, P., Holst, J., Madore, J., Lim, S. Y., Velickovic, R., Wongchenko, M., et al. (2019). Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell 35, 238-255 e236.Grossman, R. L., Heath, A. P., Ferretti, V., Varmus, H. E., Lowy, D. R., Kibbe, W. A., and Staudt, L. M. (2016). Toward a Shared Vision for Cancer Genomic Data. N Engl J Med 375, 1109-1112.

  • Grumont, R. J., Rourke, I. J., and Gerondakis, S. (1999). Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev 13, 400-411.

  • Hashiguchi, M., Kobori, H., Ritprajak, P., Kamimura, Y., Kozono, H., and Azuma, M. (2008). Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc Natl Acad Sci USA 105, 10495-10500.

  • Hegde, P. S., and Chen, D. S. (2020). Top 10 Challenges in Cancer Immunotherapy. Immunity 52, 17-35.

  • Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H., and Glass, C. K. (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38, 576-589.

  • Hoesel, B., and Schmid, J. A. (2013). The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12, 86.

  • Holmgaard, R. B., Zamarin, D., Munn, D. H., Wolchok, J. D., and Allison, J. P. (2013). Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 210, 1389-1402.

  • Hugo, W., Zaretsky, J. M., Sun, L., Song, C., Moreno, B. H., Hu-Lieskovan, S., Berent-Maoz, B., Pang, J., Chmielowski, B., Cherry, G., et al. (2016). Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 165, 35-44.

  • Joung, J., Konermann, S., Gootenberg, J. S., Abudayyeh, O. O., Platt, R. J., Brigham, M. D., Sanjana, N. E., and Zhang, F. (2017). Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12, 828-863.

  • Konermann, S., Brigham, M. D., Trevino, A. E., Joung, J., Abudayyeh, O. O., Barcena, C., Hsu, P. D., Habib, N., Gootenberg, J. S., Nishimasu, H., et al. (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583-588.

  • Lawson, K. A., Sousa, C. M., Zhang, X., Kim, E., Akthar, R., Caumanns, J. J., Yao, Y., Mikolajewicz, N., Ross, C., Brown, K. R., et al. (2020). Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature.

  • Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25. Leitner, J., Klauser, C., Pickl, W. F., Stockl, J., Majdic, O., Bardet, A. F., Kreil, D. P., Dong, C., Yamazaki, T., Zlabinger, G., et al. (2009). B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. Eur J Immunol 39, 1754-1764.

  • Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.

  • Li, W., Xu, H., Xiao, T., Cong, L., Love, M. I., Zhang, F., Irizarry, R. A., Liu, J. S., Brown, M., and Liu, X. S. (2014). MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15, 554.

  • Liu, T., Zhang, L., Joo, D., and Sun, S. C. (2017). NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2.

  • Manguso, R. T., Pope, H. W., Zimmer, M. D., Brown, F. D., Yates, K. B., Miller, B. C., Collins, N. B., Bi, K., LaFleur, M. W., Juneja, V. R., et al. (2017). In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413-418.

  • Nausch, N., Florin, L., Hartenstein, B., Angel, P., Schorpp-Kistner, M., and Cerwenka, A. (2006). Cutting edge: the AP-1 subunit JunB determines NK cell-mediated target cell killing by regulation of the NKG2D-ligand RAE-1epsilon. J Immunol 176, 7-11.

  • Pan, D., Kobayashi, A., Jiang, P., Ferrari de Andrade, L., Tay, R. E., Luoma, A. M., Tsoucas, D., Qiu, X., Lim, K., Rao, P., et al. (2018). A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770-775.

  • Patel, S. J., Sanjana, N. E., Kishton, R. J., Eidizadeh, A., Vodnala, S. K., Cam, M., Gartner, J. J., Jia, L., Steinberg, S. M., Yamamoto, T. N., et al. (2017). Identification of essential genes for cancer immunotherapy. Nature 548, 537-542.

  • Pender, A., Titmuss, E., Pleasance, E. D., Fan, K. Y., Pearson, H., Brown, S. D., Grisdale, C. J., Topham, J. T., Shen, Y., Bonakdar, M., et al. (2021). Genome and Transcriptome Biomarkers of Response to Immune Checkpoint Inhibitors in Advanced Solid Tumors. Clin Cancer Res 27, 202-212.

  • Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47, W191-W198.

  • Reck, M., Rodriguez-Abreu, D., Robinson, A. G., Hui, R., Csoszi, T., Fulop, A., Gottfried, M., Peled, N., Tafreshi, A., Cuffe, S., et al. (2016). Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med 375, 1823-1833.

  • Riaz, N., Havel, J. J., Makarov, V., Desrichard, A., Urba, W. J., Sims, J. S., Hodi, F. S., Martin-Algarra, S., Mandal, R., Sharfman, W. H., et al. (2017). Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 171, 934-949 e916.

  • Robbins, P. F., Li, Y. F., El-Gamil, M., Zhao, Y., Wargo, J. A., Zheng, Z., Xu, H., Morgan, R. A., Feldman, S. A., Johnson, L. A., et al. (2008). Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol 180, 6116-6131.

  • Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G., and Hacohen, N. (2015). Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48-61.

  • Sato, T., Stange, D. E., Ferrante, M., Vries, R. G., Van Es, J. H., Van den Brink, S., Van Houdt, W. J., Pronk, A., Van Gorp, J., Siersema, P. D., et al. (2011). Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762-1772.

  • Shaw, S., Luce, G. E., Quinones, R., Gress, R. E., Springer, T. A., and Sanders, M. E. (1986). Two antigen-independent adhesion pathways used by human cytotoxic T-cell clones. Nature 323, 262-264.

  • Sica, G. L., Choi, I. H., Zhu, G., Tamada, K., Wang, S. D., Tamura, H., Chapoval, A. I., Flies, D. B., Bajorath, J., and Chen, L. (2003). B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18, 849-861.

  • Singh, N., Lee, Y. G., Shestova, O., Ravikumar, P., Hayer, K. E., Hong, S. J., Lu, X. M., Pajarillo, R., Agarwal, S., Kuramitsu, S., et al. (2020). Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-cell Dysfunction. Cancer Discov 10, 552-567.

  • Steinle, A., Li, P., Morris, D. L., Groh, V., Lanier, L. L., Strong, R. K., and Spies, T. (2001). Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53, 279-287.

  • Stewart-Jones, G., Wadle, A., Hombach, A., Shenderov, E., Held, G., Fischer, E., Kleber, S., Nuber, N., Stenner-Liewen, F., Bauer, S., et al. (2009). Rational development of high-affinity T-cell receptor-like antibodies. Proc Natl Acad Sci USA 106, 5784-5788.

  • Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45, W98-W102.

  • Sun, L., Li, C. W., Chung, E. M., Yang, R., Kim, Y. S., Park, A. H., Lai, Y. J., Yang, Y., Wang, Y. H., Liu, J., et al. (2020). Targeting Glycosylated PD-1 Induces Potent Antitumor Immunity. Cancer Res 80, 2298-2310.

  • Togayachi, A., Kozono, Y., Kuno, A., Ohkura, T., Sato, T., Hirabayashi, J., Ikehara, Y., and Narimatsu, H. (2010). Beta3GnT2 (B3GNT2), a major polylactosamine synthase: analysis of B3GNT2-deficient mice. Methods Enzymol 479, 185-204.

  • Tseng, D., Volkmer, J. P., Willingham, S. B., Contreras-Trujillo, H., Fathman, J. W., Fernhoff, N. B., Seita, J., Inlay, M. A., Weiskopf, K., Miyanishi, M., et al. (2013). Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci USA 110, 11103-11108.

  • Tummers, B., Goedemans, R., Pelascini, L. P., Jordanova, E. S., van Esch, E. M., Meyers, C., Melief, C. J., Boer, J. M., and van der Burg, S. H. (2015). The interferon-related developmental regulator 1 is used by human papillomavirus to suppress NFkappaB activation. Nat Commun 6, 6537.

  • Vredevoogd, D. W., Kuilman, T., Ligtenberg, M. A., Boshuizen, J., Stecker, K. E., de Bruijn, B., Krijgsman, O., Huang, X., Kenski, J. C. N., Lacroix, R., et al. (2019). Augmenting Immunotherapy Impact by Lowering Tumor TNF Cytotoxicity Threshold. Cell 178, 585-599 e515.

  • Wan, Y. W., Allen, G. I., and Liu, Z. (2016). TCGA2STAT: simple TCGA data access for integrated statistical analysis in R. Bioinformatics 32, 952-954.

  • Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., Segal, N. H., Ariyan, C. E., Gordon, R. A., Reed, K., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369, 122-133.

  • Xiang, W., Yang, C. Y., and Bai, L. (2018). MCL1 inhibition in cancer treatment. Onco Targets Ther 11, 7301-7314.

  • Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D. Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., et al. (2016). Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N Engl J Med 375, 819-829.

  • Zong, W. X., Edelstein, L. C., Chen, C., Bash, J., and Gelinas, C. (1999). The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev 13, 382-387.



Various modifications and variations of the described methods, pharmaceutical compositions, and kits of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, it will be understood that it is capable of further modifications and that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the art are intended to be within the scope of the invention. This application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure come within known customary practice within the art to which the invention pertains and may be applied to the essential features herein before set forth.

Claims
  • 1. A method of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents that reduce the expression or activity of B3GNT2.
  • 2. The method of claim 1, wherein the one or more agents are small molecules that bind the active site of B3GNT2 or comprise an allosteric inhibitor of B3GNT2.
  • 3. The method of claim 1, wherein the one or more agents is a gene editing system capable of reducing expression or activity of B3GNT2.
  • 4. The method of claim 1, wherein the one more agents is a polynucleotide capable of inducing RNAi knock down of B3GNT2 expression.
  • 5. A method of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents that inhibit poly-N-acetyllactosamine (poly-LacNAc) synthesis in tumor cells or reduces poly-LacNAc on surface N- and O-glycans.
  • 6. The method of claim 5, wherein the one or more agents is a small molecule inhibitor of poly-LacNAc synthesis selected from the group consisting of benzyl-O—N-acetylgalactosamide (BAG), kifunensine (KIF), tunicamycin, 3′-Azidothymidine (AZT), 2-acetamido-1,3,6-tri-O-acetyl-4-deoxy-4-fluoro-D-glucopyranose [4-F-GlcNAc], and deoxymannojirimycin (DMN), whereby poly-LacNAc synthesis is inhibited.
  • 7. The method of claim 5, wherein the one or more agents comprise an antibody that binds to a tumor specific surface marker and is linked to an enzyme capable of cleaving poly-LacNAc.
  • 8. The method of claim 7, wherein the enzyme is selected from the group consisting of endo H, endo F2, endo F3, peptide:N-glycosidase F (PNGase F), endo D, O-glycosidase, endo-β-galactosidase, sialidase and O-sialoglycoprotease.
  • 9. A method of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents capable of inhibiting the expression or activity of MCL1.
  • 10. The method of claim 9, wherein the one or more agents increase the expression of one or more genes selected from the group consisting of BID, PMAIP1 (NOXA), BAX, BAK, BIM, BAD and BBC3 (PUMA).
  • 11. The method of claim 9, wherein the one or more agents is a small molecule selected from the group consisting of Venetoclax, S63845, MIK665/S64315, AT101 (R-(−)-gossypol), TW-37, Gambogic acid, Sabutoclax (BI-97C1), Marinopyrrole A (maritoclax), UMI-77, A-1210477, Fesik's compounds, AMG176, AZD5991, Flavopiridol, Roscovitine, CR8, Voruciclib (P1446A-05), Cardiac glycoside, UNBS1450, Benzyl isothiocyanate, BAY43-9006, BAY1251152, BEZ235, AZD4573, AZD8055, SNS-032, dinaciclib, BEZ235, AZD8055, arsenic trioxide Bufalin, and analogues thereof.
  • 12. The method of claim 9, wherein the one or more agents is a gene editing system capable of reducing MCL1 expression or activity.
  • 13. The method of claim 9, wherein the one or more agents is a polynucleotide capable of inducing RNAi knock down of MCL1 expression.
  • 14. A method of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents capable of inhibiting the expression or activity of BCL2A1.
  • 15. The method of claim 14, wherein the one or more agents increase the expression of one or more genes selected from the group consisting of BID, PMAIP1 (NOXA), BAX, BAK, BIM, BAD and BBC3 (PUMA).
  • 16. The method of claim 14, wherein the one or more agents is a small molecule selected from the group consisting of Venetoclax, AT101 (R-(−)-gossypol), TW-37, Gambogic acid, Sabutoclax (BI-97C1) and Marinopyrrole A (maritoclax).
  • 17. The method of claim 14, wherein the one or more agents is a gene editing system capable of reducing BCL2A1 expression or activity.
  • 18. The method of claim 14, wherein the one or more agents is a polynucleotide capable of inducing RNAi knock down of BCL2A1 expression.
  • 19. A method of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents capable of inhibiting the expression or activity of JUNB.
  • 20. The method of claim 19, wherein the one or more agents is a dominant-negative JUNB protein or vector encoding the same.
  • 21. The method of claim 19, wherein the one or more agents is a small molecule selected from the group consisting of curcumin, SP100030, SPC-839, T-5224, K1115A, momordin I, isosteviol and analogues thereof.
  • 22. The method of claim 19, wherein the one or more agents is gene editing system capable of reducing JUNB expression or activity.
  • 23. The method of claim 19, wherein the one or more agents is a polynucleotide capable of inducing RNAi knock down of JUNB expression.
  • 24. The method of claim 19, wherein the one or more agents is capable of inhibiting the expression or activity of one or more downstream targets of JUNB selected from Table 5 or Table 6.
  • 25. A method of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject one or more agents capable of inhibiting the expression or activity of one or more targets selected from Table 1 or Table 3.
  • 26. An engineered T cell that expresses an enzyme capable of cleaving poly-LacNAc on the T cell surface.
  • 27. The engineered T cell of claim 26, wherein the enzyme is selected from the group consisting of endo H, endo F2, endo F3, peptide:N-glycosidase F (PNGase F), endo D, O-glycosidase, endo-β-galactosidase, sialidase and O-sialoglycoprotease.
  • 28. A method of enhancing anti-tumor immunity in a subject in need thereof comprising administering to the subject the engineered T cell of claim 26 or 27.
  • 29. The method of any of claims 1 to 28, further comprising administering an immunotherapy in combination with the one or more agents or engineered T cell.
  • 30. The method of claim 29, wherein the immunotherapy comprises adoptive cell transfer.
  • 31. The method of claim 30, wherein adoptive cell transfer comprises the administration of CAR (chimeric antigen receptor) T cells or natural killer cells, T cells expressing a T cell receptor (TCR) specific for a tumor antigen, or tumor infiltrating lymphocytes (TILs).
  • 32. The method of claim 29, wherein immunotherapy comprises checkpoint blockade (CPB) therapy.
  • 33. The method of claim 32, wherein the checkpoint blockade therapy comprises anti-CTLA4, anti-PD-L1, anti-PD1, anti-TIM3, anti-TIGIT, anti-LAG3, or combinations thereof.
  • 34. The method of any of claims 29 to 33, wherein the subject is treated with an immunotherapy followed by the one or more agents or engineered T cell.
  • 35. The method of claim 34, wherein the subject is treated with an immunotherapy followed by the one or more agents or engineered T cell and an immunotherapy.
  • 36. The method of any of claim 3, 11, 17, 22, or 25 wherein the gene editing system comprises a programmable nuclease.
  • 37. The method of claim 36, wherein the programmable nuclease is selected from the group consisting of a CRISPR system, a zinc finger nuclease, a TALE, or a meganuclease.
  • 38. The method of claim 36, wherein the gene editing system is a base editing system that introduces one or more base or base pair edits that reduce expression or activity of B3GNT2, MCL1, BCL2A1, or JUNB.
  • 39. The method of claim 36, wherein the gene editing system is a prime editing system that introduces one or more base or base pair edits that reduce the expression or activity of B3GNT, MCL1, BCL2A1, or JUNB, or replaces all or a portion of the genomic sequence of B3GNT, MC1, BCL2A1, or JUNB with a non-functional variant.
  • 40. The method of claim 36, wherein the gene editing system is a CAST system that replaces all or a portion of the genomic sequence of B3GNT, MC1, BCL2A1, or JUNB with a non-functional variant.
  • 41. A method of monitoring the efficacy of an immunotherapy comprising detecting the expression of one or more genes selected from the group consisting of MCL1, BCL2A1, JUNB and B3GNT2 in a subject treated with an immunotherapy, wherein the subject is a non-responder to the immunotherapy if the one or more genes are upregulated after being treated.
  • 42. The method of claim 41, wherein the expression is detected at two or more time points during treatment, wherein a trend of increasing expression of the one or more genes indicates a poor outcome and/or a non-responder.
  • 43. The method of claim 41 or 42, further comprising administering a treatment according to any of claims 1 to 36, if a poor outcome and/or non-responder is indicated.
  • 44. A method of treating a cancer in a subject in need thereof comprising determining if the patient is an immunotherapy responder or non-responder by detecting in a tumor obtained from the subject the expression or activity of one or more genes selected from candidate genes in Table 2, wherein if the expression of the one or more genes is higher than a reference value the subject is an immunotherapy non-responder and if the one or more genes is lower than a reference value then the subject is an immunotherapy responder; andif the subject is an immunotherapy non-responder, treating the subject using the method of any one of claims 1 to 40; andif the subject is an immunotherapy responder, treating the subject with an immunotherapy.
  • 45. The method of claim 44, wherein the one or more genes comprise B3GNT2, MCL1, BCL2A, JUNB, or a combination thereof.
  • 46. A method of screening for agents capable of decreasing poly-LacNAc on tumor cells comprising: a. contacting a population of tumor cells having upregulated B3GNT2 with an agent; andb. detecting binding of one or more proteins to the tumor cells selected from the group consisting of CD2, 4-1BB, TREML2 (TLT2), NKG2D, and an antibody specific for an HLA class I bound tumor antigen, wherein increased binding indicates reduced poly-LacNAc.
  • 47. The method of claim 46, wherein the one or more proteins are labeled with a detectable marker.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/196,520, filed Jun. 3, 2021. The entire contents of the above-identified applications are hereby fully incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under Grant No.(s) MH117886, HG009761, MH110049, and HL141201 awarded by the National Institutes of Health. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2022/032109 6/3/2022 WO
Provisional Applications (1)
Number Date Country
63196520 Jun 2021 US