Not Applicable
1. Field of the Invention
The present invention pertains generally to steam desuperheaters or attemperators and, more particularly, to a uniquely configured spray nozzle assembly for a steam desuperheating or attemperator device. The nozzle assembly is specifically adapted to, among other things, prevent thermal shock to prescribed internal structural components thereof, to prevent “sticking” of a valve stem thereof, and to create a substantially uniformly distributed spray of cooling water for spraying into a flow of superheated steam in order to reduce the temperature of the steam.
2. Description of the Related Art
Many industrial facilities operate with superheated steam that has a higher temperature than its saturation temperature at a given pressure. Because superheated steam can damage turbines or other downstream components, it is necessary to control the temperature of the steam. Desuperheating refers to the process of reducing the temperature of the superheated steam to a lower temperature, permitting operation of the system as intended, ensuring system protection, and correcting for unintentional deviations from a prescribed operating temperature set point. Along these lines, the precise control of final steam temperature is often critical for the safe and efficient operation of steam generation cycles.
A steam desuperheater or attemperator can lower the temperature of superheated steam by spraying cooling water into a flow of superheated steam that is passing through a steam pipe. By way of example, attemperators are often utilized in heat recovery steam generators between the primary and secondary superheaters on the high pressure and the reheat lines. In some designs, attemperators are also added after the final stage of superheating. Once the cooling water is sprayed into the flow of superheated steam, the cooling water mixes with the superheated steam and evaporates, drawing thermal energy from the steam and lowering its temperature.
A popular, currently known attemperator design is a probe style attemperator which includes one or more nozzles or nozzle assemblies positioned so as to spray cooling water into the steam flow in a direction generally along the axis of the steam pipe. In many applications, the steam pipe is outfitted with an internal thermal liner which is positioned downstream of the spray nozzle attemperator. The liner is intended to protect the high temperature steam pipe from the thermal shock that would result from any impinging water droplets striking the hot inner surface of the steam pipe itself.
One of the most commonly encountered problems in those systems integrating an attemperator is the addition of unwanted water to the steam line or pipe as a result of the improper operation of the attemperator, or the inability of the nozzle assembly of the attemperator to remain leak tight. The failure of the attemperator to control the water flow injected into the steam pipe often results in damaged hardware and piping from thermal shock, and in severe cases has been known to erode piping elbows and other system components downstream of the attemperator. Along these lines, water buildup can further cause erosion, thermal stresses, and/or stress corrosion cracking in the liner of the steam pipe that may lead to its structural failure.
In addition, the service requirements in many applications are extremely demanding on the attemperator itself, and often result in its failure. More particularly, in many applications, various structural features of the attemperator, including the nozzle assembly thereof, will remain at elevated steam temperatures for extended periods without spray water flowing through it, and thus will be subjected to thermal shock when quenched by the relatively cool spray water. Along these lines, typical failures include spring breakage in the nozzle assembly, and the sticking of the valve stem thereof. Further, in probe style attemperators wherein the spray nozzle(s) reside in the steam flow, such cycling often results in fatigue and thermal cracks in critical components such as the nozzle holder and the nozzle itself. Thermal cycling, as well as the high velocity head of the steam passing the attemperator, can also potentially lead to the loosening of the nozzle assembly which may result in an undesirable change in the orientation of its spray angle.
With regard to the functionality of any nozzle assembly of an attemperator, if the cooling water is sprayed into the superheated steam pipe as very fine water droplets or mist, then the mixing of the cooling water with the superheated steam is more uniform through the steam flow. On the other hand, if the cooling water is sprayed into the superheated steam pipe in a streaming pattern, then the evaporation of the cooling water is greatly diminished. In addition, a streaming spray of cooling water will typically pass through the superheated steam flow and impact the interior wall or liner of the steam pipe, resulting in water buildup which is undesirable for the reasons set forth above. However, if the surface area of the cooling water spray that is exposed to the superheated steam is large, which is an intended consequence of very fine droplet size, the effectiveness of the evaporation is greatly increased. Further, the mixing of the cooling water with the superheated steam can be enhanced by spraying the cooling water into the steam pipe in a uniform geometrical flow pattern such that the effects of the cooling water are uniformly distributed throughout the steam flow. Conversely, a non-uniform spray pattern of cooling water will result in an uneven and poorly controlled temperature reduction throughout the flow of the superheated steam. Along these lines, the inability of the cooling water spray to efficiently evaporate in the superheated steam flow may also result in an accumulation of cooling water within the steam pipe. The accumulation of this cooling water will eventually evaporate in a non-uniform heat exchange between the water and the superheated steam, resulting in a poorly controlled temperature reduction.
Various desuperheater devices have been developed in the prior art in an attempt to address the aforementioned needs. Such prior art devices include those which are disclosed in Applicant's U.S. Pat. No. 6,746,001 (entitled Desuperheater Nozzle), U.S. Pat. No. 7,028,994 (entitled Pressure Blast Pre-Filming Spray Nozzle), U.S. Pat. No. 7,654,509 (entitled Desuperheater Nozzle), and U.S. Pat. No. 7,850,149 (entitled Pressure Blast Pre-Filming Spray Nozzle), the disclosures of which are incorporated herein by reference. The present invention represents an improvement over these and other prior art solutions, and provides a nozzle assembly for spraying cooling water into a flow of superheated steam that is of simple construction with relatively few components, requires a minimal amount of maintenance, and is specifically adapted to, among other things, prevent thermal shock to prescribed internal structural components thereof, to prevent “sticking” of a valve stem thereof, and to create a substantially uniformly distributed spray of cooling water for spraying into a flow of superheated steam in order to reduce the temperature of the steam. Various novel features of the present invention will be discussed in more detail below.
In accordance with the present invention, there is provided an improved spray nozzle assembly for an attemperator which is operative to spray cooling water into a flow of superheated steam in a generally uniformly distributed spray pattern. The nozzle assembly comprises a nozzle housing and a valve element which is movably interfaced to the nozzle housing. The valve element, also commonly referred to as a valve pintle or a valve plug, extends through the nozzle housing and is axially movable between a closed position and an open (flow) position. The nozzle housing defines a generally annular flow passage. The flow passage itself comprises three identically configured, arcuate flow passage sections, each of which spans an interval of approximately 120°. One end of each of the flow passage sections extends to a first (top) end or end portion of the nozzle housing. The opposite end of each of the flow passage sections fluidly communicates with a fluid chamber which is also defined by the nozzle housing and extends to a second (bottom) end of the nozzle housing which is disposed in opposed relation to the first end thereof. A portion of the second end of the nozzle housing which circumvents the fluid chamber defines a seating surface of the nozzle assembly. The nozzle housing further defines a central bore which extends axially from the first end thereof. The central bore may be fully or at least partially circumvented by the annular flow passage collectively defined by the separate flow passage sections, the central bore thus being concentrically positioned relative to the flow passage sections. That end of the central bore opposite the end extending to the first end of the nozzle housing terminates at the fluid chamber.
The valve element comprises a valve body or nozzle cone, and an elongate valve stem which is integrally connected to the nozzle cone and extends axially therefrom. The nozzle cone has a tapered outer surface. In one embodiment, the junction between the nozzle cone and the valve stem may be defined by a continuous, annular groove or channel formed within the valve element. The valve stem is advanced through the central bore of the nozzle housing.
In one embodiment, disposed within the central bore of the nozzle housing is a biasing spring which circumvents a portion of the valve stem, and normally biases the valve element to its closed position. In another embodiment, the biasing spring, though also circumventing a portion of the valve stem, is operatively captured between the nozzle housing and a nozzle shield movably attached or interfaced to a portion of the nozzle housing.
In the nozzle assembly, cooling water is introduced into each of the flow passage sections at the first end of the nozzle housing, and thereafter flows therethrough into the fluid chamber. When the valve element is in its closed position, a portion of the outer surface of the nozzle cone thereof is seated against the seating surface defined by the nozzle housing, thereby blocking the flow of fluid out of the fluid chamber and hence the nozzle assembly. An increase of the pressure of the fluid beyond a prescribed threshold effectively overcomes the biasing force exerted by the biasing spring, thus facilitating the actuation of the valve element from its closed position to its open position. When the valve element is in its open position, the nozzle cone thereof and the that portion of the nozzle housing defining the seating surface collectively define an annular outflow opening between the fluid chamber and the exterior of the nozzle assembly. The shape of the outflow opening, coupled with the shape of the nozzle cone of the valve element, effectively imparts a conical spray pattern of small droplet size to the fluid flowing from the nozzle assembly. In that embodiment wherein the biasing spring is disposed within the central bore of the nozzle housing, fluid flow through the nozzle assembly normally bypasses the central bore, and thus does not directly impinge the biasing spring therein. In that embodiment wherein the biasing spring is captured between the first end of the nozzle housing and the nozzle shield, the biasing spring is disposed within the interior of the nozzle shield which effectively shields or protects the biasing spring from any directly impingement from fluid flowing through the nozzle assembly. In any embodiment of the present invention, prescribed portions of the valve stem of the valve element may include grooves formed therein in a prescribed pattern, such grooves being sized, configured and arranged to prevent debris accumulation in the central bore which could otherwise result in the sticking of the valve element during the reciprocal movement thereof between its closed and open positions.
The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.
These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:
Common reference numerals are used throughout the drawings and detailed description to indicate like elements.
Referring now to the drawings wherein the showings are for purposes of illustrating preferred embodiments of the present invention only, and not for purposes of limiting the same,
The nozzle assembly 10 of the present invention comprises a nozzle housing 12 which is shown with particularity in
As is most easily seen in
As further seen in
The nozzle assembly 10 further comprises a valve element 36 which is moveably interfaced to the nozzle housing 12, and is reciprocally moveable in an axial direction relative thereto between a closed position and an open or flow position. The valve element 36 comprises a valve body or nozzle cone 38, and an elongate valve stem 40 which is integrally connected to the nozzle cone 38 and extends axially therefrom. The nozzle cone 38 defines a tapered outer surface 42, with the junction between the nozzle cone 38 and the valve stem 40 being defined by a continuous, annular groove or channel 44 formed in the valve element 36. As is best seen in
In the nozzle assembly 10, the valve stem 40 of the valve element 36 is advanced through the central bore 30 such that the nozzle cone 38 predominately resides within the fluid chamber 20. The nozzle assembly 10 further comprises a helical biasing spring 50 which is disposed within the central bore 30 and circumvents a portion of the valve stem 40 extending therethrough. More particularly, as seen in
The nozzle assembly 10 further comprises a nozzle guide nut 52 which is cooperatively engaged to the valve stem 40 of the valve element 36. When viewed from the perspective shown in
The nozzle guide nut 52 further includes a bore which extends axially therethrough, and is sized to accommodate the advancement of a portion of the valve stem 40 through the nozzle guide nut 52. More particularly, as seen in
In the nozzle assembly 10, the nozzle guide nut 52 is maintained in cooperative engagement to the valve stem 40 through the use of a locking nut 62 and a complimentary pair of lock washers 64. As seen in
As indicated above, the valve element 36 of the nozzle assembly 10 is selectively moveable between a closed position (shown in
When the valve element 36 is in its closed position, a portion of the outer surface 42 of the nozzle cone 38 is firmly seated against the complimentary seating surface 22 defined by the nozzle housing 12, and in particular the outer wall 24 thereof. At the same time, a substantial portion of the bottom flange portion 48 of the valve stem 40 resides within the bottom section of the central bore 30, as does approximately half of the width of the channel 44 between the valve stem 40 and nozzle cone 38. Still further, while the bottom portion 56 of the nozzle guide nut 52 resides within the top section of the central bore 30, the channel 58 between the top and bottom sections 54, 56 of the nozzle guide nut 52 does not reside within the central bore 30, and thus is located exteriorly of the nozzle housing 12. As previously explained, the biasing spring 50 captured within the top section of the central bore 30 and extending between the rim 60 of the nozzle guide nut 52 and the shoulder 32 of the nozzle housing 12 acts against the nozzle guide nut 52 (and hence the valve element 36) in a manner which normally biases the valve element 36 to its closed position.
In the nozzle assembly 10, cooling water is introduced into each of the flow passage sections 18a, 18b, 18c at the first end 14 of the nozzle housing 12, and thereafter flows therethrough into the fluid chamber 20. When the valve element 36 is in its closed position, the seating of the outer surface 42 of the nozzle cone 36 against the seating surface 22 blocks the flow of fluid out of the fluid chamber 20 and hence the nozzle assembly 10. An increase of the pressure of the fluid beyond a prescribed threshold effectively overcomes the biasing force exerted by the biasing spring 50, thus facilitating the actuation of the valve element 36 from its closed position to its open position. More particularly, when viewed from the perspective shown in
When the valve element 36 is in its open position, the nozzle cone 38 thereof and that portion of the nozzle housing 12 defining the seating surface 22 collectively define an annular outflow opening between the fluid chamber 20 and the exterior of the nozzle assembly 10. The shape of such outflow opening, coupled with the shape of the nozzle cone 38, effectively imparts a conical spray pattern of small droplet size to the fluid flowing from the nozzle assembly 10. When the valve element 36 is in its open position, the bottom flange portion 48 of the valve stem 40 still resides within the bottom section of the central bore 30, though the channel 44 resides predominantly within the fluid chamber 20. Further, both the bottom portion 56 and channel 58 of the nozzle guide nut 52 reside within the top section of the central bore 30. As will be recognized, a reduction in the fluid pressure flowing through the nozzle assembly 10 below a threshold which is needed to overcome the biasing force exerted by the biasing spring 50 effectively facilitates the resilient return of the valve element 36 from its open position shown in
Importantly, fluid flow through the nozzle assembly 10, and in particular the flow passage sections 18a, 18b, 18c and fluid chamber 20 thereof, normally bypasses the central bore 30. As previously explained, the top section of the central bore 30 is effectively cut off from fluid flow by the advancement of the bottom portion 56 of the nozzle guide nut 52 into the top section of the central bore 30 proximate the rim 66 of the inner wall 26 irrespective of whether the valve element 36 is in its closed or open positions, and the positioning of the bottom flange portion 48 of the valve stem 40 within the bottom section of the central bore 30 irrespective of whether the valve element 36 is in its open or closed positions. As a result, fluid flowing through the nozzle assembly 10 does not directly impinge the biasing spring 50 residing within the top section of the central bore 30. Thus, even when the nozzle assembly 10 heats up to full steam temperature when no water is flowing and is shocked when impinged with cold water, the level of thermal shocking of the biasing spring 50 will be significantly reduced, thereby lengthening the life thereof and minimizing occurrences of spring breakage. Further, as is most apparent from
In addition, in the nozzle assembly 10, the travel of the valve element 36 from its closed position to its open position is limited mechanically by the abutment of the shoulder 68 of the nozzle guide nut 52 against the rim 66 of the inner wall 26 of the nozzle housing 12 in the above-described manner. This mechanical limiting of the travel of the valve element 36 eliminates the risk of compressing the biasing spring 50 solid, and further allows for the implementation of precise limitations to the maximum stress level exerted on the biasing spring 50, thereby allowing for more accurate calculations of the life cycle thereof. Still further, the aforementioned mechanical limiting of the travel of the valve element 36 substantially increases the pressure limit of the nozzle assembly 10 since it is not limited by the compression of the biasing spring 50. This also provides the potential to fabricate the nozzle assembly 10 in a smaller size to function at higher pressure drops, and to further provide better primary atomization with higher pressure drops. The mechanical limiting of the travel of the valve element 36 also allows for the tailoring of the flow characteristics of the nozzle assembly 10, with the cracking pressure being controlled through the selection of the biasing spring 50.
Referring now to
Similarly, the bottom portion 56 of the nozzle guide nut 52 may include a series of debris grooves 72 within the peripheral outer surface thereof, preferably in prescribed, equidistantly spaced intervals. The debris grooves 72 circumvent the entire periphery of the bottom portion 56, and each extend in spaced, generally parallel relation to the axis of the bore of the nozzle guide nut 52, and hence the axis of the valve stem 40 of the valve element 32.
When the valve element 36 is in either its closed position (as shown in
Referring now to
When used in conjunction with the nozzle assembly 10, the tab washer 76, in its originally unbent state, is advanced over a portion of the nozzle housing 12 and rested upon an annular shoulder 80 which is defined thereby and extends in generally perpendicular relation to the above-described flats 34. Thereafter, upon the advancement of the nozzle assembly 10 into the nozzle holder 74, the enlarged tabs 78 of the tab washer 76 are bent in the manner shown in
Referring now to
The nozzle assembly 100 comprises a nozzle housing 112 which is shown with particularity in
The nozzle housing 112 defines a tubular, generally cylindrical outer wall 124, and a tubular, generally cylindrical inner wall 126, a portion of which is concentrically positioned within the outer wall 24. The inner wall 126 is integrally connected to the outer wall 124 by three (3) identically configured spokes 128 of the nozzle housing 112 which are themselves separated from each other by equidistantly spaced intervals of approximately 120°. As best seen in
As further viewed from the perspective shown in
In the nozzle assembly 100, the flow passage sections 118a, 118b, 118c are each collectively defined by the outer and inner walls 124, 126 and an adjacent pair of the spokes 128, with the fluid chamber 120 being collectively defined by the outer wall 124 and that end of the inner wall 26 opposite the end defining the first end 114 of the nozzle housing 112. As is most apparent from
The nozzle assembly 100 further comprises a valve element 136 which is moveably interfaced to the nozzle housing 112, and is reciprocally moveable in an axial direction relative thereto between a closed position and an open or flow position. The valve element 136 comprises a valve body or nozzle cone 138, and an elongate valve stem 140 which is integrally connected to the nozzle cone 138 and extends axially therefrom. The nozzle cone 138 defines a tapered outer surface 143. The valve stem 140 of the valve element 136 is not of uniform outer diameter. Rather, when viewed from the perspective shown in
In the nozzle assembly 100, the valve stem 140 of the valve element 136 is advanced through the central bore 130 such that the nozzle cone 138 predominately resides within the fluid chamber 120. The length of the valve stem 140 relative to that of the bore 130 is such that when the nozzle cone 138 resides within the fluid chamber 120, a substantial portion of the length of the valve stem 140 protrudes from the inner wall 126, and hence the first end 114 of the nozzle housing 112.
The nozzle assembly 100 further comprises a helical biasing spring 150 which circumvents a substantial portion of that segment of the valve stem 140 protruding from the first end 114 of the nozzle housing 112. The biasing spring 150 resides within the interior of a nozzle shield 142 of the nozzle assembly 100 which is movably attached to the nozzle housing 112, and in particular that first section of the inner wall 126 thereof. The nozzle shield 142 has a generally cylindrical, tubular configuration. When viewed from the perspective shown in
In the nozzle assembly 100, the nozzle shield 142 is cooperatively engaged to both the nozzle housing 112 and the valve stem 136. More particularly, the flange portion 148 is partially received into the channel 141 of the valve stem 140 which preferably has a complementary configuration. At the same time, the first section of the inner wall 126 of the nozzle housing 112 is slidably advanced into the interior of the nozzle shield 142 via the open end thereof defined by the distal rim 146. In this regard, the inner diameter of the side wall portion 144 is sized so as to only slightly exceed the outer diameter of the first section of the inner wall 126, thus providing a slidable fit therebetween. When the nozzle shield 142 assumes this orientation relative to the nozzle housing 112 and valve stem 136, the biasing spring 150 circumvents that portion of the outer surface of the valve stem 140 which extends between the first end 114 and the flange portion 148. In this regard, as also viewed from the perspective shown in
In the nozzle assembly 100, the valve element 136 is maintained in cooperative engagement to the nozzle housing 112 and the nozzle shield 142 through the use of a locking nut 162 and a complimentary pair of lock washers 164. As seen in
As indicated above, the valve element 136 of the nozzle assembly 100 is selectively moveable between a closed position (shown in
When the valve element 136 is in its closed position, a portion of the outer surface 143 of the nozzle cone 138 is firmly seated against the complimentary seating surface 122 defined by the nozzle housing 112, and in particular the outer wall 124 thereof. At the same time, the aforementioned gap is defined between the distal rim 146 of the nozzle shield 142 and the shoulder 119 defined by the valve housing 112. The biasing spring 150 captured within the interior of the nozzle shield 142 and extending between the flange portion 148 thereof and the first end 114 of the nozzle housing 112 acts against the valve element 136 in a manner which normally biases the valve element 136 to its closed position. In this regard, the biasing spring 150 normally biases the nozzle shield 142 in a direction away from the nozzle housing 112, which in turn biases the valve element 136 to its closed position relative to the nozzle housing 112 by virtue of the partial receipt of the flange portion 148 into the complimentary channel 141 of the valve stem 140.
In the nozzle assembly 100, cooling water is introduced into each of the flow passage sections 118a, 118b, 118c at the ends thereof disposed closest to the first end 114 of the nozzle housing 112, and thereafter flows therethrough into the fluid chamber 120. When the valve element 136 is in its closed position, the seating of the outer surface 143 of the nozzle cone 136 against the seating surface 122 blocks the flow of fluid out of the fluid chamber 120 and hence the nozzle assembly 100. An increase of the pressure of the fluid beyond a prescribed threshold effectively overcomes the biasing force exerted by the biasing spring 150, thus facilitating the actuation of the valve element 136 from its closed position to its open position. More particularly, when viewed from the perspective shown in
When the valve element 136 is in its open position, the nozzle cone 138 thereof and that portion of the nozzle housing 112 defining the seating surface 122 collectively define an annular outflow opening between the fluid chamber 120 and the exterior of the nozzle assembly 100. The shape of such outflow opening, coupled with the shape of the nozzle cone 138, effectively imparts a conical spray pattern of small droplet size to the fluid flowing from the nozzle assembly 100. As will be recognized, a reduction in the fluid pressure flowing through the nozzle assembly 100 below a threshold which is needed to overcome the biasing force exerted by the biasing spring 150 effectively facilitates the resilient return of the valve element 136 from its open position back to its closed position as shown in
Importantly, fluid flow through the nozzle assembly 100, and in particular the flow passage sections 118a, 118b, 118c and fluid chamber 120 thereof, normally bypasses the central bore 130 and is further prevented from directly impinging the biasing spring 150 by virtue of the same residing within the interior of and thus being covered by the nozzle shield 142 in the aforementioned manner. Thus, even when the nozzle assembly 100 heats up to full steam temperature when no water is flowing and is shocked when impinged with cold water, the level of thermal shocking of the biasing spring 150 will be significantly reduced, thereby lengthening the life thereof and minimizing occurrences of spring breakage. Further, as is most apparent from
In addition, in the nozzle assembly 100, the travel of the valve element 136 from its closed position to its open position is limited mechanically by the abutment of the shoulder 119 of the nozzle housing 112 against the rim 146 of the nozzle shield 142 in the above-described manner. This mechanical limiting of the travel of the valve element 136 eliminates the risk of compressing the biasing spring 150 solid, and further allows for the implementation of precise limitations to the maximum stress level exerted on the biasing spring 150, thereby allowing for more accurate calculations of the life cycle thereof. Still further, the aforementioned mechanical limiting of the travel of the valve element 136 substantially increases the pressure limit of the nozzle assembly 100 since it is not limited by the compression of the biasing spring 150. This also provides the potential to fabricate the nozzle assembly 100 in a smaller size to function at higher pressure drops, and to further provide better primary atomization with higher pressure drops. The mechanical limiting of the travel of the valve element 136 also allows for the tailoring of the flow characteristics of the nozzle assembly 100, with the cracking pressure being controlled through the selection of the biasing spring 150.
Referring now to
When the valve element 136 is in either its closed position (as shown in
In a conventional application, the nozzle assembly 100 is cooperatively engaged to the complimentary nozzle holder 74 shown in
This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.
The present application is a continuation-in-part of U.S. patent application Ser. No. 13/644,049 entitled IMPROVED NOZZLE DESIGN FOR HIGH TEMPERATURE ATTEMPERATORS filed Oct. 3, 2012.
Number | Name | Date | Kind |
---|---|---|---|
355250 | Blass | Dec 1886 | A |
1252254 | Fisher | Jan 1918 | A |
1313971 | Wilson | Aug 1919 | A |
1486156 | Joseph | Mar 1924 | A |
1893298 | Moore | Jan 1933 | A |
2127188 | Schellin et al. | Aug 1938 | A |
2155986 | Wheaton | Apr 1939 | A |
2277811 | Ashley et al. | Mar 1942 | A |
2313994 | Grant | Mar 1943 | A |
2323464 | Glessner | Jul 1943 | A |
2355458 | Mastenbrook | Aug 1944 | A |
2801087 | Hawk | Jul 1957 | A |
3220710 | Leslie | Nov 1965 | A |
3286935 | Corlett et al. | Nov 1966 | A |
3331590 | Battenfeld et al. | Jul 1967 | A |
3332401 | Lustenader | Jul 1967 | A |
3434500 | Burrows | Mar 1969 | A |
3589621 | Bradley | Jun 1971 | A |
3655164 | Hayes | Apr 1972 | A |
3732851 | Self | May 1973 | A |
3917221 | Kubota et al. | Nov 1975 | A |
4017055 | Daughetee et al. | Apr 1977 | A |
4060199 | Brune et al. | Nov 1977 | A |
4071586 | Seger | Jan 1978 | A |
4082224 | Mangus | Apr 1978 | A |
4130611 | Brand | Dec 1978 | A |
4136044 | Brand | Jan 1979 | A |
4179069 | Knapp et al. | Dec 1979 | A |
4396156 | Southworth et al. | Aug 1983 | A |
4442047 | Johnson | Apr 1984 | A |
4479908 | Arbeille et al. | Oct 1984 | A |
4512520 | Schoonover | Apr 1985 | A |
4651931 | Hans et al. | Mar 1987 | A |
4899699 | Huang et al. | Feb 1990 | A |
4909445 | Schoonover | Mar 1990 | A |
4925111 | Foertsch et al. | May 1990 | A |
4944460 | Steingass | Jul 1990 | A |
4991780 | Kannan et al. | Feb 1991 | A |
5005605 | Kueffer et al. | Apr 1991 | A |
5044561 | Holzgrefe | Sep 1991 | A |
5058549 | Hashimoto et al. | Oct 1991 | A |
5336451 | Lovick | Aug 1994 | A |
5364033 | Cedoz et al. | Nov 1994 | A |
5385121 | Feiss | Jan 1995 | A |
5465906 | Hans | Nov 1995 | A |
5607626 | Kunkle et al. | Mar 1997 | A |
5785257 | Furuya et al. | Jul 1998 | A |
6062499 | Nakamura et al. | May 2000 | A |
6619568 | Kunkle et al. | Sep 2003 | B2 |
6691929 | Sherikar | Feb 2004 | B1 |
6746001 | Sherikar | Jun 2004 | B1 |
6764032 | Bulgatz et al. | Jul 2004 | B2 |
6823833 | Ismailov | Nov 2004 | B2 |
7028976 | Bachmann et al. | Apr 2006 | B2 |
7028994 | Sherikar | Apr 2006 | B2 |
7172175 | Vicars | Feb 2007 | B2 |
7370817 | Tilton et al. | May 2008 | B2 |
7481058 | Fukuda et al. | Jan 2009 | B2 |
7654509 | Freitas et al. | Feb 2010 | B2 |
7802376 | Huttlin | Sep 2010 | B2 |
7850149 | Sherikar et al. | Dec 2010 | B2 |
7891374 | Vicars | Feb 2011 | B2 |
20050194702 | Sherikar | Sep 2005 | A1 |
20060125126 | Sherikar et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
3713726 | Nov 1988 | DE |
10352544 | Jun 2005 | DE |
1180627 | Feb 2002 | EP |
1992465 | Nov 2008 | EP |
2011519726 | Jul 2011 | JP |
2009136967 | Nov 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20140091486 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13644049 | Oct 2012 | US |
Child | 14042428 | US |