This invention relates to a nozzle assembly suitable for use in a cold gas dynamic spray system.
Cold gas dynamic spray systems are used to deposit a powder, typically a metallic material, onto a substrate, which is also typically metallic. A carrier gas and the metallic powder flow through a nozzle. The carrier gas intermingles with the powder and accelerates it to a desired velocity to adhere the powder to the substrate. Many different configurations of cold gas dynamic spray systems exist.
The nozzles are typically provided by a tubular member defining a venturi. The tubular member has internal frustoconical walls that define the venturi. The walls are subject to wear from the abrasive metallic powder that flows through venturi at high velocities. Machining the internal features of the venturi may be difficult. Further, it is difficult to access internal nozzle features during maintenance or to apply any wear resistant coatings. Moreover, prior art nozzles do not provide desired flexibility for depositing different powders or changing parameters affecting the deposit of the powder onto the substrate. Another problem with typical nozzles is that they only deposit material on a very small area of the substrate. As a result, many passes over the substrate are required to cover a desired area.
The substrate area to which the material is deposited must be cleaned or abraded so that they material will adhere to the area. Typically, a separate device is used to spray abrasive media at the area in preparation for depositing the powder onto the area, which increases the time required for the process. What is needed is a nozzle assembly that offers a more accessible and flexible design and that enables the material to be deposited onto the substrate more rapidly.
A cold gas dynamic spray system is provided that includes a powder feeder for providing a metallic powder. A carrier gas source provides a carrier gas. A nozzle assembly includes multiple plates secured to one another. One of the plates provides a nozzle profile, such as a venturi, having a gas carrier inlet receiving the carrier gas. The nozzle profile also provides a powder injection region receiving the metallic powder. In one example, a profile plate includes an aperture providing the venturi. The venturi includes converging and diverging portions joined by a throat. The carrier gas inlet is in communication with the converging portion upstream from the throat. The powder injection region is in communication with the diverging section downstream from the throat. The profile plate includes an end from which the intermixed metallic powder and carrier gas exit the nozzle assembly. The aperture includes walls defining an increasing width extending axially from a location where the powder is introduced to the carrier gas to the end for providing generally laminar flow of the intermixed carrier gas and metallic powder.
One or more profile plates can be selected based upon desired spray parameters and assembled to provide the nozzle assembly. Abrasive media can be flowed through one of the profile plates to abrade the material before powder from another profile plate is deposited onto the substrate, for example. The nozzle profile geometry can be selected to achieve a desired spray parameter for depositing the metallic powder onto the substrate. A wider spray pattern can be achieved with the disclosed nozzle assembly compared to a prior art nozzle of the same size. More than one nozzle profile can be provided on a single profile plate. Different materials may be provided to each nozzle profile or profile plate, if desired.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
a is an exploded perspective view of one example nozzle assembly.
b is a top-elevational view of the nozzle assembly shown in
c is an end-elevational view of the nozzle assembly shown in
d is a side-elevational view of the nozzle assembly shown in
a is an exploded perspective view of another example nozzle assembly.
b is an end-elevational view of the nozzle assembly shown in
An example cold gas dynamic system 10 is shown schematically in
Referring to
The plates 28, 30, 32 can be constructed from stock sizes of tool steel or other hardened materials such as carbides or ceramics. Economical manufacturing techniques can be employed such as 2-D milling, profile grinding, laser cutting, waterjet cutting, plasma cutting, fine blanking or EDM. The plates 28, 30, 32 can also be cooled or finned for heat removal during use.
The profile plate 30 provides a desired nozzle profile 41, which is a venturi in the example shown. The nozzle profile 41 includes an orifice or throat 42 causing a differential pressure across the throat 42, which accelerates the powder.
One or more of the plates 28, 30, 32 can include coatings 35 for decreasing the friction coefficient of the surfaces and/or for increasing the surface hardness to reduce plate wear. A sacrificial barrier could be arranged between the plates 28, 30, 32. Additionally or alternatively, the plates 28, 30, 32 can be constructed from different materials depending upon the friction and wear properties desired. For example, coating such as titanium nitride, diamond-like coatings, or ceramic coatins can be applied to various surfaces using any suitable method. Also, one or more of the plates 28, 30, 32 can be heat treated to obtain desired properties.
In the example, the top plate 28 includes powder inlet holes 37 receiving powder inlet fittings 38 that are in communication with the powder feeder 12. The top plate 28 also includes a carrier gas hole 39 receiving a carrier gas inlet fitting 40 that is in communication with the compressed carrier gas supply 22.
Referring to
c illustrates a nozzle assembly 14 that sprays the powder at a width W.
The nozzle assembly 14′ utilizes multiple profile plates 30′ each of which can receive different substances, if desired. The same materials can be provided by more than one profile plate to increase the deposition rate, for example. An intermediate plate 57 separates the profile plates 30′.
Stacking the profile plates within a nozzle assembly enables more flexibility. For example, different profile plates with different nozzle profiles can be used within the same nozzle assembly. Different substances may be introduced into the profile plates. For example, one profile plate may provide a continuous supply of powdered aluminum while the other profile plate may intermittently supply powdered copper. In another example, one profile plate may provide powder and the other profile plate may provide a heated gas. A nozzle assembly can be then be used in a manner such that the heated gas preheats the substrate prior to deposition of the powder from the other profile plate. In yet another example, one profile plate may be used to provide an abrasive. The profile plate providing the abrasive is oriented such that the abrasive cleans the substrate prior to deposition of the powder onto the substrate. Abrasives may include ceramics, polymers, carbon based materials or a combination thereof.
Several example nozzle profiles are illustrated. The example profile plate shown in
Referring to
Referring to
The example nozzle profiles 41′, 41″, 41′″. provide a diverging portion that has a length that is substantially greater than its width, which results in a desired spray pattern that conserved carrier gas. This also enables relatively powder travel speeds permitting rapid build up of adhered powder onto the substrate.
Although example embodiments of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2006/001504 | 9/13/2006 | WO | 00 | 3/13/2009 |