The present invention relates in general to the dendritic cell (DC)-targeting vaccines, and more particularly, to the enhancing vaccine efficacy by directly linking adjuvants (e.g., TLR ligands) directly to DC-targeting vaccines.
The present application includes a Sequence Listing filed separately as required by 37 CFR 1.821-1.825.
Without limiting the scope of the invention, its background is described in connection with novel adjuvants, dendritic cell (DC) vaccines, and strategies for enhancing immune responses to DC vaccines.
U.S. Patent Application Publication No. 20090004194 (Kedl, 2007) relates to novel protein and DNA conjugates which promote antigen specific cellular immunity. The use of these polypeptide conjugates and DNA conjugates as immune adjuvants for treating various chronic diseases including cancer, infectious diseases, autoimmune diseases, allergic and inflammatory diseases. The Kedl invention discloses fusion proteins and DNA conjugates containing a TLR/CD40/agonist and optional antigen combination. The use of these protein and DNA conjugates as immune adjuvants and as vaccines for treatment of various chronic diseases is also taught.
U.S. Patent Application Publication No. 20080220011 (Steven, 2008) provides a fusion protein comprising a flagellin adjuvant and a tumor antigen. Also provided are compositions comprising a flagellin adjuvant and a tumor antigen. The invention further provides pharmaceutical formulations and methods for inducing an immune response against a tumor antigen and methods of treating a tumor in a subject.
U.S. Patent Application Publication No. 20080248068 (Ljunggren et al. 2008) is directed to flagellin and its use as an adjuvant for vaccination. The invention can be used in vaccine formulations to improve immunity against any other antigen administered at the same localization. The antigen can be administered in the same construct as Flagellin or in any other formulation given at the same localization. As an alternative flagellin can be used to stimulate immunity against antigens expressed at a specific location. Flagellin can also be used to induce local inflammation with the purpose of creating a model for inflammation.
U.S. Pat. No. 7,404,963 issued to Sotomayor and Suarez (2008) provides adjuvants, vaccines, and related methods that are useful in eliciting immune responses, particularly immune responses against tumor antigens. According to the Sotomayor invention flagellin is capable of inhibiting tolerance when it is administered in conjunction with a tolerogenic antigen. This effect is likely mediated by the ability of flagellin to induce IL-12 while keeping IL-10 levels low. Furthermore, flagellin can be provided in an extended-releasing manner by using a flagellin-expressing cell. Preferably, the flagellin-expressing cell is treated such that it is no longer capable of replicating, yet retaining the ability to express flagellin, such as by lethal irradiation.
The present invention describes compositions and methods for making novel vaccine adjuvants based on targeting adjuvants with antibodies directly to antigen-presenting cells. The present invention was found to enhance vaccine efficacy by linking adjuvants (e.g., TLR ligands) directly to DC-targeting vaccines. As shown herein, the compositions and methods of the present invention are broadly applicable to all DC-targeting vaccines and extensible to making adjuvants with unexpected novel properties.
The present invention in one embodiment discloses an adjuvant composition comprising an anti-dendritic cell (DC)-specific antibody or binding fragment thereof conjugated to a TLR agonist; and at least one antigen, wherein the antigen and the agonist are effective to produce an immune response in a human or animal subject in need of immunostimulation.
The DC-specific antibody or fragment described hereinabove is selected from an anti-DCIR, MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, or ASPGR. In one aspect, the composition described above further comprises antigenic peptides selected from human immunodeficiency virus (HIV) antigens and gene products selected from the group consisting of gag, pol, and env genes, the Nef protein, reverse transcriptase, string of HIV peptides (Hipo5), PSA (KLQCVDLHV)-tetramer, a HIVgag-derived p24-PLA HIV gag p24 (gag), and other HIV components, hepatitis viral antigens, influenza viral antigens and peptides selected from the group consisting of hemagglutinin, neuraminidase, Influenza A Hemagglutinin HA-1 from a H1N1 Flu strain, HLA-A201-FluMP (58-66) peptide (GILGFVFTL) tetramer, and Avian Flu (HA5-1), dockerin domain from C. thermocellum, measles viral antigens, rubella viral antigens, rotaviral antigens, cytomegaloviral antigens, respiratory syncytial viral antigens, herpes simplex viral antigens, varicella zoster viral antigens, Japanese encephalitis viral antigens, rabies viral antigens or combinations and modifications thereof. In another aspect the composition further comprises antigenic peptides selected from one or more bacterial antigens, wherein the bacterial antigens comprise antigens derived from Bacillus, Escherichia, Listeria, Neisseria, Nocardia, Salmonella, Staphylococcus, Streptococcus, or combinations and modifications thereof.
In yet another aspect the composition further comprises antigenic peptides selected from cancer peptides selected from tumor associated antigens comprising antigens from leukemias and lymphomas, neurological tumors such as astrocytomas or glioblastomas, melanoma, breast cancer, lung cancer, head and neck cancer, gastrointestinal tumors, gastric cancer, colon cancer, liver cancer, pancreatic cancer, genitourinary tumors such cervix, uterus, ovarian cancer, vaginal cancer, testicular cancer, prostate cancer or penile cancer, bone tumors, vascular tumors, or cancers of the lip, nasopharynx, pharynx and oral cavity, esophagus, rectum, gall bladder, biliary tree, larynx, lung and bronchus, bladder, kidney, brain and other parts of the nervous system, thyroid, Hodgkin's disease, non-Hodgkin's lymphoma, multiple myeloma and leukemia. In a specific aspect the tumor associated antigens are selected from CEA, prostate specific antigen (PSA), HER-2/neu, BAGE, GAGE, MAGE 1-4, 6 and 12, MUC (Mucin) (e.g., MUC-1, MUC-2, etc.), GM2 and GD2 gangliosides, ras, myc, tyrosinase, MART (melanoma antigen), MARCO-MART, cyclin B1, cyclin D, Pmel 17(gp100), GnT-V intron V sequence (N-acetylglucoaminyltransferase V intron V sequence), Prostate Ca psm, prostate serum antigen (PSA), PRAME (melanoma antigen), β-catenin, MUM-1-B (melanoma ubiquitous mutated gene product), GAGE (melanoma antigen) 1, BAGE (melanoma antigen) 2-10, c-ERB2 (Her2/neu), EBNA (Epstein-Barr Virus nuclear antigen) 1-6, gp75, human papilloma virus (HPV) E6 and E7, p53, lung resistance protein (LRP), Bcl-2, and Ki-67.
In other aspects related to the composition of the present invention DC-specific antibody is humanized. In another aspect the TLR agonist comprises at least one of a flagellin from Salmonella enterica, a flagellin from Vibrio cholerae, any other TLR5 agonist, a TLR7 agonist, a TLR9 agonist, or any combinations or modifications thereof. In yet another aspect the antigen is conjugated to the antibody and TLR agonist. In another aspect the antigen and the antibody are a single fusion protein. In another aspect the antibody comprises at least one of a light chain, a heavy chain, or a heavy and a light chain.
The present invention in another embodiment provides a vaccine composition comprising: (i) an antigen and (ii) an adjuvant, wherein the adjuvant comprises an anti-dendritic cell (DC)-specific antibody or fragment thereof conjugated to at least a portion of a TLR agonist in an amount effective to produce an immune response in a human or animal subject in need of immunostimulation. The DC-specific antibody or fragment used in the vaccine hereinabove is selected from an anti-DCIR, MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, or ASPGR. The vaccine composition further comprises antigenic peptides selected. Non-limiting examples of antigenic peptides that may be used in the vaccine composition of the present invention have been previously described in paragraph [0012]. The vaccine composition further comprises antigenic peptides selected from one or more bacterial antigens. A list of non-limiting bacterial antigens that may be used is found in paragraph [0012]. In another aspect the vaccine further comprises antigenic peptides selected from cancer peptides selected from tumor associated antigens comprising antigens previously described in paragraph [0013].
In yet another aspect the composition further comprises antigenic peptides selected from tumor associated antigens selected from CEA, prostate specific antigen (PSA), HER-2/neu, BAGE, GAGE, MAGE 1-4, 6 and 12, MUC (Mucin) (e.g., MUC-1, MUC-2, etc.), GM2 and GD2 gangliosides, ras, myc, tyrosinase, MART (melanoma antigen), MARCO-MART, cyclin B1, cyclin D, Pmel 17(gp100), GnT-V intron V sequence (N-acetylglucoaminyltransferase V intron V sequence), Prostate Ca psm, prostate serum antigen (PSA), PRAME (melanoma antigen), β-catenin, MUM-1-B (melanoma ubiquitous mutated gene product), GAGE (melanoma antigen) 1, BAGE (melanoma antigen) 2-10, c-ERB2 (Her2/neu), EBNA (Epstein-Barr Virus nuclear antigen) 1-6, gp75, human papilloma virus (HPV) E6 and E7, p53, lung resistance protein (LRP), Bcl-2, and Ki-67. In one aspect the DC-specific antibody is humanized. In another aspect the TLR agonist comprises at least one of a flagellin from Salmonella enterica, a flagellin from Vibrio cholerae, any other TLR5 agonist, a TLR7 agonist, a TLR9 agonist, or any combinations or modifications thereof. In yet another aspect the antigen is conjugated to the antibody and TLR agonist. In another aspect the antigen and the antibody are a single fusion protein. In yet another aspect the antibody comprises at least one of a light chain, a heavy chain, or a heavy and a light chain.
In yet another embodiment the instant invention discloses a method for increasing effectiveness of antigen presentation by an antigen presenting cell comprising: contacting the antigen presenting cell with a composition comprising: (i) an antigen; and (ii) an adjuvant, wherein the adjuvant comprises an anti-dendritic cell (DC)-specific antibody or binding fragment thereof conjugated to a TLR agonist, wherein the antigen and adjuvant are provided in an amount effective to produce an immune response in a human or animal subject in need of immunostimulation. Ex vivo methods of increasing effectiveness of antigen presentation by antigen presenting cells have been previously described in U.S. Patent Application Publication No. 20100135994 (Banchereau et al. 2010) and in U.S. patent application Ser. No. 13/100,684 (Banchereau et al. 2011), relevant portions of which are incorporated herein by reference.
In one aspect the DC-specific antibody or fragment is selected from an anti-DCIR, MHC class I, MHC class II, CD1, CD2, CD3, CD4, CD8, CD11b, CD14, CD15, CD16, CD19, CD20, CD29, CD31, CD40, CD43, CD44, CD45, CD54, CD56, CD57, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR, DC-ASPGR, CLEC-6, CD40, BDCA-2, MARCO, DEC-205, mannose receptor, Langerin, DECTIN-1, B7-1, B7-2, IFN-γ receptor and IL-2 receptor, ICAM-1, Fcγ receptor, LOX-1, or ASPGR. In a related aspect the anti-DC-specific antibody is selected from pairs of SEQ ID NOS.: 7 and 9, 11 and 13, 15 and 17, 19 and 21, 23 and 25, 27 and 29, 31 and 33, 35 and 37, 39 and 41, 43 and 45, 47 and 49, 51 and 53, 55 and 57, 59 and 61, 63 and 65, 67 and 69, 71 and 73, 75 and 77, 79 and 81, 83 and 85, 87 and 89, 91 and 93, 95 and 97, 99 and 101, 1-3 and 105, 107 and 109, 111 and 113, 115 and 117, 119 and 121, 123 and 125, 127 and 129, 131 and 132, 133 and 134.
In one aspect the composition further comprises antigenic peptides, non-limiting examples of the antigenic peptides have been described previously. In another aspect the composition further comprises antigenic peptides selected from cancer peptides as previously described. The antigenic peptides are selected from tumor associated antigens. Non-limiting examples of tumor associated antigens are described herein.
In related aspects of the method the DC-specific antibody is humanized and the composition is administered to the human or animal subject by an oral route, a nasal route, topically or as an injection (the injection is selected from intradermal, intramucosal, subcutaneous, intravenous, intraperitoneal, intramuscular, and intravenous injections). In one aspect the TLR agonist comprises at least one of a flagellin from Salmonella enterica, a flagellin from Vibrio cholerae, any other TLR5 agonist, a TLR7 agonist, a TLR9 agonist, or any combinations or modifications thereof. In another aspect the antigen is conjugated to the antibody and TLR agonist. In yet another aspect the antigen and the antibody are a single fusion protein. In another aspect the antibody comprises at least one of a light chain, a heavy chain, or a heavy and a light chain.
The present invention further provides a method for a treatment, a prophylaxis or a combination thereof against one or more cancers in a human subject comprising the steps of: (i) identifying the human subject in need of the treatment, the prophylaxis or a combination thereof against the one or more cancers and (ii) administering a vaccine composition comprising: a) an antigen and b) an adjuvant, wherein the adjuvant comprises an anti-dendritic cell (DC)-specific antibody or fragment thereof conjugated to a TLR agonist; and a pharmaceutically acceptable carrier, wherein the antigen and adjuvant are provided in an amount effective to produce an immune response for the treatment, the prophylaxis or a combination thereof against the one or more cancers.
Another embodiment of the present invention relates to a method of providing immunostimulation by activation of one or more dendritic cells (DCs) to a human subject for a prophylaxis, a therapy or a combination thereof against one or more viral, bacterial, fungal, parasitic, protozoal, and parasitic diseases, and allergic disorders comprising the steps of: i) identifying the human subject in need of immunostimulation for the prophylaxis, the therapy or a combination thereof against the one or more viral, bacterial, fungal, parasitic, protozoal, and parasitic diseases, and allergic disorders; ii) isolating one or more DCs from the human subject; iii) activating the isolated DCs with an amount of a composition effective for forming activated DCs comprising: a) an antigen and b) an adjuvant, wherein the adjuvant comprises an anti-dendritic cell (DC)-specific antibody or fragment thereof conjugated to a TLR agonist; and a pharmaceutically acceptable carrier, in an amount effective to produce an immune response in a human or animal subject in need of immunostimulation; and iv) reintroducing the activated DCs into the human subject.
In yet another embodiment the instant invention discloses an adjuvant composition comprising an anti-dendritic cell (DC)-specific antibody or fragment thereof conjugated to at least a portion of a TLR agonist wherein the anti-DC-specific antibody is selected from pairs of SEQ ID NOS.: 7 and 9, 11 and 13, 15 and 17, 19 and 21, 23 and 25, 27 and 29, 31 and 33, 35 and 37, 39 and 41, 43 and 45, 47 and 49, 51 and 53, 55 and 57, 59 and 61, 63 and 65, 67 and 69, 71 and 73, 75 and 77, 79 and 81, 83 and 85, 87 and 89, 91 and 93, 95 and 97, 99 and 101, 1-3 and 105, 107 and 109, 111 and 113, 115 and 117, 119 and 121, 123 and 125, 127 and 129, 131 and 132, 133 and 134.
In one aspect of the adjuvant composition hereinabove the composition further comprises antigenic peptides selected from human immunodeficiency virus (HIV) antigens and gene products selected from the group consisting of gag, pol, and env genes, the Nef protein, reverse transcriptase, string of HIV peptides (Hipo5), PSA (KLQCVDLHV)-tetramer, a HIVgag-derived p24-PLA HIV gag p24 (gag), and other HIV components, hepatitis viral antigens, influenza viral antigens and peptides selected from the group consisting of hemagglutinin, neuraminidase, Influenza A Hemagglutinin HA-1 from a H1N1 Flu strain, HLA-A201-FluMP (58-66) peptide (GILGFVFTL) tetramer, and Avian Flu (HA5-1), dockerin domain from C. thermocellum, measles viral antigens, rubella viral antigens, rotaviral antigens, cytomegaloviral antigens, respiratory syncytial viral antigens, herpes simplex viral antigens, varicella zoster viral antigens, Japanese encephalitis viral antigens, rabies viral antigens or combinations and modifications thereof.
In another aspect the composition further comprises antigenic peptides selected from cancer peptides selected from tumor associated antigens comprising antigens from leukemias and lymphomas, neurological tumors such as astrocytomas or glioblastomas, melanoma, breast cancer, lung cancer, head and neck cancer, gastrointestinal tumors, gastric cancer, colon cancer, liver cancer, pancreatic cancer, genitourinary tumors such cervix, uterus, ovarian cancer, vaginal cancer, testicular cancer, prostate cancer or penile cancer, bone tumors, vascular tumors, or cancers of the lip, nasopharynx, pharynx and oral cavity, esophagus, rectum, gall bladder, biliary tree, larynx, lung and bronchus, bladder, kidney, brain and other parts of the nervous system, thyroid, Hodgkin's disease, non-Hodgkin's lymphoma, multiple myeloma and leukemia. In yet another aspect the composition further comprises antigenic peptides selected from tumor associated antigens selected from CEA, prostate specific antigen (PSA), HER-2/neu, BAGE, GAGE, MAGE 1-4, 6 and 12, MUC (Mucin) (e.g., MUC-1, MUC-2, etc.), GM2 and GD2 gangliosides, ras, myc, tyrosinase, MART (melanoma antigen), MARCO-MART, cyclin B1, cyclin D, Pmel 17(gp100), GnT-V intron V sequence (N-acetylglucoaminyltransferase V intron V sequence), Prostate Ca psm, prostate serum antigen (PSA), PRAME (melanoma antigen), β-catenin, MUM-1-B (melanoma ubiquitous mutated gene product), GAGE (melanoma antigen) 1, BAGE (melanoma antigen) 2-10, c-ERB2 (Her2/neu), EBNA (Epstein-Barr Virus nuclear antigen) 1-6, gp75, human papilloma virus (HPV) E6 and E7, p53, lung resistance protein (LRP), Bcl-2, and Ki-67. In a specific aspect the DC-specific antibody is humanized. In other related aspects the TLR agonist comprises at least one of a flagellin from Salmonella enterica, a flagellin from Vibrio cholerae, any other TLR5 agonist, a TLR7 agonist, a TLR9 agonist, or any combinations or modifications thereof and the antigen and the antibody are a single fusion protein. In another aspect the antibody comprises at least one of a light chain, a heavy chain, or a heavy and a light chain.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an,” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.
As used herein the term “Antigen Presenting Cells” (APC) are cells that are capable of activating T cells, and include, but are not limited to, certain macrophages, B cells and dendritic cells. “Dendritic cells” (DCs) refers to any member of a diverse population of morphologically similar cell types found in lymphoid or non-lymphoid tissues. These cells are characterized by their distinctive morphology, high levels of surface MHC-class II expression (Steinman, et al., Ann. Rev. Immunol. 9:271 (1991); incorporated herein by reference for its description of such cells). These cells can be isolated from a number of tissue sources, and conveniently, from peripheral blood, as described herein. Dendritic cell binding proteins refers to any protein for which receptors are expressed on a dendritic cell. Examples include GM-CSF, IL-1, TNF, IL-4, CD40L, CTLA4, CD28, and FLT-3 ligand.
For the purpose of the present invention, the term “vaccine composition” is intended to mean a composition which can be administered to humans or to animals in order to induce an immune system response; this immune system response can result in a production of antibodies or simply in the activation of certain cells, in particular antigen-presenting cells, T lymphocytes and B lymphocytes. The vaccine composition can be a composition for prophylactic purposes or for therapeutic purposes, or both. As used herein, the term “antigen” refers to any antigen that can be used in a vaccine, whether it involves a whole microorganism or a portion thereof, and various types: (e.g., peptide, protein, glycoprotein, polysaccharide, glycolipid, lipopeptide, etc). They may be viral antigens, bacterial antigens, or the like; the term “antigen” also comprises the polynucleotides, the sequences of which are chosen so as to encode the antigens whose expression by the individuals to which the polynucleotides are administered is desired, in the case of the immunization technique referred to as DNA immunization. They may also be a set of antigens, in particular in the case of a multivalent vaccine composition which comprises antigens capable of protecting against several diseases, and which is then generally referred to as a vaccine combination, or in the case of a composition which comprises several different antigens in order to protect against a single disease, as is the case for certain vaccines against whooping cough or the flu, for example. The term “antibodies” refers to immunoglobulins, whether natural or partially or wholly produced artificially, e.g. recombinant. An antibody may be monoclonal or polyclonal. The antibody may, in some cases, be a member of one, or a combination immunoglobulin classes, including: IgG, IgM, IgA, IgD, and IgE.
The terms “adjuvant” or “immunoadjuvant” may be used interchangeably and refer to a substance that enhances, augments or potentiates the host's immune response to an antigen, e.g., an antigen that is part of a vaccine. Non-limiting examples of some commonly used vaccine adjuvants include insoluble aluminum compounds, calcium phosphate, liposomes, Virosomes™, ISCOMS®, microparticles (e.g., PLG), emulsions (e.g., MF59, Montanides), virus-like particles & viral vectors. Flagellin, a TLR5 agonist from Salmonella entericum is used as an adjuvant in the present invention. It will be understood that flagellin from other bacterial sources (e.g., Vibrio cholerae) may also be used, other TLR5 agonists, TLR7 agonists, TLR9 agonists, or any combinations or modifications thereof may also be used.
The term “conjugate” as used herein refers to any substance formed from the joining together of two parts. Representative conjugates in accordance with the present invention include those formed by joining together of the antigen with the antibody and the TLR agonist. The term “conjugation” refers to the process of forming the conjugate and is usually done by physical coupling, e.g. covalent binding, co-ordination covalent, or secondary binding forces, e.g. Van der Waals bonding forces. The process of linking the antigen to the antibody and the TLR agonist can also be done via a non-covalent association such as a dockerin-cohesin association (as described in U.S. Patent Publication No. 20100135994, Banchereau et al. relevant portions incorporated herein by reference) or by a direct chemical linkage by forming a peptide or chemical bond.
As used herein, the term “flagellin” refers to a flagellin protein from any source including, but not limited to, any bacterial species. The flagellin may be from a species of Salmonella (Salmonella enterica as exemplified herein) or from other species of bacteria (for e.g. Vibrio cholerae). Also specifically contemplated are fragments, variants, analogs, homologs, or derivatives of said flagellin, and combinations thereof. The various fragments, variants, analogs, homologs or derivatives described herein may be 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% identical to a wild-type flagellin from a specific bacterial species, e.g., Salmonella.
The term “gene” is used to refer to a functional protein, polypeptide or peptide-encoding unit. As will be understood by those in the art, this functional term includes genomic sequences, cDNA sequences, or fragments or combinations thereof, as well as gene products, including those that may have been altered by the hand of man. Purified genes, nucleic acids, protein and the like are used to refer to these entities when identified and separated from at least one contaminating nucleic acid or protein with which it is ordinarily associated
As used herein, the term “nucleic acid” or “nucleic acid molecule” refers to polynucleotides, such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action. Nucleic acid molecules can be composed of monomers that are naturally-occurring nucleotides (such as DNA and RNA), or analogs of naturally-occurring nucleotides (e.g., α-enantiomeric forms of naturally-occurring nucleotides), or a combination of both. Modified nucleotides can have alterations in sugar moieties and/or in pyrimidine or purine base moieties. Sugar modifications include, for example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters. Moreover, the entire sugar moiety can be replaced with sterically and electronically similar structures, such as aza-sugars and carbocyclic sugar analogs. Examples of modifications in a base moiety include alkylated purines and pyrimidines, acylated purines or pyrimidines, or other well-known heterocyclic substitutes. Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages.
Analogs of phosphodiester linkages include phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like. The term “nucleic acid molecule” also includes so-called “peptide nucleic acids,” which comprise naturally-occurring or modified nucleic acid bases attached to a polyamide backbone. Nucleic acids can be either single stranded or double stranded.
As used in this application, the term “amino acid” means one of the naturally occurring amino carboxylic acids of which proteins are comprised. The term “polypeptide” as described herein refers to a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as “peptides.” A “protein” is a macromolecule comprising one or more polypeptide chains. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.
As used herein, the term “in vivo” refers to being inside the body. The term “in vitro” used as used in the present application is to be understood as indicating an operation carried out in a non-living system.
As used herein, the term “treatment” or “treating” means any administration of a compound of the present invention and includes (1) inhibiting the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., arresting further development of the pathology and/or symptomatology), or (2) ameliorating the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., reversing the pathology and/or symptomatology).
The present invention describes novel vaccine adjuvants based on targeting adjuvants with antibodies directly to antigen-presenting cells. The present invention was found to enhance vaccine efficacy by directly linking adjuvants (e.g., TLR ligands) directly to DC-targeting vaccines. As shown herein, the compositions and methods of the present invention are broadly applicable to all DC-targeting vaccines and extensible to making adjuvants with unexpected novel properties. While antigens directly linked to adjuvants (e.g., TLR's) are well known—e.g., development of Hep B vaccine linked to CpG (Dynavax) or Flu antigens linked to flagellin (Vaxigen). The present invention is an adjuvant that is directly linked to a DC-targeting vaccine (e.g., anti-DC receptor antibody fused to antigen). Several aspects of the present invention have advantages over the prior art, including dose-sparing (by sending the adjuvant directly to the antigen-presenting cell that actually receives antigen), unexpectedly, this discovery provides a method of making the agonist activity of the adjuvant strictly dependent upon the type of DC receptor targeted.
Compositions and methods described herein can be used in a prophylaxis, a therapy or a combination thereof against one or more viral, bacterial, fungal, parasitic, protozoal, and parasitic diseases, allergic disorders, and cancers. Non-limiting examples of diseases against which a prophylaxis, a therapy, alleviation of symptoms or combinations thereof can be achieved using the composition of the present invention include HIV infections, hepatitis, influenza, avian flu, herpes, genitourinary, prostate, and neurological tumors, arthritis, asthma, eczema, bacterial infections selected from anthrax, cholecystitis, bacteremia, cholangitis, urinary tract infection (UTI), listeriosis, meningococcal infections, salmonellosis, necrotizing fasciitis and streptococcal toxic shock syndrome, pneumonia, skin infections, or any combinations or modifications thereof.
Flagellin from Salmonella enterica has been exemplified in the present invention. However, a skilled artisan will understand that flagellin from many bacterial species (for e.g., Vibrio cholerae) can be substituted for the flagellin that is used herein. In addition to flagellin other TLR5 agonists may also be used. For extending the invention to other TLRs, it may be necessary to employ chemical linkages since some or all of the other known TLR ligands are non-protein. Some agonists like TLR7 and TLR9, are well described chemical entities and methods to link them to proteins, while maintaining their intrinsic TLR agonistic properties, have benne previously described. For some other agonists active compounds are known, but their protein-linking chemistries are not well described
Compositions and method described hereinabove use TLR agonists conjugated an anti-dendritic cell (DC)-specific antibody or binding fragment thereof. However, a skilled artisan will recognize that other non-TLR based ligands, agonists, or other moieties (for e.g. infammasome) may be conjugated to the antibody to achieve the desired in vivo or ex vivo effects.
It will be understood by the skilled artisan that the composition comprising the antigen-TLR agonist-antibody, may have different possible arrangements for the individual species or moieties. For example, the TLR agonist (or flagellin as used herein) may be linked to the heavy chain (ANTIBODY L CHAIN-ANTIGEN+H CHAIN-TLR AGONIST or the light-chain (ANTIBODY H CHAIN-ANTIGEN+L CHAIN-TLR AGONIST or ANTIBODY H CHAIN-ANTIGEN-TLR AGONIST+L CHAIN) of the anti-dendritic cell (DC)-specific antibody. The conjugate may also be prepared by linking the TLR agonist/flagellin through a dockerin-cohesin attachment (for e.g. ANTIBODY H CHAIN-ANTIGEN-DOCKERIN:COHESIN-FLGN). It will be understood that the flagellin used herein may be substituted or replaced by any TLR agonist that may be linked by similar chemical or physical methods. The present invention may also include the combination wherein the antigen and the antibody are a single fusion protein.
SSGLRINSAKDDAAGQAIANRFTANIKGLTQASRNANDGISIAQTTEGALNEINNNLQR
VRELAVQSANSTNSQSDLDSIQAEITQRLNEIDRVSGQTQFNGVKVLAQDNTLTIQVG
ANDGETIDIDLKQINSQTLGLDSLNVQ
QPELAEAAAKTTENPLQKIDAALAQVDALRS
DLGAVQNRFNSAITNLGNTVNNLSEARSRIEDSDYATEVSNMSRAQILQAS
Bold is the N-terminal part of phase-2 flagellin [Salmonella enterica] gb|AAL30512.1|AF425736—1 residues 14-161.
Underlined is the C-terminal part of phase-2 flagellin [Salmonella enterica] gb|AAL30512.1|AF425736—1 residues 405-484.
Italics is a flexible linker sequence from gb|AAT79550.1| cellulosomal anchoring scaffoldin B precursor [Bacteroides cellulosolvens].
The amino terminus up to the first AS sequence is the heavy chain of mouse Anti-DCIR—9E8 variable region fused to −hIgG4H constant region. AS sequences in bold-italics are joining sequences from construction of the expression vector.
When co-transfected with appropriate L chain expression vector into mammalian cells (e.g., CHO—S cells) this vector directs efficient secretion of a typical embodiment of a DC-targeting agent linked to a flagellin-based adjuvant.
LRSATLTEEKILNADTDGNGTVNSTDLNYLKKYILRVISVFPAEGNKPPTPTPTKTPVATPSPTQPL
FTPSFKDVT
IERLSSGLRINSAKDDAAGQAIANRFTANIKGLTQASRNANDGISIAQTT
EGALNEINNNLQRVRELAVQSANSTNSQSDLDSIQAEITQRLNEIDRVSGQTQFNGVK
VLAQDNTLTIQVGANDGETIDIDLKQINSQTLGLDSLNVQ
QPELAEAAAKTTENPLQ
KIDAALAQVDALRSDLGAVQNRFNSAITNLGNTVNNLSEARSRIEDSDYATEVSNMSRAQI
LQAS
Italics are |YP—001036450.1| alpha-L-arabinofuranosidase B [Clostridium thermocellum ATCC 27405| residues 166-274—this is a dockerin domain that functions fully for binding (e.g., cohesin-antigen fusions) when fused between other domains.
Bold is the N-terminal part of phase-2 flagellin [Salmonella enterica] gb|AAL30512.1|AF425736—1 residues 14-161.
Underlined is the C-terminal part of phase-2 flagellin [Salmonella enterica] gb|AAL30512.1|AF425736—1 residues 405-484.
AS sequences in bold-italics are joining sequences from construction of the expression vector.
When co-transfected with appropriate L chain expression vector into mammalian cells (e.g., CHO—S cells) this vector directs efficient secretion of a typical embodiment of a DC-targeting agent linked to a flagellin-based adjuvant and linked to cohesin-antigen via the dockerin domain. In related embodiments—any desired antigen can also be directly fused in place of the dockerin domain.
SGPLKAEIAQRLEDVFAGKNTDLEVLMEWLKTRPILSPLTKGIL
GFVFTLTVPSERGLQRRRFVQNALNGNGDPNNMDKAVKLYR
KLKREITFHGAKEIALSYSAGALASCMGLIYNRMGAVTTEVAFG
LVCATCEQIADSQHRSHRQMVTTTNPLIRHENRMVLASTTAKA
MEQMAGSSEQAAEAMDIASQARQMVQAMRTIGTHPSSSAGL
KDDLLENLQAYQKRMGVQMQRFKLEHHHHHH
Bold is the cohesin domain showing an underlined single C to A change that maintains dockerin binding and 3 C residues (bold-underlined) that permit site-specific maleimide linkage of TLRL adducts. Underlined is the Flu M1 antigen sequence. AS sequences in bold-italics are joining sequences from construction of the expression vector.
In related forms—any cohesin-antigen with free cys residues can be conveniently decorated with TLR7-L compound and linked with any anti-DC receptor-dockerin-antigen vaccine.
NSNPKPNP
C
QTPTNTISVTPTNNSTPTNNSNPKPC
P
Bold is a flexible linker sequence bearing two C residues (underlined) for site-specific linking TLRL adducts. When co-transfected with appropriate L chain expression vector into mammalian cells (e.g., CHO—S cells) this vector directs efficient secretion of a typical embodiment of a DC-targeting agent linked to a chemical-based adjuvant. In related embodiments—other vectors can be prepared with any desired antigen directly fused to the C-terminal codon. AS sequences in bold-italics are joining sequences from construction of the expression vector. Italics is a flexible linker (supra).
CDFVYSYDPNVLEIIEIEPGDIIVDPNPDKSFDTAVYPDRKIIVFLFAED
SGTGAYAITKDGVFATIVAKVKEGAPNGLSVIKFVEVGGFANNDLVE
QKTQFFDGGVNVGDTTEPATPTTPVTTPTTTDDLDA
IERLS
SGLRINSAKDDAAGQAIANRFTANIKGLTQASRNANDGISIAQTTEGALN
EINNNLQRVRELAVQSANSTNSQSDLDSIQAEITQRLNEIDRVSGQTQF
NGVKVLAQDNTLTIQVGANDGETIDIDLKQINSQTLGLDSLNVQASQPE
LAEAAAKTTENPLQKIDAALAQVDALRSDLGAVQNRFNSAITNLGNTVN
NLSEARSRIEDSDYATEVSNMSRAQILQAS
Italics is the cohesin domain. Bold is the N-terminal part of phase-2 flagellin [Salmonella enterica] gb|AAL30512.1|AF425736—1 residues 14-161. Underlined is the C-terminal part of phase-2 flagellin [Salmonella enterica] gb|AAL30512.1|AF425736—1 residues 405-484. AS sequences in bold-italics are joining sequences from construction of the expression vector. This form permits linking of functional Flgn to any anti-DC receptor-Dockerin-antigen vaccine.
Some other non-limiting examples of constructs with different DC-specific antibodies or fragments are presented herein below:
The antigens of the present invention comprises one or more viral antigens or peptides from adenovirus, retrovirus, picornavirus, herpesvirus, rotaviruses, hantaviruses, coronavirus, togavirus, flavirvirus, rhabdovirus, paramyxovirus, orthomyxovirus, bunyavirus, arenavirus, reovirus, papilomavirus, parvovirus, poxvirus, hepadnavirus, or spongiform virus, HIV, CMV, hepatitis A, B, and C, influenza; measles, polio, smallpox, rubella; respiratory syncytial, herpes simplex, varicella zoster, Epstein-Barr, Japanese encephalitis, rabies, flu, or cold viruses. The antigen is selected from: Nef (66-97): VGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGL (SEQ ID NO: 136); Nef (116-145): HTQGYFPDWQNYTPGPGVRYPLTFGWLYKL (SEQ ID NO: 137); Gag p17 (17-35): EKIRLRPGGKKKYKLKHIV (SEQ ID NO: 138); Gag p17-p24 (253-284): NPPIPVGEIYKRWIILGLNKIVRMYSPTSILD (SEQ ID NO: 139); and/or Pol 325-355 (RT 158-188) is: AIFQSSMTKILEPFRKQNPDIVIYQYMDDLY (SEQ ID NO: 140). In one aspect the said antigen is 19 to 32 residues and is selected from a cytotoxic T lymphocyte (CTL) epitope identified in the HIV-1 Nef, Gag and Env proteins presented in the context of MHC-class I molecules. In another aspect, the Ag is selected from HIV gp120, gp41, Gag, p17, p24, p2, p′7, p1, p6, Tat, Rev, PR, RT, IN, Vif, Vpr, Vpx, Vpu and Nef.
In another aspect the antigen is selected from tumor associated antigens selected from CEA, prostate specific antigen (PSA), HER-2/neu, BAGE, GAGE, MAGE 1-4, 6 and 12, MUC-related protein (Mucin) (MUC-1, MUC-2, etc.), GM2 and GD2 gangliosides, ras, myc, tyrosinase, MART (melanoma antigen), MARCO-MART, cyclin B1, cyclin D, Pmel 17(gp100), GnT-V intron V sequence (N-acetylglucoaminyltransferase V intron V sequence), Prostate Ca psm, prostate serum antigen (PSA), PRAME (melanoma antigen), β-catenin, MUM-1-B (melanoma ubiquitous mutated gene product), GAGE (melanoma antigen) 1, BAGE (melanoma antigen) 2-10, c-ERB2 (Her2/neu), EBNA (Epstein-Barr Virus nuclear antigen) 1-6, gp75, human papilloma virus (HPV) E6 and E7, p53, lung resistance protein (LRP), Bcl-2, and Ki-67. In another aspect, the Ag is selected from tumor associated antigens comprising antigens from leukemias and lymphomas, neurological tumors such as astrocytomas or glioblastomas, melanoma, breast cancer, lung cancer, head and neck cancer, gastrointestinal tumors, gastric cancer, colon cancer, liver cancer, pancreatic cancer, genitourinary tumors such cervix, uterus, ovarian cancer, vaginal cancer, testicular cancer, prostate cancer or penile cancer, bone tumors, vascular tumors, or cancers of the lip, nasopharynx, pharynx and oral cavity, esophagus, rectum, gall bladder, biliary tree, larynx, lung and bronchus, bladder, kidney, brain and other parts of the nervous system, thyroid, Hodgkin's disease, non-Hodgkin's lymphoma, multiple myeloma and leukemia.
The Ag is selected from at least one of:
In another aspect, the Ag is selected from at least one of:
In yet another aspect, the Ag is selected from at least one of:
In another aspect, the Ag is selected from at least one of:
In another aspect, the Ag is 19 to 32 amino acids long. In another aspect, the Ag is 17 to 60 amino acids long and is selected from a cytotoxic T lymphocyte (CTL) epitope identified in PSA or cyclin 1
In another aspect, the cancer peptides are selected from tumor associated antigens selected from CEA, prostate specific antigen (PSA), HER-2/neu, BAGE, GAGE, MAGE 1-4, 6 and 12, MUC-related protein (Mucin) (MUC-1, MUC-2, etc.), GM2 and GD2 gangliosides, ras, myc, tyrosinase, MART (melanoma antigen), MARCO-MART, cyclin B1, cyclin D, Pmel 17(gp100), GnT-V intron V sequence (N-acetylglucoaminyltransferase V intron V sequence), Prostate Ca psm, prostate serum antigen (PSA), PRAME (melanoma antigen), β-catenin, MUM-1-B (melanoma ubiquitous mutated gene product), GAGE (melanoma antigen) 1, BAGE (melanoma antigen) 2-10, c-ERB2 (Her2/neu), EBNA (Epstein-Barr Virus nuclear antigen) 1-6, gp75, human papilloma virus (HPV) E6 and E7, p53, lung resistance protein (LRP), Bcl-2, and Ki-67.
Preparation of Cells: Apheresis Procedures were Performed on Healthy Individuals after informed consent was collected. This protocol was reviewed and approved by the Baylor Research Institute Institutional Review Board. PBMCs were purified from apheresis blood samples and used after cryopreservation. Monocyte-derived IFNa-DCs were prepared from frozen human monocytes (elutriation fraction 5, Lemarie et al, J. Immunological Methods, 2007) cultured with GM-CSF (100 ng/ml) and IFNa (500 U/ml)) (Salluto et al, J. Exp. Med) for 3 days in Cellgenix.
Extracellular cytokine secretion assay. PBMCs or monocyte-derived IFNa-DCs (2×106 cells/ml, 200 μl/well) were cultured in cRPMI containing 10% human AB serum, 2 mM L-glutamine, 50 U penicillin, 50 μg/ml streptomycin, 1× essential amino acids, 25 mM hepes, 55 μLLM 2-mercapto-ethanol with DC-targeting vaccines and TLR ligands of interest or left unstimulated (negative control) for 24 h, at 37° C. and 5% CO2. Then culture supernatants were harvested and then the secreted cytokines were measured in the culture supernatants using BioPlex200 Luminex (BioRad).
It is contemplated that any embodiment discussed in this specification can be implemented with respect to any method, kit, reagent, or composition of the invention, and vice versa. Furthermore, compositions of the invention can be used to achieve methods of the invention.
It may be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.
All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.
As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, MB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it may be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
U.S. Patent Application Publication No. 20090004194: TLR Agonist (Flagellin)/CD40 Agonist/Antigen Protein and DNA Conjugates and use Thereof for Inducing Synergistic Enhancement in Immunity.
U.S. Patent Application Publication No. 20080220011: Use of Flagellin in Tumor Immunotherapy.
U.S. Patent Application Publication No. 20080248068: Use of Flagellin as an Adjuvant for Vaccine.
U.S. Pat. No. 7,404,963: Flagellin-Based Adjuvants and Vaccines.
This application is a non-provisional application of U.S. provisional patent application No. 61/373,763 filed on Aug. 13, 2010 and entitled “Novel Vaccine Adjuvants Based on Targeting Adjuvants to Antibodies Directly to Antigen-Presenting Cells” the entire contents of which is incorporated herein by reference.
This invention was made with U.S. Government support under Contract Nos. 1 U19 AI057234 awarded by the National Institutes of Health (NIH)/National Institute for Allergy and Infectious Diseases (NIAID). The government has certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
61373763 | Aug 2010 | US |