The present invention relates to a nozzle for a burner boom water spray system of an offshore plant, and more particularly, to a nozzle for a burner boom water spray system of an offshore plant that can more efficiently shield a high heat source generating when combusting gas generating upon drilling crude oil.
In general, because an offshore plant formed in a fixed type, a floating type, or a flexible type structure has been operated for about 3 years to 30 years after being installed at an oil or gas mining point, unlike a general ship, consideration conditions in view of a design are considerably complicated, and technology having various and high difficulty related to stability security for fire and explosion due to a production of petroleum products as well as a climate influence such as a wind or a wave and a special environmental situation of sea is requested.
Nowadays, due to demand increase for petroleum resource development in a deep sea area of 1,000 m or more, security and development of related technology has been variously performed, instead of a simple purpose offshore plant of an existing single function, an interest in demand and development for a multipurpose offshore plant that can simultaneously perform drilling, production, storage, etc., has gradually increased.
At a present domestic infrastructure and technical level, offshore plant design technology for oil and gas resources and offshore plant technology for offshore space use having relatively high realization should be first secured, and because such technology has a common target of offshore plant engineering technology security, it is expected that a concentration degree and a ripple effect of technology investment are high.
Particularly, an offshore plant burner boom water spray system suggested in the present invention is a water fire extinguishing system of a burner boom for an offshore plant and is an equipment for protecting a body of a ship, an equipment, and a person from a high heat source generating when combusting gas generating upon drilling crude oil at the bottom of the sea using a high pressure of water (minute waterdrop, mist) radiated from a nozzle.
The burner boom water spray system is an equipment for protecting the body of a ship, an equipment, and a person from combustion of gas while performing an oil drilling operating and includes a nozzle for spraying minute water, a water curtain piping for forming a predetermined water curtain using water sprayed through the nozzle, and a pump.
In operation of the burner boom water spray system, when the pump is operated, water supplied through the piping is radiated to minute water through the nozzle, various forms of water curtains are formed according to a form of the nozzle or a structure of the piping at which the nozzle is disposed.
In more detail,
Next,
Next,
Finally,
However, in most of such nozzles disclosed at the prior art, a shape of a hole formed in a nozzle tap has a conventional form, and in order to perform a water curtain function, a plurality of nozzle taps disposed at a side surface thereof are also formed in a conventional form and thus there is a defect that an efficient water curtain function is not performed.
The present invention has been made in view of the above problems, and provides a nozzle for a burner boom water spray system of an offshore plant having a nozzle tap of an improved ejection efficiency instead of a conventional nozzle tap.
The present invention further provides a nozzle for a burner boom water spray system of an offshore plant in which a plurality of nozzle taps are disposed in a two-stage form at a side surface of a nozzle in order to efficiently form a water curtain.
In accordance with an aspect of the present invention, a nozzle for a burner boom water spray system of an offshore plant includes: a front ejecting portion having a first nozzle tap at the center; a first side ejecting portion formed at a lower side of the front ejecting portion and in which a plurality of second nozzle taps are disposed at a side surface at a predetermined gap; a second side ejecting portion formed at a lower side of the first side ejecting portion and in which a plurality of third nozzle taps are disposed at a side surface at a predetermined gap; and a fastening portion formed at a lower side of the second side ejecting portion and coupled to a member for supplying a nozzle injection fluid.
Preferably, each side surface of the first side ejecting portion and the second side ejecting portion is inclined by a predetermined angle from an upper end to a lower end thereof.
Preferably, horizontal cross-sections of the first side ejecting portion and the second side ejecting portion are a ring shape and have the same size, but may be partially changed.
Preferably, the plurality of second nozzle taps and the plurality of third nozzle taps are alternately disposed with an alternate arrangement method.
Preferably, the plurality of second nozzle taps are coupled to a plurality of tap holes, respectively, formed at a side surface of the first side ejecting portion, and the plurality of third nozzle taps are coupled to a plurality of tap holes, respectively, formed at a side surface of the second side ejecting portion.
Preferably, in a front central portion of each of the plurality of second nozzle taps and third nozzle taps, a hole for ejecting a fluid injected through each corresponding tap hole and a vertical circular arc type injection groove of a veejet spray nozzle type enclosing the hole are formed, and the vertical circular arc type injection groove of a veejet spray nozzle type is obliquely cut about the hole.
Preferably, the vertical circular arc type injection groove of a veejet spray nozzle type formed in the plurality of second nozzle taps and third nozzle taps obliquely installs the nozzle of a horizontal state in a range of 5° to 20°, but may be variously changed according to a tilt degree of a tap hole.
When using a nozzle for a burner boom water spray system of an offshore plant suggested in the present invention, the following effect is obtained.
The nozzle for a burner boom water spray system of an offshore plant according to the present invention provides a side ejecting portion of two stages in addition to a front ejecting portion, and thus an efficient water curtain pattern can be embodied, and by forming a vertical circular arc type injection groove of a veejet spray nozzle type in a nozzle tap, a spray range of a fluid ejected through the nozzle tap can be enlarged and thus a high heat radiated from gas generating upon performing a drilling operation can be effectively intercepted.
Before describing in detail a nozzle for a burner boom water spray system of an offshore plant suggested in the present invention, the present invention can be variously changed and may have various exemplary embodiments, and specific exemplary embodiments will be described in detail with reference to the drawings.
Hereinafter, a nozzle for a burner boom water spray system of an offshore plant according to an exemplary embodiment of the present invention will be described with reference to the drawings.
As shown in
The front ejecting portion 200 of a circular plate shape is positioned at the top end of the nozzle, and a nozzle tap 201 for ejecting fluid (e.g., water) is mounted at the center thereof.
The first side ejecting portion 300 is formed at the lower side of the front ejecting portion 200, and a plurality of nozzle taps 301, 302, 303 are disposed at a side surface at a predetermined gap.
The plurality of nozzle taps 301, 302, 303 are coupled to tap holes 31, 32, 33 formed in the first side ejecting portion 300, as shown in
Next, the second side ejecting portion 400 is formed at the lower side of the first side ejecting portion 300, and a plurality of nozzle taps 401, 402, 403 are disposed at a predetermined gap at a side surface of the first side ejecting portion 300, as shown in the drawings.
As described above, as shown in
Each side surface of the first side ejecting portion 300 and the second side ejecting portion 400 is obliquely formed by a predetermined angle from an upper end to a lower end, and a horizontal section thereof has the same size in a ring shape, but a tilt angle or size may be changed, as needed.
For reference, a side tilt angle of the first and second side ejecting portions 300 and 400 forms an efficient water curtain pattern and may be variously designed according to a formed tilt of tap holes 31, 32, 33, 41, 42, 43 (see
As shown in the drawing, in a front central portion of each of a plurality of nozzle taps 301, 302, 303, 401, 402, 403 according to an exemplary embodiment of the present invention, holes for ejecting a fluid injected through corresponding tap holes 31, 32, 33, 41, 42, 43 and vertical circular arc type injection grooves of a veejet spray nozzle type enclosing the hole are formed.
The vertical circular arc type injection groove of a veejet spray nozzle type is obliquely cut about the hole. More specifically, the vertical circular arc type injection groove is obliquely cut toward a center-line from an outer circumferential edge of a pupil shape based on the center-line crossing the hole.
The reason of forming a vertical circular arc type injection groove of a veejet spray nozzle type is that an efficient water curtain pattern can be formed more than a case where a vertical circular arc type injection groove of a veejet spray nozzle type is not formed, and as an experiment result of several times, it is preferable that a vertical circular arc type injection groove of a veejet spray nozzle type obliquely installs the nozzle of a horizontal state in a range of 5° to 20° (see
Finally, the fastening portion 500 coupled to a member for supplying a nozzle injection fluid and for guiding flow of a fluid (e.g., water) is formed at a lower side of the second side ejecting portion 400.
As shown in
The tap holes 21, 31, 32, 33, 41, 42, 43 are penetrating holes connected to the inside of the nozzle, and a fluid injected through an opening formed at the bottom of the fastening portion 500 passes through the tap holes 21, 31, 32, 33, 41, 42, 43 and is ejected through the nozzle taps 201, 301, 302, 303401, 402, 403 corresponding thereto.
As shown in
Further, the tap holes 31, 32, 33 formed in the first side ejecting portion 300 and the tap holes 41, 42, 43 formed in the second side ejecting portion 400 are positioned with an alternate arrangement method, i.e., a zigzag method. This is to reduce a so-called dead zone area that is not covered by a water curtain pattern formed by the first side ejecting portion 300 by making a difference between a water curtain pattern formed by a fluid ejected through the first side ejecting portion 300 and a water curtain pattern formed by a fluid ejected through the second side ejecting portion 400.
That is, in the present invention, by disposing the side ejecting portions 300 and 400 in two stages in order to improve a problem of a conventional general nozzle having only a side ejecting portion of one stage, a more efficient water curtain pattern can be formed and a dead zone area can be reduced more efficiently than a conventional nozzle having only a side ejecting portion of one stage.
As described above, the nozzle for a burner boom water spray system of an offshore plant according to the present invention can embody an efficient water curtain pattern by providing a side ejection portion of two stages in addition to a front ejection portion, and by forming a vertical circular arc type injection groove of a veejet spray nozzle type in a nozzle tap, a scattering range of a fluid ejected through the nozzle tap can be enlarged and thus a high heat radiated from a gas generating at a drilling operation can be efficiently intercepted.
A technical characteristic of a nozzle of the present invention relates to improvement of a function of a nozzle tap disposed as two stages and a hole formed in the nozzle tap, and it should be clearly understood that many variations and modifications of the present invention will still fall within the spirit and scope of the exemplary embodiments of the present invention as defined in the appended claims.
200: front ejecting portion
201: nozzle tap
300: first side ejecting portion
301, 302, 303: nozzle tap
31, 32, 33: tap hole
400: second side ejecting portion
401, 402, 403: nozzle tap
41, 42, 43: tap hole
500: fastening portion
Number | Date | Country | Kind |
---|---|---|---|
10-2011-0096812 | Sep 2011 | KR | national |