These and other features of the present invention will become more apparent from the following description in which reference is made to the appended drawings wherein:
a shows a cross-section of a sheet of thermoplastic material being heated in an oven in accordance with an embodiment of the present invention.
b shows a cross-sectional side view of a mold in accordance with an embodiment of the present invention.
c shows a cross-sectional side view of the mold of
d shows a cross-sectional side view of the mold of
a shows a first example of a part manufactured in accordance with an embodiment of the present invention.
b shows a second example of a part manufactured in accordance with an embodiment of the present invention.
The present invention is a variant of the thermoforming molding process of thermoplastic materials. A deformable male die is used to deform a sheet of thermoplastic material in a cavity of a female mold. The deformable male die is equipped with a bladder that may be inflated in order to apply a pressure on the deformed sheet of thermoplastic material against walls of the female die. Complex parts made of either sheets of fiber-reinforced thermoplastic materials, sheets of non-reinforced thermoplastic materials or a combination of both sheets of fiber-reinforced and non-reinforced thermoplastic materials may be produced using the molding process and tooling of the present invention.
The molding process of the present invention consists in the transformation of a sheet 24, made of a thermoplastic material, into a three dimensional shape provided by the cavity 20. The sheet 24 may either be a plain thermoplastic material or a thermoplastic material reinforced with fibers. The sheet 24 is placed in a sheet handling system 26 which hold the sheet under tension. Using an oven 28 with IR elements, the sheet 24 is at first heated to soften its matrix. Various heating systems like convection, conduction, contact and radiation heating can be used. Infrared radiation (IR) gives the best results, leading to shorter heating time without material degradation. Optimum IR element settings are a compromise between heating time, through thickness temperature distribution and polymer degradation. The sheet 24 is subsequently transferred to the mold 10 and placed between the male die 12 and the female die 18. The mold 10 is closed rapidly to prevent as much as possible the sheet 24 from cooling. Mold closure must be rapid in order to avoid premature matrix cooling, but slow enough to avoid the sheet 24 to wrinkle during the forming phase. This is especially true with reinforced sheets 24.
The deformable portion 16 is made of heat-resistant elastomer. The deformable portion 16 is designed to be both higher and slimmer than the cavity, but to have an overall volume similar to that of the space left in the cavity 20 once the sheet 24 is deformed in it. This requires accurate calibration and the shape of the deformable portion 16 is mostly determined empirically. Upon closing of the mold 10 by displacing the male die 12 towards the female die 18, the deformable portion 16 comes into contact with the sheet 24 and deforms it. Because the height of the deformable portion 16 is more than the depth of the cavity 20, the deformed sheet 24 touches the bottom portion of a wall 30 of the cavity 20 first. As the male die 12 is gradually closed unto female die 18, the deformable portion 16 gradually deforms, reducing its height and increasing in size in other directions. The desired effect is that a pressure is gradually applied by the deformable portion 16 on the sheet 24 against the wall 30 of the cavity 20, starting from the bottom towards the top of the cavity 20. This ensures an adequate draping of the sheet 24 in the cavity 20. As pressure is always applied perpendicularly to the wall 30, minimum shearing occurs and an adequate consolidation of the material is possible. The pressure is adjusted by selecting an adequate hardness of the deformable portion 16 and adequate dimensions as well. Pressure on the lateral walls of the cavity 20 is generated by the deformation of the deformable portion 16 in direction of the wall 30. This is an advantage over prior art tools as it is no longer required to use large draft angles. With the mold of the present invention, very shallow draft angles may be used and pressure is always applied perpendicularly to the wall 30, thanks to the lateral deformation of the deformable portion 16. With the tool of the present invention, pressure is not only generated in the closing axis of the mold 10 but is generated perpendicularly to the walls of the cavity.
The sheet handling system 26 ensures transportation of the sheet 24 from the oven 28 to the mold 10 and acts as a tensioning system on the sheet 24 to avoid wrinkles being formed in a part. The sheet handling system depicted is especially adapted for reinforced sheets of thermoplastic materials. Conventional thermoforming sheet handling systems for unreinforced sheets of thermoplastic materials are not appropriate for thermoforming reinforced sheets due to the stiffness of the fibers.
Turning now to
Advantageously, the process of the present invention reduces thickness variations over the surface of the part due to the application of a uniform pressure by the 40 and evens the consolidation of the part. The cycle times of this process are similar to the matched-die process because the rigid sub-structure 42 can rapidly push the sheet 24 at the bottom of the mold. This process makes it possible to mold medium volumes of parts at low cost. The conformation of small radius edges and corners of the part are possible. It is possible to use bladders 40 made by stacking rubber layers of different hardness in order to improve the forming of small geometric features of the part. Advantageously, friction between the bladder 42, made of a deformable material, and the tools is avoided because the rigid base 48 acts as an abrasion protector while the sides of the bladder 40, under vacuum, do not slide on the sheet 24. Only normal pressures are then sustained by the bladder 40, thus preserving its integrity for a longer period.
The materials used for the bladder 40 are numerous but best results are obtained with bladders having high tearing and abrasion resistances. High tearing resistance can be obtained using an elastomer, such as a rubber.
In use, the male die 12 is lowered toward the female die 18 such that a center portion 54 of the bladder 40, held in place by the support 52, starts deforming the sheet 24, until the backing structure 14 comes into contact with the female die 18. At this point, the center portion 54 is deformed as it presses the sheet 24 against the bottom portion of the wall 30 of the cavity 20. Both dies are clamped together and air is pumped in the inflatable bladder 40 through the inlet/outlet 50.
As shown in
Another sheet 24, already mounted in another frame 32 and heated to the right temperature is ready to be placed between the two mold halves for forming. The cycle time of this process may be quite rapid. Cycle time of some parts is down to a few minutes.
Different materials may be used for the female and male dies. For the die being contacted by the sheet 24, a thermally conductive material, such as aluminum or steel is preferred so that mold temperature may be controlled. Wood or medium density fiber (MDF) may also be considered for small quantities. The bladder 40 and the center portion 54 are made of a deformable and/or resilient material capable of withstanding the high temperatures reached.
When using fiber-reinforced thermoplastic sheets, the process of the present invention allows for considerable deformation of the fiber reinforcement within the sheet. Whereas with prior art processes, fiber-reinforced thermoplastic sheets were mostly transformed into cylindrical or conical parts, the new process allows part manufactured with such materials to have complex geometries and to stretch the fiber reinforcement differently along each of its different axes. Two or more parts may subsequently be welded in order to achieve parts of a higher level of complexity.
Many combinations of fiber and matrix may be used for fiber-reinforced sheets. Typical fibers generally used to manufacture thermoset composites may still be used with the fiber-reinforced thermoplastic sheets, namely, glass fiber, carbon fiber and aramid fiber in different conventional weave patterns. Typical materials used for the thermoplastic matrix are polyethermide (PEI), polyphenylene sulfide (PPS), polypropylene (PP), nylon 6 (PA 6) and nylon 12 (PA12). It has been found that a thermoplastic sheet having a lower high melt strength performs better in the manufacturing process of the present invention. More specifically, a thermoplastic sheet having a high melt strength equal or lower than 23 is preferred.
It happens that the physical properties of a single type of thermoplastic material do not completely meet the requirements of an intended product. For example, some parts may require the combination of high rigidity, impact absorption and high gloss finish, properties that may only be partially met if a single type of thermoplastic were used. In a variant of the present invention, parts made of more than one sheet of thermoplastic materials may be molded.
The present invention has been described with regards to preferred embodiments. The description as much as the drawings, were used to help the understanding rather than to limit the scope of the invention. It will be obvious to one skilled in the art that several modifications or variations may be brought to the invention without departing from the scope of the invention as described herein and are intended to be covered by the present description.
Number | Date | Country | |
---|---|---|---|
60807392 | Jul 2006 | US |