Turbine engines, and particularly gas or combustion turbine engines, are rotary engines that extract energy from a flow of combusted gases passing through the engine onto a multitude of turbine blades. Gas turbine engines have been used for land and nautical locomotion and power generation, but are most commonly used for aeronautical applications such as for aircraft, including helicopters. In aircraft, gas turbine engines are used for propulsion of the aircraft. In terrestrial applications, turbine engines are often used for power generation.
Gas turbine engines for aircraft are designed to operate at high temperatures to maximize engine efficiency, so cooling of certain engine components, such as the high pressure turbine and the low pressure turbine, can be necessary. Typically, cooling is accomplished by ducting cooler air from the high and/or low pressure compressors to the engine components which require cooling. Temperatures in the high pressure turbine are around 1000° C. to 2000° C. and the cooling air from the compressor is about 500° C. to 700° C. While the compressor air is a high temperature, it is cooler relative to the turbine air, and can be used to cool the turbine. When cooling the turbines, cooling air can be supplied to various turbine components, including the interior of the turbine blades and the turbine shroud.
Particles, such as dirt, dust, sand, volcanic ash, and other environmental contaminants, in the cooling air can cause a loss of cooling and reduced operational time or “time-on-wing” for the aircraft environment. This problem is exacerbated in certain operating environments around the globe where turbine engines are exposed to significant amounts of airborne particles. Particles supplied to the turbine components can clog, obstruct, or coat the flow passages and surfaces of the components, which can reduce the lifespan of the components.
A nozzle assembly for a gas turbine engine having a compressor, a combustor, and a turbine contained within in an outer casing, with the turbine having a plurality of annularly-arranged rotating blades comprising the nozzle assembly to define one stage of the turbine. The nozzle assembly comprises at least one vane defining a nozzle with the at least one of the vane having an interior chamber with a cooling circuit inlet passages and a scavenge flow outlet passage. The nozzle assembly further comprises a cooling circuit having a first portion fluidly coupled to the cooling circuit inlet passage and supplying a cooling fluid stream to the chamber through the cooling circuit inlet passage and a second portion fluidly coupled to the cooling circuit outlet passage, defining a scavenge flow passage. The nozzle assembly further comprises at least one particle separator located within the chamber and having a flow accelerator with an accelerator inlet and an accelerator outlet, which is smaller in cross-sectional area than the accelerator inlet, and a particle collector having a collector inlet and a collector outlet and defining a scavenge conduit between the collector inlet and the collector outlet, with the collector inlet aligned with and spaced form the accelerator outlet to define a gap, with the collector outlet fluidly coupled to the scavenge flow passage. The size of the gap and the relative size of the accelerator outlet and collector inlet are selected such that a first portion of the cooling fluid stream exiting the accelerator outlet flows out through the gap, and a second portion of the cooling fluid stream flows directly from the accelerator outlet, across the gap, and into the collector inlet, with particles entrained in the cooling fluid stream that are primarily constrained by the momentum in the second portion of the cooling fluid stream to define a scavenge fluid stream.
A component for a turbine engine having a compressor, a combustor, and a turbine within a casing, with the turbine having a plurality of annularly-arranged fixed vanes defining a nozzle and a plurality of annularly-arranged rotating blades paired with the fixed vanes to define one stage of the turbine. The component comprises a body defining an interior chamber with a cooling circuit inlet passage and a scavenge flow outlet passage, a cooling circuit having a first portion fluidly coupled to the cooling circuit inlet passage and supplying a cooling fluid stream to the chamber through the cooling circuit inlet passage and a second portion fluidly coupled to the cooing circuit outlet passage and defining a scavenge flow passage, and a virtual impactor located within the chamber to define a scavenge particle fluid stream flowing through the virtual impactor and a reduced particle cooling fluid stream flowing exteriorly of the virtual impactor and within the chamber. At least a portion of a space between the virtual impactor and the component has a reduced cross-sectional area to effect an acceleration of the reduced particle cooling fluid stream.
A component for a gas turbine engine having a compressor, a combustor, and a turbine within a casing, the component comprising a body defining an interior chamber with a cooling circuit inlet passage and a scavenge flow outlet passage, a cooling circuit having a first portion fluidly coupled to the cooling circuit inlet passage and supplying a cooling fluid stream to the interior chamber through the cooling circuit inlet passage and a second portion fluidly coupled to he scavenge flow outlet passage and defining a scavenge flow passage. A virtual impactor is located within the interior chamber to define a scavenge particle fluid stream flowing through the virtual impactor and a reduced particle cooling fluid stream flowing exteriorly of the virtual impactor and within the interior chamber.
In the drawings:
The described embodiments of the present invention are directed to a turbine blade, and in particular to cooling a turbine blade. For purposes of illustration, the present invention will be described with respect to a turbine blade for an aircraft gas turbine engine. It will be understood, however, that the invention is not so limited and can have general applicability in non-aircraft applications, such as other mobile applications and non-mobile industrial, commercial, and residential applications. It can also have application to airfoils, other than a blade, in a turbine engine, such as stationary vanes.
The fan section 18 includes a fan casing 40 surrounding the fan 20. The fan 20 includes a plurality of fan blades 42 disposed radially about the centerline 12. The HP compressor 26, the combustor 30, and the HP turbine 34 form a core 44 of the engine 10, which generates combustion gases. The core 44 is surrounded by core casing 46, which can be coupled with the fan casing 40.
A HP shaft or spool 48 disposed coaxially about the centerline 12 of the engine 10 drivingly connects the HP turbine 34 to the HP compressor 26. A LP shaft or spool 50, which is disposed coaxially about the centerline 12 of the engine 10 within the larger diameter annular HP spool 48, drivingly connects the LP turbine 36 to the LP compressor 24 and fan 20.
The LP compressor 24 and the HP compressor 26 respectively include a plurality of compressor stages 52, 54, in which a set of compressor blades 56, 58 rotate relative to a corresponding set of static compressor vanes 60, 62 (also called a nozzle) to compress or pressurize the stream of fluid passing through the stage. In a single compressor stage 52, 54, multiple compressor blades 56, 58 can be provided in a ring and can extend radially outwardly relative to the centerline 12, from a blade platform to a blade tip, while the corresponding static compressor vanes 60, 62 are positioned downstream of and adjacent to the rotating blades 56, 58. It is noted that the number of blades, vanes, and compressor stages shown in
The HP turbine 34 and the LP turbine 36 respectively include a plurality of turbine stages 64, 66, in which a set of turbine blades 68, 70 are rotated relative to a corresponding set of static turbine vanes 72, 74 (also called a nozzle) to extract energy from the stream of fluid passing through the stage. In a single turbine stage 64, 66, multiple turbine blades 68, 70 can be provided in a ring and can extend radially outwardly relative to the centerline 12, from a blade platform to a blade tip, while the corresponding static turbine vanes 72, 74 are positioned upstream of and adjacent to the rotating blades 68, 70. It is noted that the number of blades, vanes, and turbine stages shown in
In operation, the rotating fan 20 supplies ambient air to the LP compressor 24, which then supplies pressurized ambient air to the HP compressor 26, which further pressurizes the ambient air. The pressurized air from the HP compressor 26 is mixed with fuel in the combustor 30 and ignited, thereby generating combustion gases. Some work is extracted from these gases by the HP turbine 34, which drives the HP compressor 26. The combustion gases are discharged into the LP turbine 36, which extracts additional work to drive the LP compressor 24, and the exhaust gas is ultimately discharged from the engine 10 via the exhaust section 38. The driving of the LP turbine 36 drives the LP spool 50 to rotate the fan 20 and the LP compressor 24.
Some of the ambient air supplied by the fan 20 can bypass the engine core 44 and be used for cooling of portions, especially hot portions, of the engine 10, and/or used to cool or power other aspects of the aircraft. In the context of a turbine engine, the hot portions of the engine are normally downstream of the combustor 30, especially the turbine section 32, with the HP turbine 34 being the hottest portion as it is directly downstream of the combustion section 28. Other sources of cooling fluid can be, but is not limited to, fluid discharged from the LP compressor 24 or the HP compressor 26.
A set of bypass channels comprising a first bypass channel 90a and a second bypass channel 90b can be disposed adjacent to the combustor 30 on the radial outboard and inboard of the combustor 30, respectively, providing fluid communication between the compressor section 22 and the turbine section 32 through at least one opening 92, bypassing the combustor 30. A cooling circuit is defined by the series of engine component passages, with arrows 94 illustrating the flow path of cooling fluid within cooling circuit. A first cooling fluid 94a flows through the first bypass channel 90a, bypassing the combustor 30 and can be fed to the vane 72 from the radial outside of the vane 72 relative to the engine centerline. Alternatively, a second cooling fluid 94b can flow through the second bypass channel 90b and can be fed to the vane 72 from the radial inside of the vane 72 relative to the engine centerline. The cooling fluid can be exhausted through one or more film holes 88 in the vane 72, or can be expelled through the shroud assembly 80 or other engine components. The discussion herein will be described in relation to the second cooling flow 94b, such that the vane 72 will be fed with a flow of cooling fluid in a radially outward direction. This flow path, however, should not be understood as limiting and is exemplary of one flow path of cooling fluid provided to the particle separator 86 within the vane 72.
It should be appreciated that the discussion relating to the cooling circuit with a particle separator 86 passing through a vane 72 of the turbine section 32 is exemplary. The cooling circuit including the particle separator 86 can be implemented in a vane in the LP compressor 24, the HP compressor 26, the HP turbine 34, and the LP turbine 36. Alternatively, the cooling circuit can be defined in additional engine components, such as the compressor blade 56, 58, the turbine blade 68, 70, or a shroud assembly in non-limiting examples.
Turning to
The particle separator 86 can further comprise a virtual impactor 120 partially defining the cooling circuit passing through the vane 72. The virtual impactor 120 can comprise a first portion 122 for particle acceleration and a second portion 124 for particle collection. The first portion 122 is mounted adjacent to and is in fluid communication with the inlet 110. A flow accelerator 126, comprising a cone-shaped converging nozzle, defines a converging cross-sectional area of the first portion 122 to form an acceleration inlet 128. A cleaned flow outlet 123 is also provided in the virtual impactor 120 and fluidly coupled to the interior chamber 82.
The second portion 124 comprises a particle collector 130 having an internal scavenge conduit 132 extending between a collector inlet 134 and a collector outlet 136, which couples to the outlet 112. The scavenge conduit 132, internal of the particle collector 130, has an increasing cross-section transitioning into a constant cross-section. The collector inlet 134 aligns with the flow accelerator 126 of the first portion 122. The collector outlet 136 is disposed between the scavenge conduit 132 and the outlet 112. The particle collector 130 can further comprise an outer wall 135 forming an increasing exterior cross-sectional area 138, such that the cross-section of the particle collector 130 increases as it extends from the collector inlet 134 toward the collector outlet 136.
It should be appreciated that the lengths of the portions 122, 124 are exemplary and can comprise any length relative to the vane 72. Additionally, the flow accelerator 126 and the collector inlet 134 can be shortened or elongated as compared to the illustration. Furthermore, the location of the collector inlet 134 can be nearer to or further from the flow accelerator 126, which can change based upon the respective lengths of the first and second portion 122, 124. Further still, the size of the component utilizing the virtual impactor can determine the relative lengths and sizes of the portions 122, 124.
It should be further appreciated that while the first and second portions 122, 124 of the virtual impactor are laterally aligned, one centerline relative to the other centerline, the portions 122, 124 can be offset. For example, a longitudinal axis through the first portion 122 and a separate longitudinal axis through the second portion 124 can be offset such that a lateral misalignment exists between the first and second portions 122, 124. Furthermore, longitudinal axes of the first and second portions 122, 124 can be offset by an angular deviation, such that the axes can intersect at a point. Such an angular deviation can be no more than twenty degrees in any direction. Further still, the angular deviation can be combined with the lateral misalignment, such that the axes never intersect, and are angularly and laterally misaligned relative to the engine centerline.
Turning to
It should be appreciated that the geometry of the flow accelerator 126, the nozzle 144, the annular extension 148, the choke 150, the gap 146, the second gap 154, and the diverging section 152 are exemplary as illustrated. The lengths of each aforementioned element can vary and the linear elements can be curved or angled, such that the elements can comprise a convex or concave dimension. Furthermore, the gap 146 can be determine relative to the diameter of the choke 150, such that the gap 146 to choke 150 ratio can be between 1:1 and 1:4 with the ratio preferably being between 1:1 and 1:2.
In
The major flow 174, which can comprise about 90% of the initial inlet flow 170, moving through the virtual impactor 120 inlet will move into the internal body 84 as the major flow 174. The minor flow 176, which can comprise about the remaining 10% of the initial inlet flow 170, will travel into the scavenge conduit 132 within the second portion 124 of the virtual impactor 120, defining a scavenge flow. A pressure differential between the interior chamber 82 and the scavenge conduit 132 can maintain the separation of the major and minor flows 174, 176, such as a 90% to 10% ratio of major flow 174 to minor flow 176. Alternatively, the geometry of the virtual impactor 120 or the pressures maintained within the cooling circuit can be adapted to provide any ratio of major flow 174 to minor flow 176.
A volume of particles can be entrained within the initial flow 170 of the cooling fluid, traveling from the exterior environment. The particles can comprise matter such as dirt, sand, dust, volcanic ash, or other environmental contaminants that can travel through the engine system with the cooling fluid. The virtual impactor 120 accelerates the inlet flow 170 to an accelerated flow 172 at the acceleration inlet 128, accelerating the particles held within the cooling fluid flow. As the cooling fluid flow exits the flow accelerator 126, momentum carries the particles through the choke 150 and into the particle collector 130. The mass of the particles defines a momentum for the particles which carries the particles through the choke 150 and into the scavenge conduit 132. The larger portion of the cooling fluid can make the turn at the major flow 174 to travel through the first portion 122 and into the interior chamber 82, while the momentum of the particles cannot make the turn with the major flow 174 and are constrained to enter the particle collector 130. As such, the virtual impactor 120 operates to remove an amount of particles from the inlet flow 170, separating the major flow 174 into a cleaned flow 178 and the minor flow 176 into a dirty flow 180. As the dirty flow 180 moves through the scavenge conduit 132, the 10% cooling fluid is removed through the outlet 106 as a scavenge fluid stream 182 which can be provided for other uses within the engine or the vehicle. It should be appreciated that while the major flow 174 is a cleaned flow 178, it can still contain an amount of particles that are not carried into the particle collector 130.
The increasing cross-sectional area 138 of the second portion 124 defines a converging space 137 within the internal body 84 such that the clean flow 178 moving along the external surface of the increasing cross-sectional area 138 is accelerated into an accelerated flow 184 along the length of the internal body 84. As such, an effective flow of cooling fluid will be provided through the internal apertures 114 to the interior chamber 82, providing cooling fluid to the film holes 88 for exhausting a film of cooling fluid on the external surface of the vane 72. Alternatively, the vane 72 or the internal structure of the vane 72 can have a decreasing cross-section, which can be continuous, relative to the particle collector 130 to develop the accelerated flow 184. It should be understood that the converging space within the internal body 84 defined by the increasing cross-sectional area 138 of the second portion 124 is particular to the vane 72 structure and may not be necessary when the virtual impactor 120 is implemented in different engine components.
It should be appreciated that the particles collector as oriented is exemplary, and can be oriented in any direction, such as radial, axial, forward, aft, or any combination thereof, relative to the engine centerline, to define at least a portion of a cooling circuit within an engine component. The engine component, illustrated as a vane is also exemplary. Alternative engine components can comprise a hanger bracket or associated elements, or an engine blade comprising an airfoil shape similar to the vane.
It should be further appreciated that the particle separator operates to remove particles from a flow of cooling fluid. The system can be discriminative, removing a majority of particles based upon particle size, mass, or a combination thereof. As such, any particles remaining within the major flow can comprise a size or mass small to pass through remaining portions of the cooling circuit, such as the film holes, reducing associated clogging or damage to the components.
It should be further appreciated that the virtual impactor as described herein is ideal for removing particles from a flow of cooling fluid passing through the vane or engine component. However, different particles separators can be utilized within the system in order to achieve effective cooling circuit while separating particles from the flow of cooling fluid.
This written description uses examples to disclose the invention, including the best mode, and to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and can include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2806551 | Heinrich | Sep 1957 | A |
3064411 | Breslove, Jr. | Nov 1962 | A |
3274757 | Wapler | Sep 1966 | A |
3302396 | Louis | Feb 1967 | A |
3309867 | Ehrich | Mar 1967 | A |
3421299 | Poplawski | Jan 1969 | A |
3993463 | Barr | Nov 1976 | A |
4378234 | Suzuki et al. | Mar 1983 | A |
4527387 | Lastrina et al. | Jul 1985 | A |
4650578 | Cerdan et al. | Mar 1987 | A |
4685942 | Klassen et al. | Aug 1987 | A |
4767260 | Clevenger | Aug 1988 | A |
4767524 | Yeh et al. | Aug 1988 | A |
4820122 | Hall et al. | Apr 1989 | A |
4820123 | Hall | Apr 1989 | A |
4992025 | Stroud et al. | Feb 1991 | A |
5062768 | Marriage | Nov 1991 | A |
5135354 | Novotny | Aug 1992 | A |
5193975 | Bird et al. | Mar 1993 | A |
5279109 | Liu et al. | Jan 1994 | A |
5348571 | Weber | Sep 1994 | A |
5498273 | Mann | Mar 1996 | A |
5538394 | Inomata | Jul 1996 | A |
5558496 | Woodmansee | Sep 1996 | A |
5700131 | Hall et al. | Dec 1997 | A |
5788741 | Burton et al. | Aug 1998 | A |
5827043 | Fukuda et al. | Oct 1998 | A |
5857833 | Dev | Jan 1999 | A |
5918458 | Coffinberry et al. | Jul 1999 | A |
5951250 | Suenaga et al. | Sep 1999 | A |
6033181 | Endres et al. | Mar 2000 | A |
6039537 | Scheurlen | Mar 2000 | A |
6151881 | Al et al. | Nov 2000 | A |
6164913 | Reddy | Dec 2000 | A |
6238183 | Williamson et al. | May 2001 | B1 |
6238459 | Downs | May 2001 | B1 |
6261053 | Anderson et al. | Jul 2001 | B1 |
6264428 | Dailey et al. | Jul 2001 | B1 |
6277278 | Conrad et al. | Aug 2001 | B1 |
6318960 | Kuwabara et al. | Nov 2001 | B1 |
6318963 | Emery et al. | Nov 2001 | B1 |
6368060 | Fehrenbach et al. | Apr 2002 | B1 |
6382906 | Brassfield et al. | May 2002 | B1 |
6413044 | Roeloffs et al. | Jul 2002 | B1 |
6527829 | Malkamaeki et al. | Mar 2003 | B1 |
6673133 | Sechrist et al. | Jan 2004 | B2 |
6698180 | Snyder | Mar 2004 | B2 |
6840737 | Flatman | Jan 2005 | B2 |
6875256 | Gillingham et al. | Apr 2005 | B2 |
6910370 | Clark et al. | Jun 2005 | B2 |
6969237 | Hudson | Nov 2005 | B2 |
7048501 | Katayama et al. | May 2006 | B2 |
7052532 | Liu et al. | May 2006 | B1 |
7080972 | Rawlinson | Jul 2006 | B2 |
7097419 | Lee et al. | Aug 2006 | B2 |
7128533 | Liang | Oct 2006 | B2 |
7137777 | Fried et al. | Nov 2006 | B2 |
7244101 | Lee et al. | Jul 2007 | B2 |
7284953 | Silverman et al. | Oct 2007 | B2 |
7540712 | Liang | Jun 2009 | B1 |
7563073 | Liang | Jul 2009 | B1 |
7572102 | Liang | Aug 2009 | B1 |
7581397 | Strangman et al. | Sep 2009 | B2 |
7582145 | Krigmont et al. | Sep 2009 | B2 |
7645122 | Liang | Jan 2010 | B1 |
7665965 | Liang | Feb 2010 | B1 |
7770375 | Alvanos et al. | Aug 2010 | B2 |
7874158 | O'Neill et al. | Jan 2011 | B2 |
7879123 | Lundquist et al. | Feb 2011 | B2 |
7921654 | Liang | Apr 2011 | B1 |
7922784 | Saeed et al. | Apr 2011 | B2 |
7934906 | Gu et al. | May 2011 | B2 |
7955053 | Liang | Jun 2011 | B1 |
7976277 | Kopmels et al. | Jul 2011 | B2 |
8092145 | Martel et al. | Jan 2012 | B2 |
8104362 | McFarland et al. | Jan 2012 | B2 |
8142153 | Liang | Mar 2012 | B1 |
8348614 | Piggush et al. | Jan 2013 | B2 |
8573034 | Grant et al. | Nov 2013 | B2 |
8626467 | Fang | Jan 2014 | B2 |
8672629 | Botrel et al. | Mar 2014 | B2 |
8733185 | Solomon | May 2014 | B2 |
8746464 | Maier | Jun 2014 | B2 |
8943791 | Tibbott et al. | Feb 2015 | B2 |
20020166200 | Conrad et al. | Nov 2002 | A1 |
20020182062 | Scimone | Dec 2002 | A1 |
20040197191 | Cunha et al. | Oct 2004 | A1 |
20040221720 | Anderson et al. | Nov 2004 | A1 |
20050118024 | Anguisola et al. | Jun 2005 | A1 |
20050129508 | Fried et al. | Jun 2005 | A1 |
20050214118 | Dodd et al. | Sep 2005 | A1 |
20060073015 | Liang | Apr 2006 | A1 |
20060133923 | Paauwe et al. | Jun 2006 | A1 |
20060275118 | Lee | Dec 2006 | A1 |
20070048122 | Van et al. | Mar 2007 | A1 |
20070140848 | Charbonneau et al. | Jun 2007 | A1 |
20080041064 | Moore et al. | Feb 2008 | A1 |
20080310951 | Bremer | Dec 2008 | A1 |
20090060715 | Kopmels | Mar 2009 | A1 |
20090081024 | Tibbott | Mar 2009 | A1 |
20090126337 | Hazzard | May 2009 | A1 |
20090155088 | Lee et al. | Jun 2009 | A1 |
20090202337 | Bosley et al. | Aug 2009 | A1 |
20090214329 | Joe et al. | Aug 2009 | A1 |
20090255230 | Mildner | Oct 2009 | A1 |
20090261208 | Belyew | Oct 2009 | A1 |
20100021308 | Rawlinson | Jan 2010 | A1 |
20100024370 | Jones et al. | Feb 2010 | A1 |
20100040480 | Webster et al. | Feb 2010 | A1 |
20100119377 | Tibbott et al. | May 2010 | A1 |
20100162682 | Lerg | Jul 2010 | A1 |
20100172762 | Rawlinson | Jul 2010 | A1 |
20100239409 | Draper | Sep 2010 | A1 |
20100247321 | Kulkarni et al. | Sep 2010 | A1 |
20100254801 | Tibbott | Oct 2010 | A1 |
20110016838 | Smithies et al. | Jan 2011 | A1 |
20110047959 | Dibenedetto | Mar 2011 | A1 |
20110067409 | Beeck | Mar 2011 | A1 |
20110236188 | Knapp et al. | Sep 2011 | A1 |
20110247345 | Laurello et al. | Oct 2011 | A1 |
20110247347 | Ebert et al. | Oct 2011 | A1 |
20120070308 | Naik et al. | Mar 2012 | A1 |
20120207594 | Chanez et al. | Aug 2012 | A1 |
20120233973 | Sedillo | Sep 2012 | A1 |
20130192257 | Horine et al. | Aug 2013 | A1 |
20130223987 | Stafford et al. | Aug 2013 | A1 |
20140083116 | Crites et al. | Mar 2014 | A1 |
20140196437 | Schneider | Jul 2014 | A1 |
20140259924 | Leininger | Sep 2014 | A1 |
20140290254 | Manning et al. | Oct 2014 | A1 |
20170107852 | Nasr et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
0162441 | Nov 1985 | EP |
0227577 | Jul 1987 | EP |
0340149 | Nov 1989 | EP |
0690202 | Jan 1996 | EP |
0924408 | Jun 1999 | EP |
1267037 | Dec 2002 | EP |
2405985 | Jan 2012 | EP |
2549078 | Jan 2013 | EP |
2713011 | Feb 2014 | EP |
2927428 | Oct 2015 | EP |
711304 | Jun 1954 | GB |
1070458 | Jun 1967 | GB |
1146262 | Mar 1969 | GB |
1412780 | Nov 1975 | GB |
2270481 | Mar 1994 | GB |
2011006262 | Jan 2011 | WO |
Entry |
---|
How A Virtual Impactor Works, TSI Incorporated, ITI-051 Rev. B, 2013. |
Poplawski et al., “Microscopic Particle Separation and Applications”, Aerospace Research Laboratories, 20 Years of Research Progress, Accession No. AD0667557, Project No. 7116, pp. 1-67, Feb. 1968. |
Walsh et al., “Effects of Sand Ingestion on the Blockage of Film-Cooling Holes”, Proceedings of GT2006, ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona, Spain, vol. No. 3, pp. 81-90, May 8-11, 2006. |
Sennett, “Air Filtration: Perfect Air Filtering for Gas Turbines.” Filtration & Separation, vol. 44, Issue. 10, pp. 20-22, Dec. 2007. |
Musgrove et al., “Computational Design of a Louver Particle Separator for Gas Turbine Engines”, Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air, GT2009, Orlando, Florida, USA, vol. No. 3, pp. 1313-1323, Jun. 3-12, 2009. |
Cardwell et al., “Investigation of Sand Blocking Within Impingement and Film-Cooling Holes”, Journal of Turbomachinery, Transactions of the ASME, vol. No. 132, Issue No. 2, pp. 021020-1-021020-10, Apr. 2010. |
Filippone et al., “Turboshaft Engine Air Particle Separation”, Progress in Aerospace Sciences, vol. No. 46, Issue No. 5-6, pp. 224-245, Jul.-Aug. 2010. |
Lawson et al., “Simulations of Multiphase Particle Deposition on Endwall Film-Cooling Holes in Transverse Trenches”, Journal of Turbomachinery, Transactions of the ASME, vol. No. 134, pp. 051040-1-051040-10, Sep. 2012. |
Lawson et al., “Simulations of Multiphase Particle Deposition on a Showerhead With Staggered Film-Cooling Holes”, Journal of Turbomachinery, Transactions of the ASME, Volume No. 134, pp. 051041-1-051041-12, Sep. 2012. |
European Search Report and Opinion issued in connection with related EP Application No. 15169688.7 dated Oct. 27, 2015. |
PCT Invitation to Pay Additional Fees issued in connection with related PCT Application No. PCT/US2015/033108 dated Mar. 1, 2016. |
European Search Report and Opinion issued in connection with related EP Application No. 15190287.1 dated Mar. 4, 2016. |
PCT Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2015/032855 dated Mar. 14, 2016. |
European Search Report and Opinion issued in connection with related EP Application No. 15191609.5 dated Mar. 18, 2016. |
PCT Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2015/033108 dated Jul. 12, 2016. |
PCT International Preliminary Report on Patentability issued in connection with Related PCT Application No. PCT/US2015/033108 dated Nov. 29, 2016. |
PCT International Preliminary Report on Patentability issued in connection with corresponding PCT Application No. PCT/US2015/032855 dated Nov. 29, 2016. |
European Search Report and Opinion issued in connection with corresponding EP Application No. 16193576.2 dated Mar. 21, 2017. |
U.S. Non-Final Office Action issued in connection with Related U.S. Appl. No. 14/715,700 dated Apr. 5, 2017. |
Starkweather, J. H., et al., Inducer Assembly for Turbine Engine, GE U.S. Appl. No. 62/004,736, filed May 29, 2014. |
Laskowski, G. M., et al., Turbine Engine, GE U.S. Appl. No. 62/004,764, filed May 29, 2014. |
Laskowski, G. M., et al., Turbine Engine, GE U.S. Appl. No. 62/004,768, filed May 29, 2014. |
Murray, R. C., et al., Shroud Assembly for Turbine Engine, GE U.S. Appl. No. 62/004,766, filed May 29, 2014. |
Murray, R. C., et al., Centrifugal Separator, GE U.S. Appl. No. 62/004,710, filed May 29, 2014. |
Manning, R. F., et al., Initial Separator, GE U.S. Appl. No. 62/004,721, filed May 29, 2014. |
Correia, V. H. S., et al., Engine Component for a Turbine Engine, GE U.S. Appl. No. 62/073,525, filed Oct. 31, 2014. |
Murray, R. C., et al., Separator Assembly for a Gas Turbine Engine, GE U.S. Appl. No. 62/073,514, filed Oct. 31, 2014. |
Buhler, J. P., et al., Assembly for a Gas Turbine Engine, GE U.S. Appl. No. 62/073,53, filed Oct. 31, 2014. |
Starkweather, J. H., et al., Inducer Assembly for Turbine Engine, GE U.S. Appl. No. 62/004,728, filed May 29, 2014. |
European Search Report and Opinion issued in connection with corresponding EP Application No. 16193374.2 dated Feb. 16, 2017. |
GE Related Case Form. |
Hojjat Nasr et al., Oct. 15, 2015, U.S. Appl. No. 14/884,152. |
Number | Date | Country | |
---|---|---|---|
20170107834 A1 | Apr 2017 | US |