The invention is directed to an improved cooling insert and nozzle assembly used in gas turbines, aircraft engines, or similar turbine machinery. More particularly the invention is directed to casting a “T” or “L” section at the end of specific nozzle ribs facilitating the installation of cooling inserts within the nozzles by welding or brazing the cooling inserts to the nozzle ribs having the “T” or “L” sections. The invention further involves providing the cooling inserts with flexible ends thereby obviating the need for stiff end collars and significantly improving the rib to insert interface resulting in simplified cooling inserts and reduced nozzle machining.
In turbine nozzles conventional impingement cooling inserts are disposed inside nozzle cavities to augment heat transfer coefficients and increase cooling of the airfoil walls.
As shown in
These ribs are typical of most nozzle designs and are primarily for structural purposes. In an open and closed circuit cooling design it is desirable to seal the cooling insert along the entire perimeter. This seal weld or braze involves a weld along two sides to the nozzle sidewall, with the other two sides being a weld to the nozzle internal ribs. Typically the ends of the ribs need to be machined to achieve a proper interface for welding or brazing.
The provision of stiff collar 30 around insert 10 is to make the interface mechanically sound. However, stiff collar 30 makes it difficult to manufacture and assemble cooling insert 10 into the nozzle cavity. Also the necessary machining of rib 31 is difficult due to the casting tolerances of internal rib 31. Accordingly, there is a need for a better interface to the internal ribs.
In addition, cooling inserts that are mounted on internal airfoil cavities to “flashribs” also have stiff collars on the cooling inserts and the nozzle interface must be machined on both sides of the internal ribs. This makes for a complex assembly as close tolerance fits are required to braze or Laser or Electron Beam weld the inserts to the nozzle. Much scrap and rework often must be produced due to the complex interface. In addition, the part life is reduced due to leakage across the joint and weak joints that create cooling loss and cracking.
It is an object of the present invention to overcome the above described problems and limitations of conventional cooling insert and nozzle assemblies.
An exemplary embodiment of the invention involves the use of cast-in “T” or “L” sections at the end of specific nozzle internal ribs. The first rib at opposite ends of the nozzle is cast-in with “L” sections while the interior ribs are cast-in with “T” sections.
Another objective of the present invention is to improve the assembly interface between the cooling insert and the nozzle internal ribs which makes manufacturing of the insert much improved. The present invention provides significant improvements in the machining manufacturability of the nozzle thereby reducing the amount of scrap or rework that is needed in machining the nozzle ribs.
Prior to assembly of the insert and nozzle, the inside shape of the flash ribs, “T” sections and “L” sections are machined along their inside surface. This is performed by a simple plunge operation with an EDM machine or a small mill end. Depending upon the casting tolerance capability, this area may not require machining prior to the assembly of the insert.
The cooling insert 50, depicted in
The position of the insert between the nozzle ribs is fixed by welding or brazing the flexible end of the insert to the “T” and/or “L” sections of the nozzle ribs.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.