This application relates to antenna assemblies for electromagnetic communication, and more particularly, to antenna assemblies for multi-band electromagnetic communication.
Wireless communication technology has advanced significantly over the past several years. A non-exhaustive list of examples of wireless communication systems includes radio broadcasting, television broadcasting, satellite television, two-way radio devices (e.g., CB radio, amateur radio, etc.), cellular phones, cordless phones, wireless local area networking, global positioning system (GPS) receivers, garage door openers, television remote control devices, and others. Each type of wireless communication system operates in specific frequency bands in compliance with various communication standards.
Some wireless communication devices are able to operate over two or more frequency bands to provide multiple services. However, many wireless devices operating in multiple bands include a single antenna, such that only one service can be provided at a time. Usually, conventional multi-band antennas are large and bulky, which prevents their application in many settings.
Described herein is a nozzle cap assembly. The nozzle cap assembly can be configured for mounting an antenna assembly. In one aspect, a nozzle cap assembly can comprise a nozzle cap housing configured to mount on a hydrant, the nozzle cap housing defining an upper rim and a lower rim, the nozzle cap housing defining an interior cavity extending inward from the upper rim toward the lower rim, the nozzle cap housing defining an antenna mounting portion extending from the upper rim toward the lower rim; an antenna cover mounted on the nozzle cap housing, the antenna cover positioned over at least a portion of the antenna mounting portion, the antenna cover defining an inner cover surface facing the antenna mounting portion, an antenna cover cavity at least partially defined between the inner cover surface and the antenna mounting portion; and an antenna assembly positioned in the antenna cover cavity, the antenna assembly secured to the inner cover surface.
In a further aspect, a smart fluid system can comprise a fluid system; a hydrant connected in fluid communication to the fluid system, the hydrant comprising a nozzle; a sensing node mounted on the nozzle of the hydrant, the sensing node comprising a nozzle cap housing defining an upper rim and a lower rim, the nozzle cap housing defining an interior cavity extending inward from the upper rim toward the lower rim, the nozzle cap housing defining an antenna mounting portion extending from the upper rim toward the lower rim; a sensor attached to the nozzle cap housing, the sensor configured to collect data for a parameter of the fluid system; an antenna cover mounted on the nozzle cap housing, the antenna cover positioned over at least a portion of the antenna mounting portion, the antenna cover defining an inner cover surface facing the antenna mounting portion, an antenna cover cavity at least partially defined between the inner cover surface and the antenna mounting portion; and an antenna assembly positioned in the antenna cover cavity, the antenna assembly secured to the inner cover surface, the antenna assembly configured to transmit the data collected by the sensor.
In a further aspect, a nozzle cap assembly can comprise a nozzle cap cover; a nozzle cap housing comprising an upper rim at least partially defining an interior cavity, the nozzle cap cover mounted on the upper rim, the nozzle cap cover enclosing the interior cavity; a divider wall at least partially defining the interior cavity, the interior cavity extending into the nozzle cap housing from the upper rim to the divider wall; and a lower rim positioned opposite from the upper rim; and an acoustic sensor positioned within the interior cavity.
Various implementations described in the present disclosure can include additional systems, methods, features, and advantages, which can not necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that all such systems, methods, features, and advantages be included within the present disclosure and protected by the accompanying claims.
The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. Corresponding features and components throughout the figures can be designated by matching reference characters for the sake of consistency and clarity.
The present invention can be understood more readily by reference to the following detailed description, examples, drawings, and claims, and their previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this invention is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description of the invention is provided as an enabling teaching of the invention in its best, currently known aspect. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects of the invention described herein, while still obtaining the beneficial results of the present invention. It will also be apparent that some of the desired benefits of the present invention can be obtained by selecting some of the features of the present invention without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present invention are possible and can even be desirable in certain circumstances and are a part of the present invention. Thus, the following description is provided as illustrative of the principles of the present invention and not in limitation thereof.
As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a band” can include two or more such bands unless the context indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
The word “or” as used herein means any one member of a particular list and also includes any combination of members of that list. Further, one should note that conditional language, such as, among others, “can,” “could,” “might,” or “can,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain aspects include, while other aspects do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular aspects or that one or more particular aspects necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular aspect. Directional references such as “up,” “down,” “top,” “left,” “right,” “front,” “back,” and “corners,” among others are intended to refer to the orientation as illustrated and described in the figure (or figures) to which the components and directions are referencing.
In one aspect, disclosed is an antenna assembly and associated methods, systems, devices, and various apparatus. The antenna assembly can comprise a curved printed circuit board (PCB) and a plurality of antenna structures configured to provide directional radiation in at least one frequency band. It would be understood by one of skill in the art that the disclosed antenna assembly is described in but a few exemplary aspects among many.
As shown in
The PCB 102 can comprise a body 120, which can comprise a top end 106, a bottom end 108 distal from the top end 106, a first side end 110 adjacent to the top end 106 and the bottom end 108, and a second side end 112 distal from the first side end 110 and adjacent to the top end 106 and the bottom end 108. Optionally, the top end 106 and the bottom end 108 can define curved edges extending from the first side end 110 to the second side end 112. The type of edges formed by the top end 106 and the bottom end 108 should not be considered limiting on the current disclosure as it is also contemplated that the top end 106 and the bottom end 108 can define straight edges, jagged edges, and various other shapes of edges. In one aspect, the PCB 102 can comprise an outward-facing side 114 and an inward-facing side 502 (shown in
As shown in
As shown in
In one aspect, the antenna structures 104 can be configured to provide directional radiation in at least one frequency band. Optionally, as shown in
In the various aspects, the antenna assembly 100 can comprise: a plurality of first antenna structures 104A configured to operate within a first set of frequency bands; a plurality of second antenna structures 104B configured to operate within a second set of frequency bands; and a plurality of third antenna structures 104C configured to operate within a third set of frequency bands. It is contemplated that the antenna structures 104A-C can have various designs and configurations for operating within various frequency bands. Optionally, various other antenna structures configured to operate in additional or different sets of frequency bands can be utilized.
It will be appreciated that the number of each of the antenna structures 104A-C, respectively, should not be considered limiting on the current disclosure as it is contemplated that various combinations of antenna structures 104 may be utilized. For example and without limitation, in various aspects, the plurality of antenna structures 104 can be all first antenna structures 104A, all second antenna structures 104B, all third antenna structures 104C, all other types of antenna structures not currently shown, a combination of first antenna structures 104A and second antenna structures 104B, a combination of first antenna structures 104A and third antenna structures 104C, a combination of second antenna structures 104B and third antenna structures 104C, a combination of first antenna structures 104A and additional antenna structures configured to operate within different or additional frequency bands, etc.
In a further aspect, the antenna structures 104 can be configured to provide 360° directional radiation around a perimeter of a curved surface when the PCB 102 is mounted on the curved surface. Optionally, each one of the antenna structures 104 can be disposed on the PCB 102 such that each antenna structure provides a degreed section of radio coverage. In this aspect, the number and or type of antenna structures 104 disposed on the PCB 102 can be varied to provide different sections of radio coverage. For example and without limitation, in various aspects, the eight antenna structures 104 can be disposed and spaced on the PCB 102 where each one of the plurality of antenna structures 104 provides a 45° section of radio coverage. As another example, three antenna structures 104 can be disposed and spaced on the PCB 102 where each of the antenna structures 104 provides a 120° section of radio coverage. It is contemplated that various other sections of radio coverage can be provided by changing at least one of the number of antenna structures 104, the spacing of antenna structures 104 on the PCB 102, and the type of antenna structures 104 utilized.
In one aspect, all of the antenna structures 104 in sum can provide 360° radio coverage while each set of frequency bands covered by the antenna structures 104 may not have 360° coverage. For example and without limitation, an antenna assembly 100 comprising one first antenna structure 104A, one second antenna structure 104B, and one third antenna structure 104C, each antenna structure 104A-C can provide a 120° section of radio coverage in each of the corresponding set of frequency bands, respectively, to, in sum, provide 360° radio coverage while each set of frequency bands only has a 120° section of radio coverage.
In another aspect, each set of frequency bands covered by the antenna structures 104 may have 360° coverage around the curved surface. For example and without limitation, in an antenna assembly 100 comprising three first antenna structures 104A, three second antenna structures 104B, and three third antenna structures 104C, each antenna structure 104A-C can provide 360° radio coverage in 120° sections of radio coverage in each of the corresponding set of frequency bands, respectively. Referring to
In one preferred aspect, the antenna structures 104 can be configured to provide directional radiation in various sets of frequency bands currently developed or that may be developed in the future. For example and without limitation, the sets of frequency bands can be ranging from about 600 MHz to about 6 GHz; however, it is contemplated that the antenna structures 104 can be configured to operate at various other frequency bands below about 600 MHz or above about 6 GHz. In further aspects, the antenna structures 104 can be configured to provide radio coverage for Cellular, Cellular LTE, ISM 900, ISM 2400, GPS, and various other bands already developed or that may be developed in the future. For example and without limitation, the antenna structures can be configured to operate in various cellular bands such as 700, 800, 900, 1700, 1800, 1900, and 2100 MHz, as well as additional cellular bands currently developed or that can be developed in the future (e.g. cellular bands between 2 GHz and 6 GHz). As another example, the antenna structures 104 can be configured to operate in GPS bands, such as 1575.42 (L1) and 1227.60 MHz (L2), or in a wideband frequency range for wireless local area communication (e.g. W-Fi communication), such as a range from about 1.5 GHz to about 5.0 GHz, such as from about 2.0 GHz to about 5.0 GHz, any of which are currently developed bands or bands that may be developed in the future.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The PCB 702 can comprise a body 704 having a top side 706 and a bottom side 708. As shown in
Optionally, as shown in
Referring to
Referring to
The nozzle cap 802 can comprise a nut base 806 extending axially upwards from the outer surface 908 of the base 904. The nut base 806 can be utilized by an operator to aid in removing the nozzle cap 802 from the fire hydrant or securing the nozzle cap 802 to the fire hydrant. The base 904 of the nozzle cap 802 can define a plurality of cable holes 916 proximate to the nut base 806 that extend from the inner surface 1202 to the outer surface 908. Four cable holes 916 are shown in the base 904, though any number of cable holes 916 can be present in other aspects. The cable holes 916 are sized to accept one or more antenna coaxial cables connected to a radio canister (not shown) housed within the nozzle cap 802. The one or more coaxial cables extend through the cable holes 916 to connect with the antenna assembly 100 at any of the solder pads 116.
Referring to
Optionally, as shown in
Referring to
Referring to
In one aspect, the PCB 102 of the antenna assembly 100 can be formed into a curved shape and mounted around the curved side wall 906 of the nozzle cap 802 of the fire hydrant. As previously described, it is contemplated that the PCB 102 can be configured to be mounted around various other curved surfaces such as around light poles, various utility structures having curved surfaces, decorative columns, curved structural supports, and various other types of structures. In the aspect where the antenna assembly 100 is mounted on the nozzle cap 802, the antenna assembly 100 can maintain at least one section of the antenna assembly 100 facing upwards, regardless of the rotation end stop of the nozzle cap 802 when mounted on the hydrant. In one aspect, it is contemplated that fasteners (not shown) can be utilized with the through holes 118 to secure the PCB 102 to the antenna assembly 100. However, it is also contemplated that the PCB 102 can be secured to the antenna assembly 100 through various other fastening mechanisms that may or may not utilize the through holes 118.
In one aspect, the antenna assembly 100 can be mounted such that the spacer 1002 can be between the nozzle cap 802 and the antenna assembly 100. In this aspect, the inward-facing side 502 of the antenna assembly 100 can face the curved outer surface 1012 of the spacer 1002. In another aspect with the antenna cover 804, the outward-facing side 114 can face the inner surface of the curved side wall 812 of the antenna cover 804.
Referring to
In one aspect, the nozzle cap 1402 can comprise a body 1408 having a top end 1410 and a bottom end 1412. The nozzle cap 1402 can comprise a base 1422 at the top end 1410 and a curved side wall 1414 extending from the base 1422 to the bottom end 1412. The base 1422 can comprise an inner surface (not shown) and an outer surface 1424 and the curved side wall 1414 can comprise an inner surface (not shown) and an outer surface 1416. The inner surfaces of the base 1422 and curved side wall 1414, respectively, can together define a nozzle cap cavity, which can be similar to the nozzle cap cavity 1206.
Optionally, the nozzle cap 1402 can define an alignment groove 1418 in the body 1408 at the top end 1410. In one aspect, the alignment groove 1418 can extend around a perimeter of the base 1422. As described in greater detail below, in one aspect, the alignment groove 1418 can be utilized by the operator to position and lock the antenna cover 1406 on the nozzle cap 1402.
In another aspect, the nozzle cap 1402 can comprise a nut base 1420 extending axially upwards from the base 1422. Compared to the nut base 806, the nut base 1420 can be elongated to accommodate the antenna cover 1406, mounting plate 1404, and antenna assembly 100 at a position axially above the base 1422. However, it is contemplated that the nut base 1420 can also be a conventionally-sized nut base that may not be elongated.
Optionally, the nozzle cap 1402 can comprise various devices or structures mounted at various locations on the body 1408. For example and without limitation, in one aspect, the nozzle cap 1402 can comprise a sensor 1426, such as a leak sensor, vibration sensor, tamper sensor, or various other types of sensors, secured on the base 1422.
In one aspect, as shown in
Optionally, the mounting plate 1404 can define various other bores to accommodate any devices or structures mounted on the base 1422 of the nozzle cap 1402. For example and without limitation, in the aspect where the nozzle cap 1402 can comprise the sensor 1426, the mounting plate 1404 can define a sensor bore 1434 through which the sensor 1426 can extend.
Optionally, in a further aspect, the mounting plate 1404 can comprise various additional structures or components positioned or secured to the mounting plate 1404. For example and without limitation, the additional structures or components positioned or secured to the mounting plate 1404 can be the modem 712, the power supplies 714A,B, an additional PCB 1458, or various other structures or components as desired.
In one aspect, the antenna cover 1406 can be similar to the antenna cover 804 and can comprise a body 1436 having a top end 1438 and a bottom end 1440. In one aspect, the antenna cover 1406 can comprise a base 1442 at the top end 1438 and an outer wall 1444 extending from the base 1442 to the bottom end 1440. Referring to
In another aspect, an alignment lip 1454 can extend axially downwards from the outer wall 1444 at the bottom end 1440. In this aspect, the alignment lip 1454 can be dimensioned and shaped such that the alignment lip 1454 can be positioned within the alignment groove 1418. In a further aspect, the alignment lip 1454 within the alignment groove 1418 can position and secure the antenna cover 804 on the nozzle cap 1402.
Optionally, as shown in
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In another aspect, the nozzle cap 2202 can comprise a nut base 2206 extending axially upwards from the base 2308. In yet another aspect, the nozzle cap 2202 optionally can define a through hole 2316 in the base 2308. In one aspect, the through hole 2316 can be utilized to guide a cable through the nozzle cap 2202.
Referring to
Optionally, as shown in
In yet another aspect, the antenna cover 2204 can optionally define a cable guide 2224. In one aspect, a portion of the cable guide 2224 can extend upwards from the base 2214 as shown in
Referring to
In a further aspect, the antenna cover 2204 can optionally define an inner wall 2412 extending downwards from the base 2214 into the antenna cover cavity 2406. In one aspect, a spacer alignment groove 2414 can be defined between the inner wall 2412 and the inner surface 2404 of the curved side wall 2216.
Referring to
Referring to
Referring to
The antenna assembly 2714 can comprise a PCB 2716 and an antenna structure 2902 (shown in
Referring to
In one aspect, the cover RF connector 3106 can define a body 3210. The body can comprise a canister-connecting portion 3212 and a PCB-connecting portion 3214. In one aspect, the canister-connecting portion 3212 can comprise connectors 3208A,B configured to engage with connectors 3116A,B of the canister RF connector 3108. The number of connectors 3208 or connectors 3116 should not be considered limiting on the current disclosure as it is contemplated that any number of connectors 3208 or connectors 3116 can be present. In another aspect, the PCB-connecting portion 3214 can define slots 3216A,B configured to engage and receive the PCB assembly 3202. In one aspect, the PCB assembly 3202 can comprise two PCBs 3218A,B coupled together, as described in greater detail below. It is contemplated that the number of slots 3216 can correspond with the number of PCBs 3218 in various aspects. In another aspect, the cover RF connector 3106 can be positioned such that the PCB-connecting portion 3214 can be within the antenna cover cavity 3206 and an engagement edge 3220 of the canister-connecting portion 3212 engages the first end 3112 of the antenna cover 3104.
Referring to
As shown in
In one aspect, the PCBs 3218A,B can be combined such that the PCB assembly 3202 can have a general “x” shape. The PCB assembly 3202 can be positioned within the slots 3216A,B of the PCB-connecting portion 3214 of the cover RF connector 3106. In one aspect, the cover RF connector 3106 can be positioned such that the PCB-connecting portion 3214 and the PCB assembly 3202 is within the antenna cover cavity 3206. In one aspect, the shape of the PCBs 3218A,B can allow the PCB assembly 3202 to fit in the antenna cover opening 3222 and into the antenna cover cavity 3206. In another aspect, the PCBs 3218A,B combined via positioning in the slots 3405A,B can allow the antenna structures 3404 to face multiple directions without being bent or wrapped.
As shown in
As shown in
The nozzle cap assembly 4100 can also comprise a flat sealing gasket 4210. The sealing gasket 4210 can extend around an upper rim 4138 and on an inner side of each fastener attachment tabs 4136 to seal between the nozzle cap cover 4110 and the nozzle cap housing 4130 and thereby prevent fluid such as rainwater from entering an interior cavity 4310 (shown in
The nozzle cap housing 4130 can define a plurality of PCB mounting holes 4220, which can be threaded. The PCB mounting holes are configured to receive a threaded male end of each of a plurality of standoffs 5021 (shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The port 4810 can also provide a conduit for the cables (not shown) connecting the antenna assembly 100 to the PCB 4320. As shown in
In one aspect, as shown in
In use, a sensor, such as the acoustic sensor 5010, can detect phenomena such as vibrations or sound from the hydrant 3600 and a connected fluid system. In some aspects, the fluid system can comprise a water main. The sensor can transmit a signal to the sensor board 5030, where the data can be processed to determine if the vibrations or sounds are indicative of a potential leak in the water main. The data can then be processed by the networking board 5020 and wirelessly transmitted by the antenna assembly 100. The data transmitted in the signal can indicate the presence of a detected leak. A receiving device can wirelessly receive this signal, thereby allowing the hydrant and water main to be remotely monitored for leaks. In some aspects, the sensor can collect data for a parameter of the fluid system such as pressure, temperature, acidity (pH), chemical content, flow rate or other measurable conditions. The collected data for the parameter could then be transmitted wirelessly with the networking board 5020 and the antenna assembly 100.
It should be emphasized that the above-described aspects are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present disclosure. Many variations and modifications can be made to the above-described aspect(s) without departing substantially from the spirit and principles of the present disclosure. All such modifications and variations are intended to be included herein within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the described invention, nor the claims which follow.
This application is a continuation of U.S. patent application Ser. No. 15/255,795, filed Sep. 2, 2016, which claims the benefit of U.S. Provisional Application 62/294,973, filed on Feb. 12, 2016, which are hereby incorporated in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
1738094 | Caldwell | Dec 1929 | A |
2171173 | Coyer | Aug 1939 | A |
3254528 | Michael | Jun 1966 | A |
3592967 | Harris | Jul 1971 | A |
3612922 | Furnival | Oct 1971 | A |
3662600 | Rosano, Jr. et al. | May 1972 | A |
3673856 | Panigati | Jul 1972 | A |
3815129 | Sweany | Jun 1974 | A |
4000753 | Ellis | Jan 1977 | A |
4056970 | Sollish | Nov 1977 | A |
4083229 | Anway | Apr 1978 | A |
4333028 | Panton | Jun 1982 | A |
4431873 | Dunn et al. | Feb 1984 | A |
4462249 | Adams | Jul 1984 | A |
4467236 | Kolm et al. | Aug 1984 | A |
4543817 | Sugiyama | Oct 1985 | A |
4796466 | Farmer | Jan 1989 | A |
4844396 | Norton | Jul 1989 | A |
4893679 | Martin et al. | Jan 1990 | A |
4930358 | Motegi et al. | Jun 1990 | A |
4984498 | Fishman | Jan 1991 | A |
5038614 | Bseisu | Aug 1991 | A |
5052215 | Lewis | Oct 1991 | A |
5078006 | Maresca et al. | Jan 1992 | A |
5085082 | Cantor et al. | Feb 1992 | A |
5090234 | Maresca et al. | Feb 1992 | A |
5117676 | Chang | Jun 1992 | A |
5118464 | Richardson et al. | Jun 1992 | A |
5163314 | Maresca et al. | Nov 1992 | A |
5165280 | Sternberg et al. | Nov 1992 | A |
5170657 | Maresca et al. | Dec 1992 | A |
5174155 | Sugimoto | Dec 1992 | A |
5187973 | Kunze et al. | Feb 1993 | A |
5189904 | Maresca et al. | Mar 1993 | A |
5201226 | John et al. | Apr 1993 | A |
5203202 | Spencer | Apr 1993 | A |
5205173 | Allen | Apr 1993 | A |
5209125 | Kalinoski et al. | May 1993 | A |
5218859 | Stenstrom et al. | Jun 1993 | A |
5243862 | Latimer | Sep 1993 | A |
5254944 | Holmes et al. | Oct 1993 | A |
5272646 | Farmer | Dec 1993 | A |
5279160 | Koch | Jan 1994 | A |
5287884 | Cohen | Feb 1994 | A |
5298894 | Cerny et al. | Mar 1994 | A |
5301985 | Terzini | Apr 1994 | A |
5303592 | Livingston | Apr 1994 | A |
5319956 | Bogle et al. | Jun 1994 | A |
5333501 | Okada et al. | Aug 1994 | A |
5335547 | Nakajima et al. | Aug 1994 | A |
5343737 | Baumoel | Sep 1994 | A |
5349568 | Kupperman et al. | Sep 1994 | A |
5351655 | Nuspl | Oct 1994 | A |
5361636 | Farstad et al. | Nov 1994 | A |
5367911 | Jewell et al. | Nov 1994 | A |
5385049 | Hunt et al. | Jan 1995 | A |
5396800 | Drinon et al. | Mar 1995 | A |
5408883 | Clark et al. | Apr 1995 | A |
5416724 | Savic | May 1995 | A |
5461906 | Bogle et al. | Oct 1995 | A |
5519184 | Umlas | May 1996 | A |
5526691 | Latimer et al. | Jun 1996 | A |
5531099 | Russo | Jul 1996 | A |
5548530 | Baumoel | Aug 1996 | A |
5581037 | Kwun et al. | Dec 1996 | A |
5591912 | Spisak et al. | Jan 1997 | A |
5602327 | Torizuka et al. | Feb 1997 | A |
5611948 | Hawkins | Mar 1997 | A |
5619423 | Scrantz | Apr 1997 | A |
5623203 | Hosohara et al. | Apr 1997 | A |
5633467 | Paulson | May 1997 | A |
5639958 | Lange | Jun 1997 | A |
5655561 | Wendel et al. | Aug 1997 | A |
5686828 | Peterman et al. | Nov 1997 | A |
5708195 | Kurisu et al. | Jan 1998 | A |
5708211 | Jepson et al. | Jan 1998 | A |
5746611 | Brown et al. | May 1998 | A |
5754101 | Tsunetomi et al. | May 1998 | A |
5760306 | Wyatt et al. | Jun 1998 | A |
5789720 | Lagally et al. | Aug 1998 | A |
5798457 | Paulson | Aug 1998 | A |
5838633 | Sinha | Nov 1998 | A |
5866820 | Camplin et al. | Feb 1999 | A |
5892163 | Johnson | Apr 1999 | A |
5898412 | Jones et al. | Apr 1999 | A |
5907100 | Cook | May 1999 | A |
5965818 | Wang | Oct 1999 | A |
5970434 | Brophy et al. | Oct 1999 | A |
5974862 | Lander | Nov 1999 | A |
5987990 | Worthington et al. | Nov 1999 | A |
6000277 | Smith | Dec 1999 | A |
6000288 | Kwun et al. | Dec 1999 | A |
6003376 | Burns et al. | Dec 1999 | A |
6023986 | Smith et al. | Feb 2000 | A |
6035717 | Carodiskey | Mar 2000 | A |
6058957 | Honigsbaum | May 2000 | A |
6076407 | Levesque et al. | Jun 2000 | A |
6082193 | Paulson | Jul 2000 | A |
6089253 | Stehling et al. | Jul 2000 | A |
6102444 | Kozey | Aug 2000 | A |
6104349 | Cohen | Aug 2000 | A |
6125703 | MacLauchlan et al. | Oct 2000 | A |
6127823 | Atherton | Oct 2000 | A |
6127987 | Maruyama et al. | Oct 2000 | A |
6133885 | Luniak et al. | Oct 2000 | A |
6138512 | Roberts | Oct 2000 | A |
6138514 | Iwamoto et al. | Oct 2000 | A |
6164137 | Hancock et al. | Dec 2000 | A |
6170334 | Paulson | Jan 2001 | B1 |
6175380 | Van Den Bosch | Jan 2001 | B1 |
6181294 | Porter et al. | Jan 2001 | B1 |
6192352 | Alouani et al. | Feb 2001 | B1 |
6243657 | Tuck et al. | Jun 2001 | B1 |
6267000 | Harper et al. | Jul 2001 | B1 |
6276213 | Lee et al. | Aug 2001 | B1 |
6296066 | Terry | Oct 2001 | B1 |
6343510 | Neeson et al. | Feb 2002 | B1 |
6363788 | Gorman et al. | Apr 2002 | B1 |
6389881 | Yang et al. | May 2002 | B1 |
6401525 | Jamieson | Jun 2002 | B1 |
6404343 | Andou et al. | Jun 2002 | B1 |
6442999 | Baumoel | Sep 2002 | B1 |
6450542 | McCue | Sep 2002 | B1 |
6453247 | Hunaidi | Sep 2002 | B1 |
6470749 | Han et al. | Oct 2002 | B1 |
6530263 | Chana | Mar 2003 | B1 |
6561032 | Hunaidi | May 2003 | B1 |
6567006 | Lander et al. | May 2003 | B1 |
6578422 | Lam et al. | Jun 2003 | B2 |
6595038 | Williams et al. | Jul 2003 | B2 |
6606059 | Barabash | Aug 2003 | B1 |
6624628 | Kwun et al. | Sep 2003 | B1 |
6639562 | Suganthan et al. | Oct 2003 | B2 |
6647762 | Roy | Nov 2003 | B1 |
6651503 | Bazarov et al. | Nov 2003 | B2 |
6666095 | Thomas et al. | Dec 2003 | B2 |
6667709 | Hansen et al. | Dec 2003 | B1 |
6707762 | Goodman et al. | Mar 2004 | B1 |
6710600 | Kopecki et al. | Mar 2004 | B1 |
6725705 | Huebler et al. | Apr 2004 | B1 |
6734674 | Struse | May 2004 | B1 |
6745136 | Lam et al. | Jun 2004 | B2 |
6751560 | Tingley et al. | Jun 2004 | B1 |
6763730 | Wray | Jul 2004 | B1 |
6772636 | Lam et al. | Aug 2004 | B2 |
6772637 | Bazarov et al. | Aug 2004 | B2 |
6772638 | Matney et al. | Aug 2004 | B2 |
6781369 | Paulson et al. | Aug 2004 | B2 |
6782751 | Linares et al. | Aug 2004 | B2 |
6789427 | Batzinger et al. | Sep 2004 | B2 |
6791318 | Paulson et al. | Sep 2004 | B2 |
6799455 | Neefeldt et al. | Oct 2004 | B1 |
6799466 | Chinn | Oct 2004 | B2 |
6813949 | Masaniello et al. | Nov 2004 | B2 |
6813950 | Glascock et al. | Nov 2004 | B2 |
6816072 | Zoratti | Nov 2004 | B2 |
6820016 | Brown et al. | Nov 2004 | B2 |
6822742 | Kalayeh et al. | Nov 2004 | B1 |
6843131 | Graff et al. | Jan 2005 | B2 |
6848313 | Krieg et al. | Feb 2005 | B2 |
6851319 | Ziola et al. | Feb 2005 | B2 |
6889703 | Bond | May 2005 | B2 |
6904818 | Harthorn et al. | Jun 2005 | B2 |
6912472 | Mizushina et al. | Jun 2005 | B2 |
6920792 | Flora et al. | Jul 2005 | B2 |
6931931 | Graff et al. | Aug 2005 | B2 |
6935178 | Prause | Aug 2005 | B2 |
6945113 | Siverling et al. | Sep 2005 | B2 |
6957157 | Lander | Oct 2005 | B2 |
6968727 | Kwun et al. | Nov 2005 | B2 |
6978832 | Gardner et al. | Dec 2005 | B2 |
7051577 | Komninos | May 2006 | B2 |
7080557 | Adnan | Jul 2006 | B2 |
7109929 | Ryken, Jr | Sep 2006 | B1 |
7111516 | Bazarov et al. | Sep 2006 | B2 |
7140253 | Merki et al. | Nov 2006 | B2 |
7143659 | Stout et al. | Dec 2006 | B2 |
7171854 | Nagashima et al. | Feb 2007 | B2 |
7231331 | Davis | Jun 2007 | B2 |
7234355 | Dewangan et al. | Jun 2007 | B2 |
7240574 | Sapelnikov | Jul 2007 | B2 |
7255007 | Messer et al. | Aug 2007 | B2 |
7261002 | Gysling et al. | Aug 2007 | B1 |
7266992 | Shamout et al. | Sep 2007 | B2 |
7274996 | Lapinski | Sep 2007 | B2 |
7284433 | Ales et al. | Oct 2007 | B2 |
7293461 | Girndt | Nov 2007 | B1 |
7299697 | Siddu et al. | Nov 2007 | B2 |
7310877 | Cao et al. | Dec 2007 | B2 |
7328618 | Hunaidi | Feb 2008 | B2 |
7331215 | Bond | Feb 2008 | B2 |
7356444 | Blemel | Apr 2008 | B2 |
7360462 | Nozaki et al. | Apr 2008 | B2 |
7373808 | Zanker et al. | May 2008 | B2 |
7380466 | Deeg | Jun 2008 | B2 |
7383721 | Parsons et al. | Jun 2008 | B2 |
7392709 | Eckert | Jul 2008 | B2 |
7405391 | Ogisu et al. | Jul 2008 | B2 |
7412882 | Lazar et al. | Aug 2008 | B2 |
7412890 | Johnson et al. | Aug 2008 | B1 |
7414395 | Gao et al. | Aug 2008 | B2 |
7426879 | Nozaki et al. | Sep 2008 | B2 |
7458267 | McCoy | Dec 2008 | B2 |
7475596 | Hunaidi et al. | Jan 2009 | B2 |
7493817 | Germata | Feb 2009 | B2 |
7523666 | Thompson et al. | Apr 2009 | B2 |
7526944 | Sabata et al. | May 2009 | B2 |
7530270 | Nozaki et al. | May 2009 | B2 |
7543500 | Litzenberg et al. | Jun 2009 | B2 |
7554345 | Vokey | Jun 2009 | B2 |
7564540 | Paulson | Jul 2009 | B2 |
7587942 | Smith et al. | Sep 2009 | B2 |
7590496 | Blemel | Sep 2009 | B2 |
7596458 | Lander | Sep 2009 | B2 |
7607351 | Allison et al. | Oct 2009 | B2 |
7623427 | Jann et al. | Nov 2009 | B2 |
7647829 | Junker et al. | Jan 2010 | B2 |
7650790 | Wright | Jan 2010 | B2 |
7657403 | Stripf et al. | Feb 2010 | B2 |
7668670 | Lander | Feb 2010 | B2 |
7680625 | Trowbridge et al. | Mar 2010 | B2 |
7690258 | Minagi et al. | Apr 2010 | B2 |
7694564 | Brignac et al. | Apr 2010 | B2 |
7696940 | MacDonald | Apr 2010 | B1 |
7711217 | Takahashi et al. | May 2010 | B2 |
7751989 | Owens et al. | Jul 2010 | B2 |
7810378 | Hunaidi et al. | Oct 2010 | B2 |
7980317 | Preta et al. | Jul 2011 | B1 |
8319508 | Vokey | Nov 2012 | B2 |
8353309 | Embry et al. | Jan 2013 | B1 |
8614745 | Al Azemi | Dec 2013 | B1 |
8657021 | Preta et al. | Feb 2014 | B1 |
8668206 | Ball | Mar 2014 | B2 |
8674830 | Lanham et al. | Mar 2014 | B2 |
8843241 | Saberi et al. | Sep 2014 | B2 |
8931505 | Hyland et al. | Jan 2015 | B2 |
9053519 | Scolnicov et al. | Jun 2015 | B2 |
9291520 | Fleury, Jr. et al. | Mar 2016 | B2 |
9315973 | Varman et al. | Apr 2016 | B2 |
9496943 | Parish et al. | Nov 2016 | B2 |
9528903 | Zusman | Dec 2016 | B2 |
9562623 | Clark | Feb 2017 | B2 |
9593999 | Fleury | Mar 2017 | B2 |
9772250 | Richarz et al. | Sep 2017 | B2 |
9780433 | Schwengler et al. | Oct 2017 | B2 |
9799204 | Hyland et al. | Oct 2017 | B2 |
9849322 | Hyland et al. | Dec 2017 | B2 |
9861848 | Hyland et al. | Jan 2018 | B2 |
9970805 | Cole et al. | May 2018 | B2 |
10175135 | Dintakurt et al. | Jan 2019 | B2 |
10283857 | Ortiz et al. | May 2019 | B2 |
10305178 | Gibson et al. | May 2019 | B2 |
10317384 | Morrow et al. | Jun 2019 | B2 |
10386257 | Fleury, Jr. et al. | Aug 2019 | B2 |
10857403 | Hyland et al. | Dec 2020 | B2 |
10859462 | Gibson et al. | Dec 2020 | B2 |
10881888 | Hyland et al. | Jan 2021 | B2 |
11047761 | Frackelton et al. | Jun 2021 | B1 |
20010045129 | Williams et al. | Nov 2001 | A1 |
20020043549 | Taylor et al. | Apr 2002 | A1 |
20020124633 | Yang | Sep 2002 | A1 |
20020159584 | Sindalovsky et al. | Oct 2002 | A1 |
20030107485 | Zoratti | Jun 2003 | A1 |
20030150488 | Fleury, Jr. et al. | Aug 2003 | A1 |
20030193193 | Harrington et al. | Oct 2003 | A1 |
20040129312 | Cuzzo et al. | Jul 2004 | A1 |
20040173006 | McCoy et al. | Sep 2004 | A1 |
20040187922 | Fleury, Jr. et al. | Sep 2004 | A1 |
20040201215 | Steingass | Oct 2004 | A1 |
20050005680 | Anderson | Jan 2005 | A1 |
20050067022 | Istre | Mar 2005 | A1 |
20050072214 | Cooper | Apr 2005 | A1 |
20050121880 | Santangelo | Jun 2005 | A1 |
20050153586 | Girinon | Jul 2005 | A1 |
20050279169 | Lander | Dec 2005 | A1 |
20060174707 | Zhang | Aug 2006 | A1 |
20060201550 | Blyth et al. | Sep 2006 | A1 |
20060283251 | Hunaidi | Dec 2006 | A1 |
20060284784 | Smith | Dec 2006 | A1 |
20070044552 | Huang | Mar 2007 | A1 |
20070051187 | McDearmon | Mar 2007 | A1 |
20070113618 | Yokoi et al. | May 2007 | A1 |
20070130317 | Lander | Jun 2007 | A1 |
20070295406 | German et al. | Dec 2007 | A1 |
20080078567 | Miller et al. | Apr 2008 | A1 |
20080079640 | Yang | Apr 2008 | A1 |
20080168840 | Seeley et al. | Jul 2008 | A1 |
20080189056 | Heidl et al. | Aug 2008 | A1 |
20080238711 | Payne et al. | Oct 2008 | A1 |
20080281534 | Hurley | Nov 2008 | A1 |
20080307623 | Furukawa | Dec 2008 | A1 |
20080314122 | Hunaidi | Dec 2008 | A1 |
20090044628 | Lotscher | Feb 2009 | A1 |
20090133887 | Garcia | May 2009 | A1 |
20090139336 | Trowbridge, Jr. et al. | Jun 2009 | A1 |
20090182099 | Noro et al. | Jul 2009 | A1 |
20090214941 | Buck et al. | Aug 2009 | A1 |
20090278293 | Yoshinaka et al. | Nov 2009 | A1 |
20090301571 | Ruhs | Dec 2009 | A1 |
20100077234 | Das | Mar 2010 | A1 |
20100156632 | Hyland et al. | Jun 2010 | A1 |
20100259461 | Eisenbeis et al. | Oct 2010 | A1 |
20100290201 | Takeuchi et al. | Nov 2010 | A1 |
20100295672 | Hyland | Nov 2010 | A1 |
20110063172 | Podduturi | Mar 2011 | A1 |
20110066297 | Saberi | Mar 2011 | A1 |
20110079402 | Darby et al. | Apr 2011 | A1 |
20110102281 | Su | May 2011 | A1 |
20110162463 | Allen | Jul 2011 | A1 |
20110308638 | Hyland | Dec 2011 | A1 |
20120007743 | Solomon | Jan 2012 | A1 |
20120007744 | Pal et al. | Jan 2012 | A1 |
20120169560 | Lee et al. | Jul 2012 | A1 |
20120296580 | Barkay | Nov 2012 | A1 |
20120324985 | Gu et al. | Dec 2012 | A1 |
20130036796 | Fleury, Jr. | Feb 2013 | A1 |
20130041601 | Dintakurti et al. | Feb 2013 | A1 |
20130049968 | Fleury, Jr. | Feb 2013 | A1 |
20130145826 | Richarz et al. | Jun 2013 | A1 |
20130211797 | Scolnicov | Aug 2013 | A1 |
20130229262 | Bellows | Sep 2013 | A1 |
20130298664 | Gillette, II et al. | Nov 2013 | A1 |
20130321231 | Flores-Cuadras | Dec 2013 | A1 |
20140206210 | Ritner | Jul 2014 | A1 |
20140225787 | Ramachandran et al. | Aug 2014 | A1 |
20140373941 | Varman et al. | Dec 2014 | A1 |
20150070221 | Schwengler et al. | Mar 2015 | A1 |
20150082868 | Hyland | Mar 2015 | A1 |
20150128714 | Moss | May 2015 | A1 |
20160001114 | Hyland | Jan 2016 | A1 |
20160013565 | Ortiz | Jan 2016 | A1 |
20160018283 | Fleury | Jan 2016 | A1 |
20160097696 | Zusman | Apr 2016 | A1 |
20170072238 | Silvers et al. | Mar 2017 | A1 |
20170121949 | Fleury | May 2017 | A1 |
20170237158 | Gibson | Aug 2017 | A1 |
20170237165 | Ortiz et al. | Aug 2017 | A1 |
20180080849 | Showcatally et al. | Mar 2018 | A1 |
20180093117 | Hyland | Apr 2018 | A1 |
20180224349 | Fleury, Jr. et al. | Aug 2018 | A1 |
20190024352 | Ozburn | Jan 2019 | A1 |
20190214718 | Ortiz et al. | Jul 2019 | A1 |
20190316983 | Fleury, Jr. et al. | Oct 2019 | A1 |
20200069987 | Hyland et al. | Mar 2020 | A1 |
20200072697 | Gibson et al. | Mar 2020 | A1 |
20200212549 | Gibson et al. | Jul 2020 | A1 |
20200232863 | Moreno et al. | Jul 2020 | A1 |
20200232864 | Moreno et al. | Jul 2020 | A1 |
20200378859 | Gibson et al. | Dec 2020 | A1 |
20210023408 | Hyland et al. | Jan 2021 | A1 |
20210041323 | Gibson et al. | Feb 2021 | A1 |
20210247261 | Gibson et al. | Aug 2021 | A1 |
20210249765 | Ortiz et al. | Aug 2021 | A1 |
20210355661 | Gibson et al. | Nov 2021 | A1 |
20220082467 | Fleury, Jr. et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
2011265675 | May 2015 | AU |
2015202550 | Nov 2017 | AU |
2017248541 | Mar 2019 | AU |
2154433 | Jan 1997 | CA |
2397174 | Aug 2008 | CA |
2634739 | Jun 2015 | CA |
3010333 | Jul 2020 | CA |
2766850 | Aug 2020 | CA |
3023529 | Aug 2020 | CA |
3070690 | Nov 2020 | CA |
2842042 | Jan 2021 | CA |
3057167 | Mar 2021 | CA |
3057202 | May 2021 | CA |
3060512 | Jun 2021 | CA |
3010345 | Jul 2021 | CA |
1831478 | Jun 2013 | CN |
4211038 | Oct 1993 | DE |
19757581 | Jul 1998 | DE |
0711986 | May 1996 | EP |
1052492 | Nov 2000 | EP |
1077370 | Feb 2001 | EP |
1077371 | Feb 2001 | EP |
2439990 | May 1980 | FR |
2250820 | Jun 1992 | GB |
2269900 | Feb 1994 | GB |
2367362 | Apr 2002 | GB |
2421311 | Jun 2006 | GB |
2550908 | Dec 2017 | GB |
59170739 | Sep 1984 | JP |
50111132 | Jun 1985 | JP |
08250777 | Sep 1996 | JP |
H10-2744 | Jan 1998 | JP |
11201859 | Jul 1999 | JP |
H11210028 | Aug 1999 | JP |
2000131179 | May 2000 | JP |
2002206965 | Jul 2002 | JP |
2002310840 | Oct 2002 | JP |
3595856 | Dec 2004 | JP |
2005315663 | Nov 2005 | JP |
2005321935 | Nov 2005 | JP |
2006062414 | Mar 2006 | JP |
2006062716 | Mar 2006 | JP |
2007047139 | Feb 2007 | JP |
2010068017 | Mar 2010 | JP |
2013528732 | Jul 2013 | JP |
H5654124 | Nov 2017 | JP |
101785664 | Nov 2017 | KR |
9850771 | Nov 1998 | WO |
0151904 | Jul 2001 | WO |
03049528 | Jun 2003 | WO |
2004073115 | Aug 2004 | WO |
2008047159 | Apr 2008 | WO |
2009057214 | May 2009 | WO |
2010135587 | Nov 2010 | WO |
2011021039 | Feb 2011 | WO |
2011058561 | May 2011 | WO |
2011159403 | Dec 2011 | WO |
2012000088 | Jan 2012 | WO |
2012153147 | Nov 2012 | WO |
2014016625 | Jan 2014 | WO |
2017139029 | Aug 2017 | WO |
2017139030 | Aug 2017 | WO |
2020050946 | Mar 2020 | WO |
2021231163 | Nov 2021 | WO |
Entry |
---|
Hyland, Gregory E., Non-Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Jul. 31, 2013; 57 pgs. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Feb. 20, 2014; 29 pgs. |
Hyland, Gregory E.; Issue Notification for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Dec. 23, 2014, 1 pg. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Jun. 5, 2014, 29 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Sep. 11, 2014, 11 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Nov. 25, 2014, 5 pgs. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jun. 30, 2016, 24 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jan. 19, 2016, 101 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jul. 17, 2017, 14 pgs. |
Hyland, Gregory E.; Notice of Decision from Post-Prosecution Pilot Program (P3) Conference for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Sep. 14, 2016, 4 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Oct. 20, 2017, 11 pgs. |
Hyland, Gregory; Issue Notification for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Dec. 20, 2017, 1 pg. |
Hyland, Gregory E.; Applicant-Initiated Interview Summary for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Apr. 19, 2017, 4 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Nov. 8, 2016, 48 pgs. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Apr. 5, 2017, 23 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Dec. 13, 2016, 52 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Sep. 6, 2017, 12 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Nov. 27, 2017, 6 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Sep. 19, 2017, 8 pgs. |
Hyland, Gregory; Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Jun. 7, 2017, 25 pgs. |
Hyland, Gregory; Non-Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Mar. 4, 2016, 94 pgs. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Aug. 19, 2016; 20 pgs. |
Fleury Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Nov. 5, 2014, 30 pgs. |
Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Jul. 9, 2014, 3 pgs. |
Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Mar. 12, 2014; 19 pgs. |
Fleury, Jr., Leo W.; Issue Notification for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Mar. 2, 2016, 1 pg. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Sep. 12, 2013; 37 pgs. |
Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Feb. 2, 2016, 9 pgs. |
Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated May 12, 2015, 9 pgs. |
Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Sep. 23, 2015, 11 pgs. |
Fleury, Leo W.; Applicant-Initiated Interview Summary for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Feb. 28, 2018, 4 pgs. |
Fleury, Leo W.; Final Office Action for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Dec. 29, 2017, 24 pgs. |
Fleury, Leo; Non-Final Office Action for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Jun. 21, 2017, 88 pgs. |
Richarz, Werner Guenther; Corrected Notice of Allowability for U.S. Appl. No. 13/492,792, filed May 8, 2012, dated Aug. 29, 2017, 6 pgs. |
Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Oct. 20, 2014, 17 pgs. |
Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 10, 2015, 20 pgs. |
Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 8, 2016, 36 pgs. |
Richarz, Werner Guenther; Issue Notification for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 6, 2017, 1 pg. |
Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Nov. 6, 2013, 39 pgs. |
Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Jun. 4, 2014, 24 pgs. |
Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Feb. 27, 2015, 15 pgs. |
Richarz, Werner Guenther; Notice of Allowance for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Mar. 13, 2017, 31 pgs. |
Richarz, Werner Guenther; Restriction Requirement for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 27, 2013; 5 pgs. |
Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Mar. 8, 2016, 27 pgs. |
Chou, et al.; Article entitled: “Non-invasive Acceleration-based Methodology for Damage Detection and Assessment of Water Distribution System”, Mar. 2010, 17 pgs. |
Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Oct. 18, 2017, 38 pgs. |
Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Nov. 8, 2016, 31 pgs. |
Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Jun. 22, 2018, 39 pgs. |
Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Mar. 16, 2017, 30 pgs. |
Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated May 17, 2016, 48 pgs. |
Antenna. Merriam-Webster Dictionary, 2014 [retrieved on Jun. 1, 2014], Retrieved from the Internet: <URL: www.merriam-webster.com/dictionary/antenna>. |
Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Jan. 16, 2015, 60 pgs. |
Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed May 8, 2012, dated Jan. 11, 2018, 38 pgs. |
Dintakurti, Ganapathi Deva Varma; Notice of Allowance for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Sep. 24, 2018, 21 pgs. |
Dintakurti, Ganapathi Deva Varma; Corrected Notice of Allowance for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Dec. 6, 2018, 6 pgs. |
Dintakurti, Ganapathi Deva Varma; Issue Notification for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Dec. 19, 2018, 1 pg. |
Fleury Jr, Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 23, 2013; 35 pgs. |
Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Apr. 23, 2014, 19 pgs. |
Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Jun. 18, 2014, 4 pgs. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Oct. 21, 2014, 37 pgs. |
Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated May 22, 2015, 28 pgs. |
Non-Patent Literature “Radiodetection Water Leak Detection Products”, 2008, Radiodetection Ltd.—SPX Corporation. |
Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 9, 2015, 3 pgs. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Mar. 1, 2016, 42 pgs. |
Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 21, 2016, 18 pgs. |
Fleury, Jr., Leo W.; Notice of Allowability for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Oct. 24, 2016, 13 pgs. |
Fleury, Jr., Leo W.; Supplemental Notice of Allowance for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Nov. 22, 2016; 8 pgs. |
Fleury, Jr., Leo W.; Corrected Notice of Allowability for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Feb. 14, 2017; 8 pgs. |
Fleury, Jr., Leo W.; Issue Notification for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Feb. 22, 2017; 1 page. |
Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 15/401,457, filed Jan. 9, 2017, dated Apr. 16, 2019, 88 pgs. |
Hyland; International Search Report and Written Opinion for serial No. PCT/US2011/035374, filed May 5, 2011, dated Sep. 13, 2011; 7 pgs. |
Hyland; International Preliminary Report on Patentability for serial No. PCT/US2011/035374, filed May 5, 2011, dated Dec. 19, 2012; 5 pgs. |
Hyland, Gregory E..; Office Action for Canadian Patent Application No. 2,766,850, filed May 5, 2011, dated Mar. 13, 2017, 4 pgs. |
Hyland, Gregory E.; Office Action for Canadian application No. 2,766,850, filed May 5, 2011, dated Aug. 16, 2018, 4 pgs. |
Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated May 30, 2016, 4 pgs. |
Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated Aug. 31, 2016, 4 pgs. |
Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated Dec. 13, 2016, 5 pgs. |
Hyland, Gregory; Extended European Search Report for serial No. 11796120.1, filed May 5, 2011, dated Nov. 4, 2016, 8 pgs. |
Hyland, Gregory E.; Office Action for European patent application No. 11796120.1, filed May 5, 2011, dated Feb. 9, 2018, 4 pgs. |
Hyland, Gregory E.; Australian Patent Examination Report for serial No. 2011265675, filed Jan. 21, 2012, dated Oct. 1, 2014, 3 pgs. |
Hyland, Gregory E.; Japanese Office Action for serial No. 2013515338, filed Jan. 30, 2012, dated Jun. 10, 2014, 8 pgs. |
Hyland, Gregory E.; Japanese Office Action for serial No. 2014-234642, filed May 5, 2011, dated Jul. 7, 2015, 9 pgs. |
Hyland, Gregory E.; Japanese Office Action for serial No. 2014-234642, filed May 5, 2011, dated Nov. 4, 2015, 9 pgs. |
Hyland, Gregory E.; Australian Examination Report for serial No. 2015202550, filed May 5, 2011, dated Aug. 12, 2016, 4 pgs. |
Hyland, Gregory E.; Australian Examination Report for serial No. 2015202550, filed May 5, 2011, dated Feb. 9, 2017, 4 pgs. |
Hyland, Gregory E.; Australian Examination Report for Serial No. 2015202550, filed May 5, 2011, dated May 16, 2017, 5 pgs. |
Hyland, Gregory E.; Australian Examination Report for Serial No. 2015202550, filed May 5, 2011, dated Jul. 5, 2017, 4 pgs. |
Hyland, Gregory E.; Office Action for Mexico Patent Application No. MX/a/2017/006090, filed May 5, 2011, dated Sep. 26, 2018, 4 pgs. |
Hyland, Gregory E.; Examination Report for Australian patent application No. 2017248541, filed Oct. 20, 2017, dated Apr. 20, 2018, 5 pgs. |
Fleury, Leo W.; International Search Report and Written Opinion for serial No. PCT/US12/50390 filed Aug. 10, 2012, dated Dec. 17, 2012, 18 pgs. |
Fleury, Leo W.; International Preliminary Report on Patentability for serial No. PCT/US12/50390 filed Aug. 10, 2012, dated Feb. 18, 2014, 14 pgs. |
Fleury, et al.; Supplemental European Search Report for application No. 12823594.2, filed Aug. 20, 2012, dated Feb. 18, 2015, 6 pgs. |
Fleury Jr., Leo W.; European Search Report for U.S. Appl. No. 12/823,594, filed Aug. 10, 2012, dated Jun. 8, 2015, 11 pgs. |
Fleury Jr., Leo W.; European Search Report for U.S. Appl. No. 12/823,594, filed Aug. 10, 2012, dated May 10, 2017, 4 pgs. |
Fleury Jr., Leo W.; European Search Report for U.S. Appl. No. 12/823,594, filed Aug. 10, 2012, dated Dec. 21, 2017, 4 pgs. |
Fleury, Leo W.; Office Action for Canadian application No. 2,842,042, filed Aug. 10, 2012, dated Apr. 24, 2018, 3 pgs. |
Hyland; U.S. Provisional Patent Application entitled: Infrastructure Monitoring Devices, Systems, and Methods, having U.S. Appl. No. 61/355,468, filed Jun. 16, 2010. |
Fleury, Leo W., U.S. Provisional Patent Application Entitled: Hydrant Leak Detector Communication Device, System, and Method under U.S. Appl. No. 61/523,274, filed Aug. 12, 2011; 35 pgs. |
Fleury, Leo W.; Office Action for Canadian application No. 2,842,042, filed Aug. 10, 2012, dated Feb. 28, 2019, 3 pgs. |
Hunaidi, Osama; Issue Notification for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dated Sep. 22, 2010, 1 pg. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Sep. 25, 2019, 92 pgs. |
Hyland, Gregory E; Office Action for Canadian patent application No. 2,766,850, filed May 5, 2011, dated Jun. 19, 2019, 4 pgs. |
Ortiz, Jorge Isaac; Extended European Search Report for serial No. 16890114.8, filed Dec. 20, 2016, dated Sep. 26, 2019, 11 pgs. |
Hunaidi, Osama; Notice of Allowance for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dataed Jun. 24, 2010, 8 pgs. |
Hunaidi, Osama; Non-Final Office Action for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dated Jan. 20, 2010, 50 pgs. |
Hunaidi, Osama; Notice of Allowance for U.S. Appl. No. 09/482,317, filed Jan. 14, 2000, dated May 13, 2002, 4 pgs. |
Hunaidi, Osama; Non-final Office Action for U.S. Appl. No. 09/482,317, filed Jan. 14, 2000, dated Dec. 17, 2001, 6 pgs. |
Peter, Russo Anthony; European Search Report for Patent Application No. EP95307807, filed Nov. 1, 1995, dated Jul. 22, 1998, 5 pgs. |
Ortiz, Jorge Isaac; Notice of Allowance for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Feb. 19, 2019, 8 pgs. |
Ortiz, Jorge Isaac; Final Office Action for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Dec. 12, 2018, 25 pgs. |
Ortiz, Jorge Isaac; Non-Final Office Action for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Jun. 4, 2018, 94 pgs. |
Ortiz, Jorge Isaac; International Preliminary Reporton Patentability for PCT Application No. PCT/US2016/067689, filed Dec. 20, 2016, dated Aug. 23, 2018, 8 pgs. |
Ortiz, Jorge; International Search Report and Written Opinion for PCT/US16/67689, filed Dec. 20, 2016, dated Mar. 8, 2017, 9 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Jan. 17, 2019, 17 pgs. |
Gibson, Daryl Lee; Final Office Action for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Aug. 31, 2018, 33 pgs. |
Hyland, Gregory E.; Issue Notification for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Dec. 6, 2017, 1 pg. |
J.A. Gallego-Juarez, G. Rodriguez-Corral and L. Gaete-Garreton, An ultrasonic transducer for high power applications in gases, Nov. 1978, Ultrasonics, published by IPC Business Press, p. 267-271. |
“Non-Patent Literature Murata (entitled ““Piezoelectric Sounds Components””), accessed at http://web.archive.org/web/20030806141815/http://www.murata.com/catalog/p37e17.pdf, archived on Aug. 6, 2003.” |
“Non-Patent Literature NerdKits, accessed at http://web.archive.org/web/20090510051850/http://www.nerdkits.com/videos/sound_meter/, archived on May 10, 2009.” |
“Non-Patent Literature Bimorph (entitled ““Bimoprh actuators””), accessed at http://web.archive.org/web/20080122050424/http://www.elpapiezo.ru/eng/curve_e.shtml, archived on Jan. 22, 2008.” |
Hyland, Gregory E.; Supplemental Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Oct. 28, 2020, 4 pgs. |
Hyland, Gregory; Supplemental Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Oct. 9, 2020, 4 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Oct. 23, 2020, 16 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowance for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Nov. 10, 2020, 4 pgs. |
Keefe, Robert Paul, Office Action for Canadian application No. 3,060,512, filed May 5, 2011, dated Jul. 13, 2020, 6 pgs. |
Gibson, Daryl Lee; Corrected Notice of Allowance for U.S. Appl. No. 16/121,136, filed Sep. 4, 2018, dated Nov. 9, 2020, 6 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 16/121,136, filed Sep. 4, 2018, dated Sep. 29, 2020, 15 pgs. |
Gibson, Daryl Lee; Office Action for Canadian application No. 3,057,202, filed Oct. 1, 2019, dated Aug. 31, 2020, 4 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,057,224, filed Oct. 1, 2019, dated Nov. 10, 2020, 4 pgs. |
Ortiz, Jorge Isaac; Supplemental Notice of Allowance for U.S. Appl. No. 15/043,057, filed Mar. 13, 2019, 6 pgs. |
Ortiz, Jorge Isaac; Issue Notification for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Apr. 17, 2019, 1 pg. |
Splitz, David; International Search Report and Written Opinion for serial No. PCT/US11/58260, filed Oct. 28, 2011, dated Feb. 7, 2012, 8 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Feb. 23, 2018, 86 pgs. |
Gibson, Daryl Lee; Corrected Notice of Allowance for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Mar. 21, 2019, 6 pgs. |
Gibson, Daryl Lee; International Search Report and Written Opinion for PCT Application No. PCT/US2016/067692, filed Dec. 20, 2016, dated Mar. 2, 2017, 10 pgs. |
Gibson, Daryl Lee; International Preliminary Report on Patentability for PCT Application No. PCT/US2016/067692, filed Dec. 20, 2016, dated Aug. 23, 2018, 9 pgs. |
Gibson, Daryl Lee; U.S. Provisional Application entitled: Nozzle Cap Multi-Band Antenna Assembly having U.S. Appl. No. 62/294,973, filed Feb. 12, 2016, 54 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Jan. 28, 2020, 18 pgs. |
Hyland, Gregory E.; Office Action for Canadian patent application No. 3,023,529, filed May 5, 2011, dated Nov. 26, 2019, 4 pgs. |
Fleury, Leo W.; Office Action for Canadian patent application No. 2,842,042, filed Aug. 10, 2012, mailed 12/5/82019, 3 pgs. |
Ortiz, Jorge Isaac; Office Action for Canadian patent application No. 3,010,333, filed Dec. 20, 2016, dated Dec. 6, 2019, 4 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,010,345, filed Dec. 20, 2016, dated Dec. 16, 2019, 4 pgs. |
Gibson, Daryl Lee; International Search Report and Written Opinion for PCT Application No. PCT/US19/45451, filed Aug. 7, 2019, dated Feb. 3, 2020, 11 pgs. |
Gibson, Daryl Lee; Office Action for Canadian application No. 3,057,202, filed Oct. 1, 2019, dated Dec. 19, 2019, 3 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Mar. 21, 2020, 9 pgs. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Jun. 26, 2020, 70 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Jul. 10, 2019, 74 pgs. |
Fleury, Jr., Leo W.; Corrected Notice of Allowance for U.S. Appl. No. 15/401,457, filed Jan. 9, 2017, dated Jun. 26, 2019, 55 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Dec. 17, 2019, 23 pgs. |
Gibson, Daryl Lee; Invitation to Pay Additional Fees for PCT/US19/45451, filed Aug. 7, 2019, dated Oct. 10, 2019, 2 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,057,167, filed Aug. 7, 2019, dated Nov. 19, 2019, 7 pgs. |
Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Feb. 19, 2020, 29 pgs. |
Oritz, Jorge Isaac; Office Action for Canadian patent application No. 3,070,690, filed Dec. 20, 2016, dated Mar. 10, 2020, 3 pgs. |
Gibson, Daryl Lee; Extended European Search Report for 16890115.5, filed Dec. 20, 2016, dated Jan. 24, 2020, 10 pgs. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Jun. 11, 2020, 33 pgs. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated May 27, 2020, 23 pgs. |
Gibson, Daryl Lee; Requirement for Restriction/Election for U.S. Appl. No. 16/121,136, filed Sep. 14, 2018, dated May 7, 2020, 5 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,057,167, filed Aug. 7, 2019, dated May 25, 2020, 3 pgs. |
Gibson, Daryl Lee; Office Action for Canadian application No. 3,057,202, filed Oct. 1, 2019, dated Apr. 2, 2020, 4 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 16/121,136, filed Sep. 4, 2018, dated Mar. 22, 2020, 94 pgs. |
Keefe, Robert Paul, Office Action for Canadian application No. 3,060,512, filed May 5, 2011, dated Apr. 22, 2020, 5 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Dec. 7, 2020, 4 pgs. |
Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Nov. 25, 2020, 37 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,010,345, filed Dec. 20, 2016, dated Oct. 6, 2020, 4 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 16/234,715, filed Dec. 28, 2018, dated Jan. 1, 2021, 105 pgs. |
Gibson, Daryl Lee; International Preliminary Report on Patentability for PCT Application No. PCT/US19/45451, filed Aug. 7, 2019, dated Mar. 18, 2021, 8 pgs. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Mar. 24, 2021, 32 pgs. |
FleuryJR., Leo W.; Final Office Action for U.S. Appl. No. 15.939,942, filed Mar. 29, 2018, dated Aug. 27, 2021, 30 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 17/079,642, filed Oct. 26, 2020, dated Aug. 30, 2021, 84 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 17/245,419, filed Apr. 30, 2021, dated Sep. 2, 2021, 82 pgs. |
Gibson, Daryl; Office Action for U.S. Appl. No. 3,057,224, filed Oct. 1, 2019, dated Jun. 23, 2021, 4 pgs. |
Ortiz, Jorge Isaac; Non-Final Office Action for U.S. Appl. No. 17/245,181, filed Apr. 30, 2021, dated Sep. 16, 2021, 82 pgs. |
Ortiz, Jorge Isaac; Office Action for European patent application No. 16890114.8, filed Dec. 20, 2016, dated Oct. 4, 2021, 7 pgs. |
Gibson, Daryl Lee; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/234,715, filed Dec. 28, 2018, dated Oct. 14, 2021, 2 pgs. |
Gibson, Daryl Lee; Extended European Search Report for application No. 21180958.7, filed Aug. 7, 2019, dated Oct. 5, 2021, 8 pgs. |
Gibson, Daryl Lee; International Search Report and Written Opinion for PCT Application No. PCT/US21/31033, filed May 6, 2021, dated Sep. 24, 2021, 12 pgs. |
Ortiz, Jorge Isaac; Non-Final Office Action for U.S. Appl. No. 16/354,939, filed Mar. 15, 2019, dated Aug. 10, 2021, 126 pgs. |
Ortiz, Jorge Isaac; Requirement for Restriction/Election for U.S. Appl. No. 17/245,181, filed Apr. 30, 2021, dated Jul. 22, 2021, 6 pgs. |
Gibson, Daryl Lee; Final Office Action for U.S. Appl. No. 16/234,715, filed Dec. 28, 2018, dated Aug. 5, 2021, 21 pgs. |
ABT, Inc., Installation Instructions Belleville Washer springs (Year: 2014), 1 pg. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 16/428,744, filed May 31, 2019, dated Aug. 2, 2021, 121 pgs. |
QRFS, Storz FDCs and fire Hydrant Storz connections: Adapters or integral Storz, Mar. 2019 (Year: 2019), 21 pgs. |
Speacialinsert, Inserts for plastic (Year: 2016), 36 pgs. |
Gibson, Daryl Lee; Invitation to Pay Additional Fees for PCT/US21/31033, filed May 6, 2021, dated Jul. 15, 2021, 2 pgs. |
Fleury Jr., Leo W., Advisory Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Dec. 7, 2021, 2 pgs. |
Ortiz, Jorge Isaac; Final Office Action for U.S. Appl. No. 17/245,181, filed Apr. 30, 2021, dated Dec. 7, 2021, 28 pgs. |
Ortiz, Jorge Isaac; Office Action for Canadian patent application No. 3,095,465, filed Dec. 20, 2016, dated Nov. 8, 2021, 4 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 16/234,715, filed Dec. 28, 2018, dated Dec. 7, 2021, 23 pgs. |
Gibson, Daryl Lee; Applicant-Initiated Interview Summary for U.S. Appl. No. 17/245,419, filed Apr. 30, 2021, dated Dec. 2, 2021, 2 pgs. |
Gibson, Daryl Lee; Final Office Action for U.S. Appl. No. 17/245,419, filed Apr. 30, 2021, dated Oct. 25, 2021, 27 pgs. |
Gibson, Daryl Lee; Final Office Action for U.S. Appl. No. 17/079,642, filed Oct. 26, 2020, dated Dec. 14, 2021, 17 pgs. |
Gibson, Daryl Lee; Applicant-Initiated Interview Summary for U.S. Appl. No. 17/079,642, filed Oct. 26, 2020, dated Feb. 9, 2022, 2 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 17/245,419, filed Apr. 30, 2021, dated Jan. 14, 2022, 27 pgs. |
Fleury, Jr.; Non-Final Office Action for U.S. Appl. No. 16/453,318, filed Jun. 26, 2019, dated Mar. 2, 2022, 129 pgs. |
Ortiz, Jorge Isaac; Final Office Action for U.S. Appl. No. 16/354,939, filed Mar. 15, 2019, dated Mar. 17, 2022, 40 pgs. |
Ortiz, Jorge Isaac; Notice of Allowance for U.S. Appl. No. 17/245,181, filed Apr. 30, 2021, dated Mar. 7, 2022, 13 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 17/079,642, filed Oct. 26, 2020, dated Mar. 1, 2022, 11 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 16/428,744, filed May 31, 2019, dated Mar. 16, 2022, 34 pgs. |
Gibson, Daryl Leel Applicant-Initiated Interview Summary for U.S. Appl. No. 17/245,419, filed Apr. 30, 2021, dated Mar. 8, 2022, 2 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,105,683, filed Aug. 7, 2019, dated Mar. 8, 2022, 4 pgs. |
Number | Date | Country | |
---|---|---|---|
20190214717 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62294973 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15255795 | Sep 2016 | US |
Child | 16352045 | US |