Nozzle apparatus having a scraper for the application of the foam treatment of tissue webs

Information

  • Patent Grant
  • 6730171
  • Patent Number
    6,730,171
  • Date Filed
    Monday, November 5, 2001
    23 years ago
  • Date Issued
    Tuesday, May 4, 2004
    20 years ago
  • CPC
  • US Classifications
    Field of Search
    • US
    • 427 243
    • 427 244
    • 427 245
    • 427 356
    • 427 358
    • 226 95
    • 226 97
    • 226 1
    • 242 4193
    • 242 61511
    • 162 265
    • 162 135
    • 118 419
    • 118 413
    • 118 410
    • 118 50
    • 118 123
    • 118 122
    • 239 432
    • 239 590
    • 239 518
    • 239 524
    • 239 521
  • International Classifications
    • B05C302
    • Term Extension
      54
Abstract
The present invention is a foam applicator system for applying foam to a tissue web. The foam applicator system comprises a foam applicator capable of applying a liquid-based composition to a tissue web. The foam applicator includes an extrusion head comprising a first nozzle bar and a second nozzle bar and having an inner surface and an outer surface. A first end of a flexible scraper is operatively associated with the first nozzle bar of the extrusion head. A second end of the flexible scraper outward from the first end of the flexible scraper. The foam applicator system may also comprise a vacuum slot positioned opposing the extrusion head with the tissue web therebetween.
Description




BACKGROUND OF THE INVENTION




Consumers use tissue products for a wide variety of applications. For example, various types of tissue products may be used, such as facial tissues, bath tissues, paper towels, napkins, wipes, etc. In many instances, various types of liquid-based compositions, such as softening compositions, lotions, friction reducing agents, adhesives, strength agents, etc., are also applied to one or tissue webs of the tissue product. For example, a tissue web is often softened through the application of a chemical additive (i.e., softener). However, one problem associated with some liquid-based compositions is the relative difficulty in uniformly applying the composition to the tissue web of the tissue product. Moreover, many application methods are relatively inefficient and thus may result in substantial waste of the composition being applied.




For instance, many softeners are made as an emulsion containing a particular solids content in solution. However, such liquid-based compositions are often difficult to adequately apply to a tissue web. In particular, when applying such a liquid-based composition, the tissue web can become undesirably saturated, thereby requiring the tissue web to be dried. Moreover, it is also difficult to uniformly spread the liquid-based composition on a tissue web in such a manner to provide adequate surface area coverage. In addition, some softeners contain components that cause the liquid-based composition to be formed as a solid or semi-solid. To facilitate application of these liquid-based compositions onto a tissue product, extensive heating may be required. Moreover, even after extensive heating, it may nevertheless be difficult to uniformly apply the composition to the tissue surface.




As such, a need currently exists for an improved apparatus for the application of a liquid-based composition to a tissue web.




SUMMARY OF THE INVENTION




In accordance with one embodiment of the present invention, an apparatus is provided for a more uniform application of applying a liquid-based composition to a tissue web which may have a basis weight less than about 120 grams per square meter. The apparatus comprises providing a papermaking furnish containing cellulosic fibers and forming a tissue web from the papermaking furnish.




In addition, the apparatus also includes applying a foam formed from a liquid-based composition to the tissue web while the tissue web has a solids consistency equal to or less than about 100% by dry weight of the tissue web. In some embodiments, for example, the foam is applied to the tissue web while the tissue web has a solids consistency between about 60% to about 95% by dry weight of the tissue web, and more specifically, between about 80% to about 90% by dry weight of the tissue web. In other embodiments, the foam is applied to the tissue web while the tissue web has a solids consistency between about 10% to about 35% by dry weight of the tissue web, and more specifically, between about 15% to about 30% by dry weight of the tissue web.




In other embodiments, the foam is applied to the tissue web while the tissue web has a solids consistency between about 30% to about 70% by dry weight of the tissue web, more specifically, between about 35% to about 60% by dry weight of the tissue web, and most specifically, between about 40% to about 55% by dry weight of the tissue web. In some instances of the present invention, the foam is applied to a dry or over-dried tissue web having a solids consistency equal to or greater than about 95%, more specifically equal to or greater than about 97%, more specifically equal to or greater than about 98%, and more specifically equal to or greater than 99%.




The apparatus also includes applying a foam to a wet tissue web using an extrusion head of a foam applicator wherein the extrusion head includes a flexible scraper. The flexible scraper assists in the provision a more uniform distribution of the foam on the wet tissue web.




In other embodiments, the apparatus also includes applying a foam to a dry tissue web using an extrusion head of a foam applicator wherein the extrusion head includes a flexible scraper. The flexible scraper assists in the provision a more uniform distribution of the foam on the dry tissue web.




The foam may generally be applied to the tissue web in a variety of ways. For instance, in one embodiment, the foam may be drawn toward the tissue web with a vacuum slot. Further, in some embodiments, the tissue web may be supported on a first moving foraminous surface that defines a nip with a second moving foraminous surface such that the foam is applied to the tissue web at the nip.




Other features and aspects of the present invention are described in more detail below.











BRIEF DESCRIPTION OF THE DRAWINGS




A full and enabling disclosure of the present invention, including the best mode thereof to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures in which:





FIG. 1

is a schematic flow diagram of one embodiment of the present invention for forming a tissue web.





FIG. 2

is a perspective view of a foam applicator that may be used to apply foam to a tissue web in accordance with one embodiment of the present invention.





FIG. 3

is a cross-section of a foam applicator that may be used to apply foam to a tissue web in accordance with one embodiment of the present invention.





FIG. 3



a


is a cross-section of a foam applicator that may be used to apply foam to a tissue web in accordance with another embodiment of the present invention.





FIG. 3



b


is a cross-section of a foam applicator that may be used to apply foam to a tissue web in accordance with another embodiment of the present invention.





FIG. 4

is a perspective view of one embodiment of top and bottom foam applicators used to foam a composition onto a tissue in accordance with the present invention.











Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the present invention.




DETAILED DESCRIPTION OF REPRESENTATIVE EMBODIMENTS




Reference now will be made in detail to the embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations may be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment, may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the appended claims and their equivalents.




In general, the present invention is directed to an apparatus for applying a liquid-based composition to a tissue web of a tissue product. In particular, the apparatus of the present invention involves applying the liquid-based composition as a foam during the papermaking process to promote uniform application and to enhance efficiency. As used herein, the term “foam” generally refers to a porous matrix, which is an aggregate of hollow cells or bubbles, the walls of which contain liquid material. The cells may be interconnected to form channels or capillaries within the foam structure wherein such channels or capillaries facilitate liquid distribution within the foam.




A “liquid-based” composition may be foamed onto the tissue web. As used herein, a liquid-based composition generally refers to any composition that is capable of existing in a liquid state. In particular, a liquid-based composition may exist naturally in a liquid state, or may require liquid-enhancing aids, such as heating, foaming aids (e.g., surfactants), etc., to achieve such a liquid state. Moreover, a “liquid-based” composition also includes emulsions having a certain solids content. Some examples of liquid-based compositions that may be applied to a tissue web may include, but are not limited to, softening agents, wet-strength agents, binders, adhesives, friction-reducing agents, and the like.




Besides the components mentioned above, a variety of other materials may also be utilized in conjunction with a liquid-based composition that is foamed onto a tissue web in accordance with the present invention. In fact, any material may be added to the liquid-based composition as long as the material does not substantially affect the ability of the liquid-based composition to be formed into a foam. In particular, a liquid-based composition may often act as an effective carrier for various active ingredients desired to be applied to a tissue web.




For example, in one embodiment, a variety of foaming aids may be applied to the liquid-based composition. Foaming aids may be useful in facilitating the generation of foam. A foaming aid may also be useful in stabilizing existing foam. In general, any of a variety of foaming aids may be applied to the liquid-based composition. In particular, foaming aids that have a low critical miscelle concentration, are cationic and/or amphoteric, and have small bubble sizes are typically utilized. Some examples of suitable foaming aids include, but are not limited to, fatty acid amines, amides, and/or amine oxides; fatty acid quaternary compounds; electrolytes (to help achieve foam stability); and the like. Some commercially available foaming aids that are suitable in the present invention are Mackernium 516 and Mackam 2C made by McIntyre Group, Ltd. When utilized, the foaming aids are generally incorporated into the liquid-based composition in amounts up to about 20% by weight of the liquid-based composition, and in some embodiments, between about 2% by weight to about 15% by weight. Other suitable foaming aids are described in U.S. Pat. No. 4,581,254 issued to Cunningham et al., which is incorporated herein in its entirety by reference thereto for all purposes (hereinafter referred to as the “Cunningham et al. reference”).




Still other examples of suitable materials that may be added to a liquid-based composition for application to a tissue web are disclosed in U.S. Pat. No. 5,869,075 issued to Krzysik, which is incorporated herein in its entirety by reference for all purposes. For instance, some of such materials include, but are not limited to: anti-microbial agents; odor absorbers; masking fragrances; anti-septic actives; anti-oxidants; astringents—cosmetic (induce a tightening or tingling sensation on skin); astringent—drug (a drug product which checks oozing, discharge, or bleeding when applied to skin or mucous membrane and works by coagulating protein); biological additives (enhance the performance or consumer appeal of the product); colorants (impart color to the product); emollients (help to maintain the soft, smooth, and pliable appearance of the skin by their ability to remain on the skin surface or in the stratum corneum to act as lubricants, to reduce flaking, and to improve the skin's appearance); external analgesics (a topically applied drug that has a topical analgesic, anesthetic, or antipruritic effect by depressing cutaneous sensory receptors, of that has a topical counterirritant effect by stimulating cutaneous sensory receptors); film formers (to hold active ingredients on the skin by producing a continuous film on skin upon drying); humectants (increase the water content of the top layers of the skin); natural moisturizing agents (NMF) and other skin moisturizing ingredients known in the art; opacifiers (reduce the clarity or transparent appearance of the product); skin conditioning agents; skin exfoliating agents (ingredients that increase the rate of skin cell turnover such as alpha hydroxy acids and beta hydroxyacids); skin protectants (a drug product which protects injured or exposed skin or mucous membrane surface from harmful or annoying stimuli); and, the like.




In addition, the liquid-based composition may be formed into a foam according to any foam-forming technique known in the art. For instance, in one embodiment, a liquid-based composition may be metered to a foaming system where it may be combined with a gas, such as compressed air, in various proportions. For example, to ensure that the resulting foam is generally stable, the ratio of air volume to liquid volume in the foam (i.e., blow ratio) may be greater than about 3:1, and in some embodiments between about 5:1 to about 180:1. In some embodiments, a blow ratio between about 150:1 to about 180:1 is utilized, while in other embodiments, a blow ratio between about 15:1 to about 25:1 is utilized. For instance, in one embodiment, a blow ratio of about 30:1 may be obtained from a liquid flow rate of 113 grams per minute and an air flow rate of 3400 cubic centimeters per minute. In another embodiment, a blow ratio of about 20:1 may be obtained from a liquid flow rate of 240 grams per minute and an air flow rate of 4800 cubic centimeters per minute.




Within the foaming system, a foam generator may combine the air and the liquid-based composition at a certain energy so that a foam may form. In one embodiment, for example, the foam generator rotates at a certain speed so as to cause the liquid-based composition to pass through a series of edges, which allow trailing eddy currents of air to entrain into the liquid-based composition. In particular, the foam generator may operate at speeds from about 300 revolutions per minute (rpm) to about 700 rpm, and more particularly from about 400 rpm to about 600 rpm. For example, suitable foam generators are described in U.S. Pat. No. 4,237,818 issued to Clifford et al., which is incorporated herein in its entirety by reference thereto for all purposes (hereinafter referred to at the “Clifford et al. reference”). Moreover, one commercially available foam generator that may be utilized in the present invention may be obtained from Gaston Systems, located in Stanley, N.C.




The characteristics of the resulting foam may vary, depending on the parameters of the foam generator utilized, the ratio of the volume of gas to the volume of the liquid-based composition, etc. For instance, in some embodiments, the foam may have a “half-life” that allows the foam to travel from the foam generator to an applicator before degenerating. In some embodiments, a foam bubble may have a half-life of greater than about 3 minutes, more specifically, from about 3 minutes to about 30 minutes, and most specifically, from about 15 minutes to about 25 minutes.




The half-life of the foam may generally be determined in the following manner. A calibrated beaker is positioned on a scale and placed under a 500 cubic centimeter separator funnel. Approximately 50 grams of a foam sample is then collected into the separator funnel. As soon as all of the foam is placed in the funnel, a standard stop watch is started. When approximately 25 grams of liquid collects into the calibrated beaker, the time is stopped and recorded. This recorded time is the foam half-life.




In some instances, the average cell size, wall thickness, and/or density may also foster the stability of the foam. For instance, the foam may have a size, thickness, or density such as described in U.S. Pat. No. 4,099,913 issued to Walter et al. and U.S. Pat. No. 5,985,434 issued to Qin et al., which are both incorporated herein in their entirety by reference thereto for all purposes. For example, in one embodiment, the average cell size of the foam cell may be between about 10 microns to about 100 microns. Moreover, the average wall thickness of the foam cell may be between about 0.1 micron to about 30 microns.




After generation, the foam is then forced out of the foam generator, where it may travel via one or more conduits to a foam applicator to be applied to a tissue web. The diameter of the conduits, the length of the conduits, the pressure of the foam bubbles after exiting the foam generator, and the like, may all be controlled to vary the nature of foam application. For instance, in one embodiment, a conduit having an inner diameter between about 0.375 inches to about 1.5 inches may be utilized to process about 300 to about 3000 cubic centimeters of air per minute and about 20 to about 300 grams of liquid per minute. Moreover, in one embodiment, the length of the conduit may be about 50 feet in length. In addition, upon exiting the foam generator, the pressure of the foam bubbles may be from about 5 psi to about 90 psi, and more particularly from about 30 psi to about 60 psi.




As stated, once the foam exits the foam generator, it may then be supplied to a foam applicator. In general, any foam applicator that is capable of applying a foam, such as described above, onto a tissue web having a solids consistency that is equal to or less than about 100% by dry weight of the tissue web may be used in the present invention. Although not required, in some embodiments, due to the relative wetness of the tissue web being applied with foam, it is also desired that the foam applicator be capable of applying foam without substantially contacting the surface of the tissue web during foam application. For instance, in some instances, the foam applicator may be positioned less than about 2 inches from the upper surface of the tissue web, and in some instances, less than about 1 inch from the upper surface of the tissue web. The foam applicator may be positioned about ½ inch from the upper surface of the tissue web, more specifically about ¼ inch from the upper surface of the tissue web, and most specifically about ⅛ inch from the upper surface of the tissue web.




As used herein, the term ‘lower surface’ of the tissue web is understood to mean the fabric side of the tissue web, that is the side of the tissue web that is in contact with the forming fabric during the formation of the tissue web. As used herein, the term ‘upper surface’ of the tissue web is understood to mean the air side of the tissue web, that is the side of the tissue web that was not in contact with the forming fabric during the formation of the tissue web.




One particular example of a foam applicator


40


that may be used in the present invention is shown in FIG.


2


. As depicted, the foam applicator


40


includes a distribution chamber


42


and an extrusion head


44


. The distribution chamber


42


may generally have any desired shape, size, and/or dimension. For instance, the distribution chamber


42


shown in

FIG. 2

has a parabolic shape. Other examples of suitable distribution chambers are described in the Clifford et al. reference. Moreover, it should also be understood that any method or apparatus for applying a foam to a tissue web may be used in the present invention, and that the foam applicator


40


depicted and described herein is for illustrative purposes only.




As the foam enters the distribution chamber


42


from a conduit


46


, it is initially forced upward and over an internal baffle


43


to assure that any decaying foam collects therein for automatic draining. Thereafter, it is forced downward, as indicated by the arrows in

FIG. 2

, through the distribution chamber


42


to the extrusion head


44


. In general, extrusion heads having any of a variety of shapes and sizes may be used in the present invention. In the preferred embodiment of the present invention, a “straight slot” extrusion head, such as described in the Clifford, et al. reference and the Cunnigham, et al. reference, is utilized. As used herein, the straight slot extrusion head generally refers to an extrusion head generally


44


having parallel nozzle bars


48


and


50


. In one embodiment, the straight slot extrusion head


44


includes two parallel nozzle bars, a first nozzle bar


48


and a second nozzle bar


50


, that form an extrusion slot


52


which is generally between about 0.025 inches to about 0.5625 inches in width, and in some embodiments, between about 0.050 inches to about 0.0626 inches in width. For instance, in one embodiment, the width of the extrusion slot


52


is about 0.13 inches. In another embodiment, the width of the extrusion slot


52


is about 0.05 inches.




Moreover, the length of the first and second nozzle bars


48


and


50


are typically such that the extrusion slot


52


has a length from about 0.125 inches to about 6 inches in the cross direction. The length of the extrusion slot


52


, however, may be varied as desired to adjust the tissue web handling land area. For example, in one embodiment, the length of the extrusion slot


52


may be about 0.187 inches.




The first nozzle bar


48


of the extrusion head


44


includes a flexible scraper


54


having a lower surface


69


adjacent the wet tissue web


15


(or in some cases, the dried tissue web


16


) and an opposing upper surface


68


. The first end


56


of the flexible scraper


54


may be attached to the outer surface


66


of the extrusion head


44


, to the inner surface


60


of the first nozzle bar


48


, or to the outer surface


62


of the first nozzle bar


48


. (See

FIGS. 3

,


3




a


, and


3




b


.) The second end


64


of the flexible scraper


54


extends beyond the first nozzle bar


48


. It is understood that the flexible scraper


54


may be attached to the extrusion head


44


in any configuration to achieve the positioning of the second end


64


as shown in

FIGS. 3

,


3




a


, and


3




b


. It is understood that the discussion relating to the treatment of the wet tissue web


15


is equally applicable to the treatment of the dried tissue web


16


.




The length of flexible scraper


54


extends beyond the first nozzle bar


48


by at least the distance equal to the distance between the extrusion head


44


and the wet tissue web


15


. Generally, the length of the flexible scraper


54


extending beyond the first nozzle bar


48


by a distance that is between about {fraction (1/16)} inch to about 1 inch longer than the distance between the extrusion head


44


and the upper surface of the wet tissue web


15


, and in some embodiments, between about ⅛ inch to 1 inch in length longer than the distance between the extrusion head


44


and the upper surface of the wet tissue web


15


. According to other embodiments of the present invention, the length of the flexible scraper


54


extending beyond the first nozzle bar


48


by a distance between about ⅛ inch to about ½ inch longer than the distance between the extrusion head


44


and the upper surface of the wet tissue web


15


, and more specifically between about ¼ inch to about ½ inch longer than the distance between the extrusion head


44


and the upper surface of the wet tissue web


15


.




For instance, in one embodiment, the length of the flexible scraper


54


extending beyond the extrusion head


44


is about ½ inch longer than the distance between the extrusion head


44


and the upper surface of the wet tissue web


15


. In another embodiment, the length of the flexible scraper


54


extending beyond the extrusion head


44


is about ¼ inch longer than the distance between the extrusion head


44


and the upper surface of the wet tissue web


15


. The distance between the extrusion head


44


and the moving wet tissue web


15


and the length of the flexible scraper


54


that extends beyond the first nozzle bar


48


may be adjusted to ensure an optimum benefit of the flexible scraper


54


.




The flexible scraper


54


may be made out of any of the following materials: polyester film such as MYLAR; plastic; rubber; metal; resin; polytetrafluoroethylene such as TEFLON; and any other material known in the art which is flexible, durable, and liquid impermeable. In various embodiments, the flexible scraper


54


has a thickness of between about 0.003 inch to about 0.015 inch, and in some embodiments, between about 0.005 inch to about 0.015 inch. According to another embodiment of the present invention, the flexible scraper


54


has a thickness of between about 0.005 inch to about 0.010 inch. For instance, in one embodiment, the thickness of the flexible scraper


54


is about 0.003 inch. In another embodiment, the thickness of the flexible scraper


54


is about 0.005 inch.




In accordance with this configuration, the second end


64


of the flexible scraper


54


is in contact with and, in some cases, deforms into a bent configuration by the higher points of the surface of the moving wet tissue web


15


. The foam flows down the lower surface


69


of the flexible scraper


54


where the foam is deposited onto the wet tissue web


15


(or in some cases, the dried tissue web


16


). The second end


64


causes the foam, thus the composition, to be more uniformly distributed over the surface of the wet tissue web


15


from the extrusion head


44


. The foam may be distributed into the lower points as well as the higher points of the surface of the moving wet tissue web


15


. The foam, using the teachings of the present invention, may be formulated and distributed so as to deposit the foam on the higher points of the moving wet web


15


. In other embodiments of the present invention, the foam may be distributed in the lower points of the moving wet web


15


.




Many factors may affect operation of the foam applicator


40


. The performance of the flexible scraper


54


may be enhanced by the optimization of these factors. For example, various attributes of the flexible scraper


54


, such as the thickness of the flexible scraper


54


, the length of the flexible scraper


54


, the materials making up the flexible scraper


54


, and/or the stiffness of the flexible scraper


54


, may be adjusted or otherwise chosen to affect the operation of the foam applicator


40


. The foam applicator


40


needs to be able to apply the foam to the wet tissue web


15


while the flexible scraper


54


applies with enough force to disrupt or disintegrate the foam and distribute the foam or liquid-based composition over the wet tissue web


15


without disturbing or damaging the wet tissue web


15


. At the same time, the foam applicator


40


must provide a uniform application of the foam onto the wet tissue web


15


.




The characteristics of the liquid-based composition, the foam, and/or the wet tissue web


15


may also affect the operation of the foam applicator


40


. It may be desirable to manipulate various attributes or the components of the liquid-based composition, the foam, and/or the wet tissue web


15


to enhance or otherwise alter the operation of the foam applicator


40


. Additionally, the speed of the papermaking machine, the flow rate of the foam, the topography of the wet tissue web


15


, the moisture content of the wet tissue web


15


, the integrity the wet tissue web


15


, the physical configuration of the extrusion head


44


or other portions of the foam applicator


40


may also be adjusted or otherwise chosen to affect the operation of the foam applicator


40


.




In situations where the chemical add-on of the liquid-based composition is not excessive, typically less than about 10% of the basis weight of the dried tissue web


16


, the application of the foam using standard foam applicators may have a tendency to contact, thereby coating, only a portion of the higher points, including such areas as the ridges or protuberances, in the surface of the wet tissue web


15


. This can result in little or no chemical treatment of the composition reaching the low points, including such areas as the valleys or recesses, in the surface of the wet tissue web


15


. In many instances, a uniform application of the foam to the higher points of the wet tissue web


15


is not achieved using standard foam applicators.




In some embodiments of the present invention, preferential treatment of the wet tissue web


15


may be accomplished using the extrusion head


44


, providing a dried tissue web


16


having the desired improved properties using a reduced amount of the liquid-based composition. The flexible scraper


54


may be adjusted so that the foam contacts only the high points of the surface of the wet tissue web


15


, providing a dried tissue web


16


having the desired improved properties while providing a more efficient use of composition. Such an application of the foam could be particularly advantageous in tissue products having multiple level surfaces such as rippled or embossed surfaces. It is understood that the discussion of the foam application via the applicator


40


pertaining to a wet tissue web


15


is equally applicable to a dried tissue web


16


.




In accordance with the present invention, as shown in

FIG. 3

, the foam applicator


40


, such as described above, may be positioned at a variety of locations within a papermaking process to apply foam to a wet tissue web


15


. However, although the location of the foam applicator


40


is not critical, it is typically desired that the foam applicator


40


be positioned such that foam is applied when the wet tissue web


15


has a solids consistency less than about 95% by dry weight of the wet tissue web


15


, and in some embodiments, less than about 90% by dry weight of the wet tissue web


15


.




In embodiments where the wet tissue web


15


is not supported by a fabric, it may be desirable to provide an optional fabric that is more rigid than the wet tissue web


15


to carry the wet tissue web


15


at the time of the foam application. The optional fabric may ensure a more constant distance between the extrusion head


44


and the wet tissue web


15


, thereby providing a more consistent application of the foam. An optional web handling vacuum slot


32


may be utilized to more firmly hold the wet tissue web


15


on a fabric during the application of the foam to the wet tissue web


15


.




The optional web handling vacuum slot


32


may be positioned to extend across the full width of the wet tissue web


15


. In other embodiment so the present invention, the web handling vacuum slot


32


may be positioned along one or both edges of the wet tissue web


15


. The length of the web handling vacuum slot


32


positioned along each edge of the wet tissue web


15


is between about 3 inches and about 24 inches, more specifically of a length of between about 6 inches and about 18 inches, and most specifically of a length of between about 9 inches and about 18 inches. For instance, in one embodiment, the length of the web handling vacuum slot


32


positioned along at least one edge of the wet tissue web


15


is about 18 inches. In another embodiment, the length of the web handling vacuum slot


32


positioned along at least one edge of the wet tissue web


15


is about 12 inches.




The web handling vacuum slot


32


, as discussed below regarding the vacuum slot


28


, may generally be formed by a variety of devices that are capable of applying a negative pressure on the wet tissue web


15


, such as vacuum boxes, vacuum shoes, vacuum rolls, foils, or any other method known in the art. The web handling vacuum slot


32


may have a slot opening width between about 1 inch and about ⅛ inch, more specifically a width between about ¾ inch and about ¼ inch, and most specifically a width between about ¾ inch and about ½ inch. For instance, in one embodiment, the web handling vacuum slot


32


has a slot opening width of about ½ inch. In another embodiment, the web handling vacuum slot


32


has a slot opening width of about ¾ inch.




The web handling vacuum slot


32


may be utilized to reduce the “boundary air layer” surrounding the wet tissue web


15


. As used herein, a “boundary air layer” generally refers to a layer of air that is entrained by a moving fabric or tissue web supported on a fabric. Boundary air layers may be present at any speed at which a tissue machine is operated, including speeds of about 1,000 feet per minute, about 2,000 feet per minute, and 3,000 feet per minute or greater. For example, boundary air layers often occur at high linear speeds, such as at speeds above about 4,000 feet per minute, and in some embodiments, between about 4,000 feet per minute to about 6,000 feet per minute. Boundary air layers may sometimes disrupt foam application. As such, it is typically desired to minimize the boundary air layer to enhance the efficiency of foam application. In one embodiment, for example, the web handling vacuum slot


32


may be upstream from the foam applicator


40


to help minimize the boundary air layer. Further, various other mechanisms may also be utilized to minimize the boundary air layer, such as using deflecting mechanisms. Moreover, it should be understood that it may not be necessary to reduce the boundary air layer in all circumstances when applying a foam to a wet tissue web


15


in accordance with the present invention.




A vacuum slot


70


may be positioned to extend across the full width of the wet tissue web


15


in the cross direction of the wet tissue web


15


below the foam applicator


40


. It is understood that the vacuum slot


70


may be one continuous vacuum slot or made up of multiple vacuum slots positioned across the CD direction of the wet tissue web


15


. It is also understood that the length of the vacuum slot


70


in the CD direction may be of any value less than the CD width of the wet tissue web


15


. The vacuum slot


70


, as discussed above regarding the web handling vacuum slot


32


, may generally be formed by a variety of devices that are capable of applying a negative pressure on the wet tissue web


15


, such as vacuum boxes, vacuum shoes, vacuum rolls, foils, or any other method known in the art. The vacuum slot


70


may have a slot opening width between about 1 inch and about ⅛ inch, more specifically a width between about ¾ inch and about ¼ inch, and most specifically a width between about ¾ inch and about ½ inch. For instance, in one embodiment, the vacuum slot


70


has a slot opening width of about ½ inch. In another embodiment, the vacuum slot


70


has a slot opening width of about ¾ inch.




Although not required, the vacuum slot


70


may aid in drawing the foam toward or into the wet tissue web


15


. For instance, once formed, the foam bubbles generally remain under pressure until the instant of application to the wet tissue web


15


by the foam applicator


40


so that the liquid forming the bubbles may be blown onto the wet tissue web


15


by airlet(s) and/or nozzle(s) of the foam applicator


40


. As shown in

FIG. 3

, a vacuum slot


70


may draw these foam bubbles towards the wet tissue web


15


, thereby facilitating the application of the foam onto or into the wet tissue web


15


. It should be understood that other vacuum slot(s) located in various positions may be utilized in the present invention. Moreover, it should also be understood that a vacuum slot is not required to apply foam to the wet tissue web


15


.




The vacuum slot


70


may also be utilized to reduce the boundary air layer surrounding the wet tissue web


15


. In addition, the vacuum slot


70


assists with the deposition of the foam onto the wet tissue web


15


. The vacuum slot


70


also aids in the removal of the air that is entrained within the foam.




In some embodiments of the present invention, the vacuum slot


70


may be positioned such that the front edge


71


of the vacuum slot


70


extends beyond the second end


64


of the flexible scraper


54


in the machine direction where the second end


64


is positioned on the wet tissue web


15


. When placed in such a position, the vacuum slot


70


is able to also provide a cleaning function to the upper surface


68


of the flexible scraper


54


. During use of the flexible scraper


54


, dust and other matter may collect on the upper surface


68


of the flexible scraper


54


, thereby interfering with the operation of the flexible scraper


54


and the application of the foam to the wet tissue web


15


. The vacuum slot


70


with at least the front edge


71


positioned beyond the second end


64


of the flexible scraper


54


in the machine direction draws air from above the upper surface


68


of the flexible scraper


54


down over the upper surface


68


and through the wet tissue web


15


, thereby removing the matter that may have settled on the upper surface


68


. The front edge


71


of the vacuum slot


70


extends beyond the second end


64


of the flexible scraper


54


in the machine direction by a distance of between about 1 inch to about ⅛ inch, more specifically a distance of between about ¾ inch to about ¼ inch, and most specifically a distance of between about ¾ inch to about ½ inch. For instance, in one embodiment, the front edge


71


of the vacuum slot


70


extends beyond the second end


64


of the flexible scraper


54


in the machine direction by a distance of about ¾ inch. In another embodiment, the front edge


71


of the vacuum slot


70


extends beyond the second end


64


of the flexible scraper


54


in the machine direction by a distance of about ½ inch.




In some instances, the back edge


72


of the vacuum slot


70


is positioned within about 1 inch in front of to about 1 inch beyond (in the machine direction) the second end


64


of the flexible scraper


54


. The range of the distance of the back edge


72


of the vacuum slot


70


may be from about ¾ inch to about 0 inch in front of or beyond the second end


64


of the flexible scraper


54


, more specifically a distance of between about ¾ inch to about ⅛ inch, and most specifically a distance of between about ¾ inch to about ¼ inch. For instance, in one embodiment, the back edge


72


of the vacuum slot


70


may be adjusted to a distance of about ¾ inch in front of or beyond the second end


64


of the flexible scraper


54


. In another embodiment, the back edge


72


of the vacuum slot


70


may be adjusted to a distance of about ½ inch in front of or beyond the second end


64


of the flexible scraper


54


.




In general, any type of tissue construction can be applied with a foam composition in accordance with the present invention. For example, the tissue product can be a single or multi-ply tissue. Normally, the basis weight of a tissue product of the present invention is less than about 120 grams per square meter, particularly from about 5 grams per square meter to about 60 grams per square meter, particularly from about 10 grams per square meter to about 55 grams per square meter, and more particularly between about 10 grams per square meter to about 35 grams per square meter. In addition, one or more surfaces of the tissue can be provided with elevated regions (e.g., protrusions, impressions, or domes), such as described in more detail below.




A tissue web that can be used in the present invention can generally be formed by any of a variety of papermaking processes known in the art. In particular, it should be understood that the present invention is not limited to any particular papermaking process. In fact, any process capable of forming a paper or tissue web can be utilized in the present invention. For example, a papermaking process of the present invention can utilize creping, embossing, wet-pressing, through-drying, through-dry creping, uncreped through-drying, double creping, calendering, as well as other steps in forming the tissue product.




In this regard, one embodiment of a papermaking process, including some optional locations for one or more foam applicators


40


, is illustrated in

FIG. 1

as


30


,


36


,


38


,


84


,


90


,


92


, and


94


. It is understood that other locations may be used for foam application in accordance with the present invention as well. For simplicity, the various tensioning rolls schematically used to define the several fabric runs are shown but not numbered. In particular, the papermaking process depicted in

FIG. 1

utilizes an uncreped through-drying technique to form the tissue web. Examples of such a technique are disclosed in U.S. Pat. No. 5,048,589 issued to Cook et al.; U.S. Pat. No. 5,399,412 issued to Sudall et al.; U.S. Pat. No. 5,510,001 issued to Hermans et al.; U.S. Pat. No. 5,591,309 issued to Rugowski et al.; and, U.S. Pat. No. 6,017,417 issued to Wendt et al., which are incorporated herein in their entirety by reference thereto for all purposes. The U.S. Pat. No. 6,017,417 is hereinafter referred to at the “Wendt et al. reference”.




Uncreped through-drying generally involves the steps of: (1) forming a furnish of cellulosic fibers, water, and optionally, other additives; (2) depositing the furnish on a moving foraminous surface (e.g., belt, fabric, wire, etc.), thereby forming a tissue web on top of the moving foraminous surface; (3) subjecting the tissue web to through-drying to remove the water from the tissue web; and, (4) removing the dried tissue web from the moving foraminous surface. However, it should be understood that other variations of the embodiments described herein and other methods for forming a tissue web are equally suitable for use in the present invention. Moreover, it should also be understood that any other process known in the art for forming a tissue web may also be utilized in the present invention. For example, the papermaking process may utilize creping, embossing, wet-pressing, through-drying, through-dry creping, uncreped through-drying, double creping, calendering, as well as other known steps and/or papermaking devices (e.g., Yankee dryers) in forming the tissue web.




In this regard, referring again to

FIG. 1

, a papermaking headbox


10


may be used to inject or deposit a stream


11


of an aqueous suspension onto the forming fabric


12


. The aqueous suspension supplied by the headbox


10


may generally be formed from a variety of materials. In particular, a variety of natural and/or synthetic fibers may be used. For example, some suitable natural fibers may include, but are not limited to, nonwoody fibers, such as abaca, sabai grass, milkweed floss fibers, pineapple leaf fibers; softwood fibers, such as northern and southern softwood kraft fibers; and, hardwood fibers, such as eucalyptus, maple, birch, aspen, and the like. Illustrative examples of other suitable pulps include southern pines, red cedar, hemlock, and black spruce. Exemplary commercially available long pulp fibers suitable for the present invention include those available from Kimberly-Clark Corporation under the trade designations “Longlac-19”. In addition, furnishes including recycled fibers may also be utilized. Moreover, some suitable synthetic fibers may include, but are not limited to, hydrophilic synthetic fibers, such as rayon fibers and ethylene vinyl alcohol copolymer fibers, as well as hydrophobic synthetic fibers, such as polyolefin fibers.




The headbox


10


may be any papermaking headbox used in the art, such as a stratified headbox capable of producing a multilayered tissue web. For example, it may be desirable to provide relatively short or straight fibers in one layer of the tissue web to give a layer with high capillary pressure, while another layer contains relatively longer, bulkier, or more curled fibers for high permeability and high absorbent capacity and high pore volume. It may also be desirable to apply different chemical agents to separate layers of the tissue web to optimize dry and wet strength, pore space, wetting angle, appearance, or other properties of a tissue web. Further, multiple headboxes may be used to create a layered structure, as is known in the art.




As shown, with the aid of a roll


14


, the stream


11


is then transferred from the forming fabric


12


to a drainage fabric


13


, which serves to support and carry the newly-formed wet tissue web


15


downstream in the process as the wet tissue web


15


is partially dewatered to a solids consistency of about 10% by dry weight of the wet tissue web


15


. In some instances, additional dewatering of the wet tissue web


15


may be carried out, such as by a vacuum slot


28


, while the wet tissue web


15


is supported by the drainage fabric


13


.




In accordance with the present invention, a foam applicator


40


may be optionally positioned at a location


30


to supply foam to the wet tissue web


15


as it is carried on the drainage fabric


13


. For example, in some embodiments, the foam applicator


40


may be positioned less than about 2 inches from the upper surface of the wet tissue web


15


, and in some embodiments, less than about 1 inch from the wet tissue web


15


. In this embodiment, the consistency of the wet tissue web


15


being applied with foam is typically between about 10% to about 35%, and in some embodiments, between about 15% to about 30%. Due to the relatively high moisture content of the wet tissue web


15


, the foam applicator


40


may be configured to apply the foam in a manner such that it tends to migrate through the entire wet tissue web


15


. However, it should also be understood that the foam applicator


40


may also be configured to apply the foam primarily onto the surface of the wet tissue web


15


.




In some embodiments, a vacuum slot


28


formed, for example, by a vacuum roll, a vacuum box, and/or a vacuum shoe, may also be utilized in conjunction with the foam applicator


40


to aid in applying foam to the wet tissue web


15


. Although not required, vacuum slots


28


may aid in drawing the foam towards or into the wet tissue web


15


as described above regarding the vacuum slot


70


.




The vacuum slot


28


, as stated above, may generally be formed by a variety of devices that are capable of applying a negative pressure on the tissue web, such as vacuum boxes, vacuum shoes, vacuum rolls, foils, and any device know in the art. Moreover, the vacuum slot


28


formed by such devices may have any desired size, dimension, and/or shape desired. For example, in one embodiment, the vacuum slot


28


is formed by parallel bars that are spaced apart approximately 0.50 inches.




Besides being used to aid in foam application, vacuum slots may also be used for a variety of other purposes. For instance, the vacuum slot


28


may also be used to partially dewater the wet tissue web


15


, as is known in the art. However, it should be understood that one or more vacuum slots


28


may be positioned in a variety of other locations to assist in the reduction of a boundary air layer.




Referring again to

FIG. 1

, the wet tissue web


15


is then transferred from the drainage fabric


13


to a transfer fabric


17


that may travel at a slower speed than the drainage fabric


13


in order to impart increased stretch into the wet tissue web


15


. This is commonly referred to as “rush” transfer. One useful method of performing rush transfer is taught in U.S. Pat. No. 5,667,636 issued to Engel et al., which is incorporated herein in its entirety by reference thereto for all purposes. The relative speed difference between the drainage fabric


13


and the transfer fabric


17


may be from 0% to about 80%, in some embodiments from about 10% to about 60%, and in some embodiments, from about 10% to about 40%. The transfer may be carried out with the assistance of a vacuum shoe or roll such that the drainage fabric


13


and the transfer fabric


17


simultaneously converge and diverge at the leading edge of the vacuum slot of the vacuum shoe or roll.




Thereafter, the wet tissue web


15


is transferred from the transfer fabric


17


to a through-drying fabric


19


with the aid of a vacuum transfer roll or shoe. The through-drying fabric


19


may be traveling at about the same speed or a different speed relative to the transfer fabric


17


. For example, if desired, the through-drying fabric


19


may run at a slower speed to further enhance stretch. The vacuum transfer roll or shoe (negative pressure) may be supplemented or replaced by the use of positive pressure from the opposite side of the wet tissue web


15


to blow the wet tissue web


15


onto the next fabric.




In some embodiments, the through-drying fabric


19


may be a smoother fabric, such as Asten 934, 937, 939, 959 or Albany 94M. However, in other embodiments, it may be desired to form elevated regions and depressions into the wet tissue web


15


. To impart such elevated regions, in one embodiment, the through-drying fabric


19


may be a fabric having impression knuckles, such as described in the Wendt et al. reference. For example, when imprinted with elevations, the resulting tissue web can have between about 5 to about 300 protrusions per square inch. Moreover, the protrusions can have a height relative to the plane of the basesheet, as measured in the uncalendered state and uncreped state, of greater than about 0.1 mm, particularly greater than about 0.2 mm, more particularly greater than about 0.3 mm, and in most embodiments, from about 0.25 mm to about 0.6 mm.




Thereafter, a through-dryer


21


may accomplish the removal of moisture from the wet tissue web


15


by passing air through the wet tissue web


15


without applying any mechanical pressure. The through-drying process may also increase the bulk and softness of the wet tissue web


15


. In one embodiment, for example, the through-dryer


21


may contain a rotatable, perforated cylinder and a hood (not shown) for receiving hot air blown through perforations of the cylinder as through-drying fabric


19


carries the wet tissue web


15


over the upper portion of the cylinder. The heated air is forced through the perforations in the cylinder of the through-dryer


21


and removes the remaining water from the wet tissue web


15


. The temperature of the air forced through the wet tissue web


15


by the through-dryer


21


may vary, but is typically from about 300° F. to about 400° F.




While supported by the through-drying fabric


19


, the wet tissue web


15


may then be partially dried by the through-dryer


21


, such as, for example, to a solids consistency of less than about 95% by dry weight of the wet tissue web


15


, in some embodiments to a solids consistency of between about 60% to about 95% by dry weight of the wet tissue web


15


, and in some embodiments, to a solids consistency of between about 80% to about 90% by dry weight of the wet tissue web


15


.




In accordance with the present invention, a foam applicator


40


may optionally be positioned at or near the nip


35


formed by the through-drying fabric


19


and a fabric


23


. For example, in some embodiments, the foam applicator


40


may be positioned less than about 2 inches from the nip


35


, and in some embodiments, less than about 1 inch from the nip


35


. In this embodiment, the solids consistency of the wet tissue web


15


being applied with foam is typically between about 60% to about 95% by dry weight of the wet tissue web


15


, and in some embodiments, between about 80% to about 90%. Due to the relatively high moisture content of the wet tissue web


15


, the foam applicator


40


may be configured to apply the foam in a manner such that it tends to migrate through the entire wet tissue web


15


. However, it should also be understood that the foam applicator


40


may also be configured to apply the foam primarily onto the surface of the wet tissue web


15


.




In some instances, applying foam at a nip formed between two or more moving foraminous surfaces, such as the nip


35


formed between the through-drying fabric


19


and the fabric


23


, may facilitate the uniform application of foam to the wet tissue web


15


. In particular, when two moving surfaces form a nip, such as the nip


35


shown in

FIG. 1

, the motion of the surfaces typically creates an area of suction just above the nip. Thus, by locating a foam applicator


40


near this area of suction, foam dispensed by the applicator


40


is naturally drawn to the nip


35


and onto the wet tissue web


15


passing therethrough. As such, in accordance with the present invention, foam applicators may optionally be located at or near any nip formed by two or more moving foraminous surfaces to facilitate foam application.




Moreover, to further aid in the application of foam to the wet tissue web


15


, a vacuum slot


34


, such as described above, may also be utilized. Besides being used to aid in foam application, vacuum slots may also be used to partially dewater the wet tissue web


15


, to reduce the boundary air layer, etc.




After being dried by the through-dryer


21


and optionally applied with foam at the nip


35


, the wet tissue web


15


is then sandwiched between the through-drying fabric


19


and the fabric


23


to further dewater the wet tissue web


15


. In some instances, another through-dryer


25


may substantially dry the wet tissue web


15


by passing air therethrough without applying any mechanical pressure. For example, in some embodiments, the wet tissue web


15


may be dried to a consistency of about 95% or greater by the through-dryer


21


, thereby forming a dried tissue web


16


. The dried tissue web


16


may be carried on additional fabrics, such as transfer fabrics


86


and


88


as shown in FIG.


1


.




Foam may be applied to the dried tissue web


16


at the location


90


, at location


92


, or at the location


94


. The dried tissue web


16


may then be transferred to a winding reel


96


, or to various off-line processing stations, such as subsequent off-line calendering to improve the smoothness and softness of the dried tissue web


16


. In some instances of the present invention, the foam is applied to a dry or over-dried tissue web


16


having a solids consistency equal to or greater than about 95%, more specifically equal to or greater than about 96%, more specifically equal to or greater than about 97%, more specifically equal to or greater than 98%, and more specifically equal to or greater than about 99%.




In some embodiments of the foam applications of the present invention, the speed of the wet tissue web


15


and the dried tissue web


16


may be established such that the composition so applied does not dry or set before the dried tissue web


16


is wound on a parent roll or any other roll. The composition may then be partially transferred to the untreated surface of the dried tissue web


16


. A nip may be positioned to assist such a transfer.




Although the use of only one foam applicator


40


is described in detail herein, it should be understood that any number of foam applicators


40


may be used. For instance, as shown in

FIG. 4

, a first foam applicator


40




a


is shown as depositing a foam composition onto the top surface of the wet tissue web


15


, while a second applicator


40




b


is shown as depositing a foam composition on the bottom surface of the wet tissue web


15


. The second foam applicator


40




b


may be the same or different than the first foam applicator


40




a


. Moreover, although not required, it is typically desired that the first and second foam applicators


40




a


and


40




b


be positioned in a staggered configuration so that the wet tissue web


15


can be better deflected around the first and second foam applicators


40




a


and


40




b


. It should also be understood that additional foam applicators


40


may be utilized in conjunction with the first and second applicators


40




a


and


40




b


to deposit foam compositions onto the top and/or bottom surfaces of the wet tissue web


15


.




In other embodiments of the foam applications of the present invention, both surfaces of the wet tissue web


15


may be treated with the composition using the apparatus as disclosed herein. Both surfaces of the wet tissue web


15


may be treated with the at substantially the same time or one surface of the wet tissue web


15


may be treated with the composition and then the other surface of the wet tissue web


15


subsequently treated with the composition. In other embodiments of the present invention, one surface of the wet tissue web


15


is treated with one composition and the other surface of the wet tissue web


15


is treated with another composition.




A tissue web formed in accordance with the present invention may generally be formed into a tissue product in a variety of ways. For instance, in some embodiments, the tissue web may be used alone to form the tissue product (i.e., single-ply tissue product). In other embodiments, the tissue web may be utilized in conjunction with one or more other tissue webs to form the tissue product (i.e., multi-ply tissue product). Moreover, a tissue web of an individual ply of a tissue product may contain more than one fibrous layer such that the tissue web is stratified. Normally, the basis weight of the resulting tissue product is less than about 120 grams per square meter, in some embodiments from about 5 grams per square meter to about 70 grams per square meter, and in some embodiments, between about 10 grams per square meter to about 60 grams per square meter.




While the invention has been described in detail with respect to the specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily conceive of alterations to, variations of, and equivalents to these embodiments. Accordingly, the scope of the present invention should be assessed as that of the appended claims and any equivalents thereto.



Claims
  • 1. A foam applicator system for applying foam to a tissue web comprising:a foam applicator capable of applying a foam of a liquid-based composition to a tissue web having an upper surface, a lower surface, and a pair of opposing side edges comprising: a distribution chamber having an internal baffle and a conduit attached to the distribution chamber; and an extrusion head; the extrusion head comprising a first nozzle bar and a second nozzle bar, wherein the extrusion head has an inner surface and an outer surface; and, a flexible scraper having a first end and a second end wherein the first end of the flexible scraper is operatively associated with the first nozzle bar of the extrusion head and the second end of the flexible scraper extends outward from the first end of the flexible scraper, wherein the foam flowing into the distribution chamber from the conduit is initially forced upward and over the internal baffle prior to flowing down though the extrusion head and onto the tissue web so as to provide for collection of decaying foam in the distribution chamber.
  • 2. The foam applicator system as defined in claim 1, wherein the flexible scraper is made of materials selected from the group comprising: polyester film; plastic; rubber; metal; resin; polytetrafluoroethylene; and, combinations thereof.
  • 3. The foam applicator system as defined in claim 1, wherein the flexible scraper has a length extending beyond the foam applicator from between about 1 inch to about {fraction (1/16)} inch greater than the distance from the extrusion head to the upper surface of the tissue web during use.
  • 4. The foam applicator system as defined in claim 1, wherein the flexible scraper has a length extending beyond the foam applicator from between about 1 inch to about ⅛ inch greater than the distance from the extrusion head to the upper surface of the tissue web during use.
  • 5. The foam applicator system as defined in claim 1, wherein the flexible scraper has a length extending beyond the foam applicator from between about 1 inch to about {fraction (1/16)} inch greater than the distance from the extrusion head to the lower surface of the tissue web during use.
  • 6. The foam applicator system as defined in claim 1, wherein the flexible scraper has a length extending beyond the foam applicator from between about 1 inch to about ⅛ inch greater than the distance from the extrusion head to the lower surface of the tissue web during use.
  • 7. The foam applicator system as defined in claim 1, wherein the first nozzle bar comprises an inner surface and an outer surface.
  • 8. The foam applicator system as defined in claim 7, wherein the first end of the flexible scraper is attached to the inner surface of the first nozzle bar.
  • 9. The foam applicator system as defined in claim 7, wherein the first end of the flexible scraper is attached to the outer surface of the first nozzle bar.
  • 10. The foam applicator system as defined in claim 1, wherein the first end of the flexible scraper is attached to the outer surface of the extrusion head.
  • 11. The foam applicator system as defined in claim 1, wherein the flexible scraper has a thickness of about 0.003 inch to about 0.015 inch.
  • 12. The foam applicator system as defined in claim 1, wherein at least one web handling vacuum slot is positioned along at least one side edge the tissue web.
  • 13. The foam applicator system as defined in claim 12, wherein each web handling vacuum slot has a length of between about 3 inches to about 24 inches in the CD direction of the tissue web.
  • 14. The foam applicator system as defined in claim 1, wherein the tissue web is a wet tissue web.
  • 15. The foam applicator system as defined in claim 1, wherein the tissue web is a dried tissue web.
  • 16. A foam applicator system for applying foam to a tissue web comprising:a foam applicator capable of applying a foam of a liquid-based composition to a tissue web having an upper surface, a lower surface, and a pair of opposing side edges comprising: a distribution chamber having an internal baffle and a conduit attached to the distribution chamber; and an extrusion head; the extrusion head comprising a first nozzle bar and a second nozzle bar, wherein the extrusion head has an inner surface and an outer surface; and, a flexible scraper having a first end and a second end wherein the first end of the flexible scraper is operatively associated with the first nozzle bar of the extrusion head and the second end of the flexible scraper extends outward from the first end of the flexible scraper; and, a vacuum slot positioned opposing the extrusion head of the foam applicator such that the tissue web is positioned between the foam applicator and the vacuum slot, wherein the vacuum slot comprises a front edge and a back edge, wherein the foam flowing into the distribution chamber from the conduit is initially forced upward and over the internal baffle prior to flowing down though the extrusion head and onto the tissue web so as to provide for collection of decaying foam in the distribution chamber.
  • 17. The foam applicator system as defined in claim 16, wherein the flexible scraper is made of materials selected from the group comprising: polyester film; plastic; rubber; metal; resin; polytetrafluroethylene; and, combinations thereof.
  • 18. The foam applicator system as defined in claim 16, wherein the flexible scraper applies sufficient force to the foam dispensed from the foam applicator to disintegrate the foam.
  • 19. The foam applicator system as defined in claim 16, wherein the flexible scraper further comprises a lower surface adjacent the tissue web and an opposing upper surface such that the foam dispensed from the foam applicator flows over the lower surface of the flexible scraper to the tissue web.
  • 20. The foam applicator system as defined in claim 16, wherein the flexible scraper has a length extending beyond the foam applicator from between about 1 inch to about {fraction (1/16)} inch greater than the distance from the extrusion head to the upper surface of the tissue web during use.
  • 21. The foam applicator system as defined in claim 16, wherein the flexible scraper has a length extending beyond the foam applicator from between about 1 inch to about ⅛ inch greater than the distance from the extrusion head to the upper surface of the tissue web during use.
  • 22. The foam applicator system as defined in claim 16, wherein the flexible scraper has a length extending beyond the foam applicator from between about 1 inch to about {fraction (1/16)} inch greater than the distance from the extrusion head to the lower surface of the tissue web during use.
  • 23. The foam applicator system as defined in claim 16, wherein the flexible scraper has a length extending beyond the foam applicator from between about 1 inch to about ⅛ inch greater than the distance from the extrusion head to the lower surface of the tissue web during use.
  • 24. The foam applicator system as defined in claim 16, wherein the first nozzle bar comprises an inner surface and an outer surface.
  • 25. The foam applicator system as defined in claim 24, wherein the first end of the flexible scraper is attached to the inner surface of the first nozzle bar.
  • 26. The foam applicator system as defined in claim 24, wherein the first end of the flexible scraper is attached to the outer surface of the first nozzle bar.
  • 27. The foam applicator system as defined in claim 16, wherein the first end of the flexible scraper is attached to the outer surface of the extrusion head.
  • 28. The foam applicator system as defined in claim 16, wherein the flexible scraper has a thickness of about 0.003 inch to about 0.015 inch.
  • 29. The foam applicator system as defined in claim 16, wherein the front edge of the vacuum slot extends beyond the second end of the flexible scraper in the machine direction by a distance of at least 1 inch and the back edge of the vacuum slot does not extend beyond the second end of the flexible scraper.
  • 30. The foam applicator system as defined in claim 16, wherein the back edge of the vacuum slot extends beyond the second end of the flexible scraper in the machine direction by a distance of between about 0 inches to about 1 inch.
  • 31. The foam applicator system as defined in claim 16, wherein the vacuum slot extends across the CD width of the tissue web.
  • 32. The foam applicator system as defined in claim 16, wherein at least one web handling vacuum slot is positioned along at least one side edge the tissue web.
  • 33. The foam applicator system as defined in claim 32, wherein each web handling vacuum slot has a length of between about 3 inches to about 24 inches in the CD direction of the tissue web.
  • 34. The foam applicator system as defined in claim 16, wherein the tissue web is a wet tissue web.
  • 35. The foam applicator system as defined in claim 16, wherein the tissue web is a dried tissue web.
US Referenced Citations (67)
Number Name Date Kind
1163252 Millspaugh Dec 1915 A
2069322 Mellor et al. Feb 1937 A
2796846 Trist Jun 1957 A
2918899 Munton et al. Dec 1959 A
3030917 Brown et al. Apr 1962 A
3230928 Stalmuke Jan 1966 A
3273535 Krikorian Sep 1966 A
3348526 Neubauer Oct 1967 A
3690297 Dentch et al. Sep 1972 A
3884749 Pankoke May 1975 A
4023526 Ashmus et al. May 1977 A
4099913 Walter et al. Jul 1978 A
4118526 Gregorian et al. Oct 1978 A
4133917 Wallsten Jan 1979 A
4158076 Wallstén Jun 1979 A
4230746 Nahta Oct 1980 A
4237818 Clifford et al. Dec 1980 A
4263344 Radvan et al. Apr 1981 A
4279964 Heller Jul 1981 A
4288475 Meeker Sep 1981 A
4299186 Pipkin et al. Nov 1981 A
4369731 Damrau Jan 1983 A
4398494 Alheid Aug 1983 A
4435965 Sasseville, Roland E. et al. Mar 1984 A
4440105 Jeltema Apr 1984 A
4440808 Mitter Apr 1984 A
4497273 Mitter Feb 1985 A
4503804 Damrau Mar 1985 A
4556527 Sarcander Dec 1985 A
4562097 Walter et al. Dec 1985 A
4571360 Brown et al. Feb 1986 A
4581254 Cunningham et al. Apr 1986 A
4597831 Anderson Jul 1986 A
4735169 Cawston et al. Apr 1988 A
4746545 McIntyre May 1988 A
4761309 Embry Aug 1988 A
4762727 Voswinckel Aug 1988 A
4778477 Lauchenauer Oct 1988 A
4791879 Eklund et al. Dec 1988 A
4833748 Zimmer et al. May 1989 A
4871593 McIntyre Oct 1989 A
4887547 Sommer et al. Dec 1989 A
4982686 Long Jan 1991 A
5008131 Bakhshi Apr 1991 A
5009932 Klett et al. Apr 1991 A
5048589 Cook et al. Sep 1991 A
5145527 Clifford et al. Sep 1992 A
5227023 Pounder et al. Jul 1993 A
5316582 Dübel May 1994 A
5340609 Arthur et al. Aug 1994 A
5399412 Sudall et al. Mar 1995 A
5505997 Strong et al. Apr 1996 A
5510001 Hermans et al. Apr 1996 A
5591309 Rugowski et al. Jan 1997 A
5605719 Tench et al. Feb 1997 A
5632815 Damrau et al. May 1997 A
5654040 Matsunaga Aug 1997 A
5667636 Engel et al. Sep 1997 A
5869075 Krzysik Feb 1999 A
5904809 Rokman et al. May 1999 A
5985434 Qin et al. Nov 1999 A
6001178 Borgmann Dec 1999 A
6017417 Wendt et al. Jan 2000 A
6066208 Knop et al. May 2000 A
6103128 Koso et al. Aug 2000 A
6120887 Werenicz et al. Sep 2000 A
6238518 Rokman et al. May 2001 B1
Foreign Referenced Citations (11)
Number Date Country
199 41 194 Mar 2001 DE
0 117 212 Aug 1984 EP
0 195 458 Sep 1986 EP
0 196 576 Oct 1986 EP
0 211 815 Feb 1987 EP
0 935 955 Aug 1999 EP
1 149 947 Oct 2001 EP
4-123317 Apr 1992 JP
WO 9913158 Mar 1999 WO
WO 9919081 Apr 1999 WO
WO 0238865 May 2002 WO
Non-Patent Literature Citations (1)
Entry
Patent Cooperation Treaty Search Report from the International Search Authority, International Application No. PCT/US 02/33073 dated Jul. 1, 2003.